WO2020237422A1 - 航测方法、飞行器及存储介质 - Google Patents

航测方法、飞行器及存储介质 Download PDF

Info

Publication number
WO2020237422A1
WO2020237422A1 PCT/CN2019/088321 CN2019088321W WO2020237422A1 WO 2020237422 A1 WO2020237422 A1 WO 2020237422A1 CN 2019088321 W CN2019088321 W CN 2019088321W WO 2020237422 A1 WO2020237422 A1 WO 2020237422A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
flight
shooting
image
images
Prior art date
Application number
PCT/CN2019/088321
Other languages
English (en)
French (fr)
Inventor
黄振昊
陈建林
徐富
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980012284.7A priority Critical patent/CN111712687B/zh
Priority to PCT/CN2019/088321 priority patent/WO2020237422A1/zh
Publication of WO2020237422A1 publication Critical patent/WO2020237422A1/zh
Priority to US17/529,000 priority patent/US20220074743A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0094Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • G01C15/008Active optical surveying means combined with inclination sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Definitions

  • This application relates to the field of aerial survey technology, in particular to an aerial survey method, aircraft and storage medium.
  • this application provides an aerial survey method, aircraft, and storage medium for eliminating elevation errors and improving the accuracy of mapping.
  • this application provides an aerial survey method, including:
  • the flight of the aircraft and the orientation of the shooting device are controlled according to the flying height, the flying radius, and the center of the circle to shoot oblique images, so as to determine aerial survey parameters according to the orthophoto and oblique images.
  • the present application also provides an aircraft, the aircraft including a body, a camera, a memory and a processor;
  • the shooting device is connected to the body to shoot images
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program, and when executing the computer program, implement the following steps:
  • the flight of the aircraft and the orientation of the shooting device are controlled according to the flying height, the flying radius, and the center of the circle to shoot oblique images, so as to determine aerial survey parameters according to the orthophoto and oblique images.
  • this application also provides a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the processor implements the above-mentioned aerial survey method.
  • the embodiments of the present application provide an aerial survey method, an aircraft, and a storage medium.
  • the orthophoto is taken by controlling the camera's shooting device; the flight information corresponding to the orthophoto taken by the aircraft is acquired, and the flight information is determined according to the flight information.
  • the flying height, flying radius, and orbiting center of the aircraft obliquely shot; controlling the flying of the aircraft and the orientation of the shooting device according to the flying height, flying radius, and orbiting center to shoot an oblique image according to the orthophoto
  • the aerial survey parameters are determined with tilted images, even if the aerial survey is carried out on the aircraft using consumer-grade camera devices, the accuracy of the mapping can be guaranteed.
  • FIG. 1 is a schematic flowchart of steps of an aerial survey method provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the effect of determining a flight area provided by an embodiment of the present application
  • 3a to 3c are schematic diagrams of the effect of determining the surround center provided by an embodiment of the present application.
  • 4a and 4b are schematic diagrams of the effect of determining the circle route provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of steps of another aerial survey method provided by an embodiment of the present application.
  • Fig. 6 is a schematic flowchart of sub-steps of the aerial survey method in Fig. 5;
  • FIG. 7 is a schematic flowchart of steps of yet another aerial survey method provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of the steps of another aerial survey method provided by an embodiment of the present application.
  • Fig. 9 is a schematic flowchart of sub-steps of the aerial survey method in Fig. 8;
  • FIG. 10 is a schematic block diagram of the structure of an aircraft provided by an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of steps of an aerial survey method provided by an embodiment of the application.
  • the aerial survey method can be applied to aircraft.
  • the aircraft includes an unmanned aerial vehicle, and a photographing device is installed on the unmanned aerial vehicle.
  • the photographing device includes a camera, or a camera and a gimbal for installing the camera.
  • the camera can be a quasi-professional-grade camera or a consumer-grade camera, or a consumer-grade lens used by the camera, even the camera's internal parameters have not been precisely calibrated, such as the focal length.
  • the UAV can be a rotary-wing UAV, such as a quadrotor UAV, a six-rotor UAV, an eight-rotor UAV, or a fixed-wing UAV.
  • the aerial survey method includes steps S101 to S103.
  • the aircraft can fly according to the pre-set flight parameters during aerial surveys and take the orthophotos by controlling its camera during the flight.
  • Parameters include, but are not limited to, preset flight routes, aerial survey altitudes, and flight speeds.
  • the aerial survey altitude is the flight altitude set during the aerial survey of the aircraft.
  • the flight information includes flight route information, aerial survey altitude, flight speed, and camera parameters.
  • the flight information corresponding to the orthophoto taken by the aircraft is acquired, and the flight height, flight radius and orbiting center of the tilt shot of the aircraft are determined according to the flight information .
  • the flying height when the orthophoto is taken is selected as the flying height and the flying radius of the aircraft in oblique shooting, and a coordinate point is selected as the center of the circle at the position taken by the aircraft.
  • the acquiring the flight information corresponding to the orthophoto image after the aircraft has taken the aircraft specifically includes: acquiring the flight route information corresponding to the orthophoto image after the aircraft has taken the aircraft, and determining the flight area of the aircraft according to the flight route information. That is, the location area covered by the aircraft is determined by the flight route, and part of the location area is selected as the flight area.
  • the flight area may be the maximum position area where the aircraft flies.
  • S103 Control the flight of the aircraft and the orientation of the shooting device according to the flying height, the flying radius, and the center of the circle to shoot an oblique image, so as to determine an aerial survey parameter according to the orthophoto and the oblique image.
  • the aircraft is controlled to fly around the orbiting center point according to the flying height and the flying radius, and according to the flying height and the flying radius during the flight.
  • the orientation of the shooting device is used to shoot oblique images, and controlling the orientation of the shooting device can directly control the shooting direction of the camera, or adjust the pan/tilt to control the shooting direction of the camera.
  • the aerial survey method When the aerial survey method completes the shooting of the orthophoto, it also completes the shooting of the oblique image according to the flight information corresponding to the orthophoto, so as to determine a more accurate aerial survey parameter based on the orthophoto and the oblique image.
  • the aerial survey parameter is, for example, a camera
  • the focal length can of course also be other parameters. Because when shooting orthophotos, oblique images are also shot, and the focal length is optimized during the nonlinear optimization process of the mapping process, which can solve the problem of ambiguity of focal length, and then solve the problem of aerial survey in the elevation direction. The ambiguity of the height value. This improves the accuracy of the orthophoto for mapping.
  • controlling the flight of the aircraft and the orientation of the shooting device according to the flying height, the flying radius, and the orbiting center to shoot the oblique image includes:
  • the aircraft can shoot according to the shooting inclination, and then complete the oblique image shooting.
  • Shooting in accordance with the circumnavigation route and the determined shooting inclination can be achieved through the shooting efficiency and the data stability of the tilted image.
  • the circular course of the aircraft in the flight area and the shooting inclination of the shooting device are determined according to the flight height, flight radius, and orbiting center.
  • the aircraft is made to fly according to the circular route and use the shooting inclination to complete the acquisition of tilted images.
  • the circle route is determined within the flight area of the aircraft, where the flight area is determined according to the flight route.
  • the flight route corresponding to the orthophoto image taken by the aircraft is, for example, the flight route 11 in Fig. 2, so that the flight area 100 can be determined according to the flight route 11.
  • the flight route 11 can be determined according to the flight route 11.
  • it can also be in the location area defined by the flight route 11. Select part of the area as the flight area 100.
  • the determining the circular course of the aircraft in the flight area and the shooting inclination angle of the shooting device according to the flying height, the flying radius, and the orbiting center specifically includes:
  • the flying radius is determined according to the flying height, and the orbiting center is determined according to the flying area; the circular route is calculated according to the orbiting center and the flying radius; the shooting inclination of the imaging device is calculated according to the flying height and the flying radius.
  • the flying radius is determined according to the flying height, for example, the flying height is selected as the flying radius.
  • the calculating the shooting inclination angle of the shooting device according to the flying height and the flying radius includes: calculating the shooting inclination angle of the shooting device according to the flying height and the flying radius based on a trigonometric function relationship to obtain the shooting The inclination angle is 45°.
  • the shooting inclination angle of the shooting device can be calculated based on the flying height and the flying radius based on the trigonometric function relationship.
  • the determining the circular course of the aircraft in the flight area and the shooting inclination angle of the shooting device according to the flying height, the flying radius, and the orbiting center specifically includes:
  • Obtain the shooting inclination angle of the shooting device calculate the flight radius according to the shooting inclination angle and the flying height; determine the circle center according to the flight area, and calculate the circular course according to the circle center and the flight radius.
  • the shooting inclination angle of the camera set by the user is 45°.
  • other angles can also be set, such as 20°, 30° or 60°, etc., and then according to the shooting inclination angle set by the user Calculate the flight radius using the trigonometric function relationship with the flight height.
  • the shooting inclination angle is preferably 45°. According to the spatial forward intersection principle, it can be known that the best aerial survey parameters can be obtained when the shooting inclination angle is 45°.
  • the determining the surrounding center according to the flight area specifically includes: determining the circumscribed frame corresponding to the flight area and the center of the circumscribed frame, and use the center of the circumscribed frame as the surrounding center.
  • first determine the circumscribed rectangle 12 of the flight area 100 connect the two diagonal lines of the circumscribed rectangle 12 (the two dashed lines in FIG. 3a), and the intersection of the two diagonals is the circumscribed rectangle The center of 12, and the center of the circumscribed rectangle 12 as the surrounding center, specifically the surrounding center 120 in FIG. 3a.
  • the circumscribed frame may also be a circumscribed square or a circumscribed circle, as shown in FIGS. 3b and 3c, respectively, and the surrounding center 120 can also be quickly determined.
  • the surrounding center can also be determined by connecting diagonal lines; when the circumscribed frame is a circumscribed circle, the surrounding center is determined according to the center of the circle.
  • the surrounding center can also be determined by inscribed polygons or inscribed circles.
