WO2022269965A1 - コールドプレート - Google Patents

コールドプレート Download PDF

Info

Publication number
WO2022269965A1
WO2022269965A1 PCT/JP2022/002209 JP2022002209W WO2022269965A1 WO 2022269965 A1 WO2022269965 A1 WO 2022269965A1 JP 2022002209 W JP2022002209 W JP 2022002209W WO 2022269965 A1 WO2022269965 A1 WO 2022269965A1
Authority
WO
WIPO (PCT)
Prior art keywords
recess
resin
base plate
resin cover
cold plate
Prior art date
Application number
PCT/JP2022/002209
Other languages
English (en)
French (fr)
Inventor
将宗 松田
耕一 益子
洋司 川原
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2023529462A priority Critical patent/JP7508708B2/ja
Priority to US18/546,146 priority patent/US20240121912A1/en
Publication of WO2022269965A1 publication Critical patent/WO2022269965A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20263Heat dissipaters releasing heat from coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to cold plates. This application claims priority based on Japanese Patent Application No. 2021-102878 filed in Japan on June 22, 2021, the content of which is incorporated herein.
  • Patent Document 1 discloses a cold plate that includes a metal base plate having a plurality of fins arranged in parallel and a metal cover that covers the plurality of fins.
  • the melted resin may flow out to the inside and outside of the resin cover and form burrs. found out.
  • the burrs formed on the inside of the resin cover may narrow the flow path of the coolant flowing through the cold plate, or may peel off from the resin cover and clog the flow path. In these cases, the burrs formed inside the resin cover may reduce the cooling performance of the cold plate.
  • the burrs formed on the outside of the resin cover sometimes peel off from the resin cover and fall off the cold plate. In this case, the burrs formed on the outer side of the resin cover may have an adverse effect on the electronic device to which the cold plate is attached.
  • the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a cold plate that can suppress the occurrence of burrs when heat-sealing a resin cover to a base plate.
  • a cold plate includes a first surface, a second surface located opposite to the first surface, and a plurality of cold plates arranged in parallel on the first surface.
  • a metal base plate having fins, and a truncated cylindrical resin cover covering the plurality of fins, wherein the first surface is provided with a recess recessed toward the second surface, The resin cover is heat-sealed to the base plate on the inner surface of the recess.
  • the heat-melted resin tends to accumulate in the recesses formed in the cold plate. This suppresses the resin from protruding from the concave portion, that is, the formation of burrs.
  • a first roughened portion having a plurality of fine holes is formed on the inner surface of the recess, and the resin cover is thermally fused to the base plate at the first roughened portion. good too.
  • the base plate may be formed with a resin pool that communicates with the space surrounded by the recess.
  • the resin reservoir may be recessed from the bottom surface of the recess toward the second surface.
  • the resin reservoir when viewed from the facing direction in which the base plate and the resin cover face each other, the resin reservoir may protrude outward from the recess, and the resin reservoir may open to the first surface.
  • the resin reservoir may overlap the first surface when viewed from the facing direction in which the base plate and the resin cover face each other.
  • the recess has a tapered structure in which the inner diameter of the recess gradually increases in the direction from the bottom surface of the recess toward the first surface, and a second roughened portion is formed on the side surface of the recess.
  • a flange portion including a surface that extends outward from the resin cover and is heat-sealed to the base plate is formed so that the base plate and the resin cover are bonded together.
  • a dimension of the recess in the opposing direction may be greater than a dimension of the flange in the opposing direction.
  • FIG. 2 is a plan view showing a cold plate according to the first embodiment;
  • FIG. FIG. 2 is a cross-sectional view along the II-II cross section shown in FIG. 1;
  • FIG. 3 is an enlarged view showing a portion of FIG. 2;
  • 4 is an enlarged view of area A shown in FIG. 3;
  • FIG. 5 is an enlarged view showing part of a cold plate according to a second embodiment;
  • FIG. 11 is an enlarged view showing part of a cold plate according to a third embodiment; It is an enlarged view showing a part of cold plate concerning a 4th embodiment.
  • FIG. 11 is an enlarged view showing part of a cold plate according to a fifth embodiment;
  • FIG. 11 is a plan view showing a cold plate according to a modification;
  • the cold plate 1A includes a metal base plate 10 and a resin cover 20.
  • the base plate 10 has a first surface 10a and a second surface 10b opposite to the first surface 10a.
  • the base plate 10 has a plurality of fins 11 arranged side by side on the first surface 10a. Each of the plurality of fins 11 is formed in a plate shape.
  • the shape of the resin cover 20 is a truncated cylinder.
  • the resin cover 20 covers the fins 11 . Since the resin cover 20 covers the base plate 10, the cold plate 1A has a shape of a hollow container as a whole.
  • the direction in which the base plate 10 and the resin cover 20 face each other is referred to as the facing direction Z.
  • the facing direction Z is also the direction in which the first surface 10a and the second surface 10b of the base plate 10 are aligned.
  • the facing direction Z is also the direction perpendicular to the base plate 10 .
  • viewing from the opposite direction Z may be referred to as plan view.
  • the facing direction Z is also referred to as the up-down direction Z.
  • the vertical direction Z may or may not be parallel to the vertical direction.
  • the direction from the base plate 10 toward the resin cover 20 along the facing direction Z is referred to as +Z direction or upward direction.
  • the +Z direction is also the direction from the second surface 10b of the base plate 10 toward the first surface 10a.
  • the orientation opposite to the +Z orientation is referred to as the -Z orientation or down.
  • the direction orthogonal to the facing direction Z is called a first direction X.
  • One orientation along the first direction X is referred to as the +X orientation or rightward.
  • the orientation opposite to the +X orientation is referred to as the -X orientation or leftward.
  • a direction orthogonal to both the opposing direction Z and the first direction X is called a second direction Y.
  • One direction along the second direction Y is called the +Y direction or the far side.
  • the direction opposite to the +Y direction is called the -Y direction or front side.
  • the base plate 10 is desirably made of metal with good thermal conductivity.
  • the first surface 10a of the base plate 10 according to this embodiment faces upward, and the second surface 10b faces downward.
  • the first surface 10a is also referred to as the upper surface 10a.
  • the second surface 10b is also called a heat source surface 10b.
  • the plurality of fins 11 protrude upward from the first surface 10a of the base plate 10 .
  • the plurality of fins 11 are arranged in parallel in the second direction Y at substantially constant intervals. "Substantially constant” also includes the case where the interval in the second direction Y can be regarded as constant if the manufacturing error is removed. Note that the intervals at which the plurality of fins 11 are arranged in parallel in the second direction Y may not be substantially constant.
  • the second surface 10b is a flat surface.
  • the second surface (heat source surface) 10b is in contact with a heat source (not shown) (CPU, other heat-generating components, etc.).
  • the second surface 10b is in contact with a heat transfer member that transfers heat from a heat source (not shown).
  • the shape of the second surface 10b is not limited to a flat surface. The shape of the second surface 10b can be appropriately changed as long as a heat source or a heat transfer member can contact the second surface 10b.
  • the first surface 10a of the base plate 10 is formed with a recess 12 that is recessed toward the second surface 10b (downward).
  • the concave portion 12 is formed in a substantially rectangular annular shape when viewed from the opposing direction Z, and surrounds the plurality of fins 11 (see also FIG. 1).
  • the inner surface of the recess 12 includes a bottom surface 12a, an inner surface (side surface) 12b, and an outer surface (side surface) 12c.
  • the inner side surface 12 b is a surface located on the inner peripheral side of the annular recess 12 .
  • the inner surface 12b corresponds to the inner peripheral surface of the recess 12 formed in an annular shape.
  • the outer surface 12 c is a surface positioned on the outer peripheral side of the annular recess 12 .
  • the outer surface 12c corresponds to the outer peripheral surface of the recess 12 formed in an annular shape.
  • polyphenylene sulfide PPS
  • polyamide polypropylene
  • polyethylene terephthalate polyetheretherketone
  • PEEK polyetheretherketone
  • POM polyacetal
  • the resin cover 20 has a ceiling wall portion 21 , a peripheral wall portion 22 and a flange portion 23 .
  • the ceiling wall portion 21 is formed in a substantially rectangular shape in plan view.
  • the shape of the top wall portion 21 is not limited to a substantially rectangular shape, and may be substantially circular, substantially elliptical, or substantially polygonal in plan view, for example.
  • substantially rectangular,” “substantially circular,” “substantially elliptical,” and “substantially polygonal” are cases where it can be regarded as a rectangular, circular, elliptical, or polygonal shape in plan view if chamfering and manufacturing errors are removed. is also included.
  • the peripheral wall portion 22 extends downward from the outer peripheral edge of the ceiling wall portion 21 in a tubular shape.
  • the flange portion 23 annularly extends from the lower end (open end) of the peripheral wall portion 22 toward the outside of the resin cover 20 . As shown in FIG. 3, the lower surface of the flange portion 23 is in contact with a first roughened portion 30A (described later). The lower surface of the flange portion 23 is also the surface that is heat-sealed to the base plate 10 .
  • the resin cover 20 is formed with an inlet connecting portion 24 and an outlet connecting portion 25 .
  • Each of the inlet connecting portion 24 and the outlet connecting portion 25 protrudes upward from the ceiling wall portion 21 .
  • the resin cover 20 is formed with a supply hole 24a penetrating the ceiling wall portion 21 and the inlet connecting portion 24, and a drain hole 25a penetrating the ceiling wall portion 21 and the outlet connecting portion 25. As shown in FIG.
  • Each of the supply hole 24a and the drain hole 25a communicates with the internal space S of the cold plate 1A.
  • the inlet connecting portion 24 is a portion to which an inlet pipe (not shown) that supplies refrigerant is connected.
  • the coolant flows into the internal space S of the cold plate 1A through the inlet connecting portion 24 and the supply holes 24a.
  • the outlet connecting portion 25 is a portion to which an outlet pipe (not shown) that discharges the refrigerant is connected.
  • the coolant that has passed through the internal space S is discharged to the outside of the cold plate 1A through the drain hole 25a and the outlet connecting portion 25.
  • the coolant for example, water, alcohol, other well-known compounds, and the like can be used as appropriate.
  • the supply hole 24a extends from the lower surface of the ceiling wall portion 21 and opens to the right side surface of the inlet connecting portion 24.
  • the drain hole 25 a extends from the lower surface of the ceiling wall portion 21 and opens to the left side surface of the outlet connecting portion 25 .
  • the configurations of the supply hole 24a and the drain hole 25a can be appropriately changed as long as each of the supply hole 24a and the drain hole 25a communicates with the internal space S of the cold plate 1A.
  • the cold plate 1A may not have the inlet connection 24 and the outlet connection 25 .
  • each of the supply hole 24a and the drain hole 25a may pass through only the ceiling wall portion 21 .
  • Each of the supply hole 24 a and the drain hole 25 a may penetrate through the peripheral wall portion 22 .
  • the resin cover 20 (flange portion 23) is heat-sealed to the base plate 10 on the inner surface of the recess 12 (the bottom surface 12a in this embodiment).
  • the principle of fusion bonding of the resin cover 20 to the base plate 10 in this embodiment will be described below.
  • a first roughened portion 30A is formed on the bottom surface 12a in contact with the flange portion 23 by suitable surface treatment to be described later.
  • the first roughened portion 30A has a plurality of fine holes 30a.
  • the concave portion 12 is heated and the flange portion 23 is pressed against the roughened bottom surface 12a. At this time, a part of the flange portion 23 softens or melts, enters the fine holes 30a, and then solidifies. As a result, the resin that enters the fine holes 30a and solidifies serves as an anchor, and the resin cover 20 and the base plate 10 are firmly joined.
  • the bottom surface 12a (the first roughened portion 30A) was directed upward in the vertical direction during the heat-sealing operation. It is preferably done in the state.
  • the surface treatment performed on the bottom surface 12a to form the first roughened portion 30A for example, chemical conversion treatment such as etching or laser irradiation can be used.
  • chemical conversion treatment such as etching or laser irradiation
  • a portion of the base plate 10 that is not roughened may be appropriately masked.
  • chemical conversion treatment such as etching on the entire recess 12
  • surface treatment may be performed not only on the bottom surface 12a but also on the inner side surface 12b and the outer side surface 12c.
  • the bottom surface 12a is oxidized by the action of the laser beam, and OH groups become abundant on the surface of the first roughened portion 30A.
  • the resin molecules forming the resin cover 20 are hydrogen-bonded with the OH groups located on the surface of the first roughened portion 30A, and the resin cover 20 and the base plate 10 are joined more firmly.
  • the cold plate 1A is a heat dissipation module that receives heat from a heat source or a heat transfer member in contact with the second surface (heat source surface) 10b of the base plate 10 and releases the received heat to the outside.
  • Refrigerant is supplied to the internal space S of the cold plate 1A through the supply holes 24a (see FIG. 2). Since the plurality of fins 11 extend along the first direction X in the internal space S of the cold plate 1A, the supplied coolant is guided along the first direction X and flows mainly rightward. At this time, the coolant absorbs heat from the heat source via the base plate 10 (especially the fins 11). The refrigerant that has absorbed heat is discharged to the outside of the cold plate 1A through the drain holes 25a. Through the above process, the cold plate 1A can receive heat from the heat source and release the received heat to the outside.
  • the cold plate 1A has a resin cover 20 heat-sealed to the base plate 10 .
  • the resin cover 20 heat-sealed, the melted resin may flow to the inside and outside of the resin cover 20 to form burrs.
  • the burrs formed on the inside of the resin cover 20 may narrow the flow path of the coolant flowing through the cold plate, or peel off from the resin cover 20 and clog the flow path. In these cases, the burrs formed inside the resin cover 20 may reduce the cooling performance of the cold plate.
  • the burrs formed on the outside of the resin cover 20 sometimes come off from the resin cover 20 and fall off the cold plate. In this case, the burrs formed on the outer side of the resin cover 20 may adversely affect the equipment to which the cold plate is attached.
  • the resin cover 20 and the base plate 10 are thermally fused at the bottom surface 12a of the recess 12 formed in the base plate 10. As shown in FIG. As a result, when the resin melts from the resin cover 20 during heat fusion, the melted resin tends to accumulate inside the recess 12 . This prevents the melted resin from overflowing to the outside of the concave portion 12 . Therefore, the resin melted from the resin cover 20 is prevented from forming burrs on the inside and outside of the resin cover 20 .
  • the term “flash” refers to a solidified product in which the melted resin overflows to the outside of the concave portion 12 and solidifies.
  • the inner surface 12b and the outer surface 12c can be oxidized by the action of the laser light reflected (irregularly reflected) from the bottom surface 12a.
  • the inner side surface 12b and the outer side surface 12c can also be oxidized by heat diffusion (heat conduction) from the bottom surface 12a heated by laser irradiation.
  • heat conduction heat conduction
  • the wettability of the inner side surface 12b and the outer side surface 12c can be improved by the action of the laser light irregularly reflected by the bottom surface 12a and the heat diffusion from the bottom surface 12a.
  • the resin melted from the resin cover 20 is less likely to jump out of the concave portion 12 . Therefore, burr formation is suppressed.
  • the cold plate 1A of the present embodiment includes a first surface 10a, a second surface 10b located opposite to the first surface 10a, and a plurality of fins 11 arranged in parallel on the first surface 10a. and a truncated cylindrical resin cover 20 covering a plurality of fins 11, and a concave portion 12 recessed toward the second surface 10b is formed on the first surface 10a.
  • the resin cover 20 is heat-sealed to the base plate 10 on the inner surface of the recess 12 .
  • a first roughened portion 30A having a plurality of fine holes 30a is formed on the inner surface of the recess 12, and the resin cover 20 is heat-fused to the base plate 10 at the first roughened portion 30A.
  • a portion of the softened or melted resin cover 20 enters the micropores 30a and solidifies, serving as an anchor. Therefore, the joint strength between the resin cover 20 and the base plate 10 is improved.
  • a resin reservoir 13 is formed in a base plate 10. As shown in FIG. Resin reservoir 13 communicates with the space surrounded by recess 12 . In other words, the resin reservoir 13 is a recess (groove) that opens into the recess 12 . In particular, the resin reservoir 13 according to the present embodiment is recessed from the bottom surface 12a of the recess 12 toward the second surface 10b (downward).
  • the resin reservoir 13 may be formed, for example, by subjecting the recess 12 to etching, cutting, laser processing, or the like.
  • the resin reservoir 13 may extend continuously along the concave portion 12 that is formed in an annular shape when viewed from the opposing direction Z. As shown in FIG. Alternatively, it may be intermittently formed along the recess 12 .
  • the resin reservoir 13 may be formed on the inner surface 12b or the outer surface 12c. Note that the shape of the resin reservoir 13 is not limited to the example shown in FIG. As long as the resin reservoir 13 communicates with the space surrounded by the recess 12, the shape of the resin reservoir 13 can be changed as appropriate.
  • the base plate 10 is formed with the resin reservoir 13 that communicates with the space surrounded by the recess 12 .
  • molten resin flows from the resin cover 20 into the resin pool 13 . Therefore, it is possible to more reliably prevent the resin from protruding from the concave portion 12 and forming burrs.
  • the resin reservoir 13 is recessed from the bottom surface 12a of the recess 12 toward the second surface 10b. This configuration is particularly effective when the resin cover 20 and the base plate 10 are heat-sealed with the bottom surface 12a facing upward in the vertical direction. This is because the resin melted from the resin cover 20 tends to flow into the resin pool 13 under the influence of gravity. As a result, it is more effectively suppressed that the melted resin jumps out of the concave portion 12 and forms burrs.
  • the resin reservoir 13 is arranged at a position overlapping the first surface 10 a of the base plate 10 when viewed from the opposing direction Z. As shown in FIG. In other words, when viewed from the facing direction Z, the resin reservoir 13 overlaps the first surface 10a.
  • the resin reservoir 13 according to the present embodiment is recessed outward in the first direction X or the second direction Y from the outer side surface 12c of the recess 12 .
  • the resin reservoir 13 is formed, it is possible to obtain the same effect as the cold plate 1B according to the second embodiment.
  • the resin pool 13 does not open to the first surface 10a of the base plate 10, the melted resin from the resin cover 20 is less likely to flow upward from the first surface 10a. Thereby, it is possible to more effectively suppress the occurrence of burrs.
  • the concave portion 12 has a tapered structure in which the inner diameter of the concave portion 12 gradually increases in the upward direction.
  • the recess 12 has a tapered structure in which the inner diameter of the recess 12 gradually increases in the direction from the bottom surface 12a toward the first surface 10a.
  • the inner side surface 12b of the concave portion 12 according to the present embodiment is gradually inclined inward in the first direction X or the second direction Y in the upward direction.
  • the outer side surface 12c of the concave portion 12 according to the present embodiment is gradually inclined outward in the first direction X or the second direction Y in the upward direction.
  • a second roughened portion 30B is formed on the inner side surface 12b and the outer side surface 12c according to the present embodiment.
  • the second roughened portion 30B can be formed, for example, by irradiating the inner surface 12b and the outer surface 12c with a laser.
  • the inner side surface 12b and the outer side surface 12c are inclined such that the inner diameter of the concave portion 12 gradually increases in the upward direction. Therefore, the downwardly irradiated laser beam can be directly applied to the inner surface 12b and the outer surface 12c.
  • first roughened portion 30A and the second roughened portion 30B are formed by laser irradiation
  • the formation of the first roughened portion 30A and the formation of the second roughened portion 30B are the same. may be performed by a laser irradiation machine.
  • the second roughened portion 30B formed on the inner side surface 12b and the outer side surface 12c has a plurality of fine holes 30a, like the first roughened portion 30A. Furthermore, when the second roughened portion 30B is formed by laser irradiation, the inner surface 12b and the outer surface 12c are oxidized by the action of the laser beam, and OH groups are formed on the surface of the second roughened portion 30B. can be enriched. That is, the resin molecules melted from the resin cover 20 are easily adsorbed to the second roughened portion 30B. In other words, the action of the laser light improves the wettability of the second roughened portion 30B. This makes it more difficult for the resin melted out of the resin cover 20 to jump out of the concave portion 12 . Therefore, burr formation is further suppressed.
  • the shapes of the inner side surface 12b and the outer side surface 12c are not limited to the example shown in FIG.
  • the shape of the inner side surface 12b and the outer side surface 12c can be appropriately changed as long as the concave portion 12 has a tapered structure in which the inner diameter gradually increases in the upward direction.
  • one of the inner side surface 12b and the outer side surface 12c may be inclined with respect to the facing direction Z, and the other of the inner side surface 12b and the outer side surface 12c may be formed parallel to the facing direction Z.
  • the configuration of the second roughened portion 30B is not limited to the example in FIG.
  • the second roughened portion 30B may be formed only on the inner surface 12b or may be formed only on the outer surface 12c.
  • the second roughened portion 30B may be formed only on part of the inner surface 12b or the outer surface 12c, or may be formed over the entire inner surface 12b and the outer surface 12c.
  • the recess 12 has a tapered structure in which the inner diameter of the recess 12 gradually increases in the direction from the bottom surface 12a of the recess 12 toward the first surface 10a.
  • a second roughened portion 30B is formed on the side surface of the .
  • the tapered structure of the concave portion 12 makes it easy to irradiate the inner side surface 12b or the outer side surface 12c with a laser beam. can be done. Therefore, the wettability of the inner side surface 12b and the outer side surface 12c can be improved more reliably.
  • the volume of the molten resin that can be stored in the recess 12 can be increased. That is, the melted resin is suppressed from overflowing from the concave portion 12 .
  • the volume of the space surrounded by the recess 12 (the volume of the recess 12 ) is larger than the volume of the flange portion 23 . Therefore, even if the entire flange portion 23 is melted, the melted resin is prevented from overflowing from the concave portion 12 .
  • the first roughened portion 30A is formed and the resin cover 20 is not necessarily heat-sealed to the bottom surface 12a, but may be, for example, the inner surface 12b or the outer surface 12c.
  • the resin cover 20 may not have the flange portion 23. In this case, the lower surface of the peripheral wall portion 22 may be heat-sealed to the base plate 10 .
  • the resin cover 20 may be heat-sealed to the base plate 10 without forming the first roughened portion 30A on the inner surface of the recess 12 . Further, when the first roughened portion 30A is formed, the first roughened portion 30A may be formed over the entire bottom surface 12a of the recess 12, or may be formed on a part of the bottom surface 12a. may be
  • each resin reservoir 13 opens to the first surface 10a of the base plate 10.
  • the resin reservoir 13 can be formed by subjecting the first surface 10a to etching, cutting, laser processing, or the like.
  • Each resin pool 13 protrudes outward in the first direction X or the second direction Y from the concave portion 12 when viewed from the opposing direction Z. As shown in FIG.
  • the fins 11 are less likely to interfere with the formation of the resin pools 13 .
  • the resin reservoir 13 protrudes outward from the concave portion 12 when viewed from the opposing direction Z, and the resin reservoir 13 opens to the first surface 10a. This configuration can reduce the difficulty of forming the resin reservoir 13 .
  • a cold plate with both may be employed.
  • a structure in which the dimension of the concave portion 12 in the facing direction Z shown in FIG. 8 is larger than the dimension of the flange portion 23 in the facing direction Z may be applied to the first to fourth embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

コールドプレートは、金属製のベースプレートと、有頂筒状の樹脂カバーと、を備える。前記ベースプレートは、第1面と、前記第1面とは反対側に位置する第2面と、前記第1面に並列された複数のフィンと、を有する。前記樹脂カバーは、前記複数のフィンを覆う。前記第1面には、前記第2面に向けて窪む凹部が形成されている。前記凹部の内面において、前記樹脂カバーが前記ベースプレートに対して加熱融着されている。

Description

コールドプレート
 本発明は、コールドプレートに関する。
 本願は、2021年6月22日に、日本に出願された特願2021-102878号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1には、並列された複数のフィンを有する金属製のベースプレートと、複数のフィンを覆う金属カバーと、を備えるコールドプレートが開示されている。
日本国特許第6712915号公報
 近年の電子部品高集積化による発熱密度の増大により、コールドプレートの需要拡大が予測され、より低価格なコールドプレートが求められている。このため、従来の金属カバーを、金属カバーよりも安価な樹脂カバーに変更することが検討されている。このように樹脂カバーを有するコールドプレートにおいては、樹脂カバーをベースプレートに対して接着剤等を用いずに直接加熱融着させる構成が考えられる。
 しかしながら、本願発明者らが検証したところ、樹脂カバーをベースプレートに対して加熱融着する際には、溶融した樹脂が、樹脂カバーの内側および外側に流出し、バリを形成する可能性があることが判った。樹脂カバーの内側に形成されたバリは、コールドプレート内を流れる冷媒の流路を狭めたり、樹脂カバーから剥がれて流路に詰まったりする場合があった。これらの場合、樹脂カバーの内側に形成されたバリは、コールドプレートの冷却性能を低下させる可能性があった。樹脂カバーの外側に形成されたバリは、樹脂カバーから剥がれてコールドプレートから脱落する場合があった。この場合、樹脂カバーの外側に形成されたバリは、コールドプレートが取り付けられた電子機器に対して悪影響を及ぼす可能性があった。
 本発明は、このような事情を考慮してなされ、樹脂カバーをベースプレートに対して加熱融着させる際にバリが生じるのを抑制できるコールドプレートを提供することを目的とする。
 上記課題を解決するために、本発明の一態様に係るコールドプレートは、第1面と、前記第1面とは反対側に位置する第2面と、前記第1面に並列された複数のフィンと、を有する金属製のベースプレートと、前記複数のフィンを覆う有頂筒状の樹脂カバーと、を備え、前記第1面には、前記第2面に向けて窪む凹部が形成され、前記凹部の内面において、前記樹脂カバーが前記ベースプレートに対して加熱融着されている。
 本発明の上記態様によれば、加熱溶融した樹脂は、コールドプレートに形成された凹部の中に溜まりやすくなる。これにより、凹部から樹脂がはみ出ること、すなわち、バリが形成されることが抑制される。
 ここで、前記凹部の内面には、複数の微細孔を有する第1粗面化部が形成され、前記樹脂カバーは、前記第1粗面化部において前記ベースプレートに対して加熱融着されていてもよい。
 また、前記ベースプレートには、前記凹部によって囲まれる空間に連通する樹脂だまりが形成されていてもよい。
 また、前記樹脂だまりは、前記凹部の底面から前記第2面に向けて窪んでいてもよい。
 また、前記ベースプレートと前記樹脂カバーとが対向する対向方向から見て、前記樹脂だまりは前記凹部から外側に突出しており、前記樹脂だまりは前記第1面に開口していてもよい。
 また、前記ベースプレートと前記樹脂カバーとが対向する対向方向から見て、前記樹脂だまりは、前記第1面と重なっていてもよい。
 また、前記凹部は、前記凹部の底面から前記第1面に向かう向きにおいて漸次前記凹部の内径が大きくなるテーパ構造を有し、前記凹部の側面には、第2粗面化部が形成されていてもよい。
 また、前記樹脂カバーの開口端部には、前記樹脂カバーの外側に向けて延びるとともに、前記ベースプレートに対して加熱融着される面を含むフランジ部が形成され、前記ベースプレートと前記樹脂カバーとが対向する対向方向における前記凹部の寸法は、前記対向方向における前記フランジ部の寸法よりも大きくてもよい。
 本発明の上記態様によれば、樹脂カバーをベースプレートに対して加熱融着させる際にバリが生じるのを抑制可能なコールドプレートを提供することができる。
第1実施形態に係るコールドプレートを示す平面図である。 図1に示すII-II断面に沿う断面図である。 図2の一部を示す拡大図である。 図3に示す領域Aの拡大図である。 第2実施形態に係るコールドプレートの一部を示す拡大図である。 第3実施形態に係るコールドプレートの一部を示す拡大図である。 第4実施形態に係るコールドプレートの一部を示す拡大図である。 第5実施形態に係るコールドプレートの一部を示す拡大図である。 変形例に係るコールドプレートを示す平面図である。
(第1実施形態)
 以下、第1実施形態に係るコールドプレートについて図面に基づいて説明する。
 図1および図2に示すように、コールドプレート1Aは、金属製のベースプレート10と、樹脂カバー20と、を備える。ベースプレート10は、第1面10aと、第1面10aとは反対側に位置する第2面10bと、を有する。ベースプレート10は、第1面10aに並列された複数のフィン11を有する。複数のフィン11の各々は、板状に形成されている。樹脂カバー20の形状は、有頂筒状である。樹脂カバー20は、複数のフィン11を覆っている。コールドプレート1Aの形状は、樹脂カバー20がベースプレート10を覆うことにより、全体として中空容器状である。
(方向定義)
 ここで本実施形態では、ベースプレート10と樹脂カバー20とが対向する方向を対向方向Zと称する。対向方向Zは、ベースプレート10の第1面10aと第2面10bとが並ぶ方向でもある。あるいは、対向方向Zは、ベースプレート10に垂直な方向でもある。本明細書において、対向方向Zから見ることを、平面視と称する場合がある。対向方向Zは、上下方向Zとも称される。ただし、上下方向Zは、鉛直方向と平行であってもよいし、平行でなくてもよい。対向方向Zに沿って、ベースプレート10から樹脂カバー20に向かう向きを、+Zの向きまたは上方と称する。+Zの向きは、ベースプレート10の第2面10bから第1面10aに向かう向きでもある。+Zの向きとは反対の向きを、-Zの向きまたは下方と称する。複数のフィン11の各々が延在する方向のうち、対向方向Zに直交する方向を第1方向Xと称する。第1方向Xに沿う一つの向きを、+Xの向きまたは右方と称する。+Xの向きとは反対の向きを、-Xの向きまたは左方と称する。対向方向Zおよび第1方向Xの双方に直交する方向を第2方向Yと称する。第2方向Yに沿う一つの向きを、+Yの向きまたは奥側と称する。+Yの向きとは反対の向きを、-Yの向きまたは手前側と称する。
 ベースプレート10は、良好な熱伝導性を有する金属によって形成されていることが望ましい。ベースプレート10の材質としては、例えば、銅や銅合金、アルミニウムやアルミニウム合金等を用いることができる。図2に示すように、本実施形態に係るベースプレート10の第1面10aは、上方を向き、第2面10bは、下方を向いている。第1面10aは、上面10aとも称される。第2面10bは、熱源面10bとも称される。
 本実施形態において、複数のフィン11は、ベースプレート10の第1面10aから上方に向けて突出している。複数のフィン11は、第2方向Yにおいて略一定の間隔を空けて並列されている。「略一定」には、製造誤差を取り除けば第2方向Yにおける間隔が一定であるとみなせる場合も含まれる。なお、複数のフィン11が並列される間隔は、第2方向Yにおいて略一定でなくてもよい。本実施形態において、第2面10bは、平坦面となっている。第2面(熱源面)10bには、不図示の熱源(CPU、その他発熱部品等)が接触する。あるいは、第2面10bには、不図示の熱源から熱を伝える伝熱部材が接触する。なお、第2面10bの形状は、平坦面に限定されない。第2面10bに対して熱源または伝熱部材が接触できれば、第2面10bの形状は適宜変更可能である。
 ベースプレート10の第1面10aには、第2面10b(下方)に向けて窪む凹部12が形成されている。凹部12は、対向方向Zからみて、略矩形の環状に形成されており、複数のフィン11を取り囲んでいる(図1も参照)。図3に示すように、凹部12の内面は、底面12aと、内側面(側面)12bと、外側面(側面)12cと、を含む。内側面12bは、環状の凹部12における内周側に位置する面である。言い換えれば、内側面12bは、環状に形成された凹部12の内周面に該当する。外側面12cは、環状の凹部12における外周側に位置する面である。言い換えれば、外側面12cは、環状に形成された凹部12の外周面に該当する。
 樹脂カバー20の材質としては、例えば、ポリフェニレンスルフィルド(PPS)、ポリアミド、ポリプロピレン、ポリエチレンテレフタレート、ポリエーテルエーテルケトン(PEEK)、ポリアセタール(POM)等を用いることができる。
 樹脂カバー20は、天壁部21と、周壁部22と、フランジ部23と、を有する。天壁部21は、図1に示すように、平面視において略矩形状に形成されている。なお、天壁部21の形状は略矩形状に限定されず、例えば平面視において略円形状や略楕円形状、あるいは略多角形状等であってもよい。「略矩形状」「略円形状」「略楕円形状」「略多角形状」には、面取り加工や製造誤差を取り除けば平面視において矩形状、円形状、楕円形状、多角形状であるとみなせる場合も含まれる。周壁部22は、天壁部21の外周縁から下方に向けて筒状に延びている。フランジ部23は、周壁部22の下端(開口端部)から樹脂カバー20の外側に向けて環状に延びている。図3に示すように、フランジ部23の下面は、第1粗面化部30A(後述)と接している。フランジ部23の下面は、ベースプレート10に対して加熱融着される面でもある。
 本実施形態において、樹脂カバー20には、入口連結部24および出口連結部25が形成されている。入口連結部24および出口連結部25の各々は、天壁部21から上方に向けて突出している。樹脂カバー20には、天壁部21および入口連結部24を貫通する供給孔24aと、天壁部21および出口連結部25を貫通する排水孔25aが形成されている。供給孔24aおよび排水孔25aの各々は、コールドプレート1Aの内部空間Sに連通している。
 入口連結部24は、冷媒を供給する不図示の入口管が連結される部分である。冷媒は、入口連結部24および供給孔24aを通じてコールドプレート1Aの内部空間Sに流入する。出口連結部25は、冷媒を排出する不図示の出口管が連結される部分である。内部空間Sを通った冷媒は、排水孔25aおよび出口連結部25を通じてコールドプレート1Aの外部へと排出される。冷媒としては、例えば、水、アルコール、その他の周知の化合物等を適宜用いることができる。
 本実施形態において、供給孔24aは、天壁部21の下面から延びて、入口連結部24の右側面に開口している。排水孔25aは、天壁部21の下面から延びて、出口連結部25の左側面に開口している。なお、供給孔24aおよび排水孔25aの構成は、供給孔24aおよび排水孔25aの各々がコールドプレート1Aの内部空間Sに連通していれば適宜変更可能である。例えば、コールドプレート1Aは、入口連結部24および出口連結部25を有していなくてもよい。この場合、供給孔24aおよび排水孔25aの各々は、天壁部21のみを貫通していてもよい。供給孔24aおよび排水孔25aの各々は、周壁部22を貫通していてもよい。
 図2および図3に示すように、樹脂カバー20(フランジ部23)は、凹部12の内面(本実施形態においては底面12a)において、ベースプレート10に対して加熱融着されている。以下、本実施形態における樹脂カバー20がベースプレート10に融着される原理を説明する。図4に示すように、フランジ部23と接する底面12aには、後述する適宜の表面処理によって、第1粗面化部30Aが形成されている。第1粗面化部30Aは、複数の微細孔30aを有している。
 加熱融着の際には、凹部12が加熱されるとともに、粗面化された底面12aに対して、フランジ部23が押し付けられる。このとき、フランジ部23の一部が軟化あるいは溶融し、微細孔30aに入り込んで、その後、固化する。その結果、微細孔30aに入り込んで固化した樹脂がアンカーとなり、樹脂カバー20とベースプレート10とが強固に接合される。なお、溶融した樹脂が重力の影響により垂れて凹部12から出るのを防ぐため、上記した加熱融着作業は、底面12a(第1粗面化部30A)が鉛直方向における上方を向くようにした状態で行われるのが好適である。
 第1粗面化部30Aを形成するために底面12aに対して行う表面処理としては、例えば、エッチング等の化成処理や、レーザー照射を用いることができる。底面12aに対する表面処理として化成処理を用いる場合は、ベースプレート10のうち粗面化しない部分を適宜マスクしてもよい。凹部12全体に対してエッチング等の化成処理を行うことで、底面12aだけでなく内側面12bおよび外側面12cに対しても表面処理を行ってもよい。
 底面12aに対する表面処理としてレーザー照射を用いる場合は、レーザー光の作用によって底面12aが酸化され、第1粗面化部30Aの表面においてOH基が豊富となる。この場合、樹脂カバー20を形成している樹脂分子が第1粗面化部30Aの表面に位置するOH基と水素結合し、樹脂カバー20とベースプレート10とがより強固に接合される。
 次に、以上のように構成されたコールドプレート1Aの作用について説明する。
 コールドプレート1Aは、ベースプレート10の第2面(熱源面)10bに接触した熱源あるいは伝熱部材から熱を受け取り、受け取った熱を外部に放出する放熱モジュールである。
 コールドプレート1Aの内部空間Sには、供給孔24aを通じて冷媒が供給される(図2参照)。コールドプレート1Aの内部空間Sにおいて複数のフィン11が第1方向Xに沿って延びているため、供給された冷媒は、第1方向Xに沿ってガイドされ、主として右方に向けて流動する。このとき、冷媒は、ベースプレート10(特にフィン11)を介して熱源から熱を吸収する。熱を吸収した冷媒は、排水孔25aを通じてコールドプレート1Aの外部へと排出される。上記のプロセスにより、コールドプレート1Aは、熱源から熱を受け取り、受け取った熱を外部に放出することができる。
 ここで、本実施形態に係るコールドプレート1Aは、ベースプレート10に加熱融着された樹脂カバー20を有する。本願発明者らが検証したところ、樹脂カバー20を加熱融着する際には、溶融した樹脂が、樹脂カバー20の内側および外側に流出し、バリを形成する可能性があることが判った。樹脂カバー20の内側に形成されたバリは、コールドプレート内を流れる冷媒の流路を狭めたり、樹脂カバー20から剥がれて流路に詰まったりする場合があった。これらの場合、樹脂カバー20の内側に形成されたバリは、コールドプレートの冷却性能を低下させる可能性があった。樹脂カバー20の外側に形成されたバリは、樹脂カバー20から剥がれてコールドプレートから脱落する場合があった。この場合、樹脂カバー20の外側に形成されたバリは、コールドプレートが取り付けられた装置等に対して悪影響を及ぼす可能性があった。
 これに対して本実施形態に係るコールドプレート1Aでは、樹脂カバー20とベースプレート10とは、ベースプレート10に形成された凹部12の底面12aにおいて加熱融着されている。これにより、加熱融着時に樹脂カバー20から樹脂が溶融した場合、当該溶融した樹脂は、凹部12の内部に溜まりやすくなる。これにより、溶融した樹脂が凹部12の外部へと溢れ出ることが抑制される。したがって、樹脂カバー20から溶融した樹脂が樹脂カバー20の内側および外側においてバリを形成することが抑制される。なお、本明細書において「バリ」とは、溶融した樹脂が凹部12の外部に溢れ出て固化した固化物を指す。
 底面12aに対する表面処理としてレーザー照射が用いられる場合には、底面12aで反射(乱反射)したレーザー光の作用によって、内側面12bおよび外側面12cを酸化させることができる。また、内側面12bおよび外側面12cは、レーザー照射によって加熱された底面12aからの熱拡散(熱伝導)によっても酸化させることができる。内側面12bおよび外側面12cが酸化されることにより、内側面12bおよび外側面12cにおいてもOH基が豊富となり、溶融した樹脂分子が内側面12bおよび外側面12cに対して吸着しやすくなる。言い換えれば、底面12aで乱反射したレーザー光の作用および底面12aからの熱拡散によって、内側面12bおよび外側面12cの濡れ性を向上することができる。これにより、例えば樹脂カバー20の加熱融着中にコールドプレート1Aが外力等によって不意に振動した場合においても、樹脂カバー20から溶け出した樹脂が凹部12から飛び出しにくくなる。したがって、バリの形成が抑制される。
 以上説明したように、本実施形態のコールドプレート1Aは、第1面10aと、第1面10aとは反対側に位置する第2面10bと、第1面10aに並列された複数のフィン11と、を有する金属製のベースプレート10と、複数のフィン11を覆う有頂筒状の樹脂カバー20と、を備え、第1面10aには、第2面10bに向けて窪む凹部12が形成され、凹部12の内面において、樹脂カバー20がベースプレート10に対して加熱融着されている。
 この構成により、樹脂カバー20から加熱溶融した樹脂は、ベースプレート10に形成された凹部12の中に溜まる。これにより、凹部12から樹脂がはみ出ること、すなわちバリが形成されることが抑制される。
 また、凹部12の内面には、複数の微細孔30aを有する第1粗面化部30Aが形成され、樹脂カバー20は、第1粗面化部30Aにおいてベースプレート10に対して加熱融着されている。この構成により、軟化あるいは溶融した樹脂カバー20の一部が微細孔30aに入り込んで固化し、アンカーの役割を果たす。したがって、樹脂カバー20とベースプレート10との接合強度が向上する。
(第2実施形態)
 次に、本発明の第2実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図5に示すコールドプレート1Bにおいて、ベースプレート10には樹脂だまり13が形成されている。樹脂だまり13は、凹部12によって囲まれる空間に連通している。言い換えれば、樹脂だまり13は、凹部12に開口する窪み(溝)である。特に本実施形態に係る樹脂だまり13は、凹部12の底面12aから第2面10b(下方)に向けて窪んでいる。
 樹脂だまり13は、例えば凹部12に対してエッチング加工、切削加工、レーザー加工等が施されることにより形成されていてもよい。樹脂だまり13は、対向方向Zから見て環状に形成されている凹部12に沿って、連続的に延びていてもよい。あるいは、凹部12に沿って断続的に形成されていてもよい。樹脂だまり13は、内側面12bあるいは外側面12cに形成されていてもよい。なお、樹脂だまり13の形状は、図5の例に限定されない。樹脂だまり13が凹部12によって囲まれる空間に連通していれば、樹脂だまり13の形状は適宜変更可能である。
 以上説明したように、本実施形態に係るコールドプレート1Bにおいて、ベースプレート10には、凹部12によって囲まれる空間に連通する樹脂だまり13が形成されている。この構成により、樹脂カバー20から溶融した樹脂が樹脂だまり13に流入する。したがって、樹脂が凹部12から飛び出してバリを形成することがより確実に抑制される。
 また、樹脂だまり13は、凹部12の底面12aから第2面10bに向けて窪んでいる。この構成は、底面12aが鉛直方向における上方を向く状態で樹脂カバー20とベースプレート10との加熱融着が行われる場合に特に有効である。これは、樹脂カバー20から溶融した樹脂が重力の影響により樹脂だまり13へと流れやすくなるからである。これにより、溶融した樹脂が凹部12から飛び出してバリを形成することがより効果的に抑制される。
(第3実施形態)
 次に、本発明の第3実施形態について説明するが、第2実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図6に示すコールドプレート1Cにおいて、樹脂だまり13は、対向方向Zから見て、ベースプレート10の第1面10aと重なる位置に配置されている。言い換えれば、対向方向Zから見て、樹脂だまり13は、第1面10aと重なっている。本実施形態に係る樹脂だまり13は、凹部12の外側面12cから第1方向Xまたは第2方向Yにおける外側に向けて窪んでいる。
 この構成によれば、樹脂だまり13が形成されているため、第2実施形態に係るコールドプレート1Bと同様の作用効果を得ることができる。また、樹脂だまり13がベースプレート10の第1面10aに開口していないため、樹脂カバー20から溶融した樹脂が第1面10aよりも上方に飛び出しにくくなる。これにより、バリが生じるのをより効果的に抑制することができる。
(第4実施形態)
 次に、本発明の第4実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図7に示すように、本実施形態に係るコールドプレート1Dにおいて、凹部12は、上方に向かう向きにおいて漸次凹部12の内径が大きくなるテーパ構造を有している。言い換えれば、凹部12は、底面12aから第1面10aに向かう向きにおいて漸次凹部12の内径が大きくなるテーパ構造を有している。特に、本実施形態に係る凹部12の内側面12bは、上方に向かう向きにおいて漸次第1方向Xまたは第2方向Yにおける内側に向かうように傾斜している。本実施形態に係る凹部12の外側面12cは、上方に向かうに向きにおいて漸次第1方向Xまたは第2方向Yにおける外側に向かうように傾斜している。
 本実施形態に係る内側面12bおよび外側面12cには、第2粗面化部30Bが形成されている。第2粗面化部30Bは、例えば内側面12bおよび外側面12cに対してレーザー照射をすることによって形成できる。図7の例において、内側面12bおよび外側面12cは、上方に向かう向きにおいて漸次凹部12の内径が大きくなるように傾いている。このため、下方に向けて照射されるレーザー光を内側面12bおよび外側面12cに対して直接当てることができる。特に、内側面12bおよび外側面12cの各々が対向方向Zに平行な場合と比較して、内側面12bおよび外側面12cに対してレーザー光を照射しやすくなる。第1粗面化部30Aおよび第2粗面化部30Bがともにレーザー照射によって形成されている場合には、第1粗面化部30Aの形成と第2粗面化部30Bの形成とが同一のレーザー照射機によって行われてもよい。
 内側面12bおよび外側面12cに形成された第2粗面化部30Bは、第1粗面化部30Aと同様に、複数の微細孔30aを有する。さらに、第2粗面化部30Bがレーザー照射によって形成されている場合には、レーザー光の作用により、内側面12bおよび外側面12cを酸化し、第2粗面化部30Bの表面においてOH基を豊富とすることができる。つまり、樹脂カバー20から溶融した樹脂分子が第2粗面化部30Bに対して吸着しやすくなる。言い換えれば、レーザー光の作用によって、第2粗面化部30Bの濡れ性が向上する。これにより、樹脂カバー20から溶け出した樹脂が凹部12からより飛び出しにくくなる。したがって、バリの形成がより抑制される。
 なお、内側面12bおよび外側面12cの形状は図6の例に限定されない。凹部12が上方に向かう向きにおいて漸次内径が大きくなるテーパ構造を有していれば、内側面12bおよび外側面12cの形状は適宜変更可能である。例えば、内側面12bおよび外側面12cのうち一方が対向方向Zに対して傾斜しており、内側面12bおよび外側面12cのうち他方が対向方向Zに対して平行に形成されていてもよい。
 第2粗面化部30Bの構成は図7の例に限定されない。第2粗面化部30Bは、内側面12bのみに形成されていてもよいし、外側面12cのみに形成されていてもよい。第2粗面化部30Bは、内側面12bまたは外側面12cの一部のみに形成されていてもよいし、内側面12bおよび外側面12cの全体にわたって形成されていてもよい。
 以上説明したように、本実施形態に係るコールドプレート1Dにおいて、凹部12は、凹部12の底面12aから第1面10aに向かう向きにおいて漸次凹部12の内径が大きくなるテーパ構造を有し、凹部12の側面には、第2粗面化部30Bが形成されている。この構成によれば、内側面12bおよび外側面12cの濡れ性が向上し、溶融した樹脂が凹部12からより飛び出しにくくなる。また、第2粗面化部30Bをレーザー照射によって形成する場合においては、凹部12がテーパ構造を有していることで、内側面12bまたは外側面12cに対して容易にレーザー光を照射することができる。したがって、内側面12bおよび外側面12cの濡れ性をより確実に向上させることができる。
(第5実施形態)
 次に、本発明の第5実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図8に示すコールドプレート1Eにおいて、対向方向Zにおける凹部12の寸法は、対向方向Zにおけるフランジ部23の寸法よりも大きい。
 このように対向方向Zにおける凹部12の寸法を大きくすることで、凹部12に溜められる溶融樹脂の体積を増加させることができる。つまり、溶融した樹脂が凹部12から溢れ出ることが抑制される。特に本実施形態に係るコールドプレート1Eにおいては、凹部12によって囲まれる空間の体積(凹部12の容積)は、フランジ部23の体積よりも大きい。このため、仮にフランジ部23全体が溶融したとしても、溶融した樹脂が凹部12から溢れることが抑制される。
 なお、本発明の技術的範囲は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、第1粗面化部30Aが形成され、樹脂カバー20が加熱融着されるのは底面12aでなくてもよく、例えば内側面12bや外側面12c等であってもよい。
 樹脂カバー20はフランジ部23を有していなくてもよい。この場合、周壁部22の下面がベースプレート10に対して加熱融着されていてもよい。
 凹部12の内面において第1粗面化部30Aが形成されずに樹脂カバー20がベースプレート10に対して加熱融着されていてもよい。また、第1粗面化部30Aが形成されている場合において、第1粗面化部30Aは凹部12の底面12aの全体にわたって形成されていてもよいし、底面12aのうち一部に形成されていてもよい。
 樹脂だまり13が凹部12によって囲まれる空間に連通していれば、樹脂だまり13の形状および構成は限定されない。例えば、図9に示すコールドプレート1Fのように、樹脂だまり13は複数(図9では4つ)形成されていてもよい。図9の例において、各樹脂だまり13はベースプレート10の第1面10aに開口している。この場合、例えば第1面10aに対してエッチング加工、切削加工、レーザー加工等を施すことによって樹脂だまり13を形成することができる。各樹脂だまり13は、対向方向Zからみて、凹部12から第1方向Xまたは第2方向Yにおける外側に向けて突出している。これにより、樹脂だまり13を形成する際にフィン11が邪魔になりにくくなる。以上説明したように、図9に示すコールドプレート1Fにおいて、対向方向Zからみて、樹脂だまり13は凹部12から外側に突出しており、樹脂だまり13は第1面10aに開口している。この構成により、樹脂だまり13の形成難度を下げることができる。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
 例えば、図5および図9のそれぞれに示す形態を組み合わせて、凹部12の底面12aから下方に窪む樹脂だまり13と、対向方向Zから見て凹部12から外側に突出する樹脂だまり13と、の両方を備えたコールドプレートを採用してもよい。
 図8に示す対向方向Zにおける凹部12の寸法が対向方向Zにおけるフランジ部23の寸法より大きい構造を、第1~第4実施形態に適用してもよい。
 1A~1F…コールドプレート 10…ベースプレート 10a…上面(第1面) 10b…熱源面(第2面) 11…フィン 12…凹部 12a…底面(内面) 12b…内側面(内面、側面) 12c…外側面(内面、側面) 13…樹脂だまり 20…樹脂カバー 23…フランジ部 30A…第1粗面化部 30B…第2粗面化部 30a…微細孔

Claims (8)

  1.  第1面と、前記第1面とは反対側に位置する第2面と、前記第1面に並列された複数のフィンと、を有する金属製のベースプレートと、
     前記複数のフィンを覆う有頂筒状の樹脂カバーと、を備え、
     前記第1面には、前記第2面に向けて窪む凹部が形成され、
     前記凹部の内面において、前記樹脂カバーが前記ベースプレートに対して加熱融着されている、コールドプレート。
  2.  前記凹部の内面には、複数の微細孔を有する第1粗面化部が形成され、
     前記樹脂カバーは、前記第1粗面化部において前記ベースプレートに対して加熱融着されている、請求項1に記載のコールドプレート。
  3.  前記ベースプレートには、前記凹部によって囲まれる空間に連通する樹脂だまりが形成されている、請求項1または2に記載のコールドプレート。
  4.  前記樹脂だまりは、前記凹部の底面から前記第2面に向けて窪んでいる、請求項3に記載のコールドプレート。
  5.  前記ベースプレートと前記樹脂カバーとが対向する対向方向から見て、前記樹脂だまりは前記凹部から外側に突出しており、
     前記樹脂だまりは前記第1面に開口している、請求項3に記載のコールドプレート。
  6.  前記ベースプレートと前記樹脂カバーとが対向する対向方向から見て、前記樹脂だまりは、前記第1面と重なっている、請求項3に記載のコールドプレート。
  7.  前記凹部は、前記凹部の底面から前記第1面に向かう向きにおいて漸次前記凹部の内径が大きくなるテーパ構造を有し、
     前記凹部の側面には、第2粗面化部が形成されている、請求項1から6のいずれか一項に記載のコールドプレート。
  8.  前記樹脂カバーの開口端部には、前記樹脂カバーの外側に向けて延びるとともに、前記ベースプレートに対して加熱融着される面を含むフランジ部が形成され、
     前記ベースプレートと前記樹脂カバーとが対向する対向方向における前記凹部の寸法は、前記対向方向における前記フランジ部の寸法よりも大きい、請求項1から7のいずれか一項に記載のコールドプレート。
PCT/JP2022/002209 2021-06-22 2022-01-21 コールドプレート WO2022269965A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023529462A JP7508708B2 (ja) 2021-06-22 2022-01-21 コールドプレート
US18/546,146 US20240121912A1 (en) 2021-06-22 2022-01-21 Cold plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-102878 2021-06-22
JP2021102878 2021-06-22

Publications (1)

Publication Number Publication Date
WO2022269965A1 true WO2022269965A1 (ja) 2022-12-29

Family

ID=84543786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002209 WO2022269965A1 (ja) 2021-06-22 2022-01-21 コールドプレート

Country Status (4)

Country Link
US (1) US20240121912A1 (ja)
JP (1) JP7508708B2 (ja)
TW (1) TWI828045B (ja)
WO (1) WO2022269965A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022374A (ja) * 2015-07-08 2017-01-26 株式会社フジクラ コールドプレートおよびその製造方法
JP2018081997A (ja) * 2016-11-15 2018-05-24 株式会社フジクラ コールドプレート

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022374A (ja) * 2015-07-08 2017-01-26 株式会社フジクラ コールドプレートおよびその製造方法
JP2018081997A (ja) * 2016-11-15 2018-05-24 株式会社フジクラ コールドプレート

Also Published As

Publication number Publication date
TW202301585A (zh) 2023-01-01
JPWO2022269965A1 (ja) 2022-12-29
JP7508708B2 (ja) 2024-07-01
TWI828045B (zh) 2024-01-01
US20240121912A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
JP4326525B2 (ja) ヒートシンク、レーザモジュール、レーザ装置及びレーザ加工装置
JP2013220462A (ja) 溶接方法および金属ケース
JP7552744B2 (ja) ベーパーチャンバ、ベーパーチャンバ用シートおよびベーパーチャンバの製造方法
JP2010179349A (ja) 液冷ジャケットの製造方法および摩擦攪拌接合方法
JP7052999B2 (ja) 熱交換器、電子機器、および熱交換器の製造方法
US20230166357A1 (en) Sealing method
WO2022269965A1 (ja) コールドプレート
JP2009113411A (ja) レーザ溶着構造及びレーザ溶着方法
JP4458025B2 (ja) フィルタ及びその製造方法
US20240200888A1 (en) Cold plate
US8293060B2 (en) Laser beam welding method and mounting structure for welding light-absorption resin member and translucent resin member
JP2007276305A (ja) レーザ溶着用治具及び樹脂成型品
JP4305273B2 (ja) 熱交換板の製造方法、および、熱交換器の製造方法
US7718274B2 (en) Method for welding two welding parts by means of a fillet weld and welding part with an inclined tapered edge area therefor
JP2010221572A (ja) 樹脂材および樹脂材のレーザー溶着方法
TWM627850U (zh) 散熱模組結構
JP2010098153A (ja) 半導体チップ位置決め治具ユニット
TWM627851U (zh) 散熱模組
WO2021141110A1 (ja) ベーパーチャンバ用のウィックシート、ベーパーチャンバおよび電子機器
CN114322616A (zh) 具有热管的散热器总成
JP2009072944A (ja) インク供給針の取付構造
JP3577192B2 (ja) 半導体素子用冷却装置
JP2008000966A (ja) レーザ溶着装置
TWM627852U (zh) 散熱模組組合結構
TWI784877B (zh) 散熱模組結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023529462

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18546146

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22827889

Country of ref document: EP

Kind code of ref document: A1