WO2022270529A1 - ネガ型感光性ポリマー、ポリマー溶液、ネガ型感光性樹脂組成物、硬化膜および半導体装置 - Google Patents

ネガ型感光性ポリマー、ポリマー溶液、ネガ型感光性樹脂組成物、硬化膜および半導体装置 Download PDF

Info

Publication number
WO2022270529A1
WO2022270529A1 PCT/JP2022/024842 JP2022024842W WO2022270529A1 WO 2022270529 A1 WO2022270529 A1 WO 2022270529A1 JP 2022024842 W JP2022024842 W JP 2022024842W WO 2022270529 A1 WO2022270529 A1 WO 2022270529A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
group
negative photosensitive
carbon atoms
photosensitive polymer
Prior art date
Application number
PCT/JP2022/024842
Other languages
English (en)
French (fr)
Inventor
啓太 今井
昭彦 乙黒
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020247001960A priority Critical patent/KR20240026184A/ko
Priority to JP2023530082A priority patent/JP7409564B2/ja
Publication of WO2022270529A1 publication Critical patent/WO2022270529A1/ja
Priority to JP2023203906A priority patent/JP2024022630A/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0387Polyamides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/065Polyamides; Polyesteramides; Polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Definitions

  • the present invention relates to a negative photosensitive polymer, a polymer solution, a negative photosensitive resin composition, a cured film and a semiconductor device.
  • Polyimide resin has high mechanical strength, heat resistance, insulation, and solvent resistance, so it is widely used as a protective material for liquid crystal display elements and semiconductors, as an insulating material, and as a thin film for electronic materials such as color filters.
  • Patent Document 1 discloses a photosensitive composition containing a polyimide having a terminal dimethylmaleimide group, a photoradical generator, a photoacid generator, and one or more cross-linking agents.
  • a fluorine-containing compound is used as the major monomeric component.
  • Patent Document 1 deteriorates in mechanical strength such as elongation due to hydrolysis. Also, the negative photosensitive polymer is required to have excellent solubility in general solvents used for varnish.
  • the present inventors have found that in a negative photosensitive polymer containing a structural unit containing an imide ring and having a predetermined group at the end, if the positive charge of the carbonyl carbon of the imide ring is within a predetermined range, hydrolysis was found to be suppressed, and completed the present invention. That is, the present invention can be shown below.
  • a solvent-soluble negative photosensitive polymer comprising a structural unit containing an imide ring and having a group represented by the following general formula (t) at least one of both ends, A negative photosensitive polymer, wherein the average value of the positive charges ( ⁇ +) of the two carbonyl carbon atoms of the imide ring is 0.095 or less, calculated by a charge balance method.
  • R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and at least one is an alkyl group having 1 to 3 carbon atoms. * is a bond. indicates.
  • R a and R b each independently represent a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms.
  • a plurality of Ra's and a plurality of R'b 's may be the same or different. * indicates a bond.
  • [6] The negative photosensitive polymer according to any one of [3] to [5], wherein said A in said general formula (1) is an aromatic ring.
  • the Q in the general formula (1) is a divalent group containing an imide ring.
  • X is a divalent group represented by the general formula (1a) and the general formula (1b)
  • Y is a divalent organic group.
  • Y in the general formula (1-1) is the following general formula (a1-1), the following general formula (a1-2), the following general formula (a1-3) and the following general formula (a1-4)
  • the negative photosensitive polymer according to [8] which is a divalent organic group selected from (In general formula (a1-1), R 7 and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, and a plurality of R 7 and a plurality of R 8 may be the same or different
  • R 9 represents a hydrogen atom, an alkyl group having 1 to 3
  • each of R 10 and R 11 independently represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; , a plurality of R 11 may be the same or different.
  • Z 1 represents an alkylene group having 1 to 5 carbon atoms or a divalent aromatic group. * indicates a bond.
  • Z2 represents a divalent aromatic group. * indicates a bond.
  • R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and at least one is an alkyl group having 1 to 3 carbon atoms.
  • Q 2 indicates a divalent organic group.* indicates a bond.
  • [11] Dissolves at least 5% by mass in a solvent selected from N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyllactone (GBL), and cyclopentanone, [1] to [10]
  • the negative photosensitive polymer according to any one of .
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • Q 1 represents a single bond or a divalent organic group
  • G 1 , G 2 and G 3 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms
  • m is 0, 1 or 2.
  • the “positive charge ( ⁇ +)” is calculated by calculating the charge on the atom in the molecule by the charge equilibrium method (Charge (Q) Equilibration (Eq): QEq), and calculating the positive charge of the predetermined atom. Charge is expressed as delta plus ( ⁇ +).
  • the charge balancing method is as follows. As atoms form bonds, they change their electron densities until their electronegativities are equal to each other (equilibrium is reached). Initially, electrons flow from atoms of lower electronegativity to atoms of higher electronegativity, starting with a zero charge on all atoms in the molecule.
  • the charge balance method performs these iterative calculations to calculate the charge on the atoms in the molecule, denoting the positive charge on a given atom by delta plus ( ⁇ +) and the negative charge on a given atom by delta minus ( ⁇ -).
  • the negative photosensitive polymer of the present invention is dissolved in a solvent and used as a varnish.
  • solvent soluble means soluble in any of the common solvents used in varnishes. Common solvents include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyllactone (GBL), cyclopentanone, and the like.
  • Soluble means that the negative photosensitive polymer of the present invention dissolves in 100% by weight of these predetermined solvents in an amount of 5% by weight or more.
  • a negative-working photosensitive polymer that is excellent in solubility in organic solvents and that yields a cured product such as a film in which hydrolysis is suppressed and a decrease in mechanical strength such as elongation is suppressed, and the polymer. It is possible to provide a negative photosensitive resin composition containing.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor device according to an embodiment
  • the solvent-soluble negative photosensitive polymer of the present embodiment includes a structural unit containing an imide ring, and has a group represented by the following general formula (t) at least one of both terminals. and
  • the average value of the positive charges ( ⁇ +) of the two carbonyl carbons of the imide ring calculated by the charge balance method is 0.095 or less, preferably 0.094 or less, more preferably 0.093 or less, and even more preferably 0.092 or less.
  • the lower limit of the average positive charge ( ⁇ +) of the two carbonyl carbons of the imide ring is not particularly limited, but is preferably 0.070 or more, more preferably 0.080 or more, and still more preferably 0.085. That's it. If it is at least the above lower limit, it is thought that coloring due to biased charge can be suppressed, and it is thought that a decrease in sensitivity when the negative photosensitive polymer of the present embodiment is used as a photosensitive resin composition can be suppressed. be done. Note that the upper limit and the lower limit can be combined arbitrarily.
  • R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and at least one of R 5 and R 6 is an alkyl group having 1 to 3 carbon atoms. is preferred, and it is more preferred that both are alkyl groups having 1 to 3 carbon atoms. From the viewpoint of the effects of the present invention, the alkyl group having 1 to 3 carbon atoms is preferably an alkyl group having 1 or 2 carbon atoms, and more preferably an alkyl group having 1 carbon atom. At least one of R 5 and R 6 is an alkyl group having 1 to 3 carbon atoms. * indicates a bond.
  • the negative photosensitive polymer of the present embodiment it is possible to provide a cured product such as a film that has excellent solubility in an organic solvent, is inhibited from being hydrolyzed, and is inhibited from lowering mechanical strength such as elongation. can.
  • the average value of the positive charge ( ⁇ +) of the carbonyl carbon is within a predetermined range and the effect of the present invention is not affected.
  • the molecular structure does not contain a fluorine atom having a strong electron-withdrawing property.
  • the structural unit containing the imide ring contained in the solvent-soluble negative photosensitive polymer can be represented by the following general formula (1).
  • a in general formula (1) represents a ring structure containing two carbon atoms of an imide ring, and is preferably an aromatic ring such as a benzene ring or a naphthalene ring.
  • Q in the general formula (1) represents a divalent organic group, preferably a divalent group containing an imide ring.
  • X represents a divalent organic group containing an aromatic group.
  • the aromatic group contained in the divalent organic group is preferably bonded to the nitrogen atom in the general formula (1).
  • the two ortho-positions to the carbon atom of the aromatic group bonded to the nitrogen atom are more preferably provided with electron-donating groups, and more preferably provided with asymmetric electron-donating groups.
  • the electron-donating group include a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, and an alkoxy group having 1 to 3 carbon atoms.
  • Examples of the divalent organic group of X include a divalent group represented by the following general formula (1a) or the following general formula (1b).
  • the negative photosensitive polymer containing structural units in which the X is these groups has a high glass transition temperature, a low linear expansion coefficient, and excellent mechanical strength, so that a molded article with excellent reliability is provided. can be done.
  • X may contain at least one divalent group represented by general formula (1a) or at least one divalent group represented by general formula (1b), and these groups are combined to can also contain
  • R 1 to R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, and R 1 and R 2 are different groups. and R 3 and R 4 are different groups.
  • R a and R b each independently represent a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms.
  • a plurality of Ra's and a plurality of R'b 's may be the same or different. * indicates a bond.
  • the point of the present invention is that it has a predetermined electron-donating group at two ortho positions (R 1 and R 2 (or R 3 and R 4 )) with respect to the carbon atom of the benzene ring directly connected to the nitrogen atom of the general formula (1). It is preferable in terms of effect, and X in the general formula (1) is more preferably a divalent group represented by the general formula (1a).
  • the structural unit represented by the general formula (1) includes a structural unit represented by the following general formula (1-1).
  • X can be a divalent group represented by the general formula (1a) or the general formula (1b).
  • Y in general formula (1-1) is a divalent organic group.
  • the divalent organic group can be selected from the following general formula (a1-1), general formula (a1-2), general formula (a1-3) and general formula (a1-4) below.
  • R 7 and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, and multiple R 7 , multiple R 8 may be the same or different. From the viewpoint of the effects of the present invention, R 7 and R 8 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom.
  • R 9 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, and a plurality of R 9 may be the same or different. From the viewpoint of the effects of the present invention, R 9 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom. * indicates a bond.
  • each of R 10 and R 11 independently represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; , a plurality of R 11 may be the same or different.
  • R 10 and R 11 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably at least one of R 10 and at least one of R 11 an alkyl group having 1 to 3 carbon atoms, more preferably three R 10 are alkyl groups having 1 to 3 carbon atoms, one R 10 is a hydrogen atom, and three R 11 are alkyl groups having 1 to 3 carbon atoms one R 11 is a hydrogen atom, particularly preferably three R 10 are methyl groups and one R 10 is a hydrogen atom, and three R 11 are methyl groups and one R 11 is It is a hydrogen atom. * indicates a bond.
  • Z 1 represents an alkylene group having 1 to 5 carbon atoms or a divalent aromatic group. * indicates a bond.
  • Z 2 represents a divalent aromatic group, preferably a divalent benzene ring. * indicates a bond.
  • the negative photosensitive polymer of the present embodiment comprises a structural unit (1-1a) represented by the following general formula (1-1a) and a structural unit (1-1b) represented by the following general formula (1-1b) It can contain at least one selected structural unit.
  • R 1 to R 4 and X 1 have the same meanings as in general formula (1a), and Y has the same meaning as in general formula (1-1).
  • R a and R b have the same definitions as in general formula (1b), and Y has the same meaning as in general formula (1-1).
  • the negative photosensitive polymer of the present embodiment has a group t-1 represented by the following general formula (t-1) at least one of both terminals, preferably both terminals. is preferred.
  • a cured product having excellent mechanical strength can be obtained by providing the terminal structure with the negative photosensitive polymer.
  • polyimide (A) can be photopolymerized with each other, polyimide (A) and a cross-linking agent (B) described later, and mechanical strength is excellent.
  • R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and at least one of R 5 and R 6 is an alkyl group having 1 to 3 carbon atoms. and more preferably an alkyl group having 1 to 3 carbon atoms.
  • the alkyl group having 1 to 3 carbon atoms is preferably an alkyl group having 1 or 2 carbon atoms, and more preferably an alkyl group having 1 carbon atom. * indicates a bond.
  • Q2 represents a divalent organic group.
  • a known organic group can be used as long as the effect of the present invention is exhibited.
  • Organic groups may be mentioned.
  • the negative photosensitive polymer has at least one terminal selected from a group u-1 represented by the following general formula (u-1) and a group u-2 represented by the following general formula (u-2) It may have one group.
  • the group t- The molar ratio of 1 (t-1) / [(t-1) + (u-1) + (u-2)] is 0.5 or more, preferably 0.55 or more, more preferably 0.6 It can be as above. Within this range, it is possible to reduce the amount of the negative photosensitive polymer eluted during development.
  • the average value of the positive charges ( ⁇ +) of the two carbonyl carbons of the imide ring is as follows: is measured as
  • the compound represented by the general formula (1-1′) is measured by a charge balance method using soft HSPiP (ver 5.3), and the ⁇ + of the two carbonyl carbons of the imide ring contained in the compound is averaged. and ask.
  • Y has the same meaning as in general formula (1-1).
  • X ' is a monovalent group represented by general formula (1a-1) or general formula (1b-1) below.
  • R 1 to R 4 and X 1 have the same meanings as in general formula (1a). * indicates a bond.
  • R a and R b have the same meanings as in general formula (1b). * indicates a bond.
  • the negative photosensitive polymer containing the structural unit represented by the general formula (1-1) contains a plurality of groups as X, the average value of ⁇ + is calculated for each possible combination, and depending on the amount charged A weighted average is taken to calculate the average positive charge ( ⁇ +) of the two carbonyl carbons of the imide ring.
  • a negative photosensitive polymer comprising a structural unit represented by general formula (1-1) is a structural unit (1-1a) comprising a group of general formula (1a) as X, and a general When containing a structural unit (1-1b) comprising a group of formula (1b), A compound represented by the general formula (1-1′) having a group of the general formula (1a-1) is measured by a charge balance method using soft HSPiP (ver 5.3), and contained in the compound The ⁇ + of the two carbonyl carbons of the imide ring are averaged to give an average value (1).
  • a compound represented by the general formula (1-1′) having a group of the general formula (1b-1) is measured in the same manner, and the ⁇ + of the two carbonyl carbons of the imide ring contained in the compound is averaged. Obtain the average value (2). Assuming that the sum of the number of moles (1) of the structural unit (1-1a) and the number of moles (2) of the structural unit (1-1b) is 100, ⁇ + is calculated by the following formula. Formula: [Average value of ⁇ + (1) ⁇ Mole fraction (1) + Average value of ⁇ + (2) ⁇ Mole fraction (2)] / 100
  • the average of ⁇ + for each possible combination By calculating the value and taking a weighted average according to the charged amount, the average value of the positive charges ( ⁇ +) of the two carbonyl carbons of the imide ring of the negative photosensitive polymer is calculated.
  • the weight average molecular weight of the negative photosensitive polymer of this embodiment is 25,000 to 200,000, preferably 30,000 to 150,000, more preferably 40,000 to 100,000.
  • the glass transition temperature is high, the coefficient of linear expansion is low, and the mechanical strength is excellent, so that a molded article with excellent reliability can be obtained.
  • the negative photosensitive polymer of the present embodiment has excellent solubility in solvents and does not need to be used as a varnish in a precursor state
  • a varnish containing the negative photosensitive polymer can be prepared.
  • a cured product such as a film can be obtained from the varnish.
  • a structural unit (1-1a) represented by general formula (1-1a) and/or a structural unit (1-1b) represented by general formula (1-1b) both ends At least one of is a group t-1 represented by the general formula (t-1).
  • a polyimide (A) having excellent solubility in organic solvents can be synthesized by a simple method.
  • Y is selected from groups represented by general formulas (a1-1), (a1-2), (a1-3) or (a1-4).
  • R 1 to R 4 and X 1 have the same meanings as in general formula (1a).
  • R a and R b have the same meanings as in general formula (1b).
  • R 5 and R 6 have the same meanings as in general formula (t).
  • the equivalent ratio of diamine (a2) and/or diamine (a3) to acid anhydride (a1) in the reaction is an important factor that determines the molecular weight of the resulting polyimide.
  • the equivalent ratio of the diamine (a2) and/or diamine (a3) to be used and the acid anhydride (a1) is not particularly limited.
  • the equivalent ratio of a1) is preferably in the range of 0.80 to 1.06.
  • the amount of the maleic anhydride derivative (t1) can be 3 times the molar amount of amino groups that are not reacted with the acid anhydride (a1).
  • a cured product such as a film having excellent mechanical properties as well as excellent low dielectric loss tangent can be obtained.
  • the reaction can be carried out by a known method in an organic solvent.
  • organic solvents include aprotic polar solvents such as ⁇ -butyl lactone (GBL), N,N-dimethylformamide, N,N-dimethylacetamide, tetrahydrofuran, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, cyclohexanone, and 1,4-dioxane. , and one type or two or more types may be used in combination. At this time, a nonpolar solvent compatible with the aprotic polar solvent may be mixed and used.
  • aprotic polar solvents such as ⁇ -butyl lactone (GBL), N,N-dimethylformamide, N,N-dimethylacetamide, tetrahydrofuran, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, cyclohexanone, and 1,4-dioxane.
  • a nonpolar solvent compatible with the aprotic polar solvent may be mixed and used.
  • nonpolar solvents examples include aromatic hydrocarbons such as toluene, ethylbenzene, xylene, mesitylene and solvent naphtha, and ether solvents such as cyclopentyl methyl ether.
  • the ratio of the non-polar solvent in the mixed solvent is set arbitrarily according to the resin properties such as the stirring device capacity and solution viscosity, as long as the solubility of the solvent decreases and the polyamic acid resin obtained by the reaction does not precipitate. can do.
  • the reaction temperature is 0° C. or higher and 100° C. or lower, preferably 20° C. or higher and 80° C. or lower, for about 30 minutes to 2 hours. React for some time.
  • Maleic anhydride derivative (t1) may be present in the imidization reaction of acid anhydride (a1) with diamine (a2) and/or diamine (a3), but acid anhydride (a1) and diamine During or after the reaction with (a2) and/or diamine (a3), the maleic anhydride derivative (t1) dissolved in the above organic solvent is added and reacted to block the polyimide terminals.
  • the maleic anhydride derivative (t1) When the maleic anhydride derivative (t1) is added separately, it is preferable to react after the addition at 100° C. or higher and 250° C. or lower, preferably 120° C. or higher and 200° C. or lower for about 1 to 5 hours.
  • a reaction solution containing the negative photosensitive polymer (terminal-blocked polyimide) of the present embodiment can be obtained, further diluted with an organic solvent or the like as necessary, and used as a polymer solution (coating varnish).
  • an organic solvent those exemplified in the reaction step can be used, and the same organic solvent as in the reaction step may be used, or a different organic solvent may be used.
  • this reaction solution can be put into a poor solvent to reprecipitate the negative photosensitive polymer to remove unreacted monomers, dry and solidify, and dissolve again in an organic solvent for use as a purified product. .
  • concentration of the negative photosensitive polymer in the polymer solution (100% by weight) is not particularly limited, but is about 10 to 30% by weight.
  • Table A below shows preferred formulation examples of the negative photosensitive polymer of the present embodiment.
  • ⁇ MED-J 4,4-diamino-3,3-diethyl-5,5-dimethyldiphenylmethane
  • TMPBP-TME 4-[4-(1,3-dioxoisobenzofuran-5-ylcarbonyloxy) -2,3,5-trimethylphenyl]-2,3,6-trimethylphenyl 1,3-dioxoisobenzofuran-5-carboxylate
