WO2022267436A1 - 故障数据处理方法、装置、变频器、空调设备及存储介质 - Google Patents

故障数据处理方法、装置、变频器、空调设备及存储介质 Download PDF

Info

Publication number
WO2022267436A1
WO2022267436A1 PCT/CN2022/070146 CN2022070146W WO2022267436A1 WO 2022267436 A1 WO2022267436 A1 WO 2022267436A1 CN 2022070146 W CN2022070146 W CN 2022070146W WO 2022267436 A1 WO2022267436 A1 WO 2022267436A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
data
frequency converter
fault data
matched
Prior art date
Application number
PCT/CN2022/070146
Other languages
English (en)
French (fr)
Inventor
王豪浩
洪伟鸿
陈俊桦
范波
Original Assignee
合肥美的暖通设备有限公司
广东美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥美的暖通设备有限公司, 广东美的暖通设备有限公司 filed Critical 合肥美的暖通设备有限公司
Publication of WO2022267436A1 publication Critical patent/WO2022267436A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0262Confirmation of fault detection, e.g. extra checks to confirm that a failure has indeed occurred
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics

Definitions

  • the application relates to the technical field of frequency converters, in particular to a fault data processing method, device, frequency converter, air conditioner and storage medium.
  • the frequency converter is a device that adopts frequency conversion technology. Due to the complex operating conditions of the frequency converter and the need to work for a long time, it is inevitable that occasional failures will occur.
  • the embodiment of the present application provides a fault data recording method, which can solve the inconvenience caused by maintenance personnel carrying an oscilloscope in order to detect frequency converter faults in the prior art.
  • the embodiment of the present application provides a fault data processing method, which is applied to a frequency converter, and the method includes:
  • the embodiment of the present application provides a fault data processing method applied to communication equipment, including:
  • the fault data to be matched and different standard fault data determine the fault cause corresponding to the fault data to be matched, wherein the standard fault data is the corresponding fault when the frequency converter fails due to the fault reason data;
  • the reason for the failure is output.
  • the embodiment of the present application provides a fault data processing device applied to frequency converters, including:
  • the first sampling module is used to sample the working parameters of the motor to obtain corresponding first sampling data
  • a fault data storage module configured to store the fault data of the frequency converter if the frequency converter fails, and the fault data is the first sampling data obtained when the frequency converter fails;
  • the fault data sending module is used to send the fault data to the communication device.
  • the embodiment of the present application provides a fault data processing device, which is applied to communication equipment, including:
  • the fault data receiving module is used to receive the fault data sent by the frequency converter, and the fault data is used as the fault data to be matched;
  • a fault cause determining module configured to determine the fault cause corresponding to the fault data to be matched according to the fault data to be matched and different standard fault data, wherein the standard fault data is the fault data corresponding to the fault cause;
  • the failure cause output module is used to output the failure cause.
  • the embodiment of the present application provides a frequency converter, including a memory, a processor, and a computer program stored in the memory and operable on the processor, when the processor executes the computer program Implement the method as described in the first aspect.
  • the embodiment of the present application provides an air conditioner, including the frequency converter as described in the fifth aspect.
  • the embodiment of the present application provides a communication device, including a memory, a processor, and a computer program stored in the memory and operable on the processor, when the processor executes the computer program Implement the method as described in the second aspect.
  • the embodiment of the present application provides a storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, the method as described in the first aspect and/or the second aspect is implemented.
  • the embodiment of the present application provides a computer program product, which causes the air conditioner to execute the method described in the first aspect and/or the second aspect when the computer program product is run on the air conditioner.
  • the working parameters of the motor are collected through the frequency converter itself, and when it is judged that the frequency converter is faulty, the fault data (that is, the first sampling data collected when the frequency converter is faulty) is stored, and then the Fault data is sent to the communication device. Since the inverter itself can obtain fault data, maintenance personnel do not need to carry an oscilloscope when repairing the inverter, which greatly reduces the burden on the maintenance personnel and improves the convenience of the maintenance personnel when repairing the inverter.
  • the maintenance personnel since the fault data can be sent to the communication equipment by the frequency converter, the maintenance personnel only need to obtain the relevant fault data through the communication equipment, that is, they can obtain the fault data of the frequency converter without going to the door, which is beneficial to Choose more suitable maintenance personnel to come to the site for maintenance, which greatly improves the maintenance efficiency of the inverter.
  • FIG. 1 is a schematic diagram of interaction between a frequency converter and a communication device provided in Embodiment 1 of the present application;
  • FIG. 2 is a flow chart of a fault data processing method applied to a frequency converter provided in Embodiment 1 of the present application;
  • FIG. 3 shows a flow chart of another fault data processing method applied to frequency converters provided by Embodiment 2 of the present application
  • FIG. 4 is a flowchart of a fault data processing method applied to a communication device provided in Embodiment 3 of the present application;
  • FIG. 5 is a schematic diagram of a waveform reconstructed according to fault data sent by a frequency converter provided in Embodiment 3 of the present application;
  • FIG. 6 is a schematic diagram of a waveform corresponding to an overcurrent fault displayed by an oscilloscope provided in Embodiment 3 of the present application;
  • FIG. 7 is a schematic structural diagram of a fault data processing device applied to a frequency converter provided in Embodiment 4 of the present application;
  • FIG. 8 is a schematic structural diagram of a fault data processing device applied to communication equipment provided in Embodiment 5 of the present application;
  • FIG. 9 is a schematic structural diagram of a frequency converter provided in Embodiment 6 of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided in Embodiment 7 of the present application.
  • references to "one embodiment” or “some embodiments” or the like in the specification of the present application means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • Fig. 1 shows a schematic diagram of interaction between a frequency converter and a communication device provided by an embodiment of the present application.
  • the inverter itself collects and stores fault data.
  • the communication device receives the fault data sent by the frequency converter, it determines the fault cause corresponding to the fault data, and outputs the fault cause. Since the fault data is collected by the frequency converter itself, maintenance personnel do not need to carry an oscilloscope when performing maintenance on the frequency converter, thereby improving the convenience of the maintenance personnel when maintaining the frequency converter.
  • the maintenance personnel since the fault data can be sent to the communication equipment by the frequency converter, the maintenance personnel only need to obtain the relevant fault data through the communication equipment, that is, they can obtain the fault data of the frequency converter without going to the door, which is beneficial to Choose more suitable maintenance personnel to come to the site for maintenance, which effectively improves the maintenance efficiency.
  • Fig. 2 shows a flow chart of the first fault data processing method provided by Embodiment 1 of the present application. This method is applied to a frequency converter, for example, the following steps are executed by the micro control unit (Microcontroller Unit, MCU) of the frequency converter, which is described in detail as follows:
  • MCU Microcontroller Unit
  • Step S21 sampling the working parameters of the motor to obtain corresponding first sampling data
  • the working parameters of the motor are mainly parameters related to the working of the motor.
  • the working parameters of the motor are cycled with a preset sampling period. parameters to sample.
  • Step S22 if the inverter fails, store the fault data of the inverter, and the fault data is the first sampling data obtained when the inverter fails;
  • the currently collected first sampling data that is, fault data
  • the currently collected first sampling data that is, fault data
  • the first sampling data corresponding to a period of time before the frequency converter fails and after the failure is stored that is, the first sampling data corresponding to before the failure (or, before and after the failure will occur), that is, Store fault data.
  • the first sampling data corresponding to before the failure (or, before and after the failure) can be compared with the first sampling data (that is, the failure data) when the failure occurs, and then the cause of the failure can be determined according to the comparison result . Since the comparison information is added, the accuracy of determining the cause of the fault can be effectively improved.
  • Step S23 sending the fault data to the communication device.
  • the frequency converter can interact with the communication device through any communication method such as serial communication, Inter-Integrated Circuit (I2C), Controller Area Network (CAN), and Bluetooth.
  • I2C Inter-Integrated Circuit
  • CAN Controller Area Network
  • Bluetooth Bluetooth
  • the frequency converter interacts with the communication device through I2C, that is, the frequency converter sends fault data to the communication device through I2C.
  • the working parameters of the motor are collected through the frequency converter itself, and when it is judged that the frequency converter is faulty, the fault data (that is, the first sampling data collected when the frequency converter is faulty) is stored, and then the Fault data is sent to the communication device. Since the inverter itself can obtain fault data, maintenance personnel do not need to carry an oscilloscope when repairing the inverter, which greatly reduces the burden on the maintenance personnel and improves the convenience of the maintenance personnel when repairing the inverter.
  • the maintenance personnel since the fault data can be sent to the communication equipment by the frequency converter, the maintenance personnel only need to obtain the relevant fault data through the communication equipment, that is, they can obtain the fault data of the frequency converter without going to the door, which is beneficial to Choose more suitable maintenance personnel to come to the site for maintenance, which greatly improves the maintenance efficiency of the inverter.
  • Fig. 3 shows a flow chart of a fault data processing method provided by an embodiment of the present application, and the method is applied to a frequency converter.
  • fault information is also stored, as detailed below:
  • Step S31 sampling the working parameters of the motor to obtain corresponding first sampling data
  • the working parameters of the motor are mainly parameters related to the working of the motor.
  • the working parameters of the motor are cycled with a preset sampling period. parameters to sample.
  • Step S32 if the inverter fails, store the fault data of the inverter, and the fault data is the first sampling data obtained when the inverter fails;
  • a corresponding unique identifier is set for the fault data. For example, time is used as the unique identifier corresponding to the fault data.
  • the frequency converter also stores the first sampling data within a period of time before and after the frequency converter fails. In this way, the cause of the failure may be determined later in combination with the corresponding first sampling data before the failure (or before and after the failure). Since the comparison information is added, the accuracy of determining the cause of the fault can be effectively improved.
  • Step S33 sending the fault data to the communication device.
  • the frequency converter can interact with the communication device through any communication method such as serial port communication, I2C, CAN, and Bluetooth.
  • I2C serial port communication
  • CAN CAN
  • Bluetooth Bluetooth
  • the frequency converter interacts with the communication device through I2C, that is, the frequency converter sends fault data to the communication device through I2C.
  • Step S34 sampling the working parameters of the frequency converter to obtain corresponding second sampling data
  • the operating parameters of the frequency converter are mainly parameters related to the operation of the frequency converter.
  • the second sampling data is the sampling data obtained by periodically sampling the working parameters of the frequency converter, and may also be the sampling data obtained by sampling the working parameters of the frequency converter when the frequency converter fails.
  • the second sampling data when the second sampling data is the sampling data obtained by periodically sampling the working parameters of the frequency converter, the second sampling data may be the corresponding sampling data when the frequency converter fails, and may be the corresponding sampling data before the frequency converter fails.
  • the sampling data may also be the corresponding sampling data after the frequency converter fails.
  • the second sampling data is the sampling data obtained by sampling the working parameters of the frequency converter when the frequency converter fails
  • the second sampling data is only the corresponding sampling data when the frequency converter fails.
  • Step S35 storing the fault information of the frequency converter, where the fault information is the second sampling data obtained when the frequency converter fails;
  • the second sampling data corresponding to the failure of the frequency converter that is, the fault information
  • the second sampling data corresponding to the time that is, the second sampling data and fault information corresponding to the inverter before the failure (for example, 1 second before the failure) and the corresponding first sampling data after the inverter failure (for example, 1 second after the failure) second sampling data
  • the rest of the second sampling data do not need to be stored.
  • Step S36 sending the fault information to the communication device.
  • the frequency converter can interact with the communication device through any communication method such as serial port communication, I2C, CAN, Bluetooth, etc., so as to send fault information to the communication device.
  • the inverter since the inverter stores fault information in addition to fault data, and the fault data reflects the operation of the motor, while the fault information reflects the operation of the inverter. Therefore, after the fault data and fault information are sent to the communication device, the communication device analyzes the fault data and fault information together to obtain a more accurate fault cause.
  • the above fault data and fault information are sent to the communication device together to reduce the number of times of sending.
  • the frequency converter has experienced 3 faults in 3 time periods, that is, the frequency converter has stored 3
  • the inverter also sets a corresponding unique identifier for the fault data and fault information. It should be pointed out that the fault data and fault information of the same fault correspond to the same unique identifier, and the unique identifier can be represented by time.
  • two different sampling periods are used to sample the working parameters of the motor. For example, assume that the two sampling periods are respectively the first sampling period and the second sampling period, and the first sampling period is shorter than the second sampling period. Then set the first sampling period to be determined according to the motor speed of the inverter (that is, the sampling period for collecting the first sampling data), that is, the first sampling period is a dynamic value; set the second sampling period to a fixed value.
  • the motor speed here refers to the speed of the motor of the frequency converter.
  • set The first sampling period is related to the motor speed.
  • the corresponding first sampling period is set according to the range of the motor speed.
  • determining the first sampling period according to the motor speed of the frequency converter specifically includes:
  • the motor speed of the frequency converter is less than the first speed value, set t1 as the first sampling period.
  • the motor speed of the frequency converter is greater than or equal to the first speed value and less than the second speed value, then set t2 as the first sampling period.
  • the second rotational speed value here may be 6000 rpm.
  • the first speed value is 3000rpm
  • the second speed value is 6000rpm
  • the set first sampling period is more suitable for the motor speed, thereby ensuring that the motor is controlled according to the set first sampling period.
  • the working parameters of the motor include at least one of the following: motor current, bus voltage, motor speed, and motor back EMF voltage.
