WO2022269846A1 - ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法 - Google Patents

ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法 Download PDF

Info

Publication number
WO2022269846A1
WO2022269846A1 PCT/JP2021/023906 JP2021023906W WO2022269846A1 WO 2022269846 A1 WO2022269846 A1 WO 2022269846A1 JP 2021023906 W JP2021023906 W JP 2021023906W WO 2022269846 A1 WO2022269846 A1 WO 2022269846A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
electric discharge
state value
control
machining
Prior art date
Application number
PCT/JP2021/023906
Other languages
English (en)
French (fr)
Inventor
西川亮
初福晨
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to CN202180099495.6A priority Critical patent/CN117529384A/zh
Priority to JP2021552823A priority patent/JP7022258B1/ja
Priority to EP21947131.5A priority patent/EP4338877A1/en
Priority to PCT/JP2021/023906 priority patent/WO2022269846A1/ja
Priority to US18/570,441 priority patent/US20240269758A1/en
Priority to TW111123129A priority patent/TWI836480B/zh
Publication of WO2022269846A1 publication Critical patent/WO2022269846A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/18Electric circuits specially adapted therefor, e.g. power supply for maintaining or controlling the desired spacing between electrode and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/04Apparatus for supplying current to working gap; Electric circuits specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/26Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
    • B23H7/32Maintaining desired spacing between electrode and workpiece, e.g. by means of particulate material

Definitions

  • the present invention relates to a wire electric discharge machine for machining a work by generating electric discharge between the wire electrode and the work, and a control method thereof.
  • a wire electric discharge machine has a control unit that controls the machining speed (the relative speed of the machining electrode with respect to the workpiece). The difference between the machining speed and the set speed is correlated with the distance (side gap) between the machining electrode and the workpiece. Therefore, the controller corrects the inter-electrode average machining voltage between the machining electrode and the workpiece according to the difference between the machining speed and the set speed. The control unit controls the machining speed based on the corrected average machining voltage between electrodes. As a result, the wire electric discharge machine can keep the side gap constant during electric discharge machining and improve the machining accuracy of the workpiece.
  • An object of the present invention is to solve the above-described problems.
  • a first aspect of the present invention is a wire electric discharge machine for machining a work by generating an electric discharge between electrodes between a wire electrode and a work, wherein the voltage between the electrodes is averaged over time. Any one of the inter-electrode voltage, the reciprocal of the number of discharge pulses between the electrodes per unit time, and the discharge delay time, which is the time from the application of the voltage between the electrodes until the discharge occurs between the electrodes.
  • a discharge state value acquisition unit that acquires a discharge state value
  • a discharge state value correction unit that corrects the discharge state value to obtain a correction value according to a machining speed that is a relative speed of the wire electrode with respect to the workpiece
  • a driving unit that moves the wire electrode relative to the workpiece
  • a control unit that controls the driving unit based on the correction value to keep the size of the electrode gap constant during machining
  • the discharge state value correcting unit obtains the correction value based on a formula having the discharge state value as the numerator and a coefficient multiplied by the machining speed as the denominator.
  • a second aspect of the present invention is a control method for a wire electric discharge machine for machining a work by generating an electric discharge between electrodes between a wire electrode and a work, wherein the voltage between the electrodes is time-averaged the average voltage between the electrodes, the reciprocal of the number of discharge pulses between the electrodes per unit time, and the discharge delay time, which is the time from the application of the voltage between the electrodes to the generation of discharge between the electrodes a discharge state value obtaining step of obtaining one as a discharge state value; and a discharge state value correction step of obtaining a correction value by correcting the discharge state value according to the machining speed, which is the relative speed of the wire electrode with respect to the workpiece.
  • a driving step of relatively moving the wire electrode with respect to the workpiece by a driving unit and a control step of controlling the driving unit based on the correction value to make the size of the inter-electrode gap constant during machining. and, in the discharge state value correcting step, the correction value is obtained based on a formula in which the discharge state value is the numerator and the value obtained by multiplying the coefficient by the machining speed is the denominator.
  • wire electric discharge machines can improve the machining accuracy of workpieces.
  • FIG. 1 is a schematic diagram showing a wire electric discharge machine.
  • FIG. 2 is a diagram for explaining the discharge gap.
  • 3A and 3B are graphs showing the voltage applied across the poles and the average pole-to-pole voltage.
  • FIG. 4 is a schematic diagram showing a wire electric discharge machine.
  • FIG. 5 is a schematic diagram showing a wire electric discharge machine.
  • FIG. 1 is a schematic diagram showing a wire electric discharge machine 10.
  • the wire electric discharge machine 10 performs electric discharge machining on the work 14 by applying a voltage between the wire electrode 12 and the work 14 (hereinafter sometimes referred to as the gap) to generate electric discharge.
  • the material of the wire electrode 12 is, for example, a metallic material such as tungsten, copper alloy, or brass.
  • the material of the workpiece 14 is, for example, a ferrous material, a superhard material, or the like.
  • the wire electric discharge machine 10 has a machine body 16 and a control device 18 .
  • the processing machine main body 16 has a processing power source 20 , a voltage between electrodes 22 , an X-axis motor 24 and a Y-axis motor 26 .
  • the machining power supply 20 applies a voltage between the electrodes.
  • the inter-electrode voltage detection unit 22 is a voltage sensor that detects an inter-electrode voltage (hereinafter sometimes referred to as inter-electrode voltage).
  • An X-axis motor 24 and a Y-axis motor 26 move a work table (not shown).
  • the wire electrode 12 moves relative to the work 14 by moving the work 14 fixed to the work table together with the work table.
  • the control device 18 has a calculation section 28 and a storage section 30 .
  • the calculation unit 28 is configured by a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit).
  • the calculation unit 28 has an average inter-electrode voltage calculation unit 32 , a correction unit 34 , a motor control unit 36 and a machining power supply control unit 38 .
  • the average inter-electrode voltage calculation unit 32 , the correction unit 34 , the motor control unit 36 and the machining power supply control unit 38 are realized by executing a program stored in the storage unit 30 by the calculation unit 28 .
  • At least one of the average inter-electrode voltage calculation unit 32, the correction unit 34, the motor control unit 36, and the machining power supply control unit 38 is realized by an integrated circuit such as ASIC (Application Specific Integrated Circuit) or FPGA (Field-Programmable Gate Array). may At least one of the average inter-electrode voltage calculation unit 32, the correction unit 34, the motor control unit 36, and the machining power supply control unit 38 may be configured by an electronic circuit including a discrete device.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the storage unit 30 is composed of a volatile memory (not shown) and a non-volatile memory (not shown).
  • Volatile memory is, for example, RAM (Random Access Memory) or the like.
  • RAM Random Access Memory
  • the nonvolatile memory is, for example, ROM (Read Only Memory), flash memory, or the like.
  • programs, tables, maps, etc. are stored in non-volatile memory.
  • At least part of the storage unit 30 may be provided in the above-described processor, integrated circuit, or the like.
  • the average inter-electrode voltage calculator 32 calculates the time average of the inter-electrode voltage detected by the inter-electrode voltage detector 22 .
  • the time average of the inter-electrode voltage may be referred to as the average inter-electrode voltage.
  • the average inter-electrode voltage calculation unit 32 corresponds to the discharge state value acquisition unit of the present invention.
  • the correction unit 34 corrects the average inter-electrode voltage according to the relative speed of the wire electrode 12 with respect to the workpiece 14 .
  • the relative speed of the wire electrode 12 with respect to the workpiece 14 may be referred to as machining speed.
  • the correction of the average inter-electrode voltage performed by the correction unit 34 will be described in detail later.
  • the corrector 34 corresponds to the discharge state value corrector of the present invention.
  • the motor control unit 36 controls the X-axis motor 24 and the Y-axis motor 26 to set the machining speed to the target machining speed.
  • the target machining speed is set based on the average inter-electrode voltage after correction by the correction unit 34 .
  • the average inter-electrode voltage corrected by the correction unit 34 may be referred to as a corrected average inter-electrode voltage.
  • the motor control section 36 corresponds to the control section of the present invention.
  • the machining power supply controller 38 controls the machining power supply 20 to apply a voltage between the electrodes.
  • the motor control unit 36 may perform proportional control, integral control, and differential control (PID control) on the X-axis motor 24 and the Y-axis motor 26 .
  • the motor control unit 36 may control the X-axis motor 24 and the Y-axis motor 26 based on the target machining speed set based on the average inter-electrode voltage before correction.
  • the motor control section 36 may set at least one of the proportional gain, the integral time, and the derivative time according to the corrected average inter-electrode voltage.
  • FIG. 2 is a diagram for explaining the discharge gap.
  • the size of the gap in the direction perpendicular to the moving direction of the wire electrode 12 with respect to the work 14 during electric discharge machining of the work 14 is called the discharge gap.
  • the motor control unit 36 controls the X-axis motor 24 and the Y-axis motor 26 to keep the discharge gap substantially constant during electric discharge machining of the work 14. .
  • the motor control unit 36 controls the X-axis motor 24 and the Y-axis motor 26 based on the average inter-electrode voltage. 26.
  • the correction unit 34 corrects the average inter-electrode voltage based on the machining speed to obtain the corrected average inter-electrode voltage.
  • the motor control unit 36 controls the X-axis motor 24 and the Y-axis motor 26 based on the corrected average inter-electrode voltage.
  • the corrected average inter-electrode voltage is obtained by the following formula (1).
  • Ec in the formula indicates the corrected average inter-electrode voltage.
  • E in the formula indicates the average inter-electrode voltage.
  • ⁇ 1 in the formula indicates a coefficient.
  • V in the formula indicates the processing speed.
  • Figures 3A and 3B are graphs showing the voltage applied between the electrodes and the average voltage between the electrodes. As shown in FIGS. 3A and 3B, even if the number of discharge pulses per unit time is the same and the discharge delay time from the application of the voltage between the electrodes to the generation of the discharge between the electrodes is the same, The average inter-electrode voltage varies according to the applied voltage. Therefore, the correction unit 34 changes the coefficient " ⁇ 1" of Equation (1) according to the voltage applied between the poles.
  • the correcting unit 34 obtains the corrected average inter-electrode voltage based on a formula in which the average inter-electrode voltage is the numerator and the value obtained by multiplying the coefficient by the machining speed is the denominator.
  • the motor control unit 36 controls the X-axis motor 24 and the Y-axis motor 26 based on the corrected average inter-electrode voltage to keep the size of the discharge gap constant during machining. Thereby, the wire electric discharge machine 10 can improve the machining accuracy of the workpiece 14 .
  • the correction unit 34 obtains the corrected average inter-electrode voltage based on the above formula (1).
  • the wire electric discharge machine 10 can keep the size of the electric discharge gap constant during the electric discharge machining of the workpiece 14 regardless of the machining speed.
  • the motor control unit 36 adjusts the proportional gain of proportional control, the integral time of integral control, the derivative time of derivative control, and the target machining speed according to the corrected average inter-electrode voltage. Set at least one. Thereby, the wire electric discharge machine 10 can improve the machining accuracy of the workpiece 14 .
  • the motor control unit 36 sets the target machining speed based on the average inter-electrode voltage.
  • the target machining speed is set based on the reciprocal of the number of discharge pulses per unit time.
  • the number of discharge pulses per unit time is "4" and the reciprocal of the number of discharge pulses per unit time is "1/4".
  • the number of discharge pulses per unit time may be simply referred to as the number of discharge pulses.
  • FIG. 4 is a schematic diagram showing the wire electric discharge machine 10.
  • the configuration of the processing machine main body 16 is the same as the configuration of the processing machine main body 16 of the first embodiment.
  • the calculation unit 28 of the control device 18 has a discharge pulse number calculation unit 40 , a correction unit 42 , a motor control unit 44 and a machining power supply control unit 38 .
  • the machining power supply controller 38 is the same as the machining power supply controller 38 of the first embodiment.
  • the discharge pulse number calculation unit 40 obtains the number of discharge pulses per unit time based on the inter-electrode voltage detected by the inter-electrode voltage detection unit 22, and calculates the reciprocal of the discharge pulse number. When a voltage is applied between the electrodes and the insulation between the electrodes collapses and discharge occurs, the voltage between the electrodes drops. A discharge pulse number calculation unit 40 obtains the number of discharge pulses based on the number of times that the voltage between electrodes is applied and then the voltage between electrodes becomes equal to or less than a predetermined voltage.
  • the discharge pulse number calculation section 40 corresponds to the discharge state value acquisition section of the present invention.
  • the correction unit 42 corrects the reciprocal of the discharge pulse number according to the machining speed, and obtains the reciprocal of the post-correction discharge pulse number.
  • the correction of the reciprocal of the number of discharge pulses performed by the correction unit 42 will be described in detail later.
  • the corrector 42 corresponds to the discharge state value corrector of the present invention.
  • the motor control unit 44 controls the X-axis motor 24 and the Y-axis motor 26 to set the machining speed to the target machining speed.
  • the target machining speed is set based on the reciprocal of the number of discharge pulses after the correction is performed by the correction unit 42 .
  • the corrected number of discharge pulses may be referred to as the corrected number of discharge pulses.
  • the motor control section 44 corresponds to the control section of the present invention.
  • the reciprocal of the corrected discharge pulse number corresponds to the correction value of the present invention.
  • the motor control unit 44 may perform proportional control, integral control, and differential control (PID control) on the X-axis motor 24 and the Y-axis motor 26 .
  • the motor control unit 44 may control the X-axis motor 24 and the Y-axis motor 26 based on the target machining speed set based on the reciprocal of the number of discharge pulses before correction.
  • the motor control section 44 may set at least one of the proportional gain, the integral time, and the derivative time according to the reciprocal of the corrected discharge pulse number.
  • the correction unit 42 obtains the reciprocal of the corrected discharge pulse number based on the following formula (2).
  • Nc indicates the reciprocal of the corrected discharge pulse number.
  • N indicates the reciprocal of the number of discharge pulses.
  • ⁇ 2 indicates a coefficient.
  • the correction unit 34 of the first embodiment changes the coefficient " ⁇ 1" of Equation (1) according to the voltage applied between the poles.
  • the number of discharge pulses does not change with the voltage applied between the poles. Therefore, the correction unit 42 of the present embodiment does not need to change the coefficient " ⁇ 2" of Equation (2) according to the voltage applied between the poles.
  • the correction unit 42 uses the reciprocal of the number of discharge pulses per unit time as the numerator and the denominator as the product of the coefficient and the machining speed. Find the reciprocal of The motor control unit 44 controls the X-axis motor 24 and the Y-axis motor 26 based on the reciprocal of the corrected discharge pulse number to keep the size of the discharge gap constant during machining. Thereby, the wire electric discharge machine 10 can improve the machining accuracy of the workpiece 14 .
  • the correcting section 42 obtains the reciprocal of the corrected number of discharge pulses based on the above equation (2).
  • the wire electric discharge machine 10 can keep the size of the electric discharge gap constant during the electric discharge machining of the workpiece 14 regardless of the machining speed.
  • the discharge pulse number calculation unit 40 obtains the number of discharge pulses per unit time based on the inter-electrode voltage detected by the inter-electrode voltage detection unit 22, and calculates the reciprocal of the discharge pulse number.
  • the correction unit 42 obtains the reciprocal of the corrected discharge pulse number based on the above equation (2). Since the number of discharge pulses per unit time does not change according to the voltage applied between the electrodes, the correction unit 42 changes the coefficient " ⁇ 2" of Equation (2) according to the voltage applied between the electrodes. Therefore, the processing load on the correction unit 42 can be reduced.
  • the motor control unit 44 controls the proportional gain of proportional control, the integral time of integral control, the derivative time of derivative control, and the target machining speed according to the reciprocal of the corrected discharge pulse number. Set at least one of Thereby, the wire electric discharge machine 10 can improve the machining accuracy of the workpiece 14 .
  • the discharge gap is estimated based on the average inter-electrode voltage.
  • the discharge gap is estimated based on the discharge delay time. As shown in FIGS. 3A and 3B, the discharge delay time is the time from when the voltage is applied between the electrodes to when the discharge occurs between the electrodes.
  • FIG. 5 is a schematic diagram showing the wire electric discharge machine 10.
  • the configuration of the processing machine main body 16 is the same as the configuration of the processing machine main body 16 of the first embodiment.
  • the calculation section 28 of the control device 18 has a discharge delay time calculation section 46 , a correction section 48 , a motor control section 50 and a machining power supply control section 38 .
  • the machining power supply controller 38 is the same as the machining power supply controller 38 of the first embodiment.
  • the discharge delay time calculation unit 46 calculates the discharge delay time based on the inter-electrode voltage detected by the inter-electrode voltage detection unit 22 . When a discharge occurs after the voltage is applied between the electrodes, the voltage between the electrodes decreases.
  • the discharge delay time calculator 46 calculates the discharge delay time based on the time from the application of the voltage between the electrodes until the voltage between the electrodes becomes equal to or less than a predetermined voltage.
  • the discharge delay time calculation section 46 corresponds to the discharge state value acquisition section of the present invention.
  • the correction unit 48 corrects the discharge delay time according to the machining speed. The correction of the discharge delay time performed by the correcting section 48 will be detailed later.
  • the corrector 48 corresponds to the discharge state value corrector of the present invention.
  • the motor control unit 50 controls the X-axis motor 24 and the Y-axis motor 26 to set the machining speed to the target machining speed.
  • the target machining speed is set based on the discharge delay time after correction by the correction unit 48 .
  • the discharge delay time after the correction is performed by the correction unit 48 may be referred to as a corrected discharge delay time.
  • the motor control section 50 corresponds to the control section of the present invention.
  • the motor control unit 50 may perform proportional control, integral control, and differential control (PID control) on the X-axis motor 24 and the Y-axis motor 26 .
  • the motor control unit 50 may control the X-axis motor 24 and the Y-axis motor 26 based on the target machining speed set based on the discharge delay time before correction.
  • the motor control section 50 may set at least one of the proportional gain, the integral time and the derivative time according to the corrected discharge delay time.
  • the correction unit 48 obtains the corrected discharge delay time based on the following formula (3).
  • Tc in the formula indicates the corrected discharge delay time.
  • T in the formula indicates the discharge delay time.
  • ⁇ 3 in the formula indicates a coefficient.
  • the correction unit 34 of the first embodiment changes the coefficient " ⁇ 1" of Equation (1) according to the voltage applied between the poles.
  • the discharge delay time does not change according to the inter-electrode voltage. Therefore, the correction unit 48 does not need to change the coefficient " ⁇ 3" of the equation (3) according to the inter-electrode voltage.
  • the correction unit 48 obtains the corrected discharge delay time based on a formula in which the numerator is the discharge delay time and the denominator is the value obtained by multiplying the coefficient by the machining speed.
  • the motor control unit 50 controls the X-axis motor 24 and the Y-axis motor 26 based on the corrected discharge delay time to keep the size of the discharge gap constant during the electric discharge machining of the workpiece 14 . Thereby, the wire electric discharge machine 10 can improve the machining accuracy of the workpiece 14 .
  • the correction unit 48 obtains the corrected discharge delay time based on the above formula (3).
  • the wire electric discharge machine 10 can keep the size of the electric discharge gap constant during machining regardless of the machining speed.
  • the discharge delay time calculator 46 calculates the discharge delay time based on the inter-electrode voltage detected by the inter-electrode voltage detector 22 .
  • the correction unit 48 obtains the corrected discharge delay time based on the above formula (3). Since the discharge delay time does not change according to the voltage applied between the electrodes, the correction unit 48 does not need to change the coefficient " ⁇ 3" of Equation (3) according to the voltage applied between the electrodes. , the processing load on the correction unit 48 can be reduced.
  • the motor control unit 50 sets at least the proportional gain of the proportional control, the integral time of the integral control, the derivative time of the derivative control, and the target machining speed according to the corrected discharge delay time. set one. Thereby, the wire electric discharge machine 10 can improve the machining accuracy of the workpiece 14 .
  • the wire electric discharge machine can improve the machining accuracy of the workpiece.
  • the wire electric discharge machine can keep the size of the electric discharge gap constant during machining regardless of the machining speed.
  • the discharge state value acquisition unit may acquire the reciprocal of the number of discharge pulses per unit time or the discharge delay time as the discharge state value.
  • the discharge state value correction section does not need to change the coefficient ⁇ according to the voltage applied between the poles, and the processing load on the discharge state value correction section can be reduced.
  • the control unit performs proportional control, integral control, and differential control on the drive unit to set the machining speed to a target machining speed, and according to the correction value, the proportional control of the proportional control At least one of a gain, an integral time of integral control, a derivative time of derivative control, and the target machining speed may be set.
  • the wire electric discharge machine can improve the machining accuracy of the workpiece.
  • the average voltage between the electrodes, the reciprocal of the number of discharge pulses between the electrodes per unit time, and the discharge delay time which is the time from the application of the voltage between the electrodes to the generation of discharge between the electrodes a discharge state value obtaining step of obtaining one as a discharge state value; and a discharge state value correction step of obtaining a correction value by correcting the discharge state value according to the machining speed, which is the relative speed of the wire electrode with respect to the workpiece.
  • the wire electric discharge machine can improve the machining accuracy of the workpiece.
  • the wire electric discharge machine can keep the size of the electric discharge gap constant during machining regardless of the machining speed.
  • the reciprocal of the number of discharge pulses per unit time or the discharge delay time may be obtained as the discharge state value. Accordingly, in the discharge state value correction step, it is not necessary to change the coefficient ⁇ according to the voltage applied between the poles, and the processing load in the discharge state value correction step can be reduced.
  • the driving unit is proportionally controlled, integrally controlled, and differentially controlled to set the machining speed to a target machining speed, and proportional At least one of the proportional gain of control, the integral time of integral control, the derivative time of derivative control, and the target machining speed may be set.
  • the wire electric discharge machine can improve the machining accuracy of the workpiece.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

ワイヤ放電加工機(10)は、極間の平均極間電圧を算出する平均極間電圧算出部(32)と、ワーク(14)に対するワイヤ電極(12)の加工速度に応じて、補正平均極間電圧を求める補正部(34)と、補正平均極間電圧に基づいてX軸モータ(24)及びY軸モータ(26)を制御して、加工中における極間の大きさを一定にするモータ制御部(36)と、を有し、補正部(34)は、平均極間電圧を分子とし、係数に加工速度を掛けた値を分母とする式に基づいて、補正平均極間電圧を求める。

Description

ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法
 本発明は、ワイヤ電極とワークとの間の極間において放電を生じさせてワークの加工を行うワイヤ放電加工機、及び、その制御方法に関する。
 国際公開第2015/145484号には、ワイヤ放電加工機が開示されている。ワイヤ放電加工機は、加工速度(被加工物に対する加工用電極の相対速度)を制御する制御部を有する。加工速度と設定速度との差分は、加工用電極と加工対象物との間の距離(サイドギャップ)と相関がある。そのため、制御部は、加工速度と設定速度との差分に応じて、加工用電極と被加工物との間の極間平均加工電圧を補正する。制御部は、補正後の極間平均加工電圧に基づいて加工速度を制御する。これにより、ワイヤ放電加工機は、放電加工中に、サイドギャップを一定にして、被加工物の加工精度を向上できる。
 加工速度と設定速度との差分の大きさと、サイドギャップの大きさとの相関は、加工速度と設定速度との差分が大きくなるほど小さくなる。そのため、国際公開第2015/145484号のワイヤ放電加工機では、加工速度と設定速度との差分が大きくなるほど、被加工物の加工精度が低下する課題がある。
 本発明は、上述した課題を解決することを目的とする。
 本発明の第1の態様は、ワイヤ電極とワークとの間の極間において放電を生じさせて前記ワークの加工を行うワイヤ放電加工機であって、前記極間の電圧の時間平均である平均極間電圧、単位時間における前記極間の放電パルス数の逆数、及び、前記極間に電圧を印加してから前記極間において放電が生じるまでの時間である放電遅れ時間のいずれか1つを放電状態値として取得する放電状態値取得部と、前記ワークに対する前記ワイヤ電極の相対速度である加工速度に応じて、前記放電状態値を補正して補正値を求める放電状態値補正部と、前記ワークに対して前記ワイヤ電極を相対移動させる駆動部と、前記補正値に基づいて前記駆動部を制御して、加工中における前記極間の大きさを一定にする制御部と、を有し、前記放電状態値補正部は、前記放電状態値を分子とし、係数に前記加工速度を掛けた値を分母とする式に基づいて、前記補正値を求める。
 本発明の第2の態様は、ワイヤ電極とワークとの間の極間において放電を生じさせて前記ワークの加工を行うワイヤ放電加工機の制御方法であって、前記極間の電圧の時間平均である平均極間電圧、単位時間における前記極間の放電パルス数の逆数、及び、前記極間に電圧を印加してから前記極間において放電が生じるまでの時間である放電遅れ時間のいずれか1つを放電状態値として取得する放電状態値取得ステップと、前記ワークに対する前記ワイヤ電極の相対速度である加工速度に応じて、前記放電状態値を補正して補正値を求める放電状態値補正ステップと、駆動部により前記ワークに対して前記ワイヤ電極を相対移動させる駆動ステップと、前記補正値に基づいて前記駆動部を制御して、加工中における前記極間の大きさを一定にする制御ステップと、を有し、前記放電状態値補正ステップにおいて、前記放電状態値を分子とし、係数に前記加工速度を掛けた値を分母とする式に基づいて、前記補正値を求める。
 本発明により、ワイヤ放電加工機は、ワークの加工精度を向上できる。
図1は、ワイヤ放電加工機を示す模式図である。 図2は、放電ギャップについて説明する図である。 図3A及び図3Bは、極間に印加される電圧と平均極間電圧とを示すグラフである。 図4は、ワイヤ放電加工機を示す模式図である。 図5は、ワイヤ放電加工機を示す模式図である。
 〔第1実施形態〕
 図1は、ワイヤ放電加工機10を示す模式図である。ワイヤ放電加工機10は、ワイヤ電極12とワーク14との間(以下、極間と記載することがある)に電圧を印加して放電を発生させることで、ワーク14に対して放電加工を施す工作機械である。ワイヤ電極12の材質は、例えば、タングステン系、銅合金系、黄銅系等の金属材料である。ワーク14の材質は、例えば、鉄系材料、超硬材料等である。ワイヤ放電加工機10は、加工機本体16及び制御装置18を有する。
 加工機本体16は、加工電源20、極間電圧検出部22、X軸モータ24及びY軸モータ26を有する。加工電源20は、極間に電圧を印加する。極間電圧検出部22は、極間の電圧(以下、極間電圧と記載することがある)を検出する電圧センサである。X軸モータ24及びY軸モータ26は、不図示のワークテーブルを移動させる。ワークテーブルに固定されたワーク14がワークテーブルとともに移動することにより、ワーク14に対してワイヤ電極12が相対移動する。
 制御装置18は、演算部28及び記憶部30を有する。演算部28は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)等のプロセッサによって構成される。演算部28は、平均極間電圧算出部32、補正部34、モータ制御部36及び加工電源制御部38を有する。平均極間電圧算出部32、補正部34、モータ制御部36及び加工電源制御部38は、記憶部30に記憶されているプログラムが演算部28によって実行されることによって実現される。平均極間電圧算出部32、補正部34、モータ制御部36及び加工電源制御部38の少なくとも1つが、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等の集積回路によって実現されてもよい。平均極間電圧算出部32、補正部34、モータ制御部36及び加工電源制御部38の少なくとも1つが、ディスクリートデバイスを含む電子回路によって構成されてもよい。
 記憶部30は、不図示の揮発性メモリと、不図示の不揮発性メモリとによって構成される。揮発性メモリは、例えば、RAM(Random Access Memory)等である。例えば、一時的に使用されるデータ等が揮発性メモリに記憶される。不揮発性メモリは、例えば、ROM(Read Only Memory)、フラッシュメモリ等である。例えば、プログラム、テーブル、マップ等が不揮発性メモリに記憶される。記憶部30の少なくとも一部が、上述したプロセッサ、集積回路等に備えられてもよい。
 平均極間電圧算出部32は、極間電圧検出部22が検出した極間電圧の時間平均を算出する。以下、極間電圧の時間平均を平均極間電圧と記載する場合がある。平均極間電圧算出部32は、本発明の放電状態値取得部に相当する。補正部34は、ワーク14に対するワイヤ電極12の相対速度に応じて、平均極間電圧を補正する。以下、ワーク14に対するワイヤ電極12の相対速度を加工速度と記載する場合がある。補正部34において行われる平均極間電圧の補正については、後に詳述する。補正部34は、本発明の放電状態値補正部に相当する。モータ制御部36は、X軸モータ24及びY軸モータ26を制御して、加工速度を目標加工速度にする。目標加工速度は、補正部34において補正が行われた後の平均極間電圧に基づいて設定される。以下、補正部34において補正が行われた後の平均極間電圧を補正平均極間電圧と記載する場合がある。モータ制御部36は、本発明の制御部に相当する。加工電源制御部38は、加工電源20を制御して極間に電圧を印加する。
 なお、モータ制御部36は、X軸モータ24及びY軸モータ26を、比例制御、積分制御及び微分制御(PID制御)してもよい。モータ制御部36は、補正前の平均極間電圧に基づいて設定された目標加工速度に基づいてX軸モータ24及びY軸モータ26を制御してもよい。この場合、モータ制御部36は、補正平均極間電圧に応じて比例ゲイン、積分時間及び微分時間の少なくとも1つを設定してもよい。
 [補正部について]
 図2は、放電ギャップについて説明する図である。本実施形態では、ワーク14の放電加工中の、ワーク14に対するワイヤ電極12の移動方向に直交する方向における極間の大きさを放電ギャップと称する。ワイヤ放電加工機10によるワーク14の加工精度を向上させるために、モータ制御部36は、ワーク14の放電加工中、X軸モータ24及びY軸モータ26を制御して放電ギャップを略一定に保つ。
 ワーク14の放電加工中に、ワイヤ放電加工機10により放電ギャップを直接検出することは困難である。そこで、本実施形態では、モータ制御部36は、放電ギャップに基づいてX軸モータ24及びY軸モータ26を制御することに代えて、平均極間電圧に基づいてX軸モータ24及びY軸モータ26を制御する。
 しかし、ワーク14の放電加工中の平均極間電圧が一定であっても、加工速度が高くなるほど放電ギャップは小さくなる。そこで、本実施形態では、補正部34は、加工速度に基づいて平均極間電圧を補正して、補正平均極間電圧を求める。モータ制御部36は、補正平均極間電圧に基づいてX軸モータ24及びY軸モータ26を制御する。これにより、ワーク14の放電加工中の放電ギャップが略一定に保たれる。
 補正平均極間電圧は、次の式(1)で求められる。式中の「Ec」は補正平均極間電圧を示す。式中の「E」は平均極間電圧を示す。式中の「α1」は係数を示す。式中の「V」は加工速度を示す。
 Ec=E/(1+α1・V)…(1)
 図3A及び図3Bは、極間に印加される電圧と平均極間電圧とを示すグラフである。図3A及び図3Bに示すように、単位時間当たりの放電パルス数が等しく、極間に電圧が印加されてから極間に放電が生じるまで放電遅れ時間が等しい場合であっても、極間に印加される電圧に応じて平均極間電圧が変わる。そのため、補正部34は、極間に印加される電圧に応じて式(1)の係数「α1」を変更する。
 [作用効果]
 本実施形態のワイヤ放電加工機10では、補正部34は、平均極間電圧を分子とし、係数に加工速度を掛けた値を分母とする式に基づいて、補正平均極間電圧を求める。モータ制御部36は、補正平均極間電圧に基づいてX軸モータ24及びY軸モータ26を制御して、加工中における放電ギャップの大きさを一定にする。これにより、ワイヤ放電加工機10は、ワーク14の加工精度を向上できる。
 本実施形態のワイヤ放電加工機10では、補正部34は、上述の式(1)に基づいて、補正平均極間電圧を求める。これにより、ワイヤ放電加工機10は、加工速度に関わらず、ワーク14の放電加工中における放電ギャップの大きさを一定にできる。
 本実施形態のワイヤ放電加工機10では、モータ制御部36は、補正平均極間電圧に応じて、比例制御の比例ゲイン、積分制御の積分時間、微分制御の微分時間、及び、目標加工速度の少なくとも1つを設定する。これにより、ワイヤ放電加工機10は、ワーク14の加工精度を向上できる。
 〔第2実施形態〕
 第1実施形態では、モータ制御部36が、平均極間電圧に基づいて目標加工速度を設定する。これに対して、本実施形態では、単位時間における放電パルス数の逆数に基づいて目標加工速度を設定する。図3A及び図3Bに示す例では、単位時間における放電パルス数は「4」であり、単位時間における放電パルス数の逆数は「1/4」である。以下では、単位時間における放電パルス数を、単に放電パルス数と記載することがある。
 図4は、ワイヤ放電加工機10を示す模式図である。加工機本体16の構成は、第1実施形態の加工機本体16の構成と同じである。制御装置18の演算部28は、放電パルス数算出部40、補正部42、モータ制御部44及び加工電源制御部38を有する。加工電源制御部38は、第1実施形態の加工電源制御部38と同じである。
 放電パルス数算出部40は、極間電圧検出部22が検出した極間電圧に基づいて、単位時間当たりの放電パルス数を求め、放電パルス数の逆数を算出する。極間に電圧が印加され、極間の絶縁が崩壊して放電が生じると、極間電圧は低下する。放電パルス数算出部40は、極間に電圧が印加され、その後、極間電圧が所定電圧以下となった回数に基づいて、放電パルス数を求める。放電パルス数算出部40は、本発明の放電状態値取得部に相当する。補正部42は、加工速度に応じて放電パルス数の逆数を補正し、補正後の放電パルス数の逆数を求める。補正部42において行われる放電パルス数の逆数の補正については、後に詳述する。補正部42は、本発明の放電状態値補正部に相当する。モータ制御部44は、X軸モータ24及びY軸モータ26を制御して、加工速度を目標加工速度にする。目標加工速度は、補正部42において補正が行われた後の放電パルス数の逆数に基づいて設定される。以下、補正後の放電パルス数を、補正放電パルス数と記載する場合がある。モータ制御部44は、本発明の制御部に相当する。補正放電パルス数の逆数は、本発明の補正値に相当する。
 なお、モータ制御部44は、X軸モータ24及びY軸モータ26を、比例制御、積分制御及び微分制御(PID制御)してもよい。モータ制御部44は、補正前の放電パルス数の逆数に基づいて設定された目標加工速度に基づいてX軸モータ24及びY軸モータ26を制御してもよい。この場合、モータ制御部44は、補正放電パルス数の逆数に応じて比例ゲイン、積分時間及び微分時間の少なくとも1つを設定してもよい。
 補正部42は、次の式(2)に基づいて補正放電パルス数の逆数を求める。式中の「Nc」は補正放電パルス数の逆数を示す。式中の「N」は放電パルス数の逆数を示す。式中の「α2」は係数を示す。式中の「V」は加工速度を示す。
 Nc=N/(1+α2・V)…(2)
 図3A及び図3Bに示すように、平均極間電圧は、極間に印加される電圧に応じて変わる。そのため、第1実施形態の補正部34は、極間に印加される電圧に応じて式(1)の係数「α1」を変更していた。一方、図3A及び図3Bに示すように、放電パルス数は、極間に印加された電圧に応じて変化しない。そのため、本実施形態の補正部42は、式(2)の係数「α2」を、極間に印加された電圧に応じて変更する必要はない。
 [作用効果]
 本実施形態のワイヤ放電加工機10では、補正部42は、単位時間当たりの放電パルス数の逆数を分子とし、係数に加工速度を掛けた値を分母とする式に基づいて、補正放電パルス数の逆数を求める。モータ制御部44は、補正放電パルス数の逆数に基づいてX軸モータ24及びY軸モータ26を制御して、加工中における放電ギャップの大きさを一定にする。これにより、ワイヤ放電加工機10は、ワーク14の加工精度を向上できる。
 本実施形態のワイヤ放電加工機10では、補正部42は、上述の式(2)に基づいて、補正放電パルス数の逆数を求める。これにより、ワイヤ放電加工機10は、加工速度に関わらず、ワーク14の放電加工中における放電ギャップの大きさを一定にできる。
 本実施形態のワイヤ放電加工機10では、放電パルス数算出部40は、極間電圧検出部22が検出した極間電圧に基づいて、単位時間当たりの放電パルス数を求め、放電パルス数の逆数を算出する。補正部42は、上述の式(2)に基づいて補正放電パルス数の逆数を求める。単位時間当たりの放電パルス数は、極間に印加された電圧に応じて変化しないため、補正部42は、式(2)の係数「α2」を、極間に印加された電圧に応じて変更する必要がなく、補正部42における処理負荷を小さくできる。
 本実施形態のワイヤ放電加工機10では、モータ制御部44は、補正放電パルス数の逆数に応じて、比例制御の比例ゲイン、積分制御の積分時間、微分制御の微分時間、及び、目標加工速度の少なくとも1つを設定する。これにより、ワイヤ放電加工機10は、ワーク14の加工精度を向上できる。
 〔第3実施形態〕
 第1実施形態では、平均極間電圧に基づいて放電ギャップを推定する。これに対して、本実施形態では、放電遅れ時間に基づいて放電ギャップを推定する。図3A及び図3Bに示すように、放電遅れ時間とは、極間に電圧が印加されてから極間に放電が生じるまでの時間である。
 図5は、ワイヤ放電加工機10を示す模式図である。加工機本体16の構成は、第1実施形態の加工機本体16の構成と同じである。制御装置18の演算部28は、放電遅れ時間算出部46、補正部48、モータ制御部50及び加工電源制御部38を有する。加工電源制御部38は、第1実施形態の加工電源制御部38と同じである。
 放電遅れ時間算出部46は、極間電圧検出部22が検出した極間電圧に基づいて、放電遅れ時間を算出する。極間に電圧が印加された後に放電が生じると、極間電圧が低下する。放電遅れ時間算出部46は、極間に電圧が印加されてから極間電圧が所定電圧以下となるまでの時間に基づいて、放電遅れ時間を算出する。放電遅れ時間算出部46は、本発明の放電状態値取得部に相当する。補正部48は、加工速度に応じて、放電遅れ時間を補正する。補正部48において行われる放電遅れ時間の補正については、後に詳述する。補正部48は、本発明の放電状態値補正部に相当する。モータ制御部50は、X軸モータ24及びY軸モータ26を制御して、加工速度を目標加工速度にする。目標加工速度は、補正部48において補正が行われた後の放電遅れ時間に基づいて設定される。以下、補正部48において補正が行われた後の放電遅れ時間を補正放電遅れ時間と記載する場合がある。モータ制御部50は、本発明の制御部に相当する。
 なお、モータ制御部50は、X軸モータ24及びY軸モータ26を、比例制御、積分制御及び微分制御(PID制御)してもよい。モータ制御部50は、補正前の放電遅れ時間に基づいて設定された目標加工速度に基づいてX軸モータ24及びY軸モータ26を制御してもよい。この場合、モータ制御部50は、補正放電遅れ時間に応じて比例ゲイン、積分時間及び微分時間の少なくとも1つを設定してもよい。
 補正部48は、次の式(3)に基づいて補正放電遅れ時間を求める。式中の「Tc」は補正放電遅れ時間を示す。式中の「T」は放電遅れ時間を示す。式中の「α3」は係数を示す。式中の「V」は加工速度を示す。
 Tc=T/(1+α3・V)…(3)
 図3A及び図3Bに示すように、平均極間電圧は、極間に印加される電圧に応じて変わる。そのため、第1実施形態の補正部34は、極間に印加される電圧に応じて式(1)の係数「α1」を変更していた。一方、図3A及び図3Bに示すように、放電遅れ時間は、極間電圧に応じて変化しない。そのため、補正部48は、式(3)の係数「α3」を、極間電圧に応じて変更する必要はない。
 [作用効果]
 本実施形態のワイヤ放電加工機10では、補正部48は、放電遅れ時間を分子とし、係数に加工速度を掛けた値を分母とする式に基づいて、補正放電遅れ時間を求める。モータ制御部50は、補正放電遅れ時間に基づいてX軸モータ24及びY軸モータ26を制御して、ワーク14の放電加工中における放電ギャップの大きさを一定にする。これにより、ワイヤ放電加工機10は、ワーク14の加工精度を向上できる。
 本実施形態のワイヤ放電加工機10では、補正部48は、上述の式(3)に基づいて、補正放電遅れ時間を求める。これにより、ワイヤ放電加工機10は、加工速度に関わらず、加工中における放電ギャップの大きさを一定にできる。
 本実施形態のワイヤ放電加工機10では、放電遅れ時間算出部46は、極間電圧検出部22が検出した極間電圧に基づいて、放電遅れ時間を算出する。補正部48は、上述の式(3)に基づいて補正放電遅れ時間を求める。放電遅れ時間は、極間に印加された電圧に応じて変化しないため、補正部48は、式(3)の係数「α3」を、極間に印加された電圧に応じて変更する必要はなく、補正部48における処理負荷を小さくできる。
 本実施形態のワイヤ放電加工機10では、モータ制御部50は、補正放電遅れ時間に応じて、比例制御の比例ゲイン、積分制御の積分時間、微分制御の微分時間、及び、目標加工速度の少なくとも1つを設定する。これにより、ワイヤ放電加工機10は、ワーク14の加工精度を向上できる。
 なお、本発明は、上述した実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を取り得る。
 〔実施形態から得られる技術的思想〕
 上記実施形態から把握しうる技術的思想について、以下に記載する。
 ワイヤ電極(12)とワーク(14)との間の極間において放電を生じさせて前記ワークの加工を行うワイヤ放電加工機(10)であって、前記極間の電圧の時間平均である平均極間電圧、単位時間における前記極間の放電パルス数の逆数、及び、前記極間に電圧を印加してから前記極間において放電が生じるまでの時間である放電遅れ時間のいずれか1つを放電状態値として取得する放電状態値取得部(32)と、前記ワークに対する前記ワイヤ電極の相対速度である加工速度に応じて、前記放電状態値を補正して補正値を求める放電状態値補正部(34)と、前記ワークに対して前記ワイヤ電極を相対移動させる駆動部(24、26)と、前記補正値に基づいて前記駆動部を制御して、加工中における前記極間の大きさを一定にする制御部(36)と、を有し、前記放電状態値補正部は、前記放電状態値を分子とし、係数に前記加工速度を掛けた値を分母とする式に基づいて、前記補正値を求める。これにより、ワイヤ放電加工機は、ワークの加工精度を向上できる。
 上記のワイヤ放電加工機であって、前記放電状態値補正部は、前記補正値をSc、前記放電状態値をS、前記係数をα、前記加工速度をVとしたときに、Sc=S/(1+α・V)の式に基づき前記補正値を求めてもよい。これにより、ワイヤ放電加工機は、加工速度に関わらず、加工中における放電ギャップの大きさを一定にできる。
 上記のワイヤ放電加工機であって、前記放電状態値取得部は、単位時間における前記放電パルス数の逆数、又は、前記放電遅れ時間を前記放電状態値として取得してもよい。これにより、放電状態値補正部は、極間に印加される電圧に応じて係数αを変更する必要がなく、放電状態値補正部における処理負荷を小さくできる。
 上記のワイヤ放電加工機であって、前記制御部は、前記駆動部を比例制御、積分制御及び微分制御して、前記加工速度を目標加工速度にし、前記補正値に応じて、比例制御の比例ゲイン、積分制御の積分時間、微分制御の微分時間、及び、前記目標加工速度の少なくとも1つを設定してもよい。これにより、ワイヤ放電加工機は、ワークの加工精度を向上できる。
 ワイヤ電極(12)とワーク(14)との間の極間において放電を生じさせて前記ワークの加工を行うワイヤ放電加工機(10)の制御方法であって、前記極間の電圧の時間平均である平均極間電圧、単位時間における前記極間の放電パルス数の逆数、及び、前記極間に電圧を印加してから前記極間において放電が生じるまでの時間である放電遅れ時間のいずれか1つを放電状態値として取得する放電状態値取得ステップと、前記ワークに対する前記ワイヤ電極の相対速度である加工速度に応じて、前記放電状態値を補正して補正値を求める放電状態値補正ステップと、駆動部(24、26)により前記ワークに対して前記ワイヤ電極を相対移動させる駆動ステップと、前記補正値に基づいて前記駆動部を制御して、加工中における前記極間の大きさを一定にする制御ステップと、を有し、前記放電状態値補正ステップにおいて、前記放電状態値を分子とし、係数に前記加工速度を掛けた値を分母とする式に基づいて、前記補正値を求める。これにより、ワイヤ放電加工機は、ワークの加工精度を向上できる。
 上記のワイヤ放電加工機の制御方法であって、前記放電状態値補正ステップにおいて、前記補正値をSc、前記放電状態値をS、前記係数をα、前記加工速度をVとしたときに、Sc=S/(1+α・V)の式に基づき前記補正値を求めてもよい。これにより、ワイヤ放電加工機は、加工速度に関わらず、加工中における放電ギャップの大きさを一定にできる。
 上記のワイヤ放電加工機の制御方法であって、前記放電状態値取得ステップにおいて、単位時間における前記放電パルス数の逆数、又は、前記放電遅れ時間を前記放電状態値として取得してもよい。これにより、放電状態値補正ステップにおいて、極間に印加される電圧に応じて係数αを変更する必要がなく、放電状態値補正ステップにおける処理負荷を小さくできる。
 上記のワイヤ放電加工機の制御方法であって、前記制御ステップにおいて、前記駆動部を比例制御、積分制御及び微分制御して、前記加工速度を目標加工速度にし、前記補正値に応じて、比例制御の比例ゲイン、積分制御の積分時間、微分制御の微分時間、及び、前記目標加工速度の少なくとも1つを設定してもよい。これにより、ワイヤ放電加工機は、ワークの加工精度を向上できる。
10…ワイヤ放電加工機       12…ワイヤ電極
14…ワーク            24…X軸モータ(駆動部)
26…Y軸モータ(駆動部)     
32…平均極間電圧算出部(放電状態値取得部)
34…補正部(放電状態値補正部)  36…モータ制御部(制御部)

Claims (8)

  1.  ワイヤ電極(12)とワーク(14)との間の極間において放電を生じさせて前記ワークの加工を行うワイヤ放電加工機(10)であって、
     前記極間の電圧の時間平均である平均極間電圧、単位時間における前記極間の放電パルス数の逆数、及び、前記極間に電圧を印加してから前記極間において放電が生じるまでの時間である放電遅れ時間のいずれか1つを放電状態値として取得する放電状態値取得部(32)と、
     前記ワークに対する前記ワイヤ電極の相対速度である加工速度に応じて、前記放電状態値を補正して補正値を求める放電状態値補正部(34)と、
     前記ワークに対して前記ワイヤ電極を相対移動させる駆動部(24、26)と、
     前記補正値に基づいて前記駆動部を制御して、加工中における前記極間の大きさを一定にする制御部(36)と、
     を有し、
     前記放電状態値補正部は、前記放電状態値を分子とし、係数に前記加工速度を掛けた値を分母とする式に基づいて、前記補正値を求める、ワイヤ放電加工機。
  2.  請求項1に記載のワイヤ放電加工機であって、
     前記放電状態値補正部は、前記補正値をSc、前記放電状態値をS、前記係数をα、前記加工速度をVとしたときに、
     Sc=S/(1+α・V)
     の式に基づき前記補正値を求める、ワイヤ放電加工機。
  3.  請求項2に記載のワイヤ放電加工機であって、
     前記放電状態値取得部は、単位時間における前記放電パルス数の逆数、又は、前記放電遅れ時間を前記放電状態値として取得する、ワイヤ放電加工機。
  4.  請求項1~3のいずれか1項に記載のワイヤ放電加工機であって、
     前記制御部は、
     前記駆動部を比例制御、積分制御及び微分制御して、前記加工速度を目標加工速度にし、
     前記補正値に応じて、比例制御の比例ゲイン、積分制御の積分時間、微分制御の微分時間、及び、前記目標加工速度の少なくとも1つを設定する、ワイヤ放電加工機。
  5.  ワイヤ電極(12)とワーク(14)との間の極間において放電を生じさせて前記ワークの加工を行うワイヤ放電加工機(10)の制御方法であって、
     前記極間の電圧の時間平均である平均極間電圧、単位時間における前記極間の放電パルス数の逆数、及び、前記極間に電圧を印加してから前記極間において放電が生じるまでの時間である放電遅れ時間のいずれか1つを放電状態値として取得する放電状態値取得ステップと、
     前記ワークに対する前記ワイヤ電極の相対速度である加工速度に応じて、前記放電状態値を補正して補正値を求める放電状態値補正ステップと、
     駆動部(24、26)により前記ワークに対して前記ワイヤ電極を相対移動させる駆動ステップと、
     前記補正値に基づいて前記駆動部を制御して、加工中における前記極間の大きさを一定にする制御ステップと、
     を有し、
     前記放電状態値補正ステップにおいて、前記放電状態値を分子とし、係数に前記加工速度を掛けた値を分母とする式に基づいて、前記補正値を求める、ワイヤ放電加工機の制御方法。
  6.  請求項5に記載のワイヤ放電加工機の制御方法であって、
     前記放電状態値補正ステップにおいて、前記補正値をSc、前記放電状態値をS、前記係数をα、前記加工速度をVとしたときに、
     Sc=S/(1+α・V)
     の式に基づき前記補正値を求める、ワイヤ放電加工機の制御方法。
  7.  請求項6に記載のワイヤ放電加工機の制御方法であって、
     前記放電状態値取得ステップにおいて、単位時間における前記放電パルス数の逆数、又は、前記放電遅れ時間を前記放電状態値として取得する、ワイヤ放電加工機の制御方法。
  8.  請求項5~7のいずれか1項に記載のワイヤ放電加工機の制御方法であって、
     前記制御ステップにおいて、
     前記駆動部を比例制御、積分制御及び微分制御して、前記加工速度を目標加工速度にし、
     前記補正値に応じて、比例制御の比例ゲイン、積分制御の積分時間、微分制御の微分時間、及び、前記目標加工速度の少なくとも1つを設定する、ワイヤ放電加工機の制御方法。
PCT/JP2021/023906 2021-06-24 2021-06-24 ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法 WO2022269846A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180099495.6A CN117529384A (zh) 2021-06-24 2021-06-24 线放电加工机以及线放电加工机的控制方法
JP2021552823A JP7022258B1 (ja) 2021-06-24 2021-06-24 ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法
EP21947131.5A EP4338877A1 (en) 2021-06-24 2021-06-24 Wire electrical discharge machine, and control method for wire electrical discharge machine
PCT/JP2021/023906 WO2022269846A1 (ja) 2021-06-24 2021-06-24 ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法
US18/570,441 US20240269758A1 (en) 2021-06-24 2021-06-24 Wire electrical discharge machine, and control method for wire electrical discharge machine
TW111123129A TWI836480B (zh) 2021-06-24 2022-06-22 金屬線放電加工機及金屬線放電加工機之控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023906 WO2022269846A1 (ja) 2021-06-24 2021-06-24 ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法

Publications (1)

Publication Number Publication Date
WO2022269846A1 true WO2022269846A1 (ja) 2022-12-29

Family

ID=80997556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023906 WO2022269846A1 (ja) 2021-06-24 2021-06-24 ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法

Country Status (6)

Country Link
US (1) US20240269758A1 (ja)
EP (1) EP4338877A1 (ja)
JP (1) JP7022258B1 (ja)
CN (1) CN117529384A (ja)
TW (1) TWI836480B (ja)
WO (1) WO2022269846A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463630A (ja) * 1990-06-29 1992-02-28 Makino Milling Mach Co Ltd ワイヤ放電加工機の制御方法と装置
WO2015145484A1 (ja) 2014-03-27 2015-10-01 三菱電機株式会社 ワイヤ放電加工機の制御装置、ワイヤ放電加工機の制御方法
JP2017042858A (ja) * 2015-08-25 2017-03-02 ファナック株式会社 極間距離を一定にするワイヤ放電加工機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1219373B1 (en) * 2000-12-25 2011-06-15 Fanuc Corporation Controller for wire electric discharge machine
WO2015087389A1 (ja) * 2013-12-10 2015-06-18 三菱電機株式会社 ワイヤ放電加工装置、ワイヤ放電加工方法および制御装置
JP6506349B2 (ja) * 2017-06-19 2019-04-24 ファナック株式会社 ワイヤ放電加工機の制御装置、および、ワイヤ放電加工機の制御方法
EP3446820A1 (en) * 2017-08-22 2019-02-27 Agie Charmilles SA Wire electrical discharge machining method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463630A (ja) * 1990-06-29 1992-02-28 Makino Milling Mach Co Ltd ワイヤ放電加工機の制御方法と装置
WO2015145484A1 (ja) 2014-03-27 2015-10-01 三菱電機株式会社 ワイヤ放電加工機の制御装置、ワイヤ放電加工機の制御方法
JP5794401B1 (ja) * 2014-03-27 2015-10-14 三菱電機株式会社 ワイヤ放電加工機の制御装置、ワイヤ放電加工機の制御方法
JP2017042858A (ja) * 2015-08-25 2017-03-02 ファナック株式会社 極間距離を一定にするワイヤ放電加工機

Also Published As

Publication number Publication date
JPWO2022269846A1 (ja) 2022-12-29
US20240269758A1 (en) 2024-08-15
CN117529384A (zh) 2024-02-06
EP4338877A1 (en) 2024-03-20
JP7022258B1 (ja) 2022-02-17
TWI836480B (zh) 2024-03-21
TW202301046A (zh) 2023-01-01

Similar Documents

Publication Publication Date Title
EP2327498B1 (en) Wire-cut electric discharge machine and electric discharge machining method
JP5794401B1 (ja) ワイヤ放電加工機の制御装置、ワイヤ放電加工機の制御方法
US10189103B2 (en) Wire electrical discharge machining apparatus
TWI788637B (zh) 金屬線放電加工機及金屬線放電加工方法
KR20170024553A (ko) 극간 거리를 일정하게 하는 와이어 방전 가공기
WO2017138137A1 (ja) 加工制御装置、ワイヤ放電加工装置およびワイヤ放電加工方法
WO2014068681A1 (ja) ワイヤ放電加工装置および制御装置
TWI671150B (zh) 金屬線放電加工機之控制裝置及金屬線放電加工機之控制方法
JP2005066738A (ja) ワイヤカット放電加工機の加工制御方法
WO2022269846A1 (ja) ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法
KR0164629B1 (ko) 방전가공 제어방법 및 방전가공 제어장치
WO2022269847A1 (ja) ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法
JP6517867B2 (ja) 数値制御装置
JP3006818B2 (ja) 放電加工方法および装置
JP2008036720A (ja) ワイヤ放電加工機
JP6266192B1 (ja) ワイヤ放電加工機およびワイヤ放電加工方法
WO2023095282A1 (ja) ワイヤ放電加工機の制御装置、及び、ワイヤ放電加工機の制御方法
JP7010872B2 (ja) ワイヤ放電加工機および端面位置決定方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021552823

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021947131

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18570441

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180099495.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021947131

Country of ref document: EP

Effective date: 20231212

NENP Non-entry into the national phase

Ref country code: DE