  • HQDA 1,4-bis(3,4-dicarboxyphenoxy)benzene
  • Acid dianhydride TMDA 1-(4-aminophenyl)-1,3,3-trimethylphenylindan-6-amine and 1-(4-aminophenyl)-1,3,3-trimethylphenylindan-5 - mixture of amines
  • BTFL 9,9-bis(3-methyl-4-aminophenyl)fluorene
  • DMMI 2,3-dimethylmaleic anhydride
  • the negative photosensitive polymer of this embodiment has excellent solvent solubility and is selected from N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyllactone (GBL), and cyclopentanone. It can be dissolved in a solvent in an amount of 5% by mass or more, and in particular in cyclopentanone in an amount of 5% by mass or more.
  • the negative photosensitive polymer of this embodiment can be suitably used as a polymer solution (varnish) because it is solvent-soluble.
  • the negative photosensitive polymer of the present embodiment is excellent in hydrolysis resistance, and has a weight average molecular weight reduction rate of 15% or less, preferably 12% or less, more preferably 11% or less, measured under the following conditions. , particularly preferably 10% or less.
  • (conditions) 400 parts by mass of ⁇ -butyrolactone, 200 parts by mass of 4-methyltetrahydropyran, and 50 parts by mass of water are added to 100 parts by mass of the negative photosensitive polymer, and the mixture is stirred at 100°C for 6 hours. .
  • the negative photosensitive polymer of the present embodiment has a weight-average molecular weight reduction rate within the above range, so that a cured product such as a film in which a decrease in mechanical strength such as elongation is suppressed can be obtained.
  • the negative photosensitive polymer of the present embodiment is excellent in hydrolysis resistance, and has a weight average molecular weight reduction rate of 50% or less, preferably 40% or less, more preferably 30% or less, measured under the following conditions. is. (conditions) 10 parts by mass of triethylamine, 400 parts by mass of ⁇ -butyrolactone, 200 parts by mass of 4-methyltetrahydropyran, and 50 parts by mass of water were added to 100 parts by mass of the negative photosensitive polymer, and the mixture was stirred at 100°C for 6 hours. Calculated by the following formula. Formula: [(weight average molecular weight before test - weight average molecular weight after test) / weight average molecular weight before test] ⁇ 100
  • the reduction rate of the weight average molecular weight can be within the above range, and the decrease in mechanical strength such as elongation is further suppressed.
  • a cured product such as a film can be obtained.
  • the negative photosensitive resin composition of the present embodiment contains (A) the negative photosensitive polymer described above, (B) a cross-linking agent, and (C) a photosensitizer.
  • Cross-linking agent (B) examples include 4,4′-diphenylmethanebis(dimethyl)maleimide, polyphenylmethane(dimethyl)maleimide, m-phenylenebis (dimethyl)maleimide, p-phenylenebis(dimethyl)maleimide, bisphenol A diphenyl ether bis(dimethyl)maleimide, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethanebis(dimethyl)maleimide, 4 -methyl-1,3-phenylenebis(dimethyl)maleimide, 1,6'-bis(dimethyl)maleimide-(2,2,4-trimethyl)hexane, 1,2-bis((dimethyl)maleimido)ethane, 1 , 4-bis((dimethyl)maleimid
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and at least one of R 1 and R 2 is an alkyl group having 1 to 3 carbon atoms. is preferred, and it is more preferred that both are alkyl groups having 1 to 3 carbon atoms. From the viewpoint of the effects of the present invention, the alkyl group having 1 to 3 carbon atoms is preferably an alkyl group having 1 or 2 carbon atoms, and more preferably an alkyl group having 1 carbon atom.
  • Q1 represents a single bond or a divalent organic group.
  • the divalent organic group of Q 1 a known organic group can be used within the scope of the effects of the present invention, and examples thereof include an alkylene group having 1 to 8 carbon atoms or a (poly)alkylene glycol chain. can be done.
  • the alkylene group having 1 to 8 carbon atoms is preferably an alkylene group having 2 to 6 carbon atoms.
  • alkylene group having 1 to 8 carbon atoms examples include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, and octylene group.
  • the alkylene oxide constituting the (poly)alkylene glycol chain is not particularly limited, but is preferably composed of an alkylene oxide having 1 to 18 carbon atoms, more preferably an alkylene oxide having 2 to 8 carbon atoms, such as ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, 1-butene oxide, 2-butene oxide, trimethylethylene oxide, tetramethylene oxide, tetramethylethylene oxide, butadiene monoxide, octylene oxide and the like.
  • G 1 , G 2 and G 3 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms.
  • hydrocarbon groups having 1 to 30 carbon atoms include alkyl groups, alkenyl groups, alkynyl groups, alkylidene groups, aryl groups, aralkyl groups, alkaryl groups, cycloalkyl groups, and the like.
  • alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, Octyl, nonyl, and decyl groups are included.
  • Alkenyl groups include, for example, allyl groups, pentenyl groups, and vinyl groups.
  • Alkynyl groups include ethynyl groups.
  • the alkylidene group includes, for example, a methylidene group and an ethylidene group.
  • Aryl groups include, for example, phenyl groups, naphthyl groups, and anthracenyl groups.
  • Aralkyl groups include, for example, benzyl groups and phenethyl groups.
  • alkaryl groups include tolyl and xylyl groups.
  • Cycloalkyl groups include, for example, adamantyl, cyclopentyl, cyclohexyl, and cyclooctyl groups.
  • the hydrocarbon group having 1 to 30 carbon atoms may contain at least one atom selected from O, N, S, P and Si in its structure.
  • the hydrocarbon group having 1 to 30 carbon atoms is preferably a hydrocarbon group having 1 to 15 carbon atoms, more preferably a hydrocarbon group having 1 to 10 carbon atoms.
  • the hydrocarbon group having 1 to 30 carbon atoms is preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 15 carbon atoms, and an alkyl group having 1 to 10 carbon atoms. is even more preferred.
  • Examples of the substituted hydrocarbon group having 1 to 30 carbon atoms include a hydroxyl group, an amino group, a cyano group, an ester group, an ether group, an amide group, a sulfonamide group, and the like. may be substituted.
  • any one of G 1 , G 2 , and G 3 is preferably a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, and the rest are hydrogen atoms, and all are hydrogen atoms. It is more preferable to have m is 0, 1 or 2, preferably 0 or 1, more preferably 0;
  • the cross-linking agent (B) of the present embodiment has the structure represented by the general formula (b), it is excellent in low dielectric loss tangent. Furthermore, the cross-linking agent (B) has a predetermined maleimide group in the side chain, and photodimerization is possible without causing a radical reaction. A) can be photopolymerized, and the mechanical strength is also superior.
  • the cross-linking agent (B) of the present embodiment can be synthesized as follows.
  • a compound (b') represented by the following general formula (b') is addition-polymerized, and if necessary, addition-polymerized with another norbornene-based compound to obtain a polymer.
  • Addition polymerization is carried out, for example, by coordination polymerization.
  • R 1 , R 2 , Q 1 , G 1 , G 2 , G 3 and m have the same meanings as in general formula (b).
  • norbornene compounds include norbornenes having an alkyl group such as 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-hexylnorbornene, 5-decylnorbornene, 5-cyclohexylnorbornene, 5-cyclopentylnorbornene
  • Norbornenes having an alkenyl group such as 5-ethylidenenorbornene, 5-vinylnorbornene, 5-propenylnorbornene, 5-cyclohexenylnorbornene, 5-cyclopentenylnorbornene; 5-phenylnorbornene, 5-phenylmethylnorbornene, 5-phenyl norbornenes having an aromatic ring such as ethyl norbornene and 5-phenylpropyl norbornene;
  • solution polymerization can be performed by dissolving the compound and the organometallic catalyst in a solvent and then heating for a predetermined time.
  • the heating temperature can be, for example, 30°C to 200°C, preferably 40°C to 150°C, more preferably 50°C to 120°C.
  • the yield of the cross-linking agent (B) can be improved by making the heating temperature higher than conventionally.
  • the heating time can be, for example, 0.5 hours to 72 hours.
  • chain transfer agents examples include alkylsilane compounds such as trimethylsilane, triethylsilane, and tributylsilane. These chain transfer agents may be used singly or in combination of two or more.
  • Solvents used in the polymerization reaction include, for example, methyl ethyl ketone (MEK), propylene glycol monomethyl ether, diethyl ether, cyclopentyl methyl ether, tetrahydrofuran (THF), 4-methyltetrahydropyran, toluene, cyclohexane, methylcyclohexane, ethyl acetate, One or more of esters such as butyl acetate and alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol can be used.
  • MK methyl ethyl ketone
  • F tetrahydrofuran
  • esters such as butyl acetate and alcohols
  • alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol
  • the organometallic catalyst is not particularly selected as long as the addition polymerization proceeds. good. One or more of these can be used.
  • the palladium complex examples include (acetato- ⁇ 0)(acetonitrile)bis[tris(1-methylethyl)phosphine]palladium(I) tetrakis(2,3,4,5,6-pentafluorophenyl)borate, ⁇ - allylpalladium complexes such as allylpalladium chloride dimer, Organic carboxylates of palladium such as palladium acetate, propionate, maleate, naphthoate, palladium complexes of organic carboxylic acids such as palladium acetate triphenylphosphine complexes, palladium acetate tri(m-tolyl)phosphine complexes, palladium acetate tricyclohexylphosphine complexes, organic sulfonates of palladium such as palladium dibutyl phosphite, p-toluenesulfonate, ⁇ -diketone compounds of pal
  • phosphine ligands examples include triphenylphosphine, dicyclohexylphenylphosphine, cyclohexyldiphenylphosphine, and tricyclohexylphosphine.
  • Examples of the counter anion include triphenylcarbeniumtetrakis(pentafluorophenyl)borate, triphenylcarbeniumtetrakis[3,5-bis(trifluoromethyl)phenyl]borate, triphenylcarbeniumtetrakis(2,4, 6-trifluorophenyl)borate, triphenylcarbenium tetraphenylborate, tributylammonium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, N,N-diethylanilinium tetrakis ( pentafluorophenyl)borate, N,N-diphenylanilinium tetrakis(pentafluorophenyl)borate, lithium tetrakis(pentafluorophenyl)borate and the like.
  • the amount of the organometallic catalyst can be 300 ppm to 5000 ppm, preferably 1000 ppm to 3500 ppm, more preferably 1500 ppm to 2500 ppm with respect to the norbornene-based monomer. Thereby, the yield of the cross-linking agent (B) can be improved.
  • the resulting reaction solution containing the cross-linking agent (B) is added to an alcohol such as hexane or methanol to precipitate the cross-linking agent (B).
  • the cross-linking agent (B) is collected by filtration, washed with alcohol such as hexane or methanol, and dried.
  • the cross-linking agent (B) can be synthesized in this way. According to the production method of the present embodiment, the cross-linking agent (B) can be obtained with a high yield of 70% or more.
  • the conversion rate with dialkyl maleic anhydride is preferably 70% or more. More preferably 80%, more preferably 90% or more. If it is this range, the polyimide component eluted by development can be reduced.
  • the cross-linking agent (B) of the present embodiment may contain other structural units other than the structural unit (b) within the scope of the effect of the present invention, and the other structural units include the other norbornene-based compounds Structural units derived from
  • the weight average molecular weight of the cross-linking agent (B) of the present embodiment is 3,000 to 300,000, preferably 5,000 to 200,000.
  • the ratio (A:B) of the negative photosensitive polymer (A) and the cross-linking agent (B) is 5:95 to 95:5, preferably 10:90. to 90:10, more preferably 20:80 to 80:20.
  • the negative photosensitive resin composition of this embodiment can further contain a photosensitizer (C).
  • Examples of the photosensitizer (C) include benzophenone-based photopolymerization initiators, thioxanthone-based photopolymerization initiators, benzyl-based photopolymerization initiators, and Michler's ketone-based photopolymerization initiators. Among these, benzophenone-based photopolymerization initiators and thioxanthone-based photopolymerization initiators are preferred.
  • Benzophenone-based photopolymerization initiators include benzophenone, 4-chlorobenzophenone, 4,4′-dimethoxybenzophenone, 4,4′-diaminobenzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4′-methyl-diphenyl sulfide and the like. These benzophenones and derivatives thereof can improve the curing speed by using a tertiary amine as a hydrogen donor.
  • benzophenone-based photopolymerization initiators examples include SPEEDCUREMBP (4-methylbenzophenone), SPEEDCUREMBB (methyl-2-benzoylbenzoate), SPPEDCUREBMS (4-benzoyl-4'methyldiphenyl sulfide), SPPEDCUREPBZ (4-phenyl benzophenone), SPPEDCUREEMK (4,4′-bis(diethylamino)benzophenone) (both trade names, manufactured by DKSH Japan Co., Ltd.), and the like.
  • Thioxanthone-based photopolymerization initiators include thioxanthone, diethylthioxanthone, isopropylthioxanthone, and chlorothioxanthone.
  • Preferred diethylthioxanthone is 2,4-diethylthioxanthone
  • isopropylthioxanthone is 2-isopropylthioxanthone
  • chlorothioxanthone is 2-chlorothioxanthone.
  • a thioxanthone-based photopolymerization initiator containing diethylthioxanthone is more preferable.
  • Examples of commercially available thioxanthone-based photopolymerization initiators include SpeedcureDETX (2,4-diethylthioxanthone), SpeedcureITX (2-isopropylthioxanthone), SpeedcureCTX (2-chlorothioxanthone), and SPEEDCURECPTX (1-chloro-4-propylthioxanthone). (trade name, manufactured by DKSH Japan Co., Ltd.), KAYACUREDETX (2,4-diethylthioxanthone) (trade name, manufactured by Nippon Kayaku Co., Ltd.), and DAIDO UV-CURE DETX (manufactured by Daido Kasei Co., Ltd.).
  • the amount of the photosensitizer (C) added is not particularly limited, but it is preferably about 0.05 to 15% by mass of the total solid content of the negative photosensitive resin composition, and 0.1 to 12.5%. It is more preferably about mass %, more preferably about 0.2 to 10 mass %.
  • the negative photosensitive resin composition of this embodiment can further contain a silane coupling agent (D). Thereby, the adhesiveness of the resin film or pattern formed of the negative photosensitive resin composition to the substrate can be enhanced.
  • the usable silane coupling agent (D) is not particularly limited.
  • silane coupling agents such as aminosilane, epoxysilane, acrylsilane, mercaptosilane, vinylsilane, ureidosilane, acid anhydride-functional silane, and sulfidesilane can be used.
  • Silane coupling agents (D) may be used alone or in combination of two or more.
  • epoxysilanes i.e., compounds containing both an epoxy moiety and a group that generates a silanol group by hydrolysis in one molecule
  • anhydride-functional silanes i.e., in one molecule, an anhydride and a group that generates a silanol group by hydrolysis
  • the group of the silane coupling agent on the side opposite to the silane is bonded to the polymer A or the polymer B or has good compatibility with the polymer, so that the resin film or pattern formed with the negative photosensitive resin composition is Adhesion to the substrate can be further enhanced.
  • aminosilanes include bis(2-hydroxyethyl)-3-aminopropyltriethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, ⁇ -amino propylmethyldimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldiethoxysilane, N-phenyl- ⁇ -amino-propyltrimethoxysilane, and the like.
  • epoxysilanes include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ⁇ -glycidylpropyltrimethoxysilane, and the like.
  • acrylic silanes include ⁇ -(methacryloxypropyl)trimethoxysilane, ⁇ -(methacryloxypropyl)methyldimethoxysilane, ⁇ -(methacryloxypropyl)methyldiethoxysilane, and the like.
  • Mercaptosilanes include, for example, 3-mercaptopropyltrimethoxysilane.
  • Vinylsilanes include, for example, vinyltris( ⁇ -methoxyethoxy)silane, vinyltriethoxysilane, vinyltrimethoxysilane, and the like.
  • Ureidosilanes include, for example, 3-ureidopropyltriethoxysilane.
  • Anhydride-functional silanes include, for example, 3-trimethoxysilylpropylsuccinic anhydride.
  • sulfide silanes include bis(3-(triethoxysilyl)propyl)disulfide and bis(3-(triethoxysilyl)propyl)tetrasulfide.
  • silane coupling agent (D) When using a silane coupling agent (D), only 1 type may be used and 2 or more types may be used together.
  • the content of the silane coupling agent (D) is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass when the total solid content of the negative photosensitive resin composition is 100 parts by mass. be. It is considered that by setting the amount in this range, it is possible to obtain sufficient "adhesion", which is the effect of the silane coupling agent (D), while maintaining a balance with other performances.
  • the negative photosensitive resin composition according to the present embodiment can contain a urea compound or an amide compound having an acyclic structure as a solvent.
  • the solvent preferably contains, for example, a urea compound.
  • a urea compound indicates a compound having a urea bond, that is, a urea bond.
  • an amide compound indicates a compound having an amide bond, that is, an amide.
  • amides specifically include primary amides, secondary amides, and tertiary amides.
  • an acyclic structure means that the structure of a compound does not have a cyclic structure such as a carbocyclic ring, an inorganic ring, or a heterocyclic ring.
  • a cyclic structure such as a carbocyclic ring, an inorganic ring, or a heterocyclic ring.
  • structures of compounds that do not have a cyclic structure include straight-chain structures and branched-chain structures.
  • the urea compound and the amide compound having a non-cyclic structure those having a large number of nitrogen atoms in the molecular structure are preferred.
  • the number of nitrogen atoms in the molecular structure is preferably two or more. Thereby, the number of lone electron pairs can be increased. Therefore, the adhesion to metals such as Al and Cu can be improved.
  • the structure of the urea compound include a cyclic structure and an acyclic structure.
  • the structure of the urea compound is preferably an acyclic structure.
  • the urea compound having a non-cyclic structure is less constrained in molecular motion and has a greater degree of freedom in deformation of the molecular structure than the urea compound having a cyclic structure. Therefore, when a urea compound having a non-cyclic structure is used, a strong coordinate bond can be formed and adhesion can be improved.
  • urea compounds include tetramethylurea (TMU), 1,3-dimethyl-2-imidazolidinone, tetrabutylurea, N,N′-dimethylpropyleneurea, 1,3-dimethoxy-1,3 -dimethylurea, N,N'-diisopropyl-O-methylisourea, O,N,N'-triisopropylisourea, O-tert-butyl-N,N'-diisopropylisourea, O-ethyl-N,N '-diisopropylisourea, O-benzyl-N,N'-diisopropylisourea and the like.
  • TNU tetramethylurea
  • 1,3-dimethyl-2-imidazolidinone 1,3-dimethyl-2-imidazolidinone
  • tetrabutylurea N,N′-dimethylpropyleneurea
  • urea compound one or a combination of two or more of the above specific examples can be used.
  • tetramethylurea TMA
  • tetrabutylurea 1,3-dimethoxy-1,3-dimethylurea, N,N'-diisopropyl-O-methylisourea, O,N ,N'-triisopropylisourea, O-tert-butyl-N,N'-diisopropylisourea, O-ethyl-N,N'-diisopropylisourea and O-benzyl-N,N'-diisopropylisourea
  • TEU tetramethylurea
  • TNU tetrabutylurea
  • 1,3-dimethoxy-1,3-dimethylurea N,N'-diisopropyl-O-methylisourea
  • acyclic amide compounds include 3-methoxy-N,N-dimethylpropanamide, N,N-dimethylformamide, N,N-dimethylpropionamide, N,N-dimethylacetamide, N, N-diethylacetamide, 3-butoxy-N,N-dimethylpropanamide, N,N-dibutylformamide and the like.
  • the negative photosensitive resin composition according to the present embodiment may contain, as a solvent, a solvent having no nitrogen atom in addition to the urea compound and the amide compound having an acyclic structure.
  • solvents having no nitrogen atom include ether-based solvents, ester-based solvents, alcohol-based solvents, ketone-based solvents, lactone-based solvents, carbonate-based solvents, sulfone-based solvents, ester-based solvents, and aromatic hydrocarbons. system solvents and the like.
  • solvent having no nitrogen atom one or a combination of two or more of the above specific examples can be used.
  • ether solvent examples include propylene glycol monomethyl ether (PGME), propylene glycol monoethyl ether, ethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether, diethylene glycol, ethylene glycol diethyl ether, and diethylene glycol diethyl ether. , diethylene glycol dibutyl ether, dipropylene glycol monomethyl ether, 1,3-butylene glycol-3-monomethyl ether and the like.
  • ester solvent examples include propylene glycol monomethyl ether acetate (PGMEA), methyl lactate, ethyl lactate, butyl lactate, and methyl-1,3-butylene glycol acetate.
  • PGMEA propylene glycol monomethyl ether acetate
  • methyl lactate methyl lactate
  • ethyl lactate methyl lactate
  • butyl lactate methyl-1,3-butylene glycol acetate
  • the alcohol solvent include tetrahydrofurfuryl alcohol, benzyl alcohol, 2-ethylhexanol, butanediol, and isopropyl alcohol.
  • Specific examples of the ketone solvent include cyclopentanone, cyclohexanone, diacetone alcohol, and 2-heptanone.
  • Specific examples of the lactone solvent include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone.
  • the carbonate-based solvent include ethylene carbonate and propylene carbonate.
  • Specific examples of the sulfone-based solvent include dimethylsulfoxide (DMSO) and sulfolane.
  • ester solvent examples include methyl pyruvate, ethyl pyruvate, and methyl-3-methoxypropionate.
  • aromatic hydrocarbon solvent examples include mesitylene, toluene, and xylene.
  • the lower limit of the content of the urea compound and the amide compound having an acyclic structure in the solvent is, for example, preferably 10 parts by mass or more, preferably 20 parts by mass or more, when the solvent is 100 parts by mass. More preferably, it is 30 parts by mass or more, even more preferably 50 parts by mass or more, and even more preferably 70 parts by mass or more.
  • the lower limit of the content of the urea compound and the amide compound with an acyclic structure in the solvent can be, for example, 100 parts by mass or less when the solvent is 100 parts by mass. From the viewpoint of improving adhesion, it is preferable that the solvent contains a large amount of the urea compound and the amide compound having an acyclic structure.
  • the negative photosensitive resin composition according to this embodiment may further contain a surfactant.
  • the surfactant is not limited, and specifically polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether; polyoxyethylene octylphenyl ether, polyoxyethylene Polyoxyethylene aryl ethers such as nonylphenyl ether; Nonionic surfactants such as polyoxyethylene dialkyl esters such as polyoxyethylene dilaurate and polyoxyethylene distearate; Ftop EF301, Ftop EF303, Ftop EF352 (manufactured by Shin-Akita Kasei), Megafac F171, Megafac F172, Megafac F173, Megafac F177, Megafac F444, Megafac F470, Megafac F471, Megafac F475, Megafac F482, Megafac F477 (DIC Corporation) manufactured), Florado FC-430, Florard FC-431, Novec FC4430, Nov
  • a fluorine-based surfactant having a perfluoroalkyl group As the specific examples of the perfluoroalkyl group-containing fluorosurfactant, Megafac F171, Megafac F173, Megafac F444, Megafac F470, Megafac F471, Megafac F475, Megafac F482, and Megafac
  • F477 manufactured by DIC
  • Surflon S-381, Surflon S-383, Surflon S-393 manufactured by AGC Seimi Chemical Co., Ltd.
  • Novec FC4430 and Novec FC4432 manufactured by 3M Japan
  • a silicone-based surfactant eg, polyether-modified dimethylsiloxane, etc.
  • silicone surfactants include SH series, SD series and ST series from Dow Corning Toray Co., Ltd., BYK series from BYK Chemie Japan, KP series from Shin-Etsu Chemical Co., Ltd., Disfoam from NOF CORPORATION ( (registered trademark) series, TSF series of Toshiba Silicone Co., Ltd., and the like.
  • the upper limit of the content of the surfactant in the negative photosensitive resin composition is 1% by mass (10,000 ppm) or less with respect to the entire negative photosensitive resin composition (including the solvent). It is preferably 0.5% by mass (5,000 ppm) or less, more preferably 0.3% by mass (3,000 ppm) or less.
  • the content of the surfactant in the negative photosensitive resin composition is 0.001% by mass (10 ppm) or more with respect to the whole (including the solvent). Applicability and uniformity of the coating film can be improved while maintaining other properties by appropriately adjusting the amount of the surfactant.
  • the negative photosensitive resin composition according to this embodiment may further contain an antioxidant.
  • an antioxidant one or more selected from phenol-based antioxidants, phosphorus-based antioxidants and thioether-based antioxidants can be used.
  • the antioxidant can suppress oxidation of the resin film formed from the negative photosensitive resin composition.
  • Phenolic antioxidants include pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 3,9-bis ⁇ 2-[3-(3 -t-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl ⁇ 2,4,8,10-tetraoxaspiro[5,5]undecane, octadecyl-3-(3, 5-di-t-butyl-4-hydroxyphenyl)propionate, 1,6-hexanediol-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 1,3,5 -trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, 2,6-di-t-butyl-4-methylphenol, 2,6-di-t -butyl-4
  • Phosphorus antioxidants include bis(2,6-di-t-butyl-4-methylphenyl)pentaerythritol diphosphite, tris(2,4-di-t-butylphenylphosphite), tetrakis(2 ,4-di-t-butyl-5-methylphenyl)-4,4′-biphenylenediphosphonite, 3,5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, bis-(2,6 -dicumylphenyl)pentaerythritol diphosphite, 2,2-methylenebis(4,6-di-t-butylphenyl)octylphosphite, tris(mixed mono and di-nonylphenylphosphite), bis(2, 4-di-t-butylphenyl)pentaerythritol diphosphite, bis(2,6
  • Thioether antioxidants include dilauryl-3,3′-thiodipropionate, bis(2-methyl-4-(3-n-dodecyl)thiopropionyloxy)-5-t-butylphenyl)sulfide , distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis(3-lauryl)thiopropionate, and the like.
  • the negative photosensitive resin composition according to this embodiment may further contain a filler.
  • a filler an appropriate filler can be selected according to the mechanical properties and thermal properties required for the resin film made of the negative photosensitive resin composition.
  • fillers include inorganic fillers and organic fillers.
  • specific examples of the inorganic filler include silica such as fused crushed silica, fused spherical silica, crystalline silica, secondary agglomerated silica, and finely divided silica; alumina, silicon nitride, aluminum nitride, boron nitride, titanium oxide, and silicon carbide. , aluminum hydroxide, magnesium hydroxide, titanium white, and other metal compounds; talc; clay; mica; As the inorganic filler, one or a combination of two or more of the above specific examples can be used.
  • organic filler examples include organosilicone powder and polyethylene powder.
  • organic filler one or a combination of two or more of the above specific examples can be used.
  • a method for preparing the negative photosensitive resin composition in the present embodiment is not limited, and a known method can be used depending on the components contained in the negative photosensitive resin composition. For example, it can be prepared by mixing and dissolving the above components in a solvent.
  • the negative photosensitive resin composition according to the present embodiment is formed by applying the negative photosensitive resin composition to a surface comprising a metal such as Al or Cu, and then pre-baking to dry it to form a resin film. Then, the resin film is patterned into a desired shape by exposure and development, and then the resin film is cured by heat treatment to form a cured film.
  • the pre-baking conditions may be, for example, heat treatment at a temperature of 90° C. or higher and 130° C. or lower for 30 seconds or longer and 1 hour or shorter.
  • the heat treatment conditions are, for example, heat treatment at a temperature of 150° C. to 250° C. for 30 minutes to 10 hours, preferably about 170° C. for 1 to 6 hours.
  • the film obtained from the negative photosensitive resin composition of the present embodiment has a maximum elongation of 15 to 200%, preferably 20 to 150%, and an average elongation of 10 as measured by a tensile test using a Tensilon tester. ⁇ 150%, preferably 15-120%.
  • the film obtained from the negative photosensitive resin composition of the present embodiment preferably has a tensile strength of 20 MPa or more, more preferably 30 to 300 MPa, as measured by a tensile test using a Tensilon tester.
  • the negative photosensitive resin composition of the present embodiment contains the negative photosensitive polymer (A) having excellent hydrolysis resistance, the temperature is 130 ° C. and the relative humidity is 85% RH. , Even after performing a HAST test (unsaturated pressurized steam test), the rate of decrease in the elongation rate (maximum value, average value) represented by the following formula is 20% or less, preferably 15% or less, more preferably 12% or less. [(Elongation before test - Elongation after test) / Elongation before test)] ⁇ 100 The negative photosensitive resin composition of this embodiment is excellent in low-temperature curability.
  • the cured product obtained by curing the negative photosensitive resin composition of the present embodiment at 170°C for 4 hours has a glass transition temperature (Tg) of 200°C or higher, preferably 210°C or higher, more preferably 220°C. °C or higher.
  • Tg glass transition temperature
  • the cured product obtained by curing the negative photosensitive resin composition of the present embodiment at 170° C. for 4 hours has a storage elastic modulus E′ at 30° C. of 2.0 GPa or more, preferably 2.5 GPa or more, More preferably, it can be 3.0 GPa or more.
  • the storage elastic modulus E' at 200°C can be 0.5 GPa or more, preferably 0.7 GPa or more, and more preferably 0.8 GPa or more.
  • the viscosity of the negative photosensitive resin composition according to this embodiment can be appropriately set according to the desired thickness of the resin film.
  • the viscosity of the negative photosensitive resin composition can be adjusted by adding a solvent.
  • a cured product such as a film obtained from the negative photosensitive resin composition of the present embodiment has excellent chemical resistance.
  • the film is immersed in a solution of less than 99% by mass of dimethyl sulfoxide and less than 2% by mass of tetramethylammonium hydroxide at 40° C. for 10 minutes, then thoroughly washed with isopropyl alcohol and air-dried. to measure.
  • the film thickness change rate between the film thickness after treatment and the film thickness before treatment is calculated from the following formula and evaluated as the reduction rate of the film.
  • the film thickness change rate is preferably 40% or less, more preferably 30% or less.
  • the negative photosensitive resin composition of the present embodiment has suppressed curing shrinkage, and is spin-coated on the surface of a silicon wafer so that the film thickness after drying becomes 10 ⁇ m, pre-baked at 120° C. for 3 minutes, and placed under a high-pressure mercury lamp.
  • the film thickness after the pre-bake is the film thickness A
  • the film thickness after the heat treatment. is the film thickness B
  • the cure shrinkage calculated from the following formula is preferably 12% or less, more preferably 10% or less.
  • Cure shrinkage rate [%] ⁇ (film thickness A - film thickness B) / film thickness A ⁇ x 100
  • the negative photosensitive resin composition of the present embodiment has high heat resistance, and the resulting film has a weight loss temperature (Td5) measured by simultaneous thermogravimetric differential thermal measurement of 200° C. or higher, preferably 300° C. or higher. be able to.
  • Td5 weight loss temperature measured by simultaneous thermogravimetric differential thermal measurement of 200° C. or higher, preferably 300° C. or higher. be able to.
  • the film made of the negative photosensitive resin composition of the present embodiment has suppressed shrinkage on curing, and can have a linear thermal expansion coefficient (CTE) of 200 ppm/°C or less, preferably 100 ppm/°C or less.
  • CTE linear thermal expansion coefficient
  • the film made of the negative photosensitive resin composition of the present embodiment has excellent mechanical strength, and has an elastic modulus at 25° C. of 1.0 to 5.0 GPa, preferably 1.5 to 3.0 GPa. can do.
  • the negative photosensitive resin composition of the present embodiment is used for forming resin films for semiconductor devices such as permanent films and resists.
  • resin films for semiconductor devices such as permanent films and resists.
  • Use of a permanent film from the viewpoint of improving the adhesion between the cured film of the negative photosensitive resin composition and the metal, and also from the viewpoint of improving the chemical resistance of the negative photosensitive resin composition after heat treatment. It is preferably used for
  • the resin film includes a cured film of a negative photosensitive resin composition. That is, the resin film according to this embodiment is obtained by curing a negative photosensitive resin composition.
  • the permanent film is composed of a resin film obtained by pre-baking, exposing, and developing a negative photosensitive resin composition, patterning it into a desired shape, and then curing it by heat treatment. Permanent films can be used as protective films, interlayer films, dam materials, and the like for semiconductor devices.
  • the above-mentioned resist can be obtained, for example, by applying a negative photosensitive resin composition to an object to be masked by the resist by a method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor coating, and negative photosensitive resin composition. It is composed of a resin film obtained by removing the solvent from a flexible resin composition.
  • the semiconductor device 100 according to this embodiment can be a semiconductor device including the resin film.
  • one or more of the group consisting of the passivation film 32, the insulating layer 42, and the insulating layer 44 in the semiconductor device 100 can be a resin film containing the cured product of the present embodiment.
  • the resin film is preferably the permanent film described above.
  • the semiconductor device 100 is, for example, a semiconductor chip.
  • a semiconductor package is obtained by mounting the semiconductor device 100 on the wiring substrate via the bumps 52 .
  • the semiconductor device 100 includes a semiconductor substrate provided with semiconductor elements such as transistors, and a multilayer wiring layer (not shown) provided on the semiconductor substrate.
  • An interlayer insulating film 30 and a top layer wiring 34 provided on the interlayer insulating film 30 are provided in the uppermost layer of the multilayer wiring layers.
  • the uppermost layer wiring 34 is made of aluminum Al, for example.
  • a passivation film 32 is provided on the interlayer insulating film 30 and the uppermost layer wiring 34 . A portion of the passivation film 32 is provided with an opening through which the uppermost layer wiring 34 is exposed.
  • a rewiring layer 40 is provided on the passivation film 32 .
  • the rewiring layer 40 includes an insulating layer 42 provided on the passivation film 32, a rewiring 46 provided on the insulating layer 42, an insulating layer 44 provided on the insulating layer 42 and the rewiring 46, have An opening connected to the uppermost layer wiring 34 is formed in the insulating layer 42 .
  • the rewiring 46 is formed on the insulating layer 42 and in openings provided in the insulating layer 42 and connected to the uppermost layer wiring 34 .
  • the insulating layer 44 is provided with an opening connected to the rewiring 46 .
  • a bump 52 is formed in the opening provided in the insulating layer 44 via a UBM (Under Bump Metallurgy) layer 50, for example.
  • Semiconductor device 100 is connected to a wiring substrate or the like via bumps 52, for example.
  • TMDA 1-(4-aminophenyl)-1,3,3-trimethylphenylindan-6-amine and 1-(4-aminophenyl)-1,3,3-trimethylphenylindan-5- represented by the following formula mixture of amines (hereinafter also referred to as TMDA)
  • BTFL 9,9-bis(3-methyl-4-aminophenyl)fluorene
  • HFBAPP 4,4′-(hexafluoroisopropylidene)bis[(4-aminophenoxy)benzene]
  • TFMB 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl
  • HQDA 1,4-bis(3,4-dicarboxyphenoxy)benzoic acid dianhydride
  • Example 1 First, 43.99 g (155.8 mmol) of MED-J and 89.22 g (144.2 mmol) of TMPBP-TME were placed in an appropriately sized reaction vessel equipped with a stirrer and condenser. After that, 399.64 g of ⁇ -butyrolactone (hereinafter also referred to as GBL) was added to the reactor. After bubbling nitrogen for 10 minutes, the temperature was raised to 60° C. while stirring, and the reaction was allowed to proceed for 1 hour.
  • GBL ⁇ -butyrolactone
  • a solution was prepared by dissolving 8.73 g (69.2 mmol) of dimethylmaleic anhydride in 26.19 g of gamma-butyrolactone, and this solution was placed in a reaction vessel and reacted for an additional 30 minutes. Furthermore, by reacting at 175° C. for 3 hours, a polymerization solution was prepared in which the diamine and the acid anhydride were polymerized and the terminals were blocked. The resulting polymerization solution was diluted with tetrahydrofuran to prepare a diluted solution, and then the diluted solution was added dropwise to a methanol solution to precipitate a white solid. The resulting white solid was collected and vacuum dried at 80° C.
  • polymer 125.88 g of polymer.
  • GPC measurement of the polymer revealed a weight average molecular weight Mw of 74,000, a polydispersity (weight average molecular weight Mw/number average molecular weight Mn) of 2.62, and a terminal blocking rate of 65%.
  • the obtained polymer partially contained repeating units represented by the following formula and had a dimethylmaleimide group at the terminal.
  • Examples 2 to 4 were synthesized in the same manner as in Example 1 except for the conditions described in Table 1. The obtained Mw, PDI, and terminal capping rate are shown in the table. The polymers obtained in Examples 2 to 4 partially contained repeating units represented by the following formula and had dimethylmaleimide groups at their terminals.
  • a solution was prepared by dissolving 2.88 g (22.9 mmol) of dimethylmaleic anhydride in 8.65 g of gamma-butyrolactone, and this solution was placed in a reaction vessel and reacted for an additional 30 minutes. Furthermore, by reacting at 175° C. for 3 hours, a polymerization solution was prepared in which the diamine and the acid anhydride were polymerized and the terminals were blocked. The resulting polymerization solution was diluted with tetrahydrofuran to prepare a diluted solution, and then the diluted solution was added dropwise to a methanol solution to precipitate a white solid. The obtained white solid was collected and dried in vacuum at a temperature of 80° C.
  • the obtained polymer partially contained repeating units represented by the following formula and had a dimethylmaleimide group at the terminal.
  • a solution was prepared by dissolving 2.91 g (23.1 mmol) of dimethylmaleic anhydride in 8.73 g of gamma-butyrolactone, and this solution was placed in a reaction vessel and reacted for an additional 30 minutes. Furthermore, by reacting at 175° C. for 3 hours, a polymerization solution was prepared in which the diamine and the acid anhydride were polymerized and the terminals were blocked. The resulting polymerization solution was diluted with tetrahydrofuran to prepare a diluted solution, and then the diluted solution was added dropwise to a methanol solution to precipitate a white solid. The resulting white solid was collected and vacuum dried at a temperature of 80° C.
  • polymer 35.44 g of polymer.
  • GPC measurement of the polymer revealed a weight average molecular weight Mw of 69,500, a polydispersity (weight average molecular weight Mw/number average molecular weight Mn) of 2.51, and a terminal blocking rate of 65%.
  • the obtained polymer partially contained repeating units represented by the following formula and had a dimethylmaleimide group at the terminal.
  • Comparative Examples 3 to 5 were synthesized in the same manner as in Example 1 except for the conditions described in Table 1. The obtained Mw and Mw/Mn are shown in Table 1.
  • the average value of the positive charges ( ⁇ +) of the two carbonyl carbons of the imide ring of the negative photosensitive polymer obtained in Example 1 was calculated as follows.
  • the negative photosensitive polymer of Example 1 contains structural units (A) of the following chemical formula (A).
  • a compound (A') represented by the following chemical formula (A') is measured by a charge balance method using soft HSPiP (ver 5.3), and the imide ring contained in the compound (A') is The ⁇ + of the two carbonyl carbons (*1, *2) were averaged to obtain the mean value. It was calculated in the same manner in other examples and comparative examples.
  • the negative photosensitive polymer of the present invention obtained in an example having an average positive charge ( ⁇ +) of two carbonyl carbon atoms of the imide ring of 0.095 or less is resistant to organic solvents. It was presumed that the solubility and elongation are excellent, and hydrolysis is suppressed, so that the decrease in elongation rate is small and the decrease in mechanical strength is suppressed.
  • Photosensitive agent 1-chloro-4-propoxythioxanthone (SPEEDCURE CPTX (trade name) manufactured by Lambson, UK)
  • Solvent Cyclopentanone
  • the crude product was applied to a flash chromatography column (250 g silica gel) and eluted with a solvent mixture of 1.7 liters of cyclohexane/ethyl acetate (95/5 wt ratio). The elution solvent was removed using an evaporator, followed by drying under vacuum at 45° C. for 18 hours to give 80.4 g (92.7% yield) of the desired product.
  • a reaction formula is shown below.
  • Example 5 (Preparation of negative photosensitive resin composition)
  • the polymer solution of Example 1 polymer DMMI-PI 12.0 parts by mass
  • the polymer of Synthesis Example 1 DMMI-PNB
  • the components shown in Table 2 were mixed in the amounts shown in Table 2 to give a photosensitive polymer.
  • a resin composition was prepared.
  • the obtained negative type photosensitive resin composition was spin-coated on the surface of a silicon wafer so that the film thickness after drying was 10 ⁇ m, prebaked at 120° C. for 4 minutes, and then exposed at 1500 mJ/cm 2 with a high-pressure mercury lamp. After that, heat treatment was performed at 200° C. for 120 minutes in a nitrogen atmosphere to prepare a film.
  • Comparative Example 6 A photosensitive resin composition was prepared in the same manner as in Example 5 except that the polymer solution of Comparative Example 1 (polymer DMMI-PI 12.0 parts by mass) was used, and a film was prepared from the photosensitive resin composition. .
  • Glass transition temperature (Tg) A test piece of 8 mm ⁇ 40 mm was cut out from the film obtained in Example 5, and the test piece was subjected to dynamic viscoelasticity measurement (DMA device, manufactured by TA Instruments, Q800) at a heating rate of 5. A dynamic viscoelasticity measurement was performed at °C/min and a frequency of 1 Hz, and the temperature at which the loss tangent tan ⁇ showed the maximum value was measured as the glass transition temperature.
  • test pieces cut out from the films obtained in Example 5 and Comparative Example 6 were subjected to HAST (unsaturated pressurized steam test) for 96 hours under conditions of a temperature of 130°C and a relative humidity of 85% RH. After that, the average value and the maximum value of the elongation rate were obtained in the same manner as described above.
  • HAST unsaturated pressurized steam test
  • Example 5 (Dielectric loss tangent Df) The photosensitive resin composition of Example 5 was applied onto a substrate, the coating film was dried at 120° C. for 10 minutes, subjected to PLA exposure (540 mJ), and cured in a nitrogen atmosphere at 200° C. for 2 hours to form a film having a thickness of 100 ⁇ m. got the film. The dielectric loss tangent at 10 GHz of the obtained film was measured by the cavity resonator method.
  • Example 5 [Evaluation of patterning characteristics] It was confirmed as follows that the photosensitive resin composition of Example 5 could be sufficiently patterned by exposure and development.
  • the photosensitive resin composition of Example 5 was applied onto an 8-inch silicon wafer using a spin coater. After the application, it was pre-baked on a hot plate at 120° C. for 4 minutes in the atmosphere to obtain a coating film having a thickness of about 8.0 ⁇ m.
  • This coating film was irradiated with an i-line through a mask having a via pattern with a width of 20 ⁇ m.
  • An i-line stepper (NSR-4425i manufactured by Nikon Corporation) was used for irradiation.
  • interlayer insulating film 32 passivation film 34 top layer wiring 40 rewiring layer 42 insulating layer 44 insulating layer 46 rewiring 50 UBM layer 52 bump