  • the working parameters of the above frequency converter include at least one of the following: the time when the fault occurs, the power supply voltage, the motor speed, the exhaust pressure of the system, the ambient temperature, and the temperature of the Intelligent Power Module (IPM); among them, the time when the fault occurs It is the difference between the time point when the fault occurs and the time point when the motor is started.
  • IPM Intelligent Power Module
  • the above-mentioned "current” may be the phase current of the motor, such as U-phase current, V-phase current, and W-phase current.
  • the number of items contained in the working parameters of the motor is larger, and/or the number of items contained in the working parameters of the frequency converter is larger, the amount of information that the subsequent communication equipment can obtain according to the working parameters of the motor and the working parameters of the frequency converter The larger the , that is, the more accurate the fault cause subsequently determined by the communication device is.
  • step S21 include:
  • N1 pieces of data in the first sampling data to the random access memory of the frequency converter every preset sampling period, wherein N1 is determined according to the number of random access memories of the frequency converter and the capacity of a single random access memory, And N1 is a natural number greater than 9;
  • Step S22 (or step S32), including:
  • the inverter fails, the fault data recorded in the random access memory is stored in the storage device.
  • the above-mentioned storage device includes at least one of the following: Electrically Erasable Read-Only Memory (Electronically Erasable Programmable Read-only Memory, EEPROM), flash memory (Flash Memory, FLASH), universal serial bus interface mass storage device (USB Mass Storage Device, U disk), secure digital memory card (Secure Digital Memory Card, SD card), etc. .
  • the user may need to view the operating data of the frequency converter during normal operation, and the frequency converter will also send the recorded first sampling data to the communication device, that is, the method provided in the embodiment of the present application also includes :
  • the recorded first sampling data is sent to the communication device, and the first preset condition includes: receiving an operation data extraction instruction or arrival of an operation data upload time point.
  • the frequency converter receives the operating data extraction instruction sent by the communication device, the frequency converter sends the first sampling data to the communication device, and the first sampling data is the first sampling data recorded in the RAM, or, in After the RAM updates the recorded first sampling data, it sends the updated first sampling data to the communication device.
  • another device such as a mobile phone
  • the operation data extraction command also carries the information of a communication device (such as a server)
  • the mobile phone sends an operation data extraction command to the inverter.
  • the frequency converter In order to instruct the frequency converter to send the corresponding first sampling data to the server, the frequency converter also sends the first sampling data to the server.
  • the first preset condition is "the time point of uploading the running data arrives"
  • the frequency converter sends the first sampling data to the communication device.
  • step S23 (or step S33) includes:
  • the stored fault data is sent to the communication device, and the second preset condition includes: receiving a fault data extraction instruction or arriving at a fault data upload time point;
  • step S36 comprises:
  • the stored fault information is sent to the communication device.
  • the fault data and fault information are sent to the communication device. It should be pointed out that the above fault data extraction instruction may be sent by the communication device itself, or by other devices.
  • step S31 specifically includes: respectively sampling the working parameters of each motor to obtain the corresponding first sampling data.
  • Fig. 4 shows a flow chart of a fault data processing method provided by Embodiment 3 of the present application.
  • the method is applied to the communication device interacting with the frequency converter in Embodiment 1 (or Embodiment 2) above, where the communication device includes : Host computer, mobile terminal (such as mobile phone, tablet computer), cloud server, etc.
  • the communication device After the communication device receives the fault data from the frequency converter, it will analyze the fault cause corresponding to the fault data and output the fault cause.
  • the communication device After the communication device receives the fault data from the frequency converter, it will analyze the fault cause corresponding to the fault data and output the fault cause.
  • the details are as follows:
  • Step S41 receiving the fault data sent by the frequency converter, and the fault data is used as the fault data to be matched;
  • the above fault data is the first sampling data obtained by the frequency converter sampling the working parameters of the motor when the frequency converter fails.
  • the working parameters of the motor include at least one of the following: motor current, bus voltage, motor speed, and motor back EMF voltage.
  • the interaction mode between the communication device and the frequency converter includes any of the following: serial communication, I2C, CAN, and Bluetooth.
  • Step S42 according to the fault data to be matched and different standard fault data, determine the fault cause corresponding to the fault data to be matched, wherein the standard fault data is the corresponding fault data when the frequency converter fails due to the fault reason;
  • fault data corresponding to different faults of the frequency converter are obtained in advance, and these fault data are used as standard fault data.
  • After receiving the fault data to be matched from the inverter compare the fault data to be matched with the standard fault data, and then determine the fault cause of the inverter according to the comparison result, for example, the most matching standard fault data corresponding to The fault cause of is used as the fault cause corresponding to the fault data to be matched.
  • the above-mentioned standard fault data can be pre-sorted and obtained by the communication device itself, or the working parameters of the motors in different fault modes can be sorted and sorted in advance through the auxiliary server, and the communication device obtains it from the auxiliary server.
  • Step S43 outputting the cause of the failure.
  • the output mode of the fault reason includes any of the following: voice broadcast, displaying the specific fault reason in the form of text on the interface, generating and printing a specific fault analysis report.
  • the above-mentioned fault analysis report includes the cause of the fault.
  • the communication device can directly obtain the corresponding fault data to be matched when the frequency converter fails, the communication device can determine the fault data to be matched according to the fault data to be matched and the standard fault data.
  • the cause of the failure corresponding to the failure data can be obtained without the maintenance personnel bringing an oscilloscope to the door, which can greatly improve the convenience of obtaining the fault data to be matched and the efficiency of obtaining the cause of the fault.
  • the cause of the failure can be determined in advance, more suitable maintenance personnel can be assigned to carry out on-site maintenance according to the cause of the failure, thereby improving the success rate of maintenance and improving the user's good experience.
  • the frequency converter sends the corresponding fault data to be matched to the communication device only after receiving the fault data extraction instruction sent by the communication device, that is, before the above step S41, including:
  • the communication device since the communication device does not need to constantly monitor whether the frequency converter sends fault data to be matched, the communication device does not need to establish a communication connection with the frequency converter all the time, thereby saving resources of the communication device.
  • the above step S41 includes: when the time point of uploading the fault data arrives, the communication device receives the fault data to be matched sent by the frequency converter.
  • the communication device in order to obtain a more accurate cause of the fault, the communication device also receives fault information to be matched from the frequency converter, that is, the method further includes:
  • step S42 includes:
  • the fault information to be matched is the corresponding working parameters of the frequency converter when the frequency converter fails.
  • the working parameters of the frequency converter include at least one of the following: the time when the fault occurs, the power supply voltage, the motor speed, the exhaust pressure of the system, the ambient temperature, and the temperature of the IPM module.
  • the fault information corresponding to the inverter before various faults occur is acquired in advance, and the acquired fault information is used as standard pre-fault information. Since the fault data to be matched and the fault information to be matched are different information, the communication device combines the fault data to be matched with the fault information to be matched to determine the cause of the fault corresponding to the fault data to be matched, which can improve the obtained judgment result accuracy. For example, assuming that it is known that the fault occurrence time is close to "0", it means that the motor has failed when it starts, and the cause of the fault at this time is usually "the motor is broken". That is, by combining the data to be matched and the fault information to be matched to determine the cause of the fault, the accuracy and speed of determining the cause of the fault can be improved.
  • the communication device sends a fault data extraction instruction to the frequency converter, and the frequency converter sends the above-mentioned fault information to be matched and the fault data to be matched to the communication device, and the communication device receives the fault information to be matched and the fault data to be matched data.
  • the communication device since the communication device does not need to constantly monitor whether the frequency converter sends fault data to be matched, the communication device does not need to establish a communication connection with the frequency converter all the time, thereby saving resources of the communication device.
  • the method further includes:
  • the first sampling data is corresponding sampling data when the frequency converter reports no error.
  • the communication device can compare the received first sampling data with the pre-acquired standard operating data (that is, the operating parameters of the motor corresponding to the frequency converter in normal operation), and if the two match, then determine that the frequency conversion If the current running state of the inverter is good, otherwise, it is judged that the current running state of the inverter is poor.
  • the pre-acquired standard operating data that is, the operating parameters of the motor corresponding to the frequency converter in normal operation
  • the frequency converter sends the first sampling data to the communication device only when the communication device wishes to obtain the first sampling data.
  • the method further includes:
  • the communication device sends an operation data extraction command to the frequency converter.
  • step S42 includes:
  • Fig. 5 shows the fault waveform to be matched reconstructed according to U-phase current and bus voltage when an overcurrent fault occurs in the frequency converter
  • Fig. 6 is a waveform diagram obtained by using an oscilloscope to collect the frequency converter with an overcurrent fault. From the waveform diagrams in Figure 5 and Figure 6, it can be seen that the waveform obtained by reconstructing the fault data sent by the inverter is basically consistent with the trend of the waveform collected by the oscilloscope, so the fault data sent by the inverter is directly used in the follow-up to analyze the cause of the fault. Use the waveform collected by the oscilloscope to analyze the cause of the fault, and the results obtained should also be consistent. That is, using the fault data sent by the frequency converter to analyze the cause of the fault can ensure the accuracy of the obtained fault cause.
  • the fault data to be matched is reconstructed into a fault waveform to be matched, and then the fault waveform to be matched is compared with the standard fault waveform. For example, compare the variation trends of the two waveforms. If the variation trends of the two waveforms are consistent, it is determined that the two waveforms are matching waveforms, and then the fault cause corresponding to the matched standard fault waveform is used as the fault waveform to be matched. The corresponding fault cause.
  • maintenance personnel can more directly view the change trend of the fault data to be matched. Therefore, it is helpful for maintenance personnel to visually check the matching degree between the fault waveform to be matched and the standard fault waveform, and further help maintenance personnel to further evaluate and obtain The degree of accuracy of the cause of the failure.
  • the embodiment of the present application also includes when determining the fault cause corresponding to the fault data to be matched:
  • the method also includes:
  • the fault cause when the fault cause is output, the probability that the fault cause that causes the frequency converter to fail is also output as the output fault cause. For example, assuming that the fault cause is "motor overload” and the probability is "40%”, it means that the probability that the fault cause of the inverter is "motor overload” is "40%".
  • Fig. 7 shows a schematic structural diagram of a fault data processing device provided by the embodiment of the present application.
  • the fault data processing device is applied to frequency converters.
  • frequency converters For the sake of illustration, only Parts related to the embodiment of this application:
  • the fault data processing device 7 includes: a sampling module 71 , a fault data storage module 72 , and a fault data sending module 73 . in:
  • the first sampling module 71 is configured to sample the working parameters of the motor to obtain corresponding first sampling data
  • the working parameters of the motor are cycled with a preset sampling period. parameters to sample.
  • the fault data storage module 72 is used to store the fault data of the frequency converter if the frequency converter fails, and the fault data is the first sampling data obtained when the frequency converter fails;
  • the first sampling data within a period of time before the frequency converter fails and after the failure occurs is stored. That is, the first sampling data corresponding to before the failure occurs (or, before and after the failure will occur) is stored, and the failure data is also stored.
  • the fault data sending module 73 is configured to send the fault data to the communication device.
  • the frequency converter can interact with the communication device through any communication method such as serial port communication, I2C, CAN, and Bluetooth.
  • the working parameters of the motor are collected through the frequency converter itself, and when it is judged that the frequency converter is faulty, the fault data (that is, the first sampling data collected when the frequency converter is faulty) is stored, and then the Fault data is sent to the communication device. Since the inverter itself can obtain fault data, maintenance personnel do not need to carry an oscilloscope when repairing the inverter, which greatly reduces the burden on the maintenance personnel and improves the convenience of the maintenance personnel when repairing the inverter.
  • the maintenance personnel since the fault data can be sent to the communication equipment by the frequency converter, the maintenance personnel only need to obtain the relevant fault data through the communication equipment, that is, they can obtain the fault data of the frequency converter without going to the door, which is beneficial to Choose more suitable maintenance personnel to come to the site for maintenance, which greatly improves the maintenance efficiency of the inverter.
  • the fault data processing device 7 also includes:
  • the second sampling module is used to sample the working parameters of the frequency converter to obtain corresponding second sampling data
  • the fault information storage module is used to store the fault information of the frequency converter, and the fault information is the second sampling data obtained when the frequency converter fails;
  • the fault information storage module is also used for the second sampling data corresponding to the inverter before the fault occurs (for example, 1 second before the fault occurs) and the second sampling data corresponding to the inverter after the fault occurs (for example, 1 second after the fault occurs). sample data.
  • the fault information sending module is used to send the fault information to the communication device.
  • the inverter since the inverter stores fault information in addition to fault data, and the fault data reflects the operation of the motor, while the fault information reflects the operation of the inverter. Therefore, after the fault data and fault information are sent to the communication device, the communication device analyzes the fault data and fault information together to obtain a more accurate fault cause.
  • the above fault data and fault information are sent to the communication device together to reduce the number of times of sending.
  • corresponding unique identifiers are set for fault data and fault information obtained at different times. It should be pointed out that the fault data and fault information of the same fault correspond to the same unique identifier, and the unique identifier can be represented by time.
  • the working parameters of the motor include at least one of the following: motor current, bus voltage, motor speed, and motor back EMF voltage.
  • the working parameters of the frequency converter include at least one of the following: the time when the fault occurs, the power supply voltage, the motor speed, the exhaust pressure of the system, the ambient temperature, and the temperature of the Intelligent Power Module (IPM); Wherein, the time when the fault occurs is the difference between the time when the fault occurs and the time when the motor is started.
  • IPM Intelligent Power Module
  • the fault data processing device 7 also includes:
  • the first sampling data recording module is used to record N1 pieces of data in the first sampling data to the random access memory of the frequency converter every preset sampling period, wherein N1 is based on the number and the random access memory of the frequency converter The capacity of a single random access memory is determined, and N1 is a natural number greater than 9;
  • the fault data storage module 72 is specifically used for:
  • the inverter fails, the fault data recorded in the random access memory is stored in the storage device.
  • the ratio of N1 to the RAM space of the frequency converter is set to be less than 1/2, so as to avoid slow operation of the frequency converter due to excessive RAM occupation.
  • the user may need to view the operating data of the frequency converter during normal operation, and the frequency converter will also send the recorded first sampling data to the communication device, that is, the fault data processing device 7 includes:
  • the first preset condition judging module is configured to send the recorded first sampling data to the communication device if the first preset condition is met, the first preset condition includes: receiving an operation data extraction instruction or an upload time point of the operation data arrive.
  • the frequency converter receives the operating data extraction instruction sent by the communication device, the frequency converter sends the first sampling data to the communication device, and the first sampling data is the first sampling data recorded in the RAM, or, in After the RAM updates the recorded first sampling data, it sends the updated first sampling data to the communication device.
  • another device such as a mobile phone
  • the operation data extraction command also carries the information of a communication device (such as a server)
  • the mobile phone sends an operation data extraction command to the inverter.
  • the frequency converter In order to instruct the frequency converter to send the corresponding first sampling data to the server, the frequency converter also sends the first sampling data to the server.
  • the first preset condition is "the time point of uploading the running data arrives"
  • the frequency converter sends the first sampling data to the communication device.
  • the fault data and fault information are sent to the communication device only when the second preset condition is met.
  • the fault data sending module 73 is specifically used for:
  • the stored fault data is sent to the communication device, and the second preset condition includes: receiving a fault data extraction instruction or arriving at a fault data upload time point;
  • the above fault information sending module is specifically used for:
  • the stored fault information is sent to the communication device.
  • the fault data and fault information are sent to the communication device. It should be pointed out that the above fault data extraction instruction may be sent by the communication device itself, or by other devices.
  • Fig. 8 shows a schematic structural diagram of another fault data processing device provided by the embodiment of the present application.
  • the fault data processing device is applied to communication equipment.
  • the fault data processing device 8 includes: a fault data receiving module 81 , a fault cause determination module 82 , and a fault cause output module 83 . in:
  • the fault data receiving module 81 is used to receive the fault data sent by the frequency converter, and the fault data is used as the fault data to be matched;
  • the above fault data is the first sampling data obtained by the frequency converter sampling the working parameters of the motor when the frequency converter fails.
  • the working parameters of the motor include at least one of the following: motor current, bus voltage, motor speed, and motor back EMF voltage.
  • the interaction mode between the communication device and the frequency converter includes any of the following: serial communication, I2C, CAN, and Bluetooth.
  • the fault cause determination module 82 is used to determine the fault cause corresponding to the fault data to be matched according to the fault data to be matched and different standard fault data, wherein the standard fault data is the fault data corresponding to the fault cause;
  • the failure reason output module 83 is used to output the failure reason.
  • the output mode of the fault reason includes any of the following: voice broadcast, displaying the specific fault reason in the form of text on the interface, generating and printing a specific fault analysis report.
  • the above-mentioned fault analysis report includes the cause of the fault.
  • the communication device can directly obtain the corresponding fault data to be matched when the frequency converter fails, the communication device can determine the fault data to be matched according to the fault data to be matched and the standard fault data.
  • the cause of the failure corresponding to the failure data can be obtained without the maintenance personnel bringing an oscilloscope to the door, which can greatly improve the convenience of obtaining the fault data to be matched and the efficiency of obtaining the cause of the fault.
  • the cause of the failure can be determined in advance, more suitable maintenance personnel can be assigned to carry out on-site maintenance according to the cause of the failure, thereby improving the success rate of maintenance and improving the user's good experience.
  • the frequency converter sends the corresponding fault data to be matched to the communication device only after receiving the fault data extraction instruction sent by the communication device, that is, the fault data processing device 8 also includes:
  • the fault data extraction instruction sending module is used to send the fault data extraction instruction to the frequency converter.
  • the communication device since the communication device does not need to constantly monitor whether the frequency converter sends fault data to be matched, the communication device does not need to establish a communication connection with the frequency converter all the time, thereby saving resources of the communication device.
  • the fault data receiving module 81 is specifically configured to: receive the fault data to be matched sent by the frequency converter when the fault data upload time point arrives.
  • the communication device in order to obtain more accurate fault causes, the communication device also receives the fault information to be matched from the frequency converter, that is, the fault data processing device 8 also includes:
  • the fault information receiving module is used to receive the fault information sent by the frequency converter, and the fault information is used as the fault information to be matched;
  • the fault cause determination module 82 is specifically used for:
  • the fault information to be matched is the corresponding working parameters of the frequency converter when the frequency converter fails.
  • the working parameters of the frequency converter include at least one of the following: the time when the fault occurs, the power supply voltage, the motor speed, the exhaust pressure of the system, the ambient temperature, and the temperature of the IPM module.
  • the fault information corresponding to the inverter before various faults occur is acquired in advance, and the acquired fault information is used as standard pre-fault information. Since the fault data to be matched and the fault information to be matched are different information, the communication device combines the fault data to be matched with the fault information to be matched to determine the cause of the fault corresponding to the fault data to be matched, which can improve the obtained judgment result accuracy.
  • the above-mentioned fault data processing device 8 further includes:
  • the first sampling data receiving module is configured to receive the first sampling data sent by the frequency converter
  • the current running state analysis module is configured to analyze the current running state of the frequency converter according to the first sampling data.
  • the first sampling data is corresponding sampling data when the frequency converter reports no error.
  • the communication device can compare the received first sampling data with the pre-acquired standard operating data (that is, the operating parameters of the motor corresponding to the frequency converter in normal operation), and if the two match, then determine that the frequency conversion If the current running state of the inverter is good, otherwise, it is judged that the current running state of the inverter is poor.
  • the pre-acquired standard operating data that is, the operating parameters of the motor corresponding to the frequency converter in normal operation
  • the frequency converter sends the first sampling data to the communication device only when the communication device wishes to obtain the first sampling data.
  • the above-mentioned failure data processing device 8 also includes:
  • the operation data extraction instruction sending module is used to send the operation data extraction instruction to the frequency converter.
  • the fault cause determination module 82 includes:
  • the waveform reconstruction unit is used to reconstruct the waveform of the fault data to be matched to obtain the fault waveform to be matched;
  • the waveform comparison unit is used to compare the fault waveform to be matched with the standard fault waveform corresponding to different standard fault data, and determine the cause of the fault corresponding to the fault data to be matched according to the comparison result.
  • the variation trends of the two waveforms are compared, and if the variation trends of the two waveforms are consistent, it is determined that the two waveforms are matched waveforms, and then the fault cause corresponding to the matched standard fault waveform is used as the to-be-matched The cause of the fault corresponding to the fault waveform.
  • maintenance personnel can more directly view the change trend of the fault data to be matched. Therefore, it is helpful for maintenance personnel to visually check the matching degree between the fault waveform to be matched and the standard fault waveform, and further help maintenance personnel to further evaluate and obtain The degree of accuracy of the cause of the failure.
  • the above-mentioned fault data processing device 8 when the frequency converter fails due to different fault reasons, the corresponding fault data (or fault data and fault information) of the frequency converter may behave similarly in some respects. Therefore, in order to facilitate maintenance personnel to obtain If more information is obtained, then in the embodiment of the present application, when determining the fault cause corresponding to the fault data to be matched, the above-mentioned fault data processing device 8 also includes:
  • the probability determination module is used to determine the probability that the frequency converter is the cause of the failure
  • the probability output module is used to output the probability of the cause of the failure.
  • Fig. 9 is a schematic structural diagram of a frequency converter provided by an embodiment of the present application.
  • the frequency converter 9 of this embodiment includes: at least one processor 90 (only one processor is shown in FIG. 9 ), a memory 91 and stored in the memory 91 and can run on the at least one processor 90.
  • a computer program 92 when the processor 90 executes the computer program 92, implements the steps in any of the above method embodiments.
  • the frequency converter 9 can be computing devices such as desktop computers, notebooks, palmtop computers, and cloud servers.
  • the frequency converter may include, but not limited to, a processor 90 and a memory 91 .
  • Fig. 9 is only an example of the frequency converter 9, and does not constitute a limitation to the frequency converter 9, and may include more or less components than those shown in the figure, or combine certain components, or different components , for example, may also include input and output devices, network access devices, and so on.
  • the so-called processor 90 can be a central processing unit (Central Processing Unit, CPU), and the processor 90 can also be other general processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory 91 may be an internal storage unit of the frequency converter 9 in some embodiments, such as a hard disk or a memory of the frequency converter 9 .
  • the memory 91 may also be an external storage device of the frequency converter 9 in other embodiments, such as a plug-in hard disk equipped on the frequency converter 9, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, flash memory card (Flash Card), etc.
  • the memory 91 may also include both an internal storage unit of the frequency converter 9 and an external storage device.
  • the memory 91 is used to store operating system, application program, boot loader (BootLoader), data and other programs, such as the program code of the computer program.
  • the memory 91 can also be used to temporarily store data that has been output or will be output.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 10 of this embodiment includes: at least one processor 100 (only one processor is shown in FIG. 10 ), a memory 101 and stored in the memory 101 and can be processed in the at least one processor.
  • a computer program 102 running on the processor 100 when the processor 100 executes the computer program 102, implements the steps in any of the foregoing method embodiments.
  • the communication device 10 may be computing devices such as desktop computers, notebooks, palmtop computers, and cloud servers.
  • the communication device may include, but is not limited to, a processor 100 and a memory 101 .
  • FIG. 10 is only an example of the communication device 10, and does not constitute a limitation to the communication device 10. It may include more or less components than those shown in the figure, or combine certain components, or different components. , for example, may also include input and output devices, network access devices, and so on.
  • the so-called processor 100 may be a central processing unit (Central Processing Unit, CPU), and the processor 100 may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the storage 101 may be an internal storage unit of the communication device 10 in some embodiments, such as a hard disk or a memory of the communication device 10 .
  • the memory 101 may also be an external storage device of the communication device 10 in other embodiments, such as a plug-in hard disk equipped on the communication device 10, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, flash memory card (Flash Card), etc. Further, the memory 101 may also include both an internal storage unit of the communication device 10 and an external storage device.
  • the memory 101 is used to store operating system, application program, boot loader (BootLoader), data and other programs, such as the program code of the computer program.
  • the memory 101 can also be used to temporarily store data that has been output or will be output.
  • the embodiment of the present application includes an air conditioner, and the air conditioner includes the frequency converter of the sixth embodiment above.
  • the embodiment of the present application also provides a storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, the steps in the above-mentioned method embodiments can be realized.
  • An embodiment of the present application provides a computer program product.
  • the air conditioner can implement the steps in the foregoing method embodiments when the air conditioner is executed.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on such an understanding, all or part of the processes in the method of the above-mentioned embodiments in the present application can be completed by instructing related hardware through a computer program.
  • the computer program can be stored in a storage medium, and the computer program can be processed When executed by the controller, the steps in the above-mentioned various method embodiments can be realized.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may at least include: any entity or device capable of carrying computer program codes to air-conditioning equipment, recording media, computer memory, read-only memory (ROM, Read-Only Memory), random-access memory (RAM, Random Access Memory), electrical carrier signals, telecommunication signals, and software distribution media.
  • ROM read-only memory
  • RAM random-access memory
  • electrical carrier signals telecommunication signals
  • software distribution media Such as U disk, mobile hard disk, magnetic disk or optical disk, etc.
  • computer readable media may not be electrical carrier signals and telecommunication signals under legislation and patent practice.
  • the disclosed device/air conditioning equipment and method may be implemented in other ways.
  • the device/air conditioner embodiment described above is only illustrative.
  • the division of the modules or units is only a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)

Abstract

本申请适用于变频器技术领域,提供了故障数据处理方法、装置、变频器、空调设备及存储介质,所述方法包括:对电机的工作参数进行采样,获得对应的第一采样数据;若所述变频器发生故障,则存储所述变频器的故障数据,所述故障数据为所述变频器发生故障时获得的第一采样数据;将所述故障数据向通信设备发送。通过上述方法,提高了维修人员对变频器维修时的便利性。

Description

故障数据处理方法、装置、变频器、空调设备及存储介质
本申请要求于2021年6月21日在中国专利局提交的、申请号为202110688444.9、发明名称为“故障数据处理方法、装置、变频器、空调设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及变频器技术领域,具体涉及故障数据处理方法、装置、变频器、空调设备及存储介质。
背景技术
变频器是一种采用了变频技术的器件,由于变频器运行工况复杂,且通常需要长时间工作,因此难免会出现偶发故障。
对于控制高速运行电机的变频器而言,通常需要用示波器监控电机的性能参数所对应的波形,再结合具体工况数据,来判定电机当前运行是否正常,并在电机当前运行不正常时,分析对应的故障原因。但由于示波器本身具有一定的体积,因此,每次对变频器进行维修都需要搬运示波器,从而给维修人员带来巨大的不便。
技术问题
本申请实施例提供了故障数据记录方法,可以解决现有技术为了检测变频器的故障而需要维修人员携带示波器所带来的不便利的问题。
技术解决方案
第一方面,本申请实施例提供了一种故障数据处理方法,应用于变频器,所述方法包括:
对电机的工作参数进行采样,获得对应的第一采样数据;
若所述变频器发生故障,则存储所述变频器的故障数据,所述故障数据为所述变频器发生故障时获得的第一采样数据;
将所述故障数据向通信设备发送。
第二方面,本申请实施例提供了一种故障数据处理方法,应用于通信设备,包括:
接收变频器发送的故障数据,所述故障数据作为待匹配故障数据;
根据所述待匹配故障数据以及不同的标准故障数据,确定所述待匹配故障数据对应的故障原因,其中,所述标准故障数据为所述变频器由于所述故障原因发生故障时所对应的故障数据;
输出所述故障原因。
第三方面,本申请实施例提供了一种故障数据处理装置,应用于变频器,包括:
第一采样模块,用于对电机的工作参数进行采样,获得对应的第一采样数据;
故障数据存储模块,用于若所述变频器发生故障,则存储所述变频器的故障数据,所述故障数据为所述变频器发生故障时获得的第一采样数据;
故障数据发送模块,用于将所述故障数据向通信设备发送。
第四方面,本申请实施例提供了一种故障数据处理装置,应用于通信设备,包括:
故障数据接收模块,用于接收变频器发送的故障数据,所述故障数据作为待匹配故障数据;
故障原因确定模块,用于根据所述待匹配故障数据以及不同的标准故障数据,确定所述待匹配故障数据对应的故障原因,其中,所述标准故障数据为所述故障原因对应的故障数据;
故障原因输出模块,用于输出所述故障原因。
第五方面,本申请实施例提供了一种变频器,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述的方法。
第六方面,本申请实施例提供了一种空调设备,包括如第五方面所述的变频器。
第七方面,本申请实施例提供了一种通信设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第二方面所述的方法。
第八方面,本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面和/或第二方面所述的方法。
第九方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在空调设备上运行时,使得空调设备执行上述第一方面和/或第二方面所述的方法。
有益效果
本申请实施例中,通过变频器本身采集电机的工作参数,并在判断出变频器产生故障时,存储故障数据(即在变频器发生故障时所采集得到的第一采样数据),再将该故障数据发送给通信设备。由于变频器本身能够获取到故障数据,因此,维修人员在对变频器进行维修时无需携带示波器,从而极大减轻了维修人员的负担,提高了维修人员对变频器维修时的便利性。同时,由于故障数据可以由变频器发送给通信设备,因此,维修人员只需要通过通信设备就能获取到相关的故障数据,也即,无需上门就能获取到变频器的故障数据,从而有利于选择更适合的维修人员上门维修,极大提高了变频器的维修效率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1是本申请实施例一提供的一种变频器与通信设备的交互示意图;
图2是本申请实施例一提供的一种应用于变频器的故障数据处理方法的流程图;
图3示出了本申请实施例二提供的另一种应用于变频器的故障数据处理方法的流程图;
图4是本申请实施例三提供的应用于通信设备的故障数据处理方法的流程图;
图5是本申请实施例三提供的根据变频器发送的故障数据重构得到的波形示意图;
图6是本申请实施例三提供的示波器显示的过流故障对应的波形示意图;
图7是本申请实施例四提供的应用于变频器的故障数据处理装置的结构示意图;
图8是本申请实施例五提供的应用于通信设备的故障数据处理装置的结构示意图;
图9是本申请实施例六提供的一种变频器的结构示意图;
图10是本申请实施例七提供的一种通信设备的结构示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。
实施例一:
图1示出了本申请实施例提供的一种变频器与通信设备的交互示意图。在图1中,变频器自身采集并存储故障数据。当通信设备接收到变频器发送的故障数据后,确定该故障数据对应的故障原因,并输出该故障原因。由于故障数据由变频器本身采集,因此,维修人员在对变频器进行维修时无需携带示波器,从而提高了维修人员对变频器维修时的便利性。同时,由于故障数据可以由变频器发送给通信设备,因此,维修人员只需要通过通信设备就能获取到相关的故障数据,也即,无需上门就能获取到变频器的故障数据,从而有利于选择更适合的维修人员上门维修,有效提高了维修效率。
下面结合附图对本申请实施例提供的故障数据处理方法进行描述。
图2示出了本申请实施例一提供的第一种故障数据处理方法的流程图,该方法应用于变频器,比如通过变频器的微控制单元(Microcontroller Unit,MCU)执行以下步骤,详述如下:
步骤S21,对电机的工作参数进行采样,获得对应的第一采样数据;
其中,电机的工作参数主要为与电机的工作有关的参数。
本领域技术人员通过分析可知,当变频器发生故障时,电机的工作参数的数值通常会受影响。即在变频器发生故障时,电机的工作参数与该变频器发生故障时,其对应的数值通常会改变。
在一些实施例中,由于不能预先确定变频器发生故障的时间点,因此,为了能够及时采集到该变频器发生故障时电机所对应的工作参数,则以预设的采样周期循环对电机的工作参数进行采样。
步骤S22,若变频器发生故障,则存储变频器的故障数据,故障数据为变频器发生故障时获得的第一采样数据;
本实施例中,当判断出变频器当前发生了故障(例如生成了故障代码),则存储当前采集到的第一采样数据(即故障数据),以便后续通过对该故障数据进行分析后,能够确定变频器所发生的故障并进行维修。
在一些实施例中,存储变频器发生故障前到发生故障后一段时间内的第一采样数据,即存储发生故障前(或,将发生故障前和发生故障后)对应的第一采样数据,即存储故障数据。这样,后续还可以将发生故障前(或,将发生故障前和发生故障后)对应的第一采样数据与发生故障时的第一采样数据(即故障数据)比较,再根据比较结果确定故障原因。由于增加了比较信息,因此,能够有效提高确定的故障原因的准确性。
步骤S23,将故障数据向通信设备发送。
本实施例中,变频器可通过串口通讯、内置集成电路(Inter-Integrated Circuit,I2C)、控制器局域网(Controller Area Network,CAN)、蓝牙等任一种通信方式与通信设备交互。例如,若通信设备支持I2C,则变频器通过I2C与通信设备交互,即该变频器通过I2C将故障数据向通信设备发送。
本申请实施例中,通过变频器本身采集电机的工作参数,并在判断出变频器产生故障时,存储故障数据(即在变频器发生故障时所采集得到的第一采样数据),再将该故障数据发送给通信设备。由于变频器本身能够获取到故障数据,因此,维修人员在对变频器进行维修时无需携带示波器,从而极大减轻了维修人员的负担,提高了维修人员对变频器维修时的便利性。同时,由于故障数据可以由变频器发送给通信设备,因此,维修人员只需要通过通信设备就能获取到相关的故障数据,也即,无需上门就能获取到变频器的故障数据,从而有利于选择更适合的维修人员上门维修,极大提高了变频器的维修效率。
实施例二:
图3示出了本申请实施例提供的一种故障数据处理方法的流程图,该方法应用于变频器。本实施例中,除了存储故障数据,还存储故障信息,详述如下:
步骤S31,对电机的工作参数进行采样,获得对应的第一采样数据;
其中,电机的工作参数主要为与电机的工作有关的参数。
在一些实施例中,由于不能预先确定变频器发生故障的时间点,因此,为了能够及时采集到该变频器发生故障时电机所对应的工作参数,则以预设的采样周期循环对电机的工作参数进行采样。
步骤S32,若变频器发生故障,则存储变频器的故障数据,故障数据为变频器发生故障时获得的第一采样数据;
在一些实施例中,若变频器存储了多次故障对应的故障数据,则为了区分不同故障对应的故障数据,并为故障数据设置对应的唯一标识。例如,以时间作为故障数据对应的唯一标识。
在一些实施例中,变频器还存储该变频器发生故障前和发生故障后一段时间内的第一采样数据。这样,后续还可以结合发生故障前(或,发生故障前和发生故障后)对应的第一采样数据进行故障原因的确定。由于增加了比较信息,因此,能够有效提高确定的故障原因的准确性。
步骤S33,将故障数据向通信设备发送。
本实施例中,变频器可通过串口通讯、I2C、CAN、蓝牙等任一种通信方式与通信设备交互。例如,若通信设备支持I2C,则变频器通过I2C与通信设备交互,即该变频器通过I2C将故障数据向通信设备发送。
步骤S34,对变频器的工作参数进行采样,获得对应的第二采样数据;
其中,变频器的工作参数主要为与变频器的工作有关的参数。
本实施例中,第二采样数据为通过周期采样变频器的工作参数得到的采样数据,也可以为在变频器发生故障时才采样变频器的工作参数所得到的采样数据。具体地,当第二采样数据为通过周期采样变频器的工作参数得到的采样数据时,则该第二采样数据可能为变频器发生故障时对应的采样数据、可能为变频器发生故障之前对应的采样数据、也可以为变频器发生故障之后对应的采样数据。当第二采样数据为在变频器发生故障时才采样变频器的工作参数所得到的采样数据,则该第二采样数据只为变频器发生故障时对应的采样数据。
步骤S35,存储变频器的故障信息,故障信息为变频器发生故障时获得的第二采样数据;
本实施例中,考虑到维修人员只需要关注变频器发生故障所对应的故障信息时,或者,关注变频器发生故障前和发生故障后所对应的故障信息,且存储的故障信息越多其占用的存储空间也越大,因此,在本实施例中,只存储变频器发生故障时所对应的第二采样数据(即故障信息),或者,存储变频器发生故障前至变频器发生故障后一段时间内所对应的第二采样数据(即变频器发生故障前(比如发生故障前1秒)对应的第二采样数据、故障信息和变频器发生故障后(比如发生故障后1秒)对应的第二采样数据),其余的第二采样数据无需存储。
步骤S36,将故障信息向通信设备发送。
本实施例中,变频器可通过串口通讯、I2C、CAN、蓝牙等任一种通信方式与通信设备交互,以将故障信息发送给通信设备。
本申请实施例中,由于变频器除了存储故障数据,还存储故障信息,且故障数据反映的是电机的工作,而故障信息反映的是变频器的工作。因此,将故障数据和故障信息发送给通信设备后,该通信设备结合故障数据和故障信息一起分析,能够得到更准确的故障原因。
在一些实施例中,将上述的故障数据和故障信息一起发送给通信设备,以减少发送的次数。
在一些实施例中,若故障数据为不同时间段对应的故障数据,例如在将故障数据发送给通信设备之前,变频器已在3个时间段发生了3次故障,也即变频器存储了3个时间段对应的故障数据,则为了便于后续通信设备能够识别出故障信息是与哪个故障数据对应,则变频器还为故障数据和故障信息设置对应的唯一标识。需要指出的是,同一次故障的故障数据和故障信息对应同一个唯一标识,该唯一标识可采用时间表示。
在一些实施例中,为了能够获取到能够反映全局趋势和局部细节的采样数据,则采用2个不同的采样周期采样电机的工作参数。比如,假设2个采样周期分别为第一采样周期和第二采样周期,且第一采样周期小于第二采样周期。则设置第一采样周期根据变频器的电机转速确定(即采集第一采样数据的采样周期),即第一采样周期为一个动态值;设置第二采样周期为一个固定值。
其中,这里电机转速是指变频器的电机的转速。
本实施例中,由于电机的转速对变频器的电周期有影响,因此,为了获取到至少2个(或者5个以上)电周期波形数据,且保证恢复的波形具有不失真的效果,则设置第一采样周期与电机转速有关。
在一些实施例中,为了得到更精确的采样数据,则根据电机转速所处的范围设置对应的第一采样周期,此时,根据变频器的电机转速确定上述第一采样周期具体包括:
A1、若变频器的电机转速小于第一转速值,则设置t1为第一采样周期。其中,这里的第一转速值可以为3000rpm(转每分)。假设第一转速值为3000rpm,若电机转速小于3000rpm,则每4个载波周期记录一次数据,即t1=4/f1,其中,f1为该变频器的载波频率,即根据电机转速先计算出f1,再根据该f1确定t1。
A2、若变频器的电机转速大于或等于第一转速值且小于第二转速值,则设置t2为第一采样周期。其中,这里的第二转速值可以为6000rpm。假设第一转速值为3000rpm,第二转速值为6000rpm,若3000rpm<电机转速<6000rpm,则每2个载波周期记录一次数据,即t2=2/f2,其中,f2为该变频器的载波频率,即根据电机转速先计算出f2,再根据该f2确定t2。
A3、若变频器的电机转速大于或等于第二转速值,则设置t3为第一采样周期。假设第二转速值为6000rpm,若6000rpm<电机转速,则每1个载波周期记录一次数据,即t3=1/f3,其中,f3为该变频器的载波频率,即根据电机转速先计算出f3,再根据该f3确定t3。
其中,t3< t2< t1<第二采样周期。
上述A1~A3中,由于根据电机转速的大小设置出对应的第一采样周期,因此,使得设置出的第一采样周期与电机转速更贴合,从而保证根据设置出的第一采样周期对电机的工作参数进行采集时,得到更准确的第一采样数据。
在一些实施例中,上述电机的工作参数包括以下至少一项:电机电流、母线电压、电机转速、电机反电动势电压。
上述变频器的工作参数包括以下至少一项:故障发生的时间、电源电压、电机转速、系统排气压力、环境温度、智能功率模块(Intelligent Power Module,IPM)的温度;其中,故障发生的时间为发生故障的时间点与启动电机的时间点之差。
本实施例中,上述的“电流”可以为电机的相电流,例如为U相电流、V相电流、W相电流。当电机的工作参数所包含的项数越多,和/或,变频器的工作参数所包含的项数越多,则后续通信设备根据电机的工作参数和变频器的工作参数能够获取的信息量越大,也即,后续该通信设备确定的故障原因越准确。
在一些实施例中,在步骤S21(或步骤S31)之后,包括:
每隔预设的采样周期将第一采样数据中的N1个数据记录到变频器的随机存取存储器,其中,N1根据变频器的随机存取存储器的数量和单个随机存取存储器的容量确定,且N1为大于9的自然数;
步骤S22(或步骤S32),包括:
若变频器发生故障,则将随机存取存储器中记录的故障数据存入存储设备。
本实施例中,若预设的采样周期为一个采样周期,则设置N1与变频器的RAM空间的比值小于1/2,以避免RAM占用过多导致变频器运行迟缓。假设RAM中的结构数组的通道长度为128(16bit),则上述的N1可设置为128。若第一采样数据包括U相电流(U相电流瞬时值)、母线电压和电机转速,则RAM记录第一采样数据后,需要占用的空间为128*2*3=768byte。在本实施例中,由于先将第一采样数据记录到变频器的RAM中,因此,在发生故障时,直接将记录的故障数据存入存储设备就能够获得对应的故障数据,而不会遗漏某些故障数据。并且,由于没有直接将采集的各个第一采样数据均存入存储设备,因此,也不会占用该存储设备的内存。
在一些实施例中,上述的存储设备包括以下至少一种:电可擦除只读存储器(Electronically Erasable Programmable Read-only Memory,EEPROM)、闪存(Flash Memory,FLASH)、通用串型总线接口大容量存储设备(USB Mass Storage Device,U盘)、安全数码存储卡(Secure Digital Memory Card,SD卡)等。
在一些实施例中,用户(如维修人员)可能需要查看变频器正常运行时的运行数据,则变频器也将记录的第一采样数据发送给通信设备,即本申请实施例提供的方法还包括:
若满足第一预设条件,则将记录的第一采样数据向通信设备发送,第一预设条件包括:接收到运行数据提取指令或运行数据上传时间点到达。
本实施例中,假设变频器接收到通信设备发送的运行数据提取指令,则该变频器向该通信设备发送第一采样数据,该第一采样数据为RAM记录的第一采样数据,或者,在该RAM更新其记录的第一采样数据之后,再将更新后的第一采样数据发送给通信设备。又或者,假设另一个设备(如手机)向变频器发送运行数据提取指令,但该运行数据提取指令还携带有通信设备(如服务器)的信息,即手机向变频器发送运行数据提取指令,用于指示变频器将对应的第一采样数据发送给服务器,则该变频器同样向该服务器发送第一采样数据。当然,若第一预设条件为“运行数据上传时间点到达”,则若当前时间点为“运行数据上传时间点”,则变频器将第一采样数据发送给通信设备。
在一些实施例中,考虑到变频器持续与通信设备通信时,将耗费变频器一定的资源,因此,只在第二预设条件满足时,才将故障数据和故障信息发送给通信设备,此时,上述步骤S23(或步骤S33)包括:
若满足第二预设条件,则将存储的故障数据向通信设备发送,第二预设条件包括:接收到故障数据提取指令或故障数据上传时间点到达;
上述步骤S36包括:
若满足第二预设条件,则将存储的故障信息向通信设备发送。
本实施例中,当判断出当前条件满足第二预设条件,则将故障数据和故障信息发送给通信设备。需要指出的是,上述的故障数据提取指令可由通信设备本身发送,也可由其他设备发送。
在一些实施例中,若变频器的MCU控制多个电机,则上述步骤S31(或步骤S21)具体包括:分别对各个电机的工作参数进行采样,获得对应的第一采样数据。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
实施例三:
图4示出了本申请实施例三提供的一种故障数据处理方法的流程图,该方法应用于与上述实施例一(或实施例二)的变频器交互的通信设备,这里的通信设备包括:上位机、移动终端(如手机、平板电脑)、云端服务器等。本实施例中,通信设备从变频器端接收到故障数据后,将分析该故障数据所对应的故障原因,并输出故障原因。详述如下:
步骤S41,接收变频器发送的故障数据,故障数据作为待匹配故障数据;
本实施例中,上述故障数据为变频器发生故障时,变频器对电机的工作参数采样得到的第一采样数据。
在一些实施例中,上述电机的工作参数包括以下至少一项:电机电流、母线电压、电机转速、电机反电动势电压。
在一些实施例中,通信设备与变频器的交互方式包括以下任一种:串口通讯、I2C、CAN、蓝牙。
步骤S42,根据待匹配故障数据以及不同的标准故障数据,确定待匹配故障数据对应的故障原因,其中,标准故障数据为变频器由于故障原因发生故障时所对应的故障数据;
本实施例中,预先获取变频器在发生不同故障时所对应的故障数据,这些故障数据作为标准故障数据。当从变频器中接收到待匹配故障数据后,将该待匹配故障数据与标准故障数据比对,再根据比对结果确定变频器发生故障的故障原因,比如将最匹配的标准故障数据所对应的故障原因作为待匹配故障数据所对应的故障原因。
在一些实施例中,上述标准故障数据可由通信设备本身预先整理获得,也可以通过辅助服务器预先将不同故障模式下电机的工作参数进行分类整理,通信设备再从辅助服务器上获得。
步骤S43,输出故障原因。
本实施例中,故障原因的输出方式包括以下任一种:语音播报、在界面以文字的形式显示具体的故障原因、生成具体的故障分析报告并打印。其中,上述的故障分析报告包括故障原因。
本申请实施例中,由于通信设备可直接从变频器获取该变频器发生故障时所对应的待匹配故障数据,因此,该通信设备可根据该待匹配故障数据以及标准故障数据,确定该待匹配故障数据所对应的故障原因。也即,无需维修人员携带示波器上门,就能获取待匹配故障数据,从而能够极大提高获取待匹配故障数据的便利性,也极大提高了得到故障原因的效率。进一步地,由于能够预先确定故障原因,因此,后续可以根据该故障原因委派更合适的维修人员上门维修,从而能够提高维修成功率,以及提高用户的良好体验。
在一些实施例中,变频器只有在接收到通信设备发送的故障数据提取指令之后再向该通信设备发送对应的待匹配故障数据,即在上述步骤S41之前,包括:
向变频器发送故障数据提取指令。
本实施例中,由于通信设备不需要时刻监测变频器是否发送待匹配故障数据,因此,该通信设备无需时刻与变频器建立通信连接,从而能够节省该通信设备的资源。
在一些实施例中,上述步骤S41包括:通信设备在故障数据上传时间点到达时,接收到变频器发送的待匹配故障数据。
在一些实施例中,为了能够得到更准确的故障原因,则通信设备还从变频器接收待匹配故障信息,即该方法还包括:
接收变频器发送的故障信息,故障信息作为待匹配故障信息;
对应地,步骤S42包括:
根据待匹配故障数据、标准故障数据、待匹配故障信息、以及标准故障前信息,确定待匹配故障数据对应的故障原因,其中,标准故障前信息为变频器发生故障之前的故障信息。
具体地,待匹配故障信息为变频器发生故障时对应的变频器的工作参数。上述变频器的工作参数包括以下至少一项:故障发生的时间、电源电压、电机转速、系统排气压力、环境温度、IPM模块的温度。
本实施例中,预先获取变频器在发生各种故障之前所对应的故障信息,获取的这些故障信息作为标准故障前信息。由于待匹配故障数据和待匹配故障信息为不同的信息,因此,通信设备将待匹配故障数据和待匹配故障信息结合,来判断该待匹配故障数据所对应的故障原因,能够提高得到的判断结果的准确性。例如,假设知道故障发生的时间接近于“0”,即表明电机在启动的时候就发生了故障,这个时候的故障原因通常是“电机坏了”。即通过将待匹配数据和待匹配故障信息相结合来确定故障原因,能够提高确定的故障原因的准确性以及速度。
在一些实施例中,通信设备向变频器发送故障数据提取指令,该变频器将上述待匹配故障信息以及待匹配故障数据向通信设备发送,该通信设备接收到该待匹配故障信息和待匹配故障数据。
本实施例中,由于通信设备不需要时刻监测变频器是否发送待匹配故障数据,因此,该通信设备无需时刻与变频器建立通信连接,从而能够节省该通信设备的资源。
在一些实施例中,为了能够监测变频器的运行情况,则该方法还包括:
B1、接收变频器发送的第一采样数据;
B2、根据第一采样数据分析变频器的当前运行状态。
具体地,第一采样数据为变频器在没有报错时所对应的采样数据。在本实施例中,通信设备可将接收的第一采样数据和预先获取的标准运行数据(即变频器在正常运行时所对应的电机的工作参数)比较,若两者匹配,则判定该变频器的当前运行状态良好,否则,判定该变频器的当前运行状态较差。
在一些实施例中,只有在通信设备希望获取第一采样数据时,变频器才将该第一采样数据发送给通信设备。此时,在步骤B1之前,该方法还包括:
通信设备向变频器发送运行数据提取指令。
本实施例中,由于只有在通信设备发送运行数据提取指令给变频器之后,才接收到该变频器发送的第一采样数据,因此,无需时刻对变频器进行监控,从而降低了对该通信设备的资源消耗。
在一些实施例中,为了让维修人员直观查看匹配结果,则上述步骤S42包括:
C1、对待匹配故障数据进行波形重构,得到待匹配故障波形;
图5示出了在变频器发生过流故障时,根据U相电流和母线电压重构出的待匹配故障波形,图6为采用示波器采集发生过流故障的变频器得到的波形图。从图5和图6的波形图可知,重构变频器发送的故障数据得到的波形与示波器采集得到的波形的趋势基本一致,故后续直接采用变频器发送的故障数据进行故障原因的分析,与采用示波器采集得到的波形进行故障原因的分析,其得到的结果也应是一致的。也即,采用变频器发送的故障数据进行故障原因的分析能够保证得到的故障原因的准确性。
C2、将待匹配故障波形与不同的标准故障数据所对应的标准故障波形比较,根据比较结果确定待匹配故障数据对应的故障原因。
上述C1和C2中,将待匹配故障数据重构为待匹配故障波形,再将该待匹配故障波形与标准故障波形比较。比如,比较两个波形的变化趋势,若两个波形的变化趋势一致,则判定这两个波形是匹配的波形,进而将匹配到的标准故障波形所对应的故障原因作为该待匹配故障波形所对应的故障原因。由于重构为波形后,维修人员能够更直接地查看待匹配故障数据的变化趋势,因此,有利于维修人员直观查看待匹配故障波形与标准故障波形的匹配程度,进而有利于维修人员进一步评估得到的故障原因的准确程度。
在一些实施例中,由于变频器在不同故障原因导致故障时,该变频器对应的故障数据(或者,故障数据和故障信息)在某些方面表现可能是类似的,因此,为了便于维修人员获取到更多的信息,则本申请实施例在确定待匹配故障数据对应的故障原因时,还包括:
确定变频器为故障原因的概率;
对应地,该方法还包括:
输出故障原因的概率。
本实施例中,输出的故障原因可能有多个,且在输出故障原因时还输出导致变频器发生故障的故障原因为输出的故障原因的概率。例如,假设故障原因为“电机过载”,概率“40%”,则表明导致该变频器发生故障的故障原因为“电机过载”的概率是“40%”。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
实施例四:
与上述实施例一、实施例二对应,图7示出了本申请实施例提供的一种故障数据处理装置的结构示意图,该故障数据处理装置应用于变频器,为了便于说明,仅示出了与本申请实施例相关的部分:
该故障数据处理装置7包括:采样模块71、故障数据存储模块72、故障数据发送模块73。其中:
第一采样模块71,用于对电机的工作参数进行采样,获得对应的第一采样数据;
在一些实施例中,由于不能预先确定变频器发生故障的时间点,因此,为了能够及时采集到该变频器发生故障时电机所对应的工作参数,则以预设的采样周期循环对电机的工作参数进行采样。
故障数据存储模块72,用于若变频器发生故障,则存储变频器的故障数据,故障数据为变频器发生故障时获得的第一采样数据;
在一些实施例中,存储变频器发生故障前到发生故障后一段时间内的第一采样数据。即存储发生故障前(或,将发生故障前和发生故障后)对应的第一采样数据,也存储故障数据。
故障数据发送模块73,用于将故障数据向通信设备发送。
本实施例中,变频器可通过串口通讯、I2C、CAN、蓝牙等任一种通信方式与通信设备交互。
本申请实施例中,通过变频器本身采集电机的工作参数,并在判断出变频器产生故障时,存储故障数据(即在变频器发生故障时所采集得到的第一采样数据),再将该故障数据发送给通信设备。由于变频器本身能够获取到故障数据,因此,维修人员在对变频器进行维修时无需携带示波器,从而极大减轻了维修人员的负担,提高了维修人员对变频器维修时的便利性。同时,由于故障数据可以由变频器发送给通信设备,因此,维修人员只需要通过通信设备就能获取到相关的故障数据,也即,无需上门就能获取到变频器的故障数据,从而有利于选择更适合的维修人员上门维修,极大提高了变频器的维修效率。
在一些实施例中,该故障数据处理装置7还包括:
第二采样模块,用于对变频器的工作参数进行采样,获得对应的第二采样数据;
故障信息存储模块,用于存储变频器的故障信息,故障信息为变频器发生故障时获得的第二采样数据;
在一些实施例中,故障信息存储模块还用于变频器发生故障前(比如发生故障前1秒)对应的第二采样数据和变频器发生故障后(比如发生故障后1秒)对应的第二采样数据。
故障信息发送模块,用于将故障信息向通信设备发送。
本申请实施例中,由于变频器除了存储故障数据,还存储故障信息,且故障数据反映的是电机的工作,而故障信息反映的是变频器的工作。因此,将故障数据和故障信息发送给通信设备后,该通信设备结合故障数据和故障信息一起分析,能够得到更准确的故障原因。
在一些实施例中,将上述的故障数据和故障信息一起发送给通信设备,以减少发送的次数。
在一些实施例中,为不同时间得到的故障数据和故障信息设置对应的唯一标识。需要指出的是,同一次故障的故障数据和故障信息对应同一个唯一标识,该唯一标识可采用时间表示。
在一些实施例中,上述电机的工作参数包括以下至少一项:电机电流、母线电压、电机转速、电机反电动势电压。
在一些实施例中,上述变频器的工作参数包括以下至少一项:故障发生的时间、电源电压、电机转速、系统排气压力、环境温度、智能功率模块(Intelligent Power Module,IPM)的温度;其中,故障发生的时间为发生故障的时间点与启动电机的时间点之差。
在一些实施例中,该故障数据处理装置7还包括:
第一采样数据记录模块,用于每隔预设的采样周期将第一采样数据中的N1个数据记录到变频器的随机存取存储器,其中,N1根据变频器的随机存取存储器的数量和单个随机存取存储器的容量确定,且N1为大于9的自然数;
故障数据存储模块72具体用于:
若变频器发生故障,则将随机存取存储器中记录的故障数据存入存储设备。
本实施例中,若预设的采样周期为一个采样周期,则设置N1与变频器的RAM空间的比值小于1/2,以避免RAM占用过多导致变频器运行迟缓。
在一些实施例中,用户(如维修人员)可能需要查看变频器正常运行时的运行数据,则变频器也将记录的第一采样数据发送给通信设备,即该故障数据处理装置7包括:
第一预设条件判断模块,用于若满足第一预设条件,则将记录的第一采样数据向通信设备发送,第一预设条件包括:接收到运行数据提取指令或运行数据上传时间点到达。
本实施例中,假设变频器接收到通信设备发送的运行数据提取指令,则该变频器向该通信设备发送第一采样数据,该第一采样数据为RAM记录的第一采样数据,或者,在该RAM更新其记录的第一采样数据之后,再将更新后的第一采样数据发送给通信设备。又或者,假设另一个设备(如手机)向变频器发送运行数据提取指令,但该运行数据提取指令还携带有通信设备(如服务器)的信息,即手机向变频器发送运行数据提取指令,用于指示变频器将对应的第一采样数据发送给服务器,则该变频器同样向该服务器发送第一采样数据。当然,若第一预设条件为“运行数据上传时间点到达”,则若当前时间点为“运行数据上传时间点”,则变频器将第一采样数据发送给通信设备。
在一些实施例中,考虑到变频器持续与通信设备通信时,将耗费变频器一定的资源,因此,只在第二预设条件满足时,才将故障数据和故障信息发送给通信设备,此时,故障数据发送模块73具体用于:
若满足第二预设条件,则将存储的故障数据向通信设备发送,第二预设条件包括:接收到故障数据提取指令或故障数据上传时间点到达;
上述故障信息发送模块具体用于:
若满足第二预设条件,则将存储的故障信息向通信设备发送。
本实施例中,当判断出当前条件满足第二预设条件,则将故障数据和故障信息发送给通信设备。需要指出的是,上述的故障数据提取指令可由通信设备本身发送,也可由其他设备发送。
实施例五:
与上述实施例三对应,图8示出了本申请实施例提供的另一种故障数据处理装置的结构示意图,该故障数据处理装置应用于通信设备,为了便于说明,仅示出了与本申请实施例相关的部分:
该故障数据处理装置8包括:故障数据接收模块81、故障原因确定模块82、故障原因输出模块83。其中:
故障数据接收模块81,用于接收变频器发送的故障数据,故障数据作为待匹配故障数据;
本实施例中,上述故障数据为变频器发生故障时,变频器对电机的工作参数采样得到的第一采样数据。
在一些实施例中,上述电机的工作参数包括以下至少一项:电机电流、母线电压、电机转速、电机反电动势电压。
在一些实施例中,通信设备与变频器的交互方式包括以下任一种:串口通讯、I2C、CAN、蓝牙。
故障原因确定模块82,用于根据待匹配故障数据以及不同的标准故障数据,确定待匹配故障数据对应的故障原因,其中,标准故障数据为故障原因对应的故障数据;
故障原因输出模块83,用于输出故障原因。
本实施例中,故障原因的输出方式包括以下任一种:语音播报、在界面以文字的形式显示具体的故障原因、生成具体的故障分析报告并打印。其中,上述的故障分析报告包括故障原因。
本申请实施例中,由于通信设备可直接从变频器获取该变频器发生故障时所对应的待匹配故障数据,因此,该通信设备可根据该待匹配故障数据以及标准故障数据,确定该待匹配故障数据所对应的故障原因。也即,无需维修人员携带示波器上门,就能获取待匹配故障数据,从而能够极大提高获取待匹配故障数据的便利性,也极大提高了得到故障原因的效率。进一步地,由于能够预先确定故障原因,因此,后续可以根据该故障原因委派更合适的维修人员上门维修,从而能够提高维修成功率,以及提高用户的良好体验。
在一些实施例中,变频器只有在接收到通信设备发送的故障数据提取指令之后再向该通信设备发送对应的待匹配故障数据,即故障数据处理装置8还包括:
故障数据提取指令发送模块,用于向变频器发送故障数据提取指令。
本实施例中,由于通信设备不需要时刻监测变频器是否发送待匹配故障数据,因此,该通信设备无需时刻与变频器建立通信连接,从而能够节省该通信设备的资源。
在一些实施例中,故障数据接收模块81具体用于:在故障数据上传时间点到达时,接收到变频器发送的待匹配故障数据。
在一些实施例中,为了能够得到更准确的故障原因,则通信设备还从变频器接收待匹配故障信息,即故障数据处理装置8还包括:
故障信息接收模块,用于接收变频器发送的故障信息,故障信息作为待匹配故障信息;
对应地,故障原因确定模块82具体用于:
根据待匹配故障数据、标准故障数据、待匹配故障信息、以及标准故障前信息,确定待匹配故障数据对应的故障原因,其中,标准故障前信息为变频器发生故障之前的故障信息。
具体地,待匹配故障信息为变频器发生故障时对应的变频器的工作参数。上述变频器的工作参数包括以下至少一项:故障发生的时间、电源电压、电机转速、系统排气压力、环境温度、IPM模块的温度。
本实施例中,预先获取变频器在发生各种故障之前所对应的故障信息,获取的这些故障信息作为标准故障前信息。由于待匹配故障数据和待匹配故障信息为不同的信息,因此,通信设备将待匹配故障数据和待匹配故障信息结合,来判断该待匹配故障数据所对应的故障原因,能够提高得到的判断结果的准确性。
在一些实施例中,为了能够监测变频器的运行情况,上述故障数据处理装置8,还包括:
第一采样数据接收模块,用于接收变频器发送的第一采样数据;
当前运行状态分析模块,用于根据第一采样数据分析变频器的当前运行状态。
具体地,第一采样数据为变频器在没有报错时所对应的采样数据。在本实施例中,通信设备可将接收的第一采样数据和预先获取的标准运行数据(即变频器在正常运行时所对应的电机的工作参数)比较,若两者匹配,则判定该变频器的当前运行状态良好,否则,判定该变频器的当前运行状态较差。
在一些实施例中,只有在通信设备希望获取第一采样数据时,变频器才将该第一采样数据发送给通信设备。此时,上述故障数据处理装置8,还包括:
运行数据提取指令发送模块,用于向变频器发送运行数据提取指令。
在一些实施例中,为了让维修人员直观查看匹配结果,则故障原因确定模块82包括:
波形重构单元,用于对待匹配故障数据进行波形重构,得到待匹配故障波形;
波形比较单元,用于将待匹配故障波形与不同的标准故障数据所对应的标准故障波形比较,根据比较结果确定待匹配故障数据对应的故障原因。
本实施例中,比较两个波形的变化趋势,若两个波形的变化趋势一致,则判定这两个波形是匹配的波形,进而将匹配到的标准故障波形所对应的故障原因作为该待匹配故障波形所对应的故障原因。由于重构为波形后,维修人员能够更直接地查看待匹配故障数据的变化趋势,因此,有利于维修人员直观查看待匹配故障波形与标准故障波形的匹配程度,进而有利于维修人员进一步评估得到的故障原因的准确程度。
在一些实施例中,由于变频器在不同故障原因导致故障时,该变频器对应的故障数据(或者,故障数据和故障信息)在某些方面表现可能是类似的,因此,为了便于维修人员获取到更多的信息,则本申请实施例在确定待匹配故障数据对应的故障原因时,上述故障数据处理装置8还包括:
概率确定模块,用于确定变频器为故障原因的概率;
概率输出模块,用于输出故障原因的概率。
本实施例中,输出的故障原因可能有多个,且在输出故障原因时还输出导致变频器发生故障的故障原因为输出的故障原因的概率。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
实施例六:
图9为本申请一实施例提供的变频器的结构示意图。如图9所示,该实施例的变频器9包括:至少一个处理器90(图9中仅示出一个处理器)、存储器91以及存储在存储器91中并可在至少一个处理器90上运行的计算机程序92,处理器90执行计算机程序92时实现上述任意各个方法实施例中的步骤。
变频器9可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。该变频器可包括,但不仅限于,处理器90、存储器91。本领域技术人员可以理解,图9仅仅是变频器9的举例,并不构成对变频器9的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
所称处理器90可以是中央处理单元(Central Processing Unit,CPU),该处理器90还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现场可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器91在一些实施例中可以是所述变频器9的内部存储单元,例如变频器9的硬盘或内存。所述存储器91在另一些实施例中也可以是所述变频器9的外部存储设备,例如所述变频器9上配备的插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(Secure Digital, SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器91还可以既包括所述变频器9的内部存储单元也包括外部存储设备。所述存储器91用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如所述计算机程序的程序代码等。所述存储器91还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
实施例七:
图10为本申请一实施例提供的通信设备的结构示意图。如图10所示,该实施例的通信设备10包括:至少一个处理器100(图10中仅示出一个处理器)、存储器101以及存储在所述存储器101中并可在所述至少一个处理器100上运行的计算机程序102,所述处理器100执行所述计算机程序102时实现上述任意各个方法实施例中的步骤。
所述通信设备10可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。该通信设备可包括,但不仅限于,处理器100、存储器101。本领域技术人员可以理解,图10仅仅是通信设备10的举例,并不构成对通信设备10的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
所称处理器100可以是中央处理单元(Central Processing Unit,CPU),该处理器100还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现场可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器101在一些实施例中可以是所述通信设备10的内部存储单元,例如通信设备10的硬盘或内存。所述存储器101在另一些实施例中也可以是所述通信设备10的外部存储设备,例如所述通信设备10上配备的插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(Secure Digital, SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器101还可以既包括所述通信设备10的内部存储单元也包括外部存储设备。所述存储器101用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如所述计算机程序的程序代码等。所述存储器101还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例包括一种空调设备,该空调设备包括上述实施例六的变频器。
本申请实施例还提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在空调设备上运行时,使得空调设备执行时实现可实现上述各个方法实施例中的步骤。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括:能够将计算机程序代码携带到空调设备的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/空调设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/空调设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种故障数据处理方法,其特征在于,应用于变频器,所述方法包括:
    对电机的工作参数进行采样,获得对应的第一采样数据;
    若所述变频器发生故障,则存储所述变频器的故障数据,所述故障数据为所述变频器发生故障时获得的第一采样数据;
    将所述故障数据向通信设备发送。
  2. 如权利要求1所述的故障数据处理方法,其特征在于,还包括:
    对所述变频器的工作参数进行采样,获得对应的第二采样数据;
    存储所述变频器的故障信息,所述故障信息为所述变频器发生故障时获得的第二采样数据;
    将所述故障信息向所述通信设备发送。
  3. 如权利要求2所述的故障数据处理方法,其特征在于,
    所述电机的工作参数包括以下至少一项:电机电流、母线电压、电机转速、电机反电动势电压;
    所述变频器的工作参数包括以下至少一项:故障发生的时间、电源电压、电机转速、系统排气压力、环境温度、智能功率模块的温度;其中,所述故障发生的时间为发生故障的时间点与启动所述电机的时间点之差。
  4. 如权利要求1至3任一项所述的故障数据处理方法,其特征在于,在所述获得对应的第一采样数据之后,包括:
    每隔预设的采样周期将所述第一采样数据中的N1个数据记录到所述变频器的随机存取存储器,其中,所述N1根据所述变频器的随机存取存储器的数量和单个所述随机存取存储器的容量确定,且所述N1为大于9的自然数;
    所述若所述变频器发生故障,则存储所述变频器的故障数据,包括:
    若所述变频器发生故障,则将所述随机存取存储器中记录的故障数据存入存储设备。
  5. 如权利要求4所述的故障数据处理方法,其特征在于,所述故障数据处理方法,还包括:
    若满足第一预设条件,则将记录的第一采样数据向所述通信设备发送,所述第一预设条件包括:接收到运行数据提取指令或运行数据上传时间点到达。
  6. 如权利要求2或3所述的故障数据处理方法,其特征在于,所述将所述故障数据向通信设备发送,包括:
    若满足第二预设条件,则将存储的故障数据向所述通信设备发送,所述第二预设条件包括:接收到故障数据提取指令或故障数据上传时间点到达;
    所述将所述故障信息向所述通信设备发送,包括:
    若满足第二预设条件,则将存储的故障信息向所述通信设备发送。
  7. 一种故障数据处理方法,其特征在于,应用于通信设备,包括:
    接收变频器发送的故障数据,所述故障数据作为待匹配故障数据;
    根据所述待匹配故障数据以及不同的标准故障数据,确定所述待匹配故障数据对应的故障原因,其中,所述标准故障数据为所述变频器由于所述故障原因发生故障时所对应的故障数据;
    输出所述故障原因。
  8. 如权利要求7所述的故障数据处理方法,其特征在于,所述故障数据处理方法,还包括:
    接收变频器发送的故障信息,所述故障信息作为待匹配故障信息;
    所述根据所述待匹配故障数据以及不同的标准故障数据,确定所述待匹配故障数据对应的故障原因,包括:
    根据所述待匹配故障数据、所述标准故障数据、待匹配故障信息、以及标准故障前信息,确定所述待匹配故障数据对应的故障原因,其中,所述标准故障前信息为变频器发生故障之前的故障信息。
  9. 如权利要求7所述的故障数据处理方法,其特征在于,所述故障数据处理方法,还包括:
    接收所述变频器发送的第一采样数据;
    根据所述第一采样数据分析所述变频器的当前运行状态。
  10. 如权利要求7至9任一项所述的故障数据处理方法,其特征在于,所述根据所述待匹配故障数据以及不同的标准故障数据,确定所述待匹配故障数据对应的故障原因,包括:
    对所述待匹配故障数据进行波形重构,得到待匹配故障波形;
    将所述待匹配故障波形与不同的标准故障数据所对应的标准故障波形比较,根据比较结果确定所述待匹配故障数据对应的故障原因。
  11. 如权利要求7至9任一项所述的故障数据处理方法,其特征在于,在确定所述待匹配故障数据对应的故障原因时,还包括:
    确定所述变频器为所述故障原因的概率;
    在所述输出所述故障原因时,还包括:
    输出所述故障原因的概率。
  12. 一种故障数据处理装置,其特征在于,应用于变频器,包括:
    第一采样模块,用于对电机的工作参数进行采样,获得对应的第一采样数据;
    故障数据存储模块,用于若所述变频器发生故障,则存储所述变频器的故障数据,所述故障数据为所述变频器发生故障时获得的第一采样数据;
    故障数据发送模块,用于将所述故障数据向通信设备发送。
  13. 一种故障数据处理装置,其特征在于,应用于通信设备,包括:
    故障数据接收模块,用于接收变频器发送的故障数据,所述故障数据作为待匹配故障数据;
    故障原因确定模块,用于根据所述待匹配故障数据以及不同的标准故障数据,确定所述待匹配故障数据对应的故障原因,其中,所述标准故障数据为所述故障原因对应的故障数据;
    故障原因输出模块,用于输出所述故障原因。
  14. 一种变频器,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至6任一项所述的方法。
  15. 一种空调设备,其特征在于,包括如权利要求14所述的变频器。
  16. 一种通信设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求7至11任一项所述的方法。
  17. 一种存储介质,所述存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至11任一项所述的方法。
PCT/CN2022/070146 2021-06-21 2022-01-04 故障数据处理方法、装置、变频器、空调设备及存储介质 WO2022267436A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110688444.9 2021-06-21
CN202110688444.9A CN113406948B (zh) 2021-06-21 2021-06-21 故障数据处理方法、装置、变频器、空调设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022267436A1 true WO2022267436A1 (zh) 2022-12-29

Family

ID=77682098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070146 WO2022267436A1 (zh) 2021-06-21 2022-01-04 故障数据处理方法、装置、变频器、空调设备及存储介质

Country Status (2)

Country Link
CN (1) CN113406948B (zh)
WO (1) WO2022267436A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116107261A (zh) * 2023-04-12 2023-05-12 天津市伟利达科技发展有限公司 一种变频器的控制方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406948B (zh) * 2021-06-21 2023-02-03 合肥美的暖通设备有限公司 故障数据处理方法、装置、变频器、空调设备及存储介质
CN114296105A (zh) * 2021-12-27 2022-04-08 中国第一汽车股份有限公司 一种定位故障原因确定方法、装置、设备以及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253338A (zh) * 2011-05-30 2011-11-23 新疆大学 一种风电机组变频器智能故障诊断方法
CN105004946A (zh) * 2015-06-30 2015-10-28 深圳市汇川技术股份有限公司 变频器故障分析系统、方法及变频器
EP3246689A1 (en) * 2016-05-20 2017-11-22 ABB Technology Oy Method and system for monitoring mechanical bearing
CN109490675A (zh) * 2018-12-27 2019-03-19 上海辛格林纳新时达电机有限公司 预警方法、电子设备、以及测试系统
CN110988514A (zh) * 2019-11-04 2020-04-10 佛山市高明基业冷轧钢板有限公司 一种变频器的故障智能监测系统、方法及存储介质
CN111796203A (zh) * 2020-06-03 2020-10-20 深圳蓄能发电有限公司 一种静止变频器网桥侧单相接地故障的识别方法及装置
CN113406948A (zh) * 2021-06-21 2021-09-17 合肥美的暖通设备有限公司 故障数据处理方法、装置、变频器、空调设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI120565B (fi) * 2007-12-20 2009-11-30 Abb Oy Menetelmä ja laitteisto maasulun havaitsemiseen
CN105738737B (zh) * 2016-02-22 2018-06-01 保定钰鑫电气科技有限公司 一种故障录波方法
CN206339867U (zh) * 2016-12-19 2017-07-18 江苏师范大学 一种电机故障检测记录控制系统
CN111908063B (zh) * 2020-08-28 2021-11-09 华夏天信智能物联股份有限公司 一种基于刮板机变频器及ai算法的断链判断方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253338A (zh) * 2011-05-30 2011-11-23 新疆大学 一种风电机组变频器智能故障诊断方法
CN105004946A (zh) * 2015-06-30 2015-10-28 深圳市汇川技术股份有限公司 变频器故障分析系统、方法及变频器
EP3246689A1 (en) * 2016-05-20 2017-11-22 ABB Technology Oy Method and system for monitoring mechanical bearing
CN109490675A (zh) * 2018-12-27 2019-03-19 上海辛格林纳新时达电机有限公司 预警方法、电子设备、以及测试系统
CN110988514A (zh) * 2019-11-04 2020-04-10 佛山市高明基业冷轧钢板有限公司 一种变频器的故障智能监测系统、方法及存储介质
CN111796203A (zh) * 2020-06-03 2020-10-20 深圳蓄能发电有限公司 一种静止变频器网桥侧单相接地故障的识别方法及装置
CN113406948A (zh) * 2021-06-21 2021-09-17 合肥美的暖通设备有限公司 故障数据处理方法、装置、变频器、空调设备及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116107261A (zh) * 2023-04-12 2023-05-12 天津市伟利达科技发展有限公司 一种变频器的控制方法及系统
CN116107261B (zh) * 2023-04-12 2023-06-13 天津市伟利达科技发展有限公司 一种变频器的控制方法及系统

Also Published As

Publication number Publication date
CN113406948B (zh) 2023-02-03
CN113406948A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
WO2022267436A1 (zh) 故障数据处理方法、装置、变频器、空调设备及存储介质
WO2017124806A1 (zh) 汽车控制器的程序刷写方法、装置、系统及终端
EP3410133B1 (en) System and method for voltage regulator self-burn-in test
WO2019024405A1 (zh) 故障诊断自动测试方法及装置
WO2019232993A1 (zh) 自适应的数据恢复流控方法、装置、电子设备及存储介质
WO2021244535A1 (zh) 车辆软件故障检测方法、装置、设备及存储介质
CN109733238B (zh) 故障检测方法、装置、存储介质及处理器
CN113505014A (zh) 一种故障诊断文件获取方法及装置
CN106528370A (zh) 一种在虚拟化层实现的虚拟机状态监控
CN104598340A (zh) 硬件故障的检测系统、电子装置及方法
WO2019037634A1 (zh) 车辆状态信息的显示方法、装置及移动终端
CN107143513A (zh) 基于bmc的服务器风扇控制策略远程管理式固件开发方法
WO2022267438A1 (zh) 性能参数记录方法、装置、变频器、空调设备及存储介质
CN107861821B (zh) 模块调用关系的挖掘方法、装置及计算机可读介质
CN106815088A (zh) 服务器及其侦错方法
CN115576737B (zh) 异常检测方法、装置、电子设备及存储介质
CN110061893B (zh) 一种故障信息采集方法、服务器及存储介质
CN116361106A (zh) 一种日志处理方法、装置、电子设备及存储介质
CN115994112A (zh) 一种储能协调控制方法、控制器、设备和介质
WO2020000669A1 (zh) 一种数据编码分析的方法及装置
TWI236619B (en) Automatic generation system and method for hardware-based testing script
CN111022365B (zh) 应对风扇转子故障的调速方法、系统、终端及存储介质
CN113626305A (zh) 一种非侵入式负荷识别算法的调试方法和调试系统
CN1609819A (zh) 一种计算机外围设备接口的测试方法
CN213876697U (zh) 一种高灵活度低带宽的ssd主控芯片的运算加速电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22826947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE