WO2020019106A1 - 云台和无人机控制方法、云台及无人机 - Google Patents

云台和无人机控制方法、云台及无人机 Download PDF

Info

Publication number
WO2020019106A1
WO2020019106A1 PCT/CN2018/096612 CN2018096612W WO2020019106A1 WO 2020019106 A1 WO2020019106 A1 WO 2020019106A1 CN 2018096612 W CN2018096612 W CN 2018096612W WO 2020019106 A1 WO2020019106 A1 WO 2020019106A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
attitude
gimbal
speed
flying speed
Prior art date
Application number
PCT/CN2018/096612
Other languages
English (en)
French (fr)
Inventor
王映知
刘帅
林光远
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880039246.6A priority Critical patent/CN110945452A/zh
Priority to PCT/CN2018/096612 priority patent/WO2020019106A1/zh
Priority to EP18928133.0A priority patent/EP3828661A4/en
Publication of WO2020019106A1 publication Critical patent/WO2020019106A1/zh
Priority to US17/119,526 priority patent/US11245848B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/006Apparatus mounted on flying objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/53Constructional details of electronic viewfinders, e.g. rotatable or detachable
    • H04N23/531Constructional details of electronic viewfinders, e.g. rotatable or detachable being rotatable or detachable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • H04N23/611Control of cameras or camera modules based on recognised objects where the recognised objects include parts of the human body
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • H04N23/635Region indicators; Field of view indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/64Computer-aided capture of images, e.g. transfer from script file into camera, check of taken image quality, advice or proposal for image composition or decision on when to take image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/675Focus control based on electronic image sensor signals comprising setting of focusing regions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/951Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports

Definitions

  • the present invention relates to the field of PTZ control, in particular to a PTZ and UAV control method, PTZ and UAV.
  • the existing gimbal is mounted on an unmanned aerial vehicle. Due to the influence of factors such as mechanical design and large viewing angle, if the gimbal rotates slowly following the movement of the unmanned aerial vehicle, the relative angle between the gimbal and the unmanned aerial vehicle will increase. Coming bigger.
  • a certain angle threshold for example, 10 °, depending on the model, the specific angle threshold is different in size
  • the invention provides a gimbal and a drone control method, a gimbal and a drone.
  • the present invention is implemented by the following technical solutions:
  • a method for controlling a PTZ is provided.
  • the PTZ is mounted on a drone, and the method includes:
  • the angle of the drone is within a specific angle range
  • a picture ratio of a shooting picture of a shooting device in which the paddle assembly of the drone appears on the pan / tilt is lower than a preset ratio threshold.
  • a gimbal is provided.
  • the gimbal is mounted on a drone, and the gimbal includes:
  • a processor which is electrically connected to the ESC and is connected to the unmanned electromechanical device; the processor is configured to:
  • the angle of the drone is within a specific angle range
  • a picture ratio of a shooting picture of a shooting device in which the paddle assembly of the drone appears on the pan / tilt is lower than a preset ratio threshold.
  • a drone control method includes a fuselage, a paddle assembly for driving the fuselage, and a gimbal mounted on the fuselage.
  • the methods include:
  • a picture ratio of a shooting picture of a shooting device in which the paddle assembly of the drone appears on the pan / tilt is lower than a preset ratio threshold.
  • a drone including:
  • a paddle assembly for driving the fuselage to move
  • a flight controller electrically connected to the paddle assembly
  • a gimbal is mounted on the fuselage, wherein the gimbal includes a gimbal controller and an ESC electrically connected to the gimbal controller and a motor electrically connected to the ESC, and the gimbal controls And the flight controller is electrically connected;
  • the flight controller is configured to obtain the attitude of the drone at the current moment, and predict the flying speed of the drone, and to combine the attitude of the drone and the predicted drone at the current moment.
  • the flight speed of the aircraft is sent to the PTZ controller;
  • the PTZ controller is configured to obtain the attitude of the PTZ at the current moment, and based on the received attitude of the UAV at the current moment and the acquired attitude of the PTZ at the current moment, and the predicted Control the rotation of the motor so that the angle of the gimbal relative to the fuselage is within a specific angle range;
  • a picture ratio of a shooting picture of a shooting device in which the paddle assembly of the drone appears on the pan / tilt is lower than a preset ratio threshold.
  • the present invention controls the rotation of the gimbal according to the predicted flying speed of the drone, the attitude of the drone at the current moment, and the attitude of the gimbal at the current moment, so that the gimbal
  • the angle with respect to the fuselage is within a certain angle range, which ensures that the ratio of the paddle component in the shooting picture is small or that the paddle component does not exist, thereby ensuring that the shooting picture is available and the user's shooting experience is better;
  • the above-mentioned manner of controlling the rotation of the gimbal can ensure the smoothness of the shooting picture, improve the shooting quality, and improve the shooting experience of the user.
  • FIG. 1 is a schematic flowchart of a gimbal or drone control method according to an embodiment of the present invention
  • FIG. 2 is an application scenario diagram of a PTZ or UAV control method in an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a specific implementation manner of a control method for a pan / tilt or an unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of another specific implementation manner of a control method for a pan / tilt or an unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram of a gimbal in an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of an unmanned aerial vehicle in an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of a specific implementation manner of a drone according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a gimbal control method according to a first embodiment of the present invention.
  • the execution body of the PTZ control method is a PTZ 200, such as a PTZ controller, or an independent controller provided on the PTZ 200.
  • the head 200 may be a single-axis head, a two-axis head, a three-axis head, etc., which is not specifically limited in this embodiment.
  • the gimbal 200 of this embodiment is mounted on an unmanned aerial vehicle, such as an unmanned aerial vehicle. This embodiment uses a drone as an example for description.
  • the drone of this embodiment may be a multi-rotor drone.
  • the drone includes a flight controller 100, a gimbal 200, and a photographing device 300.
  • the photographing device 300 is mounted on the body of the drone through the gimbal 200.
  • the head 200 may be a single-axis head 200 or a two-axis head 200, or may be a three-axis head 200 or a four-axis head 200.
  • the photographing device 300 of this embodiment is not limited to a camera in the traditional sense.
  • the photographing device 300 may be an image capturing device or an imaging device (such as a camera, a camcorder, an infrared imaging device, an ultraviolet imaging device, or a similar device).
  • An audio capture device for example, a parabolic reflective microphone
  • the shooting device 300 may provide static sensing data (such as a picture) or dynamic sensing data (such as a video).
  • the gimbal 200 is in communication connection with the flight controller 100, for example, based on a CAN bus (Controller Area Network) or other means of communication connection.
  • the flight controller 100 can control the rotation of the pan / tilt head 200 to control the rotation of the photographing device 300 mounted on the pan / tilt head 200.
  • the photographing device 300 is communicatively connected with the flight controller 100, for example, the photographing device 300 is directly communicatively connected with the flight controller 100, or the photographing device 300 is communicatively connected with the flight controller 100 through the gimbal 200 .
  • the operation of the photographing device 300 may be controlled by the flight controller 100, and a photographed picture may be acquired from the photographing device 300.
  • the drone may include a paddle assembly 400.
  • the paddle assembly 400 may include one or more rotating bodies, propellers, blades, motors, electronic governors, and the like.
  • the rotating body of the paddle assembly 400 may be a self-tightening rotating body, a rotating body assembly, or another rotating body power unit.
  • the drone may have one or more paddle assemblies 400. All paddle assemblies 400 may be of the same type.
  • one or more paddle assemblies 400 may be of different types.
  • the paddle assembly 400 may be mounted on the drone by suitable means, such as by a support element (such as a drive shaft).
  • the paddle assembly 400 can be installed in any suitable position of the drone, such as the top, bottom, front, rear, side, or any combination thereof. By controlling one or more paddle assemblies 400 to control the flight of the drone.
  • the drone may be communicatively connected to the terminal 500 (for example, the flight controller 100 is communicatively connected to the terminal 500), and the terminal 500 may be connected to one or more of the drone, the gimbal 200, and the photographing device 300.
  • the method for controlling a pan / tilt according to the first embodiment of the present invention may include the following steps:
  • Step S101 Acquire the attitude of the drone and the attitude of the PTZ 200 at the current moment.
  • a first inertial measurement unit (not shown) is provided on the gimbal 200 for detecting the attitude of the gimbal 200.
  • the gimbal 200 of this embodiment directly obtains the attitude of the gimbal 200 through the first inertial measurement unit.
  • a second inertial measurement unit (not shown) is provided on the drone for detecting the attitude of the drone.
  • the PTZ 200 may passively receive the real-time attitude of the drone, and may also actively acquire the real-time attitude of the drone.
  • step S101 is passively receiving the attitude of the drone transmitted by the drone according to the first specific frequency.
  • the flight controller 100 of the drone after receiving the attitude of the drone sent by the second inertial measurement unit, the flight controller 100 of the drone sends the attitude of the drone to the gimbal 200 according to the first specific frequency.
  • the specific frequency may be set as required.
  • the flight controller 100 may send the attitude of the drone to the gimbal 200 at a frequency of 1 s, 2 s, 3 s, or other time intervals.
  • step S101 is performed after sending the first attitude request instruction to the drone.
  • the PTZ 200 can actively acquire the attitude of the drone according to the need, to avoid being passive when not needed. The waste of resources caused by receiving the attitude of the drone sent by the flight controller 100.
  • Step S102 predict the flying speed of the drone.
  • the drone includes a controlled flight mode and an autonomous flight mode.
  • the flight speed of the drone is predicted in different ways. The following will be used to control the drone in the controlled flight mode and the drone The two situations in autonomous flight mode are explained separately.
  • the movement of the drone is controlled by a remote control device.
  • the remote control device sends control signals to the drone to control the forward, backward, left, and right flight of the drone.
  • the drone is in a hovering state.
  • the remote control device may be a remote controller or a terminal device installed with an APP, so as to control the flight of the drone through the APP.
  • the terminal device may be a mobile device such as a mobile phone or a tablet computer capable of installing an APP, or a fixed device such as a PC or the like capable of installing an APP.
  • the flying speed of the drone is determined by the speed control instruction of the remote control device.
  • predicting the flight speed of the drone includes the following steps:
  • Step S301 receiving a speed control instruction sent by a remote control device
  • the PTZ 200 indirectly obtains the speed control instruction sent by the remote control device through the drone.
  • Step S302 Predict the flying speed of the drone according to the speed control instruction.
  • the remote control device is a remote controller
  • the speed control instruction includes a lever value of the remote controller.
  • the lever value of this embodiment is used to indicate the flying speed of the drone.
  • the flight speed of the drone is predicted based on the stick value. Specifically, the larger the lever value, the greater the flying speed of the drone; otherwise, the flying speed of the drone is smaller.
  • the drone autonomously flies according to the position information of the drone and / or the shooting target detected by the navigation system. For example, after the user activates the autonomous flight mode, the drone can use the autonomous flight mode selected by the user to pre-set the flight path and attitude in the drone flight control system or to control the drone according to the current position and attitude.
  • the flight is controlled autonomously, and various flight states and effects can be achieved without the need for remote control equipment.
  • the autonomous flight mode may include an oblique line mode, an orbit mode, a spiral mode, a soaring mode or a comet orbit mode, etc., and may also include a forced landing, such as an automatic return flight after a drone bomber.
  • the flight strategy corresponding to the oblique line mode may include: the drone controls the drone to fly along a horizontal plane (that is, a direction parallel to the ground) according to the position information of the target object (ie, the shooting target). Fly along a plane at an angle to the horizontal plane.
  • the size of the included angle can be set as required, for example, 45 °, so that the target object is photographed at different angles to obtain a richer content shooting picture.
  • controlling the drone to fly along the horizontal plane means that the drone only has a horizontal flight speed, and does not have a vertical direction (that is, a direction perpendicular to the ground).
  • the flight strategy corresponding to the oblique line mode includes: the drone controls the drone to fly away from the target object in an S-shaped curve according to the position information of the target object, so as to capture a more beautifully framed picture.
  • the bending degree of the S-shaped curve can be set as required to meet the needs of shooting.
  • the flight strategy corresponding to the surround mode includes: the drone controls the drone to fly around the target object at a specified distance according to the position information of the target object.
  • the drone of this embodiment takes the target object as the center and makes a circular motion around the target object, thereby realizing the shooting of the target object in a 360 ° direction.
  • the shape of the flight trajectory surrounding the target object can be selected as required, and can be circular, oval, or other.
  • the flight strategy corresponding to the spiral mode includes: the drone controls, based on the position information of the target object, the drone to use the Pebonacci spiral, the proportional spiral, the equiangular spiral, and Archimedes. De spiral or other shapes of spirals fly around the target for the trajectory.
  • the flight strategy corresponding to the soaring mode includes: the drone controls the drone to fly at a preset angle to a first specified position relative to the target object according to the position information of the target object, and then controls the drone. Vertical ground rise.
  • the preset angle, the first designated position, and the flying speed of the drone can be set according to actual needs, so as to shoot a variety of pictures.
  • the flight strategy corresponding to the comet orbit mode includes: the drone controls the drone to fly near the target object to a second specified position according to the position information of the target object, and to fly around the target object from the second specified position After that, fly away from the target object.
  • the second specified position can be set as required.
  • the second specified position is a specific distance from the specified position of the target object, and the second specified position is located at a specific position of the specified position of the target object. Screen.
  • the number of laps around the target object after the UAV flies to the second designated position can be set as required, for example, one week, multiple weeks, or less than one week.
  • predicting the flight speed of the drone includes the following steps:
  • Step S401 Acquire the attitude of the drone at the previous moment
  • Step S402 Predict the flying speed of the drone according to the acquired attitude of the drone at the current moment (acquired in step S101) and the acquired attitude of the drone at the previous moment.
  • a differential operation is performed on the acquired attitude of the drone at the current moment and the acquired attitude of the drone at the previous moment to predict the flying speed of the drone.
  • the acquired attitude of the drone at the current moment and the acquired attitude of the drone at the previous moment determine the first attitude difference between the drone between the current moment and the previous moment; according to The first attitude difference and the time difference between the current moment and the previous moment predict the flying speed of the drone.
  • the formula for calculating the flying speed of a drone is as follows:
  • t is the previous time
  • t + 1 is the current time
  • flight_atti_yaw (t) is the attitude of the drone at the previous time
  • flight_atti_yaw (t + 1) is the attitude of the drone at the current time.
  • Step S103 Control the rotation of the PTZ 200 so that the angle of the PTZ 200 relative to the UAV is controlled according to the acquired attitude of the UAV and the attitude of the PTZ 200 and the predicted flying speed of the UAV. Located within a specific angle range, such as the angle of the gimbal 200 relative to the drone ⁇ 10 °.
  • the angle of the PTZ 200 with respect to the drone refers to an included angle between the yaw axis bracket of the PTZ 200 and the bottom of the fuselage of the UAV.
  • the picture ratio of the shooting screen of the shooting device 300 of the UAV's paddle assembly 400 appearing on the gimbal 200 is lower than a preset ratio threshold, including the following two cases:
  • the paddle assembly 400 does not appear in the shooting picture. In this case, the effect of the shooting picture is better and the shooting experience of the user is better.
  • the paddle assembly 400 appears in the shooting screen, but the ratio of the screen appearing in the shooting screen is lower than a preset ratio threshold.
  • the shooting screen can be image-processed (cropped) in the later stage to capture the shooting screen.
  • the paddle assembly 400 is removed.
  • the effect of the shooting picture obtained in the second case is not as good as the first one, the control accuracy of the rotation of the PTZ 200 in the second case is lower than that in the first case.
  • the second case controls the PTZ 200 to follow nobody. It is easier to realize the movement and rotation of the machine.
  • the preset ratio threshold can be set according to actual needs, such as 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, etc.
  • the proportion threshold should not be too large, the proportion threshold is too large, and the paddle assembly 400 in the shooting picture has a large picture proportion. Removed, or the removed shooting picture is not available, bringing a poor shooting experience to the user.
  • a scaling factor K for characterizing the speed of rotation of the gimbal 200 is first determined according to the predicted flying speed of the drone; then, according to the acquired attitude and cloud of the drone at the current moment, The attitude of the stage 200 and the scale factor K control the rotation of the head 200.
  • K is positively correlated with the predicted flying speed of the drone, that is, the faster the predicted flying speed of the drone, the larger K is; when the predicted flying speed of the drone is small, K The smaller. If the attitude of the UAV at the current time and the attitude of the PTZ 200 at the current time are constant, the larger K is, the greater the speed at which the PTZ 200 rotates, and the tighter the PTZ 200 follows the UAV. The smaller K is, the smaller the rotation speed of the gimbal 200 is, and the slower the gimbal 200 follows the drone, ensuring the smoothness of the shooting picture, especially suitable for the situation where the drone is hovering or the flight speed is small.
  • the drone when the drone is in a controlled flight mode, for example, the drone is controlled by the remote control, the larger the remote control's lever value, the greater the predicted drone's flight speed; the smaller the lever value, the The lower the predicted drone flight speed.
  • a feedforward is given to the rotation of the gimbal 200 according to the lever value, and the gimbal 200 is controlled to follow the drone, so that when the drone moves fast, it is ensured that the ratio of the paddle assembly 400 in the shooting picture is low
  • the preset ratio threshold ensures the stability of the shooting picture when the drone is hovering or moving slowly.
  • the drone's flight speed is predicted according to the drone's attitude at the current moment and the drone's attitude at the previous moment, and then the predicted drone's flight speed is applied to the gimbal.
  • the rotation of 200 is used as a feedforward.
  • the flying speed is faster, the larger K is, the faster the gimbal 200 will follow, ensuring that the picture ratio of the paddle assembly 400 in the shooting picture is lower than the preset ratio threshold.
  • the flying speed is 0 (drone hovering) or slower, the gimbal 200 is slower to ensure the stability of the shooting picture.
  • K and the predicted flying speed of the UAV are in a linear mapping relationship or a curve mapping relationship.
  • a mapping relationship between K and the predicted flying speed of the UAV may be selected according to needs.
  • K is linearly proportional to the predicted flying speed of the drone, ensuring the speed consistency of the gimbal 200 following the drone, thereby ensuring the stability of the shooting picture.
  • the second attitude difference based on the acquired current attitude of the drone and the attitude of the gimbal 200; then, determine the gimbal 200 based on K and the second attitude difference
  • the rotation speed of the gimbal 200 is controlled according to the rotation speed of the gimbal 200.
  • the calculation formula of the second attitude difference and the rotation speed of the head 200 is not limited to the above formula, and the above formula may be further improved by considering the error factor.
  • the method of controlling the pan / tilt in this embodiment is applicable to a scene where the shooting target is switched, for example, the shooting target is switched from A to B, and the drone needs to be moved from the position of A to the position of B.
  • the cloud The station 200 needs to follow the drone to rotate, so that both A and B are in a specific position in the shooting frame, such as the center. In this process, according to the predicted flying speed of the drone moving from the position of A to the position of B Feed forward the rotation of the gimbal 200 to ensure that the frame ratio of the paddle assembly 400 in the shooting frame is lower than a preset ratio threshold.
  • the rotation of the gimbal 200 is controlled according to the predicted flying speed of the drone, the attitude of the drone at the current moment, and the attitude of the gimbal 200 at the current moment, so that the gimbal 200 is relatively
  • the angle of the fuselage is within a specific angle range, ensuring that the ratio of the paddle assembly 400 in the shooting picture is small or that the paddle assembly 400 does not exist in the shooting picture, thereby ensuring that the shooting picture is available and the user's shooting experience is better; and,
  • the above-mentioned manner of controlling the rotation of the PTZ 200 can ensure the smoothness of the shooting picture, improve the shooting quality and improve the shooting experience of the user.
  • the second embodiment of the present invention further provides a PTZ 200.
  • the PTZ 200 in this embodiment includes a motor 230, an ESC 220, and a processor 210.
  • the ESC 220 is electrically connected to the motor 230
  • the processor 210 is electrically connected to the ESC 220
  • the processor 210 is also electrically connected to the unmanned machine.
  • the processor 210 may be a central processing unit 210 (central processing unit, CPU).
  • the processor 210 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the processor 210 in this embodiment may be a PTZ controller (as shown in FIG. 7), or may be an independent controller provided on the PTZ 200.
  • the processor 210 in this embodiment is configured to: obtain the attitude of the drone and the attitude of the gimbal 200 at the current time; predict the flying speed of the drone; and according to the obtained attitude of the drone and the attitude of the gimbal 200 at the current time , And the predicted flying speed of the drone, control the rotation of the gimbal 200 so that the angle of the gimbal 200 relative to the drone is within a specific angle range; among them, the paddle assembly 400 of the drone is within a specific angle range
  • a picture ratio of a shooting picture of the shooting device 300 appearing on the pan / tilt 200 is lower than a preset ratio threshold.
  • the processor 210 in this embodiment may implement corresponding methods as shown in the embodiments of FIG. 1, FIG. 3, and FIG. 4 of the present invention. For details, reference may be made to the description of Embodiment 1 above, and details are not described herein again.
  • the PTZ 200 in this embodiment may further include a storage device, and the storage is further configured to store program instructions.
  • the processor 210 can call the program instructions to implement the corresponding methods as shown in the embodiments of FIG. 1, FIG. 3, and FIG. 4 of the present invention.
  • the storage device may include volatile memory (for example, random-access memory (RAM)); the storage device may also include non-volatile memory (for example, flash memory) (flash memory), hard disk (HDD) or solid-state drive (SSD); the storage device may also include a combination of the above types of memories.
  • volatile memory for example, random-access memory (RAM)
  • non-volatile memory for example, flash memory
  • flash memory flash memory
  • HDD hard disk
  • SSD solid-state drive
  • the storage device may also include a combination of the above types of memories.
  • the gimbal 200 controls the rotation of the gimbal 200 according to the predicted flying speed of the drone, the attitude of the drone at the current moment, and the attitude of the gimbal 200 at the current moment, thereby making the gimbal 200 relative to the aircraft.
  • the angle of the body is within a specific angle range, which ensures that the ratio of the paddle assembly 400 in the shooting picture is small or that the paddle assembly 400 does not exist in the shooting picture, thereby ensuring that the shooting picture is available and the user's shooting experience is better; and, when When the drone is hovering or the flight speed is small, the foregoing manner of controlling the rotation of the PTZ 200 can ensure the smoothness of the shooting picture, improve the shooting quality, and improve the shooting experience of the user.
  • FIG. 1 is a schematic flowchart of a drone control method according to a second embodiment of the present invention.
  • the execution body of the drone control method is a drone equipped with a gimbal 200, for example, the flight controller 100, a combination of the flight controller 100 and the gimbal controller, or an independent control provided on the drone Device.
  • the drone of this embodiment may be a multi-rotor drone.
  • the drone of this embodiment includes a fuselage, a paddle assembly 400 for driving the fuselage, and a gimbal 200 mounted on the fuselage.
  • the gimbal 200 is equipped with a photographing device 300.
  • the drone control method may include the following steps:
  • Step S101 Acquire the attitude of the drone and the attitude of the PTZ 200 at the current moment.
  • the gimbal 200 of the first embodiment directly obtains the attitude of the gimbal 200 through the first inertial measurement unit provided on the gimbal 200.
  • the drone obtains the attitude of the gimbal 200 through the gimbal 200 at the current time, that is, the drone obtains the attitude of the gimbal 200 indirectly.
  • the drone may actively acquire the attitude of the gimbal 200 from the gimbal 200 at the current time.
  • the drone may send a second attitude request instruction to the gimbal 200 to obtain the attitude of the gimbal 200 at the current time.
  • the attitude of the PTZ 200 sent by the PTZ 200 according to the second specific frequency may also be passively received.
  • the gimbal 200 sends the attitude of the gimbal 200 detected by the first inertial measurement unit to the drone at a second specific frequency (such as an interval of 1s, 2s, 3s, etc.).
  • pan / tilt 200 of the embodiment indirectly acquires the attitude of the drone at the current time through the drone, and the drone of this embodiment directly obtains the current time without using the second inertial measurement unit provided on the drone.
  • Man-machine gesture In addition, the pan / tilt 200 of the embodiment indirectly acquires the attitude of the drone at the current time through the drone, and the drone of this embodiment directly obtains the current time without using the second inertial measurement unit provided on the drone. Man-machine gesture.
  • the execution subject of obtaining the attitude of the drone at the current time in step S101 is the flight controller 100, and the execution subject of obtaining the attitude of the PTZ 200 at the current time is the gimbal controller.
  • Step S102 predict the flying speed of the drone.
  • step S102 is the flight controller 100.
  • the PTZ 200 of the embodiment obtains the speed control instruction sent by the remote control device indirectly through the drone, and the drone of this embodiment directly receives the speed control sent by the remote control device. instruction.
  • Step S103 Control the rotation of the PTZ 200 so that the angle of the PTZ 200 with respect to the fuselage is located according to the acquired attitude of the drone and the attitude of the PTZ 200 and the predicted flying speed of the UAV. Within a specific angle range.
  • the picture ratio of the shooting picture of the shooting device 300 where the paddle assembly 400 of the drone appears on the gimbal 200 is lower than a preset ratio threshold.
  • the execution subject of step S103 may be the flight controller 100, the PTZ controller, or a combination of the flight controller 100 and the PTZ controller.
  • the flight controller 100 is based on the acquired attitude of the drone and the attitude of the gimbal 200 at the current moment, and the predicted drone's
  • the flying speed determines the rotation speed of the gimbal 200, and sends the rotation speed of the gimbal 200 to the gimbal controller.
  • the gimbal controller controls the rotation of the gimbal 200 according to the rotation speed of the gimbal 200.
  • the UAV control method of the third embodiment of the present invention controls the rotation of the PTZ 200 according to the predicted flying speed of the UAV, the attitude of the UAV at the current moment, and the attitude of the PTZ 200 at the current moment, so that the PTZ The angle of 200 relative to the fuselage is within a specific angle range, ensuring that the ratio of the paddle assembly 400 in the shooting picture is small or that the paddle assembly 400 does not exist in the shooting picture, thereby ensuring that the shooting picture is available and the user's shooting experience is better;
  • the foregoing manner of controlling the rotation of the PTZ 200 can ensure the smoothness of the shooting picture, improve the shooting quality, and improve the shooting experience of the user.
  • the fourth embodiment of the present invention provides an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes a fuselage, a paddle assembly 400, a flight controller 100, and a gimbal 200.
  • the paddle assembly 400 is used to drive the fuselage to move.
  • the flight controller 100 is electrically connected to the paddle assembly 400 to drive the fuselage to move.
  • the gimbal 200 is mounted on the fuselage.
  • the gimbal 200 in this embodiment includes a gimbal controller and an ESC 220 electrically connected to the gimbal controller and a motor 230 electrically connected to the ESC 220.
  • the controller 100 is electrically connected.
  • the flight controller 100 is configured to obtain the attitude of the drone at the current moment and predict the flight speed of the drone, and send the attitude of the drone at the current moment and the predicted flight speed of the drone.
  • the PTZ controller To the PTZ controller;
  • the PTZ controller is used to obtain the attitude of the PTZ 200 at the current time, and based on the received attitude of the UAV at the current time and the acquired attitude of the PTZ 200 at the current time, and the predicted flight of the UAV
  • the speed controls the rotation of the motor 230 so that the angle of the gimbal 200 relative to the fuselage is within a specific angle range.
  • a picture ratio of a shooting picture of the shooting device 300 of the UAV paddle assembly 400 appearing on the pan / tilt 200 is lower than a preset ratio threshold.
  • the flight controller 100 when the drone is in a controlled flight mode, is configured to: receive a speed control instruction sent by a remote control device; and predict the unmanned person according to the speed control instruction The flying speed of the aircraft; wherein when the drone is in a controlled flight mode, the motion of the drone is controlled by the remote control device.
  • the remote control device is a remote controller
  • the speed control instruction includes: a lever value of the remote controller; and the flight controller 100 is configured to predict the unmanned person based on the lever value. Speed of the aircraft.
  • the flight controller 100 when the drone is in an autonomous flight mode, the flight controller 100 is configured to: acquire the attitude of the drone at the previous moment; and according to the acquired current moment, the drone The attitude of the drone and the attitude of the drone obtained at the previous moment predict the flying speed of the drone.
  • the flight controller 100 is configured to perform a differential operation on the acquired attitude of the drone at the current moment and the acquired attitude of the drone at the previous moment to predict the Flying speed of drone.
  • the flight controller 100 is configured to determine the drone according to the acquired attitude of the drone at the current moment and the acquired attitude of the drone at the previous moment. A first attitude difference between the current time and the previous time; and predicting a flying speed of the drone based on the first attitude difference and a time difference between the current time and the previous time.
  • the autonomous flight mode includes: a slash mode, a surround mode, a spiral mode, a skyward mode, or a comet surround mode.
  • the gimbal controller is configured to: determine a scaling factor for characterizing the speed of rotation of the gimbal 200 according to the predicted flying speed of the drone; and according to the acquired current time The attitude of the UAV, the attitude of the PTZ 200, and the scaling factor control the rotation of the PTZ 200.
  • the scaling coefficient is positively related to the predicted flying speed of the drone.
  • the proportionality coefficient is in a linear mapping relationship or a curved mapping relationship with the predicted flying speed of the UAV.
  • the PTZ controller is configured to: determine a second attitude difference based on the acquired attitude of the UAV and the attitude of the PTZ 200; and according to the scaling coefficient and The second attitude difference determines the rotation speed of the pan / tilt head 200; and controls the rotation of the pan / tilt head 200 according to the rotation speed of the pan / tilt head 200.
  • the PTZ 200 is provided with a first inertial measurement and control unit, and the PTZ controller is configured to obtain the attitude of the PTZ 200 at the current moment through the first inertial measurement unit.
  • a second inertial measurement unit is provided on the fuselage, and the flight controller 100 is configured to obtain the attitude of the drone at the current moment through the second inertial measurement unit.
  • the drone of the fourth embodiment of the present invention controls the rotation of the PTZ 200 according to the predicted flying speed of the UAV, the attitude of the UAV at the current moment, and the attitude of the PTZ 200 at the current moment, so that the PTZ 200 is relatively
  • the angle of the fuselage is within a specific angle range, ensuring that the ratio of the paddle assembly 400 in the shooting picture is small or that the paddle assembly 400 does not exist in the shooting picture, thereby ensuring that the shooting picture is available and the user's shooting experience is better;
  • the above-mentioned manner of controlling the rotation of the PTZ 200 can ensure the smoothness of the shooting picture, improve the shooting quality and improve the shooting experience of the user.
  • an embodiment of the present invention also provides a computer-readable storage medium.
  • the computer-readable storage medium stores program instructions. When the program instructions are executed by a processor, the program instructions are used to execute the PTZ 200 or unmanned in the foregoing embodiment. Machine control method.
  • the program can be stored in a computer-readable storage medium.
  • the program When executed, the processes of the embodiments of the methods described above may be included.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random, Access Memory, RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种云台(200)和无人机控制方法、云台(200)及无人机,其中,所述云台控制方法包括:获取当前时刻无人机的姿态和云台(200)的姿态;预测无人机的飞行速度;根据所获取的当前时刻无人机的姿态和云台(200)的姿态、及所预测的无人机的飞行速度,控制云台(200)的转动,以使云台(200)相对无人机的角度位于特定角度范围内;特定角度范围内,无人机的桨组件(400)出现在云台(200)上的拍摄装置(300)的拍摄画面的画面比例低于预设比例阈值。利用该方法,能够控制云台(200)相对机身的角度在特定角度范围内,确保了桨组件(400)在拍摄画面中的画面比例较小或拍摄画面中不存在桨组件(400),确保了拍摄画面的可用;当无人机悬停或者飞行速度较小时,能够确保拍摄画面的平稳性。

Description

云台和无人机控制方法、云台及无人机 技术领域
本发明涉及云台控制领域,尤其涉及一种云台和无人机控制方法、云台及无人机。
背景技术
现有云台搭载在无人飞行器上,由于机械设计、视角较大等因素的影响,若云台跟随无人飞行器的移动而缓慢转动,云台和无人飞行器之间的相对夹角会越来越大。当云台和无人飞行器之间的相对夹角大于特定角度阈值(如10°,根据机型的不同,该特定角度阈值大小不同)时,云台上的拍摄装置的拍摄画面中就存在桨组件,桨组件在拍摄画面中的占比较大时,拍摄画面则无法使用,需要重新拍摄。因此,必须保证云台和无人飞行器之间的相对夹角较小,这就需要保证云台的跟随无人机飞行器的移动而快速转动。但是,云台跟速度过快,在无人飞行器的姿态不稳定的情况下,比如说无人机悬停时,云台即使只存在微小的晃动,也会在拍摄画面上显示出来。因此需要优化云台跟随无人飞行器的移动而转动的策略。
发明内容
本发明提供一种云台和无人机控制方法、云台及无人机。
具体地,本发明是通过如下技术方案实现的:
根据本发明的第一方面,提供一种云台控制方法,云台搭载在无人机上,所述方法包括:
获取当前时刻所述无人机的姿态和所述云台的姿态;
预测所述无人机的飞行速度;
根据所获取的当前时刻所述无人机的姿态和所述云台的姿态、及所预测的所述无人机的飞行速度,控制所述云台的转动,以使所述云台相对所述无人机的角度位于特定角度范围内;
其中,所述特定角度范围内,所述无人机的桨组件出现在所述云台上的拍摄装置的拍摄画面的画面比例低于预设比例阈值。
根据本发明的第二方面,提供一种云台,云台搭载在无人机上,所述云台包括:
电机;
电调,与所述电机电连接;以及
处理器,所述处理器与所述电调电连接,并与所述无人机电连接;所述处理器用于:
获取当前时刻所述无人机的姿态和所述云台的姿态;
预测所述无人机的飞行速度;
根据所获取的当前时刻所述无人机的姿态和所述云台的姿态、及所预测的所述无人机的飞行速度,控制所述云台的转动,以使所述云台相对所述无人机的角度位于特定角度范围内;
其中,所述特定角度范围内,所述无人机的桨组件出现在所述云台上的拍摄装置的拍摄画面的画面比例低于预设比例阈值。
根据本发明的第三方面,提供一种无人机控制方法,所述无人机包括机身、用于驱动所述机身移动的桨组件和搭载在所述机身上的云台,所述方法包括:
获取当前时刻所述无人机的姿态和所述云台的姿态;
预测所述无人机的飞行速度;
根据所获取的当前时刻所述无人机的姿态和所述云台的姿态、及所预测的所述无人机的飞行速度,控制所述云台的转动,以使所述云台相对所述机身的角度位于特定角度范围内;
其中,所述特定角度范围内,所述无人机的桨组件出现在所述云台上的拍摄装置的拍摄画面的画面比例低于预设比例阈值。
根据本发明的第四方面,提供一种无人机,包括:
机身;
桨组件,用于驱动所述机身移动;
飞行控制器,与所述桨组件电连接;
云台,搭载在所述机身上,其中,所述云台包括云台控制器和与所述云台控制器电连接的电调和与所述电调电连接的电机,所述云台控制器与所述飞行控制器电连 接;
所述飞行控制器,用于获取当前时刻所述无人机的姿态,并预测所述无人机的飞行速度,将所述当前时刻所述无人机的姿态和所预测的所述无人机的飞行速度发送至所述云台控制器;
所述云台控制器,用于获取当前时刻所述云台的姿态,并根据所接收到的当前时刻所述无人机的姿态和所获取的当前时刻所述云台的姿态、及所预测的所述无人机的飞行速度,控制所述电机的转动,以使所述云台相对所述机身的角度位于特定角度范围内;
其中,所述特定角度范围内,所述无人机的桨组件出现在所述云台上的拍摄装置的拍摄画面的画面比例低于预设比例阈值。
由以上本发明实施例提供的技术方案可见,本发明根据预测到的无人机的飞行速度以及当前时刻无人机的姿态、当前时刻云台的姿态来控制云台的转动,从而使得云台相对机身的角度在特定角度范围内,确保了桨组件在拍摄画面中的画面比例较小或拍摄画面中不存在桨组件,进而确保拍摄画面的可用,用户的拍摄体验较佳;并且,当无人机悬停或者飞行速度较小时,上述控制云台转动的方式,能够确保拍摄画面的平稳性,提高了拍摄质量且提高了用户的拍摄体验。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中的云台或无人机控制方法的流程示意图;
图2是本发明一实施例中的云台或无人机控制方法的应用场景图;
图3是本发明一实施例中的云台或无人机控制方法的一种具体实现方式的流程示意图;
图4是本发明一实施例中的云台或无人机控制方法的另一种具体实现方式的流程示意图;
图5是本发明一实施例中的云台的结构框图;
图6是本发明一实施例中的无人机的结构框图;
图7是本发明一实施例中的无人机的一种具体实现方式的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明的云台和无人机控制方法、云台及无人机进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
实施例一
图1为本发明实施例一提供的一种云台控制方法的流程示意图。其中,所述云台控制方法的执行主体为云台200,如云台控制器,也可以为设于云台200上的独立控制器。所述云台200可以为单轴云台、两轴云台或三轴云台等,本实施例对此不作具体限定。此外,本实施例的云台200搭载在无人机飞行器上,如无人机。本实施例以无人机为例进行说明。
本实施例的无人机可以为多旋翼无人机。参见图2,无人机包括飞行控制器100、云台200和拍摄装置300,其中,拍摄装置300通过云台200搭载在无人机的机身上。
云台200可以为单轴云台200或两轴云台200,也可以为三轴云台200或四轴云台200。本实施例的拍摄装置300不限于传统意义上的相机,具体而言,拍摄装置300可以为影像捕获设备或者摄像设备(如相机、摄录机、红外线摄像设备、紫外线摄像设备或者类似的设备),音频捕获装置(例如,抛物面反射传声器),红外线摄像设备等,拍摄装置300可以提供静态感应数据(如图片)或者动态感应数据(如视频)。
云台200与飞行控制器100通信连接,例如,基于CAN总线(Controller Area Network,控制器局域网络)或者其他方式通信连接。可通过飞行控制器100控制云台200的转动,从而控制挂载在云台200上的拍摄装置300的转动。此外,在某些实施例中,拍摄装置300与飞行控制器100通信连接,例如,拍摄装置300与飞行控制器100直接通信连接,或者,拍摄装置300通过云台200与飞行控制器100通信连接。可通过飞行控制器100控制拍摄装置300的工作、从拍摄装置300获取拍摄画面等。
本实施例中,无人机可以包括桨组件400。在本实施例中,桨组件400可以包括一个或者多个旋转体、螺旋桨、桨叶、电机、电子调速器等。例如,桨组件400的旋转体可以是自紧固(self-tightening)旋转体、旋转体组件、或者其它的旋转体动力单元。无人机可以有一个或多个桨组件400。所有的桨组件400可以是相同的类型。可选的,一个或者多个桨组件400可以是不同的类型。桨组件400可以通过合适的手段安装在无人机上,如通过支撑元件(如驱动轴)。桨组件400可以安装在无人机任何合适的位置,如顶端、下端、前端、后端、侧面或者其中的任意结合。通过控制一个或多个桨组件400,以控制无人机的飞行。
在某些实施例中,无人机可与终端500通信连接(例如,飞行控制器100与终端500通信连接),终端500可以向无人机、云台200及拍摄装置300中的一个或者多个提供控制数据,并且从无人机、云台200及负载拍摄装置300中的一个或者多个中接收信息(如无人机、云台200或者拍摄装置300的位置及/或运动信息,拍摄装置300捕获的影像数据)。
以下实施例将对云台控制方法进行详细描述。如图1所示,本发明实施例一的云台控制方法可以包括如下步骤:
步骤S101:获取当前时刻无人机的姿态和云台200的姿态。
在本实施例中,云台200上设有第一惯性测量单元(未显示),用于检测云台200的姿态。本实施例的云台200通过第一惯性测量单元,直接获取当前时刻云台200的姿态。
进一步的,无人机上设有第二惯性测量单元(未显示),用于检测无人机的姿态。
在步骤S101中,云台200可被动接收无人机的实时姿态,也可以主动获取无人机的实时姿态。例如,在其中一实现方式中,步骤S101是被动的接收无人机按照第一特定频率发送的该无人机的姿态。在本实现方式中,无人机的飞行控制器100在接收到第二惯性测量单元发送的该无人机的姿态后,按照第一特定频率发送该无人机的姿态至云台200。其中,特定频率可根据需要设定,例如,飞行控制器100可按照1s、2s、3s或者其他时间间隔的频率发送该无人机的姿态至云台200。
在另一实现方式中,步骤S101是在发送第一姿态请求指令至无人机后执行的,本实现方式中,云台200可根据需要主动获取无人机的姿态,避免不需要时,被动的 接收飞行控制器100发送的无人机的姿态导致的资源浪费。
步骤S102:预测无人机的飞行速度。
本实施例中,无人机包括被控飞行模式和自主飞行模式,不同的飞行模式下,无人机的飞行速度的预测方式不同,以下将对无人机处于被控飞行模式和无人机处于自主飞行模式两种情况分别进行说明。
(1)无人机处于被控飞行模式
在被控飞行模式下,无人机的运动由遥控设备控制。例如,由遥控设备向无人机发送控制信号控制无人机的向前、后、左、右的飞行,当遥控设备不再向无人机发送控制信号时,无人机处于悬停的状态。其中,遥控设备可以为遥控器,也可以为安装有APP的终端设备,从而通过APP控制无人机的飞行。进一步的,终端设备可以为能够安装APP的手机、平板电脑等可移动设备,也可以为能够安装APP的固定设备如PC等。
当无人机处于被控飞行模式时,无人机的飞行速度由遥控设备的速度控制指令决定。参见图3,本实施中,当无人机处于被控飞行模式时,预测无人机的飞行速度包括以下步骤:
步骤S301:接收遥控设备发送的速度控制指令;
在该步骤中,云台200通过无人机间接获取遥控设备的发送的速度控制指令。
步骤S302:根据速度控制指令,预测无人机的飞行速度。
在一可行的实现方式中,遥控设备为遥控器,速度控制指令包括遥控器的杆值,本实施例的杆值用于指示无人机的飞行速度。在本实现方式中,根据杆值,预测无人机的飞行速度的。具体的,杆值越大,无人机的飞行速度越大;反之,无人机的飞行速度越小。
(2)无人机处于自主飞行模式
在自主飞行模式下,无人机根据导航系统检测的无人机和/或拍摄目标的位置信息自主飞行。例如,当用户启动自主飞行模式后,无人机可以在用户选定的自主飞行模式下根据无人机飞行控制系统中预先设定好的飞行路径和姿态或者根据当前位置与姿态对无人机的飞行进行自主控制,无需遥控设备的控制也可以达到各种飞行状态和效果。本实施例中,自主飞行模式可以包括斜线模式、环绕模式、螺旋模式、冲天 模式或彗星环绕模式等等,还可以包括迫降,例如无人机炸机后的自动返航。以下分别对各种无人机自主飞行模式进行说明。
在某些实施例中,斜线模式对应的飞行策略可包括:无人机根据目标对象(即拍摄目标)的位置信息,控制无人机先沿着水平面(即平行于地面的方向)飞行再沿着与水平面呈一定夹角的平面飞行。其中,夹角的大小可根据需要设定,例如,45°,从而在不同角度对目标对象进行拍摄,获得内容较为丰富的拍摄画面。另外需要说明的是,控制无人机先沿着水平面飞行是指无人机只存在水平方向的飞行速度,不存在垂直方向(即垂直于地面的方向)的飞行速度。
在某些实施例中,斜线模式对应的飞行策略包括:无人机根据目标对象的位置信息,控制无人机远离目标对象以S形曲线飞行,从而拍摄到构图更加美观的画面。其中,S形曲线的弯曲程度可根据需要设定,以满足拍摄的需求。
在某些实施例中,环绕模式对应的飞行策略包括:无人机根据目标对象的位置信息,控制无人机按照指定距离环绕目标对象飞行。本实施例的无人机以目标对象为中心,环绕目标对象作圆周运动,从而实现360°方向对目标对象的拍摄。其中,环绕目标对象飞行的飞行轨迹的形状可根据需要进行选择,可以为圆形、椭圆形或其它。
在某些实施例中,螺旋模式对应的飞行策略包括:无人机根据目标对象的位置信息,控制无人机以裴波那契螺旋线、等比螺旋线、等角螺旋线、阿基米德螺旋线或者其他形状的螺旋线为轨迹环绕目标对象飞行。
在某些实施例中,冲天模式对应的飞行策略包括:无人机根据目标对象的位置信息,控制无人机按照预设角度倾斜飞行至相对目标对象的第一指定位置后,控制无人机垂直地面上升。其中,预设角、第一指定位置以及无人机上升的飞行速度均可根据实际需要设定,从而拍摄出多样化的画面。
在某些实施例中,彗星环绕模式对应的飞行策略包括:无人机根据目标对象的位置信息,控制无人机靠近目标对象飞行至第二指定位置,并从第二指定位置围绕目标对象飞行之后,远离目标对象飞行。其中,第二指定位置可根据需要设定,例如,第二指定位置为距离目标对象的指定位置特定距离处,且第二指定位置位于目标对象的指定位置的特定方位,从而拍摄出多样化的画面。另外,本实施例中,无人机飞行至第二指定位置后环绕目标对象飞行的圈数可根据需要设定,例如,一周、多周或者不足一周。
参见图4,当无人机处于自主飞行模式时,预测无人机的飞行速度包括以下步骤:
步骤S401:获取上一时刻无人机的姿态;
步骤S402:根据所获取的当前时刻无人机的姿态(步骤S101中获取)和所获取的上一时刻无人机的姿态,预测无人机的飞行速度。
具体的,对所获取的当前时刻无人机的姿态和所获取的上一时刻无人机的姿态进行差分运算,预测无人机的飞行速度。在本实施例中,根据所获取的当前时刻无人机的姿态和所获取的上一时刻无人机的姿态,确定无人机在当前时刻和上一时刻之间的第一姿态差;根据第一姿态差及当前时刻和上一时刻的时间差,预测无人机的飞行速度。无人机的飞行速度计算公式如下:
无人机的飞行速度=(flight_atti_yaw(t+1)-flight_atti_yaw(t))/delta_t(1)
公式(1)中,t为上一时刻,t+1为当前时刻,flight_atti_yaw(t)为上一时刻无人机的姿态,flight_atti_yaw(t+1)为当前时刻无人机的姿态。
步骤S103:根据所获取的当前时刻无人机的姿态和云台200的姿态、及所预测的无人机的飞行速度,控制云台200的转动,以使云台200相对无人机的角度位于特定角度范围内,如云台200相对无人机的角度≤10°。
需要说明的是,本发明实施例中,云台200相对无人机的角度是指云台200的偏航轴支架相对无人机的机身底部的夹角。
其中,特定角度范围内,无人机的桨组件400出现在云台200上的拍摄装置300的拍摄画面的画面比例低于预设比例阈值,包括以下两种情况:
第一种,特定角度范围内,桨组件400不出现在拍摄画面中,这种情况下,拍摄画面的效果较佳,用户的拍摄体验较佳。
第二种,特定角度范围内,桨组件400出现在拍摄画面中,但出现在拍摄画面中的画面比例低于预设比例阈值,可通过后期对拍摄画面进行图像处理(裁剪),将拍摄画面中的桨组件400去除。第二种情况获得的拍摄画面的效果虽然不如第一种,但第二种情况对云台200转动的控制精度相比第一种情况要求要低,第二种情况控制云台200跟随无人机的移动而转动实现更加容易。其中,预设比例阈值可以根据实际需求设定,比如1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、15%、20%等等。 需要说明的是,在第二种情况中,比例阈值不宜太大,比例阈值太大,拍摄画面中的桨组件400的画面比例较大,即使通过后期图像处理的方式,也难以将桨组件400去除,或者去除后的拍摄画面不可用,给用户带来较差的拍摄体验。
具体的,在实现步骤S103时,首先根据所预测的无人机的飞行速度,确定用于表征云台200转动快慢的比例系数K;接着,根据所获取的当前时刻无人机的姿态和云台200的姿态、及比例系数K,控制云台200的转动。在本实施例中,K与所预测的无人机的飞行速度正相关,即所预测的无人机的飞行速度越快,K越大;所预测的无人机的飞行速度较小时,K越小。若当前时刻无人机的姿态和当前时刻云台200的姿态一定,K越大,云台200转动的速度越大,云台200跟随无人机越紧。K越小,云台200转动的速度越小,云台200跟随无人机越慢,确保拍摄画面的平稳性,尤其适用于无人机处于悬停或者飞行速度较小的情况。
其中,在无人机处于被控飞行模式时,例如,由遥控器控制无人机飞行,遥控器的杆值越大,所预测的无人机的飞行速度越大;杆值较小,所预测的无人机的飞行速度越小。本实施例根据杆值给云台200的转动做一个前馈,控制云台200跟随无人机,从而在无人机移动较快时,确保了桨组件400在拍摄画面中的画面占比低于预设比例阈值,在无人机悬停或者移动较慢时,确保了拍摄画面的稳定性。
而在无人机处于自主飞行模式时,根据当前时刻的无人机姿态和上一时刻的无人机姿态预测无人机的飞行速度,再利用所预测的无人机的飞行速度对云台200的转动做一个前馈,当飞行速度较快时,K越大,云台200会跟的越快,确保了桨组件400在拍摄画面中的画面占比低于预设比例阈值。当飞行速度为0(无人机悬停)或者较慢时,云台200跟的较慢,保证拍摄画面的稳定性。
进一步的,K与所预测的无人机的飞行速度呈线性映射关系或曲线映射关系,具体可根据需要选择K与所预测的无人机的飞行速度之间的映射关系。例如,在一实施例中,K与所预测的无人机的飞行速度呈线性正比映射关系,确保云台200跟随无人机的速度一致性,从而能够保证拍摄画面的稳定性。
在控制云台200跟随无人机时,首先根据所获取的当前时刻无人机的姿态和云台200的姿态,确定第二姿态差;接着,根据K和第二姿态差,确定云台200的转动速度;再根据云台200的转动速度,控制云台200的转动。本实施例中,第二姿态差越大,K越大,云台200的转动速度越大,云台200跟的越紧,确保桨组件400在拍摄画面中的画面占比低于预设比例阈值;相反,第二姿态差越小,K越小,云台200 的转动速度越小,云台200跟的越慢,确保拍摄画面的稳定性。
在本实施例中,第二姿态差=(当前时刻无人机的姿态-云台200的姿态),云台200的转动速度=K*第二姿态差。需要说明的是,第二姿态差和云台200的转动速度的计算公式并不限于上述公式,可考虑误差因素,对上述公式进一步改进。
本实施例的云台控制方法适用于拍摄目标切换的场景,例如,拍摄目标由A切换至B,无人机需要由A的位置移动至B的位置,为获得构图较佳的拍摄画面,云台200需要跟随无人机转动,从而使得A和B均处于拍摄画面中的特定位置,如中心,在此过程中,根据所预测的无人机由A的位置移动到B的位置的飞行速度对云台200的转动做一个前馈,确保桨组件400在拍摄画面的画面占比低于预设比例阈值。
本发明实施例的云台控制方法,根据预测到的无人机的飞行速度以及当前时刻无人机的姿态、当前时刻云台200的姿态来控制云台200的转动,从而使得云台200相对机身的角度在特定角度范围内,确保了桨组件400在拍摄画面中的画面比例较小或拍摄画面中不存在桨组件400,进而确保拍摄画面的可用,用户的拍摄体验较佳;并且,当无人机悬停或者飞行速度较小时,上述控制云台200转动的方式,能够确保拍摄画面的平稳性,提高了拍摄质量且提高了用户的拍摄体验。
对应于上述实施例一的云台控制方法,本发明实施例二还提供一种云台200。
实施例二
参见图5,本实施例的云台200包括电机230、电调220和处理器210。其中,电调220与电机230电连接,处理器210与电调220电连接,并且处理器210还与无人机电连接。
所述处理器210可以是中央处理器210(central processing unit,CPU)。所述处理器210还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
进一步的,本实施例的处理器210可以为云台控制器(如图7所示),也可以为设于云台200上的独立控制器。
本实施例的处理器210用于:获取当前时刻无人机的姿态和云台200的姿态; 预测无人机的飞行速度;根据所获取的当前时刻无人机的姿态和云台200的姿态、及所预测的无人机的飞行速度,控制云台200的转动,以使云台200相对无人机的角度位于特定角度范围内;其中,特定角度范围内,无人机的桨组件400出现在云台200上的拍摄装置300的拍摄画面的画面比例低于预设比例阈值。
本实施例的处理器210可以实现如本发明图1、图3和图4实施例中所示的相应方法,具体可参见上述实施例一的描述,此处不再赘述。
此外,本实施例的云台200还可包括存储装置,所述存储器还用于存储程序指令。所述处理器210可以调用所述程序指令,实现如本发明图1、图3和图4实施例中所示的相应方法。
所述存储装置可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储装置也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储装置还可以包括上述种类的存储器的组合。
本发明实施例的云台200,根据预测到的无人机的飞行速度以及当前时刻无人机的姿态、当前时刻云台200的姿态来控制云台200的转动,从而使得云台200相对机身的角度在特定角度范围内,确保了桨组件400在拍摄画面中的画面比例较小或拍摄画面中不存在桨组件400,进而确保拍摄画面的可用,用户的拍摄体验较佳;并且,当无人机悬停或者飞行速度较小时,上述控制云台200转动的方式,能够确保拍摄画面的平稳性,提高了拍摄质量且提高了用户的拍摄体验。
实施例三
图1为本发明实施例二提供的一种无人机控制方法的流程示意图。其中,所述无人机控制方法的执行主体为搭载有云台200的无人机,比如,飞行控制器100、飞行控制器100和云台控制器的结合或者设于无人机上的独立控制器。
本实施例的无人机可以为多旋翼无人机。参见图2,本实施例的无人机包括机身、用于驱动机身移动的桨组件400以及搭载在机身上的云台200,所述云台200搭载有拍摄装置300。
关于无人机的结构部分可参见上述实施例一种的描述,此处不再赘述。
以下实施例将对无人机控制方法进行详细描述。如图1所示,所述无人机控制方法可以包括如下步骤:
步骤S101:获取当前时刻无人机的姿态和云台200的姿态。
实施例一的云台200通过设于该云台200上的第一惯性测量单元,直接获取当前时刻云台200的姿态。与实施例一不同的是,在本实施例中,无人机通过云台200获取当前时刻云台200的姿态,即无人机是间接获取云台200的姿态的。其中,无人机可主动从云台200获取当前时刻云台200的姿态,例如,在需要时,无人机可发送第二姿态请求指令至云台200,从而获取当前时刻云台200的姿态。也可以被动的接收云台200按照第二特定频率发送的该云台200的姿态。例如,云台200以第二特定频率(如间隔1s、2s、3s等等)发送第一惯性测量单元检测的云台200的姿态至无人机。
另外,实施例的云台200是通过无人机间接获取当前时刻无人机的姿态的,而本实施例的无人机通过设于无人机上的第二惯性测量单元,直接获取当前时刻无人机的姿态的。
可选的,步骤S101中的获取当前时刻无人机的姿态的执行主体为飞行控制器100,而步骤S101中的获取当前时刻云台200的姿态的执行主体为云台控制器。
步骤S102:预测无人机的飞行速度。
可选的,步骤S102的执行主体为飞行控制器100。
当无人机处于被控飞行模式时,实施例一种的云台200通过无人机间接获取遥控设备的发送的速度控制指令,而本实施例的无人机直接接收遥控设备发送的速度控制指令。
步骤S103:根据所获取的当前时刻无人机的姿态和云台200的姿态、及所预测的无人机的飞行速度,控制云台200的转动,以使云台200相对机身的角度位于特定角度范围内。
其中,特定角度范围内,无人机的桨组件400出现在云台200上的拍摄装置300的拍摄画面的画面比例低于预设比例阈值。
可选的,步骤S103的执行主体可以为飞行控制器100,也可以为云台控制器,还可以为飞行控制器100和云台控制器的结合。当步骤S103的执行主体为飞行控制器100和云台控制器的结合时,飞行控制器100根据所获取的当前时刻无人机的姿态和云台200的姿态、及所预测的无人机的飞行速度,确定云台200的转动速度,并发送云台200的转动速度至云台控制器,云台控制器根据所述云台200的转动速度,控制 所述云台200的转动。
实施例三的无人机控制方法的其他部分的实现原理与实施例一相类似,此处不再赘述。
本发明实施例三的无人机控制方法,根据预测到的无人机的飞行速度以及当前时刻无人机的姿态、当前时刻云台200的姿态来控制云台200的转动,从而使得云台200相对机身的角度在特定角度范围内,确保了桨组件400在拍摄画面中的画面比例较小或拍摄画面中不存在桨组件400,进而确保拍摄画面的可用,用户的拍摄体验较佳;并且,当无人机悬停或者飞行速度较小时,上述控制云台200转动的方式,能够确保拍摄画面的平稳性,提高了拍摄质量且提高了用户的拍摄体验。
实施例四
结合2、图6以及图7,本发明实施例四提供一种无人机,该无人机包括机身、桨组件400、飞行控制器100以及云台200。其中,桨组件400用于驱动机身移动。飞行控制器100与桨组件400电连接,以驱动机身移动。云台200搭载在机身上,本实施例的云台200包括云台控制器和与云台控制器电连接的电调220和与电调220电连接的电机230,云台控制器与飞行控制器100电连接。
在本实施例中,飞行控制器100,用于获取当前时刻无人机的姿态,并预测无人机的飞行速度,将当前时刻无人机的姿态和所预测的无人机的飞行速度发送至云台控制器;
云台控制器,用于获取当前时刻云台200的姿态,并根据所接收到的当前时刻无人机的姿态和所获取的当前时刻云台200的姿态、及所预测的无人机的飞行速度,控制电机230的转动,以使云台200相对机身的角度位于特定角度范围内。
其中,所述特定角度范围内,所述无人机的桨组件400出现在所述云台200上的拍摄装置300的拍摄画面中的画面比例低于预设比例阈值。
在一实施例中,当所述无人机处于被控飞行模式时,所述飞行控制器100,用于:接收遥控设备发送的速度控制指令;根据所述速度控制指令,预测所述无人机的飞行速度;其中,所述无人机处于被控飞行模式时,所述无人机的运动由所述遥控设备控制。
在一实施例中,所述遥控设备为遥控器,所述速度控制指令包括:所述遥控器的杆值;所述飞行控制器100,用于:根据所述杆值,预测所述无人机的飞行速度。
在一实施例中,当所述无人机处于自主飞行模式时,所述飞行控制器100,用于:获取上一时刻所述无人机的姿态;根据所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态,预测所述无人机的飞行速度。
在一实施例中,所述飞行控制器100,用于:对所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态进行差分运算,预测所述无人机的飞行速度。
在一实施例中,所述飞行控制器100,用于:根据所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态,确定所述无人机在当前时刻和所述上一时刻之间的第一姿态差;根据所述第一姿态差及当前时刻和所述上一时刻的时间差,预测所述无人机的飞行速度。
在一实施例中,所述自主飞行模式包括:斜线模式、环绕模式、螺旋模式、冲天模式或彗星环绕模式。
在一实施例中,所述云台控制器,用于:根据所预测的所述无人机的飞行速度,确定用于表征所述云台200转动快慢的比例系数;根据所获取的当前时刻所述无人机的姿态和所述云台200的姿态、及所述比例系数,控制所述云台200的转动。
在一实施例中,所述比例系数与所预测的所述无人机的飞行速度正相关。
在一实施例中,所述比例系数与所预测的所述无人机的飞行速度呈线性映射关系或曲线映射关系。
在一实施例中,所述云台控制器,用于:根据所获取的当前时刻所述无人机的姿态和所述云台200的姿态,确定第二姿态差;根据所述比例系数和所述第二姿态差,确定所述云台200的转动速度;根据所述云台200的转动速度,控制所述云台200的转动。
在一实施例中,所述云台200上设有第一惯性测控单元,所述云台控制器,用于:通过所述第一惯性测量单元,获取当前时刻所述云台200的姿态。
在一实施例中,所述机身上设有第二惯性测量单元,所述飞行控制器100,用于:通过所述第二惯性测量单元,获取当前时刻所述无人机的姿态。
具体可参见上述实施例三中的无人机控制方法的描述,此处不再赘述。
本发明实施例四的无人机,根据预测到的无人机的飞行速度以及当前时刻无人 机的姿态、当前时刻云台200的姿态来控制云台200的转动,从而使得云台200相对机身的角度在特定角度范围内,确保了桨组件400在拍摄画面中的画面比例较小或拍摄画面中不存在桨组件400,进而确保拍摄画面的可用,用户的拍摄体验较佳;并且,当无人机悬停或者飞行速度较小时,上述控制云台200转动的方式,能够确保拍摄画面的平稳性,提高了拍摄质量且提高了用户的拍摄体验。
另外,本发明实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有程序指令,该程序指令被处理器运行时,用于执行上述实施例的云台200或无人机控制方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (56)

  1. 一种云台控制方法,其特征在于,云台搭载在无人机上,所述方法包括:
    获取当前时刻所述无人机的姿态和所述云台的姿态;
    预测所述无人机的飞行速度;
    根据所获取的当前时刻所述无人机的姿态和所述云台的姿态、及所预测的所述无人机的飞行速度,控制所述云台的转动,以使所述云台相对所述无人机的角度位于特定角度范围内;
    其中,所述特定角度范围内,所述无人机的桨组件出现在所述云台上的拍摄装置的拍摄画面的画面比例低于预设比例阈值。
  2. 根据权利要求1所述的方法,其特征在于,所述预测所述无人机的飞行速度,包括:
    当所述无人机处于被控飞行模式时,接收遥控设备发送的速度控制指令;
    根据所述速度控制指令,预测所述无人机的飞行速度;
    其中,所述无人机处于所述被控飞行模式时,所述无人机的运动由所述遥控设备控制。
  3. 根据权利要求2所述的方法,其特征在于,所述遥控设备为遥控器,所述速度控制指令包括:所述遥控器的杆值;
    所述根据所述速度控制指令,预测所述无人机的飞行速度,包括:
    根据所述杆值,预测所述无人机的飞行速度。
  4. 根据权利要求1所述的方法,其特征在于,所述预测所述无人机的飞行速度,包括:
    当所述无人机处于自主飞行模式时,获取上一时刻所述无人机的姿态;
    根据所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态,预测所述无人机的飞行速度。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态,预测所述无人机的飞行速度,包括:
    对所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态进行差分运算,预测所述无人机的飞行速度。
  6. 根据权利要求5所述的方法,其特征在于,所述对所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态进行差分运算,预测所述无人机的飞行速度,包括:
    根据所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态,确定所述无人机在当前时刻和所述上一时刻之间的第一姿态差;
    根据所述第一姿态差及当前时刻和所述上一时刻的时间差,预测所述无人机的飞行速度。
  7. 根据权利要求4所述的方法,其特征在于,所述自主飞行模式包括:斜线模式、环绕模式、螺旋模式、冲天模式或彗星环绕模式。
  8. 根据权利要求1所述的方法,其特征在于,所述根据所获取的当前时刻所述无人机的姿态和所述云台的姿态、及所预测的所述无人机的飞行速度,控制所述云台的转动,包括:
    根据所预测的所述无人机的飞行速度,确定用于表征所述云台转动快慢的比例系数;
    根据所获取的当前时刻所述无人机的姿态和所述云台的姿态、及所述比例系数,控制所述云台的转动。
  9. 根据权利要求8所述的方法,其特征在于,所述比例系数与所预测的所述无人机的飞行速度正相关。
  10. 根据权利要求9所述的方法,其特征在于,所述比例系数与所预测的所述无人机的飞行速度呈线性映射关系或曲线映射关系。
  11. 根据权利要求8所述的方法,其特征在于,所述根据所获取的当前时刻所述无人机的姿态和所述云台的姿态、及所述比例系数,控制所述云台的转动,包括:
    根据所获取的当前时刻所述无人机的姿态和所述云台的姿态,确定第二姿态差;
    根据所述比例系数和所述第二姿态差,确定所述云台的转动速度;
    根据所述云台的转动速度,控制所述云台的转动。
  12. 根据权利要求1所述的方法,其特征在于,所述获取当前时刻所述无人机的姿态,包括:
    被动的接收所述无人机按照第一特定频率发送的该无人机的姿态。
  13. 根据权利要求1所述的方法,其特征在于,所述获取当前时刻所述无人机的姿态的步骤是在发送第一姿态请求指令至所述无人机后执行的。
  14. 根据权利要求1所述的方法,其特征在于,所述云台上设有第一惯性测量单元;
    所述获取当前时刻所述云台的姿态,包括:
    通过所述第一惯性测量单元,获取当前时刻所述云台的姿态。
  15. 一种云台,其特征在于,云台搭载在无人机上,所述云台包括:
    电机;
    电调,与所述电机电连接;以及
    处理器,所述处理器与所述电调电连接,并与所述无人机电连接;所述处理器用于:
    获取当前时刻所述无人机的姿态和所述云台的姿态;
    预测所述无人机的飞行速度;
    根据所获取的当前时刻所述无人机的姿态和所述云台的姿态、及所预测的所述无人机的飞行速度,控制所述云台的转动,以使所述云台相对所述无人机的角度位于特 定角度范围内;
    其中,所述特定角度范围内,所述无人机的桨组件出现在所述云台上的拍摄装置的拍摄画面的画面比例低于预设比例阈值。
  16. 根据权利要求15所述的云台,其特征在于,所述处理器用于:
    当所述无人机处于被控飞行模式时,接收遥控设备发送的速度控制指令;
    根据所述速度控制指令,预测所述无人机的飞行速度;
    其中,所述无人机处于所述被控飞行模式时,所述无人机的运动由所述遥控设备控制。
  17. 根据权利要求16所述的云台,其特征在于,所述遥控设备为遥控器,所述速度控制指令包括:所述遥控器的杆值;
    所述处理器用于:
    根据所述杆值,预测所述无人机的飞行速度。
  18. 根据权利要求15所述的云台,其特征在于,所述处理器用于:
    当所述无人机处于自主飞行模式时,获取上一时刻所述无人机的姿态;
    根据所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态,预测所述无人机的飞行速度。
  19. 根据权利要求18所述的云台,其特征在于,所述处理器用于:
    对所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态进行差分运算,预测所述无人机的飞行速度。
  20. 根据权利要求19所述的云台,其特征在于,所述处理器用于:
    根据所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态,确定所述无人机在当前时刻和所述上一时刻之间的第一姿态差;
    根据所述第一姿态差及当前时刻和所述上一时刻的时间差,预测所述无人机的飞行速度。
  21. 根据权利要求18所述的云台,其特征在于,所述自主飞行模式包括:斜线模式、环绕模式、螺旋模式、冲天模式或彗星环绕模式。
  22. 根据权利要求15所述的云台,其特征在于,所述处理器用于:
    根据所预测的所述无人机的飞行速度,确定用于表征所述云台转动快慢的比例系数;
    根据所获取的当前时刻所述无人机的姿态和所述云台的姿态、及所述比例系数,控制所述云台的转动。
  23. 根据权利要求22所述的云台,其特征在于,所述比例系数与所预测的所述无人机的飞行速度正相关。
  24. 根据权利要求23所述的云台,其特征在于,所述比例系数与所预测的所述无人机的飞行速度呈线性映射关系或曲线映射关系。
  25. 根据权利要求22所述的云台,其特征在于,所述处理器用于:
    根据所获取的当前时刻所述无人机的姿态和所述云台的姿态,确定第二姿态差;
    根据所述比例系数和所述第二姿态差,确定所述云台的转动速度;
    根据所述云台的转动速度,控制所述云台的转动。
  26. 根据权利要求15所述的云台,其特征在于,所述处理器用于:
    被动的接收所述无人机按照特定频率发送的该无人机的姿态。
  27. 根据权利要求15所述的云台,其特征在于,所述处理器获取当前时刻所述无人机的姿态的步骤是在所述处理器发送姿态请求指令至所述无人机后执行的。
  28. 根据权利要求15所述的云台,其特征在于,所述云台上设有第一惯性测量单元;
    所述处理器用于:
    通过所述第一惯性测量单元,获取当前时刻所述云台的姿态。
  29. 根据权利要求15所述的云台,其特征在于,所述处理器为云台控制器。
  30. 一种无人机控制方法,其特征在于,所述无人机包括机身、用于驱动所述机身移动的桨组件和搭载在所述机身上的云台,所述方法包括:
    获取当前时刻所述无人机的姿态和所述云台的姿态;
    预测所述无人机的飞行速度;
    根据所获取的当前时刻所述无人机的姿态和所述云台的姿态、及所预测的所述无人机的飞行速度,控制所述云台的转动,以使所述云台相对所述机身的角度位于特定角度范围内;
    其中,所述特定角度范围内,所述无人机的桨组件出现在所述云台上的拍摄装置的拍摄画面中的画面比例低于预设比例阈值。
  31. 根据权利要求30所述的方法,其特征在于,所述预测所述无人机的飞行速度,包括:
    当所述无人机处于被控飞行模式时,接收遥控设备发送的速度控制指令;
    根据所述速度控制指令,预测所述无人机的飞行速度;
    其中,所述无人机处于被控飞行模式时,所述无人机的运动由所述遥控设备控制。
  32. 根据权利要求31所述的方法,其特征在于,所述遥控设备为遥控器,所述速度控制指令包括:所述遥控器的杆值;
    所述根据所述速度控制指令,预测所述无人机的飞行速度,包括:
    根据所述杆值,预测所述无人机的飞行速度。
  33. 根据权利要求30所述的方法,其特征在于,所述预测所述无人机的飞行速度,包括:
    当所述无人机处于自主飞行模式时,获取上一时刻所述无人机的姿态;
    根据所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态,预测所述无人机的飞行速度。
  34. 根据权利要求33所述的方法,其特征在于,所述根据所获取的当前时刻所述 无人机的姿态和所获取的上一时刻所述无人机的姿态,预测所述无人机的飞行速度,包括:
    对所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态进行差分运算,预测所述无人机的飞行速度。
  35. 根据权利要求34所述的方法,其特征在于,所述对所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态进行差分运算,预测所述无人机的飞行速度,包括:
    根据所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态,确定所述无人机在当前时刻和所述上一时刻之间的第一姿态差;
    根据所述第一姿态差及当前时刻和所述上一时刻的时间差,预测所述无人机的飞行速度。
  36. 根据权利要求33所述的方法,其特征在于,所述自主飞行模式包括:斜线模式、环绕模式、螺旋模式、冲天模式或彗星环绕模式。
  37. 根据权利要求30所述的方法,其特征在于,所述根据所获取的当前时刻所述无人机的姿态和所述云台的姿态、及所预测的所述无人机的飞行速度,控制所述云台的转动,包括:
    根据所预测的所述无人机的飞行速度,确定用于表征所述云台转动快慢的比例系数;
    根据所获取的当前时刻所述无人机的姿态和所述云台的姿态、及所述比例系数,控制所述云台的转动。
  38. 根据权利要求37所述的方法,其特征在于,所述比例系数与所预测的所述无人机的飞行速度正相关。
  39. 根据权利要求38所述的方法,其特征在于,所述比例系数与所预测的所述无人机的飞行速度呈线性映射关系或曲线映射关系。
  40. 根据权利要求37所述的方法,其特征在于,所述根据所获取的当前时刻所述无人机的姿态和所述云台的姿态、及所述比例系数,控制所述云台的转动,包括:
    根据所获取的当前时刻所述无人机的姿态和所述云台的姿态,确定第二姿态差;
    根据所述比例系数和所述第二姿态差,确定所述云台的转动速度;
    根据所述云台的转动速度,控制所述云台的转动。
  41. 根据权利要求30所述的方法,其特征在于,所述机身上设有第二惯性测量单元,所述获取当前时刻所述无人机的姿态,包括:
    通过所述第二惯性测量单元,获取当前时刻所述无人机的姿态。
  42. 根据权利要求30所述的方法,其特征在于,所述获取当前时刻所述云台的姿态,包括:
    被动的接收所述云台按照第二特定频率发送的该云台的姿态。
  43. 根据权利要求30所述的方法,其特征在于,所述获取当前时刻所述云台的姿 态的步骤是在发送第二姿态请求指令至所述云台后执行的。
  44. 一种无人机,其特征在于,包括:
    机身;
    桨组件,用于驱动所述机身移动;
    飞行控制器,与所述桨组件电连接;
    云台,搭载在所述机身上,其中,所述云台包括云台控制器和与所述云台控制器电连接的电调和与所述电调电连接的电机,所述云台控制器与所述飞行控制器电连接;
    所述飞行控制器,用于获取当前时刻所述无人机的姿态,并预测所述无人机的飞行速度,将所述当前时刻所述无人机的姿态和所预测的所述无人机的飞行速度发送至所述云台控制器;
    所述云台控制器,用于获取当前时刻所述云台的姿态,并根据所接收到的当前时刻所述无人机的姿态和所获取的当前时刻所述云台的姿态、及所预测的所述无人机的飞行速度,控制所述电机的转动,以使所述云台相对所述机身的角度位于特定角度范围内;
    其中,所述特定角度范围内,所述无人机的桨组件出现在所述云台上的拍摄装置的拍摄画面中的画面比例低于预设比例阈值。
  45. 根据权利要求44所述的无人机,其特征在于,当所述无人机处于被控飞行模式时,所述飞行控制器,用于:
    接收遥控设备发送的速度控制指令;根据所述速度控制指令,预测所述无人机的飞行速度;
    其中,所述无人机处于被控飞行模式时,所述无人机的运动由所述遥控设备控制。
  46. 根据权利要求45所述的无人机,其特征在于,所述遥控设备为遥控器,所述速度控制指令包括:所述遥控器的杆值;
    所述飞行控制器,用于:根据所述杆值,预测所述无人机的飞行速度。
  47. 根据权利要求44所述的无人机,其特征在于,当所述无人机处于自主飞行模式时,所述飞行控制器,用于:获取上一时刻所述无人机的姿态;根据所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态,预测所述无人机的飞行速度。
  48. 根据权利要求47所述的无人机,其特征在于,所述飞行控制器,用于:对所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态进行差分运算,预测所述无人机的飞行速度。
  49. 根据权利要求48所述的无人机,其特征在于,所述飞行控制器,用于:根据所获取的当前时刻所述无人机的姿态和所获取的上一时刻所述无人机的姿态,确定所述无人机在当前时刻和所述上一时刻之间的第一姿态差;根据所述第一姿态差及当前时刻和所述上一时刻的时间差,预测所述无人机的飞行速度。
  50. 根据权利要求47所述的无人机,其特征在于,所述自主飞行模式包括:斜线 模式、环绕模式、螺旋模式、冲天模式或彗星环绕模式。
  51. 根据权利要求44所述的无人机,其特征在于,所述云台控制器,用于:根据所预测的所述无人机的飞行速度,确定用于表征所述云台转动快慢的比例系数;根据所获取的当前时刻所述无人机的姿态和所述云台的姿态、及所述比例系数,控制所述云台的转动。
  52. 根据权利要求51所述的无人机,其特征在于,所述比例系数与所预测的所述无人机的飞行速度正相关。
  53. 根据权利要求52所述的无人机,其特征在于,所述比例系数与所预测的所述无人机的飞行速度呈线性映射关系或曲线映射关系。
  54. 根据权利要求51所述的无人机,其特征在于,所述云台控制器,用于:
    根据所获取的当前时刻所述无人机的姿态和所述云台的姿态,确定第二姿态差;
    根据所述比例系数和所述第二姿态差,确定所述云台的转动速度;
    根据所述云台的转动速度,控制所述云台的转动。
  55. 根据权利要求44所述的无人机,其特征在于,所述机身上设有第二惯性测量单元,所述飞行控制器,用于:
    通过所述第二惯性测量单元,获取当前时刻所述无人机的姿态。
  56. 根据权利要求44所述的无人机,其特征在于,所述云台上设有第一惯性测控单元,所述云台控制器,用于:
    通过所述第一惯性测量单元,获取当前时刻所述云台的姿态。
PCT/CN2018/096612 2018-07-23 2018-07-23 云台和无人机控制方法、云台及无人机 WO2020019106A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880039246.6A CN110945452A (zh) 2018-07-23 2018-07-23 云台和无人机控制方法、云台及无人机
PCT/CN2018/096612 WO2020019106A1 (zh) 2018-07-23 2018-07-23 云台和无人机控制方法、云台及无人机
EP18928133.0A EP3828661A4 (en) 2018-07-23 2018-07-23 METHOD OF CONTROLLING GIMBAL AND UNMANNED AIRCRAFT, GIMBAL AND UNMANNED AIRCRAFT
US17/119,526 US11245848B2 (en) 2018-07-23 2020-12-11 Method of controlling gimbal, gimbal and UAV

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/096612 WO2020019106A1 (zh) 2018-07-23 2018-07-23 云台和无人机控制方法、云台及无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/119,526 Continuation US11245848B2 (en) 2018-07-23 2020-12-11 Method of controlling gimbal, gimbal and UAV

Publications (1)

Publication Number Publication Date
WO2020019106A1 true WO2020019106A1 (zh) 2020-01-30

Family

ID=69180849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096612 WO2020019106A1 (zh) 2018-07-23 2018-07-23 云台和无人机控制方法、云台及无人机

Country Status (4)

Country Link
US (1) US11245848B2 (zh)
EP (1) EP3828661A4 (zh)
CN (1) CN110945452A (zh)
WO (1) WO2020019106A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115190237A (zh) * 2022-06-20 2022-10-14 亮风台(上海)信息科技有限公司 一种确定承载设备的转动角度信息的方法与设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11543819B2 (en) * 2019-02-25 2023-01-03 Textron Innovations Inc. Remote control unit having active feedback
US11945579B1 (en) * 2020-03-28 2024-04-02 Snap Inc. UAV with manual flight mode selector
CN112179375B (zh) * 2020-08-20 2022-08-09 中国科学院深圳先进技术研究院 安全保护装置的控制方法及相关装置
CN112180962A (zh) * 2020-09-30 2021-01-05 苏州臻迪智能科技有限公司 无人机的飞行控制方法及装置、电子设备、存储介质
CN117751580A (zh) * 2021-12-30 2024-03-22 深圳市大疆创新科技有限公司 无人机的控制方法、装置、无人机及存储介质
US11691730B1 (en) * 2022-04-28 2023-07-04 Beta Air, Llc Systems and methods for the remote piloting of an electric aircraft

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104035445A (zh) * 2014-05-21 2014-09-10 深圳市大疆创新科技有限公司 一种遥控装置、控制系统以及控制方法
CN104808674A (zh) * 2015-03-03 2015-07-29 广州亿航智能技术有限公司 多旋翼飞行器的控制系统、终端及机载飞控系统
CN105373132A (zh) * 2015-11-26 2016-03-02 北京浩恒征途航空科技有限公司 一种基于自动巡航无人机的低空遥感系统及遥感方法
WO2018104829A1 (en) * 2016-12-06 2018-06-14 Amimon Ltd. Unmanned aerial vehicle control
CN108163203A (zh) * 2017-12-31 2018-06-15 深圳市道通智能航空技术有限公司 一种拍摄控制方法、装置及飞行器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211670A (zh) * 2011-05-17 2011-10-12 云南电网公司普洱供电局 固定翼无人机定点拍摄系统及其排查输电线路故障的方法
US8844896B2 (en) * 2011-06-07 2014-09-30 Flir Systems, Inc. Gimbal system with linear mount
CN103587708B (zh) * 2013-11-14 2016-05-25 上海大学 超小型无人旋翼飞行器野外定点零盲区自主软着陆方法
CN110282132B (zh) * 2016-01-26 2021-04-02 深圳市大疆创新科技有限公司 无人飞行器及多目成像系统
CN107209441B (zh) * 2016-01-26 2019-06-18 深圳市大疆灵眸科技有限公司 驱动装置、云台、拍摄设备和无人飞行器以及可移动设备
WO2018006424A1 (en) * 2016-07-08 2018-01-11 SZ DJI Technology Co., Ltd. Systems and methods for improved mobile platform imaging
WO2018082004A1 (en) * 2016-11-04 2018-05-11 XDynamics Limited An unmanned aerial vehicle
CN106598073B (zh) * 2016-12-27 2019-06-28 武汉理工大学 基于四旋翼无人机的岸桥起重机结构检测系统
CN108253966B (zh) * 2016-12-28 2021-08-06 昊翔电能运动科技(昆山)有限公司 无人机飞行三维模拟显示方法
CN107074348B (zh) * 2016-12-30 2021-06-15 深圳市大疆创新科技有限公司 控制方法、装置、设备及无人飞行器
CN107065924A (zh) * 2017-03-15 2017-08-18 普宙飞行器科技(深圳)有限公司 无人机车载起降系统、可车载起降无人机及降落方法
CN107589691A (zh) * 2017-08-11 2018-01-16 北京小米移动软件有限公司 无人机的拍摄控制方法及装置
CN207292469U (zh) * 2017-08-31 2018-05-01 深圳曼塔智能科技有限公司 多姿态传感器云台装置、相机和无人机飞行器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104035445A (zh) * 2014-05-21 2014-09-10 深圳市大疆创新科技有限公司 一种遥控装置、控制系统以及控制方法
CN104808674A (zh) * 2015-03-03 2015-07-29 广州亿航智能技术有限公司 多旋翼飞行器的控制系统、终端及机载飞控系统
CN105373132A (zh) * 2015-11-26 2016-03-02 北京浩恒征途航空科技有限公司 一种基于自动巡航无人机的低空遥感系统及遥感方法
WO2018104829A1 (en) * 2016-12-06 2018-06-14 Amimon Ltd. Unmanned aerial vehicle control
CN108163203A (zh) * 2017-12-31 2018-06-15 深圳市道通智能航空技术有限公司 一种拍摄控制方法、装置及飞行器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3828661A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115190237A (zh) * 2022-06-20 2022-10-14 亮风台(上海)信息科技有限公司 一种确定承载设备的转动角度信息的方法与设备
CN115190237B (zh) * 2022-06-20 2023-12-15 亮风台(上海)信息科技有限公司 一种确定承载设备的转动角度信息的方法与设备

Also Published As

Publication number Publication date
US11245848B2 (en) 2022-02-08
EP3828661A4 (en) 2021-07-07
EP3828661A1 (en) 2021-06-02
CN110945452A (zh) 2020-03-31
US20210120176A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
WO2020019106A1 (zh) 云台和无人机控制方法、云台及无人机
US20200346753A1 (en) Uav control method, device and uav
CN107000839B (zh) 无人机的控制方法、装置、设备和无人机的控制系统
WO2020102927A1 (zh) 拍摄方法和无人机
WO2018072657A1 (zh) 图像处理的方法、处理图像的装置、多目摄像装置以及飞行器
WO2019227441A1 (zh) 可移动平台的拍摄控制方法和设备
WO2020215188A1 (zh) 飞行航线的生成方法、控制装置及无人机系统
WO2019113966A1 (zh) 一种避障方法、装置和无人机
WO2021016897A1 (zh) 航测方法、拍摄控制方法、飞行器、终端、系统及存储介质
WO2020211813A1 (zh) 立面环绕飞行的控制方法、装置、终端及存储介质
WO2019227289A1 (zh) 延时拍摄控制方法和设备
WO2019128275A1 (zh) 一种拍摄控制方法、装置及飞行器
US11272105B2 (en) Image stabilization control method, photographing device and mobile platform
CN108351650A (zh) 一种对飞行器的飞行控制方法、装置及飞行器
WO2018090807A1 (zh) 飞行拍摄控制系统和方法、智能移动通信终端、飞行器
WO2020019212A1 (zh) 视频播放速度控制方法及系统、控制终端和可移动平台
WO2020048365A1 (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制系统
WO2020133410A1 (zh) 一种拍摄方法及装置
WO2020154942A1 (zh) 无人机的控制方法和无人机
WO2023036260A1 (zh) 一种图像获取方法、装置、飞行器和存储介质
WO2019104684A1 (zh) 无人机的控制方法、装置和系统
US20240019866A1 (en) Aerial vehicle control method and apparatus, aerial vehicle, and storage medium
JP7501535B2 (ja) 情報処理装置、情報処理方法、情報処理プログラム
WO2021036947A1 (zh) 一种辅助对焦方法、装置及无人飞行器
WO2020244648A1 (zh) 一种飞行器控制方法、装置及飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018928133

Country of ref document: EP

Effective date: 20210223