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本発明のネガ型感光性ポリマーは、イミド環を含有する構造単位を含み、両末端の少なくとも一方に下記一般式(t)で表される基を備える、溶剤可溶性ネガ型感光性ポリマーであって、電荷平衡法で計算された、前記イミド環の2つのカルボニル炭素のプラスの電荷(δ+)の平均値が0.095以下である。

Description

ネガ型感光性ポリマー、ポリマー溶液、ネガ型感光性樹脂組成物、硬化膜および半導体装置
 本発明は、ネガ型感光性ポリマー、ポリマー溶液、ネガ型感光性樹脂組成物、硬化膜および半導体装置に関する。
 ポリイミド樹脂は、高い機械的強度、耐熱性、絶縁性、耐溶剤性を有しているため、液晶表示素子や半導体における保護材料、絶縁材料、カラーフィルタ等の電子材料用薄膜として広く用いられている。
 特許文献1には、末端にジメチルマレイミド基を備えるポリイミドと、光ラジカル発生剤と、光酸発生剤と、1以上の架橋剤とを含む感光性組成物が開示されている。実施例においては、主要なモノマー成分としてフッ素含有化合物が用いられている。
国際公開第2020/181021号
 しかしながら、特許文献1に記載の従来のポリマーは、加水分解により伸び等の機械的強度が低下することを見出した。また、ネガ型感光性ポリマーはワニスに使用される一般的な溶剤に対し溶解性に優れることも要求される。
 本発明者らは、イミド環を含有する構造単位を含み、末端に所定の基を備えるネガ型感光性ポリマーにおいて、当該イミド環のカルボニル炭素のプラスの電荷が所定の範囲にあれば、加水分解が抑制されることを見出し、本発明を完成させた。
 すなわち、本発明は、以下に示すことができる。
[1] イミド環を含有する構造単位を含み、両末端の少なくとも一方に下記一般式(t)で表される基を備える、溶剤可溶性ネガ型感光性ポリマーであって、
 電荷平衡法で計算された、前記イミド環の2つのカルボニル炭素のプラスの電荷(δ+)の平均値が0.095以下である、ネガ型感光性ポリマー。
Figure JPOXMLDOC01-appb-C000008
(一般式(t)中、RおよびRは各々独立して水素原子または炭素数1~3のアルキル基を示し、少なくとも一方は炭素数1~3のアルキル基である。*は結合手を示す。)
[2] 分子構造中にフッ素原子を含まない、[1]に記載のネガ型感光性ポリマー。
[3] 前記構造単位は下記一般式(1)で表される、[1]または[2]に記載のネガ型感光性ポリマー。
Figure JPOXMLDOC01-appb-C000009
(一般式(1)中、Xは芳香族基を含む2価の有機基を示し、
Aはイミド環の2つの炭素を含む環構造を示し、
Qは2価の有機基を示す。)
[4] 前記一般式(1)のXの2価の有機基に含まれる芳香族基は、前記一般式(1)中の窒素原子に結合しており、当該窒素原子と結合している炭素原子の2つオルト位に電子供与性基を備える、[3]に記載のネガ型感光性ポリマー。
[5] 前記一般式(1)の前記Xは、下記一般式(1a)、または下記一般式(1b)で表される2価の基である、[3]または[4]に記載のネガ型感光性ポリマー。
Figure JPOXMLDOC01-appb-C000010
(一般式(1a)中、R~Rは、それぞれ独立して、水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示し、RとRは異なる基であり、RとRは異なる基である。
は単結合、-SO-、-C(=O)-、炭素数1~5の直鎖または分岐のアルキレン基、またはフルオレニレン基を示す。*は結合手を示す。
 一般式(1b)中、R、Rは、それぞれ独立して、水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示す。複数存在するR同士、複数存在するR同士は同一でも異なっていてもよい。*は結合手を示す。)
[6] 前記一般式(1)中の前記Aは芳香族環である、[3]~[5]のいずれかに記載のネガ型感光性ポリマー。
[7] 前記一般式(1)中の前記Qは、イミド環を含有する2価の基である、[3]~[6]のいずれかに記載のネガ型感光性ポリマー。
[8] 前記一般式(1)で表される構造単位は、下記一般式(1-1)で表される構造単位を含む、[5]~[7]のいずれかに記載のネガ型感光性ポリマー。
Figure JPOXMLDOC01-appb-C000011
(一般式(1-1)中、Xは前記一般式(1a)、前記一般式(1b)で表される2価の基であり、Yは2価の有機基である。)
[9] 前記一般式(1-1)中のYは、下記一般式(a1-1)、下記一般式(a1-2)、下記一般式(a1-3)および下記一般式(a1-4)から選択される2価の有機基である、[8]に記載のネガ型感光性ポリマー。
Figure JPOXMLDOC01-appb-C000012
(一般式(a1-1)中、RおよびRは、それぞれ独立して、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR同士、複数存在するR同士は同一でも異なっていてもよい。Rは、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR同士は同一でも異なっていてもよい。*は結合手を示す。
一般式(a1-2)中、R10およびR11は、それぞれ独立して、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR10同士、複数存在するR11同士は同一でも異なっていてもよい。*は結合手を示す。
一般式(a1-3)中、Zは炭素数1~5のアルキレン基、2価の芳香族基を示す。
*は結合手を示す。
一般式(a1-4)中、Zは2価の芳香族基を示す。*は結合手を示す。)
[10] 両末端の少なくとも一方に下記一般式(t-1)で表される基を備える、[8]または[9]に記載のネガ型感光性ポリマー。
Figure JPOXMLDOC01-appb-C000013
(一般式(t-1)中、RおよびRは各々独立して水素原子または炭素数1~3のアルキル基を示し、少なくとも一方は炭素数1~3のアルキル基である。Qは2価の有機基を示す。*は結合手を示す。)
[11] N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチルラクトン(GBL)、シクロペンタノンから選択される溶剤に5質量%以上溶解する、[1]~[10]のいずれかに記載のネガ型感光性ポリマー。
[12] シクロペンタノンに5質量%以上溶解する、[1]~[11]のいずれかに記載のネガ型感光性ポリマー。
[13] 以下の条件で測定された重量平均分子量の減少率が15%以下である、[1]~[12]のいずれかに記載のネガ型感光性ポリマー。
(条件)
 前記ネガ型感光性ポリマー100質量部に、γ-ブチロラクトン400質量部、4-メチルテトラヒドロピラン200質量部、および水50質量部を加え、100℃で6時間攪拌した場合において、下記式で算出する。
 式:[(試験前の重量平均分子量-試験後の重量平均分子量)/試験前の重量平均分子量]×100
[14] [1]~[13]のいずれかに記載のネガ型感光性ポリマーを含むポリマー溶液。
[15] (A)[1]~[13]のいずれかに記載のネガ型感光性ポリマーと、
 (B)置換または無置換のマレイミド基を備える架橋剤(B)(前記ポリイミド(A)を除く)と、
 (C)光増感剤と、
を含む、ネガ型感光性樹脂組成物。
[16] 架橋剤(B)は、下記一般式(b)で表される構造単位を含む、[15]に記載のネガ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000014
(一般式(b)中、RおよびRは各々独立して水素原子または炭素数1~3のアルキル基を示し、Qは単結合、または2価の有機基を示し、G、G、およびGはそれぞれ独立して水素原子、置換または無置換の炭素数1~30の炭化水素基を示す。mは0、1または2である。)
[17] Qの2価の前記有機基は、炭素数1~8のアルキレン基または(ポリ)アルキレングリコール鎖である、[16]に記載のネガ型感光性樹脂組成物。
[18] [15]~[17]のいずれかに記載のネガ型感光性樹脂組成物の硬化物からなる硬化膜。
[19] [15]~[17]のいずれかに記載のネガ型感光性樹脂組成物の硬化物を含む樹脂膜を備える半導体装置。
 本発明において、「プラスの電荷(δ+)」とは、電荷平衡法(Charge(Q) Equilibration(Eq):QEq)により、分子中の原子の上の電荷を計算し、所定の原子のプラスの電荷をデルタプラス(δ+)で表したものである。
 前記電荷平衡法は以下のようなものである。
 原子は結合を作る際に、電気陰性度が互いに等しくなるまで(平衡に達するまで)電子密度を変化させる。最初は、分子中の全ての原子上の電荷が0から出発して、電子は電気陰性度の小さい原子から大きい原子へ流れる。原子上に電子が貯まれば電気陰性度が低下し、平衡に達すると各原子の電気陰性度は等しくなり電子の流れは止まる。電荷平衡法は、こうした繰り返し計算を行って分子中の原子の上の電荷を計算し、所定の原子のプラスの電荷をデルタプラス(δ+)で表し、所定の原子のマイナスの電荷をデルタマイナス(δ-)で表すことができる。
 また、本発明のネガ型感光性ポリマーは溶剤に溶解させてワニスとして使用される。「溶剤可溶性」とは、ワニスに使用される一般的な溶剤のいずれかに可溶であることを意味する。一般的な溶剤としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチルラクトン(GBL)、シクロペンタノン等が挙げられる。
 「可溶」とは、本発明のネガ型感光性ポリマーがこれらの所定の溶剤100質量%に対して5質量%以上溶解することを意味する。
 本発明によれば、有機溶剤への溶解性に優れるとともに、加水分解が抑制され伸び等の機械的強度の低下が抑制されたフィルム等の硬化物が得られるネガ型感光性ポリマーおよび当該ポリマーを含むネガ型感光性樹脂組成物を提供することができる。
本実施形態の半導体装置の概略断面図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、例えば「1~10」は特に断りがなければ「1以上」から「10以下」を表す。
 本実施形態の溶剤可溶性ネガ型感光性ポリマーは、イミド環を含有する構造単位を含み、両末端の少なくとも一方に下記一般式(t)で表される基を備える、溶剤可溶性ネガ型感光性ポリマーであって、
 電荷平衡法で計算された、前記イミド環の2つのカルボニル炭素のプラスの電荷(δ+)の平均値が0.095以下、好ましくは0.094以下、より好ましくは0.093以下、さらに好ましくは0.092以下である。
 これにより、有機溶剤への溶解性に優れるとともに、加水分解が抑制され伸び等の機械的強度の低下が抑制されたフィルム等の硬化物を提供することができる。
 また、前記イミド環の2つのカルボニル炭素のプラスの電荷(δ+)の平均値の下限値は特に限定されないが、好ましくは0.070以上、より好ましくは0.080以上、さらに好ましくは0.085以上である。上記の下限値以上であると、電荷の偏りに起因する着色を抑制できると考えられ、本実施形態のネガ型感光性ポリマーを感光性樹脂組成物とした際の感度の低下を抑制できると考えられる。
 なお、上限値と下限値は任意に組み合わせることができる。
Figure JPOXMLDOC01-appb-C000015
 一般式(t)中、RおよびRは各々独立して水素原子または炭素数1~3のアルキル基を示し、RおよびRの少なくとも一方は炭素数1~3のアルキル基であることが好ましく、いずれも炭素数1~3のアルキル基であることがより好ましい。炭素数1~3のアルキル基としては、本発明の効果の観点から、炭素数1または2のアルキル基が好ましく、炭素数1のアルキル基がより好ましい。RおよびRの少なくとも一方は炭素数1~3のアルキル基である。*は結合手を示す。
 本実施形態のネガ型感光性ポリマーによれば、有機溶剤への溶解性に優れるとともに、加水分解が抑制され伸び等の機械的強度の低下が抑制されたフィルム等の硬化物を提供することができる。
 本実施形態の溶剤可溶性ネガ型感光性ポリマーは、前記カルボニル炭素のプラスの電荷(δ+)の平均値が所定の範囲に含まれ本発明の効果に影響を及ぼさない範囲で分子構造中にフッ素原子を含むことができるが、分子構造中に電子吸引性の強いフッ素原子を含まないことが好ましい。
 溶剤可溶性ネガ型感光性ポリマーに含まれる、イミド環を含有する構造単位は、下記一般式(1)で表すことができる。
Figure JPOXMLDOC01-appb-C000016
 一般式(1)中のAはイミド環の2つの炭素を含む環構造を示し、ベンゼン環、ナフタレン環等の芳香族環であることが好ましい。
 一般式(1)中のQは2価の有機基を示し、好ましくはイミド環を含有する2価の基である。
 一般式(1)中、Xは芳香族基を含む2価の有機基を示す。
 前記一般式(1)のXにおいて、2価の有機基に含まれる芳香族基は、前記一般式(1)中の窒素原子に結合していることが好ましい。前記窒素原子と結合している芳香族基の炭素原子に対する2つオルト位は、電子供与性基を備えることがより好ましく、非対称の電子供与性基を備えることがさらに好ましい。電子供与性基としては、水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を挙げることができる。
 Xの前記2価の有機基としては、下記一般式(1a)、または下記一般式(1b)で表される2価の基を挙げることができる。前記Xがこれらの基である構造単位を含むネガ型感光性ポリマーは、ガラス転移温度が高く、線膨張係係数が低く、さらに機械強度に優れることから信頼性に優れた成形体を提供することができる。
 Xは、一般式(1a)で表される2価の基を少なくとも1種、または一般式(1b)で表される2価の基を少なくとも1種含むことができ、これらの基を組み合わせて含むこともできる。
Figure JPOXMLDOC01-appb-C000017
 一般式(1a)中、R~Rは、それぞれ独立して、水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示し、RとRは異なる基であり、RとRは異なる基である。
 Xは単結合、-SO-、-C(=O)-、炭素数1~5の直鎖または分岐のアルキレン基、またはフルオレニレン基を示す。*は結合手を示す。
 一般式(1b)中、R、Rは、それぞれ独立して、水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示す。複数存在するR同士、複数存在するR同士は同一でも異なっていてもよい。*は結合手を示す。
 一般式(1)の窒素原子に直結するベンゼン環の炭素原子に対する2つのオルト位(RおよびR(またはRおよびR))に所定の電子供与性基を有する点が本発明の効果において好ましく、前記一般式(1)のXは前記一般式(1a)で表される2価の基がより好ましい。
 前記一般式(1)で表される構造単位は、具体的に、下記一般式(1-1)で表される構造単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000018
 一般式(1-1)中、Xは前記一般式(1a)、前記一般式(1b)で表される2価の基を挙げることができる。
 一般式(1-1)のYは2価の有機基である。
 2価の有機基としては、下記一般式(a1-1)、下記一般式(a1-2)、下記一般式(a1-3)および下記一般式(a1-4)から選択することができる。
Figure JPOXMLDOC01-appb-C000019
 一般式(a1-1)中、RおよびRは、それぞれ独立して、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR同士、複数存在するR同士は同一でも異なっていてもよい。
 RおよびRは、本発明の効果の観点から、好ましくは水素原子または炭素数1~3のアルキル基であり、より好ましく水素原子である。
 Rは、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR同士は同一でも異なっていてもよい。
 Rは、本発明の効果の観点から、好ましくは水素原子または炭素数1~3のアルキル基であり、より好ましく水素原子である。
 *は結合手を示す。
 一般式(a1-2)中、R10およびR11は、それぞれ独立して、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR10同士、複数存在するR11同士は同一でも異なっていてもよい。
 R10およびR11は、本発明の効果の観点から、好ましくは水素原子または炭素数1~3のアルキル基であり、より好ましくはR10の少なくとも1つおよびR11の少なくとも1つは炭素数1~3のアルキル基であり、さらに好ましくは3つのR10が炭素数1~3のアルキル基であり1つのR10が水素原子であり、かつ3つのR11が炭素数1~3のアルキル基であり1つのR11が水素原子であり、特に好ましくは3つのR10がメチル基であり1つのR10が水素原子であり、かつ3つのR11がメチル基であり1つのR11が水素原子である。
 *は結合手を示す。
 一般式(a1-3)中、Zは炭素数1~5のアルキレン基、2価の芳香族基を示す。
*は結合手を示す。
 一般式(a1-4)中、Zは2価の芳香族基を示し、好ましくは2価のベンゼン環である。*は結合手を示す。
 本実施形態のネガ型感光性ポリマーは下記一般式(1-1a)で表される構造単位(1-1a)および下記一般式(1-1b)で表される構造単位(1-1b)から選択される少なくとも1種の構造単位を含むことができる。
Figure JPOXMLDOC01-appb-C000020
 一般式(1-1a)中、R~R、Xは一般式(1a)と同義であり、Yは一般式(1-1)と同義である。
Figure JPOXMLDOC01-appb-C000021
 一般式(1-1b)中、RおよびRは一般式(1b)と同義であり、Yは一般式(1-1)と同義である。
 本実施形態のネガ型感光性ポリマーは、本発明の効果の観点から、両末端の少なくとも一方の末端、好ましくは両末端に下記一般式(t-1)で表される基t-1を備えることが好ましい。
 ネガ型感光性ポリマーが当該末端構造に備えることにより機械的強度に優れる硬化物を得ることができる。さらに、ラジカル反応が生じず光二量化が可能であることから、ポリイミド(A)同士、ポリイミド(A)と後述する架橋剤(B)とを光重合することができ、機械的強度により優れる。
Figure JPOXMLDOC01-appb-C000022
 一般式(t-1)中、RおよびRは各々独立して水素原子もしくは炭素数1~3のアルキル基を示し、RおよびRの少なくとも一方は炭素数1~3のアルキル基であることが好ましく、いずれも炭素数1~3のアルキル基であることがより好ましい。炭素数1~3のアルキル基としては、本発明の効果の観点から、炭素数1または2のアルキル基が好ましく、炭素数1のアルキル基がより好ましい。*は結合手を示す。
 Qは2価の有機基を示す。
 2価の前記有機基としては、本発明の効果を奏する範囲で公知の有機基を用いることができるが、例えば、前記一般式(1a)または前記一般式(1b)で表される2価の有機基を挙げることができる。
 また、ネガ型感光性ポリマーは、その末端が下記一般式(u-1)で表される基u-1および下記一般式(u-2)で表される基u-2から選択される少なくとも1種の基を備えていてもよい。
Figure JPOXMLDOC01-appb-C000023
 一般式(u-1)中、X、R~Rは、一般式(1a)と同義である。
 一般式(u-2)中、R、Rは、一般式(1b)と同義である。
 ネガ型感光性ポリマーが、前記基u-1および/または前記基u-2を備える場合、基t-1と基u-1および/または前記基u-2との合計モル数に対する基t-1のモル数の比(t-1)/[(t-1)+(u-1)+(u-2)]は0.5以上、好ましくは0.55以上、より好ましくは0.6以上とすることができる。この範囲であれば、現像で溶出するネガ型感光性ポリマーを低減することができる。
 本実施形態においては、例えば、前記一般式(1-1)で表される構造単位を含むネガ型感光性ポリマーにおいて、イミド環の2つのカルボニル炭素のプラスの電荷(δ+)の平均値は以下のように測定される。
 下記条件で測定された、下記一般式(1-1’)で表される化合物に含まれるイミド環の2つのカルボニル炭素のδ+の平均値を算出する。
[条件]
 前記一般式(1-1’)で表される化合物を、ソフトHSPiP(ver5.3)を用いて電荷平衡法にて測定し、前記化合物に含まれるイミド環の2つのカルボニル炭素のδ+を平均して求める。
Figure JPOXMLDOC01-appb-C000024
 一般式(1-1’)中、Yは一般式(1-1)と同義である。Xは下記一般式(1a-1)または下記一般式(1b-1)で表される1価の基である。
Figure JPOXMLDOC01-appb-C000025
 一般式(1a-1)中、R~R、Xは一般式(1a)と同義である。*は結合手を示す。一般式(1b-1)中、R、Rは一般式(1b)と同義である。*は結合手を示す。
 前記一般式(1-1)で表される構造単位を含むネガ型感光性ポリマーが、Xとして複数の基を含む場合、可能な組み合わせごとにδ+の平均値を算出し、仕込み量に応じて加重平均をとり、イミド環の2つのカルボニル炭素のプラスの電荷(δ+)の平均値を算出する。
 具体的には、一般式(1-1)で表される構造単位を含むネガ型感光性ポリマーが、Xとして一般式(1a)の基を備える構造単位(1-1a)と、Xとして一般式(1b)の基を備える構造単位(1-1b)と、を含む場合、
 一般式(1a-1)の基を備える前記一般式(1-1’)で表される化合物を、ソフトHSPiP(ver5.3)を用いて電荷平衡法にて測定し、前記化合物に含まれるイミド環の2つのカルボニル炭素のδ+を平均して平均値(1)を得る。一般式(1b-1)の基を備える前記一般式(1-1’)で表される化合物を、同様に測定し、前記化合物に含まれるイミド環の2つのカルボニル炭素のδ+を平均して平均値(2)を得る。そして、構造単位(1-1a)のモル数(1)と構造単位(1-1b)のモル数(2)との合計を100とした場合に、以下の式でδ+を算出する。
 式:[δ+の平均値(1)×モル分率(1)+δ+の平均値(2)×モル分率(2)]/100
 前記一般式(1-1)で表される構造単位を含むネガ型感光性ポリマーが、Xとして3種以上の基を含む場合においても、上記と同様にして、可能な組み合わせごとにδ+の平均値を算出し、仕込み量に応じて加重平均をとることにより、ネガ型感光性ポリマーのイミド環の2つのカルボニル炭素のプラスの電荷(δ+)の平均値を算出する。
 本実施形態のネガ型感光性ポリマーの重量平均分子量は、25,000~200,000であり、好ましくは30,000~150,000、さらに好ましくは40,000~100,000である。
 重量平均分子量が当該範囲であれば、ガラス転移温度が高く、線膨張係数が低く、さらに機械強度に優れることから信頼性に優れた成形体を得ることができる。
 本実施形態のネガ型感光性ポリマーは、加水分解が抑制されており、ネガ型感光性ポリマーおよびネガ型感光性ポリマーを含むネガ型感光性樹脂組成物は、伸び等の機械的強度に優れたフィルム等の硬化物を得ることができる。
 また、本実施形態のネガ型感光性ポリマーは、溶剤への溶解性に優れており前駆体の状態でワニスとする必要がないことから、ネガ型感光性ポリマーを含むワニスを調製することができ、当該ワニスからフィルム等の硬化物を得ることができる。
<ネガ型感光性ポリマーの製造方法>
 本実施形態の、一般式(1-1a)で表される構造単位(1-1a)および/または一般式(1-1b)で表される構造単位(1-1b)を有し、両末端の少なくとも一方が一般式(t-1)で表される基t-1であるネガ型感光性ポリマーの製造方法は、
 下記一般式(a1)で表される酸無水物(a1)と、下記一般式(a2)で表されるジアミン(a2)および/または下記一般式(a3)で表されるジアミン(a3)と、下記一般式(t1)で表される無水マレイン酸誘導体(t1)とを、反応させる工程を含む。
 本実施形態によれば、有機溶剤に対する溶解性に優れたポリイミド(A)を簡便な方法で合成することができる。
Figure JPOXMLDOC01-appb-C000026
 一般式(a1)中、Yは前記一般式(a1-1)、(a1-2)、(a1-3)または(a1-4)で表される基から選択される。
Figure JPOXMLDOC01-appb-C000027
 一般式(a2)中、R~R、Xは一般式(1a)と同義である。
Figure JPOXMLDOC01-appb-C000028
 一般式(a3)中、R、Rは一般式(1b)と同義である。
Figure JPOXMLDOC01-appb-C000029
 一般式(t1)中、R、Rは前記一般式(t)と同義である。
 当該反応におけるジアミン(a2)および/またはジアミン(a3)と酸無水物(a1)との当量比は、得られるポリイミドの分子量を決定する重要な因子である。一般に、ポリマーの分子量と機械的性質の間に相関があることは良く知られており、分子量が大きいほど機械的性質が優れている。従って、実用的に優れた強度のポリイミドを得るためには、ある程度高分子量であることが必要である。本発明では、使用するジアミン(a2)および/またはジアミン(a3)と酸無水物(a1)の当量比を特に制限はしないが、ジアミン(a2)および/またはジアミン(a3)に対する酸無水物(a1)の当量比が0.80~1.06の範囲にあることが好ましい。0.80未満では、分子量が低くて脆くなるため機械強度が弱くなる。また、1.06を越えると、未反応のカルボン酸が加熱時に脱炭酸してガス発生、発泡の原因となり好ましくないことがある。
 無水マレイン酸誘導体(t1)の量は、酸無水物(a1)との反応に供さないアミノ基のモル量に対し、3倍モル量とすることができる。
 これにより、ポリイミドに光二量化による感光性を付与することができ、低誘電正接により優れるとともに、機械物性により優れたフィルム等の硬化物を得ることができる。
 当該反応は、有機溶媒中で、公知の方法で行うことができる。
 有機溶媒としては、γ-ブチルラクトン(GBL)、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、シクロヘキサノン、1,4-ジオキサン等の非プロトン性極性溶媒類が挙げられ、1種類又は2種類以上を組み合わせて用いてもよい。この時、上記非プロトン性極性溶媒と相溶性がある非極性溶媒を混合して使用しても良い。非極性溶媒としては、トルエン、エチルベンゼン、キシレン、メシチレン、ソルベントナフサ等の芳香族炭化水素類やシクロペンチルメチルエーテル等のエーテル系溶剤等が挙げられる。混合溶媒における非極性溶媒の割合については、溶媒の溶解度が低下し、反応して得られるポリアミド酸樹脂が析出しない範囲であれば、攪拌装置能力や溶液粘度等の樹脂性状に応じて任意に設定することができる。
 反応温度は、0℃以上100℃以下、好ましくは20℃以上80℃以下で30分~2時間程度反応させた後、100℃以上250℃以下、好ましくは120℃以上200℃以下で1~5時間程度反応させる。
 無水マレイン酸誘導体(t1)は、酸無水物(a1)と、ジアミン(a2)および/またはジアミン(a3)とのイミド化反応において存在していてもよいが、酸無水物(a1)とジアミン(a2)および/またはジアミン(a3)との反応中または反応終了後に、上記有機溶媒に溶解させた無水マレイン酸誘導体(t1)を添加して反応させ、ポリイミド末端を封止することができる。
 無水マレイン酸誘導体(t1)を別途添加する場合、添加後、100℃以上250℃以下、好ましくは120℃以上200℃以下で1~5時間程度反応させることが好ましい。
 以上の工程により本実施形態のネガ型感光性ポリマー(末端封止ポリイミド)を含む反応溶液を得ることができ、さらに必要に応じて有機溶媒等で希釈し、ポリマー溶液(塗布用ワニス)として使用することができる。有機溶剤としては、反応工程において例示したものを用いることができ、反応工程と同じ有機溶剤であってもよく、異なる有機溶剤であってもよい。
 また、この反応溶液を貧溶媒中に投入してネガ型感光性ポリマーを再沈殿析出させて未反応モノマーを除去し、乾燥固化させたものを再び有機溶剤に溶解し精製品として用いることもできる。特に不純物や異物が問題になる用途では、再び有機溶剤に溶解して濾過精製ワニスとすることが好ましい。
 ポリマー溶液中(100重量%)のネガ型感光性ポリマー濃度は、特に限定されないが、10~30重量%程度である。
 本実施形態のネガ型感光性ポリマーの好ましい配合例を以下の表Aに示す。
Figure JPOXMLDOC01-appb-T000030
・MED-J:4,4-ジアミノ-3,3-ジエチル-5,5-ジメチルジフェニルメタン
・TMPBP-TME:4-[4-(1,3-ジオキソイソベンゾフラン-5-イルカルボニロキシ)-2,3,5-トリメチルフェニル]-2,3,6-トリメチルフェニル 1,3-ジオキソイソベンゾフラン-5-カルボキシレート
・HQDA:1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン酸二無水物
・TMDA:1-(4-アミノフェニル)-1,3,3-トリメチルフェニルインダン-6-アミンと1-(4-アミノフェニル)-1,3,3-トリメチルフェニルインダン-5-アミンの混合物
・BTFL:9,9-ビス(3-メチル-4-アミノフェニル)フルオレン
・DMMI:2,3-ジメチルマレイン酸無水物
[ネガ型感光性ポリマーの特性]
 本実施形態のネガ型感光性ポリマーは、溶剤溶解性に優れており、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチルラクトン(GBL)、シクロペンタノンから選択される溶剤に5質量%以上溶解することができ、特にシクロペンタノンに5質量%以上溶解することができる。
 本実施形態のネガ型感光性ポリマーは、溶剤溶解性であることによりポリマー溶液(ワニス)として好適に用いることができる。
 本実施形態のネガ型感光性ポリマーは、耐加水分解性に優れており、以下の条件で測定された重量平均分子量の減少率が15%以下、好ましくは12%以下、さらに好ましくは11%以下、特に好ましくは10%以下である。
(条件)
 前記ネガ型感光性ポリマー100質量部に、γ-ブチロラクトン400質量部、4-メチルテトラヒドロピラン200質量部、および水50質量部を加え、100℃で6時間攪拌した場合において、下記式で算出する。
 式:[(試験前の重量平均分子量-試験後の重量平均分子量)/試験前の重量平均分子量]×100
 本実施形態のネガ型感光性ポリマーは、重量平均分子量の減少率が上記範囲にあることにより、伸び等の機械的強度の低下が抑制されたフィルム等の硬化物を得ることができる。
 本実施形態のネガ型感光性ポリマーは、耐加水分解性に優れており、以下の条件で測定された重量平均分子量の減少率が50%以下、好ましくは40%以下、さらに好ましくは30%以下である。
(条件)
 前記ネガ型感光性ポリマー100質量部に、トリエチルアミン10質量部、γ-ブチロラクトン400質量部、4-メチルテトラヒドロピラン200質量部、および水50質量部を加え、100℃で6時間攪拌した場合において、下記式で算出する。
 式:[(試験前の重量平均分子量-試験後の重量平均分子量)/試験前の重量平均分子量]×100
 本実施形態のネガ型感光性ポリマーは、より加水分解を受けやすい上記の条件においても重量平均分子量の減少率を上記範囲とすることができ、伸び等の機械的強度の低下がより抑制されたフィルム等の硬化物を得ることができる。
<ネガ型感光性樹脂組成物>
 本実施形態のネガ型感光性樹脂組成物は、(A)前述のネガ型感光性ポリマーと、(B)架橋剤と、(C)光増感剤と、を含む。
[架橋剤(B)]
 置換または無置換のマレイミド基を備える架橋剤(B)(前記ポリイミド(A)を除く)としては、4,4’-ジフェニルメタンビス(ジメチル)マレイミド、ポリフェニルメタン(ジメチル)マレイミド、m-フェニレンビス(ジメチル)マレイミド、p-フェニレンビス(ジメチル)マレイミド、ビスフェノールAジフェニルエーテルビス(ジメチル)マレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビス(ジメチル)マレイミド、4-メチル-1,3-フェニレンビス(ジメチル)マレイミド、1,6’-ビス(ジメチル)マレイミド-(2,2,4-トリメチル)ヘキサン、1,2-ビス((ジメチル)マレイミド)エタン、1,4-ビス((ジメチル)マレイミド)ブタン、1,6-ビス((ジメチル)マレイミド)ヘキサン、1,12-ビス((ジメチル)マレイミド)ドデカン、1-(ジメチル)マレイミド-3-(ジメチル)マレイミドメチル-3,5,5-トリメチルシクロヘキサン、1,1’-(シクロヘキサン-1,3-ジイルビス(メチレン))ビス((3,4-ジメチル)-1H-ピロール-2,5-ジオン)、1,1’-(4,4’-メチレンビス(シクロヘキサン-4,1-ジイル))ビス((3,4-ジメチル)-1H-ピロール-2,5-ジオン)、1,1’-(3,3’-(ピペラジン-1,4-ジイル)ビス(プロパン-3,1-ジイル))ビス(1H-ピロール-2,5-ジオン)、2,2’-(エチレンジオキシ)ビス(エチル(ジメチル)マレイミド)、置換または無置換のマレイミド基を備えるポリノルボルネン等を挙げることができ、当該ポリノルボルネンであることが好ましい。
 前記ポリノルボルネンは、好ましくは下記一般式(b)で表される構造単位(b)を有する。
Figure JPOXMLDOC01-appb-C000031
 一般式(b)中、RおよびRは各々独立して水素原子もしくは炭素数1~3のアルキル基を示し、RおよびRの少なくとも一方は炭素数1~3のアルキル基であることが好ましく、いずれも炭素数1~3のアルキル基であることがより好ましい。炭素数1~3のアルキル基としては、本発明の効果の観点から、炭素数1または2のアルキル基が好ましく、炭素数1のアルキル基がより好ましい。
 Qは単結合、または2価の有機基を示す。
 Qの2価の前記有機基としては、本発明の効果を奏する範囲で公知の有機基を用いることができるが、例えば炭素数1~8のアルキレン基または(ポリ)アルキレングリコール鎖を挙げることができる。炭素数1~8のアルキレン基は、炭素数2~6のアルキレン基であることが好ましい。
 炭素数1~8のアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、及びオクチレン基等が挙げられる。
 (ポリ)アルキレングリコール鎖を構成するアルキレンオキサイドは特に限定されないが、炭素数1~18のアルキレンオキサイドにより構成されることが好ましく、より好ましくは炭素数2~8のアルキレンオキサイドであり、例えば、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、イソブチレンオキサイド、1-ブテンオキサイド、2-ブテンオキサイド、トリメチルエチレンオキサイド、テトラメチレンオキサイド、テトラメチルエチレンオキサイド、ブタジエンモノオキサイド、オクチレンオキサイド等が挙げられる。
 G、G、およびGはそれぞれ独立して水素原子、置換または無置換の炭素数1~30の炭化水素基を示す。
 炭素数1~30の炭化水素基としては、アルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、またはシクロアルキル等が挙げられる。
 アルキル基としては、たとえばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、およびデシル基が挙げられる。
 アルケニル基としては、たとえばアリル基、ペンテニル基、およびビニル基が挙げられる。アルキニル基としては、エチニル基が挙げられる。
 アルキリデン基としては、たとえばメチリデン基、およびエチリデン基が挙げられる。
 アリール基としては、たとえばフェニル基、ナフチル基、およびアントラセニル基が挙げられる。アラルキル基としては、たとえばベンジル基、およびフェネチル基が挙げられる。
 アルカリル基としては、たとえばトリル基、キシリル基が挙げられる。シクロアルキル基としては、たとえばアダマンチル基、シクロペンチル基、シクロヘキシル基、およびシクロオクチル基が挙げられる。
 炭素数1~30の炭化水素基は、その構造中に、O、N、S、PおよびSiから選択される少なくとも1つの原子を含んでいてもよい。
 本実施形態において、前記炭素数1~30の炭化水素基は、炭素数1~15の炭化水素基であることが好ましく、炭素数1~10の炭化水素基であることがより好ましい。また、炭素数1~30の炭化水素基は、炭素数1~30のアルキル基であることが好ましく、炭素数1~15のアルキル基であることがより好ましく、炭素数1~10のアルキル基であることがさらにより好ましい。
 置換された炭素数1~30の炭化水素基の置換基は、水酸基、アミノ基、シアノ基、エステル基、エーテル基、アミド基、スルホンアミド基等を挙げることができ、少なくとも1種の基で置換されていてもよい。
 本実施形態において、G、G、およびGのいずれか1つが、置換または無置換の炭素数1~30の炭化水素基、残りが水素原子であることが好ましく、全てが水素原子であることがより好ましい。
 mは0、1または2であり、好ましくは0または1であり、より好ましくは0である。
 本実施形態の架橋剤(B)は一般式(b)で表される構造を備えることから低誘電正接に優れる。さらに、架橋剤(B)は側鎖に所定のマレイミド基を有しており、ラジカル反応が生じず光二量化が可能であることから、架橋剤(B)同士、架橋剤(B)とポリイミド(A)とを光重合することができ、機械的強度にもより優れる。
 本実施形態の架橋剤(B)は、以下のように合成することができる。
 まず、以下の一般式(b’)で表される化合物(b’)を付加重合して、必要に応じて他のノルボルネン系化合物と付加重合して重合体を得る。たとえば配位重合により、付加重合が行われる。
Figure JPOXMLDOC01-appb-C000032
 一般式(b’)中、R、R、Q、G、G、Gおよびmは一般式(b)と同義である。
 他のノルボルネン系化合物としては、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-ヘキシルノルボルネン、5-デシルノルボルネン、5-シクロヘキシルノルボルネン、5-シクロペンチルノルボルネン等のアルキル基を有するノルボルネン類;5-エチリデンノルボルネン、5-ビニルノルボルネン、5-プロペニルノルボルネン、5-シクロヘキセニルノルボルネン、5-シクロペンテニルノルボルネン等のアルケニル基を有するノルボルネン類;5-フェニルノルボルネン、5-フェニルメチルノルボルネン、5-フェニルエチルノルボルネン、5-フェニルプロピルノルボルネン等の芳香環を有するノルボルネン類;等が挙げられる。
 本実施形態においては、上記化合物と、有機金属触媒と、を溶剤に溶解した後、所定時間加熱することにより溶液重合を行うことができる。このとき、加熱温度は、たとえば30℃~200℃、好ましくは40℃~150℃、さらに好ましくは50℃~120℃とすることができる。本実施形態においては、従来よりも加熱温度を高温とすることで架橋剤(B)の収率を向上させることができる。
 また、加熱時間は、たとえば0.5時間~72時間とすることができる。なお、窒素バブリングにより溶剤中の溶存酸素を除去したうえで、溶液重合を行うことがより好ましい。
 また、必要に応じて分子量調整剤や連鎖移動剤を使用する事ができる。連鎖移動剤としては、例えば、トリメチルシラン、トリエチルシラン、トリブチルシラン、等のアルキルシラン化合物を挙げることができる。これらの連鎖移動剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記重合反応に用いられる溶剤としては、たとえば、メチルエチルケトン(MEK)、プロピレングリコールモノメチルエーテル、ジエチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン(THF)、4-メチルテトラヒドロピラン、トルエン、シクロヘキサン、メチルシクロヘキサン、酢酸エチル、酢酸ブチル等のエステル、メチルアルコール、エチルアルコール、イソプロピルアルコールなどのアルコール類のうち一種または二種以上を使用することができる。
 上記有機金属触媒としては、付加重合が進行すれば特に選ばないが、例えばパラジウム錯体およびニッケル錯体に対してホスフィン系や、ジイミン系などの配位子を配位させ、カウンターアニオンなどを用いても良い。このうちの一種または二種以上を使用できる。
 上記パラジウム錯体としては、たとえば(アセタト-κ0)(アセトニトリル)ビス[トリス(1-メチルエチル)ホスフィン]パラジウム(I)テトラキス(2,3,4,5,6-ペンタフルオロフェニル)ボレート、π-アリルパラジウムクロリドダイマーなどのアリルパラジウム錯体、
パラジウムの酢酸塩、プロピオン酸塩、マレイン酸塩、ナフトエ酸塩などのパラジウムの有機カルボン酸塩、
酢酸パラジウムのトリフェニルホスフィン錯体、酢酸パラジウムのトリ(m-トリル)ホスフィン錯体、酢酸パラジウムのトリシクロヘキシルホスフィン錯体などのパラジウムの有機カルボン酸の錯体、
パラジウムのジブチル亜リン酸塩、p-トルエンスルホン酸塩などのパラジウムの有機スルフォン酸塩、
ビス(アセチルアセトナート)パラジウム、ビス(ヘキサフロロアセチルアセトナート)パラジウム、ビス(エチルアセトアセテート)パラジウム、ビス(フェニルアセトアセテート)パラジウムなどのパラジウムのβ-ジケトン化合物、
ジクロロビス(トリフェニルホスフィン)パラジウム、ビス[トリ(m-トリルホスフィン)]パラジウム、ジブロモビス[トリ(m-トリルホスフィン)]パラジウム、アセトニルトリフェニルホスフォニウム錯体などのパラジウムのハロゲン化物錯体等が挙げられる。
 上記ホスフィン配位子としては、トリフェニルホスフィン、ジシクロヘキシルフェニルホスフィン、シクロヘキシルジフェニルホスフィン、トリシクロヘキシルホスフィンなどが挙げられる。
 上記カウンターアニオンとしては、例えば、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス[3,5-ビス(トリフルオロメチル)フェニル]ボレート、トリフェニルカルベニウムテトラキス(2,4,6-トリフルオロフェニル)ボレート、トリフェニルカルベニウムテトラフェニルボレート、トリブチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジフェニルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、リチウムテトラキス(ペンタフルオロフェニル)ボレートなど挙げられる。
 有機金属触媒の量は、ノルボルネン系モノマーに対して300ppm~5000ppm、好ましくは1000ppm~3500ppm、さらに好ましくは1500ppm~2500ppmとすることができる。これにより、架橋剤(B)の収率を向上させることができる。
 得られた架橋剤(B)を含む反応液を、例えば、ヘキサンやメタノール等のアルコール中に添加して架橋剤(B)を析出させる。次いで、架橋剤(B)を濾取し、例えば、ヘキサンやメタノール等のアルコール等により洗浄した後、これを乾燥させる。
 本実施形態においては、たとえばこのようにして架橋剤(B)を合成することができる。
 本実施形態の製造方法によれば、架橋剤(B)を、70%以上の高収率で得ることができる。
 ジアルキル無水マレイン酸による変換率は、70%以上であることが好ましい。さらにこのましくは80%、さらに好ましくは90%以上である。この範囲であれば、現像で溶出するポリイミド成分を低減することができる。
 本実施形態の架橋剤(B)は、本発明の効果を奏する範囲で構造単位(b)以外のその他の構造単位を含むことができ、その他の構造単位としては、上記の他のノルボルネン系化合物から誘導される構造単位が挙げられる。
 本実施形態の架橋剤(B)の重量平均分子量は、3,000~300,000であり、好ましくは5,000~200,000である。
 本実施形態において、本発明の効果の観点から、ネガ型感光性ポリマー(A)と架橋剤(B)との比率(A:B)は、5:95~95:5、好ましくは10:90~90:10、さらに好ましくは20:80~80:20とすることができる。
[光増感剤(C)]
 本実施形態のネガ型感光性樹脂組成物は、さらに光増感剤(C)を含むことができる。
 光増感剤(C)としては、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤、ベンジル系光重合開始剤、ミヒラーケトン系光重合開始剤等が挙げられる。これらの中でも、ベンゾフェノン系光重合開始剤またはチオキサントン系光重合開始剤であることが好ましい。
 ベンゾフェノン系光重合開始剤としては、ベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4,4’-ジアミノベンゾフェノン、4-フェニルベンゾフェノン、イソフタルフェノン、4-ベンゾイル-4’-メチル-ジフェニルスルフィド等が挙げられる。これらのベンゾフェノンやその誘導体は、3級アミンを水素供与体として硬化速度を向上させることができる。
 ベンゾフェノン系光重合開始剤の市販品として、例えば、SPEEDCUREMBP(4-メチルベンゾフェノン)、SPEEDCUREMBB(メチル-2-ベンゾイルベンゾエイト)、SPPEDCUREBMS(4-ベンゾイル-4’メチルジフェニルサルファイド)、SPPEDCUREPBZ(4-フェニルベンゾフェノン)、SPPEDCUREEMK(4,4’-ビス(ジエチルアミノ)ベンゾフェノン)(以上商品名、DKSHジャパン株式会社製)等が挙げられる。
 チオキサントン系光重合開始剤としては、チオキサントン、ジエチルチオキサントン、イソプロピルチオキサントン、クロロチオキサントンが挙げられる。ジエチルチオキサントンとしては、2,4-ジエチルチオキサントン、イソプロピルチオキサントンとしては2-イソプロピルチオキサントン、クロロチオキサントンとしては2クロロチオキサントンが好ましい。中でも、ジエチルチオキサントンを含むチオキサントン系光重合開始剤がさらに好ましい。
 チオキサントン系光重合開始剤の市販品として、例えば、SpeedcureDETX(2,4-ジエチルチオキサントン)、SpeedcureITX(2-イソプロピルチオキサントン)、SpeedcureCTX(2-クロロチオキサントン)、SPEEDCURECPTX(1-クロロ-4-プロピルチオキサントン)(以上商品名、DKSHジャパン株式会社製)、KAYACUREDETX(2,4-ジエチルチオキサントン)(商品名、日本化薬株式会社製)、DAIDO UV―CURE DETX(大同化成工業株式会社製)が挙げられる。
 光増感剤(C)の添加量は、特に限定されないが、ネガ型感光性樹脂組成物の固形分全体の0.05~15質量%程度であるのが好ましく、0.1~12.5質量%程度であるのがより好ましく、0.2~10質量%程度であるのがさらに好ましい。光増感剤(C)の添加量を前記範囲内に設定することにより、ネガ型感光性樹脂組成物を含む感光性樹脂層のパターニング性を高めるとともに、ネガ型感光性樹脂組成物の長期保管性を向上させることができる。
[シランカップリング剤(D)]
 本実施形態のネガ型感光性樹脂組成物は、さらにシランカップリング剤(D)を含むことができる。
 これにより、ネガ型感光性樹脂組成物で形成された樹脂膜やパターンの、基板との密着性を高めることができる。
 使用可能なシランカップリング剤(D)は特に限定されない。例えば、アミノシラン、エポキシシラン、アクリルシラン、メルカプトシラン、ビニルシラン、ウレイドシラン、酸無水物官能型シラン、スルフィドシラン等のシランカップリング剤を用いることができる。シランカップリング剤(D)は、1種を単独で用いてもよいし、2種以上を併用してもよい。これらの中でも、エポキシシラン(すなわち、1分子中に、エポキシ部位と、加水分解によりシラノール基を発生する基の両方を含む化合物)または酸無水物官能型シラン(すなわち、1分子中に、酸無水物基と、加水分解によりシラノール基を発生する基の両方を含む化合物)が好ましい。シランカップリング剤のシランとは反対側の基が、ポリマーAまたはポリマーBと結合やポリマーとなじみが良くなる等することにより、ネガ型感光性樹脂組成物で形成された樹脂膜やパターンの、基板との密着性をより高めることができる。
 アミノシランとしては、例えば、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジエトキシシラン、またはN-フェニル-γ-アミノ-プロピルトリメトキシシラン等が挙げられる。
 エポキシシランとしては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ
-グリシドキシプロピルメチルジエトキシシラン、またはβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシジルプロピルトリメトキシシラン等が挙げられる。
 アクリルシランとしては、例えば、γ-(メタクリロキシプロピル)トリメトキシシラン、γ-(メタクリロキシプロピル)メチルジメトキシシラン、またはγ-(メタクリロキシプロピル)メチルジエトキシシラン等が挙げられる。
 メルカプトシランとしては、例えば、3-メルカプトプロピルトリメトキシシラン等が挙げられる。
 ビニルシランとしては、例えば、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、またはビニルトリメトキシシラン等が挙げられる。
 ウレイドシランとしては、例えば、3-ウレイドプロピルトリエトキシシラン等が挙げられる。
 酸無水物官能型シランとしては、例えば、3-トリメトキシシリルプロピルコハク酸無水物などが挙げられる。
 スルフィドシランとしては、例えば、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、またはビス(3-(トリエトキシシリル)プロピル)テトラスルフィド等が挙げられる。
 シランカップリング剤(D)を用いる場合、1種のみを用いてもよいし、2種以上を併用してもよい。
 シランカップリング剤(D)の含有量は、ネガ型感光性樹脂組成物の固形分全体を100質量部としたとき、通常0.01~10質量部、好ましくは0.05~5質量部である。この範囲とすることで、他の性能とのバランスを取りつつ、シランカップリング剤(D)の効果である「密着性」を十分に得ることができると考えられる。
(溶媒)
 本実施形態に係るネガ型感光性樹脂組成物は、溶媒として、ウレア化合物、または、非環状構造のアミド化合物を含むことができる。溶媒としては、例えば、ウレア化合物を含むことが好ましい。これにより、ネガ型感光性樹脂組成物の硬化物と、Al、Cuといった金属との密着性をより向上できる。
 なお、本明細書において、ウレア化合物とは、尿素結合、すなわち、ウレア結合を備える化合物を示す。また、アミド化合物とは、アミド結合を備える化合物、すなわちアミドを示す。なお、アミドとは、具体的には、1級アミド、2級アミド、3級アミドが挙げられる。
 また、本実施形態において、非環状構造とは、化合物の構造中に炭素環、無機環、複素環などの環状構造を備えないことを意味する。環状構造を備えない化合物の構造としては、例えば、直鎖状構造、分岐鎖状構造などが挙げられる。
 ウレア化合物、非環状構造のアミド化合物としては、分子構造中の窒素原子の数が多いものが好ましい。具体的には、分子構造中の窒素原子の数が2個以上であることが好ましい。これにより、孤立電子対の数を増やすことができる。したがって、Al、Cuといった金属との密着性を向上できる。
 ウレア化合物の構造としては、具体的には、環状構造、非環状構造などが挙げられる。ウレア化合物の構造としては、上記具体例のうち、非環状構造であることが好ましい。これにより、ネガ型感光性樹脂組成物の硬化物と、Al、Cuといった金属との密着性を向上できる。この理由は以下のように推測される。非環状構造のウレア化合物は、環状構造のウレア化合物と比べて、配位結合を形成しやすいと推測される。これは非環状構造のウレア化合物は、環状構造のウレア化合物と比べて、分子運動の束縛が少なく、さらに、分子構造の変形の自由度が大きいためと考えられる。したがって、非環状構造のウレア化合物を用いた場合、強力な配位結合を形成でき、密着性を向上できる。
 ウレア化合物としては、具体的には、テトラメチル尿素(TMU)、1,3-ジメチル-2-イミダゾリジノン、テトラブチル尿素、N,N'-ジメチルプロピレン尿素、1,3-ジメトキシ-1,3-ジメチル尿素、N,N'-ジイソプロピル-O-メチルイソ尿素、O,N,N'-トリイソプロピルイソ尿素、O-tert-ブチル-N,N'-ジイソプロピルイソ尿素、O-エチル-N,N'-ジイソプロピルイソ尿素、O-ベンジル-N,N'-ジイソプロピルイソ尿素などが挙げられる。ウレア化合物としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。ウレア化合物としては、上記具体例のうち例えば、テトラメチル尿素(TMU)、テトラブチル尿素、1,3-ジメトキシ-1,3-ジメチル尿素、N,N'-ジイソプロピル-O-メチルイソ尿素、O,N,N'-トリイソプロピルイソ尿素、O-tert-ブチル-N,N'-ジイソプロピルイソ尿素、O-エチル-N,N'-ジイソプロピルイソ尿素及びO-ベンジル-N,N'-ジイソプロピルイソ尿素からなる群より選択される1種または2種以上を用いることが好ましく、テトラメチル尿素(TMU)を用いることがより好ましい。これにより、強力な配位結合を形成でき、密着性を向上できる。
 非環状構造のアミド化合物としては、具体的には、3-メトキシ-N、N-ジメチルプロパンアミド、N,N-ジメチルホルムアミド、N,N-ジメチルプロピオンアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N-ジブチルホルムアミドなどが挙げられる。
 本実施形態に係るネガ型感光性樹脂組成物は、溶媒として、ウレア化合物、非環状構造のアミド化合物のほかに、窒素原子を備えない溶媒を含んでもよい。
 窒素原子を備えない溶媒としては、具体的には、エーテル系溶媒、エステル系溶媒、アルコール系溶媒、ケトン系溶媒、ラクトン系溶媒、カーボネート系溶媒、スルホン系溶媒、エステル系溶媒、芳香族炭化水素系溶媒などが挙げられる。窒素原子を備えない溶媒としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
 上記エーテル系溶媒としては、具体的には、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコール、エチレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールモノメチルエーテル、1,3-ブチレングリコール-3-モノメチルエーテルなどが挙げられる。
 上記エステル系溶媒としては、具体的には、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、乳酸メチル、乳酸エチル、乳酸ブチル、メチル-1,3-ブチレングリコールアセテートなどが挙げられる。
 上記アルコール系溶媒としては、具体的には、テトラヒドロフルフリルアルコール、ベンジルアルコール、2-エチルヘキサノール、ブタンジオール、イソプロピルアルコールなどが挙げられる。
 上記ケトン系溶媒としては、具体的には、シクロペンタノン、シクロヘキサノン、ジアセトンアルコール、2-ヘプタノンなどが挙げられる。
 上記ラクトン系溶媒としては、具体的には、γ-ブチロラクトン(GBL)、γ-バレロラクトンなどが挙げられる。
 上記カーボネート系溶媒としては、具体的には、エチレンカルボナート、炭酸プロピレンなどが挙げられる。
 上記スルホン系溶媒としては、具体的には、ジメチルスルホキシド(DMSO)、スルホランなどが挙げられる。
 上記エステル系溶媒としては、具体的には、ピルビン酸メチル、ピルビン酸エチル、メチル-3-メトキシプロピオネートなどが挙げられる。
 上記芳香族炭化水素系溶媒としては、具体的には、メシチレン、トルエン、キシレンなどが挙げられる。
 溶媒中のウレア化合物及び非環状構造のアミド化合物の含有量の下限値としては、溶媒を100質量部としたとき、例えば、10質量部以上であることが好ましく、20質量部以上であることがより好ましく、30質量部以上であることが更に好ましく、50質量部以上であることが一層好ましく、70質量部以上であることが殊更好ましい。これにより、ネガ型感光性樹脂組成物の硬化物と、Al、Cuといった金属との密着性をより向上できる。
 また、溶媒中のウレア化合物及び非環状構造のアミド化合物の含有量の下限値としては、溶媒を100質量部としたとき、例えば、100質量部以下とすることができる。溶媒中には、ウレア化合物及び非環状構造のアミド化合物の含有量が多いことが、密着性向上の観点から好ましい。
(界面活性剤)
 本実施形態に係るネガ型感光性樹脂組成物は、界面活性剤をさらに含んでいてもよい。
 界面活性剤としては、限定されず、具体的にはポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテルなどのポリオキシエチレンアルキルエーテル類;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテルなどのポリオキシエチレンアリールエーテル類;ポリオキシエチレンジラウレート、ポリオキシエチレンジステアレートなどのポリオキシエチレンジアルキルエステル類などのノニオン系界面活性剤;エフトップEF301、エフトップEF303、エフトップEF352(新秋田化成社製)、メガファックF171、メガファックF172、メガファックF173、メガファックF177、メガファックF444、メガファックF470、メガファックF471、メガファックF475、メガファックF482、メガファックF477(DIC社製)、フロラードFC-430、フロラードFC-431、ノベックFC4430、ノベックFC4432(スリーエムジャパン社製)、サーフロンS-381、サーフロンS-382、サーフロンS-383、サーフロンS-393、サーフロンSC-101、サーフロンSC-102、サーフロンSC-103、サーフロンSC-104、サーフロンSC-105、サーフロンSC-106、(AGCセイミケミカル社製)などの名称で市販されているフッ素系界面活性剤;オルガノシロキサン共重合体KP341(信越化学工業社製);(メタ)アクリル酸系共重合体ポリフローNo.57、95(共栄社化学社製)などが挙げられる。
 これらのなかでも、パーフルオロアルキル基を有するフッ素系界面活性剤を用いることが好ましい。パーフルオロアルキル基を有するフッ素系界面活性剤としては、上記具体例のうち、メガファックF171、メガファックF173、メガファックF444、メガファックF470、メガファックF471、メガファックF475、メガファックF482、メガファックF477(DIC社製)、サーフロンS-381、サーフロンS-383、サーフロンS-393(AGCセイミケミカル社製)、ノベックFC4430及びノベックFC4432(スリーエムジャパン社製)から選択される1種または2種以上を用いることが好ましい。
 また、界面活性剤としては、シリコーン系界面活性剤(例えばポリエーテル変性ジメチルシロキサンなど)も好ましく用いることができる。シリコーン系界面活性剤として具体的には、東レダウコーニング社のSHシリーズ、SDシリーズおよびSTシリーズ、ビックケミー・ジャパン社のBYKシリーズ、信越化学工業株式会社のKPシリーズ、日油株式会社のディスフォーム(登録商標)シリーズ、東芝シリコーン社のTSFシリーズなどを挙げることができる。
 ネガ型感光性樹脂組成物中の界面活性剤の含有量の上限値は、ネガ型感光性樹脂組成物の全体(溶媒を含む)に対して1質量%(10,000ppm)以下であることが好ましく、0.5質量%(5,000ppm)以下であることであることがより好ましく、0.3質量%(3,000ppm)以下であることが更に好ましい。
 また、ネガ型感光性樹脂組成物中の界面活性剤の含有量の下限値は、特には無いが、界面活性剤による効果を十分に得る観点からは、例えば、ネガ型感光性樹脂組成物の全体(溶媒を含む)に対して0.001質量%(10ppm)以上である。
 界面活性剤の量を適当に調整することで、他の性能を維持しつつ、塗布性や塗膜の均一性などを向上させることができる。
(酸化防止剤)
 本実施形態に係るネガ型感光性樹脂組成物は、酸化防止剤をさらに含んでもよい。酸化防止剤としては、フェノ-ル系酸化防止剤、リン系酸化防止剤およびチオエ-テル系酸化防止剤から選択される1種以上を使用できる。酸化防止剤は、ネガ型感光性樹脂組成物により形成される樹脂膜の酸化を抑制できる。
 フェノ-ル系酸化防止剤としては、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、3,9-ビス{2-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル}2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、2,6-ジフェニル-4-オクタデシロキシフェノール、ステアリル(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ジステアリル(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ホスホネート、チオジエチレングリコールビス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、4,4'-チオビス(6-t-ブチル-m-クレゾール)、2-オクチルチオ-4,6-ジ(3,5-ジ-t-ブチル-4-ヒドロキシフェノキシ)-s-トリアジン、2,2'-メチレンビス(4-メチル-6-t-ブチル-6-ブチルフェノール)、2,-2'-メチレンビス(4-エチル-6-t-ブチルフェノール)、ビス〔3,3-ビス(4-ヒドロキシ-3-t-ブチルフェニル)ブチリックアシッド〕グリコールエステル、4,4'-ブチリデンビス(6-t-ブチル-m-クレゾール)、2,2'-エチリデンビス(4,6-ジ-t-ブチルフェノール)、2,2'-エチリデンビス(4-s-ブチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、ビス〔2-t-ブチル-4-メチル-6-(2-ヒドロキシ-3-t-ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-t-ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、1,3,5-トリス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタン、2-t-ブチル-4-メチル-6-(2-アクリロイルオキシ-3-t-ブチル-5-メチルベンジル)フェノール、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4-8,10-テトラオキサスピロ[5,5]ウンデカン-ビス〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕、トリエチレングリコ-ルビス〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕、1,1'-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2'-メチレンビス(4-エチル-6-t-ブチルフェノール)、2,2'-メチレンビス(6-(1-メチルシクロヘキシル)-4-メチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、3,9-ビス(2-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニルプロピオニロキシ)1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、4,4'-チオビス(3-メチル-6-t-ブチルフェノール)、4,4'-ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)サルファイド、4,4'-チオビス(6-t-ブチル-2-メチルフェノール)、2,5-ジ-t-ブチルヒドロキノン、2,5-ジ-t-アミルヒドロキノン、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジメチル-6-(1-メチルシクロヘキシル、スチレネイティッドフェノール、2,4-ビス((オクチルチオ)メチル)-5-メチルフェノール、などが挙げられる。
 リン系酸化防止剤としては、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-t-ブチルフェニルホスファイト)、テトラキス(2,4-ジ-t-ブチル-5-メチルフェニル)-4,4'-ビフェニレンジホスホナイト、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネート-ジエチルエステル、ビス-(2,6-ジクミルフェニル)ペンタエリスリトールジホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、トリス(ミックスドモノandジ-ノニルフェニルホスファイト)、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-メトキシカルボニルエチル-フェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-オクタデシルオキシカルボニルエチルフェニル)ペンタエリスリトールジホスファイトなどが挙げられる。
 チオエ-テル系酸化防止剤としては、ジラウリル-3,3'-チオジプロピオネート、ビス(2-メチル-4-(3-n-ドデシル)チオプロピオニルオキシ)-5-t-ブチルフェニル)スルフィド、ジステアリル-3,3'-チオジプロピオネート、ペンタエリスリトール-テトラキス(3-ラウリル)チオプロピオネートなどが挙げられる。
(フィラー)
 本実施形態に係るネガ型感光性樹脂組成物は、フィラーを更に含んでいてもよい。フィラーとしては、ネガ型感光性樹脂組成物によってなる樹脂膜に求められる機械的特性、熱的特性に応じて適切な充填材を選択できる。
 フィラーとしては、具体的には、無機フィラーまたは有機フィラーなどが挙げられる。
 上記無機フィラーとしては、具体的には、溶融破砕シリカ、溶融球状シリカ、結晶性シリカ、2次凝集シリカ、微粉シリカなどのシリカ;アルミナ、窒化ケイ素、窒化アルミニウム、窒化ホウ素、酸化チタン、炭化ケイ素、水酸化アルミニウム、水酸化マグネシウム、チタンホワイトなどの金属化合物;タルク;クレー;マイカ;ガラス繊維などが挙げられる。無機フィラーとしては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
 上記有機フィラーとしては、具体的には、オルガノシリコーンパウダー、ポリエチレンパウダーなどが挙げられる。有機フィラーとしては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
(ネガ型感光性樹脂組成物の調製)
 本実施形態におけるネガ型感光性樹脂組成物を調製する方法は限定されず、ネガ型感光性樹脂組成物に含まれる成分に応じて、公知の方法を用いることができる。
 例えば、上記各成分を、溶媒に混合して溶解することにより調製することができる。
(硬化膜)
 本実施形態に係るネガ型感光性樹脂組成物は、該ネガ型感光性樹脂組成物をAl、Cuといった金属を備える面に対して塗工し、次いで、プリベークすることで乾燥させ樹脂膜を形成し、次いで、露光及び現像することで所望の形状に樹脂膜をパターニングし、次いで、樹脂膜を熱処理することで硬化させ硬化膜を形成することで使用される。
 なお、上記永久膜を作製する場合、プリベークの条件としては、例えば、温度90℃以上130℃以下で、30秒間以上1時間以下の熱処理とすることができる。また、熱処理の条件としては、例えば、温度150℃以上250℃以下で、30分間以上10時間以下の熱処理とすることができ、好ましくは170℃程度で1~6時間熱処理することができる。
 本実施形態のネガ型感光性樹脂組成物から得られるフィルムは、テンシロン試験機による引張試験により測定された伸び率が、最大値15~200%、好ましくは20~150%であり、平均値10~150%、好ましくは15~120%である。
 本実施形態のネガ型感光性樹脂組成物から得られるフィルムは、は、テンシロン試験機による引張試験により測定された引張強度が20MPa以上であるのが好ましく、30~300MPaであるのがより好ましい。
 また、本実施形態のネガ型感光性樹脂組成物は、耐加水分解性に優れたネガ型感光性ポリマー(A)を含むことから、温度130℃、相対湿度85%RHの条件で、96時間、HAST試験(不飽和加圧蒸気試験)を行った後においても、下記式で表される伸び率(最大値、平均値)の低下率が20%以下、好ましくは15%以下、さらに好ましくは12%以下である。
[(試験前の伸び率-試験後の伸び率)/試験前の伸び率)]×100
 本実施形態のネガ型感光性樹脂組成物は低温硬化性に優れる。
 例えば、本実施形態のネガ型感光性樹脂組成物を170℃で4時間硬化させて得られた硬化物は、ガラス転移温度(Tg)が200℃以上、好ましくは210℃以上、さらに好ましくは220℃以上とすることができる。