  • the calculation of the circular route according to the circle center and the flight radius specifically includes: making a circle with the circle center and the flight radius.
  • the circle center 120 is not centered and the flight radius r is taken as the circle radius to obtain the circular course 121.
  • the flight radius r is equal to the flight height h, in order to adjust the shooting angle to 45°.
  • FIG. 5 is a schematic flowchart of the steps of another aerial survey method provided by an embodiment of the application.
  • the aerial survey method can be applied to an aircraft, which includes an unmanned aerial vehicle equipped with a camera.
  • the aerial survey method includes steps S201 to S206.
  • the camera's camera is controlled to shoot an orthophoto, and the camera includes a camera installed on the aircraft, or a camera and a gimbal.
  • the flight information corresponding to the orthophoto taken by the aircraft is acquired, and the flight height, flight radius and orbiting center of the tilt shot of the aircraft are determined according to the flight information .
  • the acquired flight information includes the flight area and flight height corresponding to the orthophoto image taken by the aircraft.
  • the flight height, flight radius and flight radius of the aircraft for oblique shooting can be determined according to the flight area and flight height corresponding to the orthophoto image taken by the aircraft.
  • the center is the center.
  • the flying height corresponding to the orthophoto image taken by the aircraft is used as the flying height and the flying radius of the aircraft for oblique shooting, and a position point in the flying area is selected as the center of the circle.
  • selecting a position point in the flight area as the center of the circle includes: selecting a position point in the flight area as the center of the circle according to the flight radius, so that the center of the circle is to the flight area The corresponding distances of the borders are all greater than the flight radius.
  • the flight radius is determined according to the flight height
  • the circle center is determined according to the flight area
  • the circle route is calculated according to the circle center and the flight radius
  • the shooting angle of the camera is calculated according to the flight height and the flight radius .
  • the flying height is selected as the flying radius, and based on the trigonometric function relationship, the shooting inclination of the shooting device is calculated according to the flying height and the flying radius, and the shooting inclination is obtained as 45°.
  • S204 Determine the number of tilt images corresponding to the tilt image to be shot, and determine the corresponding change angle of each tilt image on the circular route according to the number of tilt images.
  • the number of oblique images corresponding to the oblique image to be shot can be set by the user. For example, the number of oblique images corresponding to the oblique image to be shot set by the user is obtained, and the image number of each oblique image is determined according to the number of oblique images. The corresponding change angle on the circular route.
  • the circular course is a circle
  • the image data of the oblique image is n
  • the corresponding change angle of each oblique image on the circular course is 2 ⁇ /n
  • the change angle is expressed in radians.
  • the angle of change on the circular course can also be converted into a varying distance, that is, the arc length is obtained by using the central angle, and the arc length is the varying distance.
  • step S204 in order to take into account the collection efficiency of oblique images and the effect of post-mapping, and to improve the accuracy of aerial survey parameters, the number of orthophotos corresponding to the taken orthophotos is used to determine the location of each oblique image. The corresponding angle of change on the circular route. Specifically, as shown in FIG. 6, step S204 includes sub-steps S204a to S204c.
  • the preset frame interval is set according to the size of the orthophotos .
  • S204b Determine the number of oblique images corresponding to the oblique image to be shot according to the image number of the orthophoto.
  • the number of tilted images corresponding to the tilted images to be shot is calculated according to the number of acquired orthophotos.
  • the preset correspondence relationship between the number of images of the orthophoto and the number of images of the oblique image is expressed as:
  • n is the image number of the oblique image corresponding to the oblique image to be shot
  • N is the image number of the orthophoto.
  • the preset correspondence between the number of images of the orthophoto and the number of images of the oblique image may also represent other forms, such as adopting other linear function forms, with the purpose of establishing orthophotos.
  • the linear relationship between the number of images and the number of oblique images may also represent other forms, such as adopting other linear function forms, with the purpose of establishing orthophotos.
  • the determining the image number of the oblique image corresponding to the oblique image to be shot according to the image number of the orthophoto specifically includes:
  • the preset level correspondence between the number of orthophotos and the number of oblique images is determined, and the preset number threshold is used to determine shooting
  • the size of the image number of orthophoto images; the number of images of oblique images corresponding to the oblique images to be shot is determined according to the determined level correspondence.
  • the preset level correspondence between the number of orthophoto images and the number of oblique images includes a first level correspondence and a second level correspondence.
  • n is the number of oblique images corresponding to the oblique image to be shot
  • N is the number of orthophotos.
  • preset data thresholds a corresponding number of oblique images can be collected according to the number of orthophotos, which can improve collection efficiency and ensure the accuracy of aerial survey parameters.
  • more level correspondences can be set, that is, to improve the collection efficiency and ensure the accuracy of the aerial survey parameters.
  • S204c Calculate the change angle corresponding to each inclined image according to the determined image number of the inclined image and the circular route.
  • the arc of the circular route is determined first, and then the corresponding change angle of each oblique image on the circular route is calculated according to the arc of the circular route and the number of images of the oblique image.
  • the arc of a circular course is 2 ⁇
  • the change angle corresponding to each oblique image is 2 ⁇ /n.
  • the shooting angle of the camera can be directly adjusted to the shooting inclination angle.
  • the shooting angle of the camera can be adjusted to 45°, as shown in Fig. 4b.
  • the camera 21 When the aircraft is flying along the circular route 121, the camera 21.
  • the shooting angle is 45° with respect to the ground target 30; if the shooting device includes a camera and a pan/tilt, the inclination of the pan/tilt can be adjusted to the shooting inclination, for example, the inclination of the pan/tilt may be adjusted to 45°.
  • the aircraft is controlled to fly according to the circular route, and an oblique image is collected every other changing angle on the circular route from the starting point, and the oblique image is captured when the aircraft completes the flight along the circular route.
  • the camera of the aircraft is controlled to shoot the orthophoto; the flight information corresponding to the orthophoto is acquired after the aircraft has taken the orthophoto, and the flight height and the flight radius of the tilt shot of the aircraft are determined according to the flight information.
  • the center of the circle control the flight of the aircraft and the orientation of the shooting device according to the flying height, the flight radius and the center of the circle to shoot tilted images, and at the same time introduce a changing angle when shooting tilted images, and complete the tilted image according to the changed angle
  • the collection of ensures the symmetry of the tilted image, so as to determine the aerial survey parameters based on the orthophoto and the tilted image, thereby improving the accuracy of subsequent mapping.
  • FIG. 7 is a schematic flowchart of the steps of another aerial survey method provided by an embodiment of the application.
  • the aerial survey method can be applied to an aircraft, including shooting an orthophoto image and shooting an oblique image according to flight information corresponding to the orthophoto image. Therefore, a function option can be added to the aircraft application based on the aerial survey method. When the user selects the function option, the flight is controlled to use the aerial survey method for aerial survey.
  • the aerial survey method includes steps S301 to S305.
  • S301 Reserve a preset ratio of battery power, where the preset ratio of battery power is used for shooting oblique images.
  • a preset ratio of battery power is retained, and the preset ratio of battery power is used for shooting oblique images, for example, 10% of the power is deducted for shooting oblique images.
  • the preset ratio may also include other values, such as 5%, 15%, or 20%. This ensures that the aircraft can complete the aerial survey method.
  • the camera's camera is controlled to shoot orthophotos, and the camera includes a camera or pan/tilt mounted on the aircraft.
  • the flight information corresponding to the orthophoto taken by the aircraft is acquired, and the flight height, flight radius and orbiting center of the tilt shot of the aircraft are determined according to the flight information .
  • the flight information includes the flight area and flight height corresponding to the orthophoto image.
  • the flight altitude, the flight radius, and the orbiting center of the aircraft tilted shot are determined according to the flight area and flight height corresponding to the orthophoto image.
  • the aircraft is controlled to fly around the orbiting center point according to the flying height and the flying radius, and according to the flying height and the flying radius during the flight.
  • the orientation of the shooting device is used to shoot oblique images, and controlling the orientation of the shooting device can directly control the shooting direction of the camera, or adjust the pan-tilt to control the shooting direction of the camera.
  • the orthophoto and oblique images are correspondingly stored in the aircraft, so that the aircraft can determine the aerial survey parameters based on the orthophoto and oblique images.
  • the aerial survey parameters such as focal length, can eliminate the ambiguity of focal length .
  • the aerial survey method of the foregoing embodiment retains a preset ratio of battery power for shooting tilted images; obtains flight information corresponding to the orthophotos after the aircraft has taken the shots, and determines the flight altitude of the tilted shots of the aircraft according to the flight information , Flight radius and orbiting center; controlling the flight of the aircraft and the orientation of the shooting device according to the flying height, flight radius and orbiting center to shoot tilted images, and save the orthophoto and tilted images, this aerial survey method can ensure When the orthophoto image is taken, the corresponding power is reserved to shoot the tilt image, so that the aerial survey parameters can be determined according to the orthophoto and the tilt image, thereby ensuring the accuracy of mapping.
  • FIG. 8 is a schematic flowchart of the steps of another aerial survey method provided by an embodiment of the application.
  • the aerial survey method can be applied to a flight system.
  • the flight system includes an aircraft and a control terminal for controlling the flight of the aircraft.
  • the aircraft includes an unmanned aerial vehicle equipped with a camera, and the control terminal includes a remote controller and an intelligent terminal.
  • the aerial survey method includes steps S401 to S405.
  • an aerial survey request sent by a control terminal is received, where the aerial survey request is a request generated by the control terminal according to the tilt image shooting function selected by the user.
  • a preset ratio of battery power is reserved according to the aerial survey request, and the preset ratio of battery power is used for shooting oblique images.
  • retaining a preset ratio of battery power specifically includes the following:
  • the user Before the aircraft is ready to perform the orthophoto shooting, the user will set the corresponding operation route and the corresponding flight height, that is, plan the aerial survey route and the aerial survey flight height of the aircraft.
  • the flying height the circular route corresponding to the oblique image to be taken by the aircraft is determined.
  • the circular route can be obtained by using the flying height as the flight radius. It should be noted that the circular route is pre-calculated according to the flying height set by the user.
  • S401b Calculate a preset ratio according to the circular route and the operation route, and reserve the preset ratio of battery power.
  • the pre-calculated circular route and the operation route are calculated in proportions, and the obtained proportion relationship is the preset proportion, and the battery power of the preset proportion is reserved for shooting oblique images. This can ensure that sufficient and accurate battery power is reserved to complete the shooting of oblique images.
  • the camera that controls the aircraft to shoot orthophotos where the aircraft can fly according to preset flight parameters during aerial survey shooting, and the camera can be controlled to shoot orthophotos during the flight of the aircraft.
  • the flight parameters include but are not limited to the predictions. Set the flight route, aerial survey altitude and flight speed, etc.
  • the aerial survey altitude is the flight altitude set during the aerial survey of the aircraft.
  • the flight information corresponding to the orthophoto taken by the aircraft is acquired, and the flight height, flight radius and orbiting center of the tilt shot of the aircraft are determined according to the flight information .
  • the flying height when the orthophoto is taken is selected as the flying height and the flying radius of the aircraft in oblique shooting, and a coordinate point is selected as the center of the circle at the position taken by the aircraft.
  • the acquiring the flight information corresponding to the orthophoto image after the aircraft has taken the aircraft specifically includes: acquiring the flight route information corresponding to the orthophoto image after the aircraft has taken the aircraft, and determining the flight area of the aircraft according to the flight route information. That is, the location area covered by the aircraft is determined by the flight route, and part of the location area is selected as the flight area.
  • the flight area may be the maximum position area where the aircraft flies.
  • S404 Control the flight of the aircraft and the orientation of the shooting device according to the flying height, the flying radius, and the orbiting center to shoot oblique images.
  • the circular course of the aircraft and the shooting inclination angle of the shooting device are determined according to the flying height, the flight radius and the center of circle; the shooting device of the aircraft is adjusted according to the shooting inclination and the aircraft is controlled to follow the Fly in a circular course to capture oblique images.
  • the circular course of the aircraft in the flight area and the shooting inclination of the shooting device are determined according to the flying height, the flying radius, and the center of circle.
  • the flight radius is determined according to the flight height
  • the circle center is determined according to the flight area
  • the circle route is calculated according to the circle center and the flight radius
  • the shooting angle of the camera is calculated according to the flight height and the flight radius.
  • acquiring the shooting inclination angle of the shooting device calculating the flight radius according to the shooting inclination angle and the flying height; determining the circle center according to the flight area, and calculating the circular course according to the circle center and the flight radius.
  • the processing terminal includes a terminal device or a server.
  • the terminal device is, for example, a computer.
  • the processing terminal is equipped with mapping processing software.
  • the mapping processing software is used for the orthophoto and oblique images to determine the aerial survey parameters, which improves the performance of the aerial survey parameters. Accuracy, which can also ensure the accuracy of the mapping processing software.
  • the aerial survey method of the foregoing embodiment receives an aerial survey request, it calculates and reserves a preset ratio of battery power for shooting oblique images; acquires the flight information corresponding to the orthophoto image after the aircraft has taken the shot, and according to the flight information Determine the flying height, flying radius, and orbiting center of the aircraft obliquely shooting; controlling the flying of the aircraft and the orientation of the shooting device according to the flying height, flying radius, and orbiting center to shoot tilted images, and save the orthophotos
  • the aerial survey method can ensure that the oblique image can also be shot when the orthophoto is taken, so that the aerial survey parameters can be determined based on the orthophoto and the oblique image, thereby ensuring the accuracy of mapping.
  • FIG. 10 is a schematic block diagram of an aircraft provided by an embodiment of the present application.
  • the aircraft includes a body, a camera, a processor, and a memory.
  • the processor and the memory are connected by a bus, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the shooting device is connected to the body to shoot images, and the shooting device includes a camera, or a camera and a pan-tilt.
  • the processor may be a micro-controller unit (MCU), a central processing unit (CPU), a digital signal processor (Digital Signal Processor, DSP), or the like.
  • MCU micro-controller unit
  • CPU central processing unit
  • DSP Digital Signal Processor
  • the memory may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk.
  • the processor is used to run a computer program stored in the memory, and implement the following steps when executing the computer program:
  • the flying height, the flying radius, and the center of the circle control the flight of the aircraft and the orientation of the shooting device to shoot tilted images, thereby determining aerial survey parameters based on the orthophoto and tilted images.
  • the processor realizes the control of the flight of the aircraft and the orientation of the shooting device according to the flying height, the flying radius, and the center of the circle to shoot the oblique image, the following steps are implemented:
  • the flight information includes a flight area; when the processor realizes the determination of the circular course of the aircraft and the shooting inclination of the camera according to the flight height, flight radius, and orbiting center, Implement the following steps:
  • the circular course of the aircraft in the flight area and the shooting inclination angle of the shooting device are determined according to the flying height, the flying radius, and the orbiting center.
  • the processor realizes the determination of the circular course of the aircraft in the flight area and the shooting inclination angle of the shooting device according to the flying height, the flying radius, and the orbiting center, the following is achieved step:
  • the flying radius is determined according to the flying height, and the orbiting center is determined according to the flying area; the circular route is calculated according to the orbiting center and the flying radius; the shooting inclination of the imaging device is calculated according to the flying height and the flying radius.
  • the processor realizes the determination of the circular course of the aircraft in the flight area and the shooting inclination angle of the shooting device according to the flying height, the flying radius, and the orbiting center, the following is achieved step:
  • Obtain the shooting inclination angle of the shooting device calculate the flight radius according to the shooting inclination angle and the flying height; determine the circle center according to the flight area, and calculate the circular course according to the circle center and the flight radius.
  • the circular course is determined by using the circle center and the flight radius as a circle or a circle with a preset radian, and the preset radian is greater than or equal to ⁇ .
  • the circumscribed frame includes: circumscribed rectangle, circumscribed square or circumscribed circle.
  • the processor when the processor realizes the determination of the flying radius according to the flying height, the following steps are implemented: selecting the flying height as the flying radius.
  • the processor realizes the calculation of the shooting inclination angle of the shooting device according to the flying height and the flying radius, the following steps are implemented:
  • the shooting inclination angle of the shooting device is calculated according to the flying height and the flight radius, and the shooting inclination angle is obtained as 45°.
  • the processor implements the following steps when implementing the acquisition of the shooting angle of the shooting device:
  • the inclination angle of the photographing device preset by the user is 45°.
  • the processor further implements the following steps before implementing the adjustment of the shooting device of the aircraft according to the shooting inclination angle and controlling the aircraft to fly according to the circular route to shoot oblique images:
  • the processor determines the number of tilt images corresponding to the tilt image to be shot, and determines the change angle of each tilt image in the circular course according to the number of tilt images.
  • the processor when the processor implements the determination of the number of tilt images corresponding to the tilt image to be shot according to the number of images of the orthophoto, the following steps are implemented:
  • the number of tilted images corresponding to the tilted images to be shot is calculated according to the number of acquired orthophotos.
  • the preset correspondence relationship between the number of images of orthophotos and the number of images of oblique images is expressed as:
  • n is the image number of the oblique image corresponding to the oblique image to be shot
  • N is the image number of the orthophoto.
  • the processor when the processor implements the determination of the number of tilt images corresponding to the tilt image to be shot according to the number of images of the orthophoto, the following steps are implemented:
  • the preset level correspondence between the number of orthophotos and the number of oblique images is determined, and the preset number threshold is used to determine shooting The size of the image number of the orthophoto;
  • the number of images of the tilt images corresponding to the tilt images to be shot is determined according to the determined level correspondence.
  • the processor realizes the acquisition of the flight information corresponding to the orthophoto image taken by the aircraft, the following steps are realized:
  • the processor further implements the following steps before implementing the photographing device for controlling the aircraft to photograph the orthophoto:
  • a preset ratio of battery power is retained, and the preset ratio of battery power is used for shooting oblique images.
  • the processor implements the following steps when implementing the reserve of the preset ratio of battery power:
  • the preset ratio is used to achieve 5%, 10% or 20%.
  • the processor further implements the following steps before implementing the retention of a preset ratio of battery power:
  • the aerial survey request is a request generated according to the tilt image shooting function selected by the user.
  • the processor implements the following steps when implementing the aerial survey request:
  • An aerial survey request sent by a control terminal is received, where the aerial survey request is a request generated by the control terminal according to the tilt image shooting function selected by the user.
  • the processor after the processor realizes the control of the flight of the aircraft and the orientation of the shooting device according to the flying height, the flying radius, and the center of the circle to shoot the tilted image, the processor further realizes the following steps: save The orthophoto and oblique images.
  • the processor is further configured to implement:
  • the orthophoto and the oblique image are sent to a processing terminal, so that the processing terminal determines the aerial survey parameters according to the orthophoto and the oblique image.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the foregoing implementation The steps of the aerial survey method provided in the example.
  • the computer-readable storage medium may be the internal storage unit of the aircraft described in any of the foregoing embodiments, such as the hard disk or memory of the aircraft.
  • the computer-readable storage medium may also be an external storage device of the aircraft, such as a plug-in hard disk equipped on the aircraft, a Smart Media Card (SMC), or a Secure Digital (SD) card , Flash Card, etc.
  • SMC Smart Media Card
  • SD Secure Digital

Abstract

一种航测方法,包括:控制飞行器的拍摄装置拍摄正射影像(S101);获取飞行器拍摄完正射影像对应的飞行信息,根据飞行信息确定飞行器倾斜拍摄的飞行高度、飞行半径及环绕中心(S102);根据飞行高度、飞行半径及环绕中心控制飞行器的飞行以及拍摄装置的朝向以拍摄倾斜影像(S103)。还涉及一种飞行器和存储介质。该方法可以提高建图精度。

Description

航测方法、飞行器及存储介质 技术领域
本申请涉及航测技术领域,尤其涉及一种航测方法、飞行器及存储介质。
背景技术
目前,在无人机测绘应用领域,最广泛的应用即为正射影像拍摄,以用于数字正射影像图(Digital Orthophoto Map,DOM)/数字高程模型(Digital Elevation Model,DEM)的重建。但随着无人机的成本降低、小型化、智能化以及平民化,使得无飞机和搭载的相机成本进一步降低,即使用准专业级甚至消费级的相机和镜头,相机内参大多未经过严格标定,而此时直接用拍摄的正射影像的图像进行建图时,在高程上会存在系统偏差。而传统航测方法,是通过打大量地面控制点的方式保证最终成图精度,但作业过程费时费力且成本较高。因此,有必要提供一种航测方法以解决上述问题。
发明内容
基于此,本申请提供了一种航测方法、飞行器和存储介质,用于消除高程误差进而提高建图的精确度。
第一方面,本申请提供了一种航测方法,包括:
控制飞行器的拍摄装置拍摄正射影像;
获取所述飞行器拍摄完所述正射影像对应的飞行信息,根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心;
根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像,从而根据所述正射影像和倾斜影像确定航测参数。
第二方面,本申请还提供了一种飞行器,所述飞行器包括机体、拍摄装置以及存储器和处理器;
所述拍摄装置连接于所述机体以拍摄影像;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
控制飞行器的拍摄装置拍摄正射影像;
获取所述飞行器拍摄完所述正射影像对应的飞行信息,根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心;
根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像,从而根据所述正射影像和倾斜影像确定航测参数。
第三方面,本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上述的航测方法。
本申请实施例提供了一种航测方法、飞行器及存储介质,通过控制飞行器的拍摄装置拍摄正射影像;获取所述飞行器拍摄完所述正射影像对应的飞行信息,根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心;根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像,以便根据所述正射影像和倾斜影像确定航测参数,即使对于使用消费级摄像装置的飞行器进行航测,也可以保证建图的精度。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的一种航测方法的步骤示意流程图;
图2是本申请一实施例提供的确定飞行区域的效果示意图;
图3a至图3c是本申请一实施例提供的确定环绕中心的效果示意图;
图4a和图4b是本申请一实施例提供的确定环绕航线的效果示意图;
图5是本申请一实施例提供的另一种航测方法的步骤示意流程图;
图6是图5中的航测方法的子步骤示意流程图;
图7是本申请一实施例提供的又一种航测方法的步骤示意流程图;
图8是本申请一实施例提供的又一种航测方法的步骤示意流程图;
图9是图8中的航测方法的子步骤示意流程图;
图10是本申请一实施例提供的一种飞行器的结构示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是申请一实施例提供的一种航测方法的步骤示意流程图。该航测方法可以应用于飞行器中。该飞行器包括无人机,该无人机上安装有拍摄装置,拍摄装置包括:相机,或者相机和用于安装相机的云台。该相机可采用准专业级相机或消费级相机,或者相机的使用的消费级镜头,甚至相机内参没有经过精密标定,相机内参比如为焦距等。
其中,无人机可以为旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机。
具体地,如图1所示,该航测方法包括步骤S101至步骤S103。
S101、控制飞行器的拍摄装置拍摄正射影像。
使用飞行器进行航测拍摄,控制飞行器的拍摄装置拍摄正射影像,其中飞行器在航测拍摄时可以按照预先设置的飞行参数进行飞行,并在飞行器飞行过程中通过控制其拍摄装置拍摄正射影像,其中飞行参数包括但不限于预设飞行航线、航测高度以及飞行速度等,航测高度为飞行器进行航测时设置的飞行高度。
在控制飞行器的拍摄装置拍摄完正射影像之后,保存所述正射影像,或者将所述正射影像发送至地面控制终端,当然也可以采用视频传输技术将拍摄的正射影像实时传输至地面控制终端。在拍摄正射影像的同时,记录飞行器拍摄正射影像对应的飞行信息,该飞行信息包括飞行航线信息、航测高度、飞行速度以及相机参数等。
S102、获取所述飞行器拍摄完所述正射影像对应的飞行信息,根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心。
在控制飞行器的拍摄装置拍摄完正射影像之后,获取所述飞行器拍摄完所述正射影像对应的飞行信息,并根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心。比如选取拍摄正射影像时的飞行高度作为所述飞行器倾斜拍摄的飞行高度和飞行半径等,以及在飞行器拍摄过的位置选择一个坐标点作为环绕中心。
其中,所述获取所述飞行器拍摄完所述正射影像对应的飞行信息,具体包括:获取飞行器拍摄完正射影像对应的飞行航线信息,根据所述飞行航线信息确定所述飞行器的飞行区域。即通过飞行航线确定飞行器覆盖的位置区域,在所述位置区域中选择部分区域作为飞行区域。在一个实施例中,该飞行区域可以为飞行器飞行的最大位置区域。
S103、根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像,从而根据所述正射影像和倾斜影像确定航测参数。
具体地,根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器按照所述飞行高度和飞行半径围绕所述环绕中心点做环绕飞行,以及飞行的过程中根据所述飞行高度和飞行半径控制所述拍摄装置的朝向以拍摄倾斜影像,控制所述拍摄装置的朝向可以直接控制相机的拍摄方向,或者调整云台以控制相机的拍摄方向。
该航测方法在完成拍摄正射影像时,又根据拍摄正射影像对应的飞行信息完成倾斜影像的拍摄,从而根据所述正射影像和倾斜影像确定较为准确的航测参数,该航测参数比如为相机焦距,当然也可以为其他参数。因为在拍摄正射影像时,还拍摄倾斜影像,在建图处理时的非线性优化过程中,对焦距进行优化,可以很好地解决焦距的多解性的问题,进而解决航测在高程方向的高度值的多解性。由此提高该正射影像用于建图的精度。
在一个实施例中,所述根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像,包括:
根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器的环形航线以及所述拍摄装置的拍摄倾角;根据所述拍摄倾角调整所述飞行器的拍摄装置并控制所述飞行器按照所述环形航线飞行以拍摄倾斜影像。
具体地,先根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器的环形航线以及所述拍摄装置的拍摄倾角,根据所述拍摄倾角调整所述飞行器的拍摄装置,使得拍摄装置在所述飞行器按照所述环形航线飞行时可以按照拍摄倾角进行拍摄,进而完成倾斜影像拍摄。按照环绕航线飞行以及确定的拍摄倾角进行拍摄,可以通过拍摄效率以及倾斜影像的数据稳定性。
在一个实施例中,为了提高航测参数的准确度,具体是根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器在所述飞行区域中的环形航线以及所述拍摄装置的拍摄倾角,以使得飞行器按照所述环形航线飞行并采用拍摄倾角完成倾斜影像的采集。
具体地,在飞行器的飞行区域内确定环绕航线,其中飞行区域是根据飞行航线确定的。如图2所示,飞行器在拍摄正射影像对应的飞行航线比如为图2中的飞行航线11,由此可根据飞行航线11确定飞行区域100,当然也可以在飞行航线11限定的位置区域中选择部分区域作为飞行区域100。
在一个实施例中,所述根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器在所述飞行区域中的环形航线以及所述拍摄装置的拍摄倾角,具体包括:
根据所述飞行高度确定飞行半径,以及根据所述飞行区域确定环绕中心;根据所述环绕中心和飞行半径计算环形航线;根据所述飞行高度和飞行半径计算所述拍摄装置的拍摄倾角。
具体地,所述根据所述飞行高度确定飞行半径,比如,选取所述飞行高度作为飞行半径。相应地,所述根据所述飞行高度和飞行半径计算所述拍摄装置的拍摄倾角,包括:基于三角函数关系,根据所述飞行高度和飞行半径计算所述拍摄装置的拍摄倾角,得到所述拍摄倾角为45°。
在所述飞行区域选择一个位置点作为环绕中心,围绕该环绕中心以确定的飞行半径作圆或者作具有预设弧度的圆环,将该圆或具有预设弧度的圆环作为环形航线,其中所述预设弧度大于或等于π,所述预设弧度的圆环比如为:半圆等。
可以理解的是,若不选择飞行高度作为飞行半径,则可以基于三角函数关系根据所述飞行高度和飞行半径计算所述拍摄装置的拍摄倾角。
在另一个实施例中,所述根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器在所述飞行区域中的环形航线以及所述拍摄装置的拍摄倾角,具体包括:
获取所述拍摄装置的拍摄倾角,根据所述拍摄倾角和飞行高度计算飞行半径;根据所述飞行区域确定环绕中心,以及根据所述环绕中心和飞行半径计算环形航线。
具体地,获取用户预先设置的拍摄装置的拍摄倾角,比如用户设置的拍摄倾角为45°,当然也可以设置其他角度,比如设置20°、30°或60°等,再根据用户设置的拍摄倾角和飞行高度利用三角函数关系计算出飞行半径。
需要说明的是,拍摄倾角优选为45°,根据空间前方交会原理可知,当拍摄倾角为45°时可以得到最佳的航测参数。
在一个实施例中,所述根据所述飞行区域确定环绕中心,具体包括:确定所述飞行区域对应的外接边框以及所述外接边框的中心,将所述外接边框的中心作为环绕中心。
具体地,如图3a所示,先确定飞行区域100的外接矩形12,连接外接矩形12的两条对角线(图3a中的两条虚线),两条对角线的交点即为外接矩形12的中心,并将外接矩形12的中心作为环绕中心,具体如图3a中的环绕中心120。
当然,该外接边框也可以为外接方形或外接圆,分别如图3b和图3c所示,同样可以快速地确定环绕中心120。其中当外接边框为外接方形时,也可以通 过连接对角线的方式,确定环绕中心;当外接边框为外接圆时,则根据圆心确定环绕中心。
可以理解的是,在其他实施例中,也可以内接多边形或内切圆的方式,确定该环绕中心。
其中,所述根据所述环绕中心和飞行半径计算环形航线,具体包括:以所述环绕中心和飞行半径作圆。请参照图4a和图4b,在图4a中以环绕中心120未圆心,以飞行半径r为圆半径作圆得到环形航线121。优选地,飞行半径r与飞行高度h相等,目的是为了将拍摄倾角调整为45°。
请参阅图5,图5是申请一实施例提供的另一种航测方法的步骤示意流程图。该航测方法可以应用于飞行器中,飞行器包括安装有拍摄装置的无人机。
具体地,如图5所示,该航测方法包括步骤S201至步骤S206。
S201、控制飞行器的拍摄装置拍摄正射影像。
在使用飞行器进行航测时,控制飞行器的拍摄装置拍摄正射影像,该拍摄装置包括安装在飞行器上的相机,或者相机和云台等。
S202、获取所述飞行器拍摄完所述正射影像对应的飞行信息,根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心。
在控制飞行器的拍摄装置拍摄完正射影像之后,获取所述飞行器拍摄完所述正射影像对应的飞行信息,并根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心。
比如,获取的飞行信息包括飞行器拍摄完正射影像对应的飞行区域和飞行高度等,具体可根据拍摄正射影像对应的飞行区域和飞行高度确定所述飞行器进行倾斜拍摄的飞行高度、飞行半径以及环绕中心。
比如,将飞行器拍摄完正射影像对应飞行高度作为所述飞行器进行倾斜拍摄的飞行高度和飞行半径,以及在所述飞行区域内选择一个位置点作为环绕中心。
在一个实施例中,在所述飞行区域内选择一个位置点作为环绕中心,具体包括:根据所述飞行半径在所述飞行区域内选择一个位置点作为环绕中心,使得环绕中心到所述飞行区域的边界对应距离均大于所述飞行半径。
S203、根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器在所述飞行区域中的环形航线以及所述拍摄装置的拍摄倾角。
具体地,根据所述飞行高度确定飞行半径,以及根据所述飞行区域确定环绕中心;根据所述环绕中心和飞行半径计算环形航线;根据所述飞行高度和飞行半径计算所述拍摄装置的拍摄倾角。
比如,在所述飞行区域选择一个位置点作为环绕中心,围绕该环绕中心以确定的飞行半径作圆或者作具有预设弧度的圆环,将得到的圆或具有预设弧度的圆环作为环形航线,其中所述预设弧度大于或等于π。
比如,选择飞行高度作为飞行半径,基于三角函数关系,根据所述飞行高度和飞行半径计算所述拍摄装置的拍摄倾角,得到所述拍摄倾角为45°。
S204、确定待拍摄倾斜影像对应的倾斜图像的图像数目,根据所述倾斜图像的图像数目确定每张倾斜图像在所述环形航线上对应的变化角度。
待拍摄倾斜影像对应的倾斜图像的图像数目,可以由用户进行设置,比如获取用户设置的待拍摄倾斜影像对应的倾斜图像的图像数目,并根据所述倾斜图像的图像数目确定每张倾斜图像在所述环形航线上对应的变化角度。
比如环形航线为圆,设倾斜图像的图像数据为n,则每张倾斜图像在所述环形航线上对应的变化角度为2π/n,该变化角度用弧度表示。
可以理解的是,在其他实施例中,也可以在环形航线上的变化角度变换成变化距离,即利用圆心角求弧长,该弧长即是变化距离。
在一个实施例中,为了兼顾倾斜影像的采集效率和后建图的效果,以及提高航测参数的准确率,采用根据拍摄的正射影像对应的正射图像的图像数目确定每张倾斜图像在所述环形航线上对应的变化角度。具体地,如图6所示,即步骤S204,包括子步骤S204a至S204c。
S204a、获取拍摄正射影像对应的正射图像的图像数目。
获取拍摄的正射影像中所有正射图像对应的图像数目,也可以获取正射影像中按照预设间隔帧对应的正射图像对应的图像数目,间隔预设帧根据正射影像大小进行设定。
S204b、根据所述正射图像的图像数目确定待拍摄倾斜影像对应的倾斜图像的图像数目。
具体地,基于正射图像的图像数目与倾斜图像的图像数目之间预设的对应关系,根据获取的正射图像的图像数目计算待拍摄倾斜影像对应的倾斜图像的图像数目。
在一个实施例中,所述正射图像的图像数目与倾斜图像的图像数目之间预设的对应关系表示为:
n=(5%~10%)*N
其中,n为待拍摄倾斜影像对应的倾斜图像的图像数目,N为正射图像的图像数目。
需要说明的是,在其他实施例中,所述正射图像的图像数目与倾斜图像的图像数目之间预设的对应关系也可以表示其他形式,比如采用其他线性函数形式,目的是建立正射图像的图像数目与倾斜图像的图像数目的线性关系。
在一个实施例中,为了进一步地提高倾斜影像的采集效率以及航测参数的准确率。所述根据所述正射图像的图像数目确定待拍摄倾斜影像对应的倾斜图像的图像数目,具体包括:
根据所述正射图像的图像数目与预设数目阈值的大小关系,确定正射图像的图像数目与倾斜图像的图像数目之间预设的等级对应关系,所述预设数目阈值用于判断拍摄的正射图像的图像数目大小;根据确定的等级对应关系确定待拍摄的倾斜影像对应的倾斜图像的图像数目。
比如,正射图像的图像数目与倾斜图像的图像数目之间预设的等级对应关系,包括第一等级对应关系和第二等级对应关系。其中,所述第一等级对应关系表示为n=5%*N;所述第二等级对应关系表示n=10%*N。在所述第一等级对应关系和第二等级对应关系的表示式中,n为待拍摄倾斜影像对应的倾斜图像的图像数目,N为正射图像的图像数目。
具体地,判断所述正射图像的图像数目与预设数目阈值的大小关系;若所述正射图像的图像数目不小于预设数目阈值,则确定第一等级对应关系;若所述正射图像的图像数目小于预设数目阈值,则确定第二等级对应关系;并根据确定的等级对应关系确定待拍摄的倾斜影像对应的倾斜图像的图像数目。利用预设数据阈值,可以根据正射图像的图像数目的大小,采集相应数量的倾斜图像,即可提高采集效率,也可以确保航测参数的准确性。
需要说明的是,参照上述第一等级对应关系和第二等级对应关系的实现原理,在其他实施例中,可以设置更多的等级对应关系,即提高采集效率又确保航测参数的准确性。
S204c、根据确定的倾斜图像的图像数目和所述环形航线计算每张倾斜图像 对应的变化角度。
先确定所述环形航线的弧度,再根据所述环形航线的弧度和所述倾斜图像的图像数目计算每张倾斜图像在环绕航线上对应的变化角度。比如,环形航线的弧度为2π,每张倾斜图像对应的变化角度2π/n。
S205、调整所述拍摄装置的拍摄角度至所述拍摄倾角。
若拍摄装置为相机,则可以直接调整所述相机的拍摄角度为所述拍摄倾角,比如调整相机的拍摄角度为45°,具体如图4b所示,飞行器在按照环形航线121进行飞行时,相机21拍摄角度相对于地面目标物30均为45°;若拍摄装置包括相机和云台,则可以调整云台的倾角至所述拍摄倾角,比如将云台的倾角调整为45°。
S206、控制所述飞行器按照所述环形航线飞行并根据所述变化角度控制所述拍摄装置拍摄倾斜图像以完成倾斜影像的拍摄。
具体地,控制所述飞行器按照所述环形航线飞行,从起点开始在所述环形航线上每隔一个变化角度即采集一个倾斜图像,在飞行器沿着环绕航线飞行完时进而完成倾斜影像的拍摄。
上述实施例的航测方法通过控制飞行器的拍摄装置拍摄正射影像;获取所述飞行器拍摄完所述正射影像对应的飞行信息,根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心;根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像,同时在拍摄倾斜影像时引入变化角度,根据该变化角度完成倾斜图像的采集,确保了倾斜图像的对称性,以便根据所述正射影像和倾斜影像确定航测参数,进而提高了后续建图的精度。
请参阅图7,图7是申请一实施例提供的又一种航测方法的步骤示意流程图。该航测方法可以应用于飞行器中,包括拍摄正射影像以及根据拍摄正射影像对应的飞行信息拍摄倾斜影像。由此可基于该航测方法在飞行器的应用程序添加一个功能选项,当用户选择了该功能选项,则控制飞行使用该航测方法进行航测。
具体地,如图7所示,该航测方法包括步骤S301至步骤S305。
S301、保留预设比例的电池电量,所述预设比例的电池电量用于拍摄倾斜影像。
具体地,在用户选择了触发该航测方法的功能选项实,保留预设比例的电池电量,所述预设比例的电池电量用于拍摄倾斜影像,比如扣除10%的电量用于拍摄倾斜影像。当然,所述预设比例还可以包括其他值,比如5%、15%或者20%。进而确保飞行器可以完成该航测方法。
S302、控制飞行器的拍摄装置拍摄正射影像。
在使用飞行器进行航测时,控制飞行器的拍摄装置拍摄正射影像,该拍摄装置包括安装在飞行器上的相机或云台等。
S303、获取所述飞行器拍摄完所述正射影像对应的飞行信息,根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心。
在控制飞行器的拍摄装置拍摄完正射影像之后,获取所述飞行器拍摄完所述正射影像对应的飞行信息,并根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心。比如飞行信息包括拍摄正射影像对应的飞行区域和飞行高度等,具体地根据拍摄正射影像对应的飞行区域和飞行高度确定述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心。
S304、根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像。
具体地,根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器按照所述飞行高度和飞行半径围绕所述环绕中心点做环绕飞行,以及飞行的过程中根据所述飞行高度和飞行半径控制所述拍摄装置的朝向以拍摄倾斜影像,控制所述拍摄装置的朝向可以直接控制相机的拍摄方向,或者调整云台以控制相机的拍摄方向。
S305、保存所述正射影像和倾斜影像,从而根据所述正射影像和倾斜影像确定航测参数。
在拍摄完倾斜影像后,将所述正射影像和倾斜影像对应存储在飞行器中,以便飞行器根据所述正射影像和倾斜影像确定航测参数,航测参数比如为焦距,能够消除焦距的多解性。
上述实施例的航测方法通过保留预设比例的电池电量用于拍摄倾斜影像;获取所述飞行器拍摄完所述正射影像对应的飞行信息,根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心;根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄 倾斜影像,并保存正射影像和倾斜影像,该航测方法可以确保在拍摄完正射影像时留有相应的电量拍摄倾斜影像,以便根据所述正射影像和倾斜影像确定航测参数,由此可以保证建图的精度。
请参阅图8,图8是申请一实施例提供的又一种航测方法的步骤示意流程图。该航测方法可以应用于飞行系统,飞行系统包括飞行器和控制飞行器飞行的控制终端,飞行器包括安装有拍摄装置的无人机,控制终端包括遥控器和智能终端。
具体地,如图8所示,该航测方法包括步骤S401至步骤S405。
S401、获取航测请求,根据所述航测请求保留预设比例的电池电量,所述航测请求为根据用户选择的倾斜影像拍摄功能而生成的请求。
具体地,接收控制终端发送的航测请求,所述航测请求为所述控制终端根据用户选择的倾斜影像拍摄功能而生成的请求。根据所述航测请求保留预设比例的电池电量,所述预设比例的电池电量用于拍摄倾斜影像。
在一些实施例中,保留预设比例的电池电量,具体包括以下内容:
S401a、获取所述飞行器执行正射影像拍摄对应的作业航线以及飞行高度,根据所述飞行高度确定所述飞行器需拍摄倾斜影像对应的环形航线。
在飞行器准备执行正射影像拍摄之前,用户会设置相应的作业航线以及相应的飞行高度,即规划该飞行器的航测路线以及航测的飞行高度。根据所述飞行高度确定所述飞行器需拍摄倾斜影像对应的环形航线,具体可以采用将飞行高度作为飞行半径作圆,即得到环形航线。需要说明的,该环形航线是根据用户设置的飞行高度进行预计算得到的。
S401b、根据所述环形航线和作业航线计算预设比例,保留所述预设比例的电池电量。
具体地,将预计算的环形航线和作业航线进行比例计算,得到的比例关系即为预设比例,保留该预设比例的电池电量,用于拍摄倾斜影像。由此可以确保预留有足够且精确的电池电量完成倾斜影像的拍摄。
S402、控制飞行器的拍摄装置拍摄正射影像。
控制飞行器的拍摄装置拍摄正射影像,其中飞行器在航测拍摄时可以按照预先设置的飞行参数进行飞行,并在飞行器飞行过程中通过控制其拍摄装置拍摄正射影像,其中飞行参数包括但不限于预设飞行航线、航测高度以及飞行速 度等,航测高度为飞行器进行航测时设置的飞行高度。
S403、获取所述飞行器拍摄完所述正射影像对应的飞行信息,根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心。
在控制飞行器的拍摄装置拍摄完正射影像之后,获取所述飞行器拍摄完所述正射影像对应的飞行信息,并根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心。比如选取拍摄正射影像时的飞行高度作为所述飞行器倾斜拍摄的飞行高度和飞行半径等,以及在飞行器拍摄过的位置选择一个坐标点作为环绕中心。
其中,所述获取所述飞行器拍摄完所述正射影像对应的飞行信息,具体包括:获取飞行器拍摄完正射影像对应的飞行航线信息,根据所述飞行航线信息确定所述飞行器的飞行区域。即通过飞行航线确定飞行器覆盖的位置区域,在所述位置区域中选择部分区域作为飞行区域。在一个实施例中,该飞行区域可以为飞行器飞行的最大位置区域。
S404、根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像。
具体地,根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器的环形航线以及所述拍摄装置的拍摄倾角;根据所述拍摄倾角调整所述飞行器的拍摄装置并控制所述飞行器按照所述环形航线飞行以拍摄倾斜影像。
具体地,根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器在所述飞行区域中的环形航线以及所述拍摄装置的拍摄倾角。
比如,根据所述飞行高度确定飞行半径,以及根据所述飞行区域确定环绕中心;根据所述环绕中心和飞行半径计算环形航线;根据所述飞行高度和飞行半径计算所述拍摄装置的拍摄倾角。
再比如,获取所述拍摄装置的拍摄倾角,根据所述拍摄倾角和飞行高度计算飞行半径;根据所述飞行区域确定环绕中心,以及根据所述环绕中心和飞行半径计算环形航线。
S405、将所述正射影像和倾斜影像发送至处理终端,以使所述处理终端根据所述正射影像和倾斜影像确定航测参数。
该处理终端包括终端设备或者服务器,终端设备比如为电脑等,处理终端上配置有建图处理软件,该建图处理软件用于所述正射影像和倾斜影像确定航 测参数,提高了航测参数的准确度,由此也可以保证了建图处理软件的建图精度。
上述实施例的航测方法在接收到航测请求时,通过计算并保留预设比例的电池电量用于拍摄倾斜影像;获取所述飞行器拍摄完所述正射影像对应的飞行信息,根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心;根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像,并保存正射影像和倾斜影像,该航测方法可以确保在拍摄正射影像时也可以拍摄倾斜影像,以便根据所述正射影像和倾斜影像确定航测参数,由此可以保证建图的精度。
请参阅图10,图10是本申请一实施例提供的飞行器的示意性框图。该飞行器包括机体、拍摄装置、处理器和存储器,处理器和存储器通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线。
当然,所述拍摄装置连接于所述机体以拍摄影像,拍摄装置包括相机,或者相机和云台。
具体地,处理器可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器用于运行存储在存储器中的计算机程序,并在执行所述计算机程序时实现如下步骤:
控制飞行器的拍摄装置拍摄正射影像;获取所述飞行器拍摄完所述正射影像对应的飞行信息,根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心;根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像,从而根据所述正射影像和倾斜影像确定航测参数。
在一个实施例中,所述处理器在实现所述根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像时,实现如下步骤:
根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器的环形航线以 及所述拍摄装置的拍摄倾角;根据所述拍摄倾角调整所述飞行器的拍摄装置并控制所述飞行器按照所述环形航线飞行以拍摄倾斜影像。
在一个实施例中,所述飞行信息包括飞行区域;所述处理器在实现所述根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器的环形航线以及所述拍摄装置的拍摄倾角时,实现如下步骤:
根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器在所述飞行区域中的环形航线以及所述拍摄装置的拍摄倾角。
在一个实施例中,所述处理器在实现所述根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器在所述飞行区域中的环形航线以及所述拍摄装置的拍摄倾角时,实现如下步骤:
根据所述飞行高度确定飞行半径,以及根据所述飞行区域确定环绕中心;根据所述环绕中心和飞行半径计算环形航线;根据所述飞行高度和飞行半径计算所述拍摄装置的拍摄倾角。
在一个实施例中,所述处理器在实现所述根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器在所述飞行区域中的环形航线以及所述拍摄装置的拍摄倾角时,实现如下步骤:
获取所述拍摄装置的拍摄倾角,根据所述拍摄倾角和飞行高度计算飞行半径;根据所述飞行区域确定环绕中心,以及根据所述环绕中心和飞行半径计算环形航线。
在一个实施例中,所述处理器在实现所述根据所述环绕中心和飞行半径计算环形航线时,实现如下步骤:
以所述环绕中心和飞行半径作圆或具有预设弧度的圆环确定环形航线,所述预设弧度大于或等于π。
在一个实施例中,所述处理器在实现所述根据所述飞行区域确定环绕中心时,实现如下步骤:
确定所述飞行区域对应的外接边框以及所述外接边框的中心,将所述外接边框的中心作为环绕中心。
在一个实施例中,所述外接边框包括:外接矩形、外接方形或外接圆。
在一个实施例中,所述处理器在实现所述根据所述飞行高度确定飞行半径时,实现如下步骤:选取所述飞行高度作为飞行半径。
在一个实施例中,所述处理器在实现所述根据所述飞行高度和飞行半径计算所述拍摄装置的拍摄倾角时,实现如下步骤:
基于三角函数关系,根据所述飞行高度和飞行半径计算所述拍摄装置的拍摄倾角,得到所述拍摄倾角为45°。
在一个实施例中,所述处理器在实现所述获取所述拍摄装置的拍摄倾角时,实现如下步骤:
获取用户预先设置的拍摄装置的倾斜角度作为拍摄倾角。
在一个实施例中,所述用户预先设置的拍摄装置的倾斜角度为45°。
在一个实施例中,所述处理器在实现所述根据所述拍摄倾角调整所述飞行器的拍摄装置并控制所述飞行器按照所述环形航线飞行以拍摄倾斜影像之前,还实现如下步骤:
确定待拍摄倾斜影像对应的倾斜图像的图像数目,根据所述倾斜图像的图像数目确定每张倾斜图像在所述环形航线上对应的变化角度;
相应地,所述处理器在实现所述根据所述拍摄倾角调整所述飞行器的拍摄装置并控制所述飞行器按照所述环形航线飞行以拍摄倾斜影像时,实现如下步骤:
调整所述拍摄装置的拍摄角度至所述拍摄倾角;以及控制所述飞行器按照所述环形航线飞行并根据所述变化角度控制所述拍摄装置拍摄倾斜图像以完成倾斜影像的拍摄。
在一个实施例中,所述处理器在实现所述确定待拍摄的倾斜影像对应的倾斜图像的图像数目,根据所述倾斜图像的图像数目确定每张倾斜图像在所述环形航线对应的变化角度时,实现如下步骤:
获取拍摄正射影像对应的正射图像的图像数目;根据所述正射图像的图像数目确定待拍摄倾斜影像对应的倾斜图像的图像数目;根据确定的倾斜图像的图像数目和所述环形航线计算每张倾斜图像对应的变化角度。
在一个实施例中,所述处理器在实现所述根据所述正射图像的图像数目确定待拍摄倾斜影像对应的倾斜图像的图像数目时,实现如下步骤:
基于正射图像的图像数目与倾斜图像的图像数目之间预设的对应关系,根据获取的正射图像的图像数目计算待拍摄倾斜影像对应的倾斜图像的图像数目。
在一个实施例中,所述正射图像的图像数目与倾斜图像的图像数目之间预 设的对应关系表示为:
n=(5%~10%)*N
其中,n为待拍摄倾斜影像对应的倾斜图像的图像数目,N为正射图像的图像数目。
在一个实施例中,所述处理器在实现所述根据所述正射图像的图像数目确定待拍摄倾斜影像对应的倾斜图像的图像数目时,实现如下步骤:
根据所述正射图像的图像数目与预设数目阈值的大小关系,确定正射图像的图像数目与倾斜图像的图像数目之间预设的等级对应关系,所述预设数目阈值用于判断拍摄的正射图像的图像数目大小;
根据确定的等级对应关系确定待拍摄的倾斜影像对应的倾斜图像的图像数目。
在一个实施例中,所述处理器在实现所述获取所述飞行器拍摄完所述正射影像对应的飞行信息时,实现如下步骤:
获取飞行器拍摄完正射影像对应的飞行航线信息,根据所述飞行航线信息确定所述飞行器的飞行区域。
在一个实施例中,所述处理器在实现所述控制飞行器的拍摄装置拍摄正射影像之前,还实现如下步骤:
保留预设比例的电池电量,所述预设比例的电池电量用于拍摄倾斜影像。
在一个实施例中,所述处理器在实现所述保留预设比例的电池电量时,实现如下步骤:
获取所述飞行器执行正射影像拍摄对应的作业航线以及飞行高度,根据所述飞行高度确定所述飞行器需拍摄倾斜影像对应的环形航线;根据所述环形航线和作业航线计算预设比例,保留所述预设比例的电池电量。
在一个实施例中,所述预设比例用于实现5%、10%或者20%。
在一个实施例中,所述处理器在实现保留预设比例的电池电量之前,还实现如下步骤:
获取航测请求,从而根据所述航测请求保留预设比例的电池电量,所述航测请求为根据用户选择的倾斜影像拍摄功能而生成的请求。
在一个实施例中,所述处理器在实现所述获取航测请求时,实现如下步骤:
接收控制终端发送的航测请求,所述航测请求为所述控制终端根据用户选 择的倾斜影像拍摄功能而生成的请求。
在一个实施例中,所述处理器在实现所述根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像之后,还实现如下步骤:保存所述正射影像和倾斜影像。
在一个实施例中,所述处理器,还用于实现:
将所述正射影像和倾斜影像发送至处理终端,以使所述处理终端根据所述正射影像和倾斜影像确定航测参数。
本申请的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的航测方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的飞行器的内部存储单元,例如所述飞行器的硬盘或内存。所述计算机可读存储介质也可以是所述飞行器的外部存储设备,例如所述飞行器上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (51)

  1. 一种航测方法,其特征在于,包括:
    控制飞行器的拍摄装置拍摄正射影像;
    获取所述飞行器拍摄完所述正射影像对应的飞行信息,根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心;
    根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像,从而根据所述正射影像和倾斜影像确定航测参数。
  2. 根据权利要求1所述的航测方法,其特征在于,所述根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像,包括:
    根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器的环形航线以及所述拍摄装置的拍摄倾角;
    根据所述拍摄倾角调整所述飞行器的拍摄装置并控制所述飞行器按照所述环形航线飞行以拍摄倾斜影像。
  3. 根据权利要求2所述的航测方法,其特征在于,所述飞行信息包括飞行区域;所述根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器的环形航线以及所述拍摄装置的拍摄倾角,包括:
    根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器在所述飞行区域中的环形航线以及所述拍摄装置的拍摄倾角。
  4. 根据权利要求3所述的航测方法,其特征在于,所述根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器在所述飞行区域中的环形航线以及所述拍摄装置的拍摄倾角,包括:
    根据所述飞行高度确定飞行半径,以及根据所述飞行区域确定环绕中心;
    根据所述环绕中心和飞行半径计算环形航线;
    根据所述飞行高度和飞行半径计算所述拍摄装置的拍摄倾角。
  5. 根据权利要求3所述的航测方法,其特征在于,所述根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器在所述飞行区域中的环形航线以及所述 拍摄装置的拍摄倾角,包括:
    获取所述拍摄装置的拍摄倾角,根据所述拍摄倾角和飞行高度计算飞行半径;
    根据所述飞行区域确定环绕中心,以及根据所述环绕中心和飞行半径计算环形航线。
  6. 根据权利要求4或5所述的航测方法,其特征在于,所述根据所述环绕中心和飞行半径计算环形航线,包括:
    以所述环绕中心和飞行半径作圆或具有预设弧度的圆环确定环形航线,所述预设弧度大于或等于π。
  7. 根据权利要求4或5所述的航测方法,其特征在于,所述根据所述飞行区域确定环绕中心,包括:
    确定所述飞行区域对应的外接边框以及所述外接边框的中心,将所述外接边框的中心作为环绕中心。
  8. 根据权利要求7所述的航测方法,其特征在于,所述外接边框包括:外接矩形、外接方形或外接圆。
  9. 根据权利要求4所述的航测方法,其特征在于,所述根据所述飞行高度确定飞行半径,包括:选取所述飞行高度作为飞行半径。
  10. 根据权利要求9所述的航测方法,其特征在于,所述根据所述飞行高度和飞行半径计算所述拍摄装置的拍摄倾角,包括:
    基于三角函数关系,根据所述飞行高度和飞行半径计算所述拍摄装置的拍摄倾角,得到所述拍摄倾角为45°。
  11. 根据权利要求5所述的航测方法,其特征在于,所述获取所述拍摄装置的拍摄倾角,包括:
    获取用户预先设置的拍摄装置的倾斜角度作为拍摄倾角。
  12. 根据权利要求11所述的航测方法,其特征在于,所述倾斜角度为45°。
  13. 根据权利要求3所述的航测方法,其特征在于,所述根据所述拍摄倾角调整所述飞行器的拍摄装置并控制所述飞行器按照所述环形航线飞行以拍摄倾斜影像之前,还包括:
    确定待拍摄倾斜影像对应的倾斜图像的图像数目,根据所述倾斜图像的图像数目确定每张倾斜图像在所述环形航线上对应的变化角度;
    所述根据所述拍摄倾角调整所述飞行器的拍摄装置并控制所述飞行器按照所述环形航线飞行以拍摄倾斜影像,包括:
    调整所述拍摄装置的拍摄角度至所述拍摄倾角;以及
    控制所述飞行器按照所述环形航线飞行并根据所述变化角度控制所述拍摄装置拍摄倾斜图像以完成倾斜影像的拍摄。
  14. 根据权利要求13所述的航测方法,其特征在于,所述确定待拍摄的倾斜影像对应的倾斜图像的图像数目,根据所述倾斜图像的图像数目确定每张倾斜图像在所述环形航线对应的变化角度,包括:
    获取拍摄正射影像对应的正射图像的图像数目;
    根据所述正射图像的图像数目确定待拍摄倾斜影像对应的倾斜图像的图像数目;
    根据确定的倾斜图像的图像数目和所述环形航线计算每张倾斜图像对应的变化角度。
  15. 根据权利要求14所述的航测方法,其特征在于,所述根据所述正射图像的图像数目确定待拍摄倾斜影像对应的倾斜图像的图像数目,包括:
    基于正射图像的图像数目与倾斜图像的图像数目之间预设的对应关系,根据获取的正射图像的图像数目计算待拍摄倾斜影像对应的倾斜图像的图像数目。
  16. 根据权利要求15所述的航测方法,其特征在于,所述正射图像的图像数目与倾斜图像的图像数目之间预设的对应关系表示为:
    n=(5%~10%)*N
    其中,n为待拍摄倾斜影像对应的倾斜图像的图像数目,N为正射图像的图像数目。
  17. 根据权利要求16所述的航测方法,其特征在于,所述根据所述正射图像的图像数目确定待拍摄倾斜影像对应的倾斜图像的图像数目,包括:
    根据所述正射图像的图像数目与预设数目阈值的大小关系,确定正射图像的图像数目与倾斜图像的图像数目之间预设的等级对应关系,所述预设数目阈值用于判断拍摄的正射图像的图像数目大小;
    根据确定的等级对应关系确定待拍摄的倾斜影像对应的倾斜图像的图像数目。
  18. 根据权利要求1所述的航测方法,其特征在于,所述获取所述飞行器 拍摄完所述正射影像对应的飞行信息,包括:
    获取飞行器拍摄完正射影像对应的飞行航线信息,根据所述飞行航线信息确定所述飞行器的飞行区域。
  19. 根据权利要求1所述的航测方法,其特征在于,所述控制飞行器的拍摄装置拍摄正射影像之前,还包括:
    保留预设比例的电池电量,所述预设比例的电池电量用于拍摄倾斜影像。
  20. 根据权利要求19所述的航测方法,其特征在于,所述保留预设比例的电池电量,包括:
    获取所述飞行器执行正射影像拍摄对应的作业航线以及飞行高度,根据所述飞行高度确定所述飞行器需拍摄倾斜影像对应的环形航线;
    根据所述环形航线和作业航线计算预设比例,保留所述预设比例的电池电量。
  21. 根据权利要求19所述的航测方法,其特征在于,所述预设比例包括5%、10%或者20%。
  22. 根据权利要求19所述的航测方法,其特征在于,所述保留预设比例的电池电量之前,包括:
    获取航测请求,从而根据所述航测请求保留预设比例的电池电量,所述航测请求为根据用户选择的倾斜影像拍摄功能而生成的请求。
  23. 根据权利要求22所述的航测方法,其特征在于,所述获取航测请求,包括:
    接收控制终端发送的航测请求,所述航测请求为所述控制终端根据用户选择的倾斜影像拍摄功能而生成的请求。
  24. 根据权利要求1所述的航测方法,其特征在于,所述根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像之后,还包括:
    保存所述正射影像和倾斜影像。
  25. 根据权利要求1所述的航测方法,其特征在于,所述航测方法,还包括:
    将所述正射影像和倾斜影像发送至处理终端,以使所述处理终端根据所述正射影像和倾斜影像确定航测参数。
  26. 一种飞行器,其特征在于,所述飞行器包括机体、拍摄装置以及存储器和处理器;
    所述拍摄装置连接于所述机体以拍摄影像;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    控制飞行器的拍摄装置拍摄正射影像;
    获取所述飞行器拍摄完所述正射影像对应的飞行信息,根据所述飞行信息确定所述飞行器倾斜拍摄的飞行高度、飞行半径以及环绕中心;
    根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像,从而根据所述正射影像和倾斜影像确定航测参数。
  27. 根据权利要求26所述的飞行器,其特征在于,所述处理器在实现所述根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像时,用于实现:
    根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器的环形航线以及所述拍摄装置的拍摄倾角;
    根据所述拍摄倾角调整所述飞行器的拍摄装置并控制所述飞行器按照所述环形航线飞行以拍摄倾斜影像。
  28. 根据权利要求27所述的飞行器,其特征在于,所述飞行信息包括飞行区域;所述处理器在实现所述根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器的环形航线以及所述拍摄装置的拍摄倾角时,用于实现:
    根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器在所述飞行区域中的环形航线以及所述拍摄装置的拍摄倾角。
  29. 根据权利要求28所述的飞行器,其特征在于,所述处理器在实现所述根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器在所述飞行区域中的环形航线以及所述拍摄装置的拍摄倾角时,用于实现:
    根据所述飞行高度确定飞行半径,以及根据所述飞行区域确定环绕中心;
    根据所述环绕中心和飞行半径计算环形航线;
    根据所述飞行高度和飞行半径计算所述拍摄装置的拍摄倾角。
  30. 根据权利要求28所述的飞行器,其特征在于,所述处理器在实现所述根据所述飞行高度、飞行半径以及环绕中心确定所述飞行器在所述飞行区域中的环形航线以及所述拍摄装置的拍摄倾角时,用于实现:
    获取所述拍摄装置的拍摄倾角,根据所述拍摄倾角和飞行高度计算飞行半径;
    根据所述飞行区域确定环绕中心,以及根据所述环绕中心和飞行半径计算环形航线。
  31. 根据权利要求29或30所述的飞行器,其特征在于,所述处理器在实现所述根据所述环绕中心和飞行半径计算环形航线时,用于实现:
    以所述环绕中心和飞行半径作圆或具有预设弧度的圆环确定环形航线,所述预设弧度大于或等于π。
  32. 根据权利要求31所述的飞行器,其特征在于,所述处理器在实现所述根据所述飞行区域确定环绕中心时,用于实现:
    确定所述飞行区域对应的外接边框以及所述外接边框的中心,将所述外接边框的中心作为环绕中心。
  33. 根据权利要求32所述的飞行器,其特征在于,所述外接边框包括:外接矩形、外接方形或外接圆。
  34. 根据权利要求29所述的飞行器,其特征在于,所述处理器在实现所述根据所述飞行高度确定飞行半径时,用于实现:选取所述飞行高度作为飞行半径。
  35. 根据权利要求34所述的飞行器,其特征在于,所述处理器在实现所述根据所述飞行高度和飞行半径计算所述拍摄装置的拍摄倾角时,用于实现:
    基于三角函数关系,根据所述飞行高度和飞行半径计算所述拍摄装置的拍摄倾角,得到所述拍摄倾角为45°。
  36. 根据权利要求30所述的飞行器,其特征在于,所述处理器在实现所述获取所述拍摄装置的拍摄倾角时,用于实现:
    获取用户预先设置的拍摄装置的倾斜角度作为拍摄倾角。
  37. 根据权利要求36所述的飞行器,其特征在于,所述倾斜角度为45°。
  38. 根据权利要求28所述的飞行器,其特征在于,所述处理器在实现所述根据所述拍摄倾角调整所述飞行器的拍摄装置并控制所述飞行器按照所述环形 航线飞行以拍摄倾斜影像之前,还用于实现:
    确定待拍摄倾斜影像对应的倾斜图像的图像数目,根据所述倾斜图像的图像数目确定每张倾斜图像在所述环形航线上对应的变化角度;
    所述处理器在实现所述根据所述拍摄倾角调整所述飞行器的拍摄装置并控制所述飞行器按照所述环形航线飞行以拍摄倾斜影像时,用于实现:
    调整所述拍摄装置的拍摄角度至所述拍摄倾角;以及
    控制所述飞行器按照所述环形航线飞行并根据所述变化角度控制所述拍摄装置拍摄倾斜图像以完成倾斜影像的拍摄。
  39. 根据权利要求38所述的飞行器,其特征在于,所述处理器在实现所述确定待拍摄的倾斜影像对应的倾斜图像的图像数目,根据所述倾斜图像的图像数目确定每张倾斜图像在所述环形航线对应的变化角度时,用于实现:
    获取拍摄正射影像对应的正射图像的图像数目;
    根据所述正射图像的图像数目确定待拍摄倾斜影像对应的倾斜图像的图像数目;
    根据确定的倾斜图像的图像数目和所述环形航线计算每张倾斜图像对应的变化角度。
  40. 根据权利要求39所述的飞行器,其特征在于,所述处理器在实现所述根据所述正射图像的图像数目确定待拍摄倾斜影像对应的倾斜图像的图像数目时,用于实现:
    基于正射图像的图像数目与倾斜图像的图像数目之间预设的对应关系,根据获取的正射图像的图像数目计算待拍摄倾斜影像对应的倾斜图像的图像数目。
  41. 根据权利要求40所述的飞行器,其特征在于,所述正射图像的图像数目与倾斜图像的图像数目之间预设的对应关系表示为:
    n=(5%~10%)*N
    其中,n为待拍摄倾斜影像对应的倾斜图像的图像数目,N为正射图像的图像数目。
  42. 根据权利要求41所述的飞行器,其特征在于,所述处理器在实现所述根据所述正射图像的图像数目确定待拍摄倾斜影像对应的倾斜图像的图像数目时,用于实现:
    根据所述正射图像的图像数目与预设数目阈值的大小关系,确定正射图像 的图像数目与倾斜图像的图像数目之间预设的等级对应关系,所述预设数目阈值用于判断拍摄的正射图像的图像数目大小;
    根据确定的等级对应关系确定待拍摄的倾斜影像对应的倾斜图像的图像数目。
  43. 根据权利要求26所述的飞行器,其特征在于,所述处理器在实现所述获取所述飞行器拍摄完所述正射影像对应的飞行信息时,用于实现:
    获取飞行器拍摄完正射影像对应的飞行航线信息,根据所述飞行航线信息确定所述飞行器的飞行区域。
  44. 根据权利要求26所述的飞行器,其特征在于,所述处理器在实现所述控制飞行器的拍摄装置拍摄正射影像之前,还用于实现:
    保留预设比例的电池电量,所述预设比例的电池电量用于拍摄倾斜影像。
  45. 根据权利要求44所述的飞行器,其特征在于,所述处理器在实现所述保留预设比例的电池电量时,用于实现:
    获取所述飞行器执行正射影像拍摄对应的作业航线以及飞行高度,根据所述飞行高度确定所述飞行器需拍摄倾斜影像对应的环形航线;
    根据所述环形航线和作业航线计算预设比例,保留所述预设比例的电池电量。
  46. 根据权利要求44所述的飞行器,其特征在于,所述预设比例用于实现5%、10%或者20%。
  47. 根据权利要求44所述的飞行器,其特征在于,所述处理器在实现保留预设比例的电池电量之前,还用于实现:
    获取航测请求,从而根据所述航测请求保留预设比例的电池电量,所述航测请求为根据用户选择的倾斜影像拍摄功能而生成的请求。
  48. 根据权利要求47所述的飞行器,其特征在于,所述处理器在实现所述获取航测请求时,用于实现:
    接收控制终端发送的航测请求,所述航测请求为所述控制终端根据用户选择的倾斜影像拍摄功能而生成的请求。
  49. 根据权利要求26所述的飞行器,其特征在于,所述处理器在实现所述根据所述飞行高度、飞行半径以及环绕中心控制所述飞行器的飞行以及所述拍摄装置的朝向以拍摄倾斜影像之后,还用于实现:
    保存所述正射影像和倾斜影像。
  50. 根据权利要求26所述的飞行器,其特征在于,所述处理器,还用于实现:
    将所述正射影像和倾斜影像发送至处理终端,以使所述处理终端根据所述正射影像和倾斜影像确定航测参数。
  51. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1至25中任一项所述的航测方法。
PCT/CN2019/088321 2019-05-24 2019-05-24 航测方法、飞行器及存储介质 WO2020237422A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980012284.7A CN111712687B (zh) 2019-05-24 2019-05-24 航测方法、飞行器及存储介质
PCT/CN2019/088321 WO2020237422A1 (zh) 2019-05-24 2019-05-24 航测方法、飞行器及存储介质
US17/529,000 US20220074743A1 (en) 2019-05-24 2021-11-17 Aerial survey method, aircraft, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/088321 WO2020237422A1 (zh) 2019-05-24 2019-05-24 航测方法、飞行器及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/529,000 Continuation US20220074743A1 (en) 2019-05-24 2021-11-17 Aerial survey method, aircraft, and storage medium

Publications (1)

Publication Number Publication Date
WO2020237422A1 true WO2020237422A1 (zh) 2020-12-03

Family

ID=72536676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088321 WO2020237422A1 (zh) 2019-05-24 2019-05-24 航测方法、飞行器及存储介质

Country Status (3)

Country Link
US (1) US20220074743A1 (zh)
CN (1) CN111712687B (zh)
WO (1) WO2020237422A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112698661A (zh) * 2021-03-22 2021-04-23 成都睿铂科技有限责任公司 一种飞行器的航测数据采集方法、装置、系统及存储介质
CN115014361A (zh) * 2022-08-08 2022-09-06 成都睿铂科技有限责任公司 航线规划方法、装置及计算机存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112148033A (zh) * 2020-10-22 2020-12-29 广州极飞科技有限公司 无人机航线的确定方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204854730U (zh) * 2015-06-23 2015-12-09 赵国梁 一种多角度无人航测系统
CN106249751A (zh) * 2016-08-01 2016-12-21 广州优飞信息科技有限公司 一种倾斜三维航测数据的采集系统、采集方法及控制终端
CN106791634A (zh) * 2016-12-14 2017-05-31 天津文康科技有限公司 一种基于光机电一体化的无人机拍摄全景图的方法及装置
CN107356230A (zh) * 2017-07-12 2017-11-17 深圳市武测空间信息有限公司 一种基于实景三维模型的数字测图方法和系统
CN108871288A (zh) * 2018-06-01 2018-11-23 广州中科云图智能科技有限公司 一种无人机带状倾斜影像航测方法及系统
KR20180131932A (ko) * 2017-06-01 2018-12-11 충남대학교산학협력단 드론과 공간정보를 이용한 하천지형정보 생성 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204854730U (zh) * 2015-06-23 2015-12-09 赵国梁 一种多角度无人航测系统
CN106249751A (zh) * 2016-08-01 2016-12-21 广州优飞信息科技有限公司 一种倾斜三维航测数据的采集系统、采集方法及控制终端
CN106791634A (zh) * 2016-12-14 2017-05-31 天津文康科技有限公司 一种基于光机电一体化的无人机拍摄全景图的方法及装置
KR20180131932A (ko) * 2017-06-01 2018-12-11 충남대학교산학협력단 드론과 공간정보를 이용한 하천지형정보 생성 방법
CN107356230A (zh) * 2017-07-12 2017-11-17 深圳市武测空间信息有限公司 一种基于实景三维模型的数字测图方法和系统
CN108871288A (zh) * 2018-06-01 2018-11-23 广州中科云图智能科技有限公司 一种无人机带状倾斜影像航测方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112698661A (zh) * 2021-03-22 2021-04-23 成都睿铂科技有限责任公司 一种飞行器的航测数据采集方法、装置、系统及存储介质
CN115014361A (zh) * 2022-08-08 2022-09-06 成都睿铂科技有限责任公司 航线规划方法、装置及计算机存储介质
CN115014361B (zh) * 2022-08-08 2022-11-01 成都睿铂科技有限责任公司 航线规划方法、装置及计算机存储介质

Also Published As

Publication number Publication date
CN111712687B (zh) 2022-05-20
CN111712687A (zh) 2020-09-25
US20220074743A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
CN109387186B (zh) 测绘信息获取方法、装置、电子设备及存储介质
WO2020014909A1 (zh) 拍摄方法、装置和无人机
WO2019113966A1 (zh) 一种避障方法、装置和无人机
WO2020102927A1 (zh) 拍摄方法和无人机
US20220074743A1 (en) Aerial survey method, aircraft, and storage medium
WO2018120350A1 (zh) 对无人机进行定位的方法及装置
WO2021016897A1 (zh) 航测方法、拍摄控制方法、飞行器、终端、系统及存储介质
US20200218289A1 (en) Information processing apparatus, aerial photography path generation method, program and recording medium
TWI649721B (zh) 無人飛行機之全景拍照方法與使用其之無人飛行機
WO2018120351A1 (zh) 一种对无人机进行定位的方法及装置
WO2020211813A1 (zh) 立面环绕飞行的控制方法、装置、终端及存储介质
WO2017181513A1 (zh) 无人机的飞行控制方法和装置
KR102195051B1 (ko) 드론의 영상 정보를 이용한 공간 정보 생성 시스템 및 방법과, 이를 위한 컴퓨터 프로그램
JPWO2018198634A1 (ja) 情報処理装置、情報処理方法、情報処理プログラム、画像処理装置および画像処理システム
WO2022011623A1 (zh) 拍摄控制方法和装置、无人机及计算机可读存储介质
US20210201534A1 (en) Method and device for parameter processing for camera and image processing device
WO2020052207A1 (zh) 测量天线工程参数的方法和装置
JP6265576B1 (ja) 撮像制御装置、影位置特定装置、撮像システム、移動体、撮像制御方法、影位置特定方法、及びプログラム
WO2020019175A1 (zh) 图像处理方法和设备、摄像装置以及无人机
CN113791640A (zh) 一种图像获取方法、装置、飞行器和存储介质
US20230359204A1 (en) Flight control method, video editing method, device, uav and storage medium
WO2021056411A1 (zh) 航线调整方法、地面端设备、无人机、系统和存储介质
WO2021051220A1 (zh) 一种点云融合方法、设备、系统及存储介质
WO2021016867A1 (zh) 终端设备及其数据处理方法、无人机及其控制方法
WO2020119572A1 (zh) 形状推断装置、形状推断方法、程序以及记录介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931360

Country of ref document: EP

Kind code of ref document: A1