WO2022270436A1 - 量子装置、量子ビット読み出し装置および電子回路 - Google Patents

量子装置、量子ビット読み出し装置および電子回路 Download PDF

Info

Publication number
WO2022270436A1
WO2022270436A1 PCT/JP2022/024351 JP2022024351W WO2022270436A1 WO 2022270436 A1 WO2022270436 A1 WO 2022270436A1 JP 2022024351 W JP2022024351 W JP 2022024351W WO 2022270436 A1 WO2022270436 A1 WO 2022270436A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum
circuit
potential
electron
amplifier circuit
Prior art date
Application number
PCT/JP2022/024351
Other languages
English (en)
French (fr)
Inventor
哲史 棚本
Original Assignee
学校法人帝京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人帝京大学 filed Critical 学校法人帝京大学
Priority to US18/567,486 priority Critical patent/US20240273392A1/en
Priority to CN202280044245.7A priority patent/CN117546182A/zh
Priority to EP22828353.7A priority patent/EP4361902A1/en
Publication of WO2022270436A1 publication Critical patent/WO2022270436A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/20Models of quantum computing, e.g. quantum circuits or universal quantum computers

Definitions

  • the present invention relates to quantum devices, qubit readout devices and electronic circuits.
  • This application claims priority based on Japanese Patent Application No. 2021-104978 filed in Japan on June 24, 2021, the contents of which are incorporated herein.
  • Non-Patent Document 1 reports an example in which two semiconductor qubits perform logical operations
  • Non-Patent Document 2 reports an example in which 50 or more qubits using a superconductor are created.
  • Non-Patent Document 3 is an experimental example of a quantum annealing machine, and this technology has already been commercialized.
  • the development of related technology using superconductors is progressing as in this example. This is because the time required to maintain the quantum state (coherence time) is relatively easy to experimentally realize a superconducting state without resistance.
  • large-scale integration is difficult for superconducting devices.
  • FIG. 1 of Patent Document 1 describes an electrical gate pulse line connected to a qubit structure that performs quantum operations.
  • Patent Document 1 describes that changes in capacitance are monitored during execution of writing, the technique described in Patent Document 1 does not provide a signal indicating the state of a quantum bit as an integrated circuit. No amplification is performed. Therefore, with the technique described in Patent Document 1, it is not possible to accurately determine the difference between the states of the quantum bits as an integrated circuit and improve the correctness rate of reading the states of the quantum bits.
  • FIG. 1 of Non-Patent Document 4 describes a pair of single-electron elements that are cross-coupled.
  • Non-Patent Document 4 a single electronic element is applied as a memory in the same way as SRAM (Static Random Access Memory). Therefore, in the technique described in Non-Patent Document 4, it is not possible to read the potential difference between a pair of single-electronic elements using the single-electronic element as a sensor, and the quantum circuit connected to the single-electronic element cannot be read. It is also not possible to read the state of a qubit.
  • Non-Patent Document 5 describes readout of a spin qubit (detection of the spin state of the qubit). In addition, Non-Patent Document 5 describes that in the spin-to-charge conversion, the spin state is detected through the effect on the movement of the charge, making it possible to measure the electron spin. By the way, in the technique described in Non-Patent Document 5, the signal indicating the spin state of the quantum bit is not amplified as an integrated circuit. Therefore, with the technique described in Non-Patent Document 5, it is not possible to accurately determine the difference between the spin states of the qubits and improve the accuracy rate of reading the spin states of the qubits.
  • Non-Patent Documents 6 and 7 describe techniques for reading quantum bits.
  • Non-Patent Document 6 since the change in current due to the Coulomb blockade phenomenon is as small as pA, multiple amplification circuits are assembled in the subsequent stage to perform multiplex amplification of the signal. Therefore, the techniques described in Non-Patent Documents 6 and 7 are unrealistic because the circuit area becomes very large when the number of qubits is large.
  • the present invention accurately determines the difference between the state of the first quantum bit and the state of the second quantum bit, and the logic value of the output of the first quantum circuit and the logic value of the output of the second quantum circuit. It is an object of the present invention to provide a quantum device capable of improving the accuracy rate of reading the state of a quantum bit by operating a second quantum circuit such that the value is inverted between 0 and 1. In addition, the present invention can read the difference between the potential of the first single-electron element and the potential of the second single-electron element, thereby reducing the size of the circuit and the quantum bit of the quantum circuit connected to the single-electron element. It is an object of the present invention to provide a qubit readout device capable of reading states. Another object of the present invention is to provide an electronic circuit capable of reading the difference between the potential of the first single-electron element and the potential of the second single-electron element.
  • One aspect of the present invention includes a first quantum circuit, a second quantum circuit, and a latch circuit connected to the first quantum circuit and the second quantum circuit, wherein the latch circuit is connected to the first quantum circuit.
  • One aspect of the present invention provides a first single-electron element connected to a first quantum circuit, a second single-electron element connected to a second quantum circuit, and a combination of the first single-electron element and the second and a differential amplifier circuit connected to a single electronic element, wherein a difference between the potential of the first single electronic element and the potential of the second single electronic element amplified by the differential amplifier circuit is read. It is a qubit readout device.
  • a quantum bit readout device includes a first amplifier circuit arranged between the first single-electronic element and the differential amplifier circuit, the second single-electronic element and the differential amplifier. and a second amplifier circuit disposed between the circuit.
  • the first amplifier circuit includes a first conductivity type transistor and a second conductivity type transistor
  • the second amplification circuit includes a first conductivity type transistor and a second conductivity type transistor. type transistors.
  • One aspect of the present invention provides a first single-electron element connected to a first quantum circuit, a second single-electron element connected to a second quantum circuit, and a combination of the first single-electron element and the second an SRAM (Static Random Access Memory) connected to a single-electronic element, wherein the difference between the potential of the first single-electronic element and the potential of the second single-electronic element output via the SRAM is a qubit reader from which is read.
  • SRAM Static Random Access Memory
  • the SRAM includes a first access transistor connected to the first single-electronic element, a second access transistor connected to the second single-electronic element, A first inverter connected to the first access transistor and a second inverter connected to the second access transistor may be provided, and the first inverter and the second inverter may be cross-coupled.
  • a quantum bit readout device includes a first amplifier circuit arranged between the first single-electronic element and the SRAM, and arranged between the second single-electronic element and the SRAM. and a second amplifier circuit.
  • One aspect of the invention comprises a sense amplifier and an equalizer connected to a first single-electronic element connected to a first quantum circuit and a second single-electronic element connected to a second quantum circuit,
  • the quantum bit readout device reads a difference between the potential of the first single-electron element and the potential of the second single-electron element output through the sense amplifier and the equalizer.
  • the sense amplifiers and equalizers may be the same as in a more complex Dynamic Random Access Memory (DRAM) in general.
  • DRAM Dynamic Random Access Memory
  • a typical DRAM uses a circuit that reads the difference between the charges stored in two capacitors. It is a feature of the present invention to use a single electronic device instead of a capacitor in a conventional DRAM.
  • the single-electron devices are charge qubits, they are useful for reading small potential differences between charge qubits.
  • One aspect of the present invention provides a first single-electron element connected to a first quantum circuit, a second single-electron element connected to a second quantum circuit, and a combination of the first single-electron element and the second a cross-coupled MOS transistor circuit connected to a single electronic element, said cross-coupled MOS transistor circuit comprising a pair of cross-coupled P-channel MOS transistors, and outputting through said cross-coupled MOS transistor circuit A qubit readout device wherein the difference between the potential of the first single-electron element and the potential of the second single-electron element to be read is read.
  • the differential amplifier circuit includes a first bipolar transistor having a base connected to the first single-electron element and a base connected to the second single-electron element. and a second bipolar transistor.
  • the potential of the first single-electron element and the potential of the second single-electron element may be output as a result of inversion.
  • a quantum bit readout device includes a determination unit that determines 0 and 1 by comparing the potential of the first single-electron element and the potential of the second single-electron element. good too.
  • One aspect of the present invention provides a first memory cell array, a first selector that selects a first single electron element from the first memory cell array, a second memory cell array, and a second single electron element from the second memory cell array.
  • a second selector for selecting an element the difference between the potential of the first single-electron element selected by the first selector and the potential of the second single-electron element selected by the second selector. is the electronic circuit from which is read.
  • the electronic circuit of one aspect of the present invention may include a determination unit that determines between 0 and 1 by comparing the potential of the first single-electron element and the potential of the second single-electron element. .
  • the above qubit may be a spin qubit, and the above single electron element may be a charge qubit itself.
  • the qubit is a spin qubit, it may be coupled to the single-electron element through a tunnel oxide film or the like.
  • the difference between the state of the first quantum bit and the state of the second quantum bit is accurately determined, and the output of the first quantum circuit and the output of the second quantum circuit are logical values of 0 and 1.
  • the quantum circuit of the quantum circuit connected to the single-electron element can be downsized while the circuit is miniaturized.
  • a qubit readout device can be provided that can read out the state of a bit.
  • FIG. 3 is a diagram for explaining an example of characteristics of a single-electron element (specifically, a SET (single-electron transistor)) such as the single-electron element shown in FIG. 2; 3 is a diagram for explaining the principle of a first amplifier circuit based on MOS coupling, such as the amplifier circuit (P-channel MOS transistor) shown in FIG. 2; FIG.
  • Gate voltage (horizontal axis) of a single-electron element (more specifically, SET (single-electron transistor)) such as the single-electron element shown in FIG. is a diagram showing the relationship between the potential of the output terminal (vertical axis) amplified by MOS coupling such as . It is a figure which shows an example, such as the quantum bit read-out apparatus of 2nd Embodiment. 7 is a diagram for explaining first amplification by a P-channel MOS transistor and an N-channel MOS transistor such as the amplifier circuit shown in FIG. 6; FIG. 7 is a diagram showing differential amplification simulation results by the differential amplifier circuit shown in FIG. 6; FIG.
  • FIG. 10 is a diagram showing the result of the circuit simulation (change over time) shown in FIG. 9; It is a figure which shows an example, such as the quantum bit read-out apparatus of 4th Embodiment. It is a figure which shows an example of the quantum bit read-out apparatus of 5th Embodiment. It is a figure which shows an example of the quantum bit read-out apparatus of 6th Embodiment. It is a figure which shows an example, such as the quantum bit read-out apparatus of 7th Embodiment. It is a figure which shows an example, such as the quantum bit read-out apparatus of 8th Embodiment.
  • FIG. 10 is a diagram for explaining an example in which a second single-electron element 3C1 is used
  • FIG. 14 is a diagram showing temporal changes in voltage in the quantum bit readout device of the sixth embodiment shown in FIG. 13
  • FIG. 22 is a diagram for explaining an example in which a NAND flash memory is used as a first single-electronic device array and a NAND flash memory is used as a second single-electronic device array of the electronic circuit of the ninth embodiment
  • FIG. 4 is a diagram schematically showing a situation in which the potential in a single-electron element shifts depending on the presence or absence of electrons in quantum dots connected to the single-electron element;
  • the current value of a single electron device that can observe the Coulomb blockade is on the order of nanoamperes, and the voltage is extremely small compared to the voltage range in which ordinary CMOS circuits operate. For this reason, in order to amplify a minute signal of one single electronic element, a multi-layered amplifier circuit as in Non-Patent Document 6 is required. Qubit integration has been difficult because this conventional method requires a large amount of circuit area to amplify the signal of just one single electron.
  • Non-Patent Document 1 Non-Patent Document 3, etc. require novel ultrafine structures.
  • the gate length of silicon transistors used in current smartphones is 16 nm or less, and the chip production costs more than 1 trillion yen. Even 40 nm requires about 400 billion yen. Designing a new amplifier circuit from scratch is expected to require a huge amount of development costs, which is a major obstacle to industrialization. Therefore, it is desirable to use conventional circuits as much as possible.
  • FIG. 1 is a diagram showing an example of the quantum device 1 of the first embodiment.
  • the quantum device 1 of the first embodiment includes a quantum circuit 1A, a quantum circuit 1B, a latch circuit 1C, and a determination section 1D.
  • the latch circuit 1C is connected to the quantum circuits 1A and 1B by one or more wires.
  • a quantum circuit 1A and a quantum circuit 1B are configured as a pair.
  • the latch circuit 1C latches the state of the qubit output from the quantum circuit 1A (the spin state in the case of a spin qubit and the charge state in the case of a charge qubit) and amplifies the signal indicating the state of the spin qubit.
  • the latch circuit 1C includes a circuit that amplifies the signal indicating the state of the quantum bit output from the quantum circuit 1A.
  • the latch circuit 1C also has a function of latching the state of the quantum bit output from the quantum circuit 1B and amplifying the signal indicating the state of the quantum bit. That is, the latch circuit 1C has a circuit that amplifies the signal indicating the state of the quantum bit output from the quantum circuit 1B.
  • the latch circuit 1C and determination unit 1D shown in FIG. 1 can be expressed as, for example, the quantum bit reading device 2 shown in FIG.
  • the latched value is determined by the determination unit 1D and finally output as a calculation result.
  • FIG. 2 is a diagram showing an example of the quantum bit readout device 2, etc. of the first embodiment.
  • the qubit reading device 2 includes a single electronic element 2A, a single electronic element 2B, an amplifier circuit 2C, an amplifier circuit 2D, a differential amplifier circuit 2E, and a determination unit 2I (see FIG. 6).
  • the single-electron device 2A measures the state of the spin qubit (spin state of the qubit) of the quantum circuit 1A.
  • the gate of the single electron device 2A is connected to the quantum circuit 1A.
  • One of the source and the drain of the single electronic element 2A is connected to an amplifier circuit 2C functioning as a first stage amplifier circuit and a differential amplifier circuit 2E functioning as a second stage amplifier circuit.
  • the other of the source and drain of the single-electron element 2A is grounded, for example.
  • Single-electron device 2B measures the state of the spin qubit of quantum circuit 1B.
  • the gate of the single-electron device 2B is connected to the quantum circuit 1B.
  • One of the source and drain of the single electronic element 2B is connected to an amplifier circuit 2D functioning as a first stage amplifier circuit and a differential amplifier circuit 2E functioning as a second stage amplifier circuit.
  • the other of the source and drain of the single-electron element 2B is grounded, for example.
  • the amplifier circuit 2C is arranged between the single electronic element 2A and the differential amplifier circuit 2E.
  • the amplifier circuit 2C is composed of a P-channel MOS transistor. Specifically, one of the source and drain of the P-channel MOS transistor functioning as the amplifier circuit 2C is connected to one of the source and drain of the single electronic element 2A. The other of the source and drain of the P-channel MOS transistor functioning as amplifier circuit 2C is connected to a predetermined potential VD .
  • the amplifier circuit 2D is arranged between the single electronic element 2B and the differential amplifier circuit 2E.
  • the amplifier circuit 2D is composed of a P-channel MOS transistor.
  • one of the source and drain of the P-channel MOS transistor functioning as the amplifier circuit 2D is connected to one of the source and drain of the single electronic element 2B.
  • the other of the source and drain of the P-channel MOS transistor functioning as amplifier circuit 2D is connected to a predetermined potential VD .
  • the qubit reading device 2 includes an amplifier circuit 2C and an amplifier circuit 2D, but in another example, the qubit reading device 2 includes an amplifier circuit 2C and an amplifier circuit 2D. It doesn't have to be.
  • the single-electron elements (2A, 2B) are generally arranged in an array as shown in FIGS. 17 and 19, which will be described later.
  • single-electron elements are indicated by reference numerals 3A1 and 3C1, and single-electron element arrays are indicated by reference numerals 3A and 3C).
  • the selected single electronic elements (2A, 2B) and the amplifier circuit (N-channel MOS transistors 2E3, 2E4, etc. of the differential amplifier circuit 2E) apply voltage to the word line WL. 2E2), and a signal is input to the amplifier circuit (differential amplifier circuit 2E).
  • the differential amplifier circuit 2E includes N-channel MOS transistors 2E1, 2E2, 2E3, 2E4 and 2E7 and P-channel MOS transistors 2E5 and 2E6.
  • One of the source and drain of N-channel MOS transistor 2E1 is connected to one of the source and drain of single electronic element 2A.
  • the other of the source and drain of N channel MOS transistor 2E1 is connected to the gate of N channel MOS transistor 2E3.
  • the gate of N-channel MOS transistor 2E1 is connected to word line WL.
  • One of the source and drain of N-channel MOS transistor 2E3 is connected to first output terminal Vout1 of differential amplifier circuit 2E, one of the source and drain of P-channel MOS transistor 2E5, the gate of P-channel MOS transistor 2E5, and the P-channel. It is connected to the gate of the MOS transistor 2E6.
  • the other of the source and drain of N channel MOS transistor 2E3 is connected to one of the source and drain of N channel MOS transistor 2E7.
  • the other of the source and drain of N-channel MOS transistor 2E7 is grounded, for example.
  • One of the source and drain of N-channel MOS transistor 2E2 is connected to one of the source and drain of single electronic element 2B.
  • the other of the source and drain of N channel MOS transistor 2E2 is connected to the gate of N channel MOS transistor 2E4.
  • the gate of N-channel MOS transistor 2E2 is connected to word line WL.
  • One of the source and drain of N-channel MOS transistor 2E4 is connected to the second output terminal Vout2 of differential amplifier circuit 2E and one of the source and drain of P-channel MOS transistor 2E6.
  • the other of the source and drain of N channel MOS transistor 2E4 is connected to one of the source and drain of N channel MOS transistor 2E7.
  • the other of the source and drain of P-channel MOS transistor 2E5 and the other of the source and drain of P-channel MOS transistor 2E6 are connected to a predetermined potential VD .
  • a first output terminal Vout1 and a second output terminal Vout2 of the differential amplifier circuit 2E are connected to the determination section 2I.
  • the differential amplifier circuit of the present invention is the most basic one, and various amplifier circuits such as those disclosed in Non-Patent Document 9 may be used instead.
  • the determination unit 2I divides the potential of the single electronic element 2A amplified by the amplifier circuit 2C and the differential amplifier circuit 2E (the potential at the first output terminal Vout1 of the differential amplifier circuit 2E), the amplifier circuit 2D and the differential amplifier circuit. A difference from the potential of the single electronic element 2B amplified by 2E (potential at the second output terminal Vout2 of the differential amplifier circuit 2E) is read. Specifically, the potential difference between the potential of the single electronic element 2A and the potential of the single electronic element 2B is amplified by the differential amplifier circuit 2E, the amplifier circuit 2C, and the amplifier circuit 2D, and is output to the output terminals Vout1 and Vout2. be done.
  • the determination unit 2I compares the potential of the single electronic element 2A amplified by the amplifier circuit 2C and the differential amplifier circuit 2E and the potential of the single electronic element 2B amplified by the amplifier circuit 2D and the differential amplifier circuit 2E. are compared to determine "0" and "1", which are easy to handle in the subsequent digital circuit.
  • the determination unit 2I combines the potential of the single electronic element 2A amplified by the amplifier circuit 2C and the differential amplifier circuit 2E with the single electron potential amplified by the amplifier circuit 2D and the differential amplifier circuit 2E.
  • the state of the qubits of the quantum circuits 1A, 1B connected to the single-electronic elements 2A, 2B can be read while miniaturizing the entire circuit.
  • the signal indicating the state of the quantum bit output from the quantum circuit 1A (more specifically, in the case of a spin qubit, the signal measured by the single-electron element 2A and output A signal indicating the spin state of the quantum bit of the quantum circuit 1A that has been amplified) is amplified by a latch circuit 1C (specifically, an amplifier circuit 2C and a differential amplifier circuit 2E) (specifically, a signal of the first output terminal Vout1 potential) and a signal indicating the state of the quantum bit output from the quantum circuit 1B (more specifically, in the case of a spin qubit, the spin of the quantum circuit 1B measured by the single-electron element 2B and output state) and the signal (specifically, the potential of the second output terminal Vout2) amplified by the latch circuit 1C (specifically, the amplifier circuit 2D and the differential amplifier circuit 2E) is the difference between the By more accurately comparing the output results of the single electronic elements 2A and 2B, which
  • the accuracy rate of reading the state of the quantum bit can be improved.
  • FIG. 3 is a diagram for explaining an example of the characteristics of a single-electron element (specifically, a SET (single-electron transistor)) such as the single-electron element 2A shown in FIG.
  • a single-electron element specifically, a SET (single-electron transistor)
  • FIGS. 3(A) and 3(B) show the I ⁇ V represents the gate voltage dependency (FIG. 3A) and the gate voltage VG and drain voltage dependency (FIG. 3B).
  • 3(C) and 3(D) show the gate IV for the two tunnel films of the single-electron device with capacitances of 1 aF and 20 aF, gate capacitance of 2 aF, and tunnel film resistances of 200 k ⁇ and 1 M ⁇ . Voltage dependence (FIG.
  • FIG. 4 is a diagram for explaining the principle of a first amplifier circuit based on MOS transistor coupling, such as the amplifier circuit 2C (P-channel MOS transistors) shown in FIG.
  • One of the features of the present invention is that instead of directly connecting the two single-electronic devices to the second amplifier circuit, the single-electronic device and the MOS transistor are first connected in series, and the single-electronic device is connected in series. It is to connect to the second amplifier circuit after raising and lowering the potential. The reason for this is that, as explained in FIG. 3 above, the current value of a single electronic device is on the order of nanoamperes, which is far from the current and voltage ranges used in ordinary CMOS circuits. .
  • FIG. 4 shows the amplification principle in the saturation region and the amplification principle in the linear region.
  • FIG. 5 shows the gate voltage V G [V] (horizontal axis) of a single-electron element (more specifically, SET (single-electron transistor)) such as the single-electron element 2A shown in FIG.
  • FIG. 10 is a diagram showing the relationship between a potential Vout [V] (vertical axis) of an output terminal amplified by MOS transistor coupling such as an amplifier circuit 2C (P-channel MOS transistors);
  • FIG. 5A shows the gate voltage V G [V] (horizontal axis) and the potential Vout [V of the output terminal when the gate width Wp of the P-channel MOS transistor of the amplifier circuit is set to 0.5 ⁇ m. ] (vertical axis), and FIG.
  • V G [V] horizontal axis
  • Wp of the P-channel MOS transistor of the amplifier circuit is set to 1 ⁇ m. It shows the relationship with the potential Vout [V] (vertical axis) of the output terminal. As shown in FIG. 5, the potential Vout in the saturation region is higher than the potential Vout in the linear region.
  • a second embodiment of the quantum device, quantum bit readout device and electronic circuit of the present invention will be described below.
  • the quantum device 1 and the quantum bit readout device 2 of the second embodiment are configured in the same manner as the quantum device 1 and the quantum bit readout device 2 of the first embodiment described above, except for points described later. Therefore, according to the quantum device 1 and the quantum bit readout device 2 of the second embodiment, the effects similar to those of the quantum device 1 and the quantum bit readout device 2 of the first embodiment described above can be obtained except for the points described later. can.
  • FIG. 6 is a diagram showing an example of the quantum bit reading device 2, etc. of the second embodiment.
  • the latch circuit 1C and the determination unit 1D of the quantum device 1 of the second embodiment can be expressed as a quantum bit reading device 2 shown in FIG. 6, for example.
  • the quantum bit readout device 2 includes a single electronic element 2A, a single electronic element 2B, an amplifier circuit 2C, an amplifier circuit 2D, a differential amplifier circuit 2E, and a determination section 2I. I have.
  • the amplifier circuit 2C includes an N-channel MOS transistor 2C1 and a P-channel MOS transistor 2C2.
  • the amplifier circuit 2D has an N-channel MOS transistor 2D1 and a P-channel MOS transistor 2D2.
  • the differential amplifier circuit 2E includes N-channel MOS transistors 2E3, 2E4, 2E7 and P-channel MOS transistors 2E5, 2E6.
  • the single-electron device 2A measures the states of the spin qubits of the quantum circuit 1A.
  • the gate of the single electron device 2A is connected to the quantum circuit 1A.
  • One of the source and the drain of the single electronic element 2A is connected to one of the sources and the drains of the N-channel MOS transistor 2C1 of the amplifier circuit 2C functioning as the first stage amplifier circuit, and the differential circuit functioning as the second stage amplifier circuit. It is connected to the gate of the N-channel MOS transistor 2E3 of the amplifier circuit 2E.
  • the other of the source and drain of the single-electron element 2A is grounded, for example.
  • Single-electron device 2B measures the state of the spin qubit of quantum circuit 1B.
  • the gate of the single-electron device 2B is connected to the quantum circuit 1B.
  • One of the source and the drain of the single electronic element 2B is connected to one of the source and the drain of the N-channel MOS transistor 2D1 of the amplifier circuit 2D functioning as the first stage amplifier circuit, and the differential transistor 2D1 functioning as the second stage amplifier circuit. It is connected to the gate of the N-channel MOS transistor 2E4 of the amplifier circuit 2E.
  • the other of the source and drain of the single-electron element 2B is grounded, for example.
  • the amplifier circuit 2C is arranged between the single electronic element 2A and the differential amplifier circuit 2E. Specifically, the other of the source and drain of N-channel MOS transistor 2C1 of amplifier circuit 2C is connected to one of the source and drain of P-channel MOS transistor 2C2. The other of the source and drain of P-channel MOS transistor 2C2 is connected to a predetermined potential VD .
  • the amplifier circuit 2D is arranged between the single electronic element 2B and the differential amplifier circuit 2E. Specifically, the other of the source and drain of N-channel MOS transistor 2D1 of amplifier circuit 2D is connected to one of the source and drain of P-channel MOS transistor 2D2. The other of the source and drain of P-channel MOS transistor 2D2 is connected to a predetermined potential VD .
  • One of the source and drain of N-channel MOS transistor 2E3 is connected to first output terminal Vout1 of differential amplifier circuit 2E, one of the source and drain of P-channel MOS transistor 2E5, the gate of P-channel MOS transistor 2E5, and the P-channel. It is connected to the gate of the MOS transistor 2E6.
  • the other of the source and drain of N channel MOS transistor 2E3 is connected to one of the source and drain of N channel MOS transistor 2E7.
  • the other of the source and drain of N-channel MOS transistor 2E7 is grounded, for example.
  • One of the source and drain of N-channel MOS transistor 2E4 is connected to the second output terminal Vout2 of differential amplifier circuit 2E and one of the source and drain of P-channel MOS transistor 2E6.
  • the other of the source and drain of N channel MOS transistor 2E4 is connected to one of the source and drain of N channel MOS transistor 2E7.
  • the other of the source and drain of P-channel MOS transistor 2E5 and the other of the source and drain of P-channel MOS transistor 2E6 are connected to a predetermined potential VD .
  • a first output terminal Vout1 and a second output terminal Vout2 of the differential amplifier circuit 2E are connected to the determination section 2I.
  • the determination unit 2I applies the potential of the single electronic element 2A (the first output terminal Vout1 ) and the potential of the single electronic element 2B amplified by the N-channel MOS transistor 2D1 and P-channel MOS transistor 2D2 of the amplifier circuit 2D and the differential amplifier circuit 2E (the second output terminal Vout2 of the differential amplifier circuit 2E). potential) and read the difference.
  • differential amplifier circuit 2E, N-channel MOS transistor 2C1 and P-channel MOS transistor 2C2 of amplifier circuit 2C, and N-channel MOS transistor 2D1 and P-channel MOS transistor 2D2 of amplifier circuit 2D form a differential amplifier circuit.
  • the potential difference between the first output terminal Vout1 and the second output terminal Vout2 of 2E can be greater than the potential difference between the original single-electron element 2A and the single-electron element 2B.
  • the determination unit 2I combines the potential of the single electronic element 2A amplified by the N-channel MOS transistor 2C1 and P-channel MOS transistor 2C2 of the amplifier circuit 2C and the differential amplifier circuit 2E with the N-channel MOS transistor of the amplifier circuit 2D. By comparing the potential of the single electronic element 2B amplified by the differential amplifier circuit 2E and the P-channel MOS transistor 2D1 and the P-channel MOS transistor 2D2, determination of "0" and "1", which is easy to handle in the subsequent digital circuit, is performed. .
  • the determination unit 2I combines the potential of the single electronic element 2A amplified by the N-channel MOS transistor 2C1 and the P-channel MOS transistor 2C2 of the amplifier circuit 2C and the differential amplifier circuit 2E with the potential of the amplifier circuit 2D.
  • the single electronic element 2A By reading the difference between the potential of the single electronic element 2B amplified by the N-channel MOS transistor 2D1 and P-channel MOS transistor 2D2 and the differential amplifier circuit 2E, the single electronic element 2A, The states of the qubits of the quantum circuits 1A, 1B connected to 2B can be read.
  • the signal indicating the state of the quantum bit output from the quantum circuit 1A (more specifically, in the case of a spin qubit, the quantum circuit measured and output by the single-electron element 2A 1A) is amplified by a latch circuit 1C (specifically, N-channel MOS transistor 2C1 and P-channel MOS transistor 2C2 of amplifier circuit 2C and differential amplifier circuit 2E).
  • a latch circuit 1C specifically, N-channel MOS transistor 2C1 and P-channel MOS transistor 2C2 of amplifier circuit 2C and differential amplifier circuit 2E.
  • the potential of the first output terminal Vout1 is the potential of the first output terminal Vout1 and a signal indicating the state of the quantum bit output from the quantum circuit 1B (more specifically, in the case of a spin qubit, the signal measured by the single-electron element 2B and output A signal indicating the spin state of the quantum bit of the quantum circuit 1B) is amplified by the latch circuit 1C (specifically, the N-channel MOS transistor 2D1 and the P-channel MOS transistor 2D2 of the amplifier circuit 2D and the differential amplifier circuit 2E). Specifically, the difference between the state of the (spin) qubit of the quantum circuit 1A and the state of the (spin) qubit of the quantum circuit 1B is accurately determined by comparing the potential of the second output terminal Vout2). be able to.
  • the input signal of the quantum circuit 1B and the input signal of the quantum circuit 1A are passed through, for example, an inverter so that the output of the quantum circuit 1A and the output of the quantum circuit 1B are inverted between 0 and 1 through the decision unit 2I.
  • an inverter so that the output of the quantum circuit 1A and the output of the quantum circuit 1B are inverted between 0 and 1 through the decision unit 2I.
  • FIG. 7 is a diagram for explaining the first amplification by a P-channel MOS transistor and an N-channel MOS transistor such as the amplifier circuit 2C shown in FIG.
  • FIG. 7A shows the gate voltage V G [V] (horizontal axis) of the single-electron element (SET) in the saturation region under predetermined conditions and the amplified potential Vout [V] of the output terminal ( vertical axis).
  • FIG. 7B shows the gate voltage V G [V] (horizontal axis) of the single-electron element (SET) in the saturation region under conditions different from those of FIG. ] (vertical axis).
  • FIG. 7A shows the gate voltage V G [V] (horizontal axis) of the single-electron element (SET) in the saturation region under predetermined conditions and the amplified potential Vout [V] of the output terminal ( vertical axis).
  • FIG. 7B shows the gate voltage V G [V] (horizontal axis) of the single-electron element (SET) in
  • FIG. 7C shows the gate voltage V G [V] (horizontal axis) of the single-electron element (SET) in the linear region under predetermined conditions and the amplified potential Vout [V] of the output terminal (vertical axis). shows the relationship between FIG. 7D shows the gate voltage V G [V] (horizontal axis) of the single-electron element (SET) in the linear region under conditions different from those of FIG. 7C and the amplified potential Vout [V of the output terminal. ] (vertical axis).
  • ⁇ Vout indicates an increase in potential Vout due to amplification.
  • FIG. 8 is a diagram showing differential amplification simulation results by the differential amplifier circuit 2E shown in FIG. Specifically, FIG. 8A shows the gate voltage V G [V] (horizontal axis) of the single-electron elements 2A and 2B and the potential Vout [V] of the first output terminal and the second output terminal ( vertical axis).
  • the potential Vout [V] collectively indicates the potential of the first output terminal Vout1 and the potential of the second output terminal Vout2 in FIG. It can be seen that the difference between the potential of the output terminal Vout1 and the potential of the second output terminal Vout2 becomes significant.
  • FIG. 8A shows the gate voltage V G [V] (horizontal axis) of the single-electron elements 2A and 2B and the potential Vout [V] of the first output terminal and the second output terminal ( vertical axis).
  • the potential Vout [V] collectively indicates the potential of the first output terminal Vout1 and the potential of the second output terminal Vout2 in FIG. It can be seen that the difference
  • FIG. 8B shows the gate voltage V G [V] (horizontal axis) of the single electronic elements 2A and 2B and the potential Vout [V of the first output terminal and the second output terminal under conditions different from those of FIG. 8A. ] (vertical axis).
  • the gate voltage V G [V] shown here shifts the potential in the single-electron element depending on the presence or absence of electrons in the quantum dot connected to the single-electron element, as shown in FIG. It shows a simulated situation.
  • a third embodiment of the quantum device, quantum bit readout device and electronic circuit of the present invention will be described below.
  • the quantum device 1 and the quantum bit readout device 2 of the third embodiment are configured in the same manner as the quantum device 1 and the quantum bit readout device 2 of the first embodiment described above, except for points described later. Therefore, according to the quantum device 1 and the quantum bit readout device 2 of the third embodiment, the effects similar to those of the quantum device 1 and the quantum bit readout device 2 of the first embodiment described above can be obtained, except for the points described later. can.
  • FIG. 9 is a diagram showing an example of the quantum bit readout device 2, etc. of the third embodiment.
  • the latch circuit 1C and the determination unit 1D of the quantum device 1 of the third embodiment can be expressed as, for example, a quantum bit reading device 2 shown in FIG. FIG. 9 shows the case where the qubits are spin qubits. When the qubit is a charge qubit, the single-electron device is treated as a charge qubit as it is.
  • the quantum bit reading device 2 includes a single electronic element 2A, a single electronic element 2B, an SRAM (Static Random Access Memory) 2F, and a determination section 2I.
  • the SRAM 2F includes access transistors 2F1 and 2F2 and inverters 2F3 and 2F4.
  • Inverter 2F3 and the inverter 2F4 are cross-coupled.
  • Inverter 2F3 is composed of a P-channel MOS transistor and an N-channel MOS transistor.
  • Inverter 2F4 is composed of a P-channel MOS transistor and an N-channel MOS transistor.
  • the number of transistors constituting the SRAM is assumed to be 6 below, SRAMs composed of 8, 9, 10 or more transistors can also be used as quantum bit reading devices.
  • the single-electron device 2A measures the states of the spin qubits of the quantum circuit 1A.
  • the gate of the single electron device 2A is connected to the quantum circuit 1A.
  • One of the source and drain of the single electronic device 2A is connected to the first output terminal Vout1 of the SRAM 2F.
  • the other of the source and drain of the single-electron element 2A is grounded, for example.
  • Single-electron device 2B measures the state of the spin qubit of quantum circuit 1B.
  • the gate of the single-electron device 2B is connected to the quantum circuit 1B.
  • One of the source and drain of the single electronic device 2B is connected to the second output terminal Vout2 of the SRAM 2F.
  • the other of the source and drain of the single-electron element 2B is grounded, for example.
  • the gate of access transistor 2F1 is connected to word line WL.
  • One of the source and drain of the access transistor 2F1 is connected to the first output terminal Vout1 of the SRAM 2F.
  • the other of the source and drain of access transistor 2F1 is one of the source and drain of the P-channel MOS transistor of inverter 2F3, one of the source and drain of the N-channel MOS transistor of inverter 2F3, and the gate of the P-channel MOS transistor of inverter 2F4. and the gate of the N-channel MOS transistor of the inverter 2F4.
  • the other of the source and drain of the P-channel MOS transistor of inverter 2F3 is connected to a predetermined potential VD .
  • the other of the source and drain of the N-channel MOS transistor of inverter 2F3 is grounded, for example.
  • the gate of access transistor 2F2 is connected to word line WL.
  • One of the source and drain of the access transistor 2F2 is connected to the second output terminal Vout2 of the SRAM 2F.
  • the other of the source and drain of access transistor 2F2 is one of the source and drain of the P-channel MOS transistor of inverter 2F4, one of the source and drain of the N-channel MOS transistor of inverter 2F4, and the gate of the P-channel MOS transistor of inverter 2F3. and the gate of the N-channel MOS transistor of the inverter 2F3.
  • the other of the source and drain of the P-channel MOS transistor of inverter 2F4 is connected to a predetermined potential VD .
  • the other of the source and drain of the N-channel MOS transistor of inverter 2F4 is grounded, for example.
  • a first output terminal Vout1 and a second output terminal Vout2 of the SRAM 2F are connected to the determination section 2I.
  • the determination unit 2I divides the potential of the single electronic element 2A (the potential at the first output terminal Vout1 of the SRAM 2F) amplified by the SRAM 2F (that is, output via the SRAM 2F) and the potential amplified by the SRAM 2F (that is, the SRAM 2F ) and the potential of the single electronic element 2B (the potential at the second output terminal Vout2 of the SRAM 2F).
  • the first output terminal Vout1 and the second output terminal Vout2 of the SRAM 2F connect the potential of the single electronic element 2A amplified by the SRAM 2F and the potential of the single electronic element 2B amplified by the SRAM 2F, for example, " output as inverted results such as 0' and '1'.
  • the determination unit 2I compares the potential of the single electronic element 2A amplified by the SRAM 2F with the potential of the single electronic element 2B amplified by the SRAM 2F, thereby determining "0" which is easy to handle in the subsequent digital circuit. A determination of "1" is made.
  • the determination unit 2I reads the difference between the potential of the single electronic element 2A amplified by the SRAM 2F and the potential of the single electronic element 2B amplified by the SRAM 2F, thereby miniaturizing the entire circuit. It is possible to read the state of the qubits of the quantum circuits 1A, 1B connected to the single-electron elements 2A, 2B while changing the state of the qubits.
  • the signal indicating the state of the (spin) qubit output from the quantum circuit 1A is amplified by the latch circuit 1C (specifically, the SRAM 2F) and the signal (specifically, the SRAM 2F potential of the first output terminal Vout1) and a signal indicating the state of the (spin) qubit output from the quantum circuit 1B are amplified by the latch circuit 1C (specifically, the SRAM 2F).
  • the potential of the second output terminal Vout2) can accurately determine the difference between the state of the (spin) qubits of the quantum circuit 1A and the state of the (spin) qubits of the quantum circuit 1B.
  • the input signal of the quantum circuit 1B and the input signal of the quantum circuit 1A are passed through, for example, an inverter so that the output of the quantum circuit 1A and the output of the quantum circuit 1B are inverted between 0 and 1 through the decision unit 2I.
  • an inverter By inputting, it is possible to improve the accuracy rate of reading the state of the quantum bit.
  • FIG. 10 is a diagram showing the results of the circuit simulation (change over time) shown in FIG.
  • FIG. 10A shows time waveforms (not separated by time) of the potential of the first output terminal Vout1 and the potential of the second output terminal Vout2 of the SRAM 2F under predetermined conditions with a gate length of 90 nm, and the conditions. shows temporal waveforms (separated by time) of the potential of the first output terminal Vout1 and the potential of the second output terminal Vout2 of the SRAM 2F under different conditions.
  • FIG. 10B shows time waveforms (not separated by time) of the potential of the first output terminal Vout1 and the potential of the second output terminal Vout2 of the SRAM 2F under conditions different from those of FIG. 2 shows time waveforms (separated by time) of the potential of the first output terminal Vout1 and the potential of the second output terminal Vout2 of the SRAM 2F under conditions different from the conditions.
  • a fourth embodiment of the quantum device, quantum bit readout device and electronic circuit of the present invention will be described below.
  • the quantum device 1 and the quantum bit readout device 2 of the fourth embodiment are configured in the same manner as the quantum device 1 and the quantum bit readout device 2 of the third embodiment described above, except for points described later. Therefore, according to the quantum device 1 and the quantum bit readout device 2 of the fourth embodiment, the same effects as those of the quantum device 1 and the quantum bit readout device 2 of the third embodiment described above can be obtained, except for the points described later. can.
  • FIG. 11 is a diagram showing an example of the quantum bit readout device 2, etc. of the fourth embodiment.
  • the latch circuit 1C and the determination unit 1D of the quantum device 1 of the fourth embodiment can be expressed as, for example, the quantum bit reading device 2 shown in FIG. FIG. 11 shows the case where the qubits are spin qubits. When the qubit is a charge qubit, the single-electron device is treated as a charge qubit as it is.
  • the quantum bit reading device 2 includes a single electronic element 2A, a single electronic element 2B, an amplifier circuit 2C, an amplifier circuit 2D, an SRAM 2F, and a determination section 2I (see FIG. 9). It has The amplifier circuit 2C is composed of a P-channel MOS transistor.
  • the amplifier circuit 2D is composed of a P-channel MOS transistor.
  • the SRAM 2F includes access transistors 2F1 and 2F2 and inverters 2F3 and 2F4.
  • the inverter 2F3 and the inverter 2F4 are cross-coupled.
  • Inverter 2F3 is composed of a P-channel MOS transistor and an N-channel MOS transistor.
  • Inverter 2F4 is composed of a P-channel MOS transistor and an N-channel MOS transistor.
  • the single-electron device 2A measures the states of the spin qubits of the quantum circuit 1A.
  • the gate of the single electron device 2A is connected to the quantum circuit 1A.
  • One of the source and drain of the single electronic device 2A is connected to the first output terminal Vout1 of the SRAM 2F.
  • the other of the source and drain of the single-electron element 2A is grounded, for example.
  • Single-electron device 2B measures the state of the spin qubit of quantum circuit 1B.
  • the gate of the single-electron device 2B is connected to the quantum circuit 1B.
  • One of the source and drain of the single electronic device 2B is connected to the second output terminal Vout2 of the SRAM 2F.
  • the other of the source and drain of the single-electron element 2B is grounded, for example.
  • One of the source and drain of the P-channel MOS transistor that functions as the amplifier circuit 2C is connected to the first output terminal Vout1 of the SRAM 2F.
  • the other of the source and drain of the P-channel MOS transistor functioning as amplifier circuit 2C is connected to a predetermined potential VD . That is, the amplifier circuit 2C is arranged between the single electronic device 2A and the SRAM 2F.
  • One of the source and drain of the P-channel MOS transistor that functions as the amplifier circuit 2D is connected to the second output terminal Vout2 of the SRAM 2F.
  • the other of the source and drain of the P-channel MOS transistor functioning as amplifier circuit 2D is connected to a predetermined potential VD .
  • the amplifier circuit 2D is arranged between the single electronic device 2B and the SRAM 2F.
  • Access transistors 2F1, 2F2 and inverters 2F3, 2F4 of SRAM 2F are connected in the same manner as access transistors 2F1, 2F2 and inverters 2F3, 2F4 of SRAM 2F shown in FIG.
  • a first output terminal Vout1 and a second output terminal Vout2 of the SRAM 2F are connected to the determination section 2I.
  • the determination unit 2I combines the potential of the single electronic element 2A (the potential at the first output terminal Vout1 of the SRAM 2F) amplified by the amplifier circuit 2C and the SRAM 2F (that is, output via the SRAM 2F), the amplifier circuit 2D and the SRAM 2F. (that is, output via the SRAM 2F) to the potential of the single electronic element 2B (potential at the second output terminal Vout2 of the SRAM 2F).
  • the first output terminal Vout1 and the second output terminal Vout2 of the SRAM 2F are connected to the potential of the single electronic element 2A amplified by the amplifier circuit 2C and the SRAM 2F and the potential of the single electronic element amplified by the amplifier circuit 2D and the SRAM 2F.
  • the potential difference from the potential of 2B is output as a larger value than the potential difference between the original output terminal of the single-electron element 2A and the output terminal of the single-electron element 2B. Further, the determination unit 2I compares the potential of the single electronic element 2A amplified by the amplifier circuit 2C and the SRAM 2F with the potential of the single electronic element 2B amplified by the amplifier circuit 2D and the SRAM 2F, thereby determining "0". and "1".
  • the determination unit 2I determines the difference between the potential of the single electronic element 2A amplified by the amplifier circuit 2C and SRAM 2F and the potential of the single electronic element 2B amplified by the amplifier circuit 2D and SRAM 2F. By reading, the state of the quantum bits of the quantum circuits 1A, 1B connected to the single electronic elements 2A, 2B can be read while miniaturizing the entire circuit.
  • a signal in detail, is the potential of the first output terminal Vout1 of the SRAM 2F
  • a signal Specifically, by comparing the potential of the second output terminal Vout2 of the SRAM 2F, the difference between the state of the (spin) qubit of the quantum circuit 1A and the state of the (spin) qubit of the quantum circuit 1B can be accurately determined. can judge.
  • the input signal of the quantum circuit 1B and the input signal of the quantum circuit 1A are passed through, for example, an inverter so that the output of the quantum circuit 1A and the output of the quantum circuit 1B are inverted between 0 and 1 through the decision unit 2I. By inputting, it is possible to improve the accuracy rate of reading the state of the quantum bit.
  • a fifth embodiment of the quantum device, quantum bit readout device and electronic circuit of the present invention will be described below.
  • the quantum device 1 and the quantum bit readout device 2 of the fifth embodiment are configured in the same manner as the quantum device 1 and the quantum bit readout device 2 of the first embodiment described above, except for points described later. Therefore, according to the quantum device 1 and the quantum bit readout device 2 of the fifth embodiment, the effects similar to those of the quantum device 1 and the quantum bit readout device 2 of the first embodiment described above can be obtained, except for the points described later. can.
  • FIG. 12 is a diagram showing an example of the quantum bit readout device 2 of the fifth embodiment.
  • the latch circuit 1C and determination unit 1D of the quantum device 1 of the fifth embodiment can be expressed as a quantum bit reading device 2 shown in FIG. 12, for example.
  • the quantum bit reading device 2 includes a sense amplifier 2G1, an equalizer 2G2, transistors 2G3 and 2G4, and a determination section 2I (see FIG. 6).
  • the sense amplifier 2G1 is composed of a first P-channel MOS transistor, a second P-channel MOS transistor, a first N-channel MOS transistor and a second N-channel MOS transistor that function as an amplifier circuit.
  • the equalizer 2G2 is composed of a first N-channel MOS transistor and a second N-channel MOS transistor whose gates receive a common equalization signal EQ.
  • Single-electron device 2A measures the state of the spin qubits of quantum circuit 1A (not shown in FIG. 12).
  • Single-electron device 2A is included in quantum circuit 1A.
  • One of the source and drain of the single-electron element 2A is connected to one of the source and drain of the transistor 2G3.
  • the other of the source and drain of the single-electron element 2A is grounded, for example.
  • Single-electron device 2B measures the state of the spin qubits of quantum circuit 1B (not shown in FIG. 12).
  • a single-electron device 2B is included in the quantum circuit 1B.
  • One of the source and drain of single-electron element 2B is connected to one of the source and drain of transistor 2G4.
  • the other of the source and drain of the single-electron element 2B is grounded, for example.
  • the other of the source and drain of the transistor 2G3 is connected to the first output terminal Vout1 of the amplifier circuit 2G.
  • a wiring connecting the other of the source and drain of the transistor 2G3 and the first output terminal Vout1 of the amplifier circuit 2G functions as a first bit line.
  • the gate of transistor 2G3 is connected to word line WL1.
  • the other of the source and drain of the transistor 2G4 is connected to the second output terminal Vout2 of the amplifier circuit 2G.
  • a wiring connecting the other of the source and drain of the transistor 2G4 and the second output terminal Vout2 of the amplifier circuit 2G functions as a second bit line.
  • the gate of transistor 2G4 is connected to word line WL2.
  • a first bit line connecting the other of the source and drain of the transistor 2G3 and the first output terminal Vout1 of the amplifier circuit 2G connects the gate of the first P-channel MOS transistor of the sense amplifier 2G1 and the first N-channel MOS transistor of the sense amplifier 2G1.
  • a second bit line connecting the other of the source and drain of the transistor 2G4 and the second output terminal Vout2 of the amplifier circuit 2G connects the gate of the second P-channel MOS transistor of the sense amplifier 2G1 and the second N-channel MOS transistor of the sense amplifier 2G1. connected to the gate of
  • One of the source and drain of the first P-channel MOS transistor of sense amplifier 2G1 is connected to the second bit line.
  • One of the source and drain of the second P-channel MOS transistor of sense amplifier 2G1 is connected to the first bit line.
  • a common sense amplifier activation signal SAP is applied to the other of the source and drain of the first P-channel MOS transistor of sense amplifier 2G1 and the other of the source and drain of the second P-channel MOS transistor of sense amplifier 2G1.
  • One of the source and drain of the first N-channel MOS transistor of sense amplifier 2G1 is connected to the second bit line.
  • One of the source and drain of the second N-channel MOS transistor of sense amplifier 2G1 is connected to the first bit line.
  • a common sense amplifier activation signal SAN is applied to the other of the source and drain of the first N-channel MOS transistor of sense amplifier 2G1 and the other of the source and drain of the second N-channel MOS transistor of sense amplifier 2G1.
  • One of the source and the drain of the first N-channel MOS transistor of equalizer 2G2 is connected to the first bit line.
  • One of the source and the drain of the second N-channel MOS transistor of equalizer 2G2 is connected to the second bit line.
  • the other of the source and drain of the first N-channel MOS transistor of equalizer 2G2 is connected to the other of the source and drain of the second N-channel MOS transistor of equalizer 2G2.
  • a first output terminal Vout1 and a second output terminal Vout2 of the amplifier circuit 2G are connected to the determination section 2I.
  • the determination unit 2I compares the potential of the single electronic element 2A (the potential at the first output terminal Vout1 of the amplifier circuit 2G) amplified by the amplifier circuit 2G (that is, output via the amplifier circuit 2G) and the amplifier circuit 2G (that is, output via the amplifier circuit 2G) by the single electronic element 2B (potential at the second output terminal Vout2 of the amplifier circuit 2G).
  • the first output terminal Vout1 and the second output terminal Vout2 of the amplifier circuit 2G are the potential of the single electronic element 2A amplified by the amplifier circuit 2G and the potential of the single electronic element 2B amplified by the amplifier circuit 2G.
  • the potential difference is output as a value larger than the potential difference between the original output terminal of the single-electron element 2A and the output terminal of the single-electron element 2B. Furthermore, the determination unit 2I compares the potential of the single electronic element 2A amplified by the amplifier circuit 2G and the potential of the single electronic element 2B amplified by the amplifier circuit 2G to obtain "0" and "1". and judgment.
  • the determination unit 2I reads the difference between the potential of the single electronic element 2A amplified by the amplifier circuit 2G and the potential of the single electronic element 2B amplified by the amplifier circuit 2G.
  • the state of the quantum bits of the quantum circuits 1A, 1B connected to the single electronic elements 2A, 2B can be read out while miniaturizing the entire circuit.
  • a signal (in detail, The potential of the first output terminal Vout1 of the amplifier circuit 2G) and the signal indicating the state of the (spin) qubit output from the quantum circuit 1B are amplified by the latch circuit 1C (specifically, the amplifier circuit 2G) to generate a signal ( Specifically, by comparing the potential of the second output terminal Vout2 of the amplifier circuit 2G, the difference between the state of the (spin) qubit of the quantum circuit 1A and the state of the (spin) qubit of the quantum circuit 1B is determined. can be determined accurately.
  • the input signal of the quantum circuit 1B and the input signal of the quantum circuit 1A are passed through, for example, an inverter so that the output of the quantum circuit 1A and the output of the quantum circuit 1B are inverted between 0 and 1 through the decision unit 2I.
  • an inverter By inputting, it is possible to improve the accuracy rate of reading the state of the quantum bit.
  • a sixth embodiment of the quantum device, quantum bit readout device and electronic circuit of the present invention will be described below.
  • the quantum device 1 and the quantum bit readout device 2 of the sixth embodiment are configured in the same manner as the quantum device 1 and the quantum bit readout device 2 of the fifth embodiment described above, except for points described later. Therefore, according to the quantum device 1 and the quantum bit readout device 2 of the sixth embodiment, the same effects as those of the quantum device 1 and the quantum bit readout device 2 of the fifth embodiment can be obtained, except for the points described later. can.
  • FIG. 13 is a diagram showing an example of the quantum bit readout device 2 of the sixth embodiment.
  • the latch circuit 1C of the quantum device 1 of the sixth embodiment can be expressed as a quantum bit reading device 2 shown in FIG. 13, for example.
  • the qubit reading device 2 includes a single electronic element 2A, a single electronic element 2B, an amplifier circuit 2C, an amplifier circuit 2D, an amplifier circuit 2G, and a determination unit 2I (see FIG. 6 ) and
  • the amplifier circuit 2C is composed of a P-channel MOS transistor.
  • the amplifier circuit 2D is composed of a P-channel MOS transistor.
  • the amplifier circuits 2C and 2D may be composed of two or more MOS transistors as shown in FIG.
  • the single-electron device 2A measures the states of the spin qubits of the quantum circuit 1A (see FIG. 2).
  • the gate of the single electron device 2A is connected to the quantum circuit 1A.
  • One of the source and drain of the single electronic element 2A is connected to one of the source and drain of the transistor 2G3 of the amplifier circuit 2G and one of the source and drain of the P-channel MOS transistor functioning as the amplifier circuit 2C.
  • the other of the source and drain of the single-electron element 2A is grounded, for example.
  • the other of the source and drain of the P-channel MOS transistor functioning as amplifier circuit 2C is connected to a predetermined potential VD . That is, the amplifier circuit 2C is arranged between the single electronic element 2A and the amplifier circuit 2G.
  • the single-electron device 2B measures the states of the spin qubits of the quantum circuit 1B (see FIG. 2).
  • the gate of the single-electron device 2B is connected to the quantum circuit 1B.
  • One of the source and drain of the single electronic element 2B is connected to one of the source and drain of the transistor 2G4 of the amplifier circuit 2G and one of the source and drain of the P-channel MOS transistor functioning as the amplifier circuit 2D.
  • the other of the source and drain of the single-electron element 2B is grounded, for example.
  • the other of the source and drain of the P-channel MOS transistor functioning as amplifier circuit 2D is connected to a predetermined potential VD . That is, the amplifier circuit 2D is arranged between the single electronic element 2B and the amplifier circuit 2G.
  • the amplifier circuit 2G is configured similarly to the amplifier circuit 2G shown in FIG. That is, the first output terminal Vout1 and the second output terminal Vout2 of the SRAM 2F are connected to the determination section 2I.
  • the determination unit 2I determines the potential of the single electronic element 2A (the potential at the first output terminal Vout1 of the amplifier circuit 2G) amplified by the amplifier circuits 2C and 2G (that is, output via the amplifier circuit 2G). , the potential of the single electronic element 2B (the potential at the second output terminal Vout2 of the amplifier circuit 2G) amplified by the amplifier circuits 2D and 2G (that is, output via the amplifier circuit 2G). . Specifically, the first output terminal Vout1 and the second output terminal Vout2 of the amplifier circuit 2G are connected to the potential of the single electronic element 2A amplified by the amplifier circuits 2C and 2G and the potential amplified by the amplifier circuits 2D and 2G.
  • the potential difference from the potential of the single-electron element 2B thus obtained is output as a value larger than the potential difference between the original output terminal of the single-electron element 2A and the output terminal of the single-electron element 2B. Furthermore, the determination unit 2I compares the potential of the single electronic element 2A amplified by the amplifier circuits 2C and 2G with the potential of the single electronic element 2B amplified by the amplifier circuits 2D and 2G. A determination between "0" and "1" is performed by the following.
  • the determination unit 2I determines the potential of the single electronic element 2A amplified by the amplifier circuits 2C and 2G and the potential of the single electronic element 2B amplified by the amplifier circuits 2D and 2G. By reading the difference between , it is possible to read out the state of the quantum bits of the quantum circuits 1A and 1B connected to the single electronic elements 2A and 2B while miniaturizing the entire circuit.
  • the signal indicating the state of the (spin) qubit output from the quantum circuit 1A is amplified by the latch circuit 1C (specifically, the amplifier circuit 2C and the amplifier circuit 2G) to obtain a signal ( Specifically, the potential of the first output terminal Vout1 of the amplifier circuit 2G) and the signal indicating the state of the (spin) qubit output from the quantum circuit 1B are received by the latch circuit 1C (specifically, the amplifier circuit 2D and the amplifier circuit). 2G) (more specifically, the potential of the second output terminal Vout2 of the amplifier circuit 2G), the state of the (spin) qubit of the quantum circuit 1A and the (spin) state of the quantum circuit 1B are compared.
  • the difference between the states of the qubits can be accurately determined.
  • the input signal of the quantum circuit 1B and the input signal of the quantum circuit 1A are passed through, for example, an inverter so that the output of the quantum circuit 1A and the output of the quantum circuit 1B are inverted between 0 and 1 through the decision unit 2I.
  • an inverter By inputting, it is possible to improve the accuracy rate of reading the state of the quantum bit.
  • FIG. 18 is a diagram showing temporal changes in voltage in the quantum bit readout device 2 of the sixth embodiment shown in FIG. As shown in FIG. 18, by temporally adjusting the input signals of the equalizer 2G2 and the sense amplifier 2G1 , the potential Vout1 of the first output terminal Vout1 of the amplifier circuit 2G and the potential of the second output terminal Vout2 of the amplifier circuit 2G V out2 can be clearly distinguished.
  • a seventh embodiment of the quantum device, quantum bit readout device and electronic circuit of the present invention will be described below.
  • the quantum device 1 and the quantum bit readout device 2 of the seventh embodiment are configured in the same manner as the quantum device 1 and the quantum bit readout device 2 of the first embodiment described above, except for points described later. Therefore, according to the quantum device 1 and the quantum bit readout device 2 of the seventh embodiment, the effects similar to those of the quantum device 1 and the quantum bit readout device 2 of the first embodiment described above can be obtained except for the points described later. can.
  • FIG. 14 is a diagram showing an example of the quantum bit readout device 2, etc. of the seventh embodiment.
  • the latch circuit 1C and the determination unit 1D of the quantum device 1 of the seventh embodiment can be expressed as a quantum bit reading device 2 shown in FIG. 14, for example.
  • FIG. 14 shows the case where the qubits are spin qubits. When the qubit is a charge qubit, the single-electron device is treated as a charge qubit as it is.
  • the quantum bit readout device 2 includes a single electronic element 2A, a single electronic element 2B, a cross-coupled MOS transistor circuit 2H, and a determination section 2I.
  • the cross-coupled MOS transistor circuit 2H includes a pair of cross-coupled P-channel MOS transistors 2H1 and 2H2 and transistors 2H3 and 2H4.
  • the single-electron device 2A measures the state of the qubits of the quantum circuit 1A.
  • the gate of the single electron device 2A is connected to the quantum circuit 1A.
  • One of the source and drain of the single electronic element 2A is connected to one of the source and drain of the transistor 2H3 of the cross-coupled MOS transistor circuit 2H.
  • the other of the source and drain of the single-electron element 2A is grounded, for example.
  • a single-electron device 2B measures the state of the qubits of the quantum circuit 1B.
  • the gate of the single-electron device 2B is connected to the quantum circuit 1B.
  • One of the source and drain of single electronic element 2B is connected to one of the source and drain of transistor 2H4 of cross-coupled MOS transistor circuit 2H.
  • the other of the source and drain of the single-electron element 2B is grounded, for example.
  • the other of the source and drain of the transistor 2H3 is connected to the first output terminal Vout1 of the cross-coupled MOS transistor circuit 2H.
  • the gate of transistor 2H3 is connected to word line WL.
  • the other of the source and drain of the transistor 2H4 is connected to the second output terminal Vout2 of the cross-coupled MOS transistor circuit 2H.
  • the gate of transistor 2H4 is connected to word line WL.
  • One of the source and drain of the P-channel MOS transistor 2H1 and the gate of the P-channel MOS transistor 2H2 are connected to the first output terminal Vout1 of the cross-coupled MOS transistor circuit 2H.
  • the other of the source and drain of P-channel MOS transistor 2H1 is connected to a predetermined potential VD .
  • One of the source and drain of the P-channel MOS transistor 2H2 and the gate of the P-channel MOS transistor 2H1 are connected to the second output terminal Vout2 of the cross-coupled MOS transistor circuit 2H.
  • the other of the source and drain of P-channel MOS transistor 2H2 is connected to a predetermined potential VD .
  • the first output terminal Vout1 and the second output terminal Vout2 of the cross-coupled MOS transistor circuit 2H are connected to the determination section 2I.
  • the determination unit 2I determines the potential of the single electronic element 2A (the first output terminal of the cross-coupled MOS transistor circuit 2H) amplified by the cross-coupled MOS transistor circuit 2H (that is, output via the cross-coupled MOS transistor circuit 2H). Vout1) and the potential of the single electronic element 2B amplified by the cross-coupled MOS transistor circuit 2H (that is, output via the cross-coupled MOS transistor circuit 2H) (the second output of the cross-coupled MOS transistor circuit 2H). potential at terminal Vout2).
  • the first output terminal Vout1 and the second output terminal Vout2 of the cross-coupled MOS transistor circuit 2H are connected to the potential of the single electronic element 2A amplified by the cross-coupled MOS transistor circuit 2H and the potential of the cross-coupled MOS transistor circuit 2H.
  • the potential difference from the amplified potential of the single-electron element 2B is output as a larger value than the potential difference between the original output terminal of the single-electron element 2A and the output terminal of the single-electron element 2B.
  • the determination unit 2I compares the potential of the single electronic element 2A amplified by the cross-coupled MOS transistor circuit 2H and the potential of the single electronic element 2B amplified by the cross-coupled MOS transistor circuit 2H, thereby 0” and “1” are determined.
  • the determination unit 2I determines the difference between the potential of the single electronic element 2A amplified by the cross-coupled MOS transistor circuit 2H and the potential of the single electronic element 2B amplified by the cross-coupled MOS transistor circuit 2H. By reading the difference, it is possible to read out the state of the qubits of the quantum circuits 1A, 1B connected to the single electronic elements 2A, 2B while miniaturizing the overall circuit.
  • a signal (details , the potential of the first output terminal Vout1 of the cross-coupled MOS transistor circuit 2H) and the signal indicating the state of the (spin) qubit output from the quantum circuit 1B are fed to the latch circuit 1C (specifically, the cross-coupled MOS transistor
  • the latch circuit 1C specifically, the cross-coupled MOS transistor
  • the accuracy rate of reading the state of the quantum bit can be improved.
  • N-channel MOS transistors may also be used. You can add one or more In general, one or more P-channel MOS transistors and one or more N-channel MOS transistors each may be connected in series or parallel with a single electron.
  • the quantum device 1 and the quantum bit readout device 2 of the eighth embodiment are configured in the same manner as the quantum device 1 and the quantum bit readout device 2 of the first embodiment described above, except for points described later. Therefore, according to the quantum device 1 and the quantum bit readout device 2 of the eighth embodiment, the same effects as those of the quantum device 1 and the quantum bit readout device 2 of the first embodiment can be obtained, except for the points described later. can.
  • FIG. 15 is a diagram showing an example such as the quantum bit readout device 2 of the eighth embodiment.
  • the latch circuit 1C and the determination unit 1D of the quantum device 1 of the eighth embodiment can be expressed as a quantum bit reading device 2 shown in FIG. 15, for example.
  • FIG. 15 shows the case where the qubits are spin qubits. When the qubit is a charge qubit, the single-electron device is treated as a charge qubit as it is.
  • the quantum bit reading device 2 includes a differential amplifier circuit 2E and a determination section 2I (see FIG. 2).
  • the differential amplifier circuit 2E includes bipolar transistors 2E11 and 2E12, resistors 2E13, 2E14, 2E15 and 2E16, and a constant current source 2E17.
  • the single-electron device 2A measures the state of the qubits of the quantum circuit 1A.
  • Single-electron device 2A is included in quantum circuit 1A.
  • One of the source and the drain of the single electronic element 2A is connected to the base of the bipolar transistor 2E11 and to a predetermined potential VD through the resistor 2E15.
  • the other of the source and drain of the single-electron element 2A is grounded, for example.
  • a single-electron device 2B measures the state of the qubits of the quantum circuit 1B.
  • a single-electron device 2B is included in the quantum circuit 1B.
  • One of the source and drain of the single-electron element 2B is connected to the base of the bipolar transistor 2E12 and also to a predetermined potential VD via a resistor 2E16.
  • the other of the source and drain of the single-electron element 2B is grounded, for example.
  • the emitter of bipolar transistor 2E11 is connected to constant current source 2E17.
  • the collector of the bipolar transistor 2E11 is connected to the first output terminal Vout1 of the differential amplifier circuit 2E.
  • a first output terminal Vout1 of the differential amplifier circuit 2E is connected to a predetermined potential VD via a resistor 2E13.
  • the emitter of bipolar transistor 2E12 is connected to constant current source 2E17.
  • the collector of the bipolar transistor 2E12 is connected to the second output terminal Vout2 of the differential amplifier circuit 2E.
  • a second output terminal Vout2 of the differential amplifier circuit 2E is connected to a predetermined potential VD via a resistor 2E14.
  • a first output terminal Vout1 and a second output terminal Vout2 of the differential amplifier circuit 2E are connected to the determination section 2I.
  • the determination unit 2I determines the potential of the single electronic element 2A amplified by the differential amplifier circuit 2E (potential at the first output terminal of the differential amplifier circuit 2E) and the single electronic element amplified by the differential amplifier circuit 2E. 2B (the potential at the second output terminal of the differential amplifier circuit 2E) is read. Specifically, the first output terminal Vout1 and the second output terminal Vout2 of the differential amplifier circuit 2E are connected to the potential of the single electronic element 2A amplified by the differential amplifier circuit 2E and the potential amplified by the differential amplifier circuit 2E. Amplifies the potential difference from the potential of the single-electron element 2B. Furthermore, the determination unit 2I compares the potential of the single electronic element 2A amplified by the differential amplifier circuit 2E with the potential of the single electronic element 2B amplified by the differential amplifier circuit 2E, thereby determining "0 ” and “1”.
  • the determination unit 2I determines the difference between the potential of the single electronic element 2A amplified by the differential amplifier circuit 2E and the potential of the single electronic element 2B amplified by the differential amplifier circuit 2E. By reading, the state of the quantum bits of the quantum circuits 1A, 1B connected to the single electronic elements 2A, 2B can be read while miniaturizing the entire circuit.
  • the signal indicating the state of the quantum bit output from the quantum circuit 1A is amplified by the latch circuit 1C (specifically, the differential amplifier circuit 2E) and converted into a signal (specifically, the differential amplifier circuit 2E).
  • the potential of the first output terminal Vout1 of the dynamic amplifier circuit 2E) and the signal indicating the state of the quantum bit output from the quantum circuit 1B are amplified by the latch circuit 1C (specifically, the differential amplifier circuit 2E).
  • the potential of the second output terminal Vout2 of the differential amplifier circuit 2E) is compared to accurately determine the difference between the state of the quantum circuit 1A and the state of the quantum circuit 1B. be able to.
  • the input signal of the quantum circuit 1B and the input signal of the quantum circuit 1A are passed through, for example, an inverter so that the output of the quantum circuit 1A and the output of the quantum circuit 1B are inverted between 0 and 1 through the decision unit 2I.
  • an inverter By inputting, it is possible to improve the accuracy rate of reading the state of the quantum bit.
  • a ninth embodiment of the quantum device, quantum bit readout device and electronic circuit of the present invention will be described below.
  • the electronic circuit 3 of the ninth embodiment is configured in the same manner as the quantum bit readout device 2 of the seventh embodiment described above, except for points described later. Therefore, the electronic circuit 3 of the ninth embodiment can provide the same effects as the quantum bit readout device 2 of the seventh embodiment described above, except for the points described later.
  • FIG. 16 is a diagram showing an example of the electronic circuit 3 of the ninth embodiment.
  • the electronic circuit 3 includes a first single-electronic element array 3A (see FIG. 17), a first selector 3B (see FIG. 17), and a second single-electronic element array 3C (see FIG. 17). ), a second selector 3D (see FIG. 17), an amplifier circuit 3E, and a determination section 3F.
  • the first single-electronic element array 3A includes a plurality of single-electronic elements.
  • the first selector 3B selects the first single-electron element 3A1, which is one single-electronic element, from the plurality of single-electronic elements included in the first single-electron element array 3A.
  • a second single-electronic element array 3C includes a plurality of single-electronic elements.
  • the second selector 3D selects a second single-electron element 3C1, which is one single-electron element, from a plurality of single-electron elements included in the second single-electron element array 3C.
  • the amplifier circuit 3E is configured similarly to the cross-coupled MOS transistor circuit 2H shown in FIG.
  • the amplifier circuit 3E amplifies the potential of the first single-electronic element 3A1 selected by the first selector 3B and the potential of the second single-electronic element 3C1 selected by the second selector 3D.
  • the determination unit 3F functions similarly to the determination unit 2I shown in FIG.
  • the determination unit 3F determines the potential of the first single-electronic element 3A1 amplified by the amplifier circuit 3E (the potential of the first output terminal Vout1 of the amplifier circuit 3E) and the second single-electronic element 3C1 amplified by the amplifier circuit 3E. (the potential of the second output terminal Vout2 of the amplifier circuit 3E) is compared to determine whether 0 or 1 is present. That is, in the example shown in FIG. 16, in the electronic circuit 3, the difference between the potential of the first single-electronic element 3A1 and the potential of the second single-electronic element 3C1 is read.
  • FIG. 17 shows one single-electron element (first 1 single-electron element 3A1) is used and one of the plurality of single-electron elements included in the second single-electron element array 3C as the single-electron element 2B in the first to ninth embodiments.
  • FIG. 10 is a diagram for explaining an example in which a single-electron element (second single-electron element 3C1) is used; Although only single-electron elements are depicted in FIG. 17, this is the case where the single-electron elements are charge qubits, and when applied to spin qubits, each single-electron element is a spin qubit reader. work as
  • the array structure shown in FIG. 17 can be applied to the first to ninth embodiments. Especially when the array structure shown in FIG. 17 is applied to the embodiment shown in FIG. A first single-electron element 3A1 (see FIG. 16) is selected from the first single-electron element array 3A, which functions similarly to the single-electron element 2A shown in FIG.
  • the first single electronic element 3A1 selected by the first selector 3B is connected to the amplifier circuit 3E.
  • the second single-electron element array 3C is constructed similarly to the first single-electron element array 3A.
  • the second selector 3D is configured similarly to the first selector 3B.
  • a second selector 3D selects a second single-electron element 3C1 (see FIG. 16) that functions similarly to the single-electron element 2B shown in FIG. 9 from the second single-electron element array 3C.
  • the second single electronic element 3C1 selected by the second selector 3D is connected to the amplifier circuit 3E.
  • the amplifier circuit 3E shown in FIG. 17 functions similarly to the SRAM 2F shown in FIG.
  • a determination unit 3F shown in FIG. 17 functions in the same manner as the determination unit 2I shown in FIG. That is, the determination unit 3F determines the potential of the first single-electronic element 3A1 selected by the first selector 3B and amplified by the amplifier circuit 3E (that is, output via the amplifier circuit 3E). 1 output terminal Vout1) and the potential of the second single electronic element 3C1 selected by the second selector 3D and amplified by the amplifier circuit 3E (that is, output via the amplifier circuit 3E) (the potential at the amplifier circuit 3E potential at the second output terminal Vout2).
  • the first output terminal Vout1 and the second output terminal Vout2 of the amplifier circuit 3E are connected to the potential of the first single electronic element 3A1 amplified by the amplifier circuit 3E and the second single potential amplified by the amplifier circuit 3E.
  • the potential of the electronic element 3C1 is output as an inverted result such as "0" and "1".
  • the determination unit 3F compares the potential of the first single-electron element 3A1 amplified by the amplifier circuit 3E with the potential of the second single-electron element 3C1 amplified by the amplifier circuit 3E, thereby determining "0". and "1".
  • FIG. 19 is a diagram for explaining an example in which a NAND flash memory is used as the first single electronic element array 3A of the electronic circuit 3 of the ninth embodiment, and a NAND flash memory is used as the second single electronic element array 3C. is. Specifically, FIG. 19 shows the relationship between the control gate, floating gate, tunnel oxide film, source, drain, and electrons of the NAND flash memory functioning as the first single electron element array 3A.
  • FIG. 16 particularly shows charge qubits (3A1) and charge qubits (3C1) coupled through capacitance.
  • Capacitance coupling between the charge qubit (3A1) and the charge qubit (3C1) acts as an Ising interaction, for example, as shown in Non-Patent Document 8. This interaction does not work when the charge qubits are far apart. In this way, the paired single electrons may be close to each other and directly interact with each other via capacitance.
  • a PMOS transistor is described as the first MOS transistor, an NMOS transistor may also be used. Also, in the case of NMOS transistors, a MOS transistor may be inserted between the single electronic element and ground. In FIGS. 17 and 19, adjacent charge qubits may interact.
  • the whole or part of the function of each part provided in the quantum device 1, the quantum bit readout device 2, or the electronic circuit 3 in the above-described embodiments can be achieved by recording a program for realizing these functions in a computer-readable recording medium. Then, the program recorded on this recording medium may be read into a computer system and executed.
  • the "computer system” referred to here includes hardware such as an OS and peripheral devices.
  • the term "computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage units such as hard discs incorporated in computer systems.
  • “computer-readable recording medium” means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include a device that holds a program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.
  • the state of the spin qubit output from the quantum circuit 1A and the input signal of the quantum circuit 1B are input with the input signal of the quantum circuit 1A, for example, through an inverter (that is, as the input signal of the quantum circuit 1B, the quantum circuit 1A), which shows that the spin orientation of one spin quantum dot is opposite to the spin orientation of the other spin quantum dot.
  • an inverter that is, as the input signal of the quantum circuit 1B, the quantum circuit 1A
  • the state of one spin quantum dot is opposite to the spin orientation of the other spin quantum dot.
  • the input part in the example of the spin qubit in the previous figures, when the spin state in one of the two quantum dots is up, it is possible for down spin to enter. It's here. This makes use of the fact that when there are electrons in the quantum dots next to the single-electron device, the current in the single-electron device becomes difficult to flow.
  • FIG. 20 shows a schematic diagram of this situation, and shows that the peak position of Coulomb oscillation shifts depending on whether or not there is an electric charge.
  • this shift amount is described as the difference in the gate voltage of the single-electron element.
  • the number of electrodes for controlling the single-electron element may be two or more.
  • a single spin quantum dot in contact with a single-electron element as in Non-Patent Document 7, for example, may also be used.
  • the number of qubits in the quantum circuit 1B does not necessarily have to be equal to the number of qubits in the quantum circuit 1A.
  • the quantum states of the quantum bits in the quantum circuit 1B can be fixed to 0 or 1, and the quantum states of the quantum bits in the quantum circuit 1A can be determined as a collection of reference quantum bits.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Amplifiers (AREA)
  • Static Random-Access Memory (AREA)

Abstract

第1量子ビットの状態を示す信号が増幅された信号と、第2量子ビットの状態を示す信号が増幅された信号との比較によって、第1量子ビットの状態と第2量子ビットの状態との違いを正確に判定し、詳細には、第1量子回路の出力と第2量子回路の出力が判定部を通して論理値の0と1との間で反転するように、第2量子回路の入力信号を第1量子回路の入力信号に対して反転した入力信号にすることにより、量子ビットの状態の読み出しの正解率を向上させる。量子装置は、第1量子回路と、第2量子回路と、第1量子回路と第2量子回路とに接続されたラッチ回路とを備え、ラッチ回路は、第1量子回路から出力された第1量子ビットの状態をラッチして、第1量子ビットの状態を示す信号を増幅する機能と、第2量子回路から出力された第2量子ビットの状態をラッチして、第2量子ビットの状態を示す信号を増幅する機能とを有する。

Description

量子装置、量子ビット読み出し装置および電子回路
 本発明は、量子装置、量子ビット読み出し装置および電子回路に関する。
 本願は、2021年6月24日に、日本に出願された特願2021-104978号に基づき優先権を主張し、その内容をここに援用する。
 量子コンピュータと量子アニーリング機械に関する研究開発が進んでいる。例えば、非特許文献1では半導体量子ビットの二つの論理動作した例が、また、非特許文献2では、超伝導体を用いた量子ビットを50個以上作成した例が報告されている。また、非特許文献3は、量子アニーリング機械の実験例であり、この技術はすでに商用化されている。
 量子コンピュータに関する技術としては、この例のように超伝導体を用いた関連技術の発展が進んでいる。これは量子状態を保つのに必要な時間(コヒーレンス時間)を抵抗のない超伝導状態が実験的に比較的に実現しやすいからである。ただし、超伝導デバイスでは大規模集積化が難しい。
 特許文献1の図1には、量子演算を実行する量子ビット構造に接続された電気的なゲートパルス線について記載されている。ところで、特許文献1には、書き込みの実行中に静電容量の変化を監視する旨が記載されているものの、特許文献1に記載された技術では、集積回路として量子ビットの状態を示す信号を増幅することが行われない。そのため、特許文献1に記載された技術では、集積回路として量子ビットの状態の違いを正確に判定して量子ビットの状態の読み出しの正解率を向上させることができない。
 非特許文献4の図1には、クロスカップル接続された一対の単一電子素子について記載されている。ところで、非特許文献4に記載された技術では、単一電子素子がSRAM(Static Random Access Memory)と同じようにメモリとして適用される。そのため、非特許文献4に記載された技術では、単一電子素子をセンサーとして用いて一対の単一電子素子の電位の違いを読み取ることができず、単一電子素子に接続された量子回路の量子ビットの状態を読み出すこともできない。
 非特許文献5には、スピン量子ビットの読み出し(量子ビットのスピン状態の検出)について記載されている。また、非特許文献5には、スピンから電荷への変換では、電荷の動きへの影響を通じてスピン状態が検出され、電子スピンの測定が可能になる旨が記載されている。ところで、非特許文献5に記載された技術では、量子ビットのスピン状態を示す信号を集積回路として増幅することが行われない。そのため、非特許文献5に記載された技術では、量子ビットのスピン状態の違いを正確に判定して量子ビットのスピン状態の読み出しの正解率を向上させることができない。
 非特許文献6、7には、量子ビットを読み出す技術について記載されている。非特許文献6に記載された技術では、クーロンブロッケイド現象の電流変化がpAと小さいため、後段の増幅回路が何重にも組まれ、信号の多重増幅が行われる。従って、非特許文献6、7に記載された技術では、量子ビット数が大きい場合に回路面積が非常に大きくなり、非現実的である。
米国特許第7830695号明細書
M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello & A. S. Dzurak "A two-qubit logic gate in silicon" Nature volume 526, pages410-414(2015) Frank Arute, Kunal Arya他 "Quantum supremacy using a programmable superconducting processor" Nature volume 574, pages505-510(2019) M. W. Johnson他 "Quantum annealing with manufactured spins" Nature vol 473, pp.194-198 (2011). Souvik Mahapatra, A. M. Ionescu "A novel single electron SRAM architecture" Materials Science(2004), 4th IEEE Conference on Nanotechnology, 2004 DOI: 10.1109/NANO.2004.1392327Corpus ID:20005522 Nakul Shaji他 "Spin blockade and lifetime-enhanced transport in a few-electron Si/SiGe double quantum dot" Nature Physics 4, 540-544 (2008) Andrea Ruffino他 "A Fully-Integrated 40-nm 5-6.5 GHz Cryo-CMOS System-on-Chip with I/Q Receiver and Frequency Synthesizer for Scalable Multiplexed Readout of Quantum Dots" 2021 IEEE International Solid- State Circuits Conference (ISSCC) Andrea Morello et al. "Single-shot readout of an electron spin in silicon" Nature vol 467.p687 (2010) T Tanamoto, Y Nishi, J Deguchi "Quantum Annealing Machines Based on Semiconductor Nanostructures" Journal of the Physical Society of Japan 88 (6), 061013 (2019) Behzad Razavi 『Design of Analog CMOS Integrated Circuits』(MCGRAW HILL BOOK CO, 2000) ISBN:  9780072380323
 上述した点に鑑み、本発明は、第1量子ビットの状態と第2量子ビットの状態との違いを正確に判定し、第1量子回路の出力の論理値と第2量子回路の出力の論理値とが0と1との間で反転するように第2量子回路を動作させることによって、量子ビットの状態の読み出しの正解率を向上させることができる量子装置を提供することを目的とする。
 また、本発明は、第1単一電子素子の電位と第2単一電子素子の電位との違いを読み取ることによって、回路を小型化しつつ単一電子素子に接続された量子回路の量子ビットの状態を読み出すことができる量子ビット読み出し装置を提供することを目的とする。
 また、本発明は、第1単一電子素子の電位と第2単一電子素子の電位との違いを読み取ることができる電子回路を提供することを目的とする。
 本発明の一態様は、第1量子回路と、第2量子回路と、前記第1量子回路と前記第2量子回路とに接続されたラッチ回路とを備え、前記ラッチ回路は、前記第1量子回路から出力された第1量子ビットの状態をラッチして、前記第1量子ビットの状態を示す信号を増幅する機能と、前記第2量子回路から出力された第2量子ビットの状態をラッチして、前記第2量子ビットの状態を示す信号を増幅する機能とを有する、量子装置である。
 本発明の一態様は、第1量子回路に接続された第1単一電子素子と、第2量子回路に接続された第2単一電子素子と、前記第1単一電子素子と前記第2単一電子素子とに接続された差動増幅回路とを備え、前記差動増幅回路によって増幅された前記第1単一電子素子の電位と前記第2単一電子素子の電位との違いが読み取られる、量子ビット読み出し装置である。
 本発明の一態様の量子ビット読み出し装置は、前記第1単一電子素子と前記差動増幅回路との間に配置された第1増幅回路と、前記第2単一電子素子と前記差動増幅回路との間に配置された第2増幅回路とを備えてもよい。
 本発明の一態様の量子ビット読み出し装置では、前記第1増幅回路は、第1導電型トランジスタと第2導電型トランジスタとを備え、前記第2増幅回路は、第1導電型トランジスタと第2導電型トランジスタとを備えてもよい。
 本発明の一態様は、第1量子回路に接続された第1単一電子素子と、第2量子回路に接続された第2単一電子素子と、前記第1単一電子素子と前記第2単一電子素子とに接続されたSRAM(Static Random Access Memory)とを備え、前記SRAMを介して出力される前記第1単一電子素子の電位と前記第2単一電子素子の電位との違いが読み取られる、量子ビット読み出し装置である。
 本発明の一態様の量子ビット読み出し装置では、前記SRAMは、前記第1単一電子素子に接続された第1アクセストランジスタと、前記第2単一電子素子に接続された第2アクセストランジスタと、前記第1アクセストランジスタに接続された第1インバータと、前記第2アクセストランジスタに接続された第2インバータとを備え、前記第1インバータと前記第2インバータとはクロスカップル接続されていてもよい。
 本発明の一態様の量子ビット読み出し装置は、前記第1単一電子素子と前記SRAMとの間に配置された第1増幅回路と、前記第2単一電子素子と前記SRAMとの間に配置された第2増幅回路とを備えてもよい。
 本発明の一態様は、第1量子回路に接続された第1単一電子素子と、第2量子回路に接続された第2単一電子素子とに接続されたセンスアンプとイコライザとを備え、前記センスアンプとイコライザを介して出力される前記第1単一電子素子の電位と前記第2単一電子素子の電位との違いが読み取られる、量子ビット読み出し装置である。
 本発明の一態様の量子ビット読み出し装置では、センスアンプとイコライザは一般のより複雑なDynamic Random Access Memory(DRAM)と同じものを備えてもよい。一般的なDRAMは二つのキャパシターに蓄積された電荷の差を読み取る回路を用いている。通常のDRAMのキャパシターの代わりに単一電子素子を用いることが本発明の特徴である。特に、単一電子素子が電荷量子ビットの場合には、電荷量子ビット間の小さな電位差を読み取ることに有用である。
 本発明の一態様は、第1量子回路に接続された第1単一電子素子と、第2量子回路に接続された第2単一電子素子と、前記第1単一電子素子と前記第2単一電子素子とに接続されたクロスカップルMOSトランジスタ回路とを備え、前記クロスカップルMOSトランジスタ回路は、クロスカップル接続された一対のPチャネルMOSトランジスタを備え、前記クロスカップルMOSトランジスタ回路を介して出力される前記第1単一電子素子の電位と前記第2単一電子素子の電位との違いが読み取られる、量子ビット読み出し装置である。
 本発明の一態様の量子ビット読み出し装置では、前記差動増幅回路は、ベースが前記第1単一電子素子に接続された第1バイポーラトランジスタと、ベースが前記第2単一電子素子に接続された第2バイポーラトランジスタとを備えてもよい。
 本発明の一態様の量子ビット読み出し装置では、前記第1単一電子素子の電位と、前記第2単一電子素子の電位とが、反転した結果として出力されてもよい。
 本発明の一態様の量子ビット読み出し装置は、前記第1単一電子素子の電位と前記第2単一電子素子の電位とを比較することによって0と1との判定を行う判定部を備えてもよい。
 本発明の一態様は、第1メモリセルアレイと、前記第1メモリセルアレイから第1単一電子素子を選択する第1セレクタと、第2メモリセルアレイと、前記第2メモリセルアレイから第2単一電子素子を選択する第2セレクタとを備え、前記第1セレクタによって選択された前記第1単一電子素子の電位と、前記第2セレクタによって選択された前記第2単一電子素子の電位との違いが読み取られる、電子回路である。
 本発明の一態様の電子回路は、前記第1単一電子素子の電位と前記第2単一電子素子の電位とを比較することによって0と1との判定を行う判定部を備えてもよい。
 上記の量子ビットはスピン量子ビットでもよいし、上記単一電子素子が電荷量子ビットそのものでもよい。量子ビットがスピン量子ビットの場合は、上記単一電子素子とトンネル酸化膜などを介して結合していてもよい。
 本発明によれば、第1量子ビットの状態と第2量子ビットの状態との違いを正確に判定し、第1量子回路の出力と第2量子回路の出力とが論理値の0と1との間で反転するように第2量子回路の入力信号を調節することによって、量子ビットの状態の読み出しの正解率を向上させることができる量子装置を提供することができる。
 また、本発明によれば、第1単一電子素子の電位と第2単一電子素子の電位との違いを読み取ることによって、回路を小型化しつつ単一電子素子に接続された量子回路の量子ビットの状態を読み出すことができる量子ビット読み出し装置を提供することができる。
 また、本発明によれば、第1単一電子素子の電位と第2単一電子素子の電位との違いを読み取ることができる電子回路を提供することができる。
第1実施形態の量子装置の一例を示す図である。 第1実施形態の量子ビット読み出し装置などの一例を示す図である。 図2に示す単一電子素子等のような単一電子素子(詳細にはSET(単一電子トランジスタ))の特性の一例を説明するための図である。 図2に示す増幅回路(PチャネルMOSトランジスタ)等のようなMOS結合による第一の増幅回路の原理を説明するための図である。 図2に示す単一電子素子等のような単一電子素子(詳細にはSET(単一電子トランジスタ))のゲート電圧(横軸)と、図2に示す増幅回路(PチャネルMOSトランジスタ)等のようなMOS結合によって増幅された出力端子の電位(縦軸)との関係を示す図である。 第2実施形態の量子ビット読み出し装置などの一例を示す図である。 図6に示す増幅回路等のようなPチャネルMOSトランジスタおよびNチャネルMOSトランジスタによる第一の増幅を説明するための図である。 図6に示す差動増幅回路による差動増幅シミュレーション結果を示す図である。 第3実施形態の量子ビット読み出し装置などの一例を示す図である。 図9に示す回路シミュレーション(時間変化)の結果を示す図である。 第4実施形態の量子ビット読み出し装置などの一例を示す図である。 第5実施形態の量子ビット読み出し装置の一例を示す図である。 第6実施形態の量子ビット読み出し装置の一例を示す図である。 第7実施形態の量子ビット読み出し装置などの一例を示す図である。 第8実施形態の量子ビット読み出し装置などの一例を示す図である。 第9実施形態の電子回路の一例を示す図である。 第1実施形態から第9実施形態までの単一電子素子2Aとして第1単一電子素子アレイ3Aに含まれる複数の単一電子素子のうちの1つの単一電子素子(第1単一電子素子3A1)が用いられ、第1実施形態から第9実施形態までの単一電子素子2Bとして第2単一電子素子アレイ3Cに含まれる複数の単一電子素子のうちの1つの単一電子素子(第2単一電子素子3C1)が用いられる例を説明するための図である。 図13に示す第6実施形態の量子ビット読み出し装置での電圧の時間変化を示す図である。 第9実施形態の電子回路の第1単一電子素子アレイとしてNANDフラッシュメモリが用いられ、第2単一電子素子アレイとしてNANDフラッシュメモリが用いられる例を説明するための図である。 単一電子素子に接続された量子ドット内の電子の有無により単一電子素子内の電位がシフトする状況を模擬的に示す図である。
 本発明の量子装置、量子ビット読み出し装置および電子回路の実施形態を説明する前に、量子装置の測定などに関する従来技術について説明する。
(測定に関する従来技術)
 電子スピンもしくはホールスピンを用いた量子ビットについては進展が遅れている。これはスピンを用いた量子装置には、スピン状態の測定過程に難しい課題があった。スピン状態を測定するには電子回路が必要となるが、スピンは磁気的な性質であるが、通常の電子回路には直接、磁化に関する量を測定する機構がないため、磁気的性質を電荷状態に変換する必要があった。
 具体的には、スピンブロッケイドと言われている方法などがある。これは量子ドットを一つ追加して、中の電子スピンの向きを固定すると、量子ビットから入ってくるスピンが上向き下向きかで、電子がブロックされたり流れたりすることを利用する方法である。ここにはスピンが同じ向きの電子が二つ同じエネルギー準位を占有できないというパウリの排他原理がもとになっている。
 しかしながら、図3に示すようにクーロンブロッケイドを観測できる単一電子素子の電流値はナノアンペアのオーダーであり、通常のCMOS回路の動作する電圧領域に比べると電圧が極めて小さい。このため、一つの単一電子素子の微小信号を増幅するためには非特許文献6のような何重にもわたる増幅回路が必要となっていた。この従来の方法ではたった一つの単一電子の信号を増幅するのに極めて多数の回路面積が必要となるため、量子ビットの集積化は困難であった。
(製造費用)
 さらに新規のデバイス構造は作成上に大きな課題が残る。非特許文献1、または非特許文献3などでは、新規の超微細構造が必要となる。現在のスマートフォンに用いられているシリコントランジスタのゲート長は16nm以下であり、チップ作成に1兆円を超えている。40nmでも4000憶円程度必要である。新しい増幅回路を一から設計するのには、巨額の開発費が必要となることが予想されるので、産業化には大きな障害である。従って、できるだけ従来の回路を用いることが望ましい。
 以下、本発明の量子装置、量子ビット読み出し装置および電子回路の実施形態について説明する。
[第1実施形態]
 図1は第1実施形態の量子装置1の一例を示す図である。
 図1に示す例では、第1実施形態の量子装置1が、量子回路1Aと、量子回路1Bと、ラッチ回路1Cと、判定部1Dとを備えている。ラッチ回路1Cは、量子回路1Aと量子回路1Bとに一つ以上の配線で接続されている。量子回路1Aと量子回路1Bとがペアとして構成されている。
 ラッチ回路1Cは、量子回路1Aから出力された量子ビットの状態(スピン量子ビットの場合はスピン状態、電荷量子ビットの場合は電荷状態)をラッチし、そのスピン量子ビットの状態を示す信号を増幅する機能を有する。つまり、ラッチ回路1Cは、量子回路1Aから出力された量子ビットの状態を示す信号を増幅する回路を備えている。
 また、ラッチ回路1Cは、量子回路1Bから出力された量子ビットの状態をラッチし、その量子ビットの状態を示す信号を増幅する機能を有する。つまり、ラッチ回路1Cは、量子回路1Bから出力された量子ビットの状態を示す信号を増幅する回路を備えている。
 図1に示すラッチ回路1Cおよび判定部1Dは、例えば図2に示す量子ビット読み出し装置2として表現することができる。ラッチされた値は判定部1Dで確定し、最終的に計算結果として出力される。
 図2は第1実施形態の量子ビット読み出し装置2などの一例を示す図である。ここでは量子ビットがスピン量子ビットである場合を示している。
 図2に示す例では、量子ビット読み出し装置2が、単一電子素子2Aと、単一電子素子2Bと、増幅回路2Cと、増幅回路2Dと、差動増幅回路2Eと、判定部2I(図6参照)とを備えている。
 単一電子素子2Aは、量子回路1Aのスピン量子ビットの状態(量子ビットのスピン状態)を測定する。単一電子素子2Aのゲートは、量子回路1Aに接続されている。単一電子素子2Aのソースおよびドレインの一方は、1段目の増幅回路として機能する増幅回路2Cと、2段目の増幅回路として機能する差動増幅回路2Eとに接続されている。単一電子素子2Aのソースおよびドレインの他方は、例えば接地されている。
 単一電子素子2Bは、量子回路1Bのスピン量子ビットの状態を測定する。単一電子素子2Bのゲートは、量子回路1Bに接続されている。単一電子素子2Bのソースおよびドレインの一方は、1段目の増幅回路として機能する増幅回路2Dと、2段目の増幅回路として機能する差動増幅回路2Eとに接続されている。単一電子素子2Bのソースおよびドレインの他方は、例えば接地されている。
 図2に示す例では、増幅回路2Cが、単一電子素子2Aと差動増幅回路2Eとの間に配置されている。増幅回路2Cは、PチャネルMOSトランジスタによって構成されている。詳細には、増幅回路2Cとして機能するPチャネルMOSトランジスタのソースおよびドレインの一方が、単一電子素子2Aのソースおよびドレインの一方に接続されている。増幅回路2Cとして機能するPチャネルMOSトランジスタのソースおよびドレインの他方は、所定の電位Vに接続されている。
 増幅回路2Dは、単一電子素子2Bと差動増幅回路2Eとの間に配置されている。増幅回路2Dは、PチャネルMOSトランジスタによって構成されている。詳細には、増幅回路2Dとして機能するPチャネルMOSトランジスタのソースおよびドレインの一方が、単一電子素子2Bのソースおよびドレインの一方に接続されている。増幅回路2Dとして機能するPチャネルMOSトランジスタのソースおよびドレインの他方は、所定の電位Vに接続されている。
 図2に示す例では、量子ビット読み出し装置2が、増幅回路2Cと増幅回路2Dとを備えているが、他の例では、量子ビット読み出し装置2が、増幅回路2Cと増幅回路2Dとを備えていなくてもよい。
 なお、単一電子素子(2A、2B)は後述の図17および図19に示すように一般にアレイ状に配置されており、どの二つの単一電子素子を選ぶかを選択できるようにする(図17および図19では、単一電子素子を符号3A1、3C1で示し、単一電子素子アレイを符号3A、3Cで示す)。この時、選択した単一電子素子(2A、2B)と増幅回路(差動増幅回路2EのNチャネルMOSトランジスタ2E3、2E4等)がワード線WLに電圧をかけたトランジスタ(NチャネルMOSトランジスタ2E1、2E2)によって接続され、増幅回路(差動増幅回路2E)に信号が入力される。
 図2に示す例では、差動増幅回路2Eが、NチャネルMOSトランジスタ2E1、2E2、2E3、2E4、2E7と、PチャネルMOSトランジスタ2E5、2E6とを備えている。
 NチャネルMOSトランジスタ2E1のソースおよびドレインの一方は、単一電子素子2Aのソースおよびドレインの一方に接続されている。NチャネルMOSトランジスタ2E1のソースおよびドレインの他方は、NチャネルMOSトランジスタ2E3のゲートに接続されている。NチャネルMOSトランジスタ2E1のゲートは、ワード線WLに接続されている。
 NチャネルMOSトランジスタ2E3のソースおよびドレインの一方は、差動増幅回路2Eの第1出力端子Vout1と、PチャネルMOSトランジスタ2E5のソースおよびドレインの一方と、PチャネルMOSトランジスタ2E5のゲートと、PチャネルMOSトランジスタ2E6のゲートとに接続されている。NチャネルMOSトランジスタ2E3のソースおよびドレインの他方は、NチャネルMOSトランジスタ2E7のソースおよびドレインの一方に接続されている。
 NチャネルMOSトランジスタ2E7のソースおよびドレインの他方は、例えば接地されている。
 NチャネルMOSトランジスタ2E2のソースおよびドレインの一方は、単一電子素子2Bのソースおよびドレインの一方に接続されている。NチャネルMOSトランジスタ2E2のソースおよびドレインの他方は、NチャネルMOSトランジスタ2E4のゲートに接続されている。NチャネルMOSトランジスタ2E2のゲートは、ワード線WLに接続されている。
 NチャネルMOSトランジスタ2E4のソースおよびドレインの一方は、差動増幅回路2Eの第2出力端子Vout2と、PチャネルMOSトランジスタ2E6のソースおよびドレインの一方とに接続されている。NチャネルMOSトランジスタ2E4のソースおよびドレインの他方は、NチャネルMOSトランジスタ2E7のソースおよびドレインの一方に接続されている。
 PチャネルMOSトランジスタ2E5のソースおよびドレインの他方と、PチャネルMOSトランジスタ2E6のソースおよびドレインの他方とは、所定の電位Vに接続されている。
 差動増幅回路2Eの第1出力端子Vout1と第2出力端子Vout2とは、判定部2Iに接続されている。
 なお、本発明の差動増幅回路は一番基本となるものであり、非特許文献9に示されているような様々な増幅回路を代わりに用いてもよい。
 判定部2Iは、増幅回路2Cおよび差動増幅回路2Eによって増幅された単一電子素子2Aの電位(差動増幅回路2Eの第1出力端子Vout1における電位)と、増幅回路2Dおよび差動増幅回路2Eによって増幅された単一電子素子2Bの電位(差動増幅回路2Eの第2出力端子Vout2における電位)との違いを読み取る。
 詳細には、差動増幅回路2E、増幅回路2Cおよび増幅回路2Dによって、単一電子素子2Aの電位と単一電子素子2Bの電位との間の電位差が増幅されて出力端子Vout1、Vout2に出力される。つまり第1出力端子Vout1と第2出力端子Vout2の電位差は元の単一電子素子2Aの電位と単一電子素子2Bの電位との間の電位差よりも大きい。更に、判定部2Iは、増幅回路2Cおよび差動増幅回路2Eによって増幅された単一電子素子2Aの電位と、増幅回路2Dおよび差動増幅回路2Eによって増幅された単一電子素子2Bの電位とを比較することによって後段のデジタル回路で扱いやすい「0」と「1」との判定を行う。
 図2に示す例では、判定部2Iが、増幅回路2Cおよび差動増幅回路2Eによって増幅された単一電子素子2Aの電位と、増幅回路2Dおよび差動増幅回路2Eによって増幅された単一電子素子2Bの電位との違いを読み取ることにより、回路全体を小型化しつつ単一電子素子2A、2Bに接続された量子回路1A、1Bの量子ビットの状態を読み出すことができる。
 換言すれば、図1および図2に示す例では、量子回路1Aから出力された量子ビットの状態を示す信号(詳細には、スピン量子ビットの場合には単一電子素子2Aによって測定されて出力された量子回路1Aの量子ビットのスピン状態を示す信号)がラッチ回路1C(詳細には、増幅回路2Cおよび差動増幅回路2E)によって増幅された信号(詳細には、第1出力端子Vout1の電位)と、量子回路1Bから出力された量子ビットの状態を示す信号(詳細には、スピン量子ビットの場合には単一電子素子2Bによって測定されて出力された量子回路1Bの量子ビットのスピン状態を示す信号)がラッチ回路1C(詳細には、増幅回路2Dおよび差動増幅回路2E)によって増幅された信号(詳細には、第2出力端子Vout2の電位)との差が、増幅回路無しの二つの単位電子素子2Aと単一電子素子2Bの信号の差をより大きく増幅させたものになり、微小信号である単一電子素子2A、2Bの出力結果をより正確に比較することにより、量子回路1Aの(スピン)量子ビットの状態と量子回路1Bの(スピン)量子ビットの状態との違いを正確に判定することができる。詳細には、量子回路1Aの期待される論理出力と量子回路1Bの期待される論理出力が反対になるように、量子回路1Aの入力信号と量子回路1Bの入力信号を反対に入力することにより、実際の出力信号が第1出力端子Vout1と第2出力端子Vout2の間で反転するようにラッチ回路1Cが働くことによって、量子ビットの状態の読み出しの正解率を向上させることができる。
 図3は図2に示す単一電子素子2A等のような単一電子素子(詳細にはSET(単一電子トランジスタ))の特性の一例を説明するための図である。詳細には、図3(A)、図3(B)は単一電子素子の二つのトンネル膜のキャパシタンスが1aFと10aF、ゲートキャパシタンスが2aF、トンネル膜の抵抗が100kΩと1MΩの場合のI-Vをゲート電圧依存性(図3(A))とゲート電圧VGとドレイン電圧依存性(図3(B))を表している。図3(C)、図3(D)は、単一電子素子の二つのトンネル膜のキャパシタンスが1aFと20aF、ゲートキャパシタンスが2aF、トンネル膜の抵抗が200kΩと1MΩの場合のI-Vをゲート電圧依存性(図3(C))とゲート電圧VGとドレイン電圧依存性(図3(D))を表している。この図に示すように単一電子素子に流れる電流値はナノアンペアのオーダーであり、通常のCMOSと比べると小さい。ここでaFはアットファラッドであり10-18Fを示す。
 図4は図2に示す増幅回路2C(PチャネルMOSトランジスタ)等のようなMOSトランジスタ結合による第一の増幅回路の原理を説明するための図である。本発明の特徴の一つは、二つの単一電子素子を直接、第二の増幅回路に接続するのではなく、最初に単一電子素子とMOSトランジスタを直列に接続し、単一電子素子の電位を上下させてから、第二の増幅回路に接続することにある。この理由は上記の図3で説明したように、単一電子素子の電流値がナノアンペアのオーダーにあり、通常のCMOS回路で使われている電流、電圧の領域とは離れている点にある。もし、単一電子素子を直接、第二の増幅回路に接続すれば、単一電子素子の出力信号は、第二の増幅回路のノイズ信号のレベルに入ってしまい、単一電子素子の信号を正確に判定することができない。第一の増幅回路において、MOSトランジスタを接続することにより、安定的に第二の増幅回路に接続することが可能となる。図4は飽和領域における増幅原理と線形領域における増幅原理とを示している。
 図5は図2に示す単一電子素子2A等のような単一電子素子(詳細にはSET(単一電子トランジスタ))のゲート電圧V[V](横軸)と、図2に示す増幅回路2C(PチャネルMOSトランジスタ)等のようなMOSトランジスタ結合によって増幅された出力端子の電位Vout[V](縦軸)との関係を示す図である。詳細には、図5(A)は増幅回路のPチャネルMOSトランジスタのゲート幅Wpが0.5μmに設定された場合におけるゲート電圧V[V](横軸)と出力端子の電位Vout[V](縦軸)との関係を示しており、図5(B)は増幅回路のPチャネルMOSトランジスタのゲート幅Wpが1μmに設定された場合におけるゲート電圧V[V](横軸)と出力端子の電位Vout[V](縦軸)との関係を示している。図5に示すように、飽和領域における電位Voutは、線形領域における電位Voutより高くなる。
[第2実施形態]
 以下、本発明の量子装置、量子ビット読み出し装置および電子回路の第2実施形態について説明する。
 第2実施形態の量子装置1および量子ビット読み出し装置2は、後述する点を除き、上述した第1実施形態の量子装置1および量子ビット読み出し装置2と同様に構成されている。従って、第2実施形態の量子装置1および量子ビット読み出し装置2によれば、後述する点を除き、上述した第1実施形態の量子装置1および量子ビット読み出し装置2と同様の効果を奏することができる。
 図6は第2実施形態の量子ビット読み出し装置2などの一例を示す図である。第2実施形態の量子装置1のラッチ回路1Cおよび判定部1Dは、例えば図6に示す量子ビット読み出し装置2として表現することができる。
 図6に示す例では、量子ビット読み出し装置2が、単一電子素子2Aと、単一電子素子2Bと、増幅回路2Cと、増幅回路2Dと、差動増幅回路2Eと、判定部2Iとを備えている。増幅回路2Cは、NチャネルMOSトランジスタ2C1と、PチャネルMOSトランジスタ2C2とを備えている。増幅回路2Dは、NチャネルMOSトランジスタ2D1と、PチャネルMOSトランジスタ2D2とを備えている。差動増幅回路2Eは、NチャネルMOSトランジスタ2E3、2E4、2E7と、PチャネルMOSトランジスタ2E5、2E6とを備えている。
 単一電子素子2Aは、量子回路1Aのスピン量子ビットの状態を測定する。単一電子素子2Aのゲートは、量子回路1Aに接続されている。単一電子素子2Aのソースおよびドレインの一方は、1段目の増幅回路として機能する増幅回路2CのNチャネルMOSトランジスタ2C1のソースおよびドレインの一方と、2段目の増幅回路として機能する差動増幅回路2EのNチャネルMOSトランジスタ2E3のゲートとに接続されている。単一電子素子2Aのソースおよびドレインの他方は、例えば接地されている。
 単一電子素子2Bは、量子回路1Bのスピン量子ビットの状態を測定する。単一電子素子2Bのゲートは、量子回路1Bに接続されている。単一電子素子2Bのソースおよびドレインの一方は、1段目の増幅回路として機能する増幅回路2DのNチャネルMOSトランジスタ2D1のソースおよびドレインの一方と、2段目の増幅回路として機能する差動増幅回路2EのNチャネルMOSトランジスタ2E4のゲートとに接続されている。単一電子素子2Bのソースおよびドレインの他方は、例えば接地されている。
 図6に示す例では、増幅回路2Cが、単一電子素子2Aと差動増幅回路2Eとの間に配置されている。詳細には、増幅回路2CのNチャネルMOSトランジスタ2C1のソースおよびドレインの他方は、PチャネルMOSトランジスタ2C2のソースおよびドレインの一方に接続されている。PチャネルMOSトランジスタ2C2のソースおよびドレインの他方は、所定の電位Vに接続されている。
 増幅回路2Dは、単一電子素子2Bと差動増幅回路2Eとの間に配置されている。詳細には、増幅回路2DのNチャネルMOSトランジスタ2D1のソースおよびドレインの他方は、PチャネルMOSトランジスタ2D2のソースおよびドレインの一方に接続されている。PチャネルMOSトランジスタ2D2のソースおよびドレインの他方は、所定の電位Vに接続されている。
 NチャネルMOSトランジスタ2E3のソースおよびドレインの一方は、差動増幅回路2Eの第1出力端子Vout1と、PチャネルMOSトランジスタ2E5のソースおよびドレインの一方と、PチャネルMOSトランジスタ2E5のゲートと、PチャネルMOSトランジスタ2E6のゲートとに接続されている。NチャネルMOSトランジスタ2E3のソースおよびドレインの他方は、NチャネルMOSトランジスタ2E7のソースおよびドレインの一方に接続されている。
 NチャネルMOSトランジスタ2E7のソースおよびドレインの他方は、例えば接地されている。
 NチャネルMOSトランジスタ2E4のソースおよびドレインの一方は、差動増幅回路2Eの第2出力端子Vout2と、PチャネルMOSトランジスタ2E6のソースおよびドレインの一方とに接続されている。NチャネルMOSトランジスタ2E4のソースおよびドレインの他方は、NチャネルMOSトランジスタ2E7のソースおよびドレインの一方に接続されている。
 PチャネルMOSトランジスタ2E5のソースおよびドレインの他方と、PチャネルMOSトランジスタ2E6のソースおよびドレインの他方とは、所定の電位Vに接続されている。
 差動増幅回路2Eの第1出力端子Vout1と第2出力端子Vout2とは、判定部2Iに接続されている。
 判定部2Iは、増幅回路2CのNチャネルMOSトランジスタ2C1およびPチャネルMOSトランジスタ2C2と差動増幅回路2Eとによって増幅された単一電子素子2Aの電位(差動増幅回路2Eの第1出力端子Vout1における電位)と、増幅回路2DのNチャネルMOSトランジスタ2D1およびPチャネルMOSトランジスタ2D2と差動増幅回路2Eとによって増幅された単一電子素子2Bの電位(差動増幅回路2Eの第2出力端子Vout2における電位)との違いを読み取る。
 詳細には、差動増幅回路2Eと、増幅回路2CのNチャネルMOSトランジスタ2C1およびPチャネルMOSトランジスタ2C2と、増幅回路2DのNチャネルMOSトランジスタ2D1およびPチャネルMOSトランジスタ2D2とによって、差動増幅回路2Eの第1出力端子Vout1と第2出力端子Vout2の電位差を、元の単一電子素子2Aの電位と単一電子素子2Bの電位との間の電位差よりも大きいものとすることができる。更に、判定部2Iは、増幅回路2CのNチャネルMOSトランジスタ2C1およびPチャネルMOSトランジスタ2C2と差動増幅回路2Eとによって増幅された単一電子素子2Aの電位と、増幅回路2DのNチャネルMOSトランジスタ2D1およびPチャネルMOSトランジスタ2D2と差動増幅回路2Eとによって増幅された単一電子素子2Bの電位とを比較することによって後段のデジタル回路で扱いやすい「0」と「1」との判定を行う。
 図6に示す例では、判定部2Iが、増幅回路2CのNチャネルMOSトランジスタ2C1およびPチャネルMOSトランジスタ2C2と差動増幅回路2Eとによって増幅された単一電子素子2Aの電位と、増幅回路2DのNチャネルMOSトランジスタ2D1およびPチャネルMOSトランジスタ2D2と差動増幅回路2Eとによって増幅された単一電子素子2Bの電位との違いを読み取ることにより、回路全体を小型化しつつ単一電子素子2A、2Bに接続された量子回路1A、1Bの量子ビットの状態を読み出すことができる。
 換言すれば、第2実施形態では、量子回路1Aから出力された量子ビットの状態を示す信号(詳細には、スピン量子ビットの場合には単一電子素子2Aによって測定されて出力された量子回路1Aの量子ビットのスピン状態を示す信号)がラッチ回路1C(詳細には、増幅回路2CのNチャネルMOSトランジスタ2C1およびPチャネルMOSトランジスタ2C2ならびに差動増幅回路2E)によって増幅された信号(詳細には、第1出力端子Vout1の電位)と、量子回路1Bから出力された量子ビットの状態を示す信号(詳細には、スピン量子ビットの場合には単一電子素子2Bによって測定されて出力された量子回路1Bの量子ビットのスピン状態を示す信号)がラッチ回路1C(詳細には、増幅回路2DのNチャネルMOSトランジスタ2D1およびPチャネルMOSトランジスタ2D2ならびに差動増幅回路2E)によって増幅された信号(詳細には、第2出力端子Vout2の電位)とを比較することにより、量子回路1Aの(スピン)量子ビットの状態と量子回路1Bの(スピン)量子ビットの状態との違いを正確に判定することができる。詳細には、量子回路1Aの出力と量子回路1Bの出力が判定部2Iを通して、0と1との間で反転するように、量子回路1Bの入力信号を量子回路1Aの入力信号と例えばインバータを通して入力することによって(つまり、量子回路1Bの入力信号として、量子回路1Aの入力信号を反転させたものを用いることによって)、量子ビットの状態の読み出しの正解率を向上させることができる。
 図7は図6に示す増幅回路2C等のようなPチャネルMOSトランジスタおよびNチャネルMOSトランジスタによる第一の増幅を説明するための図である。詳細には、図7(A)は所定の条件下の飽和領域における単一電子素子(SET)のゲート電圧V[V](横軸)と増幅された出力端子の電位Vout[V](縦軸)との関係を示している。図7(B)は図7(A)とは異なる条件下の飽和領域における単一電子素子(SET)のゲート電圧V[V](横軸)と増幅された出力端子の電位Vout[V](縦軸)との関係を示している。図7(C)は所定の条件下の線形領域における単一電子素子(SET)のゲート電圧V[V](横軸)と増幅された出力端子の電位Vout[V](縦軸)との関係を示している。図7(D)は図7(C)とは異なる条件下の線形領域における単一電子素子(SET)のゲート電圧V[V](横軸)と増幅された出力端子の電位Vout[V](縦軸)との関係を示している。図7において△Voutは、増幅による電位Voutの増加分を示している。図5では単一電子素子に一つのMOSトランジスタを接続したが、同じように単一電子素子に二つのMOSトランジスタを接続した場合でも二つのMOSトランジスタの動作領域を制御することによって、第一の増幅動作が可能となる。またこの例では二つのMOSトランジスタのみ書いてあるが、3以上のMOSトランジスタを結合しても構わない。
 図8は図6に示す差動増幅回路2Eによる差動増幅シミュレーション結果を示す図である。詳細には、図8(A)は所定の条件における単一電子素子2A、2Bのゲート電圧V[V](横軸)と第1出力端子および第2出力端子の電位Vout[V](縦軸)との関係を示している。ここで電位Vout[V]は、図6の第1出力端子Vout1の電位と第2出力端子Vout2の電位とをまとめて示してあり、ゲート電圧V[V]を変化させることにより、第1出力端子Vout1の電位と第2出力端子Vout2の電位との差が顕著になることがわかる。図8(B)は図8(A)とは異なる条件における単一電子素子2A、2Bのゲート電圧V[V](横軸)と第1出力端子および第2出力端子の電位Vout[V](縦軸)との関係を示している。
 なお、スピン量子ドットの場合、ここで示すゲート電圧V[V]は図20に示すように単一電子素子に接続された量子ドット内の電子の有無により単一電子素子内の電位がシフトする状況を模擬的に示している。
[第3実施形態]
 以下、本発明の量子装置、量子ビット読み出し装置および電子回路の第3実施形態について説明する。
 第3実施形態の量子装置1および量子ビット読み出し装置2は、後述する点を除き、上述した第1実施形態の量子装置1および量子ビット読み出し装置2と同様に構成されている。従って、第3実施形態の量子装置1および量子ビット読み出し装置2によれば、後述する点を除き、上述した第1実施形態の量子装置1および量子ビット読み出し装置2と同様の効果を奏することができる。
 図9は第3実施形態の量子ビット読み出し装置2などの一例を示す図である。第3実施形態の量子装置1のラッチ回路1Cおよび判定部1Dは、例えば図9に示す量子ビット読み出し装置2として表現することができる。図9は量子ビットがスピン量子ビットである場合を示す。量子ビットが電荷量子ビットである場合は単一電子素子がそのまま電荷量子ビットして扱われる。
 図9に示す例では、量子ビット読み出し装置2が、単一電子素子2Aと、単一電子素子2Bと、SRAM(Static Random Access Memory)2Fと、判定部2Iとを備えている。SRAM2Fは、アクセストランジスタ2F1、2F2と、インバータ2F3、2F4とを備えている。インバータ2F3とインバータ2F4とは、クロスカップル接続されている。インバータ2F3は、PチャネルMOSトランジスタとNチャネルMOSトランジスタとによって構成されている。インバータ2F4は、PチャネルMOSトランジスタとNチャネルMOSトランジスタとによって構成されている。なお、以下ではSRAMを構成するトランジスタの数を6としているが、8個、9個、10個、またそれ以上のトランジスタからなる場合のSRAMも同様に量子ビット読み出し装置として使うことができる。
 単一電子素子2Aは、量子回路1Aのスピン量子ビットの状態を測定する。単一電子素子2Aのゲートは、量子回路1Aに接続されている。単一電子素子2Aのソースおよびドレインの一方は、SRAM2Fの第1出力端子Vout1に接続されている。単一電子素子2Aのソースおよびドレインの他方は、例えば接地されている。
 単一電子素子2Bは、量子回路1Bのスピン量子ビットの状態を測定する。単一電子素子2Bのゲートは、量子回路1Bに接続されている。単一電子素子2Bのソースおよびドレインの一方は、SRAM2Fの第2出力端子Vout2に接続されている。単一電子素子2Bのソースおよびドレインの他方は、例えば接地されている。
 アクセストランジスタ2F1のゲートは、ワード線WLに接続されている。アクセストランジスタ2F1のソースおよびドレインの一方は、SRAM2Fの第1出力端子Vout1に接続されている。アクセストランジスタ2F1のソースおよびドレインの他方は、インバータ2F3のPチャネルMOSトランジスタのソースおよびドレインの一方と、インバータ2F3のNチャネルMOSトランジスタのソースおよびドレインの一方と、インバータ2F4のPチャネルMOSトランジスタのゲートと、インバータ2F4のNチャネルMOSトランジスタのゲートとに接続されている。
 インバータ2F3のPチャネルMOSトランジスタのソースおよびドレインの他方は、所定の電位Vに接続されている。インバータ2F3のNチャネルMOSトランジスタのソースおよびドレインの他方は、例えば接地されている。
 アクセストランジスタ2F2のゲートは、ワード線WLに接続されている。アクセストランジスタ2F2のソースおよびドレインの一方は、SRAM2Fの第2出力端子Vout2に接続されている。アクセストランジスタ2F2のソースおよびドレインの他方は、インバータ2F4のPチャネルMOSトランジスタのソースおよびドレインの一方と、インバータ2F4のNチャネルMOSトランジスタのソースおよびドレインの一方と、インバータ2F3のPチャネルMOSトランジスタのゲートと、インバータ2F3のNチャネルMOSトランジスタのゲートとに接続されている。
 インバータ2F4のPチャネルMOSトランジスタのソースおよびドレインの他方は、所定の電位Vに接続されている。インバータ2F4のNチャネルMOSトランジスタのソースおよびドレインの他方は、例えば接地されている。
 SRAM2Fの第1出力端子Vout1と第2出力端子Vout2とは、判定部2Iに接続されている。
 判定部2Iは、SRAM2Fによって増幅された(つまり、SRAM2Fを介して出力される)単一電子素子2Aの電位(SRAM2Fの第1出力端子Vout1における電位)と、SRAM2Fによって増幅された(つまり、SRAM2Fを介して出力される)単一電子素子2Bの電位(SRAM2Fの第2出力端子Vout2における電位)との違いを読み取る。
 詳細には、SRAM2Fの第1出力端子Vout1および第2出力端子Vout2は、SRAM2Fによって増幅された単一電子素子2Aの電位と、SRAM2Fによって増幅された単一電子素子2Bの電位とを、例えば「0」と「1」とのような反転した結果として出力する。更に、判定部2Iは、SRAM2Fによって増幅された単一電子素子2Aの電位と、SRAM2Fによって増幅された単一電子素子2Bの電位とを比較することによって後段のデジタル回路で扱いやすい「0」と「1」との判定を行う。
 図9に示す例では、判定部2Iが、SRAM2Fによって増幅された単一電子素子2Aの電位と、SRAM2Fによって増幅された単一電子素子2Bの電位との違いを読み取ることにより、回路全体を小型化しつつ単一電子素子2A、2Bに接続された量子回路1A、1Bの量子ビットの状態を読み出すことができる。
 換言すれば、第3実施形態では、量子回路1Aから出力された(スピン)量子ビットの状態を示す信号がラッチ回路1C(詳細には、SRAM2F)によって増幅された信号(詳細には、SRAM2Fの第1出力端子Vout1の電位)と、量子回路1Bから出力された(スピン)量子ビットの状態を示す信号がラッチ回路1C(詳細には、SRAM2F)によって増幅された信号(詳細には、SRAM2Fの第2出力端子Vout2の電位)とを比較することにより、量子回路1Aの(スピン)量子ビットの状態と量子回路1Bの(スピン)量子ビットの状態との違いを正確に判定することができる。詳細には、量子回路1Aの出力と量子回路1Bの出力が判定部2Iを通して、0と1との間で反転するように、量子回路1Bの入力信号を量子回路1Aの入力信号と例えばインバータを通して入力することによって、量子ビットの状態の読み出しの正解率を向上させることができる。
 図10は図9に示す回路シミュレーション(時間変化)の結果を示す図である。詳細には、図10(A)はゲート長90nmの所定の条件におけるSRAM2Fの第1出力端子Vout1の電位および第2出力端子Vout2の電位の時間波形(時間で分離しないもの)と、その条件とは異なる条件におけるSRAM2Fの第1出力端子Vout1の電位および第2出力端子Vout2の電位の時間波形(時間で分離するもの)とを示している。図10(B)はゲート長65nmの図10(A)とは異なる条件におけるSRAM2Fの第1出力端子Vout1の電位および第2出力端子Vout2の電位の時間波形(時間で分離しないもの)と、その条件とは異なる条件におけるSRAM2Fの第1出力端子Vout1の電位および第2出力端子Vout2の電位の時間波形(時間で分離するもの)とを示している。
[第4実施形態]
 以下、本発明の量子装置、量子ビット読み出し装置および電子回路の第4実施形態について説明する。
 第4実施形態の量子装置1および量子ビット読み出し装置2は、後述する点を除き、上述した第3実施形態の量子装置1および量子ビット読み出し装置2と同様に構成されている。従って、第4実施形態の量子装置1および量子ビット読み出し装置2によれば、後述する点を除き、上述した第3実施形態の量子装置1および量子ビット読み出し装置2と同様の効果を奏することができる。
 図11は第4実施形態の量子ビット読み出し装置2などの一例を示す図である。第4実施形態の量子装置1のラッチ回路1Cおよび判定部1Dは、例えば図11に示す量子ビット読み出し装置2として表現することができる。図11は量子ビットがスピン量子ビットである場合を示す。量子ビットが電荷量子ビットである場合は単一電子素子がそのまま電荷量子ビットして扱われる。
 図11に示す例では、量子ビット読み出し装置2が、単一電子素子2Aと、単一電子素子2Bと、増幅回路2Cと、増幅回路2Dと、SRAM2Fと、判定部2I(図9参照)とを備えている。増幅回路2Cは、PチャネルMOSトランジスタによって構成されている。増幅回路2Dは、PチャネルMOSトランジスタによって構成されている。SRAM2Fは、アクセストランジスタ2F1、2F2と、インバータ2F3、2F4とを備えている。インバータ2F3とインバータ2F4とは、クロスカップル接続されている。インバータ2F3は、PチャネルMOSトランジスタとNチャネルMOSトランジスタとによって構成されている。インバータ2F4は、PチャネルMOSトランジスタとNチャネルMOSトランジスタとによって構成されている。
 単一電子素子2Aは、量子回路1Aのスピン量子ビットの状態を測定する。単一電子素子2Aのゲートは、量子回路1Aに接続されている。単一電子素子2Aのソースおよびドレインの一方は、SRAM2Fの第1出力端子Vout1に接続されている。単一電子素子2Aのソースおよびドレインの他方は、例えば接地されている。
 単一電子素子2Bは、量子回路1Bのスピン量子ビットの状態を測定する。単一電子素子2Bのゲートは、量子回路1Bに接続されている。単一電子素子2Bのソースおよびドレインの一方は、SRAM2Fの第2出力端子Vout2に接続されている。単一電子素子2Bのソースおよびドレインの他方は、例えば接地されている。
 増幅回路2Cとして機能するPチャネルMOSトランジスタのソースおよびドレインの一方は、SRAM2Fの第1出力端子Vout1に接続されている。増幅回路2Cとして機能するPチャネルMOSトランジスタのソースおよびドレインの他方は、所定の電位Vに接続されている。つまり、増幅回路2Cは、単一電子素子2AとSRAM2Fとの間に配置されている。
 増幅回路2Dとして機能するPチャネルMOSトランジスタのソースおよびドレインの一方は、SRAM2Fの第2出力端子Vout2に接続されている。増幅回路2Dとして機能するPチャネルMOSトランジスタのソースおよびドレインの他方は、所定の電位Vに接続されている。つまり、増幅回路2Dは、単一電子素子2BとSRAM2Fとの間に配置されている。
 SRAM2Fのアクセストランジスタ2F1、2F2およびインバータ2F3、2F4は、図9に示すSRAM2Fのアクセストランジスタ2F1、2F2およびインバータ2F3、2F4と同様に接続されている。
 SRAM2Fの第1出力端子Vout1と第2出力端子Vout2とは、判定部2Iに接続されている。
 判定部2Iは、増幅回路2CおよびSRAM2Fによって増幅された(つまり、SRAM2Fを介して出力される)単一電子素子2Aの電位(SRAM2Fの第1出力端子Vout1における電位)と、増幅回路2DおよびSRAM2Fによって増幅された(つまり、SRAM2Fを介して出力される)単一電子素子2Bの電位(SRAM2Fの第2出力端子Vout2における電位)との違いを読み取る。
 詳細には、SRAM2Fの第1出力端子Vout1および第2出力端子Vout2は、増幅回路2CおよびSRAM2Fによって増幅された単一電子素子2Aの電位と、増幅回路2DおよびSRAM2Fによって増幅された単一電子素子2Bの電位との電位差を、元の単一電子素子2Aの出力端子と単一電子素子2Bの出力端子との電位差と比べて大きな値として出力する。更に、判定部2Iは、増幅回路2CおよびSRAM2Fによって増幅された単一電子素子2Aの電位と、増幅回路2DおよびSRAM2Fによって増幅された単一電子素子2Bの電位とを比較することによって「0」と「1」との判定を行う。
 図11に示す例では、判定部2Iが、増幅回路2CおよびSRAM2Fによって増幅された単一電子素子2Aの電位と、増幅回路2DおよびSRAM2Fによって増幅された単一電子素子2Bの電位との違いを読み取ることにより、回路全体を小型化しつつ単一電子素子2A、2Bに接続された量子回路1A、1Bの量子ビットの状態を読み出すことができる。
 換言すれば、第4実施形態では、量子回路1Aから出力された(スピン)量子ビットの状態を示す信号がラッチ回路1C(詳細には、増幅回路2CおよびSRAM2F)によって増幅された信号(詳細には、SRAM2Fの第1出力端子Vout1の電位)と、量子回路1Bから出力されたスピン量子ビットの状態を示す信号がラッチ回路1C(詳細には、増幅回路2DおよびSRAM2F)によって増幅された信号(詳細には、SRAM2Fの第2出力端子Vout2の電位)とを比較することにより、量子回路1Aの(スピン)量子ビットの状態と量子回路1Bの(スピン)量子ビットの状態との違いを正確に判定することができる。詳細には、量子回路1Aの出力と量子回路1Bの出力が判定部2Iを通して、0と1との間で反転するように、量子回路1Bの入力信号を量子回路1Aの入力信号と例えばインバータを通して入力することによって、量子ビットの状態の読み出しの正解率を向上させることができる。
[第5実施形態]
 以下、本発明の量子装置、量子ビット読み出し装置および電子回路の第5実施形態について説明する。
 第5実施形態の量子装置1および量子ビット読み出し装置2は、後述する点を除き、上述した第1実施形態の量子装置1および量子ビット読み出し装置2と同様に構成されている。従って、第5実施形態の量子装置1および量子ビット読み出し装置2によれば、後述する点を除き、上述した第1実施形態の量子装置1および量子ビット読み出し装置2と同様の効果を奏することができる。
 図12は第5実施形態の量子ビット読み出し装置2の一例を示す図である。第5実施形態の量子装置1のラッチ回路1Cおよび判定部1Dは、例えば図12に示す量子ビット読み出し装置2として表現することができる。
 図12に示す例では、量子ビット読み出し装置2が、センスアンプ2G1と、イコライザ2G2と、トランジスタ2G3、2G4と、判定部2I(図6参照)とを備えている。センスアンプ2G1は、増幅回路として機能する第1PチャネルMOSトランジスタと第2PチャネルMOSトランジスタと第1NチャネルMOSトランジスタと第2NチャネルMOSトランジスタとによって構成されている。イコライザ2G2は、ゲートに共通のイコライズ信号EQが入力される第1NチャネルMOSトランジスタと第2NチャネルMOSトランジスタとによって構成されている。
 単一電子素子2Aは、量子回路1A(図12には図示せず)のスピン量子ビットの状態を測定する。単一電子素子2Aは、量子回路1Aに含まれている。単一電子素子2Aのソースおよびドレインの一方は、トランジスタ2G3のソースおよびドレインの一方に接続されている。単一電子素子2Aのソースおよびドレインの他方は、例えば接地されている。
 単一電子素子2Bは、量子回路1B(図12には図示せず)のスピン量子ビットの状態を測定する。単一電子素子2Bは、量子回路1Bに含まれている。単一電子素子2Bのソースおよびドレインの一方は、トランジスタ2G4のソースおよびドレインの一方に接続されている。単一電子素子2Bのソースおよびドレインの他方は、例えば接地されている。
 トランジスタ2G3のソースおよびドレインの他方は、増幅回路2Gの第1出力端子Vout1に接続されている。トランジスタ2G3のソースおよびドレインの他方と増幅回路2Gの第1出力端子Vout1とを接続する配線が第1ビット線として機能する。トランジスタ2G3のゲートは、ワード線WLに接続されている。
 トランジスタ2G4のソースおよびドレインの他方は、増幅回路2Gの第2出力端子Vout2に接続されている。トランジスタ2G4のソースおよびドレインの他方と増幅回路2Gの第2出力端子Vout2とを接続する配線が第2ビット線として機能する。トランジスタ2G4のゲートは、ワード線WLに接続されている。
 トランジスタ2G3のソースおよびドレインの他方と増幅回路2Gの第1出力端子Vout1とを接続する第1ビット線は、センスアンプ2G1の第1PチャネルMOSトランジスタのゲートと、センスアンプ2G1の第1NチャネルMOSトランジスタのゲートとに接続されている。
 トランジスタ2G4のソースおよびドレインの他方と増幅回路2Gの第2出力端子Vout2とを接続する第2ビット線は、センスアンプ2G1の第2PチャネルMOSトランジスタのゲートと、センスアンプ2G1の第2NチャネルMOSトランジスタのゲートとに接続されている。
 センスアンプ2G1の第1PチャネルMOSトランジスタのソースおよびドレインの一方は、第2ビット線に接続されている。センスアンプ2G1の第2PチャネルMOSトランジスタのソースおよびドレインの一方は、第1ビット線に接続されている。センスアンプ2G1の第1PチャネルMOSトランジスタのソースおよびドレインの他方と、センスアンプ2G1の第2PチャネルMOSトランジスタのソースおよびドレインの他方とには、共通のセンスアンプ活性化信号SAPが入力される。
 センスアンプ2G1の第1NチャネルMOSトランジスタのソースおよびドレインの一方は、第2ビット線に接続されている。センスアンプ2G1の第2NチャネルMOSトランジスタのソースおよびドレインの一方は、第1ビット線に接続されている。センスアンプ2G1の第1NチャネルMOSトランジスタのソースおよびドレインの他方と、センスアンプ2G1の第2NチャネルMOSトランジスタのソースおよびドレインの他方とには、共通のセンスアンプ活性化信号SANが入力される。
 イコライザ2G2の第1NチャネルMOSトランジスタのソースおよびドレインの一方は、第1ビット線に接続されている。イコライザ2G2の第2NチャネルMOSトランジスタのソースおよびドレインの一方は、第2ビット線に接続されている。イコライザ2G2の第1NチャネルMOSトランジスタのソースおよびドレインの他方は、イコライザ2G2の第2NチャネルMOSトランジスタのソースおよびドレインの他方に接続されている。
 増幅回路2Gの第1出力端子Vout1と第2出力端子Vout2とは、判定部2Iに接続されている。
 判定部2Iは、増幅回路2Gによって増幅された(つまり、増幅回路2Gを介して出力される)単一電子素子2Aの電位(増幅回路2Gの第1出力端子Vout1における電位)と、増幅回路2Gによって増幅された(つまり、増幅回路2Gを介して出力される)単一電子素子2Bの電位(増幅回路2Gの第2出力端子Vout2における電位)との違いを読み取る。
 詳細には、増幅回路2Gの第1出力端子Vout1および第2出力端子Vout2は、増幅回路2Gによって増幅された単一電子素子2Aの電位と、増幅回路2Gによって増幅された単一電子素子2Bの電位との電位差を、元の単一電子素子2Aの出力端子と単一電子素子2Bの出力端子との電位差と比べて大きな値として出力する。更に、判定部2Iは、増幅回路2Gによって増幅された単一電子素子2Aの電位と、増幅回路2Gによって増幅された単一電子素子2Bの電位とを比較することによって「0」と「1」との判定を行う。
 図12に示す例では、判定部2Iが、増幅回路2Gによって増幅された単一電子素子2Aの電位と、増幅回路2Gによって増幅された単一電子素子2Bの電位との違いを読み取ることにより、回路全体を小型化しつつ単一電子素子2A、2Bに接続された量子回路1A、1Bの量子ビットの状態を読み出すことができる。
 換言すれば、第5実施形態では、量子回路1Aから出力された(スピン)量子ビットの状態を示す信号がラッチ回路1C(詳細には、増幅回路2G)によって増幅された信号(詳細には、増幅回路2Gの第1出力端子Vout1の電位)と、量子回路1Bから出力された(スピン)量子ビットの状態を示す信号がラッチ回路1C(詳細には、増幅回路2G)によって増幅された信号(詳細には、増幅回路2Gの第2出力端子Vout2の電位)とを比較することにより、量子回路1Aの(スピン)量子ビットの状態と量子回路1Bの(スピン)量子ビットの状態との違いを正確に判定することができる。詳細には、量子回路1Aの出力と量子回路1Bの出力が判定部2Iを通して、0と1との間で反転するように、量子回路1Bの入力信号を量子回路1Aの入力信号と例えばインバータを通して入力することによって、量子ビットの状態の読み出しの正解率を向上させることができる。
[第6実施形態]
 以下、本発明の量子装置、量子ビット読み出し装置および電子回路の第6実施形態について説明する。
 第6実施形態の量子装置1および量子ビット読み出し装置2は、後述する点を除き、上述した第5実施形態の量子装置1および量子ビット読み出し装置2と同様に構成されている。従って、第6実施形態の量子装置1および量子ビット読み出し装置2によれば、後述する点を除き、上述した第5実施形態の量子装置1および量子ビット読み出し装置2と同様の効果を奏することができる。
 図13は第6実施形態の量子ビット読み出し装置2の一例を示す図である。第6実施形態の量子装置1のラッチ回路1Cは、例えば図13に示す量子ビット読み出し装置2として表現することができる。
 図13に示す例では、量子ビット読み出し装置2が、単一電子素子2Aと、単一電子素子2Bと、増幅回路2Cと、増幅回路2Dと、増幅回路2Gと、判定部2I(図6参照)とを備えている。増幅回路2Cは、PチャネルMOSトランジスタによって構成されている。増幅回路2Dは、PチャネルMOSトランジスタによって構成されている。
 なお、増幅回路2C、2Dは図7のように二つ以上のMOSトランジスタから構成されてもよい。
 単一電子素子2Aは、量子回路1A(図2参照)のスピン量子ビットの状態を測定する。単一電子素子2Aのゲートは、量子回路1Aに接続されている。単一電子素子2Aのソースおよびドレインの一方は、増幅回路2Gのトランジスタ2G3のソースおよびドレインの一方と、増幅回路2Cとして機能するPチャネルMOSトランジスタのソースおよびドレインの一方とに接続されている。単一電子素子2Aのソースおよびドレインの他方は、例えば接地されている。増幅回路2Cとして機能するPチャネルMOSトランジスタのソースおよびドレインの他方は、所定の電位Vに接続されている。つまり、増幅回路2Cは、単一電子素子2Aと増幅回路2Gとの間に配置されている。
 単一電子素子2Bは、量子回路1B(図2参照)のスピン量子ビットの状態を測定する。単一電子素子2Bのゲートは、量子回路1Bに接続されている。単一電子素子2Bのソースおよびドレインの一方は、増幅回路2Gのトランジスタ2G4のソースおよびドレインの一方と、増幅回路2Dとして機能するPチャネルMOSトランジスタのソースおよびドレインの一方とに接続されている。単一電子素子2Bのソースおよびドレインの他方は、例えば接地されている。増幅回路2Dとして機能するPチャネルMOSトランジスタのソースおよびドレインの他方は、所定の電位Vに接続されている。つまり、増幅回路2Dは、単一電子素子2Bと増幅回路2Gとの間に配置されている。
 増幅回路2Gは、図12に示す増幅回路2Gと同様に構成されている。つまり、SRAM2Fの第1出力端子Vout1と第2出力端子Vout2とは、判定部2Iに接続されている。
 判定部2Iは、増幅回路2Cおよび増幅回路2Gによって増幅された(つまり、増幅回路2Gを介して出力される)単一電子素子2Aの電位(増幅回路2Gの第1出力端子Vout1における電位)と、増幅回路2Dおよび増幅回路2Gによって増幅された(つまり、増幅回路2Gを介して出力される)単一電子素子2Bの電位(増幅回路2Gの第2出力端子Vout2における電位)との違いを読み取る。
 詳細には、増幅回路2Gの第1出力端子Vout1および第2出力端子Vout2は、増幅回路2Cおよび増幅回路2Gによって増幅された単一電子素子2Aの電位と、増幅回路2Dおよび増幅回路2Gによって増幅された単一電子素子2Bの電位との電位差を、元の単一電子素子2Aの出力端子と単一電子素子2Bの出力端子との電位差と比べて大きな値として出力する。更に、判定部2Iは、増幅回路2Cおよび増幅回路2Gによって増幅された単一電子素子2Aの電位と、増幅回路2Dおよび増幅回路2Gによって増幅された単一電子素子2Bの電位とを比較することによって「0」と「1」との判定を行う。
 図13に示す例では、判定部2Iが、増幅回路2Cおよび増幅回路2Gによって増幅された単一電子素子2Aの電位と、増幅回路2Dおよび増幅回路2Gによって増幅された単一電子素子2Bの電位との違いを読み取ることにより、回路全体を小型化しつつ単一電子素子2A、2Bに接続された量子回路1A、1Bの量子ビットの状態を読み出すことができる。
 換言すれば、第6実施形態では、量子回路1Aから出力された(スピン)量子ビットの状態を示す信号がラッチ回路1C(詳細には、増幅回路2Cおよび増幅回路2G)によって増幅された信号(詳細には、増幅回路2Gの第1出力端子Vout1の電位)と、量子回路1Bから出力された(スピン)量子ビットの状態を示す信号がラッチ回路1C(詳細には、増幅回路2Dおよび増幅回路2G)によって増幅された信号(詳細には、増幅回路2Gの第2出力端子Vout2の電位)とを比較することにより、量子回路1Aの(スピン)量子ビットの状態と量子回路1Bの(スピン)量子ビットの状態との違いを正確に判定することができる。詳細には、量子回路1Aの出力と量子回路1Bの出力が判定部2Iを通して、0と1との間で反転するように、量子回路1Bの入力信号を量子回路1Aの入力信号と例えばインバータを通して入力することによって、量子ビットの状態の読み出しの正解率を向上させることができる。
 図18は図13に示す第6実施形態の量子ビット読み出し装置2での電圧の時間変化を示す図である。
 図18に示すように、イコライザ2G2とセンスアンプ2G1の入力信号を時間的に調整することで、増幅回路2Gの第1出力端子Vout1の電位Vout1と増幅回路2Gの第2出力端子Vout2の電位Vout2を明確に区別することができる。
[第7実施形態]
 以下、本発明の量子装置、量子ビット読み出し装置および電子回路の第7実施形態について説明する。
 第7実施形態の量子装置1および量子ビット読み出し装置2は、後述する点を除き、上述した第1実施形態の量子装置1および量子ビット読み出し装置2と同様に構成されている。従って、第7実施形態の量子装置1および量子ビット読み出し装置2によれば、後述する点を除き、上述した第1実施形態の量子装置1および量子ビット読み出し装置2と同様の効果を奏することができる。
 図14は第7実施形態の量子ビット読み出し装置2などの一例を示す図である。第7実施形態の量子装置1のラッチ回路1Cおよび判定部1Dは、例えば図14に示す量子ビット読み出し装置2として表現することができる。
 図14は量子ビットがスピン量子ビットである場合を示す。量子ビットが電荷量子ビットである場合は単一電子素子がそのまま電荷量子ビットして扱われる。
 図14に示す例では、量子ビット読み出し装置2が、単一電子素子2Aと、単一電子素子2Bと、クロスカップルMOSトランジスタ回路2Hと、判定部2Iとを備えている。クロスカップルMOSトランジスタ回路2Hは、クロスカップル接続された一対のPチャネルMOSトランジスタ2H1、2H2と、トランジスタ2H3、2H4とを備えている。
 単一電子素子2Aは、量子回路1Aの量子ビットの状態を測定する。単一電子素子2Aのゲートは、量子回路1Aに接続されている。単一電子素子2Aのソースおよびドレインの一方は、クロスカップルMOSトランジスタ回路2Hのトランジスタ2H3のソースおよびドレインの一方に接続されている。単一電子素子2Aのソースおよびドレインの他方は、例えば接地されている。
 単一電子素子2Bは、量子回路1Bの量子ビットの状態を測定する。単一電子素子2Bのゲートは、量子回路1Bに接続されている。単一電子素子2Bのソースおよびドレインの一方は、クロスカップルMOSトランジスタ回路2Hのトランジスタ2H4のソースおよびドレインの一方に接続されている。単一電子素子2Bのソースおよびドレインの他方は、例えば接地されている。
 トランジスタ2H3のソースおよびドレインの他方は、クロスカップルMOSトランジスタ回路2Hの第1出力端子Vout1に接続されている。トランジスタ2H3のゲートは、ワード線WLに接続されている。
 トランジスタ2H4のソースおよびドレインの他方は、クロスカップルMOSトランジスタ回路2Hの第2出力端子Vout2に接続されている。トランジスタ2H4のゲートは、ワード線WLに接続されている。
 PチャネルMOSトランジスタ2H1のソースおよびドレインの一方と、PチャネルMOSトランジスタ2H2のゲートとは、クロスカップルMOSトランジスタ回路2Hの第1出力端子Vout1に接続されている。PチャネルMOSトランジスタ2H1のソースおよびドレインの他方は、所定の電位Vに接続されている。
 PチャネルMOSトランジスタ2H2のソースおよびドレインの一方と、PチャネルMOSトランジスタ2H1のゲートとは、クロスカップルMOSトランジスタ回路2Hの第2出力端子Vout2に接続されている。PチャネルMOSトランジスタ2H2のソースおよびドレインの他方は、所定の電位Vに接続されている。
 クロスカップルMOSトランジスタ回路2Hの第1出力端子Vout1と第2出力端子Vout2とは、判定部2Iに接続されている。
 判定部2Iは、クロスカップルMOSトランジスタ回路2Hによって増幅された(つまり、クロスカップルMOSトランジスタ回路2Hを介して出力される)単一電子素子2Aの電位(クロスカップルMOSトランジスタ回路2Hの第1出力端子Vout1における電位)と、クロスカップルMOSトランジスタ回路2Hによって増幅された(つまり、クロスカップルMOSトランジスタ回路2Hを介して出力される)単一電子素子2Bの電位(クロスカップルMOSトランジスタ回路2Hの第2出力端子Vout2における電位)との違いを読み取る。
 詳細には、クロスカップルMOSトランジスタ回路2Hの第1出力端子Vout1および第2出力端子Vout2は、クロスカップルMOSトランジスタ回路2Hによって増幅された単一電子素子2Aの電位と、クロスカップルMOSトランジスタ回路2Hによって増幅された単一電子素子2Bの電位との電位差を、元の単一電子素子2Aの出力端子と単一電子素子2Bの出力端子との電位差と比べて大きな値として出力する。更に、判定部2Iは、クロスカップルMOSトランジスタ回路2Hによって増幅された単一電子素子2Aの電位と、クロスカップルMOSトランジスタ回路2Hによって増幅された単一電子素子2Bの電位とを比較することによって「0」と「1」との判定を行う。
 図14に示す例では、判定部2Iが、クロスカップルMOSトランジスタ回路2Hによって増幅された単一電子素子2Aの電位と、クロスカップルMOSトランジスタ回路2Hによって増幅された単一電子素子2Bの電位との違いを読み取ることにより、回路全体を小型化しつつ単一電子素子2A、2Bに接続された量子回路1A、1Bの量子ビットの状態を読み出すことができる。
 換言すれば、第7実施形態では、量子回路1Aから出力された(スピン)量子ビットの状態を示す信号がラッチ回路1C(詳細には、クロスカップルMOSトランジスタ回路2H)によって増幅された信号(詳細には、クロスカップルMOSトランジスタ回路2Hの第1出力端子Vout1の電位)と、量子回路1Bから出力された(スピン)量子ビットの状態を示す信号がラッチ回路1C(詳細には、クロスカップルMOSトランジスタ回路2H)によって増幅された信号(詳細には、クロスカップルMOSトランジスタ回路2Hの第2出力端子Vout2の電位)とを比較することにより、量子回路1Aの(スピン)量子ビットの状態と量子回路1Bの(スピン)量子ビットの状態との違いを正確に判定することができる。詳細には、量子回路1Bの入力信号を量子回路1Aの入力信号と例えばインバータを通して入力することによって、量子ビットの状態の読み出しの正解率を向上させることができる。
 なお、図14ではPチャネルMOSトランジスタのペアを用いているが、NチャネルMOSトランジスタを用いてもいいし、単一電子素子の一端を接地せずに他の単一電子素子やNチャネルMOSトランジスタを一つ以上追加してもよい。一般にPチャネルMOSトランジスタとNチャネルMOSトランジスタをそれぞれ一つ以上単一電子と直列もしくは並列に接続してもよい。
[第8実施形態]
 以下、本発明の量子装置、量子ビット読み出し装置および電子回路の第8実施形態について説明する。
 第8実施形態の量子装置1および量子ビット読み出し装置2は、後述する点を除き、上述した第1実施形態の量子装置1および量子ビット読み出し装置2と同様に構成されている。従って、第8実施形態の量子装置1および量子ビット読み出し装置2によれば、後述する点を除き、上述した第1実施形態の量子装置1および量子ビット読み出し装置2と同様の効果を奏することができる。
 図15は第8実施形態の量子ビット読み出し装置2などの一例を示す図である。第8実施形態の量子装置1のラッチ回路1Cおよび判定部1Dは、例えば図15に示す量子ビット読み出し装置2として表現することができる。図15は量子ビットがスピン量子ビットである場合を示す。量子ビットが電荷量子ビットの場合は単一電子素子がそのまま電荷量子ビットして扱われる。
 図15に示す例では、量子ビット読み出し装置2が、差動増幅回路2Eと、判定部2I(図2参照)とを備えている。差動増幅回路2Eは、バイポーラトランジスタ2E11、2E12と、抵抗2E13、2E14、2E15、2E16と、定電流源2E17とを備えている。
 単一電子素子2Aは、量子回路1Aの量子ビットの状態を測定する。単一電子素子2Aは量子回路1Aに含まれる。単一電子素子2Aのソースおよびドレインの一方は、バイポーラトランジスタ2E11のベースに接続されると共に、抵抗2E15を介して所定の電位Vに接続されている。単一電子素子2Aのソースおよびドレインの他方は、例えば接地されている。
 単一電子素子2Bは、量子回路1Bの量子ビットの状態を測定する。単一電子素子2Bは量子回路1Bに含まれる。単一電子素子2Bのソースおよびドレインの一方は、バイポーラトランジスタ2E12のベースに接続されると共に、抵抗2E16を介して所定の電位Vに接続されている。単一電子素子2Bのソースおよびドレインの他方は、例えば接地されている。
 バイポーラトランジスタ2E11のエミッタは、定電流源2E17に接続されている。バイポーラトランジスタ2E11のコレクタは、差動増幅回路2Eの第1出力端子Vout1に接続されている。差動増幅回路2Eの第1出力端子Vout1は、抵抗2E13を介して所定の電位Vに接続されている。
 バイポーラトランジスタ2E12のエミッタは、定電流源2E17に接続されている。バイポーラトランジスタ2E12のコレクタは、差動増幅回路2Eの第2出力端子Vout2に接続されている。差動増幅回路2Eの第2出力端子Vout2は、抵抗2E14を介して所定の電位Vに接続されている。
 差動増幅回路2Eの第1出力端子Vout1と第2出力端子Vout2とは、判定部2Iに接続されている。
 判定部2Iは、差動増幅回路2Eによって増幅された単一電子素子2Aの電位(差動増幅回路2Eの第1出力端子における電位)と、差動増幅回路2Eによって増幅された単一電子素子2Bの電位(差動増幅回路2Eの第2出力端子における電位)との違いを読み取る。
 詳細には、差動増幅回路2Eの第1出力端子Vout1および第2出力端子Vout2は、差動増幅回路2Eによって増幅された単一電子素子2Aの電位と、差動増幅回路2Eによって増幅された単一電子素子2Bの電位との電位差を増幅する。更に、判定部2Iは、差動増幅回路2Eによって増幅された単一電子素子2Aの電位と、差動増幅回路2Eとよって増幅された単一電子素子2Bの電位とを比較することによって「0」と「1」との判定を行う。
 図15に示す例では、判定部2Iが、差動増幅回路2Eによって増幅された単一電子素子2Aの電位と、差動増幅回路2Eによって増幅された単一電子素子2Bの電位との違いを読み取ることにより、回路全体を小型化しつつ単一電子素子2A、2Bに接続された量子回路1A、1Bの量子ビットの状態を読み出すことができる。
 換言すれば、第8実施形態では、量子回路1Aから出力された量子ビットの状態を示す信号がラッチ回路1C(詳細には、差動増幅回路2E)によって増幅された信号(詳細には、差動増幅回路2Eの第1出力端子Vout1の電位)と、量子回路1Bから出力された量子ビットの状態を示す信号がラッチ回路1C(詳細には、差動増幅回路2E)によって増幅された信号(詳細には、差動増幅回路2Eの第2出力端子Vout2の電位)とを比較することにより、量子回路1Aの量子ビットの状態と量子回路1Bの量子ビットの状態との違いを正確に判定することができる。詳細には、量子回路1Aの出力と量子回路1Bの出力が判定部2Iを通して、0と1との間で反転するように、量子回路1Bの入力信号を量子回路1Aの入力信号と例えばインバータを通して入力することによって、量子ビットの状態の読み出しの正解率を向上させることができる。
[第9実施形態]
 以下、本発明の量子装置、量子ビット読み出し装置および電子回路の第9実施形態について説明する。
 第9実施形態の電子回路3は、後述する点を除き、上述した第7実施形態の量子ビット読み出し装置2と同様に構成されている。従って、第9実施形態の電子回路3によれば、後述する点を除き、上述した第7実施形態の量子ビット読み出し装置2と同様の効果を奏することができる。
 図16は第9実施形態の電子回路3の一例を示す図である。
 図16に示す例では、電子回路3が、第1単一電子素子アレイ3A(図17参照)と、第1セレクタ3B(図17参照)と、第2単一電子素子アレイ3C(図17参照)と、第2セレクタ3D(図17参照)と、増幅回路3Eと、判定部3Fとを備えている。
 第1単一電子素子アレイ3Aは複数の単一電子素子を含む。第1セレクタ3Bは、第1単一電子素子アレイ3Aに含まれる複数の単一電子素子から、1つの単一電子素子である第1単一電子素子3A1を選択する。
 第2単一電子素子アレイ3Cは複数の単一電子素子を含む。第2セレクタ3Dは、第2単一電子素子アレイ3Cに含まれる複数の単一電子素子から、1つの単一電子素子である第2単一電子素子3C1を選択する。
 増幅回路3Eは、図14に示すクロスカップルMOSトランジスタ回路2Hと同様に構成されている。増幅回路3Eは、第1セレクタ3Bによって選択された第1単一電子素子3A1の電位と、第2セレクタ3Dによって選択された第2単一電子素子3C1の電位とを増幅する。
 判定部3Fは、図14に示す判定部2Iと同様に機能する。判定部3Fは、増幅回路3Eによって増幅された第1単一電子素子3A1の電位(増幅回路3Eの第1出力端子Vout1の電位)と、増幅回路3Eによって増幅された第2単一電子素子3C1の電位(増幅回路3Eの第2出力端子Vout2の電位)とを比較することによって、0と1との判定を行う。
 つまり、図16に示す例では、電子回路3において、第1単一電子素子3A1の電位と第2単一電子素子3C1の電位との違いが読み取られる。
 図17は上述した第1実施形態から第9実施形態までの単一電子素子2Aとして第1単一電子素子アレイ3Aに含まれる複数の単一電子素子のうちの1つの単一電子素子(第1単一電子素子3A1)が用いられ、第1実施形態から第9実施形態までの単一電子素子2Bとして第2単一電子素子アレイ3Cに含まれる複数の単一電子素子のうちの1つの単一電子素子(第2単一電子素子3C1)が用いられる例を説明するための図である。図17は単一電子素子のみ描かれているが、これは単一電子素子が電荷量子ビットの場合であり、スピン量子ビットに適用する場合には各単一電子素子がスピン量子ビットの読み取り装置として働く。
 図17のアレイ構造は、第1実施形態から第9実施形態まで適用することができるが、特に図17に示すアレイ構造で図16の実施形態を適用する場合、第1セレクタ3Bが、図9に示す単一電子素子2Aと同様に機能する第1単一電子素子3A1(図16参照)を第1単一電子素子アレイ3Aから選択する。第1セレクタ3Bによって選択された第1単一電子素子3A1は、増幅回路3Eに接続される。
 第2単一電子素子アレイ3Cは、第1単一電子素子アレイ3Aと同様に構成されている。第2セレクタ3Dは、第1セレクタ3Bと同様に構成されている。第2セレクタ3Dは、図9に示す単一電子素子2Bと同様に機能する第2単一電子素子3C1(図16参照)を第2単一電子素子アレイ3Cから選択する。第2セレクタ3Dによって選択された第2単一電子素子3C1は、増幅回路3Eに接続される。
 図17に示す増幅回路3Eは、図9に示すSRAM2Fと同様に機能する。図17に示す判定部3Fは、図9に示す判定部2Iと同様に機能する。つまり、判定部3Fは、第1セレクタ3Bによって選択されて増幅回路3Eによって増幅された(つまり、増幅回路3Eを介して出力される)第1単一電子素子3A1の電位(増幅回路3Eの第1出力端子Vout1における電位)と、第2セレクタ3Dによって選択されて増幅回路3Eによって増幅された(つまり、増幅回路3Eを介して出力される)第2単一電子素子3C1の電位(増幅回路3Eの第2出力端子Vout2における電位)との違いを読み取る。
 詳細には、増幅回路3Eの第1出力端子Vout1および第2出力端子Vout2は、増幅回路3Eによって増幅された第1単一電子素子3A1の電位と、増幅回路3Eによって増幅された第2単一電子素子3C1の電位とを、例えば「0」と「1」とのような反転した結果として出力する。更に、判定部3Fは、増幅回路3Eによって増幅された第1単一電子素子3A1の電位と、増幅回路3Eによって増幅された第2単一電子素子3C1の電位とを比較することによって「0」と「1」との判定を行う。
 図19は第9実施形態の電子回路3の第1単一電子素子アレイ3AとしてNANDフラッシュメモリが用いられ、第2単一電子素子アレイ3CとしてNANDフラッシュメモリが用いられる例を説明するための図である。詳細には、図19は第1単一電子素子アレイ3Aとして機能するNANDフラッシュメモリのコントロールゲートとフローティングゲートとトンネル酸化膜とソースとドレインと電子との関係を示している。
 以上、本発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。上述した各実施形態および各例に記載の構成を組み合わせてもよい。
 本発明は主にスピン量子ビットについて説明を加えてきたが、単一電子素子を電荷量子ビット素子としてすべて置き換えても成立する。例えば図16に示す例では、単一電子素子3A1、3C1そのものを電荷量子ビットとして動作させることもできる。図16は特に電荷量子ビット(3A1)と電荷量子ビット(3C1)とがキャパシタンスを通して結合している状態を示す。電荷量子ビット(3A1)と電荷量子ビット(3C1)とのキャパシタンス結合は非特許文献8に示すように例えばイジング相互作用として働く。電荷量子ビット間が離れている場合にはこの相互作用は働かない。このようにペアとなる単一電子同士が近接してキャパシタンスを介して直接相互作用しても構わない。
 また第一のMOSトランジスタとしてPMOSを記述したが、NMOSトランジスタでも構わない。またNMOSトランジスタの場合、単一電子素子と接地との間にMOSトランジスタを入れても構わない。図17、図19においては隣り合った電荷量子ビットが相互作用をしても構わない。
 なお、上述した実施形態における量子装置1、量子ビット読み出し装置2または電子回路3が備える各部の機能全体あるいはその一部は、これらの機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶部のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 上記実施形態で量子回路1Aから出力されたスピン量子ビットの状態と量子回路1Bの入力信号を量子回路1Aの入力信号と例えばインバータを通して入力すること(つまり、量子回路1Bの入力信号として、量子回路1Aの入力信号を反転させたものを用いることによって)について述べたがこれは片方のスピン量子ドットのスピンの向きともう一つのスピン量子ドットのスピンの向きが逆向きであることを示すことが多い。
 また、入力部分について、これまでの図のスピン量子ビットの例では、二つの量子ドットのうち片方の量子ドット内のスピン状態がアップのとき、ダウンスピンが入ることが可能となるという状態を考えてきた。これは、単一電子素子の隣の量子ドットに電子がある場合、単一電子素子の電流が流れにくくなることを利用している。つまり単一電子素子の隣の電子の有無によって、単一電子素子のゲート電圧がシフトするのと等価であること利用している。図20はこの様子の模式図を示しており、電荷があるかないかで、クーロン振動のピーク位置がずれることを示している。上記の実施形態では、このシフト分を単一電子素子のゲート電圧の違いということで記述した。なお、単一電子素子を制御する電極は二つ以上であっても構わない。
 さらに、これは一例であって、例えば、非特許文献7のように単一電子素子に接するスピン量子ドットが一つの場合でも構わない。
 上記の説明で量子回路1B内の量子ビットの数は量子回路1A内の量子ビットの数と必ずしも等しくなくても構わない。この場合、量子回路1B内の量子ビットの量子状態を0か1に固定し、参照する量子ビットの集まりとして、量子回路1A内の量子ビットの量子状態を決定することができる。
1…量子装置、1A…量子回路、1B…量子回路、1C…ラッチ回路、1D…判定部、2…量子ビット読み出し装置、2A…単一電子素子、2B…単一電子素子、2C…増幅回路、2C1…トランジスタ、2C2…トランジスタ、2D…増幅回路、2D1…トランジスタ、2D2…トランジスタ、2E…差動増幅回路、2E1、2E2、2E3、2E4、2E5、2E6、2E7…トランジスタ、2E11、2E12…バイポーラトランジスタ、2E13、2E14、2E15、2E16…抵抗、2E17…定電流源、2F…SRAM、2F1、2F2…アクセストランジスタ、2F3、2F4…インバータ、2G…増幅回路、2G1…センスアンプ、2G2…イコライザ、2G3、2G4…トランジスタ、2H…クロスカップルMOSトランジスタ回路、2H1、2H2…PチャネルMOSトランジスタ、2H3、2H4…トランジスタ、2I…判定部、3…電子回路、3A…第1単一電子素子アレイ、3A1…単一電子素子、3B…第1セレクタ、3C…第2単一電子素子アレイ、3C2…単一電子素子、3D…第2セレクタ、3E…増幅回路、3F…判定部

Claims (15)

  1.  第1量子回路と、
     第2量子回路と、
     前記第1量子回路と前記第2量子回路とに接続されたラッチ回路とを備え、
     前記ラッチ回路は、
     前記第1量子回路から出力された第1量子ビットの状態をラッチして、前記第1量子ビットの状態を示す信号を増幅する機能と、
     前記第2量子回路から出力された第2量子ビットの状態をラッチして、前記第2量子ビットの状態を示す信号を増幅する機能とを有する、
     量子装置。
  2.  第1量子回路に接続された第1単一電子素子と、
     第2量子回路に接続された第2単一電子素子と、
     前記第1単一電子素子と前記第2単一電子素子とに接続された差動増幅回路とを備え、
     前記差動増幅回路によって増幅された前記第1単一電子素子の電位と前記第2単一電子素子の電位との違いが読み取られる、
     量子ビット読み出し装置。
  3.  前記第1単一電子素子と前記差動増幅回路との間に配置された第1増幅回路と、
     前記第2単一電子素子と前記差動増幅回路との間に配置された第2増幅回路とを備える、
     請求項2に記載の量子ビット読み出し装置。
  4.  前記第1増幅回路は、第1導電型トランジスタと第2導電型トランジスタとを備え、
     前記第2増幅回路は、第1導電型トランジスタと第2導電型トランジスタとを備える、
     請求項3に記載の量子ビット読み出し装置。
  5.  第1量子回路に接続された第1単一電子素子と、
     第2量子回路に接続された第2単一電子素子と、
     前記第1単一電子素子と前記第2単一電子素子とに接続されたSRAM(Static Random Access Memory)とを備え、
     前記SRAMを介して出力される前記第1単一電子素子の電位と前記第2単一電子素子の電位との違いが読み取られる、
     量子ビット読み出し装置。
  6.  前記SRAMは、
     前記第1単一電子素子に接続された第1アクセストランジスタと、
     前記第2単一電子素子に接続された第2アクセストランジスタと、
     前記第1アクセストランジスタに接続された第1インバータと、
     前記第2アクセストランジスタに接続された第2インバータとを備え、
     前記第1インバータと前記第2インバータとはクロスカップル接続されている、
     請求項5に記載の量子ビット読み出し装置。
  7.  前記第1単一電子素子と前記SRAMとの間に配置された第1増幅回路と、
     前記第2単一電子素子と前記SRAMとの間に配置された第2増幅回路とを備える、
     請求項5に記載の量子ビット読み出し装置。
  8.  第1量子回路に接続された第1単一電子素子と、第2量子回路に接続された第2単一電子素子とに接続された増幅回路を備え、
     前記増幅回路を介して出力される前記第1単一電子素子の電位と前記第2単一電子素子の電位との違いが読み取られる、
     量子ビット読み出し装置。
  9.  前記増幅回路は、センスアンプとイコライザとを備える、
     請求項8に記載の量子ビット読み出し装置。
  10.  第1量子回路に接続された第1単一電子素子と、
     第2量子回路に接続された第2単一電子素子と、
     前記第1単一電子素子と前記第2単一電子素子とに接続されたクロスカップルMOSトランジスタ回路とを備え、
     前記クロスカップルMOSトランジスタ回路は、クロスカップル接続された一対のPチャネルMOSトランジスタを備え、
     前記クロスカップルMOSトランジスタ回路を介して出力される前記第1単一電子素子の電位と前記第2単一電子素子の電位との違いが読み取られる、
     量子ビット読み出し装置。
  11.  前記差動増幅回路は、
     ベースが前記第1単一電子素子に接続された第1バイポーラトランジスタと、
     ベースが前記第2単一電子素子に接続された第2バイポーラトランジスタとを備える、
     請求項2に記載の量子ビット読み出し装置。
  12.  前記第1単一電子素子の電位と、前記第2単一電子素子の電位とが、反転した結果として出力される、
     請求項2から請求項11のいずれか一項に記載の量子ビット読み出し装置。
  13.  前記第1単一電子素子の電位と前記第2単一電子素子の電位とを比較することによって0と1との判定を行う判定部を備える、
     請求項2から請求項12のいずれか一項に記載の量子ビット読み出し装置。
  14.  複数の単一電子素子を含む第1単一電子素子アレイと、
     前記第1単一電子素子アレイから1つの単一電子素子である第1単一電子素子を選択する第1セレクタと、
     複数の単一電子素子を含む第2単一電子素子アレイと、
     前記第2単一電子素子アレイから1つの単一電子素子である第2単一電子素子を選択する第2セレクタと、
     前記第1セレクタによって選択された前記第1単一電子素子の電位と、前記第2セレクタによって選択された前記第2単一電子素子の電位とを増幅する増幅回路とを備え、
     前記第1単一電子素子の電位と前記第2単一電子素子の電位との違いが読み取られる、
     電子回路。
  15.  前記第1単一電子素子の電位と前記第2単一電子素子の電位とを比較することによって0と1との判定を行う判定部を備える、
     請求項14に記載の電子回路。
PCT/JP2022/024351 2021-06-24 2022-06-17 量子装置、量子ビット読み出し装置および電子回路 WO2022270436A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/567,486 US20240273392A1 (en) 2021-06-24 2022-06-17 Quantum device, quantum bit readout device, and electronic circuit
CN202280044245.7A CN117546182A (zh) 2021-06-24 2022-06-17 量子装置、量子比特读出装置和电子电路
EP22828353.7A EP4361902A1 (en) 2021-06-24 2022-06-17 Quantum device, quantum bit readout device, and electronic circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-104978 2021-06-24
JP2021104978A JP2023003726A (ja) 2021-06-24 2021-06-24 量子装置、量子ビット読み出し装置および電子回路

Publications (1)

Publication Number Publication Date
WO2022270436A1 true WO2022270436A1 (ja) 2022-12-29

Family

ID=84543811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024351 WO2022270436A1 (ja) 2021-06-24 2022-06-17 量子装置、量子ビット読み出し装置および電子回路

Country Status (5)

Country Link
US (1) US20240273392A1 (ja)
EP (1) EP4361902A1 (ja)
JP (1) JP2023003726A (ja)
CN (1) CN117546182A (ja)
WO (1) WO2022270436A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003085979A (ja) * 2001-07-04 2003-03-20 Matsushita Electric Ind Co Ltd センスアンプ回路
US7830695B1 (en) 2006-10-30 2010-11-09 Hrl Laboratories Capacitive arrangement for qubit operations
JP2013152768A (ja) * 2012-01-24 2013-08-08 Seiko Instruments Inc 不揮発性メモリ装置の読出し回路
JP2018163495A (ja) * 2017-03-24 2018-10-18 東芝メモリ株式会社 情報処理装置、情報処理システムおよび情報処理方法
JP2021104978A (ja) 2019-12-26 2021-07-26 サンスター株式会社 口腔用組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003085979A (ja) * 2001-07-04 2003-03-20 Matsushita Electric Ind Co Ltd センスアンプ回路
US7830695B1 (en) 2006-10-30 2010-11-09 Hrl Laboratories Capacitive arrangement for qubit operations
JP2013152768A (ja) * 2012-01-24 2013-08-08 Seiko Instruments Inc 不揮発性メモリ装置の読出し回路
JP2018163495A (ja) * 2017-03-24 2018-10-18 東芝メモリ株式会社 情報処理装置、情報処理システムおよび情報処理方法
JP2021104978A (ja) 2019-12-26 2021-07-26 サンスター株式会社 口腔用組成物

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ANDREA MORELLO ET AL.: "Single-shot readout of an electron spin in silicon", NATURE, vol. 467, 2010, pages 687
ANDREA RUFFINO ET AL.: "A Fully-integrated 40-nm 5-6.5 GHz Cryo-CMOS system-on-Chip with I/Q Receiver and Frequency Synthesizer for Scalable Multiplexed Readout of Quantum Dots", IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC, 2021
BEHZAD RAZAVI: "Design of Analog CMOS Integrated Circuits", 2000, MCGRAW HILL BOOK CO
FRANK ARUTEKUNAL ARYA ET AL.: "Quantum supremacy using a programmable superconducting processor", NATURE, vol. 574, 2019, pages 505 - 510, XP055676410, DOI: 10.1038/s41586-019-1666-5
M. VELDHORSTC. H. YANGJ. C. C. HWANGW. HUANGJ. P. DEHOLLAINJ. T. MUHONENS. SIMMONSA. LAUCHTF. E. HUDSONK. M. ITOH: "A two-qubit logic gate in silicon", NATURE, vol. 526, 2015, pages 410 - 414
M. W. JOHNSON ET AL.: "Quantum annealing with manufactured spins", NATURE, vol. 473, 2011, pages 194 - 198, XP055480572, DOI: 10.1038/nature10012
NAKUL SHAJI ET AL.: "Spin blockade and lifetime-enhanced transport in a few-electron Si/SiGe double quantum dot", NATURE PHYSICS, vol. 4, 2008, pages 540 - 544
SOUVIK MAHAPATRAA.M. IONESCU: "A novel single electron SRAM architecture", MATERIALS SCIENCE, 2004
T TANAMOTOY NISHIJ DEGUCHI: "Quantum Annealing Machines Based on Semiconductor Nanostructures", JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, vol. 88, no. 6, 2019, pages 061013

Also Published As

Publication number Publication date
JP2023003726A (ja) 2023-01-17
US20240273392A1 (en) 2024-08-15
EP4361902A9 (en) 2024-08-28
CN117546182A (zh) 2024-02-09
EP4361902A1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
van der Wagt Tunneling-based SRAM
JP4771710B2 (ja) メモリの差動電流モードを検出する方法と装置
JP4088954B2 (ja) 半導体記憶装置の読み出し回路
KR20100094192A (ko) 탄소나노튜브 박막을 이용한 에스램
Shrivastava et al. Design of high-speed low variation static noise margin ternary S-RAM cells
Wicht Current Sense Amplifiers for Embedded SRAM in High-Performance System-on-a-Chip Designs: For Embedded SRAM in High-Performance System-on-a-Chip Designs
Krishna Gopi Krishna et al. Heterogeneous energy‐sparing reconfigurable logic: spin‐based storage and CNFET‐based multiplexing
Elangovan et al. Stability analysis of 6T CNTFET SRAM cell for single and multiple CNTs
US6621729B1 (en) Sense amplifier incorporating a symmetric midpoint reference
JPH02282995A (ja) 半導体記憶装置
Shrivastava et al. Design of compact reliable energy efficient read disturb free 17T CNFET Ternary S-RAM cell
Elangovan et al. Read Improved and Low Leakage Power CNTFET Based Hybrid 10t SRAM Cell for Low Power Applications
WO2022270436A1 (ja) 量子装置、量子ビット読み出し装置および電子回路
Kumar et al. Node voltage and KCL model-based low leakage volatile and non-volatile 7T SRAM cells
Kartik et al. A new low voltage high performance Dual Port 7-CNT SRAM Cell with improved differential reference based sense amplifier
Jaiswal et al. Design and analysis of CNTFET-based SRAM
Deng Design and development of low-power and reliable logic circuits based on spin-transfer torque magnetic tunnel junctions
CN110120237B (zh) 一种具有良好传感裕度的stt-mram传感电路
Jayanthi et al. Single ended 12T cntfet sram cell with high stability for low power smart device applications
KR950006336B1 (ko) 반도체 메모리장치의 전류센싱회로
Zhu et al. A low offset comparator for high speed low power ADC
Kumar et al. Design of DRAM sense amplifier using 45nm technology
JP4702359B2 (ja) 半導体記憶装置の読み出し回路
Karmakar Multivalued static random access memory using multivalued FET
Parekh Simulation and design methodology for hybrid SET-CMOS logic at room temperature operation= Simulation et méthodologie de conception de circuits logiques hybrides SET-CMOS opérants à température ambiante.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828353

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280044245.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022828353

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022828353

Country of ref document: EP

Effective date: 20240124