 さらに、本実施形態のネガ型感光性樹脂組成物を170℃で4時間硬化させて得られた硬化物は、30℃における貯蔵弾性率E’が2.0GPa以上、好ましくは2.5GPa以上、さらに好ましくは3.0GPa以上とすることができる。さらに、200℃における貯蔵弾性率E’が0.5GPa以上、好ましくは0.7GPa以上、さらに好ましくは0.8GPa以上とすることができる。
 本実施形態に係るネガ型感光性樹脂組成物の粘度は、所望の樹脂膜の厚みに応じて適宜設定することができる。ネガ型感光性樹脂組成物の粘度の調整は、溶媒を添加することでできる。
 本実施形態のネガ型感光性樹脂組成物から得られるフィルム等の硬化物は耐薬品性に優れる。
 具体的には、フィルムをジメチルスルホキシド99質量%未満と水酸化テトラメチルアンモニウム2質量%未満との溶液に40℃で10分間浸漬し、その後イソプロピルアルコールで十分洗浄後風乾し、処理後の膜厚を測定する。処理後の膜厚と処理前の膜厚の膜厚変化率を下記式より算出し、フィルムの減少率として評価する。
 式:フィルムの減少率(%){(浸漬後の膜厚-浸漬前の膜厚)/浸漬前の膜厚×100(%)}
 膜厚変化率は、40%以下であるのが好ましく、30%以下であるのがより好ましい。これにより、硬化膜がジメチルスルホキシドに浸される工程に供された場合でも、膜厚がほとんど減少しない。このため、かかる工程に供された後でも機能を維持し得る硬化膜が得られる。
 本実施形態のネガ型感光性樹脂組成物は硬化収縮が抑制されており、シリコンウェハ表面に乾燥後の膜厚が10μmになるようにスピンコートし、120℃3分間のプリベーク後、高圧水銀灯にて600mJ/cmの露光を行い、その後、窒素雰囲気下で170℃120分間熱処理を行ってフィルムを調製した場合において、前記プリベーク後のフィルム膜厚を膜厚A、前記熱処理後のフィルム膜厚を膜厚Bとし、下記式から算出される硬化収縮率を好ましくは12%以下、より好ましくは10%以下とすることができる。
  式:硬化収縮率[%]={(膜厚A-膜厚B)/膜厚A}x100
 本実施形態のネガ型感光性樹脂組成物は耐熱性が高く、得られるフィルムは、熱重量示差熱同時測定により測定した重量減少温度(Td5)が、200℃以上、好ましくは300℃以上とすることができる。
 本実施形態のネガ型感光性樹脂組成物からなるフィルムは、硬化収縮が抑制されており、線熱膨張率(CTE)は200ppm/℃以下、好ましくは100ppm/℃以下とすることができる。
 本実施形態のネガ型感光性樹脂組成物からなるフィルムは、機械的強度に優れており、25℃での弾性率は、1.0~5.0GPa、好ましくは1.5~3.0GPaとすることができる。
(用途)
 本実施形態のネガ型感光性樹脂組成物は、永久膜、レジストなどの半導体装置用の樹脂膜を形成するために用いられる。これらの中でも、プリベーク後のネガ型感光性樹脂組成物及びAlパッドの密着性向上と、現像時のネガ型感光性樹脂組成物の残渣の発生の抑制とをバランスよく発現する観点、熱処理後のネガ型感光性樹脂組成物の硬化膜と、金属との密着性を向上する観点、加えて、熱処理後のネガ型感光性樹脂組成物の耐薬品性を向上する観点から、永久膜を用いる用途に用いられることが好ましい。
 なお、本実施形態において、樹脂膜は、ネガ型感光性樹脂組成物の硬化膜を含む。すなわち、本実施形態にかかる樹脂膜とは、ネガ型感光性樹脂組成物を硬化させてなるものである。
 上記永久膜は、ネガ型感光性樹脂組成物に対してプリベーク、露光及び現像を行い、所望の形状にパターニングした後、熱処理することによって硬化させることにより得られた樹脂膜で構成される。永久膜は、半導体装置の保護膜、層間膜、ダム材などに用いることができる。
 上記レジストは、例えば、ネガ型感光性樹脂組成物をスピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の方法で、レジストにとってマスクされる対象に塗工し、ネガ型感光性樹脂組成物から溶媒を除去することにより得られた樹脂膜で構成される。
 本実施形態に係る半導体装置の一例を図1に示す。
 本実施形態に係る半導体装置100は、上記樹脂膜を備える半導体装置とすることができる。具体的には、半導体装置100のうち、パッシベーション膜32、絶縁層42および絶縁層44からなる群の1つ以上を、本実施形態の硬化物を含む樹脂膜とすることができる。ここで、樹脂膜は、上述した永久膜であることが好ましい。
 半導体装置100は、たとえば半導体チップである。この場合、たとえば半導体装置100を、バンプ52を介して配線基板上に搭載することにより半導体パッケージが得られる。
 半導体装置100は、トランジスタ等の半導体素子が設けられた半導体基板と、半導体基板上に設けられた多層配線層(図示せず。)と、を備えている。多層配線層のうち最上層には、層間絶縁膜30と、層間絶縁膜30上に設けられた最上層配線34が設けられている。最上層配線34は、たとえば、アルミニウムAlにより構成される。また、層間絶縁膜30上および最上層配線34上には、パッシベーション膜32が設けられている。パッシベーション膜32の一部には、最上層配線34が露出する開口が設けられている。
 パッシベーション膜32上には、再配線層40が設けられている。再配線層40は、パッシベーション膜32上に設けられた絶縁層42と、絶縁層42上に設けられた再配線46と、絶縁層42上および再配線46上に設けられた絶縁層44と、を有する。絶縁層42には、最上層配線34に接続する開口が形成されている。再配線46は、絶縁層42上および絶縁層42に設けられた開口内に形成され、最上層配線34に接続されている。絶縁層44には、再配線46に接続する開口が設けられている。
 絶縁層44に設けられた開口内には、たとえばUBM(Under Bump Metallurgy)層50を介してバンプ52が形成される。半導体装置100は、たとえばバンプ52を介して配線基板等に接続される。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、本発明の効果を損なわない範囲で、上記以外の様々な構成を採用することができる。
 以下に、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
 実施例においては以下の化合物を用いた。
 下記式で示される、4,4-ジアミノ-3,3-ジエチル-5,5-ジメチルジフェニルメタン(以下、MED-Jとも示す)
Figure JPOXMLDOC01-appb-C000033
 下記式で示される、1-(4-アミノフェニル)-1,3,3-トリメチルフェニルインダン-6-アミンと1-(4-アミノフェニル)-1,3,3-トリメチルフェニルインダン-5-アミンの混合物(以下、TMDAとも示す)
Figure JPOXMLDOC01-appb-C000034
 下記式で示される、9,9-ビス(3-メチル-4-アミノフェニル)フルオレン(以下、BTFLとも示す)
Figure JPOXMLDOC01-appb-C000035
 下記式で示される、4,4'-(ヘキサフルオロイソプロピリデン)ビス[(4-アミノフェノキシ)ベンゼン](以下、HFBAPPとも示す)
Figure JPOXMLDOC01-appb-C000036
 下記式で示される、4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニル(以下、TFMBとも示す)
Figure JPOXMLDOC01-appb-C000037
 下記式で示される、4-[4-(1,3-ジオキソイソベンゾフラン-5-イルカルボニロキシ)-2,3,5-トリメチルフェニル]-2,3,6-トリメチルフェニル 1,3-ジオキソイソベンゾフラン-5-カルボキシレート(以下、TMPBP-TMEとも示す)
Figure JPOXMLDOC01-appb-C000038
 下記式で示される、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン酸二無水物(以下、HQDAとも示す)
Figure JPOXMLDOC01-appb-C000039
 下記式で示される、4,4'-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(以下、6FDAとも示す)
Figure JPOXMLDOC01-appb-C000040
[実施例1]
 はじめに、撹拌機および冷却管を備えた適切なサイズの反応容器に、MED-J 43.99g(155.8mmol)と、TMPBP-TME 89.22g(144.2mmol)を入れた。その後、反応容器に、さらにγ-ブチロラクトン(以下、GBLとも示す)399.64gを加えた。
 窒素を10分間通気した後、撹拌しつつ温度60℃まで上げ、1時間反応させた。事前に、ジメチル無水マレイン酸8.73g(69.2mmol)をガンマブチロラクトン26.19gに溶解させた溶液を作成し、この溶液を反応容器へ入れ、さらに30分反応を行った。さらに175℃で3時間反応させることで、ジアミンと酸無水物を重合させ末端を封止した、重合溶液を作製した。
 得られた重合溶液を、テトラヒドロフランで希釈して希釈液を作製し、次いで、希釈液をメタノール溶液に滴下することで、白色固体を析出させた。得られた白色固体を回収し、温度80℃で真空乾燥することにより、ポリマー125.88gを得た。
 ポリマーをGPC測定したところ、重量平均分子量Mwは74,000、多分散度(重量平均分子量Mw/数平均分子量Mn)は2.62であり、末端封止率は65%であった。
 得られたポリマーは、その一部に下記式で表される繰り返し単位が含まれ、末端にジメチルマレイミド基を備えていた。
Figure JPOXMLDOC01-appb-C000041
[実施例2~4]
 実施例2~4について、表1中に記載の条件以外は、実施例1と同様の手法で合成を行った。得られたMw,PDI,末端封止率については表中に記載した。
 実施例2~4で得られたポリマーは、その一部に下記式で表される繰り返し単位が含まれ、末端にジメチルマレイミド基を備えていた。
Figure JPOXMLDOC01-appb-C000042
[比較例1]
 はじめに、撹拌機および冷却管を備えた適切なサイズの反応容器に、MED-J 5.92g(21.0mmol)と、HFBAPP 10.86g(21.0mmol)と、TMPBP-TME 23.57g(38.1mmol)を入れた。その後、反応容器に、さらにγ-ブチロラクトン(以下、GBLとも示す)121.04gを加えた。
 窒素を10分間通気した後、撹拌しつつ温度60℃まで上げ、1時間反応させた。事前に、ジメチル無水マレイン酸2.88g(22.9mmol)をガンマブチロラクトン8.65gに溶解させた溶液を作成し、この溶液を反応容器へ入れ、さらに30分反応を行った。さらに175℃で3時間反応させることで、ジアミンと酸無水物を重合させ末端を封止した、重合溶液を作製した。
 得られた重合溶液を、テトラヒドロフランで希釈して希釈液を作製し、次いで、希釈液をメタノール溶液に滴下することで、白色固体を析出させた。得られた白色固体を回収し、温度80℃で真空乾燥することにより、ポリマー35.42gを得た。
 ポリマーをGPC測定したところ、重量平均分子量Mwは55,600、多分散度(重量平均分子量Mw/数平均分子量Mn)は2.33であり、末端封止率は75%であった。
 得られたポリマーは、その一部に下記式で表される繰り返し単位が含まれ、末端にジメチルマレイミド基を備えていた。
Figure JPOXMLDOC01-appb-C000043
[比較例2]
 はじめに、撹拌機および冷却管を備えた適切なサイズの反応容器に、MED-J 7.33g(26.0mmol)と、TFMB 8.31g(26.0mmol)と、TMPBP-TME 29.74g(48.1mmol)を入れた。その後、反応容器に、さらにγ-ブチロラクトン(以下、GBLとも示す)136.16gを加えた。
 窒素を10分間通気した後、撹拌しつつ温度60℃まで上げ、1時間反応させた。事前に、ジメチル無水マレイン酸2.91g(23.1mmol)をガンマブチロラクトン8.73gに溶解させた溶液を作成し、この溶液を反応容器へ入れ、さらに30分反応を行った。さらに175℃で3時間反応させることで、ジアミンと酸無水物を重合させ末端を封止した、重合溶液を作製した。
 得られた重合溶液を、テトラヒドロフランで希釈して希釈液を作製し、次いで、希釈液をメタノール溶液に滴下することで、白色固体を析出させた。得られた白色固体を回収し、温度80℃で真空乾燥することにより、ポリマー35.44gを得た。
 ポリマーをGPC測定したところ、重量平均分子量Mwは69,500、多分散度(重量平均分子量Mw/数平均分子量Mn)は2.51であり、末端封止率は65%であった。
 得られたポリマーは、その一部に下記式で表される繰り返し単位が含まれ、末端にジメチルマレイミド基を備えていた。
Figure JPOXMLDOC01-appb-C000044
[比較例3~5]
 比較例3~5について、表1中に記載の条件以外は、実施例1と同様の手法で合成を行った。得られたMw、Mw/Mnについては表1中に記載した。
[イミド環の2つのカルボニル炭素のプラスの電荷(δ+)の平均値]
 実施例1で得られたネガ型感光性ポリマーのイミド環の2つのカルボニル炭素のプラスの電荷(δ+)の平均値は以下のように算出した。
 実施例1のネガ型感光性ポリマーは、下記化学式(A)の構造単位(A)を含む。
Figure JPOXMLDOC01-appb-C000045
 この場合、下記化学式(A’)で表される化合物(A’)を、ソフトHSPiP(ver5.3)を用いて電荷平衡法にて測定し、前記化合物(A’)に含まれるイミド環の2つのカルボニル炭素(*1、*2)のδ+を平均して平均値を得た。
 他の実施例、比較例においても同様に算出した。
Figure JPOXMLDOC01-appb-C000046
[末端封止率の測定]
 反応後の溶液をガスクロマトグラフィーで測定し、反応で消費されたジメチル無水マレイン酸の全てがポリマー末端に結合したと仮定した場合において、ジメチル無水マレイン酸の理論消費量に対する実消費量の割合をジメチル無水マレイン酸によるポリマー末端の封止率とした
[有機溶媒に対する溶解性]
 実施例1~3、比較例1、2で得られたネガ型感光性ポリマーのγ-ブチルラクトン(GBL)、シクロペンタノンに対する溶解性を以下の基準で評価した。結果を表1に示す。
(溶解性の評価基準)
○:ポリマーが5質量%以上溶解
△:ポリマーが1~5質量%溶解
×:ポリマー溶解が1質量%未満
[耐加水分解性]
 以下の条件で、実施例および比較例で得られたネガ型感光性ポリマーの重量平均分子量の減少率を測定した。結果を表1に示す。
(条件(トリエチルアミン無添加))
 ネガ型感光性ポリマー100質量部に、γ-ブチロラクトン400質量部、4-メチルテトラヒドロピラン200質量部、および水50質量部を加え、100℃で6時間攪拌した場合において、下記式で算出した。
 式:[(試験前の重量平均分子量-試験後の重量平均分子量)/試験前の重量平均分子量]×100
(条件(トリエチルアミン添加))
 ネガ型感光性ポリマー100質量部に、トリエチルアミン10質量部、γ-ブチロラクトン400質量部、4-メチルテトラヒドロピラン200質量部、および水50質量部を加え、100℃で6時間攪拌した場合において、下記式で算出した。
 式:[(試験前の重量平均分子量-試験後の重量平均分子量)/試験前の重量平均分子量]×100
[伸び率]
 実施例、比較例で得られたポリマー溶液(ポリマー100質量部)をシリコンウェハ表面にスピンコートし、120℃4分間のプリベーク後、200℃120分間、窒素下での熱処理により、フィルムを調製した。
 得られたフィルムから切り出した試験片(6.5mm×60mm×10μm厚)に対して引張試験(延伸速度:5mm/分)を23℃雰囲気中で実施した。引張試験は、オリエンテック社製引張試験機(テンシロンRTC-1210A)を用いて行った。試験片5本を測定し、破断した距離と初期距離から引張伸び率を算出し、伸び率の最大値と平均値を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000047
 表1に示すように、イミド環の2つのカルボニル炭素のプラスの電荷(δ+)の平均値が0.095以下である実施例で得られた本発明のネガ型感光性ポリマーは有機溶剤への溶解性および伸びに優れ、さらに加水分解が抑制されていることから伸び率の低下が少なく機械的強度の低下が抑制されていると推察された。
 ネガ型感光性樹脂組成物の調製においては以下の化合物を用いた。
・感光剤:1-クロロ-4‐プロポキシチオキサントン(英Lambson社製、SPEEDCURE CPTX(商品名))
・溶剤:シクロペンタノン
[合成例1]
(無水マレイン酸変性ノルボルネンモノマー(DMMIBuNB、1-[4-(5-2-ノルボルニル)ブチル]-3,4-ジメチル-ピロール-2,5-ジオン)の合成)
 500mLの丸底フラスコ中で、ジメチルマレイン酸無水物(42.6g、0.34mol)を室温でトルエン(300mL)に溶解させた。酸素を除去するために、溶液を窒素ガス雰囲気下に置いた。反応フラスコを氷浴中に置き、発熱反応に由来する過剰な加熱を防いだ。ジメチルマレイン酸無水物が溶解した時点で、5-ノルボルネン-2-ブチルアミン(49.6g、0.30mol)を含む滴下漏斗を装着し、ノルボルネン化合物を反応フラスコに3時間に渡って滴下した。滴下漏斗を取り外し、ディーンスターク管および還流冷却器をフラスコに装着した。溶液を加熱して125℃に設定したオイルバス中で還流させ、反応物を18時間その温度で撹拌した。この間に約6mLの水がディーンスターク管に回収された。フラスコをオイルバスから取り出し、室温に冷却した。エバポレーターを用いてトルエン溶媒を除去し、黄色油状物質を得た。粗生成物をフラッシュクロマトグラフィーカラム(250gのシリカゲル)にのせ、1.7リットルのシクロヘキサン/酢酸エチル(95/5wt比)の溶媒混合物を用いて溶出させた。エバポレーターを用いて溶出溶媒を除去し、その後、真空下45℃で18時間乾燥させて、80.4g(収率92.7%)の目的とする生成物を得た。反応式を下記に示す。
Figure JPOXMLDOC01-appb-C000048
(ポリマー(DMMI-PNB)の合成)
 窒素置換した反応容器に、上記の方法で得られた1-[4-(5-2-ノルボルニル)ブチル]-3,4-ジメチル-ピロール-2,5-ジオン)24.6g、トリエチルシラン3.1g、トルエン13.5g、酢酸エチル4.5gを仕込んだ。さらに、濃度2.1wt%の[Pd(P(iPr)3)2(OCOCH3)(NCCH3)]テトラキス(ペンタフルオロフェニル)ボレート0.065g、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボラート0.043gにトルエン3.8g、酢酸エチル1.3gを加えた混合溶液を作製し、反応容器に加えて70℃で3時間反応させて重合体溶液を得た。重合体への転化率は91%であった。また、得られた重合体の重量平均分子量は6,700、分子量分布は1.89であった。
 調製された重合体溶液をテトラヒドロフランで希釈し、メタノールで再沈殿、ろ過後、50℃で真空乾燥することで重合体(DMMI-PNB)を18g得た。
[実施例5]
(ネガ型感光性樹脂組成物の調製)
 実施例1のポリマー溶液(ポリマーDMMI-PI 12.0質量部)と、合成例1のポリマー(DMMI-PNB)と、表2に示す成分とを、表2に示す量で混合し、感光性樹脂組成物を調製した。
 得られたネガ型感光性樹脂組成物を、シリコンウェハ表面に乾燥後の膜厚が10μmになるようにスピンコートし、120℃4分間のプリベーク後、高圧水銀灯にて1500mJ/cmの露光を行い、その後、窒素雰囲気下で200℃120分間熱処理を行ってフィルムを調製した。
[比較例6]
 比較例1のポリマー溶液(ポリマーDMMI-PI 12.0質量部)を用いた以外は、実施例5と同様にして感光性樹脂組成物を調製し、当該感光性樹脂組成物からフィルムを調製した。
[ガラス転移温度(Tg)]
 実施例5で得られたフィルムから8mm×40mmの試験片を切り出し、その試験片に対し、動的粘弾性測定(DMA装置、TAインスツルメント社製、Q800)を用いて、昇温速度5℃/min、周波数1Hzで動的粘弾性測定を行い、損失正接tanδが最大値を示す温度をガラス転移温度として測定した。
[伸び率]
 実施例5、比較例6で得られたフィルムから切り出した試験片(6.5mm×60mm×10μm厚)に対して引張試験(延伸速度:5mm/分)を23℃雰囲気中で実施した。引張試験は、オリエンテック社製引張試験機(テンシロンRTC-1210A)を用いて行った。試験片5本を測定し、破断点の応力を平均化したものを強度とした。破断した距離と初期距離から引張伸び率を算出し、伸び率の平均値と最大値を求めた。
 さらに、実施例5、比較例6で得られたフィルムから切り出した前記試験片を、温度130℃、相対湿度85%RHの条件で、96時間、HAST(不飽和加圧蒸気試験)を行った後、前記と同様にして伸び率の平均値と最大値を求めた。
(誘電正接Df)
 実施例5の感光性樹脂組成物を基板上に塗布し、この塗布膜を120℃10分間乾燥し、PLA露光(540mJ)を行い、窒素雰囲気下で200℃2時間硬化させて膜厚100μmのフィルムを得た。得られたフィルムについて、10GHzでの誘電正接を空洞共振器法で測定した。
[パターニング特性に関する評価]
 実施例5の感光性樹脂組成物が、露光・現像により十分にパターニング可能であることを、以下のようにして確認した。
 実施例5の感光性樹脂組成物を、8インチシリコンウエハー上にスピンコーターを用いて塗布した。塗布後、大気下でホットプレートにて120℃で4分間プリベークし、膜厚約8.0μmの塗膜を得た。
 この塗膜に、幅20μmのビアパターンが描かれているマスクを通して、i線を照射した。照射には、i線ステッパー(ニコン社製・NSR-4425i)を用いた。
 露光後、現像液としてシクロペンタノンを用い、120秒間スプレー現像し、未露光部を溶解除去して、ビアパターンを得た。
 得られたビアパターンの断面を、卓上SEMを用いて観察した。ビアパターンの底面と開口部の中間の高さにおける幅をビア幅とし、以下基準で評価した。
 パターニング性良好:20μmのビアパターンが開口
 パターニング性不良:20μmのビアパターンが開口しない
 実施例5の感光性樹脂組成物から得られた塗膜はパターニング性が良好であった。
Figure JPOXMLDOC01-appb-T000049
 表2に記載のように、イミド環の2つのカルボニル炭素のプラスの電荷(δ+)の平均値が0.095以下である本発明のネガ型感光性ポリマーを含むネガ型感光性樹脂組成物から得られたフィルムは、低誘電正接に優れるとともに伸びに優れており、さらに耐加水分解性に優れたネガ型感光性ポリマーを含むことからHAST試験後においても機械的強度に優れることが明らかとなった。また、パターニング性も良好であり、ネガ型感光性樹脂組成物として好適に用いることが確認された。
 この出願は、2021年6月25日に出願された日本出願特願2021-105687号および2022年2月10日に出願された日本出願特願2022-019325号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100  半導体装置
30   層間絶縁膜
32   パッシベーション膜
34   最上層配線
40   再配線層
42   絶縁層
44   絶縁層
46   再配線
50   UBM層
52   バンプ

Claims (19)

  1.  イミド環を含有する構造単位を含み、両末端の少なくとも一方に下記一般式(t)で表される基を備える、溶剤可溶性ネガ型感光性ポリマーであって、
     電荷平衡法で計算された、前記イミド環の2つのカルボニル炭素のプラスの電荷(δ+)の平均値が0.095以下である、ネガ型感光性ポリマー。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(t)中、RおよびRは各々独立して水素原子または炭素数1~3のアルキル基を示し、少なくとも一方は炭素数1~3のアルキル基である。*は結合手を示す。)
  2.  分子構造中にフッ素原子を含まない、請求項1に記載のネガ型感光性ポリマー。
  3.  前記構造単位は下記一般式(1)で表される、請求項1に記載のネガ型感光性ポリマー。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(1)中、Xは芳香族基を含む2価の有機基を示し、
    Aはイミド環の2つの炭素を含む環構造を示し、
    Qは2価の有機基を示す。)
  4.  前記一般式(1)のXの2価の有機基に含まれる芳香族基は、前記一般式(1)中の窒素原子に結合しており、当該窒素原子と結合している炭素原子の2つオルト位に非対称の電子供与性基を備える、請求項3に記載のネガ型感光性ポリマー。
  5.  前記一般式(1)の前記Xは、下記一般式(1a)、または下記一般式(1b)で表される2価の基である、請求項3または4に記載のネガ型感光性ポリマー。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(1a)中、R~Rは、それぞれ独立して、水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示し、RとRは異なる基であり、RとRは異なる基である。
    は単結合、-SO-、-C(=O)-、炭素数1~5の直鎖または分岐のアルキレン基、またはフルオレニレン基を示す。*は結合手を示す。
     一般式(1b)中、R、Rは、それぞれ独立して、水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示す。複数存在するR同士、複数存在するR同士は同一でも異なっていてもよい。*は結合手を示す。)
  6.  前記一般式(1)中の前記Aは芳香族環である、請求項3または4に記載のネガ型感光性ポリマー。
  7.  前記一般式(1)中の前記Qは、イミド環を含有する2価の基である、請求項3または4に記載のネガ型感光性ポリマー。
  8.  前記一般式(1)で表される構造単位は、下記一般式(1-1)で表される構造単位を含む、請求項5に記載のネガ型感光性ポリマー。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(1-1)中、Xは前記一般式(1a)、前記一般式(1b)で表される2価の基であり、Yは2価の有機基である。)
  9.  前記一般式(1-1)中のYは、下記一般式(a1-1)、下記一般式(a1-2)、下記一般式(a1-3)および下記一般式(a1-4)から選択される2価の有機基である、請求項8に記載のネガ型感光性ポリマー。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(a1-1)中、RおよびRは、それぞれ独立して、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR同士、複数存在するR同士は同一でも異なっていてもよい。Rは、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR同士は同一でも異なっていてもよい。*は結合手を示す。
    一般式(a1-2)中、R10およびR11は、それぞれ独立して、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR10同士、複数存在するR11同士は同一でも異なっていてもよい。*は結合手を示す。
    一般式(a1-3)中、Zは炭素数1~5のアルキレン基、2価の芳香族基を示す。
    *は結合手を示す。
    一般式(a1-4)中、Zは2価の芳香族基を示す。*は結合手を示す。)
  10.  両末端の少なくとも一方に下記一般式(t-1)で表される基を備える、請求項8に記載のネガ型感光性ポリマー。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(t-1)中、RおよびRは各々独立して水素原子または炭素数1~3のアルキル基を示し、少なくとも一方は炭素数1~3のアルキル基である。Qは2価の有機基を示す。*は結合手を示す。)
  11.  N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチルラクトン(GBL)、シクロペンタノンから選択される溶剤に5質量%以上溶解する、請求項1に記載のネガ型感光性ポリマー。
  12.  シクロペンタノンに5質量%以上溶解する、請求項1に記載のネガ型感光性ポリマー。
  13.  以下の条件で測定された重量平均分子量の減少率が15%以下である、請求項1に記載のネガ型感光性ポリマー。
    (条件)
     前記ネガ型感光性ポリマー100質量部に、γ-ブチロラクトン400質量部、4-メチルテトラヒドロピラン200質量部、および水50質量部を加え、100℃で6時間攪拌した場合において、下記式で算出する。
     式:[(試験前の重量平均分子量-試験後の重量平均分子量)/試験前の重量平均分子量]×100
  14.  請求項1に記載のネガ型感光性ポリマーを含むポリマー溶液。
  15.  (A)請求項1に記載のネガ型感光性ポリマーと、
     (B)置換または無置換のマレイミド基を備える架橋剤(B)(前記ポリイミド(A)を除く)と、
     (C)光増感剤と、
    を含む、ネガ型感光性樹脂組成物。
  16.  架橋剤(B)は、下記一般式(b)で表される構造単位を含む、請求項15に記載のネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000007
    (一般式(b)中、RおよびRは各々独立して水素原子または炭素数1~3のアルキル基を示し、Qは単結合、または2価の有機基を示し、G、G、およびGはそれぞれ独立して水素原子、置換または無置換の炭素数1~30の炭化水素基を示す。mは0、1または2である。)
  17.  Qの2価の前記有機基は、炭素数1~8のアルキレン基または(ポリ)アルキレングリコール鎖である、請求項16に記載のネガ型感光性樹脂組成物。
  18.  請求項15~17のいずれかに記載のネガ型感光性樹脂組成物の硬化物からなる硬化膜。
  19.  請求項15~17のいずれかに記載のネガ型感光性樹脂組成物の硬化物を含む樹脂膜を備える半導体装置。
PCT/JP2022/024842 2021-06-25 2022-06-22 ネガ型感光性ポリマー、ポリマー溶液、ネガ型感光性樹脂組成物、硬化膜および半導体装置 WO2022270529A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247001960A KR20240026184A (ko) 2021-06-25 2022-06-22 네거티브형 감광성 폴리머, 폴리머 용액, 네거티브형 감광성 수지 조성물, 경화막 및 반도체 장치
JP2023530082A JP7409564B2 (ja) 2021-06-25 2022-06-22 ネガ型感光性ポリマー、ポリマー溶液、ネガ型感光性樹脂組成物、硬化膜および半導体装置
JP2023203906A JP2024022630A (ja) 2021-06-25 2023-12-01 ネガ型感光性ポリマー、ポリマー溶液、ネガ型感光性樹脂組成物、硬化膜および半導体装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021105687 2021-06-25
JP2021-105687 2021-06-25
JP2022019325 2022-02-10
JP2022-019325 2022-02-10

Publications (1)

Publication Number Publication Date
WO2022270529A1 true WO2022270529A1 (ja) 2022-12-29

Family

ID=84545752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024842 WO2022270529A1 (ja) 2021-06-25 2022-06-22 ネガ型感光性ポリマー、ポリマー溶液、ネガ型感光性樹脂組成物、硬化膜および半導体装置

Country Status (4)

Country Link
JP (2) JP7409564B2 (ja)
KR (1) KR20240026184A (ja)
TW (1) TW202309195A (ja)
WO (1) WO2022270529A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812914A (ja) * 1994-06-29 1996-01-16 Harima Chem Inc ポリイミドインキ
JP2015052770A (ja) * 2013-08-08 2015-03-19 Jsr株式会社 感放射線性樹脂組成物、絶縁膜及びその形成方法並びに有機el素子
US20200283579A1 (en) * 2019-03-05 2020-09-10 Promerus, Llc Reactive end group containing polyimides and polyamic acids and photosensitive compositions thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210023845A (ko) 2018-06-26 2021-03-04 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 리소그래피용 막형성재료, 리소그래피용 막형성용 조성물, 리소그래피용 하층막 및 패턴 형성방법
WO2020181021A1 (en) 2019-03-05 2020-09-10 Promerus, Llc Photosensitive polyimide compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812914A (ja) * 1994-06-29 1996-01-16 Harima Chem Inc ポリイミドインキ
JP2015052770A (ja) * 2013-08-08 2015-03-19 Jsr株式会社 感放射線性樹脂組成物、絶縁膜及びその形成方法並びに有機el素子
US20200283579A1 (en) * 2019-03-05 2020-09-10 Promerus, Llc Reactive end group containing polyimides and polyamic acids and photosensitive compositions thereof

Also Published As

Publication number Publication date
JP2024022630A (ja) 2024-02-16
JPWO2022270529A1 (ja) 2022-12-29
KR20240026184A (ko) 2024-02-27
TW202309195A (zh) 2023-03-01
JP7409564B2 (ja) 2024-01-09

Similar Documents

Publication Publication Date Title
KR101719045B1 (ko) 네거티브형 감광성 수지 조성물, 경화 릴리프 패턴의 제조 방법, 및 반도체 장치
JP6564065B2 (ja) 永久的な誘電体としてのマレイミド及びシクロオレフィンモノマーのポリマー
JP5054158B2 (ja) ポジティブ型感光性組成物
US9575409B2 (en) Photoimageable compositions containing oxetane functionality
US11061328B2 (en) Positive tone photosensitive compositions containing amic acid as latent base catalyst
JP2021152634A (ja) ネガ型感光性樹脂組成物、ネガ型感光性ポリマー及びその用途
JP2023116922A (ja) ポリノルボルネンの製造方法、ポリノルボルネン含有溶液、ポリノルボルネン粉末、感光性樹脂組成物、および半導体装置
WO2022270529A1 (ja) ネガ型感光性ポリマー、ポリマー溶液、ネガ型感光性樹脂組成物、硬化膜および半導体装置
JP5673880B1 (ja) 感光性樹脂組成物、電子装置、および電子装置の製造方法
WO2022270527A1 (ja) ネガ型感光性樹脂組成物、ネガ型感光性ポリマー、硬化膜および半導体装置
WO2022172988A1 (ja) 感光性樹脂組成物、硬化膜および半導体装置
JP2024024621A (ja) 感光性樹脂組成物、硬化膜および半導体装置
JP6566150B2 (ja) 感光性樹脂組成物、樹脂膜及び電子装置
JP7169844B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
JP2024024620A (ja) 感光性樹脂組成物、硬化膜および半導体装置
WO2022270546A1 (ja) ネガ型感光性ポリマー、ポリマー溶液、ネガ型感光性樹脂組成物、硬化膜および半導体装置
JP2011053678A (ja) ポジ型感光性組成物
JP2024024622A (ja) 感光性樹脂組成物、硬化物、硬化膜、および半導体装置
JP2024024623A (ja) 感光性樹脂組成物、硬化物、硬化膜、および半導体装置
JP7435110B2 (ja) ポリヒドロキシイミド、ポリマー溶液、感光性樹脂組成物およびその用途
WO2022270541A1 (ja) ネガ型感光性樹脂組成物、ネガ型感光性ポリマー、硬化膜および半導体装置
JP2023004156A (ja) ネガ型感光性ポリマー
JP2022135427A (ja) ネガ型感光性樹脂組成物およびその用途
WO2024090486A1 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
KR20100036111A (ko) 포지티브형 감광성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023530082

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247001960

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247001960

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE