WO2020102927A1 - 拍摄方法和无人机 - Google Patents

拍摄方法和无人机

Info

Publication number
WO2020102927A1
WO2020102927A1 PCT/CN2018/116129 CN2018116129W WO2020102927A1 WO 2020102927 A1 WO2020102927 A1 WO 2020102927A1 CN 2018116129 W CN2018116129 W CN 2018116129W WO 2020102927 A1 WO2020102927 A1 WO 2020102927A1
Authority
WO
WIPO (PCT)
Prior art keywords
shooting
drone
gimbal
preset
point
Prior art date
Application number
PCT/CN2018/116129
Other languages
English (en)
French (fr)
Inventor
于松周
赵开勇
蒋元庆
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880039288.XA priority Critical patent/CN110771141B/zh
Priority to CN202210238368.6A priority patent/CN114679540A/zh
Priority to PCT/CN2018/116129 priority patent/WO2020102927A1/zh
Publication of WO2020102927A1 publication Critical patent/WO2020102927A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the invention relates to the field of image acquisition, in particular to a shooting method and a drone.
  • the oblique photography technology is to carry multiple shooting devices on the drone and collect images from a vertical and four side-viewing different angles at the same time. Compared with traditional photography, there are four more oblique shooting angles, which can obtain a richer side texture And other information.
  • multiple shooting devices are combined, and then the combined multi-split shooting device (such as a 5-split shooting device) is installed on the drone.
  • the multi-camera shooting device requires multiple independent shooting device systems, and has the disadvantages of high cost and heavy weight.
  • due to the heavy weight of the multi-camera shooting device it needs to be mounted on a large-volume unmanned aerial vehicle to operate smoothly, which leads to many problems such as high cost of use, complicated installation and transportation.
  • the drone can also use a shooting device with only one lens for multi-angle shooting. After the drone moves to the shooting point and stops at the shooting point, the shooting device is then controlled to shoot from different angles. Taking a shooting device with only one lens as an example, after the drone reaches the shooting point and stops, control the shooting device to adjust the attitude to achieve shooting at 5 shooting angles; then control the drone to reach the next shooting point and stabilize After that, the shooting device is controlled to adjust the posture to achieve shooting at 5 shooting angles, but using this shooting mode will result in low shooting efficiency and cannot meet the demand.
  • the invention provides a shooting method and a drone.
  • a photographing method comprising:
  • the gimbal on the drone is controlled to switch the posture so that the shooting device on the gimbal is preset at each shooting point attitude;
  • multiple consecutive shooting points form a queue
  • adjacent queues have at least one shooting point with the same preset posture.
  • a drone including a fuselage, a gimbal, a shooting device and a processor, the shooting device is mounted on the fuselage through the gimbal, the gimbal and The shooting device is electrically connected to the processor; the processor is used to:
  • the gimbal on the drone is controlled to switch the posture so that the shooting device on the gimbal is preset at each shooting point attitude;
  • multiple consecutive shooting points form a queue
  • adjacent queues have at least one shooting point with the same preset posture.
  • the gimbal mounted with the shooting device is controlled to switch the attitude so that the shooting device shoots at each shooting The point is in the preset posture and the shooting is performed.
  • the shooting process does not need to stop the drone flight, which improves the shooting efficiency, and is particularly suitable for map mapping; and, the shooting method of the embodiment of the present invention can control a shooting device through a cloud platform
  • the drone of the present invention is greatly reduced in weight, so that a drone with a smaller volume and weight can be selected to carry the shooting device, which reduces the use cost.
  • FIG. 1 is a schematic structural diagram of a drone in an embodiment of the present invention
  • FIG. 2 is a method flowchart of a shooting method in an embodiment of the invention
  • FIG. 3 is a schematic diagram of the attitude switching of the gimbal in an embodiment of the present invention.
  • FIG. 5 is another comparison diagram of images captured by a drone in related technologies at different shooting points in the same preset attitude
  • FIG. 6 is a structural block diagram of an unmanned aerial vehicle in an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a drone in an embodiment of the present invention.
  • an unmanned aerial vehicle may include a fuselage 100, a camera 200 and a gimbal 300.
  • the camera 200 is mounted on the fuselage 100 through the gimbal 300.
  • the drone can be a fixed-wing drone or a multi-rotor drone. The type of drone can be selected according to actual needs.
  • the weight of the gimbal 300 and the shooting device 200 is relatively large, choose a fixed-wing UAV with a larger volume and weight to carry the gimbal 300 and the camera 200; when the gimbal 300 and the camera 200 have a smaller weight, you can choose a multi-rotor UAV with a smaller volume and weight to carry the cloud ⁇ 300 ⁇ ⁇ ⁇ 200 ⁇
  • the camera 300 and the camera 200 may be an integrated camera, or a device composed of an image sensor and a lens.
  • the gimbal 300 in this embodiment may be a two-axis gimbal or a three-axis gimbal.
  • the drone can be used in the field of surveying and mapping.
  • the ground image is collected by the camera 200 mounted on the drone, and then the software is used to reconstruct the ground image in 3D or 2D maps.
  • the reconstructed map can be used to check line faults; in the field of road planning, the reconstructed map can be used to select the road; the drug police can use the reconstructed three-dimensional map to check the deep mountains Of poppy cultivation, etc.
  • the UAV is not limited to the field of surveying and mapping, but can also be applied to other fields that need to obtain multi-directional feature information of the subject.
  • the subject is not limited to the ground, but can also be large buildings, mountains, etc.
  • fixed-wing UAVs are generally rarely equipped with a gimbal. This is because in the field of surveying and mapping, the requirements for the pixels of the shooting device are relatively high, such as higher than 20 million pixels. Increase, if the shooting device is mounted on the fixed-wing UAV through the gimbal, it will not only have high requirements on the volume and carrying weight of the gimbal, but will also lead to a larger overall size of the fixed-wing UAV.
  • the present invention when using fixed-wing drones to shoot, the present invention only needs to use one shooting device.
  • the shooting device has large pixels, the volume and weight of the relatively multiple shooting devices are greatly reduced, thereby greatly reducing the fixed The weight and dimensions of a wing drone.
  • fixed-wing drones compared with multi-rotor drones, fixed-wing drones have a long voyage range, usually 5 to 10 times that of multi-rotor drones, and are more friendly to shooting applications such as surveying and mapping.
  • the present invention is described by taking a fixed-wing UAV equipped with a pan-tilt head and a shooting device as an example for description.
  • the present invention controls the gimbal on the drone to switch the attitude during one flight of the drone, so as to achieve shooting at multiple shooting angles, thereby eliminating the need for repeated cruises of the route, which is not only conducive to improving shooting Efficiency also helps reduce the energy consumption of drones.
  • the shooting method in this embodiment may include the following steps:
  • Step S201 Control the drone to fly according to a preset route, where the preset route includes multiple waypoints, and a shooting point and / or some or all of the multiple waypoints are set as shooting points between adjacent waypoints;
  • the preset route is preset by the user.
  • the user inputs the position information of each waypoint into the drone through a terminal or a remote control device, and the waypoints may be connected in sequence according to the input order to form the above-mentioned preset route.
  • the position information of some waypoints in the set route can be modified by operating the terminal or the remote control device.
  • the steps to modify the position information of some waypoints in the set route can be performed before the drone flight or during the drone flight.
  • the position setting relationship between the waypoint and the shooting point can be selected according to needs. For example, in one embodiment, one or more shooting points are provided between adjacent waypoints. In another embodiment, a part of the multiple waypoints is used as a shooting point, and a shooting point may be set between adjacent waypoints or not. In yet another embodiment, all the waypoints are used as shooting points, and the shooting points may be set between adjacent waypoints or not. It can be understood that one shooting point has one shooting, which corresponds to one gimbal posture, and one shot image is obtained.
  • the control of the drone according to the preset route in this embodiment specifically includes: controlling the real-time height between the lens of the shooting device 200 and the subject to be within the preset height range.
  • GSD Ground Sampling Distance, ground sampling interval
  • the ascent and descent heights are limited, so the fixed-wing UAV can only be controlled to rise or fall within the range of the ascending or descending height of the fixed-wing UAV to maintain the GSD as much as possible Consistent.
  • controlling the real-time height between the lens of the shooting device 200 and the subject to be within the preset height range it may specifically be: controlling the real-time height between the drone and the subject to be within the preset height range; or To control the real-time height between the shooting device 200 and the subject within a preset range; or, to control the attitude of the gimbal so that the real-time height between the lens of the shooting device 200 and the subject is within the preset height range.
  • controlling the real-time height between the lens of the shooting device 200 and the subject to be within the preset height range it may specifically be: controlling the real-time height between the drone and the subject to be within the preset height range; or To control the real-time height between the shooting device 200 and the subject within a preset range; or, to control the attitude of the gimbal so that the real-time height between the lens of the shooting device 200 and the subject is within the preset height range.
  • Step S202 During the process of the drone flying from the current shooting point to the next shooting point, the gimbal 300 on the drone is controlled to switch the posture so that the shooting device 200 on the gimbal 300 is preset at each shooting point attitude;
  • a plurality of consecutive shooting points form a queue, and adjacent queues have at least one shooting point with the same preset posture.
  • the composition of the queue can be selected according to needs. For example, in a specific embodiment, there are shooting points between adjacent waypoints, and each waypoint is also used as a shooting point. Point A, waypoint B, waypoint C, the flight time of waypoint A is before the flight time of waypoint B, the flight time of waypoint B is before the flight time of waypoint C, between waypoint A and waypoint B There are one or more shooting points, and there are also one or more shooting points between waypoints B and C. Waypoint A, waypoint B, and waypoint C are also shooting points. In this embodiment, waypoint A One or more shooting points between waypoint A and waypoint B constitute a queue, one or more shooting points between waypoint B, waypoint B and waypoint C constitute a queue, and so on. Optionally, the shooting points between adjacent waypoints may include 1, 2, 3, 4 or more. In another specific embodiment, the number of shooting points of each queue is equal, and the shooting points of each queue may be determined according to the number of shooting points and the initial shooting points.
  • each queue may have the same number of shooting points, or may have a different number of shooting points.
  • the number of shooting points of each queue is selected according to the shooting requirements.
  • the preset postures corresponding to the multiple shooting points in each queue are different, and the shooting device 200 can shoot in different preset postures at different shooting points, for example, in a specific embodiment
  • Each queue includes 5 shooting points, 5 shooting points corresponding to 5 different preset postures, and the shooting device 200 can shoot in 5 directions at 5 shooting points.
  • the preset postures corresponding to some of the shooting points in each queue are the same, and the shooting device 200 shoots with the same preset postures at some of the shooting points.
  • the preset posture can be set according to actual needs.
  • the preset posture can include: the shooting direction of the shooting device 200 is vertically downward (the shooting device 200 is used to shoot a bottom view of a subject), and the shooting direction of the shooting device 200 is relatively vertical Tilt in a straight direction and face the front of the drone (the camera 200 is used to shoot the front view of the subject), the shooting direction of the camera 200 is inclined relative to the vertical direction and toward the left side of the drone (the camera 200 is used for Shooting the left view of the subject), the shooting direction of the shooting device 200 is inclined relative to the vertical direction and toward the rear of the drone (the shooting device 200 is used to shoot the rear view of the subject), the shooting direction of the shooting device 200 is relatively vertical Inclined and facing the right direction of the drone (the camera 200 is used to shoot the right view of the subject) or other postures, this embodiment will not be described one by one.
  • the vertical shooting direction of the camera 200 is called forward shooting, and the shooting direction of the camera 200 is inclined relative to the vertical direction to form an oblique shot.
  • the angle at which the shooting direction of the shooting device 200 is inclined with respect to the vertical direction can be set as required.
  • the angle in which the shooting direction of the shooting device 200 is inclined with respect to the vertical direction is greater than 0 ° and less than 90 °, such as 10 °, 20 °, 30 °, 45 °, and so on.
  • each queue includes the following preset posture: the shooting direction of the shooting device 200 is vertically downward, so that adjacent queues have at least one shooting point with the same preset posture.
  • the preset posture may further include the preset posture corresponding to the oblique shot exemplified in the foregoing embodiment, and the image obtained by the oblique shot is used as the reference image of the image obtained by taking the positive shot.
  • the same preset postures in adjacent queues can also select other postures as exemplified in the above-mentioned embodiments.
  • each queue includes 5 shooting points, namely shooting point 1, shooting point 2, shooting point 3, shooting point 4, and shooting point 5, and the corresponding preset postures are:
  • the shooting direction is vertically downward
  • the shooting direction of the shooting device 200 is inclined relative to the vertical direction and toward the rear of the drone
  • the shooting direction of the shooting device 200 is inclined relative to the vertical direction and toward the left direction of the drone
  • the shooting device 200 The shooting direction of is inclined with respect to the vertical direction and toward the front of the drone and the shooting direction of the shooting device 200 is inclined with respect to the vertical direction and toward the right direction of the drone.
  • the shooting sequence of the shooting points in a queue is: shooting point 1-> shooting point 2-> shooting point 3-> shooting point 4-> shooting point 5.
  • the shooting point 1 is the current waypoint of the drone, and the shooting point 2, the shooting point 3, the shooting point 4 and the shooting point 5 are located between the current waypoint and the next waypoint.
  • the gimbal attitude is controlled so that the shooting direction of the shooting device 200 is vertically downward, and the shooting direction of the shooting device 200
  • the intersection of the center axis of the lens and the ground is A; when the drone is flying from the current waypoint to the shooting point 2, the gimbal attitude is controlled so that the shooting direction of the shooting device 200 is inclined with respect to the vertical direction and toward the rear of the drone, The intersection point of the center axis of the lens of the shooting device 200 and the ground is B; when the drone flies from the current waypoint to the shooting point 3, the attitude of the gimbal is controlled so that the shooting direction of the shooting device 200 is tilted relative to the vertical direction and faces no one In the left direction of the camera, the intersection point of the center axis of the lens of the shooting device 200 and the ground is C; when the drone flies from the current waypoint to the shooting point 4, the attitude
  • the flight sequence of the drone at each shooting point includes: the shooting point of the current queue 5-> the shooting point of the next queue 1-> the shooting point of the next queue 2-> the shooting point of the next queue 3 -> Next shooting point 4-> Next shooting point 5.
  • the preset postures corresponding to shooting point 1, shooting point 2, shooting point 3, shooting point 4, and shooting point 5 can also be changed as needed, for example, shooting point 1, shooting point 2, shooting point 3 .
  • the preset postures corresponding to the shooting point 4 and the shooting point 5 are respectively: the shooting direction of the shooting device 200 is inclined with respect to the vertical direction and toward the rear of the drone, and the shooting direction of the shooting device 200 is inclined with respect to the vertical direction and toward the unmanned The left side of the camera, the shooting direction of the camera 200 is inclined with respect to the vertical direction and toward the front of the drone, the shooting direction of the camera 200 is inclined with respect to the vertical direction and is facing the right direction of the drone and the direction of the camera 200 The shooting direction is straight down.
  • the preset posture portions corresponding to multiple shooting points in the adjacent queue are the same, so as to alleviate the conflict between the image storage speed and the flying speed of the drone.
  • the preset postures corresponding to the multiple shooting points of one queue in the adjacent queue include: the shooting direction of the shooting device 200 is vertically downward, and the shooting direction of the shooting device 200 is inclined and toward the vertical direction The front of the drone and the shooting direction of the shooting device 200 are inclined with respect to the vertical direction and face the rear of the drone.
  • the preset gestures corresponding to the multiple shooting points of another queue in the adjacent queue include: the shooting direction of the shooting device 200 is vertically downward, and the shooting direction of the shooting device 200 is inclined relative to the vertical direction and toward the left side of the drone The direction, the shooting direction of the shooting device 200 is inclined with respect to the vertical direction and faces the right direction of the drone.
  • the preset route has adjacent waypoint A, waypoint B and waypoint C.
  • the flight time of waypoint A is before the flight time of waypoint B, and the flight time of waypoint B is at the waypoint C
  • the shooting direction of the shooting device 200 is controlled to be vertically downward, and the preset postures of the two shooting points between the waypoint A and the waypoint B are respectively the shooting direction of the shooting device 200 relative to the vertical direction It is tilted toward the front of the drone, and the shooting direction of the camera 200 is tilted relative to the vertical direction and toward the rear of the drone.
  • the shooting direction of the shooting device 200 is controlled to be vertically downward, and the preset postures of the two shooting points between the waypoint B and the waypoint C are respectively the shooting direction of the shooting device 200 is inclined relative to the vertical direction Moreover, the left side of the drone and the shooting direction of the camera 200 are inclined with respect to the vertical direction and toward the right side of the drone.
  • one positive shot can be taken at each waypoint, and two or four oblique shots can be taken between each adjacent waypoint, so as to be between 3 consecutive waypoints or 2 consecutive Between the waypoints, you get a positive shot and an oblique shot in four directions: forward, backward, left, and right.
  • the degree of overlap between the images obtained by the normal shooting is mainly investigated, and the image obtained by the oblique shooting is used as the reference image of the image obtained by the normal shooting.
  • two oblique shots are taken between each adjacent waypoint.
  • the image obtained by oblique shot can still be used as a reference image for the image obtained by normal shot , And because the number of images taken between adjacent waypoints is reduced, the number of images to be stored is also reduced, thereby helping to alleviate the conflict between the image storage speed and the drone ’s flight speed, for example, when the drone is flying When the speed is too fast, and the image storage speed is too slow, too many images to be stored may cause loss.
  • the shooting device 200 is controlled to shoot at a fixed time interval, but for a fixed-wing UAV, it will encounter a downwind and upwind flight environment, resulting in a change in the actual flight speed of the fixed-wing UAV, which As a result, the overlapping degree of the images captured by the camera 200 at adjacent shooting points may be different.
  • the photos taken by the traveling route need to ensure a certain degree of overlap. Taking the positive photo taken as an example, as shown in FIG.
  • the shooting point 1 corresponds to the positive shot of the shooting device 200 in the queue 1
  • the shooting point 2 is the shooting point corresponding to the positive shooting of the camera 200 in the queue 2
  • the shooting point 3 is the shooting point corresponding to the positive shooting of the camera 200 in the queue 3, and so on. Since the shooting point 1 and the shooting point 2 are on the same vertical (vertical direction of the image shown in FIG. 4) route, the image captured by the shooting device 200 at the shooting point 1 and the image captured by the shooting device 200 at the shooting point 2 are The vertical overlap ratio is called the heading overlap.
  • the shooting point 1 and the shooting point 12 are respectively on two adjacent vertical routes.
  • the overlapping ratio of the image taken by the shooting device 200 at the shooting point 1 and the image taken by the shooting device 200 at the shooting point 12 in the vertical direction is called Is the degree of lateral overlap.
  • the distance between adjacent shooting points is a fixed distance, and it is easy to determine a new shooting point, and because the distance between adjacent shooting points is a fixed distance, the two adjacent
  • the spacing between the shooting points corresponding to the same preset posture is also the same, which ensures that the overlapping degree of the images shot by the shooting device 200 in the same orientation is basically the same.
  • the distance between two adjacent shooting points corresponding to the same preset posture is the same, which ensures that the overlapping degree of the images shot by the shooting device 200 in the same direction is basically the same.
  • the positions of multiple shooting points are predetermined, that is, the position information of each shooting point is stored in advance before the drone flies.
  • the position of a part of the plurality of shooting points is predetermined, and the position of the other part of the shooting point is determined during the flight of the drone.
  • some or all of the waypoints can be determined as shooting points, and then the other can be determined during the flight of the drone based on the position information of the waypoint and the spacing between adjacent shooting points and / or the number of shooting points, etc. The location of the shooting point.
  • multiple shooting points are determined during the drone flight, for example, during the drone flight, the drone is triggered by the terminal or remote control device to determine the initial shooting point, and then based on the initial shooting The location information of points, the distance between adjacent shooting points and / or the number of shooting points, etc. determine the positions of other shooting points during the flight of the drone.
  • the flight information of the drone and / or the shooting information of the shooting device 200 need to be obtained; and according to the flight information and / or the shooting information, a new shooting point of the shooting device 200 is determined.
  • the flight information may include at least one of the flying distance of the drone on the preset route, the flying distance from the drone to the previous shooting point, and the current position of the drone; the shooting information includes the current number of shots or at least one Location information of the shooting point.
  • the The current position is determined as a new shooting point of the shooting device 200.
  • the distance between the current position of the drone and the previous shooting point can be determined according to flight information and / or shooting information.
  • the flying distance from the drone to the previous shooting point is the drone The distance from the current position of to the previous shooting point.
  • the distance between two adjacent shooting points is a fixed value.
  • the drone can be set on the preset route The flight distance, the current number of shots and the distance between two adjacent shooting points to determine the position information of the last shooting point; then according to the position information of the last shooting point and the current position of the drone, determine no one The distance between the current position of the camera and the previous shooting point.
  • the distance between two adjacent shooting points is a fixed value
  • the distance between two adjacent shooting points is a fixed value
  • it can be based on the drone Determine the position information of the previous shooting point based on the flight distance on the preset route, the position information of the initial shooting point and the distance between two adjacent shooting points; then according to the position information of the previous shooting point and the drone The current position of, determines the distance between the current position of the drone and the previous shooting point.
  • the current position information of the drone can be obtained by the positioning module on the drone.
  • the positioning module can be a GPS positioning module, or other types of positioning modules, such as an RTK positioning module.
  • the initial shooting point needs to be determined.
  • the initial shooting point may be determined in various ways.
  • the initial shooting point is: the initial flight position of the drone.
  • the initial shooting point is: the position of the drone when a trigger instruction for instructing the shooting device 200 to shoot an image is received.
  • the trigger command can be sent by the terminal that controls the drone, or by the remote control device of the drone.
  • the initial shooting point is: the initial waypoint of the preset route.
  • one of the above embodiments may be selected as needed to determine the initial shooting point. It can be understood that the method for determining the initial shooting point is not limited to the above-mentioned several methods, and other methods may be used to determine the initial shooting point.
  • the control method of the gimbal attitude switching can be selected according to the type of the gimbal 300.
  • the gimbal 300 is configured to move around the yaw axis, the roll axis, and the pitch axis.
  • one or more of the roll axis attitude, the pitch axis attitude, and the yaw axis attitude of the gimbal 300 may be controlled to switch the gimbal attitude.
  • the yaw axis of the gimbal cannot rotate around the entire circumference, so the attitude of the yaw axis of the gimbal will not be used to control the camera 200 to be in multiple preset poses in each queue, so in one embodiment, the control The roll axis attitude and the pitch axis attitude of the gimbal 300 are used to control the gimbal 300 to switch the attitude.
  • the yaw axis of the gimbal 300 can rotate around the entire circumference (360 °), and the attitude of the yaw axis of the gimbal 300 can be controlled to control the gimbal 300 to switch the attitude.
  • the gimbal 300 on the drone is controlled to switch the posture so that the shooting device 200 on the gimbal 300 is in the preset posture at each shooting point. Specifically, it includes: acquiring the real-time posture of the drone; determining the drone The first deviation between the real-time posture of the camera and the preset posture corresponding to the next shooting point, and the gimbal 300 on the drone is controlled to switch the posture according to the first deviation, so that the shooting device 200 on the gimbal 300 at each shooting point In a preset pose.
  • the overlapping degree of the images taken at different shooting points with the same preset attitude is greatly affected by the posture of the fuselage, sometimes the overlap degree is increased, and sometimes the overlapping degree is reduced, resulting in the shooting device shooting at different shooting points with the same preset attitude
  • the overlap between the images is uneven.
  • the shooting device of this embodiment is mounted on the fuselage 100 of the drone through the gimbal 300.
  • the posture of the gimbal 300 can be controlled so that the shooting device 200 is in the same preset posture
  • the relative positions of the different shooting points remain unchanged, and the change of the posture of the body 100 does not have any effect on the shooting of the shooting device 200, ensuring that the overlapping degree of the images shot by the shooting device 200 at different shooting points with the same preset attitude is uniform.
  • the gimbal 300 on the drone is controlled to switch the attitude according to the first deviation, so that the camera 200 on the gimbal 300 obtains the camera 200 on the gimbal 300 before each shooting point is in the preset attitude
  • the gimbal 300 on the drone is controlled to switch the attitude according to the first deviation, so that the shooting device 200 on the gimbal 300 is in a preset attitude at each shooting point.
  • it includes: according to the first deviation and the second deviation
  • the gimbal 300 on the drone is controlled to switch the posture so that the shooting device 200 on the gimbal 300 is in a preset posture at each shooting point.
  • the second deviation of this embodiment is within the preset deviation range, so that when the crosswind prevents the head of the drone from being aligned with the current direction of the preset route, the shooting device 200 can still be aligned with the current direction of the preset route ,
  • the image captured by the camera 200 will not be twisted in the yaw axis as in the shooting point 12 in FIG. 5, or the twist of the image captured by the camera 200 in the yaw axis will be reduced to ensure that the cameras are in the same
  • the overlapping degree of the images taken at different shooting points with preset poses is as consistent as possible.
  • the gimbal 300 on the drone is controlled to switch the attitude according to the first deviation and the second deviation, so that the shooting device 200 on the gimbal 300 is in the preset attitude at each shooting point, and the second deviation is in the preset deviation
  • the shooting direction of the shooting device 200 is vertically downward, as far as possible to ensure that the current direction of the preset course can be as far as possible in the center area of the lens field of view, to ensure that the shooting device shoots at the same preset attitude at different shooting points
  • the overlap of the images is as consistent as possible.
  • the preset deviation range is determined according to the degree of heading overlap and the degree of lateral overlap between images captured by the camera 200 in the same preset attitude; wherein the heading overlap is greater than or equal to the first preset overlap
  • the threshold, the lateral overlap degree is greater than or equal to the second preset overlap degree threshold.
  • the first preset overlap threshold and the second preset overlap threshold can be set according to needs. For example, in an embodiment, the first preset threshold is 80% and the second preset overlap degree threshold is 70%.
  • Step S203 Acquire images captured by the shooting device 200 at each shooting point.
  • the image of each shooting point acquired by the shooting device is stored in an SD card, and the storage rate of the SD card is generally 30MB / s, while the size of each image shot by the shooting device is generally 10M or even larger.
  • the duration of the drone flying from the current shooting point to the next shooting point is usually small, while for fixed-wing UAVs, flying from the current shooting point to The duration of the next shooting point is even smaller.
  • the SD card may be too late to store the image taken by the shooting device at the current shooting point, resulting in the loss of the image.
  • the image can be stored in the solid state drive SSD, and the storage rate of the SSD is large, ensuring that the drone can transfer the current drone from the current shooting point to the next shooting point.
  • the image captured by the shooting device 200 at the current shooting point is stored.
  • the SSD stores the image captured by the shooting device 200 at the current shooting point.
  • the storage rate of the SSD is greater than or equal to 150 MB / s, for example, 160MB / s, 170MB / s, 180MB / s, 190MB / s, 200MB / s, etc.
  • step S203 is executed.
  • the gimbal 300 is stabilized before controlling The imaging device 200 performs imaging to ensure that the image captured by the imaging device 200 at each imaging point is stable.
  • the geographic coordinate system refers to the take-off point of the drone as the origin, the direction of the take-off point to the center of the earth as the first coordinate axis, and the direction of the take-off point to the north as the second
  • the coordinate axis is a coordinate system established with the direction of the take-off point pointing east as the third coordinate axis.
  • the image obtained after the operation of the drone can be reconstructed by 3D modeling software (such as pix4d, smart 3d) to obtain a 3D model of the subject.
  • 3D modeling software such as pix4d, smart 3d
  • This 3D model is often used in urban planning, geological disaster surveys, and power inspections And other fields of surveying and mapping.
  • the accuracy of the three-dimensional modeling is affected by the accuracy of the position information at the time the camera 200 takes the image, the accuracy of the attitude control of the camera 200, the distortion of the lens, and the degree of overlap between the images taken by the camera 200 at the same preset attitude.
  • the accuracy of the three-dimensional modeling can be ensured by controlling the accuracy of the above parameters.
  • the gimbal 300 equipped with the shooting device 200 is controlled to switch the posture so that the shooting device 200 is in a preset posture at each shooting point and shoots,
  • the shooting process does not need to stop the drone flight, which improves the shooting efficiency, and is particularly suitable for map surveying; and the shooting method of the embodiment of the present invention can be achieved by controlling one shooting device 200 through the gimbal 300, which is more than the traditional one.
  • the weight of the drone of the present invention is greatly reduced, so that a drone with a smaller volume and weight can be selected to carry the shooting device 200, which reduces the use cost.
  • An embodiment of the present invention also provides a drone.
  • the drone further includes a processor 400, wherein the gimbal 300 and the shooting device 200 are electrically connected to the processor 400, respectively, and the processor 400 in this embodiment Used to execute the shooting control method as shown in FIG. 2.
  • the processor 400 is used to: control the drone to fly according to a preset route; during the process of the drone flying from the current shooting point to the next shooting point, control the gimbal 300 on the drone to switch the attitude,
  • the shooting device 200 on the gimbal 300 is in a preset posture at each shooting point; the image captured by the shooting device 200 at each shooting point is acquired; in this embodiment, the preset route includes multiple waypoints A shooting point and / or some or all of the multiple waypoints are set as shooting points between adjacent waypoints.
  • a plurality of consecutive shooting points form a queue, and adjacent queues have at least one shooting point with the same preset attitude.
  • the processor 400 may be a combination of one or more of a flight controller, a pan-tilt processor, and a processor of the camera 200, and may also be other controllers provided on the drone or include Other controllers used on drones.
  • the processor 400 of this embodiment may be a central processing unit (central processing unit, CPU).
  • the processor 400 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field programmable gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL), or any combination thereof.
  • an embodiment of the present invention further provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by the processor 400, the steps of the shooting method described in the above embodiments are implemented.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Abstract

一种拍摄方法和无人机,所述方法包括:控制无人机按照预设航线飞行,预设航线包括多个航点,相邻航点之间设有拍摄点和/或多个航点中的部分或全部作为拍摄点;在无人机从当前拍摄点飞向下一拍摄点的过程中,控制无人机上的云台(300)切换姿态,使得云台(300)上的拍摄装置(200)在每一拍摄点均处于预设姿态;获取拍摄装置(200)在每一拍摄点所拍摄的图像;多个连续的拍摄点形成一队列,相邻队列至少具有一预设姿态相同的拍摄点。在拍摄过程无需停止无人机飞行,提高了拍摄效率,特别适用于地图测绘上;该拍摄方法通过云台(300)控制一台拍摄装置(200)即可实现,相比传统的多拼拍摄装置,拍摄系统重量大大减轻,故可选择体积和重量较轻的无人机来搭载拍摄装置,降低了使用成本。

Description

拍摄方法和无人机 技术领域
本发明涉及图像采集领域,尤其涉及一种拍摄方法和无人机。
背景技术
倾斜摄影技术是通过在无人机上搭载多台拍摄装置,同时从一个垂直以及四个侧视不同角度采集图像,相比传统摄影多了四个倾斜拍摄角度,从而能够获取到更加丰富的侧面纹理等信息。为实现多个方位的拍摄,相关技术中,将多个拍摄装置进行组合,再将组合后的多拼拍摄装置(如5拼拍摄装置)装设在无人机上。该多拼拍摄装置需要多个独立的拍摄装置系统,并存在成本高、重量大的缺陷。此外,由于多拼拍摄装置重量很大,故需要搭载在体积较大的无人机上才能顺利作业,这导致使用成本高、安装、运输复杂等诸多问题。
相关技术中,无人机搭载也可以采用只有一个镜头的拍摄装置进行多角度拍摄,无人机运动至拍摄点并停在拍摄点后,再控制拍摄装置从不同的角度针对目标进行拍摄。以只有一个镜头的拍摄装置为例,无人机到达拍摄点并停稳后,控制拍摄装置进行姿态调整,以实现5个拍摄角度的拍摄;然后控制无人机到达下一拍摄点并挺稳后,再控制拍摄装置进行姿态调整,以实现5个拍摄角度的拍摄,但采用这种拍摄方式会导致拍摄效率很低,无法满足需求。
发明内容
本发明提供一种拍摄方法和无人机。
具体地,本发明是通过如下技术方案实现的:
根据本发明的第一方面,提供一种拍摄方法,所述方法包括:
控制无人机按照预设航线飞行,其中,所述预设航线包括多个航点,相邻航点之间设有拍摄点和/或多个所述航点中的部分或全部作为拍摄点;
在所述无人机从当前拍摄点飞向下一拍摄点的过程中,控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点均处于预设姿态;
获取所述拍摄装置在每一拍摄点所拍摄的图像;
其中,多个连续的拍摄点形成一队列,相邻队列至少具有一预设姿态相同的拍摄点。
根据本发明的第二方面,提供一种无人机,包括机身、云台、拍摄装置及处理器,所述拍摄装置通过所述云台搭载在所述机身上,所述云台及所述拍摄装置与所述 处理器分别电连接;所述处理器用于:
控制无人机按照预设航线飞行,其中,所述预设航线包括多个航点,相邻航点之间设有拍摄点和/或多个所述航点中的部分或全部作为拍摄点;
在所述无人机从当前拍摄点飞向下一拍摄点的过程中,控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点均处于预设姿态;
获取所述拍摄装置在每一拍摄点所拍摄的图像;
其中,多个连续的拍摄点形成一队列,相邻队列至少具有一预设姿态相同的拍摄点。
由以上本发明实施例提供的技术方案可见,本发明实施例在无人机从当前拍摄点飞行下一拍摄点的过程中,控制搭载拍摄装置的云台切换姿态,使得拍摄装置在每一拍摄点处于预设姿态并进行拍摄,拍摄过程无需停止无人机飞行,从而提高了拍摄效率,特别适用于地图测绘上;并且,本发明实施例的拍摄方法通过云台控制一台拍摄装置即可实现,相比传统的多拼拍摄装置,本发明的无人机重量大大减轻,从而可选择体积和重量较轻的无人机来搭载拍摄装置,降低了使用成本。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中的无人机的结构示意图;
图2是本发明一实施例中的拍摄方法的方法流程图;
图3是本发明一实施例中的云台的姿态切换示意图;
图4是相关技术中的无人机在同一预设姿态不同拍摄点所拍摄图像的对比图;
图5是相关技术中的无人机在同一预设姿态不同拍摄点所拍摄图像的另一对比图;
图6是本发明一实施例中的无人机的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明的拍摄方法和无人机进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
图1是本发明实施例中的无人机的结构示意图。参见图1,本发明实施例的无人机可包括机身100、拍摄装置200和云台300,其中,拍摄装置200通过云台300搭载在机身100上。该无人机可以为固定翼无人机,也可以为多旋翼无人机,具体可根据实际需求选择无人机的类型,例如,当云台300和拍摄装置200的重量较大时,可选择体积和重量较大的固定翼无人机来搭载云台300和拍摄装置200;当云台300和拍摄装置200重量较小时,可选择体积和重量较小的多旋翼无人机来搭载云台300和拍摄装置200。拍摄装置200可为集成相机,也可以为图像传感器和镜头组合成的器件。此外,本实施例的云台300可以为两轴云台,也可以为三轴云台。
该无人机可应用在测绘领域,以拍摄物为地面为例,通过无人机搭载拍摄装置200采集地面图像,再利用软件对地面图像进行三维或二维地图重建,通过测绘获得的地图可应用在不同的行业,如在电力巡检领域,可利用重建的地图检查线路故障;在道路规划领域,可利用重建的地图进行道路的选址;缉毒警察可利用重建的三维地图来检查深山中的罂粟种植情况等等。当然,该无人机并不局限于测绘领域,也可应用在其他需要获取拍摄物多方位的特征信息的领域。拍摄物也不限于地面,也可为大型建筑物、山峦等。
相关技术中,固定翼无人机一般很少搭载云台,这是因为在测绘领域,对拍摄装置的像素要求比较高,如高于2000万像素,高像素的要求使得多拼拍摄装置的体积增大,如果再通过云台将拍摄装置搭载在固定翼无人机上,不仅对云台的体积与承载重量有高要求,且会导致固定翼无人机整体体积更大。
针对此,在利用固定翼无人机进行拍摄时,本发明只需采用一台拍摄装置,该拍摄装置虽然像素大,但相对多拼拍摄装置体积和重量大大减小,从而大大减小了固定翼无人机的重量以及尺寸。另外,相对于多旋翼无人机而言,固定翼无人机航时航程长,通常为多旋翼无人机的5~10倍,对诸如测绘领域的拍摄应用较为友好。本发明以采用固定翼无人机来搭载云台和拍摄装置进行拍摄为例进行说明。
而在相关技术中,无论是固定翼无人机还是旋翼无人机,在利用一个拍摄装置实现多个角度的拍摄时,例如5个角度,由于速度或效率控制的原因,一般会控制无人机对同一航线飞行5次,每次航线对应一个拍摄角度,以实现多角度拍摄,但这不利于无人机的续航。基于此,本发明在无人机的一次飞行过程中,控制无人机上的云台进行姿态切换,以实现多个拍摄角度的拍摄,从而不用实现航线的反复巡飞,进而不仅有利于提高拍摄效率,还有利于降低无人机的能耗。
以下实施例将对无人机工作流程进行说明。
参见图2,本实施例的拍摄方法可包括如下步骤:
步骤S201:控制无人机按照预设航线飞行,其中,预设航线包括多个航点,相邻航点之间设有拍摄点和/或多个航点中的部分或全部作为拍摄点;
本实施例中,预设航线由用户预先设定。可选的,用户通过终端或遥控设备将各航点的位置信息输入无人机,可将各航点按照输入的顺序依次相连而形成上述预设航线。在用户更新已设定好的航线中部分航点的位置时,可通过操作终端或遥控设备来对已设定好的航线中部分航点的位置信息进行修改。对已设定好的航线中部分航点的位置信息进行修改的步骤可在无人机飞行前执行,也可在无人机飞行的过程中执行。
航点和拍摄点之间的位置设置关系可根据需要选择,例如,在一实施例中,相邻航点之间设有一个或多个拍摄点。在另一实施例中,多个航点中的一部分作为拍摄点,相邻航点之间可设置拍摄点,也可不设置拍摄点。在又一实施例中,多个航点全部作为拍摄点,相邻航点之间可设置拍摄点,也可不设置拍摄点。其中,可以理解,一个拍摄点具有一次拍摄,对应一个云台姿态,得到一张拍摄的图像。
本实施例控制无人机按照预设航线飞行具体包括:控制拍摄装置200的镜头与拍摄物之间的实时高度在预设高度范围内。在利用无人机进行测绘时,在测绘过程中,由于地势的起伏,会导致GSD(Ground Sampling Distance,地面采样间隔)不均匀,故通过控制拍摄装置200的镜头与地面之间的高度,以维持GSD的均匀性,如地势变高,则无人机上升;地势降低,则无人机下降,确保测绘过程中,GSD大致相等。其中,针对固定翼无人机,其上升高度和下降高度有限,故只能在固定翼无人机的上升高度或下降高度范围内控制固定翼无人机上升或下降,以尽可能地保持GSD一致。
可以理解,在控制拍摄装置200的镜头与拍摄物之间的实时高度在预设高度范围内时,可以具体为:控制无人机与拍摄物之间的实时高度在预设高度范围内;或者,控制拍摄装置200与拍摄物之间的实时高度在预设范围内;或者,控制云台的姿态,以使得拍摄装置200的镜头与拍摄物之间的实时高度在预设高度范围内。当然,不限于上述方法,上述方法也可以相互结合使用,此处不做具体限定。
步骤S202:在无人机从当前拍摄点飞向下一拍摄点的过程中,控制无人机上的云台300切换姿态,使得云台300上的拍摄装置200在每一拍摄点均处于预设姿态;
本实施例中,多个连续的拍摄点形成一队列,相邻队列至少具有一预设姿态相同的拍摄点。
队列的组成方式可根据需要选择,例如,在一具体实施例中,相邻航点之间设有拍摄点,且各航点也作为拍摄点,如预设航线上设有依次相邻的航点A、航点B、航点C,航点A的飞行时刻位于航点B的飞行时刻之前,航点B的飞行时刻在航点C的飞行时刻之前,航点A和航点B之间设有一个或多个拍摄点,航点B和C之间也设有一个或多个拍摄点,航点A、航点B、航点C也为拍摄点,本实施例中,航点A、航点A和航点B之间的一个或多个拍摄点构成一队列,航点B、航点B和航点C之间 的一个或多个拍摄点构成一队列,以此类推。可选的,各相邻航点之间的拍摄点可包括1个、2个、3个、4个或更多。在另一具体实施例中,各队列的拍摄点数量相等,可按照拍摄点的数量及初始拍摄点来确定每一队列的拍摄点。
本实施例中,每一队列可具有相同数量的拍摄点,也可具有不同数量的拍摄点,具体根据拍摄需求选择每一队列的拍摄点数量。
本实施例中,每一队列中的多个拍摄点所对应的预设姿态各不相同,拍摄装置200能够在不同的拍摄点以不同的预设姿态进行拍摄,例如,在一具体实施例中,每一队列包括5个拍摄点,5个拍摄点对应5个不同的预设姿态,拍摄装置200能够在5个拍摄点进行5个方位的拍摄。而在其他实施例中,每一队列中的部分拍摄点对应的预设姿态相同,拍摄装置200在部分拍摄点以相同的预设姿态进行拍摄。
预设姿态可根据实际需求设定,例如,预设姿态可包括:拍摄装置200的拍摄方向竖直朝下(拍摄装置200用于拍摄拍摄物的下视图)、拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的前方(拍摄装置200用于拍摄拍摄物的前视图)、拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的左侧方向(拍摄装置200用于拍摄拍摄物的左视图)、拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的后方(拍摄装置200用于拍摄拍摄物的后视图)、拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的右侧方向(拍摄装置200用于拍摄拍摄物的右视图)或其他姿态,本实施例不再一一例举。
以下实施例将拍摄装置200的拍摄方向竖直朝下称为正摄,将拍摄装置200的拍摄方向相对竖直方向倾斜成为斜拍。斜拍时,拍摄装置200的拍摄方向相对竖直方向倾斜的角度可根据需要设定。本实施例中,拍摄装置200的拍摄方向相对竖直方向倾斜的角度大于0°并小于90°,如10°、20°、30°、45°等。
本实施例中,每一队列包括如下预设姿态:拍摄装置200的拍摄方向竖直朝下,从而使得相邻队列至少具有一预设姿态相同的拍摄点。进一步的,预设姿态还可包括上述实施例所例举的斜拍所对应的预设姿态,将斜拍获得的图像作为正摄获得图像的参考图像。当然,在其他实施例中,相邻队列中,相同的预设姿态也可选择上述实施例所例举的其他姿态。
在一些例子中,相邻队列中的多个拍摄点所对应的预设姿态相同。在一具体实现方式中,每个队列包括5个拍摄点,分别为拍摄点1、拍摄点2、拍摄点3、拍摄点4和拍摄点5,对应的预设姿态分别为:拍摄装置200的拍摄方向竖直朝下、拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的后方、拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的左侧方向、拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的前方及拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的右侧方向。本实施例中,无人机在飞行过程中,一队列中的拍摄点的拍摄顺序为:拍 摄点1->拍摄点2->拍摄点3->拍摄点4->拍摄点5。可选的,拍摄点1为无人机的当前航点,拍摄点2、拍摄点3、拍摄点4和拍摄点5位于当前航点和下一航点之间。
以拍摄物为地面为例,参见图3,当无人机飞行至当前航点(即拍摄点1)之前,控制云台姿态,使得拍摄装置200的拍摄方向竖直朝下,拍摄装置200的镜头中轴线与地面的交点为A;当无人机从当前航点飞行至拍摄点2之前,控制云台姿态,使得拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的后方,拍摄装置200的镜头中轴线与地面的交点为B;当无人机从当前航点飞行至拍摄点3之前,控制云台姿态,使得拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的左侧方向,拍摄装置200的镜头中轴线与地面的交点为C;当无人机从当前航点飞行至拍摄点4之前,控制云台姿态,使得拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的前方,拍摄装置200的镜头中轴线与地面的交点为D;当无人机从当前航点飞行至拍摄点5之前,控制云台姿态,使得拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的右侧方向,拍摄装置200的镜头中轴线与地面的交点为E;至此,一个循环结束。
在下一循环中,无人机在各拍摄点的飞行顺序包括:当前队列的拍摄点5->下一队列的拍摄点1->下一队列的拍摄点2->下一队列的拍摄点3->下一队列的拍摄点4->下一队列的拍摄点5。
当然,上述实施例中,拍摄点1、拍摄点2、拍摄点3、拍摄点4和拍摄点5对应的预设姿态也可以根据需要改变,例如,拍摄点1、拍摄点2、拍摄点3、拍摄点4和拍摄点5对应的预设姿态分别为:拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的后方、拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的左侧方向、拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的前方、拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的右侧方向及拍摄装置200的拍摄方向竖直朝下。
在另一些例子中,相邻队列中的多个拍摄点所对应的预设姿态部分相同,以缓解图像存储速度与无人机的飞行速度造成的冲突。在一具体实施例中,相邻队列中一个队列的多个拍摄点所对应的预设姿态包括:拍摄装置200的拍摄方向竖直朝下、拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的前方、及拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的后方。相邻队列中另一个队列的多个拍摄点所对应的预设姿态包括:拍摄装置200的拍摄方向竖直朝下、拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的左侧方向、拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的右侧方向。
例如,预设航线上设有依次相邻的航点A、航点B和航点C,航点A的飞行时刻位于航点B的飞行时刻之前,航点B的飞行时刻在航点C的飞行时刻之前,航点A 和航点B之间、航点B和航点C之间,分别具有两个拍摄点。在航点A时,控制拍摄装置200的拍摄方向竖直朝下,在航点A和和航点B之间的两个拍摄点的预设姿态分别为拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的前方、及拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的后方。在航点B时,再控制拍摄装置200的拍摄方向竖直朝下,航点B和航点C之间的两个拍摄点的预设姿态分别为拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的左侧方向、及拍摄装置200的拍摄方向相对竖直方向倾斜且朝向无人机的右侧方向。
通过上述实施例可知,可以在每一航点进行1次正拍,并在每一相邻航点之间进行2次或4次斜拍,以在3个连续的航点之间或2个连续的航点之间得到正拍以及向前、向后、向左、向右四个方向的斜拍。如此,可以考察正拍获得图像之间的重叠度以及对应方位的斜拍获得的图像之间的重叠度。本实施例中主要考察正拍获得图像之间的重叠度,并将斜拍获得的图像作为正拍获得的图像的参考图像。比较而言,在每一相邻航点之间进行2次斜拍,尽管降低了斜拍获得的图像之间的重叠度,但斜拍获得的图像仍可以作为正拍获得的图像的参考图像,且由于相邻航点之间所拍摄的图像减少,待存储的图像也减少,从而有利于缓解图像存储速度与无人机的飞行速度之间造成的冲突,例如,当无人机的飞行速度过快,而图像存储速度过慢时,会发生待存储的图像过多而导致丢失的情况。
相关技术中,控制拍摄装置200按照固定时间间隔进行拍摄,但对于固定翼无人机来说,会遇到顺风、逆风的飞行环境,导致固定翼无人机的实际飞行速度会发生改变,这会导致拍摄装置200在相邻拍摄点所拍摄的图像的重叠度不一。无人机在拍摄过程中,行进的航线所拍摄照片需要保证一定的重叠度,以其中拍摄的正摄照片为例,如图4所示,拍摄点1为队列1中拍摄装置200正摄对应的拍摄点,拍点2为队列2中拍摄装置200正摄对应的拍摄点,拍摄点3为队列3中拍摄装置200正摄对应的拍摄点,以此类推。拍摄点1与拍摄点2由于在同一竖直(图4所示图像的竖直方向)航线上,拍摄装置200在拍摄点1所拍摄的图像与拍摄装置200在拍摄点2所拍摄的图像在竖直方向上的重叠比例称为航向重叠度。拍摄点1与拍摄点12分别在相邻两条竖直航线上,拍摄装置200在拍摄点1所拍摄的图像与拍摄装置200在拍摄点12所拍摄的图像在竖直方向上的重叠比例称为旁向重叠度。
针对此,在一本实施例中,相邻拍摄点之间的距离为固定间距,易于确定新的拍摄点,并且,由于相邻拍摄点之间的距离为固定间距,使得相邻的两个相同预设姿态对应的拍摄点之间的间距也相同,保证了拍摄装置200在同一方位所拍摄的图像的重叠度基本一致。
在一实施例中,相邻的两个相同预设姿态对应的拍摄点之间的间距相同,保证了拍摄装置200在同一方位拍摄的图像的重叠度基本一致。
此外,在一些例子中,多个拍摄点的位置均是预先确定的,即在无人机飞行前预先存储各拍摄点的位置信息。在另一些例子中,多个拍摄点中的一部分拍摄点的位置是预先确定的,另一部分拍摄点的位置在无人机飞行过程中确定。例如,可将航点中的部分或全部确定为拍摄点,再根据航点的位置信息及相邻拍摄点之间的间距和/或拍摄点的数量等在无人机飞行的过程中确定其他拍摄点的位置。在又一些例子中,多个拍摄点均在无人机飞行过程中确定,例如,在无人机飞行的过程中确定,通过终端或遥控设备触发无人机确定初始拍摄点,再根据初始拍摄点的位置信息及相邻拍摄点之间的间距和/或拍摄点的数量等在无人机飞行过程中确定其他拍摄点的位置。
在本实施例中,执行步骤S202之前,还需获取无人机的飞行信息和/或拍摄装置200的拍摄信息;并根据飞行信息和/或拍摄信息,确定拍摄装置200的新的拍摄点。其中,飞行信息可包括无人机在预设航线上的飞行距离、无人机至上一拍摄点的飞行距离、无人机的当前位置中的至少一种;拍摄信息包括当前拍摄次数或至少一个拍摄点的位置信息。
在根据飞行信息和/或拍摄信息,确定拍摄装置200的新的拍摄点时,具体的,当无人机的当前位置至上一拍摄点之间的距离为预设间距时,将无人机的当前位置确定为拍摄装置200的新的拍摄点。其中,无人机的当前位置至上一拍摄点之间的距离可根据飞行信息和/或拍摄信息确定,例如,在一实施例中,无人机至上一拍摄点的飞行距离即为无人机的当前位置至上一拍摄点之间的距离。
在另一实施例中,相邻的两个拍摄点之间的间距为固定值,在获取无人机在预设航线上的飞行距离和当前拍摄次数后,可根据无人机在预设航线上的飞行距离、当前拍摄次数以及相邻的两个拍摄点之间的间距,确定上一拍摄点的位置信息;再根据上一拍摄点的位置信息和无人机的当前位置,确定无人机当前位置至上一拍摄点之间的距离。
在又一实施例中,相邻的两个拍摄点之间的间距为固定值,在获取无人机在预设航线上的飞行距离和初始拍点的位置信息后,即可根据无人机在预设航线上的飞行距离、初始拍点的位置信息以及相邻的两个拍摄点之间的间距,确定上一拍摄点的位置信息;再根据上一拍摄点的位置信息和无人机的当前位置,确定无人机当前位置至上一拍摄点之间的距离。
上述实施例中,无人机的当前位置信息可由无人机上的定位模块获取,该定位模块可为GPS定位模块,也可为其他类型的定位模块,如RTK定位模块。
进一步的,在获取无人机的当前位置之前,还需确定初始拍摄点。初始拍摄点的确定方式可包括多种,在一些例子中,初始拍摄点为:无人机的起始飞行位置。在另一些例子中,初始拍摄点为:接收到用于指示拍摄装置200拍摄图像的触发指令时,无人机的位置。该触发指令可由控制无人机的终端发送,也可由无人机的遥控设备发 送。在又一些例子中,初始拍摄点为:预设航线的初始航点。具体可根据需要选择上述实施例中的一种来确定初始拍摄点。可以理解,初始拍摄点的确定方式并不限于上述例举的几种方式,还可采用其他方式来确定初始拍摄点。
此外,本实施例中,云台姿态切换的控制方式可根据云台300的类型选择,以三轴云台为例,云台300被配置为绕偏航轴、横滚轴和俯仰轴运动。可选的,可通过控制云台300的横滚轴姿态、俯仰轴姿态和偏航轴姿态中的一个或多个来实现对云台姿态的切换。
通常,云台的偏航轴不能整周转动,因此不会采用控制云台的偏航轴姿态方式来控制拍摄装置200处于每个队列中多个预设姿,故在一实施例中,控制云台300的横滚轴姿态和俯仰轴姿态,以控制云台300切换姿态。在另一实施例中,云台300的偏航轴可整周(360°)转动,可通过控制云台300的偏航轴姿态,以控制云台300切换姿态。
本实施例中,控制无人机上的云台300切换姿态,使得云台300上的拍摄装置200在每一拍摄点均处于预设姿态具体包括:获取无人机的实时姿态;确定无人机的实时姿态和下一拍摄点对应的预设姿态之间的第一偏差,根据第一偏差控制无人机上的云台300切换姿态,使得云台300上的拍摄装置200在每一拍摄点均处于预设姿态。
相关技术中,多拼拍摄装置大都直接固定在无人机机身上,无人机飞行时的机身姿态直接决定了拍摄装置的朝向。当无人机在有风环境中飞行时,机身姿态变化较大,导致拍摄装置针对拍摄物所拍摄的照片重叠度参差不齐,给后续的测绘精度带来较大的影响。例如,当无人机在拍摄点1和拍摄点12的滚转角不同时,当拍摄点12的航向未严格对准航线时,拍摄装置所拍摄的照片如图5所示,可见,拍摄装置在同一预设姿态不同的拍摄点所拍摄的图像的重叠度受到机身姿态的影响很大,有时会增加重叠度,有时会降低重叠度,导致拍摄装置在同一预设姿态不同拍摄点所拍摄的图像之间的重叠度不均匀。
本实施例的拍摄装置通过云台300搭载在无人机的机身100上,在机身100的姿态变化较大时,可通过控制云台300的姿态,使得拍摄装置200在同一预设姿态不同拍摄点的相对位置保持不变,机身100的姿态变化对拍摄装置200的拍摄不会产生任何影响,保证拍摄装置200在同一预设姿态不同拍摄点所拍摄的图像的重叠度均匀。
具体的,在根据第一偏差控制无人机上的云台300切换姿态,使得云台300上的拍摄装置200在每一拍摄点均处于预设姿态之前,获取云台300上的拍摄装置200的当前位置,并确定拍摄装置200的当前位置与预设航线之间的第二偏差。本实施例中,根据第一偏差控制无人机上的云台300切换姿态,使得云台300上的拍摄装置200在每一拍摄点均处于预设姿态具体包括:根据第一偏差和第二偏差控制无人机上的云台300切换姿态,使得云台300上的拍摄装置200在每一拍摄点处于预设姿态。本实 施例的第二偏差位于预设偏差范围内,这样,当侧风使无人机的机头不能对准预设航线的当前方向时,拍摄装置200依然能够对准预设航线的当前方向,拍摄装置200所拍摄的图像不会发生如图5中的拍摄点12一样存在偏航轴的扭转,或者减小拍摄装置200所拍摄的图像在偏航轴的扭转,从而保证摄装置在同一预设姿态不同拍摄点所拍摄的图像的重叠度尽可能一致。
进一步的,根据第一偏差和第二偏差控制无人机上的云台300切换姿态,使得云台300上的拍摄装置200在每一拍摄点均处于预设姿态,且第二偏差位于预设偏差范围内,具体包括:根据第一偏差和第二偏差控制无人机上的云台300切换姿态,使得云台300上的拍摄装置200在每一拍摄点均处于预设姿态,且预设航线的当前方向与拍摄装置200保持预设位置关系。例如,在拍摄装置200的拍摄方向竖直朝下时,尽可能保证,预设航线的当前方向能够尽可能在镜头视场的中心区域,以保证摄装置在同一预设姿态不同拍摄点所拍摄的图像的重叠度尽可能一致。
可选的,预设偏差范围为根据拍摄装置200在同一预设姿态下所拍摄的图像之间的航向重叠度和旁向重叠度确定;其中,航向重叠度大于或者等于第一预设叠度阈值,旁向重叠度大于或者等于第二预设重叠度阈值。第一预设重叠阈值、第二预设重叠阈值可根据需要设定,例如,在一实施例中,第一预设阈值为80%,第二预设重叠度阈值为70%。
步骤S203:获取拍摄装置200在每一拍摄点所拍摄的图像。
相关技术中,通过拍摄装置获取的每一拍摄点的图像被存入SD卡,SD卡的存储速率一般为30MB/s,而拍摄装置所拍摄的每幅图像大小一般为10M,甚至更大。为了保证同一预设姿态下所拍摄的图像之间的重叠度,无人机从当前拍摄点飞至下一拍摄点的时长通常较小,而对于固定翼无人机,从当前拍摄点飞至下一拍摄点的时长则更小。在无人机从当前拍摄点飞向下一拍摄点的过程中,通过SD卡可能会来不及存储拍摄装置在当前拍摄点所拍摄图像,导致图像丢失。对此,本实施例在执行完步骤S203之后,可以将图像存入固态硬盘SSD中,SSD的存储速率较大,确保无人机从当前拍摄点飞向下一拍摄点过程中,SSD能够将拍摄装置200在当前拍摄点所拍摄的图像存储起来。为尽可能确保无人机从当前拍摄点飞向下一拍摄点过程中,SSD将拍摄装置200在当前拍摄点所拍摄的图像存储起来,本实施例中,SSD的存储速率大或等于150MB/s,例如,160MB/s、170MB/s、180MB/s、190MB/s、200MB/s等等。
此外,在一实施例中,确定云台300相对地理坐标系的转动角速度为0之后再执行步骤S203,无人机从上一拍摄点飞行至当前拍摄点时,待云台300稳定后再控制拍摄装置200进行拍摄,确保拍摄装置200在每一拍摄点所拍摄的图像是稳定的。需要说明的是,本发明实施例中,地理坐标系是指以无人机的起飞点作为原点,以起飞点指向地心的方向作为第一坐标轴,以起飞点指向北的方向作为第二坐标轴,以起飞 点指向东的方向作为第三坐标轴而建立的坐标系。
无人机作业后获得的图像,可通过三维建模软件(如pix4d、smart 3d)进行重建,即可获得被摄物的三维模型,该三维模型常被城市规划、地质灾害勘察、电力巡检等测绘领域。
由于三维建模精度受到拍摄装置200拍摄图像时刻的位置信息精度、拍摄装置200的姿态控制精度、镜头的畸变大小以及拍摄装置200在相同预设姿态所拍摄的图像之间重叠度等影响,故可通过控制上述参数的准确性来确保三维建模的精度。
本发明实施例在无人机从当前拍摄点飞行下一拍摄点的过程中,控制搭载拍摄装置200的云台300切换姿态,使得拍摄装置200在每一拍摄点处于预设姿态并进行拍摄,拍摄过程无需停止无人机飞行,从而提高了拍摄效率,特别适用于地图测绘上;并且,本发明实施例的拍摄方法通过云台300控制一台拍摄装置200即可实现,相比传统的多拼拍摄装置,本发明的无人机重量大大减轻,从而可选择体积和重量较轻的无人机来搭载拍摄装置200,降低了使用成本。
本发明实施例还提供一种无人机,参见图6,该无人机还包括处理器400,其中,云台300、拍摄装置200分别与处理器400电连接,本实施例的处理器400用于执行如图2的拍摄控制方法。
具体的,所述处理器400用于:控制无人机按照预设航线飞行;在无人机从当前拍摄点飞向下一拍摄点的过程中,控制无人机上的云台300切换姿态,使得云台300上的拍摄装置200在每一拍摄点均处于预设姿态;获取拍摄装置200在每一拍摄点所拍摄的图像;在本实施例中,预设航线包括多个航点,相邻航点之间设有拍摄点和/或多个航点中的部分或全部作为拍摄点,多个连续的拍摄点形成一队列,相邻队列至少具有一预设姿态相同的拍摄点。
处理器400的实现过程和工作原理可参见上述实施例的拍摄方法的描述,此处不再赘述。
在本实施例中,处理器400可以为飞行控制器、云台处理器和拍摄装置200的处理器中的一个或多个的结合,还可以为设于无人机上的其他控制器或者包括设于无人机上的其他控制器。
另外,本实施例的处理器400可以是中央处理器(central processing unit,CPU)。处理器400还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA), 通用阵列逻辑(generic array logic,GAL)或其任意组合。
此外,本发明实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器400执行时实现上述实施例所述的拍摄方法的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (48)

  1. 一种拍摄方法,其特征在于,所述方法包括:
    控制无人机按照预设航线飞行,其中,所述预设航线包括多个航点,相邻航点之间设有拍摄点和/或多个所述航点中的部分或全部作为拍摄点;
    在所述无人机从当前拍摄点飞向下一拍摄点的过程中,控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点均处于预设姿态;
    获取所述拍摄装置在每一拍摄点所拍摄的图像;
    其中,多个连续的拍摄点形成一队列,相邻队列至少具有一预设姿态相同的拍摄点。
  2. 根据权利要求1所述的方法,其特征在于,相邻拍摄点之间的距离为固定间距。
  3. 根据权利要求1所述的方法,其特征在于,相邻的两个相同预设姿态对应的拍摄点之间的间距相同。
  4. 根据权利要求1所述的方法,其特征在于,在所述无人机从当前拍摄点飞向下一拍摄点的过程中,控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点均处于预设姿态之前,还包括:
    获取所述无人机的飞行信息和/或所述拍摄装置的拍摄信息;
    根据所述飞行信息和/或所述拍摄信息,确定所述拍摄装置的新的拍摄点。
  5. 根据权利要求4所述的方法,其特征在于,所述飞行信息包括所述无人机在所述预设航线上的飞行距离、所述无人机至上一拍摄点的飞行距离、所述无人机的当前位置中的至少一种;
    所述拍摄信息包括当前拍摄次数或至少一个所述拍摄点的位置信息。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述飞行信息和/或所述拍摄信息,确定所述拍摄装置的新的拍摄点,包括:
    当所述无人机的当前位置至上一拍摄点之间的距离为预设间距时,将所述无人机的当前位置确定为所述拍摄装置的新的拍摄点。
  7. 根据权利要求4所述的方法,其特征在于,所述获取所述无人机的当前位置之前,还包括:
    确定初始拍摄点。
  8. 根据权利要求7所述的方法,其特征在于,所述初始拍摄点为:所述无人机的起始飞行位置;或者,
    所述初始拍摄点为:接收到用于指示所述拍摄装置拍摄图像的触发指令时,所述无人机的位置;或者,
    所述初始拍摄点为:所述预设航线的初始航点。
  9. 根据权利要求1所述的方法,其特征在于,所述控制所述无人机按照预设航线飞行,包括:
    控制所述拍摄装置的镜头与拍摄物之间的实时高度在预设高度范围内。
  10. 根据权利要求1所述的方法,其特征在于,所述获取所述拍摄装置在每一拍摄点所拍摄的图像之后,还包括:
    将所述图像存入固态硬盘SSD中。
  11. 根据权利要求10所述的方法,其特征在于,所述SSD的存储速率大或等于150MB/s。
  12. 根据权利要求1所述的方法,其特征在于,所述获取所述拍摄装置在每一拍摄点所拍摄的图像之前,还包括:
    确定所述云台相对地理坐标系的转动角速度为0。
  13. 根据权利要求1所述的方法,其特征在于,每一队列包括如下预设姿态:
    所述拍摄装置的拍摄方向竖直朝下。
  14. 根据权利要求13所述的方法,其特征在于,所述预设姿态还包括以下至少一种:
    所述拍摄装置的拍摄方向相对竖直方向倾斜且朝向所述无人机的前方、所述拍摄装置的拍摄方向相对竖直方向倾斜且朝向所述无人机的左侧方向、所述拍摄装置的拍摄方向相对竖直方向倾斜且朝向所述无人机的后方、及所述拍摄装置的拍摄方向相对竖直方向倾斜且朝向所述无人机的右侧方向。
  15. 根据权利要求1、13或14所述的方法,每一队列中的多个拍摄点所对应的预设姿态各不相同。
  16. 根据权利要求1、13或14所述的方法,其特征在于,相邻队列中的多个拍摄点所对应的预设姿态相同。
  17. 根据权利要求1所述的方法,其特征在于,相邻队列中一个队列的多个拍摄点所对应的预设姿态包括:
    所述拍摄装置的拍摄方向竖直朝下、所述拍摄装置的拍摄方向相对竖直方向倾斜且朝向所述无人机的前方、及所述拍摄装置的拍摄方向相对竖直方向倾斜且朝向所述无人机的后方;
    相邻队列中另一个队列的多个拍摄点所对应的预设姿态包括:
    所述拍摄装置的拍摄方向竖直朝下、所述拍摄装置的拍摄方向相对竖直方向倾斜且朝向所述无人机的左侧方向、所述拍摄装置的拍摄方向相对竖直方向倾斜且朝向所述无人机的右侧方向。
  18. 根据权利要求1所述的方法,其特征在于,控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点均处于预设姿态,具体包括:
    获取所述无人机的实时姿态;
    确定所述无人机的实时姿态和下一拍摄点对应的预设姿态之间的第一偏差,
    根据所述第一偏差控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点均处于预设姿态。
  19. 根据权利要求18所述的方法,其特征在于,所述根据所述第一偏差控制所述 无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点均处于预设姿态之前,所述方法还包括:
    获取所述云台上的拍摄装置的当前位置;
    确定所述拍摄装置的当前位置与所述预设航线之间的第二偏差;
    所述根据所述第一偏差控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点均处于预设姿态,包括:
    根据所述第一偏差和所述第二偏差控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点处于预设姿态,且所述第二偏差位于预设偏差范围内。
  20. 根据权利要求19所述的方法,其特征在于,所述根据所述第一偏差和所述第二偏差控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点均处于预设姿态,且所述第二偏差位于预设偏差范围内,具体包括:
    根据所述第一偏差和所述第二偏差控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点均处于预设姿态,且所述预设航线的当前方向与所述拍摄装置保持预设位置关系。
  21. 根据权利要求19所述的方法,其特征在于,所述预设偏差范围为根据所述拍摄装置在同一预设姿态下所拍摄的图像之间的航向重叠度和旁向重叠度确定;
    其中,所述航向重叠度大于或者等于第一预设叠度阈值,所述旁向重叠度大于或者等于第二预设重叠度阈值。
  22. 根据权利要求1或18所述的方法,其特征在于,所述云台为三轴云台,所述云台被配置为绕偏航轴、横滚轴和俯仰轴运动;
    所述控制所述无人机上的云台切换姿态,包括:
    控制所述云台的横滚轴姿态和俯仰轴姿态,以控制所述云台切换姿态。
  23. 根据权利要求1或18所述的方法,其特征在于,所述云台为三轴云台,所述云台被配置为绕偏航轴、横滚轴和俯仰轴运动;
    所述控制所述无人机上的云台切换姿态,包括:
    控制所述云台的偏航轴姿态,以控制所述云台切换姿态。
  24. 根据权利要求1所述的方法,其特征在于,所述无人机为固定翼无人机;或者,
    所述无人机为多旋翼无人机。
  25. 一种无人机,其特征在于,包括机身、云台、拍摄装置及处理器,所述拍摄装置通过所述云台搭载在所述机身上,所述云台及所述拍摄装置与所述处理器分别电连接;所述处理器用于:
    控制无人机按照预设航线飞行,其中,所述预设航线包括多个航点,相邻航点之间设有拍摄点和/或多个所述航点中的部分或全部作为拍摄点;
    在所述无人机从当前拍摄点飞向下一拍摄点的过程中,控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点均处于预设姿态;
    获取所述拍摄装置在每一拍摄点所拍摄的图像;
    其中,多个连续的拍摄点形成一队列,相邻队列至少具有一预设姿态相同的拍摄点。
  26. 根据权利要求25所述的无人机,其特征在于,相邻拍摄点之间的距离为固定间距。
  27. 根据权利要求25所述的无人机,其特征在于,相邻的两个相同预设姿态对应的拍摄点之间的间距相同。
  28. 根据权利要求25所述的无人机,其特征在于,所述处理器在所述无人机从当前拍摄点飞向下一拍摄点的过程中,控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点均处于预设姿态之前,还用于:
    获取所述无人机的飞行信息和/或所述拍摄装置的拍摄信息;
    根据所述飞行信息和/或所述拍摄信息,确定所述拍摄装置的新的拍摄点。
  29. 根据权利要求28所述的无人机,其特征在于,所述飞行信息包括所述无人机在所述预设航线上的飞行距离、所述无人机至上一拍摄点的飞行距离、所述无人机的当前位置中的至少一种;
    所述拍摄信息包括当前拍摄次数或至少一个所述拍摄点的位置信息。
  30. 根据权利要求29所述的无人机,其特征在于,所述处理器具体用于:
    当所述无人机的当前位置至上一拍摄点之间的距离为预设间距时,将所述无人机的当前位置确定为所述拍摄装置的新的拍摄点。
  31. 根据权利要求28所述的无人机,其特征在于,所述处理器获取所述无人机的当前位置之前,还用于:
    确定初始拍摄点。
  32. 根据权利要求31所述的无人机,其特征在于,所述初始拍摄点为:所述无人机的起始飞行位置;或者,
    所述初始拍摄点为:接收到用于指示所述拍摄装置拍摄图像的触发指令时,所述无人机的位置;或者,
    所述初始拍摄点为:所述预设航线的初始航点。
  33. 根据权利要求25所述的无人机,其特征在于,所述处理器具体用于:
    控制所述拍摄装置的镜头与拍摄物之间的实时高度在预设高度范围内。
  34. 根据权利要求25所述的无人机,其特征在于,所述处理器获取所述拍摄装置在每一拍摄点所拍摄的图像之后,还用于:
    将所述图像存入固态硬盘SSD中。
  35. 根据权利要求34所述的无人机,其特征在于,所述SSD的存储速率大或等于150MB/s。
  36. 根据权利要求25所述的无人机,其特征在于,所述处理器获取所述拍摄装置在每一拍摄点所拍摄的图像之前,还用于:
    确定所述云台相对地理坐标系的转动角速度为0。
  37. 根据权利要求25所述的无人机,其特征在于,每一队列包括如下预设姿态:
    所述拍摄装置的拍摄方向竖直朝下。
  38. 根据权利要求37所述的无人机,其特征在于,所述预设姿态还包括以下至少一种:
    所述拍摄装置的拍摄方向相对竖直方向倾斜且朝向所述无人机的前方、所述拍摄装置的拍摄方向相对竖直方向倾斜且朝向所述无人机的左侧方向、所述拍摄装置的拍摄方向相对竖直方向倾斜且朝向所述无人机的后方、及所述拍摄装置的拍摄方向相对竖直方向倾斜且朝向所述无人机的右侧方向。
  39. 根据权利要求25、37或38所述的无人机,每一队列中的多个拍摄点所对应的预设姿态各不相同。
  40. 根据权利要求25、37或38所述的无人机,其特征在于,相邻队列中的多个拍摄点所对应的预设姿态相同。
  41. 根据权利要求25所述的无人机,其特征在于,相邻队列中一个队列的多个拍摄点所对应的预设姿态包括:
    所述拍摄装置的拍摄方向竖直朝下、所述拍摄装置的拍摄方向相对竖直方向倾斜且朝向所述无人机的前方、及所述拍摄装置的拍摄方向相对竖直方向倾斜且朝向所述无人机的后方;
    相邻队列中另一个队列的多个拍摄点所对应的预设姿态包括:
    所述拍摄装置的拍摄方向竖直朝下、所述拍摄装置的拍摄方向相对竖直方向倾斜且朝向所述无人机的左侧方向、所述拍摄装置的拍摄方向相对竖直方向倾斜且朝向所述无人机的右侧方向。
  42. 根据权利要求25所述的无人机,其特征在于,所述处理器具体用于:
    获取所述无人机的实时姿态;
    确定所述无人机的实时姿态和下一拍摄点对应的预设姿态之间的第一偏差,
    根据所述第一偏差控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点均处于预设姿态。
  43. 根据权利要求42所述的无人机,其特征在于,所述处理器根据所述第一偏差控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点均处于预设姿态之前,还用于:
    获取所述云台上的拍摄装置的当前位置;
    确定所述拍摄装置的当前位置与所述预设航线之间的第二偏差;
    所述根据所述第一偏差控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点均处于预设姿态,包括:
    根据所述第一偏差和所述第二偏差控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点处于预设姿态,且所述第二偏差位于预设偏差范围内。
  44. 根据权利要求43所述的无人机,其特征在于,所述处理器具体用于:
    根据所述第一偏差和所述第二偏差控制所述无人机上的云台切换姿态,使得所述云台上的拍摄装置在每一拍摄点均处于预设姿态,且所述预设航线的当前方向与所述拍摄装置保持预设位置关系。
  45. 根据权利要求43所述的无人机,其特征在于,所述预设偏差范围为根据所述拍摄装置在同一预设姿态下所拍摄的图像之间的航向重叠度和旁向重叠度确定;
    其中,所述航向重叠度大于或者等于第一预设叠度阈值,所述旁向重叠度大于或者等于第二预设重叠度阈值。
  46. 根据权利要求25或42所述的无人机,其特征在于,所述云台为三轴云台,所述云台被配置为绕偏航轴、横滚轴和俯仰轴运动;
    所述处理器具体用于:
    控制所述云台的横滚轴姿态和俯仰轴姿态,以控制所述云台切换姿态。
  47. 根据权利要求25或42所述的无人机,其特征在于,所述云台为三轴云台,所述云台被配置为绕偏航轴、横滚轴和俯仰轴运动;
    所述处理器具体用于:
    控制所述云台的偏航轴姿态,以控制所述云台切换姿态。
  48. 根据权利要求25所述的无人机,其特征在于,所述无人机为固定翼无人机;或者,
    所述无人机为多旋翼无人机。
PCT/CN2018/116129 2018-11-19 2018-11-19 拍摄方法和无人机 WO2020102927A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880039288.XA CN110771141B (zh) 2018-11-19 2018-11-19 拍摄方法和无人机
CN202210238368.6A CN114679540A (zh) 2018-11-19 2018-11-19 拍摄方法和无人机
PCT/CN2018/116129 WO2020102927A1 (zh) 2018-11-19 2018-11-19 拍摄方法和无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/116129 WO2020102927A1 (zh) 2018-11-19 2018-11-19 拍摄方法和无人机

Publications (1)

Publication Number Publication Date
WO2020102927A1 true WO2020102927A1 (zh) 2020-05-28

Family

ID=69328552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116129 WO2020102927A1 (zh) 2018-11-19 2018-11-19 拍摄方法和无人机

Country Status (2)

Country Link
CN (2) CN114679540A (zh)
WO (1) WO2020102927A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285996A (zh) * 2021-12-23 2022-04-05 中国人民解放军海军航空大学 一种地面目标覆盖拍摄方法和系统
CN115046531A (zh) * 2022-05-23 2022-09-13 珠海市恒源信息技术有限公司 一种基于无人机的杆塔测量方法、电子平台和存储介质
US11915350B2 (en) 2018-08-29 2024-02-27 Intel Corporation Training one-shot instance segmenters using synthesized images

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111479057B (zh) * 2020-04-13 2022-04-15 杭州今奥信息科技股份有限公司 基于无人飞行器的图斑智能举证方法
WO2021258251A1 (zh) * 2020-06-22 2021-12-30 深圳市大疆创新科技有限公司 用于可移动平台的测绘方法、可移动平台和存储介质
CN117641107A (zh) * 2020-07-16 2024-03-01 深圳市大疆创新科技有限公司 拍摄控制方法和装置
CN111897361B (zh) * 2020-08-05 2023-08-22 广州市赛皓达智能科技有限公司 一种无人机自主航线规划方法及其系统
CN111891356A (zh) * 2020-08-17 2020-11-06 成都市玄上科技有限公司 一种无人机无头自旋飞行倾斜摄影航拍方法
CN114084361A (zh) * 2020-08-24 2022-02-25 瞰景科技发展(上海)有限公司 一种单镜头倾斜摄影航测装置和方法
CN112327946A (zh) * 2020-11-09 2021-02-05 国网山东省电力公司威海供电公司 一种基于最优姿态路径的云台控制方法及其系统
CN113296542B (zh) * 2021-07-27 2021-10-01 成都睿铂科技有限责任公司 一种航拍拍摄点获取方法及系统
CN113654528B (zh) * 2021-09-18 2024-02-06 北方天途航空技术发展(北京)有限公司 通过无人机位置和云台角度估测目标坐标的方法和系统
CN115278074B (zh) * 2022-07-26 2023-05-12 城乡院(广州)有限公司 基于宗地红线的无人机拍摄方法、装置、设备及存储介质
CN117470199B (zh) * 2023-12-27 2024-03-15 天津云圣智能科技有限责任公司 一种摆动摄影控制的方法、装置、存储介质及电子设备
CN117707206A (zh) * 2024-02-06 2024-03-15 天津云圣智能科技有限责任公司 无人机航测作业方法、装置及计算机存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016045009A1 (zh) * 2014-09-24 2016-03-31 深圳市大疆创新科技有限公司 云台及其使用的成像装置、以及无人机
CN106249751A (zh) * 2016-08-01 2016-12-21 广州优飞信息科技有限公司 一种倾斜三维航测数据的采集系统、采集方法及控制终端
CN106767720A (zh) * 2016-12-30 2017-05-31 广州地理研究所 基于无人机的单镜头倾斜摄影测量方法、装置和系统
CN107270910A (zh) * 2017-06-13 2017-10-20 南宁市勘察测绘地理信息院 单镜头倾斜摄影航飞线路设计方法、系统及航拍摄影方法
CN206704562U (zh) * 2017-04-20 2017-12-05 广州飞图信息科技有限公司 一种无人机单镜头扫摆式倾斜摄影云台
CN206704563U (zh) * 2017-04-20 2017-12-05 广州飞图信息科技有限公司 一种无人机单镜头旋转式倾斜摄影云台

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104035446B (zh) * 2014-05-30 2017-08-25 深圳市大疆创新科技有限公司 无人机的航向生成方法和系统
CN105611168B (zh) * 2015-12-31 2019-04-02 南宁慧视科技有限责任公司 一种无人机旋转云台多角度倾斜摄影航拍的方法
CN105676864A (zh) * 2016-04-08 2016-06-15 合肥工业大学 一种无人机航拍规划仿真系统
CN107305395A (zh) * 2016-04-22 2017-10-31 优利科技有限公司 无人机航拍方法及系统
CN106774378B (zh) * 2017-03-01 2019-08-09 杭州谷航科技有限公司 一种无人机飞行控制及定位方法
WO2019000404A1 (zh) * 2017-06-30 2019-01-03 深圳市大疆创新科技有限公司 控制终端和无人机及其控制方法
CN107504957B (zh) * 2017-07-12 2020-04-03 天津大学 利用无人机多视角摄像快速进行三维地形模型构建的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016045009A1 (zh) * 2014-09-24 2016-03-31 深圳市大疆创新科技有限公司 云台及其使用的成像装置、以及无人机
CN106249751A (zh) * 2016-08-01 2016-12-21 广州优飞信息科技有限公司 一种倾斜三维航测数据的采集系统、采集方法及控制终端
CN106767720A (zh) * 2016-12-30 2017-05-31 广州地理研究所 基于无人机的单镜头倾斜摄影测量方法、装置和系统
CN206704562U (zh) * 2017-04-20 2017-12-05 广州飞图信息科技有限公司 一种无人机单镜头扫摆式倾斜摄影云台
CN206704563U (zh) * 2017-04-20 2017-12-05 广州飞图信息科技有限公司 一种无人机单镜头旋转式倾斜摄影云台
CN107270910A (zh) * 2017-06-13 2017-10-20 南宁市勘察测绘地理信息院 单镜头倾斜摄影航飞线路设计方法、系统及航拍摄影方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11915350B2 (en) 2018-08-29 2024-02-27 Intel Corporation Training one-shot instance segmenters using synthesized images
CN114285996A (zh) * 2021-12-23 2022-04-05 中国人民解放军海军航空大学 一种地面目标覆盖拍摄方法和系统
CN115046531A (zh) * 2022-05-23 2022-09-13 珠海市恒源信息技术有限公司 一种基于无人机的杆塔测量方法、电子平台和存储介质

Also Published As

Publication number Publication date
CN110771141B (zh) 2022-04-15
CN114679540A (zh) 2022-06-28
CN110771141A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2020102927A1 (zh) 拍摄方法和无人机
US20210065400A1 (en) Selective processing of sensor data
US20210072745A1 (en) Systems and methods for uav flight control
WO2020215188A1 (zh) 飞行航线的生成方法、控制装置及无人机系统
US9641810B2 (en) Method for acquiring images from arbitrary perspectives with UAVs equipped with fixed imagers
WO2020237471A1 (zh) 飞行航线生成方法、终端和无人机
JP2009173263A (ja) 無人航空機(uav)によって移動目標物を自律的に追跡するための方法及びシステム
WO2017181513A1 (zh) 无人机的飞行控制方法和装置
WO2020019106A1 (zh) 云台和无人机控制方法、云台及无人机
CN111650962B (zh) 一种适用于带状测区的多旋翼无人机航线规划与航摄方法
WO2019128275A1 (zh) 一种拍摄控制方法、装置及飞行器
CN113875222B (zh) 拍摄控制方法和装置、无人机及计算机可读存储介质
WO2020048365A1 (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制系统
JP6940459B2 (ja) 情報処理装置、撮影制御方法、プログラム及び記録媒体
JP6730763B1 (ja) 飛行体の飛行経路作成方法及び管理サーバ
WO2020225979A1 (ja) 情報処理装置、情報処理方法、プログラム、及び情報処理システム
CN110262567B (zh) 一种路径中继点空间生成方法、装置和无人机
JP7031997B2 (ja) 飛行体システム、飛行体、位置測定方法、プログラム
WO2020107487A1 (zh) 图像处理方法和无人机
JP6810498B1 (ja) 飛行体の飛行経路作成方法及び管理サーバ
JP6810497B1 (ja) 飛行体の飛行経路作成方法及び管理サーバ
JP2021067670A (ja) 飛行体の飛行経路作成方法及び管理サーバ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941058

Country of ref document: EP

Kind code of ref document: A1