WO2022267519A1 - 一种发射筒的校准方法、装置及飞行设备 - Google Patents

一种发射筒的校准方法、装置及飞行设备 Download PDF

Info

Publication number
WO2022267519A1
WO2022267519A1 PCT/CN2022/078564 CN2022078564W WO2022267519A1 WO 2022267519 A1 WO2022267519 A1 WO 2022267519A1 CN 2022078564 W CN2022078564 W CN 2022078564W WO 2022267519 A1 WO2022267519 A1 WO 2022267519A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset
distance
calibration
center point
launch tube
Prior art date
Application number
PCT/CN2022/078564
Other languages
English (en)
French (fr)
Inventor
徐晓
杨兴光
柳艳青
路建刚
罗嘉伟
张晨
Original Assignee
航天科工仿真技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 航天科工仿真技术有限责任公司 filed Critical 航天科工仿真技术有限责任公司
Publication of WO2022267519A1 publication Critical patent/WO2022267519A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41FAPPARATUS FOR LAUNCHING PROJECTILES OR MISSILES FROM BARRELS, e.g. CANNONS; LAUNCHERS FOR ROCKETS OR TORPEDOES; HARPOON GUNS
    • F41F1/00Launching apparatus for projecting projectiles or missiles from barrels, e.g. cannons; Harpoon guns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/46Sighting devices for particular applications

Definitions

  • the present application relates to the technical field of sighting and sighting, in particular to a method, device and flight equipment for calibrating a launching tube.
  • a launching device and an aiming device on an unmanned aerial vehicle, wherein, due to the design of the launching tube of the launching device and the camera of the aiming device, there is a fixed displacement and there is a certain installation error during installation, so that the distance between the camera and the launching tube There is a pitch angle or a yaw angle between them, which causes the target object sent by the launch device to deviate from the allowable error range, so that the target object cannot hit the target position.
  • the embodiment of the present application provides a calibration method, device, and flight equipment for the launch tube to solve the problem of installation error between the launch tube and the aiming device, which leads to a reduction in the launch accuracy of the target emitted by the launch tube. Deviate from the allowable range of error, and thus fail to hit the target.
  • an embodiment of the present application provides a method for calibrating a launch tube, including: projecting the target position of the launch tube and the center position of the aiming device on the calibration plane, and the target position is projected by the launch tube on the calibration plane
  • the actual target position, the center position is the position where the center point of the aiming camera in the actual aiming device corresponds to the calibration surface; obtain the horizontal distance and the vertical distance from the preset launch tube to the aiming device; according to the horizontal distance, the vertical distance and the The center position is determined to determine a preset error allowable range; the target position is moved to the preset error allowable range to complete the launch tube calibration.
  • the method provided in the embodiment of the present application obtains the horizontal distance and the vertical distance from the preset launch tube to the aiming device by projecting the target position of the launch tube and the center position of the aiming device on the calibration plane; according to the horizontal distance, vertical distance and The center position determines a preset error allowable range; thereby moving the target position within the preset error allowable range to improve the installation error between the launch tube and the aiming device and further improve the accuracy of aiming at the target.
  • the determining the preset error allowable range according to the horizontal distance, the vertical distance and the central position includes: using a surveying and mapping tool to measure and draw the The horizontal distance and the vertical distance from the center position to the preset launch tube; the preset center point is set according to the horizontal distance and the vertical distance from the center position to the preset launch tube; the preset error allowable radius is based on the preset center point; using the Error Tolerance Radius plots the error tolerance range.
  • the accuracy of aiming at the target is further improved by setting the allowable error radius and drawing the allowable error range.
  • the moving the target position to within the allowable range of the preset error further includes: acquiring a preset center point, The center point of the real-time moving target position, the calibration distance of the preset calibration plane and the actual distance when the launch tube is launched; based on the preset center point and the center point of the real-time moving target position, measure the preset center of circle Point and the horizontal distance and the vertical distance between the center point of the target position of the real-time movement; According to the horizontal distance and the vertical distance between the preset center point and the center point of the target position of the real-time movement and preset Calculate the error adjustment distance based on the calibration distance of the calibration plane and the actual distance when the launch tube is launched; adjust the error adjustment of the launch tube based on the error adjustment distance, so that the center point of the real-time moving target position coincides with the preset center point, and the completion Transmitter calibration.
  • the error adjustment distance includes: a vertical error adjustment distance and a horizontal error adjustment distance.
  • the embodiment of the present application provides a projection module, which is used to project the target position of the launch tube and the center position of the aiming device on the calibration plane, and the target position is the actual target projected by the launch tube on the calibration plane Position, the center position is the position corresponding to the calibration surface of the center point of the aiming camera in the actual aiming device;
  • the first acquisition module is used to obtain the horizontal distance and the vertical distance from the preset launch tube to the aiming device;
  • the determination module is used to determine according to The horizontal distance, the vertical distance and the center position determine a preset error allowable range;
  • the first adjustment module is used to move the target position to the preset error allowable range to complete the calibration of the launch tube.
  • the adjustment module further includes:
  • the surveying and mapping module is used to use the surveying and mapping tool to draw the horizontal distance and vertical distance from the central position to the preset launch tube;
  • the setting module is used to set the preset circle center according to the horizontal distance and the vertical distance from the central position to the preset launch tube point;
  • a first preset module configured to preset an allowable error radius based on the preset center point;
  • an error drawing module configured to use the allowable error radius to draw the allowable error range.
  • the second embodiment of the second aspect includes: a second acquisition module, configured to acquire the preset center point, the center point of the real-time moving target position, the calibration distance of the preset calibration plane, and the launch tube emission The actual distance at the time; the measurement module is used to measure the distance between the preset center point and the center point of the real-time moving target position based on the preset center point and the center point of the real-time moving target position Horizontal distance and vertical distance; mobile module, used for according to the horizontal distance and the vertical distance between the center point of the preset center point and the target position of the real-time movement and the calibration distance of the preset calibration plane and when the launch tube is launched The actual distance is calculated to obtain the error adjustment distance; the second adjustment module is used to adjust the error of the launcher based on the error adjustment distance, so that the center point of the real-time moving target position coincides with the preset center point to complete the launcher calibration .
  • a second acquisition module configured to acquire the preset center point, the center point of the real-time moving target position,
  • the embodiment of the present application provides a calibration device, which is suitable for calibrating the launch tube in the launch device, including: a memory and a processor, and the memory and the processor are connected to each other in communication, so Computer instructions are stored in the memory, and the processor executes the computer instructions to execute the method for calibrating the launch tube described in the first aspect or any implementation manner of the first aspect.
  • an embodiment of the present application provides a flying device, including: an aiming device, configured to observe a target object to determine the position information of the target object; a launching device, configured to determine the position information based on the aiming device The launching target; the calibration device, which is used to perform the calibration method of the launching tube in the first aspect or any one of the implementation manners of the first aspect on the launching tube in the launching device before the flight equipment takes off.
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores computer instructions, and the computer instructions are used to make the computer execute the first aspect or any of the first aspects.
  • Fig. 1 is a flow chart of a method for calibrating a launch tube provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of a circle in which the cover of the launcher is launched onto the wall in a method for calibrating the launcher according to the embodiment of the present application;
  • Fig. 3 is a schematic diagram of a range of allowable launch angles in which circle Y is a calibration method of a launch tube provided by an embodiment of the present application;
  • Fig. 4 is a schematic diagram of a calibration completion state in a calibration method for a launching tube provided by an embodiment of the present application;
  • FIG. 5 is a flow chart of step S13 in a method for calibrating a launch tube provided in an embodiment of the present application
  • FIG. 6 is a flow chart of steps S14 to S17 in a method for calibrating a launch tube provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram of a calibration completion state in a calibration method for a launching tube provided in an optional embodiment of the present application;
  • Fig. 8 is a structural block diagram of a calibration device for a launch tube provided by an embodiment of the present application.
  • Fig. 9 is a structural block diagram of a flying device provided by an embodiment of the present application.
  • Fig. 10 is a structural block diagram of a calibration device provided by an embodiment of the present application.
  • the calibration method of the launch tube includes:
  • the target position of the launch tube and the center position of the aiming device on the calibration plane is the actual target position projected by the launch tube on the calibration plane
  • the center position is the center point of the aiming camera in the actual aiming device corresponding to the calibration plane Location.
  • the UAV is positioned facing the wall and 5 meters away from the wall, and a laser pointer is embedded in the center of the launch tube cover, and at the same time, laser light is emitted from the periphery of the tube cover to irradiate the wall, such as As shown in Figure 2, the launch tube cover is launched into the circle on the wall, and the center point X of the camera of the aiming device is marked on the wall, and the horizontal distance a meter and the vertical distance b meter from the center of the launch tube to the camera are measured by tools.
  • the circle Y is the range of the allowable launch angle. Adjust the angle of the launch tube until the emitted ray circle is within the circle on the wall with the center Y and a radius of 128mm, which means that the launch tube and the camera are within the allowable error range. As shown in Figure 4, it shows the status of calibration completion.
  • the calibration method of the launcher obtaineds the horizontal distance and the vertical distance from the preset launcher to the aiming device by projecting the target position of the launcher and the center position of the aiming device on the calibration surface; and the center position to determine the allowable range of the preset error; thereby moving the target position within the allowable range of the preset error to improve the installation error between the launch tube and the aiming device and further improve the accuracy of aiming at the target.
  • the actual distance between the entire drone and the wall can be obtained from the host computer software by aiming at the laser ranging on the camera.
  • the horizontal distance can be obtained from the design drawings of the UAV, and the measured distance is the actual distance between the launch tube and the camera.
  • step S13 further includes:
  • the distance between the launch tube and the camera within the allowable error can be obtained by calculation, as shown in Figure 7, the specific method is as follows: the actual level of the YZ two points can be measured The distance is L1 meters, and the vertical distance is L2 meters. At this time, the UAV is placed on the wall at 5 meters. If the actual launch distance can be measured as L3 meters, then combined with the above calibration analysis, without considering the gravity error, according to the specific launch When launching, after the camera is aimed at the center of the window, it needs to move (a+(L1 ⁇ L3)/5) meters horizontally and (b+(L2 ⁇ L3)/5) meters vertically before launching.
  • the angle error adjustment between the launcher and the camera is performed with a simple tool, and the accuracy calibration is performed again within the allowable error range, so as to greatly improve the accuracy of aiming and launching.
  • the error adjustment distance includes: a vertical error adjustment distance and a horizontal error adjustment distance.
  • an embodiment of the present application provides a calibration device for a launch tube, which includes:
  • the projection module 10 is used to project the target position of the launch tube and the center position of the aiming device on the calibration surface, the target position is the actual target position projected by the launch tube on the calibration plane, and the center position corresponds to the center point of the aiming camera in the actual aiming device
  • the position of the calibration plane refer to step S10 for details.
  • the first acquiring module 11 is configured to acquire the horizontal distance and the vertical distance from the preset launching tube to the aiming device, and refer to step S11 for details.
  • the determination module 12 is used to determine the preset error allowable range according to the horizontal distance, vertical distance and center position. For details, refer to step S12.
  • the first adjustment module 13 is used to move the target position within the allowable range of the preset error, and complete the calibration of the launch tube. For details, refer to step S13.
  • the first adjustment module 13 also includes:
  • the surveying and mapping module 131 is configured to use a surveying and mapping tool to draw the horizontal distance and vertical distance from the center position to the preset launch tube, and refer to step S131 for details.
  • the setting module 132 is configured to set a preset center point according to the horizontal distance and the vertical distance from the center position to the preset launch tube, and refer to step S132 for details.
  • the first preset module 133 is configured to preset the allowable error radius based on the preset center point, and refer to step S133 for details.
  • the error drawing module 134 is used for drawing the allowable error range by using the allowable error radius, and refer to step S134 for details.
  • the device can also include:
  • the second acquisition module 14 is used to acquire the preset center point, the center point of the real-time moving target position, the calibration distance of the preset calibration plane and the actual distance when the launch tube is launched. For details, refer to step S14.
  • the measurement module 15 is used to measure the horizontal and vertical distances between the preset center point and the center point of the real-time moving target position based on the preset center point and the center point of the real-time moving target position. For details, refer to step S15.
  • the mobile module 16 is used to calculate the error adjustment distance according to the horizontal distance and vertical distance between the preset center point and the center point of the real-time moving target position, the calibration distance of the preset calibration plane and the actual distance when the launch tube is launched. , refer to step S16 for details.
  • the second adjustment module 17 is used to adjust the error of the launch tube based on the error adjustment distance, so that the center point of the real-time moving target position coincides with the preset center point, and complete the calibration of the launch tube. For details, refer to step S17.
  • the embodiment of the present application also provides a flying device, as shown in FIG. 9 , including: an aiming device 20, which is used to observe the target object to determine the position information of the target object; a launcher 21, which is used to determine the position according to the aiming device.
  • the embodiment of the present application also provides a calibration device, which is suitable for calibrating the launch tube in the launch device.
  • the calibration device may include a processor 30 and a memory 31, wherein the processor 30 and the memory 31 can It is connected through a bus or in other ways, and the connection through a bus is taken as an example in FIG. 10 .
  • the processor 30 may be a central processing unit (Central Processing Unit, CPU).
  • Processor 30 can also be other general processors, digital signal processor (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC), field programmable gate array (Field-Programmable Gate Array, FPGA) or Other chips such as programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or combinations of the above-mentioned types of chips.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • Other chips such as programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or combinations of the above-mentioned types of chips.
  • the memory 31, as a non-transitory computer-readable storage medium, can be used to store non-transitory software programs, non-transitory computer-executable programs and modules, such as the program instructions corresponding to the button shielding method of the vehicle-mounted display device in the embodiment of the present application /modules (for example, the projection module 10, the first acquisition module 11, the determination module 12, and the first adjustment module 13 shown in FIG. 8).
  • the processor 30 executes various functional applications and data processing of the processor by running the non-transitory software programs, instructions and modules stored in the memory 31, that is, implements the calibration method of the launching tube in the above method embodiment.
  • the memory 31 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created by the processor 30 and the like.
  • the memory 31 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 31 may optionally include a memory that is remotely located relative to the processor 30, and these remote memories may be connected to the processor 30 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the memory 31 , and when executed by the processor 30 , execute the calibration method of the launch tube in the embodiment shown in FIGS. 1-3 .
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a flash memory (Flash Memory), a hard disk (Hard Disk) Disk Drive, abbreviation: HDD) or solid-state hard drive (Solid-State Drive, SSD) etc.;
  • the storage medium can also include the combination of above-mentioned types of memory.

Abstract

一种发射筒的校准方法、装置及飞行设备,能够改善发射筒与瞄准装置(21)之间存在安装误差,进一步提高瞄准目标物的准确性。该校准方法包括:在校准面上投射发射筒的目标位置和瞄准设备的中心位置(S10);获取预设发射筒到瞄准设备的水平距离及垂直距离(S11);根据水平距离、垂直距离及中心位置,确定出预设误差允许范围(S12);将目标位置移动至预设误差允许范围内,完成发射筒校准(S13)。

Description

一种发射筒的校准方法、装置及飞行设备
相关申请的交叉引用
本申请要求了2021年6月25日向中国专利局提交的申请号为202110713246.3的专利的优先权,其全部内容以引用的方式并入本文中。
技术领域
本申请涉及观瞄技术领域,具体涉及一种发射筒的校准方法、装置及飞行设备。
背景技术
在现有技术中,由于发射筒与瞄准装置无法设置于同一位置,因此当发射筒通过瞄准装置对目标位置发射目标物时,常因为发射筒与瞄准装置之间存在俯仰夹角或偏航夹角,而导致发射筒所发出目标物的发射精度降低目标物偏离误差允许范围,进而无法击中目标物。
例如:在无人机上安装发射装置和瞄准装置,其中,由于发射装置的发射筒与瞄准装置的摄像头在设计时,存在固定位移且在安装时存在一定的安装误差,使其摄像头与发射筒之间存在俯仰夹角或偏航夹角,而造成发射装置通过发射筒发出的目标物偏离允许误差范围,使其目标物无法击中目标位置。
发明内容
有鉴于此,本申请实施例提供了一种发射筒的校准方法、装置及飞行设备,以解决发射筒与瞄准装置之间存在安装误差,而导致发射筒所发出目标物的发射精度降低目标物偏离误差允许范围,进而无法击中目标物的问题。
根据第一方面,本申请实施例提供了一种发射筒的校准方法,包括: 在校准面上投射发射筒的目标位置和瞄准设备的中心位置,所述目标位置为发射筒投射在校准平面上的实际目标位置,所述中心位置为实际瞄准设备中瞄准摄像头中心点对应于校准面的位置;获取预设发射筒到瞄准设备的水平距离及垂直距离;根据所述水平距离、垂直距离及所述中心位置,确定出预设误差允许范围;将所述目标位置移动至所述预设误差允许范围内,完成发射筒校准。
本申请实施例提供的方法,通过在校准面上投射发射筒的目标位置和瞄准设备的中心位置,获取预设发射筒到瞄准设备的水平距离及垂直距离;根据所述水平距离、垂直距离及所述中心位置,确定出预设误差允许范围;从而将目标位置移动至所述预设误差允许范围内,以改善发射筒与瞄准装置之间存在安装误差,进一步提高瞄准目标物的准确性。
结合第一方面,在第一方面第一实施方式中,所述根据所述水平距离、垂直距离及所述中心位置,确定出预设误差允许范围,包括:利用测绘工具,测量绘制出所述中心位置到预设发射筒水平距离和垂直距离;根据所述中心位置到预设发射筒水平距离和垂直距离设置预设圆心点;基于所述预设圆心点预设误差允许半径;利用所述误差允许半径绘制所述误差允许范围。
本申请实施例提供的方法,通过设置误差允许半径绘制所述误差允许范围,进一步提高瞄准目标的准确性。
结合第一方面或第一方面第一实施方式,在第一方面第二实施方式中,所述将所述目标位置移动至所述预设误差允许范围内,还包括:获取预设圆心点、实时移动的目标位置的中心点、预设校准平面的校准距离及发射筒发射时的实际距离;基于所述预设圆心点和所述实时移动的目标位置的中心点,测量所述预设圆心点和所述实时移动的目标位置的中心点之间的水平距离及垂直距离;根据所述预设圆心点和所述实时移动的目标位置的中心点之间的水平距离及垂直距离和预设校准平面的校准距离及发射筒发射时的实际距离,计算得到误差调整距离;基于所述误差调整距离进行发射筒误差调整,使其实时移动的目标位置的中心点与预设圆心点重合,完 成发射筒校准。
结合第一方面第二实施方式,在第一方面第三实施方式中,所述误差调整距离包括:垂直误差调整距离和水平误差调整距离。
根据第二方面,本申请实施例提供了一种投射模块,用于在校准面上投射发射筒的目标位置和瞄准设备的中心位置,所述目标位置为发射筒投射在校准平面上的实际目标位置,所述中心位置为实际瞄准设备中瞄准摄像头中心点对应于校准面的位置;第一获取模块,用于获取预设发射筒到瞄准设备的水平距离及垂直距离;确定模块,用于根据所述水平距离、垂直距离及所述中心位置,确定出预设误差允许范围;第一调整模块,用于将所述目标位置移动至所述预设误差允许范围内,完成发射筒校准。
结合第二方面,在第二方面第一实施方式中,所述调整模块,还包括:
测绘模块,用于利用测绘工具,绘制出所述中心位置到预设发射筒水平距离和垂直距离;设置模块,用于根据所述中心位置到预设发射筒水平距离和垂直距离设置预设圆心点;第一预设模块,用于基于所述预设圆心点预设误差允许半径;误差绘制模块,用于利用所述误差允许半径绘制所述误差允许范围。
结合第二方面,在第二方面第二实施方式中,包括:第二获取模块,用于获取预设圆心点、实时移动的目标位置的中心点、预设校准平面的校准距离及发射筒发射时的实际距离;测量模块,用于基于所述预设圆心点和所述实时移动的目标位置的中心点,测量所述预设圆心点和所述实时移动的目标位置的中心点之间的水平距离及垂直距离;移动模块,用于根据所述预设圆心点和所述实时移动的目标位置的中心点之间的水平距离及垂直距离和预设校准平面的校准距离及发射筒发射时的实际距离,计算得到误差调整距离;第二调整模块,用于基于所述误差调整距离进行发射筒误差调整,使其实时移动的目标位置的中心点与预设圆心点重合,完成发射筒校准。
根据第三方面,本申请实施例提供了一种校准设备,适用于对发射装置中的发射筒进行校准,包括:存储器和处理器,所述存储器和所述处理 器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行第一方面或者第一方面的任意一种实施方式中所述的发射筒的校准方法。
根据第四方面,本申请实施例提供了一种飞行设备,包括:瞄准装置,用于观测目标对象确定出目标对象的位置信息;发射装置,用于根据所述瞄准装置所确定出的位置信息发射目标物;校准装置,用于在飞行设备起飞前对发射装置中的发射筒,执行第一方面或者第一方面的任意一种实施方式中所述的发射筒的校准方法。
根据第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,所述计算机指令用于使所述计算机执行第一方面或者第一方面的任意一种实施方式中所述的发射筒的校准方法。
附图说明
通过参考附图会更加清楚的理解本申请的特征和优点,附图是示意性的而不应理解为对本申请进行任何限制,在附图中:
图1是本申请实施例提供一种发射筒的校准方法的流程图;
图2是本申请实施例提供一种发射筒的校准方法中发射筒筒盖发射到墙上的圆圈示意图;
图3是本申请实施例提供一种发射筒的校准方法中圆Y为允许发射角度范围示意图;
图4是本申请实施例提供一种发射筒的校准方法中校准完成状态的示意图;
图5是本申请实施例提供一种发射筒的校准方法中步骤S13的流程图;
图6是本申请实施例提供一种发射筒的校准方法中步骤S14至S17的流程图;
图7是本申请可选实施例提供一种发射筒的校准方法中校准完成状态的示意图;
图8是本申请实施例提供一种发射筒的校准装置的结构框图;
图9是本申请实施例提供的一种飞行设备的结构框图;
图10是本申请实施例提供的一种校准设备的结构框图。
附图标记
10-投射模块;11-第一获取模块;12-确定模块;13-第一调整模块;
20-瞄准装置;21-发射装置;22-校准装置;30-处理器;31-存储器。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在此需要说明的是,本申请实施例通过激光辅助,实现整体发射精度的提高。通常安装摄像头和发射筒时,由于安装存在一定误差,导致摄像头与发射筒存在俯仰夹角和偏航夹角,从而会导致灭火弹瞄准发射精度降低。例如:灭火弹的降落点与瞄准点的允许误差为20厘米,经计算,发射距离为15米左右时,发射筒与摄像头的允许误差夹角为0.74°。具体的,如图1所示,本申请实施例提供的发射筒的校准方法,包括:
S10,在校准面上投射发射筒的目标位置和瞄准设备的中心位置,目标位置为发射筒投射在校准平面上的实际目标位置,中心位置为实际瞄准设备中瞄准摄像头中心点对应于校准面的位置。
S11,获取预设发射筒到瞄准设备的水平距离及垂直距离。
S12,根据水平距离、垂直距离及中心位置,确定出预设误差允许范围。
S13,将目标位置移动至预设误差允许范围内,完成发射筒校准。
在步骤S10至S13的实施例中,将无人机正向墙且距墙5米处摆正,发射筒筒盖中心嵌入一支激光笔,同时筒盖周边同时射出激光照射到墙上,如图2所示,发射筒筒盖发射到墙上的圆圈,在墙上标记出瞄准设备摄像 头的中心点X,利用工具测量出此时发射筒圆心距离摄像头的水平距离a米以及垂直距离b米,在墙上以X点中心,距中心水平距离a米以及垂直距离b米为圆心Y点,画出半径为128mm的圆(发射筒外半径为54mm,5米处的角度误差64mm,其中10mm为重叠距离),如图3所示,圆Y为允许发射角度范围所示。调整发射筒角度,直到发射出的射线圆在圆心为Y,半径为128mm的墙上圆圈内即认为此时发射筒与摄像头处于允许误差范围内。如图4所示,为校准完成状态所示。
本实施例提供的发射筒的校准方法,通过在校准面上投射发射筒的目标位置和瞄准设备的中心位置,获取预设发射筒到瞄准设备的水平距离及垂直距离;根据水平距离、垂直距离及中心位置,确定出预设误差允许范围;从而将目标位置移动至预设误差允许范围内,以改善发射筒与瞄准装置之间存在安装误差,进一步提高瞄准目标物的准确性。
可选的,整个无人机离墙的实际距离,可以通过瞄准摄像头上的激光测距可从上位机软件中获得。
可选的,水平距离可通过无人机设计图纸得出测量得是实际的发射筒与摄像头的距离。
可选的,如图5所示,在本申请实施例提供的发射筒的校准方法中,步骤S13还包括:
S131,利用测绘工具,测量绘制出中心位置到预设发射筒水平距离和垂直距离。
S132,根据中心位置到预设发射筒水平距离和垂直距离设置预设圆心点。
S133,基于预设圆心点预设误差允许半径。
S134,利用误差允许半径绘制误差允许范围。
可选的,如图6所示,在本申请实施例提供的发射筒的校准方法中,还可以包括:
S14,获取预设圆心点、实时移动的目标位置的中心点、预设校准平面的校准距离及发射筒发射时的实际距离;
S15,基于预设圆心点和实时移动的目标位置的中心点,测量预设圆心点和实时移动的目标位置的中心点之间的水平距离及垂直距离;
S16,根据预设圆心点和实时移动的目标位置的中心点之间的水平距离及垂直距离和预设校准平面的校准距离及发射筒发射时的实际距离,计算得到误差调整距离;
S17,基于误差调整距离进行发射筒误差调整,使其实时移动的目标位置的中心点与预设圆心点重合,完成发射筒校准。
在步骤S14至S17的实施例中,为再一次提高精度,通过计算可得到在允许误差内的发射筒与摄像头的距离,如图7所示,具体做法如下:实际可测YZ两点的水平距离L1米,垂直距离L2米,此时无人机放置墙面为5米,若真实发射时的距离可测为L3米,则结合以上校准分析,在不考虑重力误差情况下,根据具体发射筒安装位置,发射时在摄像头瞄准窗户中心后,需水平移动(a+(L1×L3)/5)米,垂直移动(b+(L2×L3)/5)米再进行发射。
在本实施例提供的发射筒校准方法中,通过简易工具进行发射筒与摄像头的角度误差调整,在允许误差范围内再次进行精度校准,大幅提高瞄准发射精度。
可选的,误差调整距离包括:垂直误差调整距离和水平误差调整距离。
相应地,请参考图8,本申请实施例提供一种发射筒的校准装置,该装置包括:
投射模块10,用于在校准面上投射发射筒的目标位置和瞄准设备的中心位置,目标位置为发射筒投射在校准平面上的实际目标位置,中心位置为实际瞄准设备中瞄准摄像头中心点对应于校准面的位置,详细内容参考步骤S10。
第一获取模块11,用于获取预设发射筒到瞄准设备的水平距离及垂直距离,详细内容参考步骤S11。
确定模块12,用于根据水平距离、垂直距离及中心位置,确定出预设误差允许范围,详细内容参考步骤S12。
第一调整模块13,用于将目标位置移动至预设误差允许范围内,完成发射筒校准,详细内容参考步骤S13。
可选的,在第一调整模块13中还包括:
测绘模块131,用于利用测绘工具,绘制出中心位置到预设发射筒水平距离和垂直距离,详细内容参考步骤S131。
设置模块132,用于根据中心位置到预设发射筒水平距离和垂直距离设置预设圆心点,详细内容参考步骤S132。
第一预设模块133,用于基于预设圆心点预设误差允许半径,详细内容参考步骤S133。
误差绘制模块134,用于利用误差允许半径绘制误差允许范围,详细内容参考步骤S134。
可选的,在该装置中还可以包括:
第二获取模块14,用于获取预设圆心点、实时移动的目标位置的中心点、预设校准平面的校准距离及发射筒发射时的实际距离,详细内容参考步骤S14。
测量模块15,用于基于预设圆心点和实时移动的目标位置的中心点,测量预设圆心点和实时移动的目标位置的中心点之间的水平距离及垂直距离,详细内容参考步骤S15。
移动模块16,用于根据预设圆心点和实时移动的目标位置的中心点之间的水平距离及垂直距离和预设校准平面的校准距离及发射筒发射时的实际距离,计算得到误差调整距离,详细内容参考步骤S16。
第二调整模块17,用于基于误差调整距离进行发射筒误差调整,使其实时移动的目标位置的中心点与预设圆心点重合,完成发射筒校准,详细内容参考步骤S17。
本申请实施例还提供一种飞行设备,如图9所示,包括:瞄准装置20,用于观测目标对象确定出目标对象的位置信息;发射装置21,用于根据瞄准装置所确定出的位置信息发射目标物;校准装置22,用于在飞行设备起飞前对发射装置中的发射筒,执行上述步骤S10至步骤S17的发射筒校准 方法。
本申请实施例还提供了一种校准设备,适用于对发射装置中的发射筒进行校准,如图10所示,该校准设备可以包括处理器30和存储器31,其中处理器30和存储器31可以通过总线或者其他方式连接,图10中以通过总线连接为例。
处理器30可以为中央处理器(Central Processing Unit,CPU)。处理器30还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。
存储器31作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本申请实施例中的车载显示装置按键屏蔽方法对应的程序指令/模块(例如,图8所示的投射模块10、第一获取模块11、确定模块12和第一调整模块13)。处理器30通过运行存储在存储器31中的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的发射筒的校准方法。
存储器31可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储处理器30所创建的数据等。此外,存储器31可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器31可选包括相对于处理器30远程设置的存储器,这些远程存储器可以通过网络连接至处理器30。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器31中,当被所述处理器30执行时,执行如图1-3所示实施例中的发射筒的校准方法。
上述车辆终端具体细节可以对应参阅图1至图7所示的实施例中对应的相关描述和效果进行理解,此处不再赘述。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
虽然结合附图描述了本申请的实施例,但是本领域技术人员可以在不脱离本申请的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (10)

  1. 一种发射筒的校准方法,其特征在于,包括:
    在校准面上投射发射筒的目标位置和瞄准设备的中心位置,所述目标位置为发射筒投射在校准平面上的实际目标位置,所述中心位置为实际瞄准设备中瞄准摄像头中心点对应于校准面的位置;
    获取预设发射筒到瞄准设备的水平距离及垂直距离;
    根据所述水平距离、垂直距离及所述中心位置,确定出预设误差允许范围;
    将所述目标位置移动至所述预设误差允许范围内,完成发射筒校准。
  2. 根据权利要求1所述的校准方法,其特征在于,所述根据所述水平距离、垂直距离及所述中心位置,确定出预设误差允许范围,包括:
    利用测绘工具,测量绘制出所述中心位置到预设发射筒水平距离和垂直距离;
    根据所述中心位置到预设发射筒水平距离和垂直距离设置预设圆心点;
    基于所述预设圆心点预设误差允许半径;
    利用所述误差允许半径绘制所述误差允许范围。
  3. 根据权利要求1或2所述的校准方法,其特征在于,所述将所述目标位置移动至所述预设误差允许范围内,还包括:
    获取预设圆心点、实时移动的目标位置的中心点、预设校准平面的校准距离及发射筒发射时的实际距离;
    基于所述预设圆心点和所述实时移动的目标位置的中心点,测量所述预设圆心点和所述实时移动的目标位置的中心点之间的水平距离及垂直距离;
    根据所述预设圆心点和所述实时移动的目标位置的中心点之间的水平距离及垂直距离和预设校准平面的校准距离及发射筒发射时的实际距离,计算得到误差调整距离;
    基于所述误差调整距离进行发射筒误差调整,使其实时移动的目标位 置的中心点与预设圆心点重合,完成发射筒校准。
  4. 根据权利要求3所述的校准方法,其特征在于,所述误差调整距离包括:垂直误差调整距离和水平误差调整距离。
  5. 一种发射筒的校准装置,其特征在于,包括:
    投射模块,用于在校准面上投射发射筒的目标位置和瞄准设备的中心位置,所述目标位置为发射筒投射在校准平面上的实际目标位置,所述中心位置为实际瞄准设备中瞄准摄像头中心点对应于校准面的位置;
    第一获取模块,用于获取预设发射筒到瞄准设备的水平距离及垂直距离;
    确定模块,用于根据所述水平距离、垂直距离及所述中心位置,确定出预设误差允许范围;
    第一调整模块,用于将所述目标位置移动至所述预设误差允许范围内,完成发射筒校准。
  6. 根据权利要求5所述的装置,其特征在于,所述调整模块,还包括:
    测绘模块,用于利用测绘工具,绘制出所述中心位置到预设发射筒水平距离和垂直距离;
    设置模块,用于根据所述中心位置到预设发射筒水平距离和垂直距离设置预设圆心点;
    第一预设模块,用于基于所述预设圆心点预设误差允许半径;
    误差绘制模块,用于利用所述误差允许半径绘制所述误差允许范围。
  7. 根据权利要求5所述的校准装置,其特征在于,包括:
    第二获取模块,用于获取预设圆心点、实时移动的目标位置的中心点、预设校准平面的校准距离及发射筒发射时的实际距离;
    测量模块,用于基于所述预设圆心点和所述实时移动的目标位置的中心点,测量所述预设圆心点和所述实时移动的目标位置的中心点之间的水平距离及垂直距离;
    移动模块,用于根据所述预设圆心点和所述实时移动的目标位置的中心点之间的水平距离及垂直距离和预设校准平面的校准距离及发射筒发射 时的实际距离,计算得到误差调整距离;
    第二调整模块,用于基于所述误差调整距离进行发射筒误差调整,使其实时移动的目标位置的中心点与预设圆心点重合,完成发射筒校准。
  8. 一种校准设备,适用于对发射装置中的发射筒进行校准,其特征在于,包括:
    存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行权利要求1-4中任一项所述的发射筒的校准方法。
  9. 一种飞行设备,其特征在于,包括:
    瞄准装置,用于观测目标对象确定出目标对象的位置信息;
    发射装置,用于根据所述瞄准装置所确定出的位置信息发射目标物;
    校准装置,用于在飞行设备起飞前对发射装置中的发射筒,执行权利要求1-4中任一项所述的发射筒校准方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行权利要求1-4中任一项所述的发射筒的校准方法。
PCT/CN2022/078564 2021-06-25 2022-03-01 一种发射筒的校准方法、装置及飞行设备 WO2022267519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110713246.3A CN113485460A (zh) 2021-06-25 2021-06-25 一种发射筒的校准方法、装置及飞行设备
CN202110713246.3 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022267519A1 true WO2022267519A1 (zh) 2022-12-29

Family

ID=77936075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078564 WO2022267519A1 (zh) 2021-06-25 2022-03-01 一种发射筒的校准方法、装置及飞行设备

Country Status (2)

Country Link
CN (1) CN113485460A (zh)
WO (1) WO2022267519A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485460A (zh) * 2021-06-25 2021-10-08 航天科工仿真技术有限责任公司 一种发射筒的校准方法、装置及飞行设备
CN116468797B (zh) * 2023-03-09 2023-11-24 北京航天众信科技有限公司 一种挂轨式机器人瞄准方法、装置及计算机设备

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073886A (zh) * 1991-12-28 1993-07-07 任天堂株式会社 射击游戏系统及其所用外部存储器
WO2004055466A1 (en) * 2002-12-17 2004-07-01 Saab Ab Method and device for aligning sight and barrel
US20100115778A1 (en) * 2008-11-10 2010-05-13 Gorsuch Timothy M Auto-correcting bow sight
CN104027909A (zh) * 2014-06-11 2014-09-10 江苏数字鹰科技发展有限公司 高楼警用灭火无人机
CN106017217A (zh) * 2016-05-23 2016-10-12 吴天文 智能化全自动校枪系统及方法
CN106581905A (zh) * 2016-12-13 2017-04-26 北京电子工程总体研究所 灭火弹瞄准装置及包括该瞄准装置的灭火弹发射装置
CN107514936A (zh) * 2017-09-30 2017-12-26 合肥正阳光电科技有限责任公司 一种近程激光防御系统
CN207379366U (zh) * 2017-09-05 2018-05-18 姜海龙 电子瞄准镜
CN108860608A (zh) * 2018-07-20 2018-11-23 航天科工仿真技术有限责任公司 一种基于无人机的高层楼宇救援系统
CN109154486A (zh) * 2016-05-31 2019-01-04 考克利尔维修工程防御有限责任公司 炮膛瞄准装置和方法
CN112729011A (zh) * 2020-12-25 2021-04-30 南京理工大学 一种小空间无弹化校枪方法
CN113485460A (zh) * 2021-06-25 2021-10-08 航天科工仿真技术有限责任公司 一种发射筒的校准方法、装置及飞行设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070111418A (ko) * 2007-10-04 2007-11-21 희 한 원격 화기 정밀 사격제어 장치
CN102200630B (zh) * 2011-04-21 2012-10-10 中国科学院光电技术研究所 基于目标反射信号的光束瞄准系统中三角扫描偏差校准方法
US10365066B2 (en) * 2016-11-16 2019-07-30 Huntercraft Limited Photoelectric sighting system and calibration method thereof
CN107444641A (zh) * 2017-08-16 2017-12-08 广东容祺智能科技有限公司 一种具有视觉瞄准的机载发射系统
CN111345742B (zh) * 2018-12-21 2022-03-22 苏州宝时得电动工具有限公司 一种清洁机器人及控制方法
CN111358380A (zh) * 2019-12-18 2020-07-03 添可智能科技有限公司 清洁设备、清洁设备控制方法和存储介质
CN110595282A (zh) * 2019-09-10 2019-12-20 中国科学院上海技术物理研究所 一种基于激光指示的火炮瞄准镜校准装置
CN112545398A (zh) * 2020-12-07 2021-03-26 添可智能科技有限公司 清洁设备及用于清洁设备的自动控制清洁液添加的方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073886A (zh) * 1991-12-28 1993-07-07 任天堂株式会社 射击游戏系统及其所用外部存储器
WO2004055466A1 (en) * 2002-12-17 2004-07-01 Saab Ab Method and device for aligning sight and barrel
US20100115778A1 (en) * 2008-11-10 2010-05-13 Gorsuch Timothy M Auto-correcting bow sight
CN104027909A (zh) * 2014-06-11 2014-09-10 江苏数字鹰科技发展有限公司 高楼警用灭火无人机
CN106017217A (zh) * 2016-05-23 2016-10-12 吴天文 智能化全自动校枪系统及方法
CN109154486A (zh) * 2016-05-31 2019-01-04 考克利尔维修工程防御有限责任公司 炮膛瞄准装置和方法
CN106581905A (zh) * 2016-12-13 2017-04-26 北京电子工程总体研究所 灭火弹瞄准装置及包括该瞄准装置的灭火弹发射装置
CN207379366U (zh) * 2017-09-05 2018-05-18 姜海龙 电子瞄准镜
CN107514936A (zh) * 2017-09-30 2017-12-26 合肥正阳光电科技有限责任公司 一种近程激光防御系统
CN108860608A (zh) * 2018-07-20 2018-11-23 航天科工仿真技术有限责任公司 一种基于无人机的高层楼宇救援系统
CN112729011A (zh) * 2020-12-25 2021-04-30 南京理工大学 一种小空间无弹化校枪方法
CN113485460A (zh) * 2021-06-25 2021-10-08 航天科工仿真技术有限责任公司 一种发射筒的校准方法、装置及飞行设备

Also Published As

Publication number Publication date
CN113485460A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
WO2022267519A1 (zh) 一种发射筒的校准方法、装置及飞行设备
US10664998B2 (en) Camera calibration method, recording medium, and camera calibration apparatus
US20190353790A1 (en) Ranging Method Based on Laser Radar System, Device and Readable Storage Medium
US8773667B2 (en) Sphere bar probe
CN110573830A (zh) 激光传感器的校准方法
US9946821B2 (en) Base station design assist system utilizing unmanned aerial vehicle, and server used for the system
US10694485B2 (en) Method and apparatus for correcting multipath offset and determining wireless station locations
WO2017004871A1 (zh) 投影终端梯形校正方法、装置、投影终端和存储介质
US8744752B2 (en) Apparatus and method for detecting locations of vehicle and obstacle
WO2019160022A8 (ja) 無人航空機の設置台、測量方法、測量装置、測量システムおよびプログラム
JP2018036053A (ja) レーザ計測システム及びレーザ計測方法
CN104049267A (zh) 基于gps和微波测距的森林着火点定位方法
WO2020237422A1 (zh) 航测方法、飞行器及存储介质
WO2017047118A1 (ja) 無人航空機を利用した基地局設計支援システムおよび当該システムに使用されるサーバ
US11047955B2 (en) Calibrating a radar antenna
KR20220039615A (ko) 레이더 고도각 검증
CN107328427B (zh) 陀螺仪性能测试方法及装置
RU2584067C1 (ru) Способ определения параметров движения самолета при его посадке
CN115436918A (zh) 一种激光雷达与无人车的水平角度的校正方法和装置
WO2023065110A1 (zh) 基站标定方法、计算机设备以及存储介质
WO2022256976A1 (zh) 稠密点云真值数据的构建方法、系统和电子设备
CN109407132B (zh) 一种无人机辐射监测方法及系统
CN109163727B (zh) 一种电子侦察卫星目标航迹动态估算方法及其实现装置
US20200088879A1 (en) Method, processing unit and surveying instrument for improved tracking of a target
KR20210053752A (ko) 스캐닝 라이다의 오차 보정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE