WO2022267438A1 - 性能参数记录方法、装置、变频器、空调设备及存储介质 - Google Patents

性能参数记录方法、装置、变频器、空调设备及存储介质 Download PDF

Info

Publication number
WO2022267438A1
WO2022267438A1 PCT/CN2022/070152 CN2022070152W WO2022267438A1 WO 2022267438 A1 WO2022267438 A1 WO 2022267438A1 CN 2022070152 W CN2022070152 W CN 2022070152W WO 2022267438 A1 WO2022267438 A1 WO 2022267438A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
sampling
frequency converter
fault
preset
Prior art date
Application number
PCT/CN2022/070152
Other languages
English (en)
French (fr)
Inventor
王豪浩
洪伟鸿
陆德强
陈俊桦
周超
彭国彬
钟明胜
Original Assignee
合肥美的暖通设备有限公司
广东美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥美的暖通设备有限公司, 广东美的暖通设备有限公司 filed Critical 合肥美的暖通设备有限公司
Priority to EP22826949.4A priority Critical patent/EP4321880A1/en
Publication of WO2022267438A1 publication Critical patent/WO2022267438A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods

Definitions

  • the application relates to the technical field of frequency converters, in particular to a performance parameter recording method, device, frequency converter, air conditioner and storage medium.
  • Frequency conversion technology is a conversion technology that converts direct current into alternating current of different frequencies. Devices using frequency conversion technology will inevitably have occasional failures due to long-term work and complex operating conditions.
  • One of the purposes of the embodiments of the present application is to provide a method for recording performance parameters, which can solve the problem of inconvenient operation caused by the need to connect an oscilloscope when detecting device failures in the prior art.
  • the embodiment of the present application provides a method for recording performance parameters, which is applied to frequency converters, including:
  • the embodiment of the present application provides a performance parameter recording device, which is applied to a frequency converter, including:
  • a first sampling data determination module configured to sample the performance parameters of the frequency converter according to a preset first sampling period to obtain first sampling data
  • the second sampling data determination module is configured to sample the performance parameters of the frequency converter according to a preset second sampling period to obtain second sampling data, wherein the preset first sampling period is shorter than the preset The second sampling period of ;
  • the fault data storage module is used to store the fault data before and after the fault of the frequency converter if the frequency converter fails, and the fault data includes the first sampling data and the second sampling data.
  • an embodiment of the present application provides a frequency converter, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • a frequency converter including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program Implement the method as described in the first aspect.
  • the embodiment of the present application provides an air conditioner, including the frequency converter as described in the third aspect.
  • an embodiment of the present application provides a storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, the method described in the first aspect is implemented.
  • an embodiment of the present application provides a computer program product, which enables an air conditioner to execute the method described in the first aspect when the computer program product is run on a terminal device.
  • the fault data is the data before and after the fault of the inverter, after subsequent analysis of the fault data, an accurate analysis result can be obtained, that is, the cause of the fault can be obtained.
  • the fault data is recorded by the frequency converter itself, there is no need to connect the frequency converter with an oscilloscope, so the convenience of operation can be improved.
  • the fault data samples the performance parameters of the inverter through two different sampling periods, sampling data with different sampling periods can be obtained, which is beneficial to the subsequent analysis of performance parameters from different angles, that is, it is beneficial to Improve the accuracy of subsequent analysis results.
  • Fig. 1 is a schematic flow chart of the first performance parameter recording method provided in Embodiment 1 of the present application;
  • Fig. 2 is an example flow chart of the second performance parameter recording method provided by Embodiment 2 of the present application.
  • Fig. 3 is a schematic flow chart of a third performance parameter recording method provided in Embodiment 3 of the present application.
  • Fig. 4 is a schematic flow chart of another performance parameter recording method provided in Embodiment 3 of the present application.
  • FIG. 5 is a schematic flow diagram of the frequency converter provided in Embodiment 3 of the present application after receiving an instruction from a communication device;
  • FIG. 6 is a schematic diagram of a waveform corresponding to an overcurrent fault displayed by an oscilloscope provided in Embodiment 3 of the present application;
  • FIG. 7 is a schematic diagram of a fault waveform obtained by reconstructing the first sampling data provided in Embodiment 3 of the present application.
  • FIG. 8 is a schematic diagram of a fault waveform obtained by reconstructing the second sampling data provided in Embodiment 3 of the present application.
  • FIG. 9 is a schematic diagram of the corresponding running waveform displayed by the oscilloscope when the frequency converter is running according to Embodiment 3 of the present application.
  • FIG. 10 is a schematic diagram of an operating waveform obtained by reconstructing the first sampling data provided in Embodiment 3 of the present application.
  • Fig. 11 is a schematic structural diagram of a performance parameter recording device provided in Embodiment 4 of the present application.
  • Fig. 12 is a schematic structural diagram of a frequency converter provided in Embodiment 5 of the present application.
  • references to "one embodiment” or “some embodiments” or the like in the specification of the present application means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • an oscilloscope is mainly used to monitor the device (such as a frequency converter), and to observe the waveform corresponding to the frequency converter when the frequency converter fails, so as to determine the cause of the frequency converter failure.
  • the inverter cannot be connected to the oscilloscope for a long time, it is difficult to determine the cause of the inverter failure more conveniently and accurately.
  • an embodiment of the present application provides a performance parameter recording method.
  • the provided performance parameter recording method is applied to a frequency converter (such as applied to a micro control unit (Microcontroller Unit, MCU) of the frequency converter).
  • a frequency converter such as applied to a micro control unit (Microcontroller Unit, MCU) of the frequency converter.
  • the performance parameters of the frequency converter are sampled at different sampling periods, and the fault data before and after the failure of the frequency converter (that is, the first sampling data and the second sampling data obtained by sampling at different sampling periods) are stored.
  • the inverter itself stores the fault data, the inverter does not need to be connected to the oscilloscope at all times, and the staff can also analyze the fault of the inverter through the fault data stored in the inverter.
  • the performance parameters are sampled through different sampling periods, overall and partial analysis of the performance parameters can be performed subsequently according to the obtained different sampling data, which is conducive to improving the accuracy of the analysis results.
  • Figure 1 shows a flow chart of the first performance parameter recording method provided by Embodiment 1 of the present application. This method is applied to a frequency converter and is described in detail as follows:
  • Step S11 sampling the performance parameters of the frequency converter according to a preset first sampling period to obtain first sampling data.
  • the performance parameters here refer to data that can reflect the performance of the frequency converter, such as current value, voltage value, motor speed and so on.
  • the sampling period of the first sampling period here is very short. After reconstructing the first sampling data obtained by sampling in the first sampling period, the obtained waveform can reflect specific information of a single waveform.
  • Step S12 sampling the performance parameters of the frequency converter according to a preset second sampling period to obtain second sampling data, wherein the preset first sampling period is shorter than the preset second sampling period.
  • the second sampling period here refers to a period longer than the first sampling period.
  • Step S13 if the frequency converter fails, store the fault data before and after the frequency converter fails, and the fault data includes the first sampled data and the second sampled data.
  • the performance parameter sampled in the first sampling period is restored, the local conditions of the performance parameter can be reflected (without observing the conditions of each waveform); after the performance parameter sampled in the second sampling period is restored, the performance can be reflected
  • the overall situation of the parameter (each waveform situation can be observed), for example, the second sampling period is 20 milliseconds (ms).
  • the first sampled data and the second sampled data are respectively identified, so as to distinguish different sampled data. In this way, different sampled data can be identified subsequently according to the identifier, and then the waveform corresponding to the first sampled data can be recovered, and the waveform corresponding to the second sampled data can be recovered.
  • the fault data (that is, the above-mentioned first sampling data obtained by sampling through the preset first sampling period, and the second sampling data obtained through sampling through the preset second sampling period) is the frequency converter Corresponding data before and after a fault occurs, therefore, subsequent accurate analysis of the fault can be realized based on the fault data.
  • the fault data since the fault data is recorded by the frequency converter itself, there is no need to connect the frequency converter with an oscilloscope, so the convenience of operation can be improved.
  • the fault data samples the performance parameters through a first sampling period and a second sampling period, sampling data with different sampling periods can be obtained, which facilitates the subsequent analysis of the performance parameters from different angles, namely This is conducive to improving the accuracy of subsequent analysis results.
  • FIG. 2 shows a flow chart of the second performance parameter recording method provided by Embodiment 2 of the present application.
  • This embodiment adds a new step S21 on the basis of Embodiment 1.
  • Step S22, step S23, and step S24 are the same as step S11, step S12, and step S13 of Embodiment 1, and will not be repeated here:
  • Step S21 determining a preset first sampling period according to the motor speed of the frequency converter.
  • the motor speed here refers to the speed of the motor of the frequency converter.
  • set The first sampling period is related to the motor speed.
  • step S21 specifically includes:
  • the motor speed of the frequency converter is less than the first speed value, then set t1 as the preset first sampling period.
  • the motor speed of the frequency converter is greater than or equal to the first speed value and less than the second speed value, then set t2 as the preset first sampling period.
  • the second rotational speed value here may be 6000 rpm.
  • the first speed value is 3000rpm
  • the second speed value is 6000rpm
  • the set first sampling period is more suitable for the motor speed, thereby ensuring that the frequency conversion is controlled according to the set first sampling period.
  • Step S22 sampling the performance parameters of the frequency converter according to a preset first sampling period to obtain first sampling data.
  • the performance parameters here refer to data that can reflect the performance of the frequency converter, such as current value, voltage value, motor speed and so on.
  • the sampling period of the first sampling period here is very short. After reconstructing the first sampling data obtained by sampling in the first sampling period, the obtained waveform can reflect specific information of a single waveform.
  • Step S23 sampling the performance parameters of the frequency converter according to a preset second sampling period to obtain second sampling data, wherein the preset first sampling period is shorter than the preset second sampling period.
  • the second sampling period here refers to a period longer than the first sampling period.
  • Step S24 if the inverter fails, store the fault data before and after the inverter fails, and the fault data includes the first sampled data and the second sampled data.
  • the preset first sampling period is determined according to the rotational speed of the motor, it can ensure that the performance parameters of the frequency converter are sampled with a more accurate first sampling period, thereby improving the accuracy of the obtained first sampling data .
  • Fig. 3 shows the flow chart of the third performance parameter recording method provided by the embodiment of the present application.
  • the first sampling data obtained by sampling through the first sampling period, and the first sampling data obtained through the second sampling period The second sampling data obtained by sampling is recorded in the random access memory (Random Access Memory, RAM) of the inverter, and then the fault data of the inverter before and after the fault occurs are read from the RAM, and then stored in the memory in the device.
  • RAM Random Access Memory
  • Step S31 sampling the performance parameters of the frequency converter according to a preset first sampling period to obtain first sampling data.
  • the performance parameters here refer to data that can reflect the performance of the frequency converter, such as current value, voltage value, motor speed and so on.
  • the sampling period of the first sampling period here is very short. After reconstructing the first sampling data obtained by sampling in the first sampling period, the obtained waveform can reflect specific information of a single waveform.
  • step S21 before step S31, it may further include: determining a preset first sampling period according to the motor speed of the frequency converter.
  • the motor speed here refers to the speed of the motor of the frequency converter.
  • set The first sampling period is related to the motor speed.
  • Step S32 recording N1 pieces of data in the first sampling data to the random access memory of the frequency converter every preset first sampling period.
  • Step S33 sampling the performance parameters of the frequency converter according to a preset second sampling period to obtain second sampling data, wherein the preset first sampling period is shorter than the preset second sampling period.
  • the second sampling period here refers to a period longer than the first sampling period.
  • Step S34 every preset second sampling period, record N2 data in the second sampling data to the random access memory of the frequency converter, wherein, N1 and N2 are based on the number of random access memory of the frequency converter and the individual The capacity of the random access memory is determined, and both N1 and N2 are natural numbers greater than 9.
  • the RAM of the frequency converter since the RAM of the frequency converter is used to record other data of the frequency converter in addition to recording the sampling data, it is necessary to ensure that the sampling data recorded in the RAM (that is, the sampling data obtained by sampling in the first sampling period) The first sampling data, and the second sampling data obtained by sampling through the second sampling period) cannot occupy all the RAM storage space of the frequency converter. For example, it is necessary to ensure that the ratio of M to all the RAM space of the frequency converter is less than 1/2, where M is the space occupied by N1 data in the first sampling data recorded in RAM and the second sampling data recorded in RAM The sum of the RAM space occupied by N2 data in the data.
  • N1 is set to be a natural number greater than 9
  • N2 is set to be a natural number greater than 9, so as to improve the accuracy of at least two waveforms recovered subsequently.
  • the above-mentioned first sampling data at least includes values corresponding to two adjacent valleys, three peaks, and four points intersecting with a coordinate axis (such as the horizontal axis). Since the first sampling data contains the above values, the accuracy of at least two waveforms subsequently recovered can be further improved.
  • Step S35 if the inverter fails, store the fault data recorded in the random access memory before and after the inverter fault in the storage device, and the fault data includes the first sampled data and the second sampled data.
  • the frequency converter when it is detected that the frequency converter is faulty, for example, when a fault code is generated, it is determined that the frequency converter is faulty. including the first sampled data obtained by sampling through the first sampling period, and also including the second sampled data obtained through sampling during the second sampling period) and storing them in the storage device. Specifically, in order to avoid faults caused by normal power failure, before reading the fault data from the RAM and storing them in the storage device, first latch the fault data and wait for a preset period of time before storing it in the storage device, for example, waiting 10s (seconds) before saving to the storage device.
  • step S35 the fault data recorded in the random access memory before and after the fault of the inverter is stored in the storage device, including:
  • A1 Sort the fault data recorded in the random access memory before and after the fault of the inverter in chronological order
  • the obtained first sampling data and the second sampling data are in a time sequence. After sorting each fault data in chronological order and then storing it in the storage device, you only need to extract the fault data from the storage device in order to obtain the fault data sequence with time sequence, so that the fault data sequence with time sequence can be restored When it is a waveform, the accuracy of the waveform can be guaranteed.
  • the sampling data recorded in the RAM is recorded in chronological order, when stored in the storage device, it is also stored in the order recorded in the RAM. In this way, the sampling data in the chronological order can also be obtained.
  • the order of the sampling time corresponding to the sampling data can also be known when the sampling data is subsequently extracted.
  • the sampling time of each sampling data is recorded, and the sampling data and the corresponding sampling time are correspondingly stored in the storage device. By storing the sampling data in this way, the sampling time corresponding to the sampling data can also be known when the sampling data is subsequently extracted, thereby ensuring the accuracy of the recovered waveform.
  • the method provided in the embodiment of the present application further includes:
  • n1 data in the first sampling data and n2 data in the second sampling data after the frequency converter breaks down into the random access memory wherein n1 and n2 are both greater than 1 the natural number of
  • step A1 includes:
  • the (N1-n1) pieces of data in the first sampling data before the failure of the inverter recorded in the random access memory, the (N2-n2) pieces of data in the second sampling data before the failure of the inverter, and the frequency converter The n1 pieces of data in the first sampled data after a fault occurs and the n2 pieces of data in the second sampled data after a fault occurs in the frequency converter are sorted in chronological order.
  • the sampling is continued, and the first sampling data (n1 pieces) and the second sampling data (n2 pieces) obtained by sampling after the failure occur are respectively recorded. That is, it is guaranteed that the total number of sampling points of the first sampling data recorded in the RAM is N1, and the number of N1 sampling points includes the sampling points before the failure and also includes the sampling points after the failure.
  • the recording of the second sampling data is similar to the recording of the first sampling data, which will not be repeated here.
  • N1-n1 is a range.
  • N2-n2 is a range.
  • the frequency converter can interact with other communication devices.
  • the embodiment of the present application also includes:
  • the communication equipment here includes: host computer, mobile terminal (such as mobile phone, tablet computer), cloud server, etc.
  • the running waveform query command is used to query the corresponding performance parameters of the frequency converter in normal operation, such as querying the performance parameters of the motor of the frequency converter.
  • the first sampling data recorded in the RAM is updated, and the updated first sampling data in the RAM is sent to the communication device.
  • the fault waveform query command is used to query the corresponding fault data when the inverter fails.
  • the communication device can specify to query the fault data corresponding to a certain type of fault, or specify to query the fault data corresponding to a fault that occurs in a certain period of time, or query all the fault data recorded by the frequency converter.
  • the above performance parameters are performance parameters of the motor.
  • the performance parameters of the frequency converter are the performance parameters of the motor; if there are 2 or more motors in the frequency converter, the performance parameters of the frequency converter can include the multiple Various performance parameters of the motor. That is, the performance parameters of the frequency converter in the embodiment of the present application include the performance parameters of the one or more motors. Since the performance parameters of multiple motors can be sampled, there is no need to collect the performance parameters of each motor one by one, which facilitates subsequent rapid and effective analysis of the causes of multiple motor failures.
  • the performance parameter to be collected is a performance parameter of a motor
  • the performance parameter includes at least one of the following: current, voltage, motor speed, and motor back EMF voltage.
  • the above-mentioned “current” may be a phase current of the motor, such as a U-phase current, a V-phase current, and a W-phase current.
  • the above “voltage” may be the phase voltage of the motor, or the bus voltage of the motor.
  • the method provided in the embodiment of the present application further includes:
  • different structure arrays are preset to store the first sampling data and store the second sampling data.
  • the preset structure array DataFast is used to store the first sample data
  • the preset structure array DataSlow is used to store the second sample data.
  • the length of each channel in DataFast is 128 (16bit)
  • N1 128
  • the first sampled data are U-phase current (instantaneous value of U-phase current), bus voltage and motor speed
  • the frequency converter communicates via a serial port, a built-in integrated circuit (Inter-Integrated Circuit, I2C), a controller area network (Controller Area Network, CAN), bluetooth, etc. Interact with communication devices.
  • the frequency converter sends N1 pieces of first sampling data to the communication device through serial communication.
  • the storage device includes at least one of the following: Electrically Erasable Read-Only Memory (Electrically Erasable Programmable Read-only Memory, EEPROM), flash memory (Flash Memory, FLASH), universal serial bus interface mass storage device (USB Mass Storage Device, U disk), secure digital memory card (Secure Digital Memory Card, SD card), etc. .
  • Electrically Erasable Read-Only Memory Electrically Erasable Programmable Read-only Memory
  • EEPROM Electrically Erasable Read-Only Memory
  • flash memory Flash Memory, FLASH
  • USB Mass Storage Device Universal Serial Bus interface mass storage device
  • Secure Digital Memory Card Secure Digital Memory Card
  • the performance parameter recording method provided by the embodiment of the present application, the following description will be made with the preset first sampling period determined by the motor speed, and the performance parameters being bus voltage, U-phase current and motor speed respectively.
  • Fig. 4 shows a schematic flowchart of another performance parameter recording method provided by the embodiment of the present application.
  • the performance parameters of the frequency converter are sampled through two methods: fast sampling and slow sampling.
  • the fast sampling is equivalent to sampling the performance parameters of the frequency converter with the first sampling period mentioned above
  • the slow sampling is equivalent to The performance parameter of the frequency converter is sampled by adopting the second sampling period mentioned above.
  • the quick sampling first judge the motor speed of the inverter, if the motor speed is less than 3000rpm, then sample the performance parameters once every 4 carrier cycles; if the motor speed is greater than or equal to 3000rpm and less than 6000rpm, then every The performance parameters are sampled once per cycle; if the motor speed is greater than or equal to 6000rpm, the performance parameters are sampled once per carrier cycle.
  • slow sampling is also required, that is, the performance parameters are sampled once every 20 ms.
  • N1 such as 128, pieces (bus voltage, U-phase current, motor speed) of the first sampling data obtained by fast sampling into the array of RAM
  • N2 the first sampling data obtained by slow sampling N2 of the two sampling data (bus voltage, U-phase current, motor speed) are stored in the structure array of RAM.
  • the frequency converter fails, then record the data of 26 carrier cycles after the failure, and save 128 data in the first sampling data recorded in RAM and 128 data in the second sampling data recorded in the RAM to the frequency converter device’s EEPROM.
  • Fig. 5 shows a schematic flow chart after the inverter receives an instruction from the communication device.
  • the frequency converter when it judges whether it is a running waveform query command, if it is a running waveform query command, then update the bus voltage, U-phase current and motor speed and store it in the structure array of RAM , and then send the bus voltage, U-phase current and motor speed in the structure array to the communication device through serial communication.
  • the updated bus voltage, U-phase current and motor speed here are sampled data obtained through fast sampling. If it is not running the waveform query command (that is, the fault waveform query command), read the stored historical fault data (sampling data obtained through fast sampling and slow sampling) and send it to the communication device.
  • the communication equipment When the communication equipment receives the performance parameters of the inverter when it is running, or receives the performance parameters of the inverter before and after the fault occurs, it can reconstruct the corresponding waveform according to these performance parameters, and then realize the inverter performance analysis.
  • the schematic diagram of the waveform shown in Figure 6 will be obtained. Refer to Figure 6 for details. If the first sampling data collected in the embodiment of the present application is used for reconstruction, then The schematic diagram of the waveform shown in FIG. 7 is obtained, and the schematic diagram of the waveform shown in FIG. 8 is obtained if reconstruction is performed through the collected second sampling data.
  • the performance parameter received by the communication device is the corresponding performance parameter when the compressor of the frequency converter is running at 7200rpm. If it is collected by an oscilloscope, the waveform schematic diagram shown in Figure 9 will be obtained. If the first sampling data collected by the embodiment of the present application After reconstruction, the schematic diagram of the waveform shown in Figure 10 is obtained.
  • the waveform obtained after reconstructing the sampled data collected according to the embodiment of the present application is basically consistent with the waveform obtained according to the oscilloscope, and the second sampled data collected according to the embodiment of the present application can be reconstructed.
  • the effective value of the current and the change of the bus voltage about 2s before the fault can make a more comprehensive analysis of the fault.
  • the performance parameter recording method provided by the embodiment of the present application is used to record the performance parameter, for example, when both N1 and N2 are 128, only 1536 bytes of RAM, that is, 1.5K, are needed, that is, at a lower cost Accurate analysis of faults can be realized.
  • Fig. 11 shows a structural block diagram of a performance parameter recording device provided by the embodiment of the present application.
  • the performance parameter recording device is applied to a frequency converter, in order to For ease of description, only the parts related to the embodiment of the present application are shown.
  • the performance parameter recording device 11 includes: a first sampling data determination module 111 , a second sampling data determination module 112 , and a fault data storage module 113 . in:
  • the first sampling data determining module 111 is configured to sample the performance parameters of the frequency converter according to a preset first sampling period to obtain first sampling data.
  • the first sampling data is restored, and conditions of each waveform can be observed.
  • the second sampling data determination module 112 is configured to sample the performance parameters of the frequency converter according to a preset second sampling period to obtain second sampling data, wherein the preset first sampling period is shorter than the preset second sampling period .
  • the trend of the performance parameter over a period of time can be observed.
  • the fault data storage module 113 is used for storing the fault data before and after the fault of the frequency converter if the frequency converter fails, and the fault data includes the first sampling data and the second sampling data.
  • the fault data is the sampling data corresponding to the inverter before and after the fault occurs, accurate analysis of the fault can be realized subsequently based on the fault data.
  • the fault data since the fault data is recorded by the frequency converter itself, there is no need to connect the frequency converter with an oscilloscope, so the convenience of operation can be improved.
  • the fault data samples the performance parameters through a first sampling period and a second sampling period, sampling data with different sampling periods can be obtained, which facilitates the subsequent analysis of the performance parameters from different angles, namely This is conducive to improving the accuracy of subsequent analysis results.
  • the performance parameter recording device 11 also includes:
  • the first sampling period determination module is used to determine the preset first sampling period according to the motor speed of the frequency converter.
  • the motor speed refers to the speed of the motor of the frequency converter.
  • the above-mentioned first sampling period determination module specifically includes: a first sampling period determination unit corresponding to the first rotational speed, a first sampling period determination unit corresponding to the second rotational speed, a first sampling period determination unit corresponding to the third rotational speed unit. in:
  • the first sampling period determining unit corresponding to the first rotational speed is configured to set t1 as a preset first sampling period if the motor rotational speed of the frequency converter is lower than the first rotational speed value.
  • the first sampling period determining unit corresponding to the second rotational speed is configured to set t2 as the preset first sampling period if the motor rotational speed of the frequency converter is greater than or equal to the first rotational speed value and less than the second rotational speed value.
  • the set first sampling cycle is more suitable for the motor speed, thereby ensuring that when the performance parameters are collected according to the set first sampling cycle, the obtained More accurate sampling data.
  • the performance parameter recording device 11 also includes:
  • the first sampling data recording module is configured to record N1 data in the first sampling data to the random access memory of the frequency converter every preset first sampling period.
  • the second sampling data recording module is used to record N2 data in the second sampling data to the random access memory of the frequency converter every preset second sampling period, wherein N1 and N2 are based on the random access memory of the frequency converter
  • N1 and N2 are based on the random access memory of the frequency converter
  • the number of access memories and the capacity of a single random access memory are determined, and both N1 and N2 are natural numbers greater than 9.
  • fault data storage module 113 is specifically used for:
  • the inverter fails, store the fault data recorded in the random access memory before and after the inverter fault in the storage device, and the fault data includes the first sampling data and the second sampling data.
  • the storage is stored in the storage device after waiting for a preset period of time, for example, the storage is stored in the storage device after waiting for 10 seconds (seconds).
  • the RAM of the frequency converter since the RAM of the frequency converter is used to record other data of the frequency converter in addition to the sampling data, it is necessary to ensure that the first sampling data recorded in the RAM and the first sampling data recorded in the RAM The second sampling data cannot occupy all the RAM storage space of the frequency converter. For example, it is necessary to ensure the ratio of the RAM space occupied by the N1 data of the first sampling data recorded in the RAM and the N2 data of the second sampling data recorded in the RAM to all the RAM spaces of the inverter less than 1/2.
  • N1 (number of first sampled data) and N2 (number of second sampled data) are set to be natural numbers greater than 9, so as to improve the accuracy of at least two waveforms recovered subsequently.
  • the above-mentioned first sampling data at least includes values corresponding to two adjacent valleys, three peaks, and four points intersecting with a coordinate axis (such as the horizontal axis). Since the first sampling data contains the above values, the accuracy of at least two waveforms subsequently recovered can be further improved.
  • the fault data storage module 113 is specifically used for:
  • the fault data before and after the fault of the frequency converter recorded in the random access memory are sorted in chronological order; the sorted fault data is stored in the storage device from the random access memory.
  • the first sampled data in the fault data is sampled at the preset first sampling period
  • the second sampled data in the fault data is sampled at the preset second sampling period
  • the first sampling data obtained in the first sampling period and the second sampling data obtained in the second sampling period have a time sequence. Sort each fault data in chronological order and store the sorted fault data in the storage device, and then only need to extract the fault data from the storage device in order to obtain a chronological sequence of fault data, so that there will be time When the sequential fault data sequence is restored to the waveform, the accuracy of the waveform can be guaranteed.
  • the sampling data recorded in the RAM is recorded in chronological order, when stored in the storage device, it is also stored in the order recorded in the RAM. In this way, the sampling data in the chronological order can also be obtained.
  • the performance parameter recording device 11 also includes:
  • the post-failure sampling data recording module is used to record n1 data in the first sampling data and n2 data in the second sampling data after the frequency converter fails in the random access memory if the frequency converter fails,
  • n1 and n2 are natural numbers greater than 1.
  • fault data storage module 113 is specifically used for:
  • the (N1-n1) pieces of data in the first sampling data before the failure of the inverter recorded in the random access memory, the (N2-n2) pieces of data in the second sampling data before the failure of the inverter, and the frequency converter The n1 pieces of data in the first sampled data after a fault occurs and the n2 pieces of data in the second sampled data after a fault occurs in the frequency converter are sorted in chronological order.
  • the total number of sampling points of the first sampling data recorded in the RAM is N1, and the number of N1 sampling points includes the sampling points before the failure and also includes the sampling points after the failure.
  • the performance parameter recording device 11 further includes: an instruction identification module, an operation data sending module, and a failure data sending module. in:
  • the instruction identification module is used to identify whether the instruction sent by the communication device is an operation waveform query instruction.
  • the communication equipment here includes: host computer, mobile terminal (such as mobile phone, tablet computer), cloud server, etc.
  • the running data sending module is configured to acquire N1 pieces of data in the latest sampled first sampling data if the waveform query instruction is running, and send the N1 pieces of data in the first sampling data to the communication device.
  • the fault data sending module is used for sending the stored fault data to the communication device if it is a fault waveform query instruction.
  • the running waveform query command is used to query the corresponding performance parameters of the frequency converter in normal operation, such as querying the performance parameters of the motor of the frequency converter.
  • the first sampling data recorded in the RAM is updated, and the updated first sampling data in the RAM is sent to the communication device.
  • the fault waveform query command is used to query the corresponding fault data when the inverter fails.
  • the communication device can specify to query the fault data corresponding to a certain type of fault, or specify to query the fault data corresponding to a fault that occurs in a certain period of time, or query all the fault data recorded by the frequency converter.
  • the performance parameters of the frequency converter are the performance parameters of the motor; if there are 2 or more motors in the frequency converter, the performance parameters of the frequency converter are Performance parameters of multiple motors may be included. That is, the above-mentioned performance parameters of the frequency converter include performance parameters of one or more motors of the frequency converter.
  • the performance parameters include at least one of the following: current, voltage, motor speed, and motor back EMF voltage.
  • the above-mentioned “current” may be a phase current of the motor, such as a U-phase current, a V-phase current, and a W-phase current.
  • the above “voltage” may be the phase voltage of the motor, or the bus voltage of the motor.
  • the above-mentioned performance parameter recording device 11 also includes:
  • the RAM storage module is used to record the N1 pieces of data in the first sampling data and the N2 pieces of data in the second sampling data into different structure arrays of the random access memory respectively.
  • different structure arrays are preset to store the first sampling data and the second sampling data.
  • the frequency converter interacts with the communication device through any communication means such as serial port communication, I2C, CAN, and Bluetooth.
  • the storage device includes at least one of the following: EEPROM, FLASH, U disk, SD card, and the like.
  • Fig. 12 is a schematic structural diagram of a frequency converter provided by an embodiment of the present application.
  • the frequency converter 12 of this embodiment includes: at least one processor 120 (only one processor is shown in FIG. 12 ), a memory 121 and stored in the memory 121 and can be processed in the at least one processor.
  • the frequency converter 12 may be computing devices such as desktop computers, notebooks, palmtop computers, and cloud servers.
  • the frequency converter may include, but not limited to, a processor 120 and a memory 121 .
  • FIG. 12 is only an example of the frequency converter 12 and does not constitute a limitation to the frequency converter 12. It may include more or less components than shown in the figure, or combine certain components, or different components. , for example, may also include input and output devices, network access devices, and so on.
  • the so-called processor 120 can be a central processing unit (Central Processing Unit, CPU), and the processor 120 can also be other general processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the storage 121 may be an internal storage unit of the frequency converter 12 in some embodiments, such as a hard disk or a memory of the frequency converter 12 .
  • the memory 121 may also be an external storage device of the frequency converter 12 in other embodiments, such as a plug-in hard disk equipped on the frequency converter 12, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, flash memory card (Flash Card), etc. Further, the memory 121 may also include both an internal storage unit of the frequency converter 12 and an external storage device.
  • the memory 121 is used to store operating systems, application programs, bootloader programs (BootLoader), data and other programs, such as program codes of the computer programs.
  • the memory 121 can also be used to temporarily store data that has been output or will be output.
  • the embodiment of the present application includes an air conditioner, and the air conditioner includes the above frequency converter.
  • the embodiment of the present application also provides a network device, which includes: at least one processor, a memory, and a computer program stored in the memory and operable on the at least one processor, and the processor executes The computer program implements the steps in any of the above method embodiments.
  • the embodiment of the present application also provides a storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, the steps in the above-mentioned method embodiments can be realized.
  • An embodiment of the present application provides a computer program product.
  • the computer program product When the computer program product is run on a mobile terminal, the mobile terminal can implement the steps in the foregoing method embodiments when executed.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on such an understanding, all or part of the processes in the method of the above-mentioned embodiments in the present application can be completed by instructing related hardware through a computer program.
  • the computer program can be stored in a storage medium, and the computer program can be processed When executed by the controller, the steps in the above-mentioned various method embodiments can be realized.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may at least include: any entity or device capable of carrying computer program codes to a photographing device/terminal device, a recording medium, a computer memory, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunication signals, and software distribution media.
  • ROM read-only memory
  • RAM random access memory
  • electrical carrier signals telecommunication signals
  • software distribution media Such as U disk, mobile hard disk, magnetic disk or optical disk, etc.
  • computer readable media may not be electrical carrier signals and telecommunication signals under legislation and patent practice.
  • the disclosed device/network device and method may be implemented in other ways.
  • the device/network device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

Abstract

一种性能参数记录方法、装置、变频器、空调设备及存储介质,方法包括:根据预设的第一采样周期对变频器的性能参数进行采样,得到第一采样数据(S11);根据预设的第二采样周期对变频器的性能参数进行采样,得到第二采样数据(S12),其中,预设的第一采样周期小于预设的第二采样周期;若变频器发生故障,则存储变频器发生故障前、后的故障数据,故障数据包括第一采样数据和第二采样数据(S13)。通过该方法,能够便捷地分析出变频器发生故障的原因。

Description

性能参数记录方法、装置、变频器、空调设备及存储介质
本申请要求于2021年6月21日在中国专利局提交的、申请号为202110688466.5、发明名称为“性能参数记录方法、装置、变频器、空调设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及变频器技术领域,具体涉及性能参数记录方法、装置、变频器、空调设备及存储介质。
背景技术
变频技术是一种把直流电逆变成不同频率的交流电的转换技术。使用变频技术的器件由于需要长时间工作,且运行工况复杂,难免会出现偶发故障。
为了便于后续用户获知器件发生的故障的类型,则需要预先为不同类型的故障设置对应的故障代码。但用户根据故障代码仅能确定发生了什么故障,而不能确定为什么发生故障。
若需要确定器件为什么发生故障,通常需要用示波器监控该器件的电流波形、母线电压波形,再结合具体工况数据和工程师经验,才能定位故障原因。但示波器的使用是有局限的:1、不可能所有的器件都通过与示波器连接来实现监控;2、有些故障很长时间才发生一次,因此不可能为了抓取故障波形而长时间与示波器连接。
技术问题
本申请实施例的目的之一在于:提供了性能参数记录方法,可以解决现有技术为了检测器件的故障时,由于需要连接示波器所导致的操作不便的问题。
技术解决方案
第一方面,本申请实施例提供了一种性能参数记录方法,应用于变频器,包括:
根据预设的第一采样周期对所述变频器的性能参数进行采样,得到第一采样数据;
根据预设的第二采样周期对所述变频器的性能参数进行采样,得到第二采样数据,其中,所述预设的第一采样周期小于所述预设的第二采样周期;
若所述变频器发生故障,则存储所述变频器发生故障前、后的故障数据,所述故障数据包括所述第一采样数据和所述第二采样数据。
第二方面,本申请实施例提供了一种性能参数记录装置,应用于变频器,包括:
第一采样数据确定模块,用于根据预设的第一采样周期对所述变频器的性能参数进行采样,得到第一采样数据;
第二采样数据确定模块,用于根据预设的第二采样周期对所述变频器的性能参数进行采样,得到第二采样数据,其中,所述预设的第一采样周期小于所述预设的第二采样周期;
故障数据存储模块,用于若所述变频器发生故障,则存储所述变频器发生故障前、后的故障数据,所述故障数据包括所述第一采样数据和所述第二采样数据。
第三方面,本申请实施例提供了一种变频器,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述的方法。
第四方面,本申请实施例提供了一种空调设备,包括如第三方面所述的变频器。
第五方面,本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的方法。
第六方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端设备上运行时,使得空调设备执行上述第一方面所述的方法。
有益效果
本申请实施例中,由于故障数据为变频器发生故障前、发生故障后的数据,因此,后续通过对该故障数据进行分析后,能够得到准确的分析结果,即得到发生故障的原因。同时,由于该故障数据是变频器本身记录,无需将该变频器与示波器连接,因此,能够提高操作的便利性。此外,由于故障数据是通过2个不同的采样周期对变频器的性能参数进行采样,因此,能够得到具有不同采样周期的采样数据,从而有利于后续从不同角度对性能参数进行分析,即有利于提高后续得到的分析结果的准确性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1是本申请实施例一提供的第一种性能参数记录方法的流程示意图;
图2是本申请实施例二提供的第二种性能参数记录方法的流程示例图;
图3是本申请实施例三提供的第三种性能参数记录方法的流程示意图;
图4是本申请实施例三提供的另一种性能参数记录方法的流程示意图;
图5是本申请实施例三提供的变频器接收到通信设备的指令后的流程示意图;
图6是本申请实施例三提供的示波器显示的过流故障对应的波形示意图;
图7是本申请实施例三提供的对第一采样数据进行重构得到的故障波形示意图;
图8是本申请实施例三提供的对第二采样数据进行重构得到的故障波形示意图;
图9是本申请实施例三提供的示波器显示的变频器运行时对应的运行波形的示意图;
图10是本申请实施例三提供的对第一采样数据进行重构得到的运行波形示意图;
图11是本申请实施例四提供的一种性能参数记录装置的结构示意图;
图12是本申请实施例五提供的一种变频器的结构示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。
实施例一:
现有方法中,主要通过示波器对器件(如变频器)进行监控,并观察变频器发生故障时该变频器对应的波形,以判断该变频器发生故障的原因。但由于变频器不可能长时间与示波器连接,因此,难以较便利且准确地确定变频器发生故障的原因。
为了解决该技术问题,本申请实施例提供了一种性能参数记录方法。
在本申请实施例中,提供的性能参数记录方法应用于变频器中(比如应用在变频器的微控制单元(Microcontroller Unit,MCU))。具体地,通过以不同的采样周期对变频器的性能参数进行采样,并存储变频器发生故障前、发生故障后的故障数据(即不同采样周期采样得到的第一采样数据和第二采样数据)。由于变频器本身存储了故障数据,因此,该变频器无需时刻与示波器连接,工作人员后续也能通过该变频器存储的故障数据实现对该变频器的故障进行分析。此外,由于通过不同的采样周期对性能参数进行采样,因此,后续可以根据得到的不同采样数据对性能参数进行整体和局部的分析,从而有利于提高分析结果的准确性。
下面结合附图对本申请实施例提供的一种性能参数记录方法进行描述。
图1示出了本申请实施例一提供的第一种性能参数记录方法的流程图,该方法应用于变频器,详述如下:
步骤S11,根据预设的第一采样周期对变频器的性能参数进行采样,得到第一采样数据。
其中,这里的性能参数是指能够反映该变频器的性能的数据,比如电流值、电压值、电机转速等。
其中,这里的第一采样周期的采样周期很短。对通过该第一采样周期采样得到的第一采样数据进行重构后,得到的波形能够体现单个波形的具体信息。
步骤S12,根据预设的第二采样周期对变频器的性能参数进行采样,得到第二采样数据,其中,预设的第一采样周期小于预设的第二采样周期。
其中,这里的第二采样周期是指比第一采样周期长的周期。对通过该第二采样周期采样得到的第二采样数据进行重构后,得到的波形能够体现整体趋势。
步骤S13,若变频器发生故障,则存储变频器发生故障前、后的故障数据,故障数据包括第一采样数据和第二采样数据。
具体地,对第一采样周期所采样的性能参数恢复后,能够体现该性能参数的局部情况(无需观察到各个波形情况);对第二采样周期所采样的性能参数恢复后,能够体现该性能参数的整体情况(能够观察到各个波形情况),比如,该第二采样周期为20毫秒(ms)。在一些实施例中,在存储第一采样数据以及存储第二采样数据时,分别对该第一采样数据以及对该第二采样数据进行标识,以实现对不同采样数据的区分。这样,后续可以根据该标识识别出不同的采样数据,进而恢复出第一采样数据对应的波形,以及,恢复出第二采样数据对应的波形。
本申请实施例中,由于故障数据(即上述的通过预设的第一采样周期采样得到的第一采样数据,以及,通过预设的第二采样周期采样得到的第二采样数据)为变频器在发生故障前、发生故障后所对应的数据,因此,后续根据该故障数据能够实现对故障的准确分析。同时,由于该故障数据是由变频器本身进行记录,无需将该变频器与示波器连接,因此,能够提高操作的便利性。此外,由于故障数据是通过一个第一采样周期和一个第二采样周期对性能参数进行采样,因此,能够得到具有不同采样周期的采样数据,从而有利于后续从不同角度对性能参数进行分析,即有利于提高后续得到的分析结果的准确性。
实施例二:
图2示出了本申请实施例二提供的第二种性能参数记录方法的流程图,本实施例在实施例一的基础上新增了步骤S21。步骤S22、步骤S23、步骤S24与实施例一的步骤S11、步骤S12、步骤S13相同,此处不再赘述:
步骤S21,根据变频器的电机转速确定预设的第一采样周期。
其中,这里电机转速是指变频器的电机的转速。
本实施例中,由于电机的转速对变频器的电周期有影响,因此,为了获取到至少2个(或者5个以上)电周期波形数据,且保证恢复的波形具有不失真的效果,则设置第一采样周期与电机转速有关。
在一些实施例中,为了得到更精确的采样数据,则根据电机转速所处的范围设置3个不同的第一采样周期,此时,步骤S21具体包括:
A1、若变频器的电机转速小于第一转速值,则设置t1为预设的第一采样周期。其中,这里的第一转速值可以为3000rpm(转每分)。假设第一转速值为3000rpm,若电机转速小于3000rpm,则每4个载波周期记录一次数据,即t1=4/f1,其中,f1为该变频器的载波频率,即根据电机转速先计算出f1,再根据该f1确定t1。
A2、若变频器的电机转速大于或等于第一转速值且小于第二转速值,则设置t2为预设的第一采样周期。其中,这里的第二转速值可以为6000rpm。假设第一转速值为3000rpm,第二转速值为6000rpm,若3000rpm<电机转速<6000rpm,则每2个载波周期记录一次数据,即t2=2/f2,其中,f2为该变频器的载波频率,即根据电机转速先计算出f2,再根据该f2确定t2。
A3、若变频器的电机转速大于或等于第二转速值,则设置t3为预设的第一采样周期。假设第二转速值为6000rpm,若6000rpm<电机转速,则每1个载波周期记录一次数据,即t3=1/f3,其中,f3为该变频器的载波频率,即根据电机转速先计算出f3,再根据该f3确定t3。
其中,t3< t2< t1<预设的第二采样周期。
上述A1~A3中,由于根据电机转速的大小设置出对应的第一采样周期,因此,使得设置出的第一采样周期与电机转速更贴合,从而保证根据设置出的第一采样周期对变频器的性能参数进行采集时,得到更准确的采样数据。
步骤S22,根据预设的第一采样周期对变频器的性能参数进行采样,得到第一采样数据。
其中,这里的性能参数是指能够反映该变频器的性能的数据,比如电流值、电压值、电机转速等。
其中,这里的第一采样周期的采样周期很短。对通过该第一采样周期采样得到的第一采样数据进行重构后,得到的波形能够体现单个波形的具体信息。
步骤S23,根据预设的第二采样周期对变频器的性能参数进行采样,得到第二采样数据,其中,预设的第一采样周期小于预设的第二采样周期。
其中,这里的第二采样周期是指比第一采样周期长的周期。对通过该第二采样周期采样得到的第二采样数据进行重构后,得到的波形能够体现整体趋势。
步骤S24,若变频器发生故障,则存储变频器发生故障前、后的故障数据,故障数据包括第一采样数据和第二采样数据。
本申请实施例中,由于预设的第一采样周期根据电机的转速确定,因此,能够保证以更准确的第一采样周期采样变频器的性能参数,从而提高得到的第一采样数据的准确性。
实施例三:
图3示出了本申请实施例提供的第三种性能参数记录方法的流程图,在本实施例中,先将通过第一采样周期采样得到的第一采样数据,以及,通过第二采样周期采样得到的第二采样数据记录到变频器的随机存取存储器(Random Access Memory,RAM)中,再将该变频器在发生故障前、发生故障后的故障数据从RAM读出,再存入存储设备中。
步骤S31,根据预设的第一采样周期对变频器的性能参数进行采样,得到第一采样数据。
其中,这里的性能参数是指能够反映该变频器的性能的数据,比如电流值、电压值、电机转速等。
其中,这里的第一采样周期的采样周期很短。对通过该第一采样周期采样得到的第一采样数据进行重构后,得到的波形能够体现单个波形的具体信息。
在一些实施例中,参考步骤S21,在步骤S31之前,还可以包括:根据变频器的电机转速确定预设的第一采样周期。其中,这里电机转速是指变频器的电机的转速。
本实施例中,由于电机的转速对变频器的电周期有影响,因此,为了获取到至少2个(或者5个以上)电周期波形数据,且保证恢复的波形具有不失真的效果,则设置第一采样周期与电机转速有关。
步骤S32,每隔预设的第一采样周期,将第一采样数据中的N1个数据记录到变频器的随机存取存储器。
步骤S33,根据预设的第二采样周期对变频器的性能参数进行采样,得到第二采样数据,其中,预设的第一采样周期小于预设的第二采样周期。
其中,这里的第二采样周期是指比第一采样周期长的周期。对通过该第二采样周期采样得到的第二采样数据进行重构后,得到的波形能够体现整体趋势。
步骤S34,每隔预设的第二采样周期,将第二采样数据中的N2个数据记录到变频器的随机存取存储器,其中,N1和N2根据变频器的随机存取存储器的数量和单个随机存取存储器的容量确定,且N1、N2均为大于9的自然数。
本实施例中,由于变频器的RAM除了用于记录该采样数据,还用于记录该变频器的其他数据,因此,需要保证记录到RAM中的采样数据(即通过第一采样周期采样得到的第一采样数据,以及,通过第二采样周期采样得到的第二采样数据)不能占用该变频器的所有的RAM存储空间。例如,需要保证M与变频器的所有的RAM空间的比值小于1/2,其中,M为记录到RAM的第一采样数据中的N1个数据所占用的空间与记录到RAM中的第二采样数据中的N2个数据所占用的RAM空间的和。
本实施例中,设置N1为大于9的自然数,以及,设置N2为大于9的自然数,以便提高后续恢复出的至少2个波形的准确性。在一些实施例中,上述第一采样数据中至少包括相邻的2个波谷、3个波峰、4个与坐标轴(如横轴)相交的点所对应的数值。由于第一采样数据包含了上述数值,因此,能够进一步提高后续恢复出的至少2个波形的准确性。
步骤S35,若变频器发生故障,则将随机存取存储器中记录的变频器发生故障前、后的故障数据存入存储设备,故障数据包括第一采样数据和第二采样数据。
本实施例中,当检测到变频器发生故障,比如,当生成了故障代码则判定变频器发生故障,此时,将变频器在发生故障前以及发生故障后的各个采样数据(该各个采样数据包括通过第一采样周期采样得到的第一采样数据,也包括通过第二采样周期采样得到的第二采样数据)存入存储设备。具体地,为了避开正常掉电引起的故障,则在将故障数据从RAM读出并存入存储设备之前,先锁存故障数据,并等待预设时长后再存入存储设备,比如,等待10s(秒)后再存入存储设备。
本申请实施例中,即使变频器内部的所有RAM的存储空间较小,但由于记录到RAM的采样数据的数量是根据该变频器包含的RAM的数量和单个RAM的容量确定的,因此,只要通过控制记录的采样数据的数量,就总能保证在该变频器内部的所有RAM的存储空间允许的情况下,实现性能参数的记录(也即在缓存容量一定的条件下,也不需要与外部设备建立连接)。同时,由于存储设备只记录发生故障前和发生故障后的故障数据,即无需记录各个时间段的性能参数,因此,无需占用过大的空间。此外,由于第一采样数据和第二采样数据均为大于9的自然数,因此,能够保证记录到至少2个波形的性能参数以利于后续对波形的准确分析。
在一些实施例中,步骤S35中将随机存取存储器中记录的变频器发生故障前、后的故障数据存入存储设备,包括:
A1、将随机存取存储器中记录的变频器发生故障前、后的故障数据按照时间顺序排序;
A2、将排序后的故障数据从随机存取存储器存入存储设备。
上述A1和A2中,由于故障数据中的第一采样数据是以预设的第一采样周期进行采样,而故障数据中的第二采样数据是以预设的第二采样周期进行采样,因此,得到的第一采样数据以及第二采样数据是具有时间先后顺序的。将各个故障数据结合时间顺序排序后再存入存储设备,后续只需按顺序从该存储设备提取故障数据,就能得到具有时间顺序的故障数据序列,从而在将具有时间顺序的故障数据序列恢复为波形时,能够保证该波形的准确性。
在一些实施例中,若RAM记录的各个采样数据是按照时间顺序记录,则在存入存储设备时,也按照RAM记录的顺序存入,这样,也能够得到具有时间顺序的各个采样数据。通过这样存储采样数据,后续提取采样数据时也能获知该采样数据对应的采样时间的先后顺序。又或者,记录各个采样数据的采样时间,并将采样数据和对应的采样时间对应存入存储设备。通过这样存储采样数据,后续提取采样数据时也能获知采样数据对应的采样时间,从而能够保证恢复出的波形的准确性。
在一些实施例中,为了保证获取到变频器发生故障后的性能参数,则本申请实施例提供的方法,还包括:
若变频器发生故障,则将变频器发生故障后的第一采样数据中的n1个数据和第二采样数据中的n2个数据均记录到随机存取存储器,其中,n1和n2均为大于1的自然数;
对应地,上述步骤A1包括:
将随机存取存储器中记录的变频器发生故障前的第一采样数据中的(N1-n1)个数据、变频器发生故障前的第二采样数据中的(N2-n2)个数据、变频器发生故障后的第一采样数据中的n1个数据、变频器发生故障后的第二采样数据中的n2个数据,按照时间顺序排序。
本实施例中,当变频器发生故障后,继续进行采样,并分别再记录发生故障后进行采样所得到的第一采样数据(n1个)、第二采样数据(n2个)。也即,保证记录到RAM中的第一采样数据的总采样点数是N1,且N1个采样点数中包括发生故障前的采样点,也包括发生故障后的采样点。第二采样数据的记录情况与第一采样数据的记录情况相似,此处不再赘述。
在一些实施例中,由于发生故障前的性能参数对分析人员的帮助更大,因此设置记录到RAM中的发生故障前的采样数据多于发送故障后的采样数据,例如,设置(N1-n1)/ n1=4:1;(N2-n2)/ n2=4:1。需要指出的是,这里的“4:1”是一个范围,在实际情况中,不用完全限定等于这个比值,只要近似这个比值即可。例如,假设N1=128,则n1=26,N1-n1=128-26=102,此时,102/26=3.9,即约等于4,也属于上述情形。
在一些实施例中,n1=n2,和/或,N1=N2。
在一些实施例中,该变频器可以与其他通信设备交互,此时,该本申请实施例提供的还包括:
B1、识别通信设备发送的指令是否为运行波形查询指令。其中,这里的通信设备包括:上位机、移动终端(如手机、平板电脑)、云端服务器等。
B2、若是运行波形查询指令,则获取最新采样的第一采样数据中的N1个数据,并将第一采样数据中的N1个数据向通信设备发送。
B3、若是故障波形查询指令,则将存储的故障数据向通信设备发送。
其中,运行波形查询指令用于查询变频器正常运行时对应的性能参数,比如查询该变频器的电机的性能参数。在一些实施例中,为了保证发送的性能参数最能反映变频器当前的运行状态,则更新RAM中记录的第一采样数据,并将该RAM中更新后的第一采样数据向通信设备发送。
其中,故障波形查询指令用于查询变频器发生故障时对应的故障数据。本实施例中,通信设备可指定查询某一类的故障对应的故障数据,或者,指定查询某个时间段发生的故障对应的故障数据,或者,查询该变频器记录的所有的故障数据。
在一些实施例中,上述的性能参数为电机的性能参数。例如,若变频器内只有一个电机,则变频器的性能参数即为该电机的性能参数;若该变频器内有2个或2个以上电机,则该变频器的性能参数可以包括该多个电机的各个性能参数。即本申请实施例中变频器的性能参数包括该一个或多个电机的性能参数。由于能够采样到多个电机的性能参数,因此,无需对各个电机的性能参数进行逐个采集,从而有利于后续对多个电机发生故障的原因进行快速、有效的分析。
在一些实施例中,在需要采集的性能参数为电机的性能参数时,性能参数包括以下至少1个:电流、电压、电机转速、电机反电动势电压。
其中,上述的“电流”可以为电机的相电流,例如为U相电流、V相电流、W相电流。
其中,上述的“电压”可以为电机的相电压,也可以为电机的母线电压。
本实施例中,当性能参数被采集得越多(比如同时采集U相电流、V相电流、W相电流、母线电压和电动转速),则越能提高后续进行故障分析时所得到的分析结果的准确性。进一步地,由于变频器本身就需要读取电流、电压、电机转速等性能参数,因此,直接通过变频器采集这些性能参数,能够尽可能地减少资源的消耗。
在一些实施例中,为了便于区分哪些采样数据是第一采样数据,哪些采样数据是第二采样数据,则本申请实施例提供的方法还包括:
将第一采样数据中的N1个数据和第二采样数据中的N2个数据分别记录到随机存取存储器的不同的结构体数组中。
本实施例中,预先设置不同的结构体数组存储第一采样数据,以及存储第二采样数据。例如,预先设置结构体数组DataFast用于存储第一采样数据,预先设置结构体数组DataSlow用于存储第二采样数据。假设DataFast中每个通道长度为128(16bit),N1=128,第一采样数据为U相电流(U相电流瞬时值)、母线电压和电机转速,则RAM记录第一采样数据后,需要占用的空间为:128*2*3=768byte。
在一些实施例中,上述步骤B2和步骤B3中,变频器通过串口通讯、内置集成电路(Inter-Integrated Circuit,I2C)、控制器局域网(Controller Area Network,CAN)、蓝牙等任一种通信方式与通信设备交互。例如,在步骤B2中,变频器通过串口通讯向通信设备发送N1个第一采样数据。
在一些实施例中,存储设备包括以下至少一种:电可擦除只读存储器(Electronically Erasable Programmable Read-only Memory,EEPROM)、闪存(Flash Memory,FLASH)、通用串型总线接口大容量存储设备(USB Mass Storage Device,U盘)、安全数码存储卡(Secure Digital Memory Card,SD卡)等。
为了更清楚地描述本申请实施例提供的性能参数记录方法,下面以预设的第一采样周期由电机转速确定、性能参数分别为母线电压、U相电流和电机转速进行描述。
图4示出了本申请实施例提供的另一个性能参数记录方法的流程示意图。
在图4中,通过快速采样和慢速采样2种方式采样变频器的性能参数,其中,快速采样相当于上述的采用第一采样周期对变频器的性能参数进行采样,而慢速采样则相当于上述的采用第二采样周期对变频器的性能参数进行采样。在快速采样中,先判断该变频器的电机转速,若电机转速小于3000rpm,则每4个载波周期对性能参数进行1次采样;若电机转速大于或等于3000rpm且小于6000rpm,则每2个载波周期对性能参数进行1次采样;若电机转速大于或等于6000rpm,则每1个载波周期对性能参数进行1次采样。在进行快速采样的过程中,还需要进行慢速采样,即固定每20ms对性能参数进行1次采样。当采样时间到之后,将快速采样得到的第一采样数据中的N1(比如128)个(母线电压、U相电流、电机转速)存入RAM的数组中,以及,将慢速采样得到的第二采样数据中的N2个(母线电压、U相电流、电机转速)存入RAM的结构体数组中。若变频器发生故障,则再记录故障后的26个载波周期的数据,并将RAM记录的第一采样数据中的128个数据以及该RAM记录的第二采样数据中的128个数据存到变频器的EEPROM中。
当变频器记录了性能参数之后,该变频器可能与通信设备存在交互。图5示出了变频器接收到通信设备的指令后的流程示意图。
在图5中,当变频器接收到指令后,判断接收的是否为运行波形查询指令,若为运行波形查询指令,则更新母线电压、U相电流和电机转速并存入RAM的结构体数组中,再将该结构体数组中的母线电压、U相电流和电机转速通过串口通讯向通信设备发送。其中,这里更新的母线电压、U相电流和电机转速为通过快速采样所得到的采样数据。若不是运行波形查询指令(即为故障波形查询指令),则读取保存的历史故障数据(通过快速采样和慢速采样所得到的采样数据)并向通信设备发送。
当通信设备接收到变频器在运行时的性能参数,或者,接收到变频器在发生故障前,发生故障后的性能参数,则可根据这些性能参数重构出对应的波形,进而实现对变频器的性能进行分析。
下面结合具体的对比图描述采用本申请实施例存储的性能参数进行重构所得到的波形与示波器得到的波形的区别。
假设变频器的压缩机在7200rpm发生过流故障,若通过示波器采集,则得到图6所示的波形示意图,具体参见图6,若通过本申请实施例采集的第一采样数据进行重构,则得到如图7所示的波形示意图,若通过采集的第二采样数据进行重构,则得到如图8所示的波形示意图。
假设通信设备接收的性能参数是变频器的压缩机运行7200rpm时所对应的性能参数,若通过示波器采集,则得到如图9所示的波形示意图,若通过本申请实施例采集的第一采样数据进行重构,则得到如图10所示的波形示意图。
从图6~图10可知,根据本申请实施例采集的采样数据进行重构后得到的波形与根据示波器采集得到的波形基本一致,且根据本申请实施例采集的第二采样数据能够重构出故障前2s左右的电流有效值和母线电压变化情况,从而能够对故障进行更全面的分析。此外,采用本申请实施例所提供的性能参数记录方法进行性能参数记录时,比如N1和N2均为128时,则只需占用RAM的1536byte,即1.5K即可,也即以较低的成本就能实现对故障的准确分析。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
实施例四:
对应于上文实施例一、实施例二、实施例三所述的方法,图11示出了本申请实施例提供的性能参数记录装置的结构框图,该性能参数记录装置应用于变频器,为了便于说明,仅示出了与本申请实施例相关的部分。
参照图11,该性能参数记录装置11包括:第一采样数据确定模块111、第二采样数据确定模块112、故障数据存储模块113。其中:
第一采样数据确定模块111,用于根据预设的第一采样周期对变频器的性能参数进行采样,得到第一采样数据。
具体地,对第一采样数据进行恢复,能够观察到各个波形的情况。
第二采样数据确定模块112,用于根据预设的第二采样周期对变频器的性能参数进行采样,得到第二采样数据,其中,预设的第一采样周期小于预设的第二采样周期。
具体地,对第二采样数据进行恢复,能够观察到性能参数在一段时间内的趋势。
故障数据存储模块113,用于若变频器发生故障,则存储变频器发生故障前、后的故障数据,故障数据包括第一采样数据和第二采样数据。
在本申请实施例中,由于故障数据为变频器在发生故障前、发生故障后所对应的采样数据,因此,后续根据该故障数据能够实现对故障的准确分析。同时,由于该故障数据是变频器本身记录,无需将该变频器与示波器连接,因此,能够提高操作的便利性。此外,由于故障数据是通过一个第一采样周期和一个第二采样周期对性能参数进行采样,因此,能够得到具有不同采样周期的采样数据,从而有利于后续从不同角度对性能参数进行分析,即有利于提高后续得到的分析结果的准确性。
在一些实施例中,该性能参数记录装置11还包括:
第一采样周期确定模块,用于根据变频器的电机转速确定预设的第一采样周期。
其中,电机转速是指变频器的电机的转速。通过这样设置,能够保证采集的性能参数在重构为波形时更易于观察。
在一些实施例中,上述第一采样周期确定模块具体包括:第一转速对应的第一采样周期确定单元、第二转速对应的第一采样周期确定单元、第三转速对应的第一采样周期确定单元。其中:
第一转速对应的第一采样周期确定单元,用于若变频器的电机转速小于第一转速值,则设置t1为预设的第一采样周期。其中,这里的第一转速值可以为3000rpm。假设第一转速值为3000rpm,若电机转速小于3000rpm,则每4个载波周期记录一次数据,即t1=4/f1。
第二转速对应的第一采样周期确定单元,用于若变频器的电机转速大于或等于第一转速值且小于第二转速值,则设置t2为预设的第一采样周期。其中,这里的第二转速值可以为6000rpm。假设第一转速值为3000rpm,第二转速值为6000rpm,若3000rpm<电机转速<6000rpm,则每2个载波周期记录一次数据,即t2=2/f2。
第三转速对应的第一采样周期确定单元,用于若变频器的电机转速大于或等于第二转速值,则设置t3为预设的第一采样周期。若6000rpm<电机转速,则每1个载波周期记录一次数据,即t3=1/f3。
其中,上述t3< t2< t1<预设的第二采样周期。
由于根据电机转速的大小设置出对应的第一采样周期,因此,使得设置出的第一采样周期与电机转速更贴合,从而保证根据设置出的第一采样周期进行性能参数的采集时,得到更准确的采样数据。
在一些实施例中,该性能参数记录装置11还包括:
第一采样数据记录模块,用于每隔预设的第一采样周期,将第一采样数据中的N1个数据记录到变频器的随机存取存储器。
第二采样数据记录模块,用于每隔预设的第二采样周期,将第二采样数据中的N2个数据记录到变频器的随机存取存储器,其中,N1和N2根据变频器的随机存取存储器的数量和单个随机存取存储器的容量确定,且N1、N2均为大于9的自然数。
对应地,上述故障数据存储模块113具体用于:
若变频器发生故障,则将随机存取存储器中记录的变频器发生故障前、后的故障数据存入存储设备,故障数据包括第一采样数据和第二采样数据。具体地,当检测到变频器发生故障,比如,当生成了故障代码则判定变频器发生故障,此时,将变频器在发生故障前、发生故障后的各个采样数据存入存储设备。在一些实施例中,等待预设时长后再存入存储设备,比如,等待10s(秒)后再存入存储设备。
本实施例中,由于变频器的RAM除了用于记录该采样数据,还用于记录该变频器的其他数据,因此,需要保证记录到RAM中的第一采样数据和记录到该RAM中的第二采样数据不能占用该变频器的所有的RAM存储空间。例如,需要保证记录到RAM的第一采样数据中的N1个数据和记录到该RAM中的第二采样数据中的N2个数据所占用的RAM空间,与该变频器的所有的RAM空间的比值小于1/2。
上述实施例中,设置N1(第一采样数据的数量)、N2(第二采样数据的数量)均为大于9的自然数,以便提高后续恢复出的至少2个波形的准确性。在一些实施例中,上述第一采样数据中至少包括相邻的2个波谷、3个波峰、4个与坐标轴(如横轴)相交的点所对应的数值。由于第一采样数据包含了上述数值,因此,能够进一步提高后续恢复出的至少2个波形的准确性。
在一些实施例中,故障数据存储模块113在将随机存取存储器中记录的变频器发生故障前、后的故障数据存入存储设备时,具体用于:
将随机存取存储器中记录的变频器发生故障前、后的故障数据按照时间顺序排序;将排序后的故障数据从随机存取存储器存入存储设备。
本实施例中,由于故障数据中的第一采样数据是以预设的第一采样周期进行采样,而故障数据中的第二采样数据是以预设的第二采样周期进行采样,因此,通过第一采样周期得到的第一采样数据和通过第二采样周期得到的第二采样数据具有时间先后顺序。将各个故障数据以时间顺序进行排序并将排序后的故障数据存入存储设备,后续只需按顺序从该存储设备提取故障数据,就能得到具有时间顺序的故障数据序列,从而在将具有时间顺序的故障数据序列恢复为波形时,能够保证该波形的准确性。
在一些实施例中,若RAM记录的各个采样数据是按照时间顺序记录,则在存入存储设备时,也按照RAM记录的顺序存入,这样,也能够得到具有时间顺序的各个采样数据。
在一些实施例中,该性能参数记录装置11还包括:
故障后采样数据记录模块,用于若变频器发生故障,则将变频器发生故障后的第一采样数据中的n1个数据和第二采样数据中的n2个数据均记录到随机存取存储器,其中,n1和n2均为大于1的自然数。
对应地,上述故障数据存储模块113在将随机存取存储器中记录的变频器发生故障前、后的故障数据按照时间顺序排序时,具体用于:
将随机存取存储器中记录的变频器发生故障前的第一采样数据中的(N1-n1)个数据、变频器发生故障前的第二采样数据中的(N2-n2)个数据、变频器发生故障后的第一采样数据中的n1个数据、变频器发生故障后的第二采样数据中的n2个数据,按照时间顺序排序。
本实施例中,通过上述设置,能够保证记录到RAM中的第一采样数据的总采样点数是N1,且N1个采样点数中包括发生故障前的采样点,也包括发生故障后的采样点。
在一些实施例中,上(N1-n1)/ n1=4:1。(N2-n2)/ n2=4:1。需要指出的是,这里的“4:1”是一个范围,在实际情况中,不用完全限定等于这个比值,只要近似这个比值即可。
在一些实施例中,n1=n2,和/或,N1=N2。
在一些实施例中,该性能参数记录装置11还包括:指令识别模块、运行数据发送模块、故障数据发送模块。其中:
指令识别模块,用于识别通信设备发送的指令是否为运行波形查询指令。其中,这里的通信设备包括:上位机、移动终端(如手机、平板电脑)、云端服务器等。
运行数据发送模块,用于若是运行波形查询指令,则获取最新采样的第一采样数据中的N1个数据,并将第一采样数据中的N1个数据向通信设备发送。
故障数据发送模块,用于若是故障波形查询指令,则将存储的故障数据向通信设备发送。
其中,运行波形查询指令用于查询变频器正常运行时对应的性能参数,比如查询该变频器的电机的性能参数。在一些实施例中,为了保证发送的性能参数最能反映变频器当前的运行状态,则更新RAM中记录的第一采样数据,并将该RAM中更新后的第一采样数据发送给通信设备。
其中,故障波形查询指令用于查询变频器发生故障时对应的故障数据。本实施例中,通信设备可指定查询某一类的故障对应的故障数据,或者,指定查询某个时间段发生的故障对应的故障数据,或者,查询该变频器记录的所有的故障数据。
在一些实施例中,若变频器内只有一个电机,则变频器的性能参数即为该电机的性能参数;若该变频器内有2个或2个以上的电机,则该变频器的性能参数可以包括多个电机的性能参数。即上述的变频器的性能参数包括变频器的一个或多个电机的性能参数。
在一些实施例中,性能参数包括以下至少1个:电流、电压、电机转速、电机反电动势电压。
其中,上述的“电流”可以为电机的相电流,例如为U相电流、V相电流、W相电流。
其中,上述的“电压”可以为电机的相电压,也可以为电机的母线电压。
本实施例中,当性能参数被采集得越多(比如同时采集U相电流、V相电流、W相电流、母线电压和电动转速),则越能提高后续进行故障分析时所得到的分析结果的准确性。
在一些实施例中,上述性能参数记录装置11还包括:
RAM存储模块,用于第一采样数据中的N1个数据和第二采样数据中的N2个数据分别记录到随机存取存储器的不同的结构体数组中。
本实施例中,预先设置不同的结构体数组存储第一采样数据和第二采样数据。
在一些实施例中,变频器通过串口通讯、I2C、CAN、蓝牙等任一种通信方式与通信设备交互。
在一些实施例中,存储设备包括以下至少一种: EEPROM、FLASH、U盘、SD卡等。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
实施例五:
图12为本申请一实施例提供的变频器的结构示意图。如图12所示,该实施例的变频器12包括:至少一个处理器120(图12中仅示出一个处理器)、存储器121以及存储在所述存储器121中并可在所述至少一个处理器120上运行的计算机程序122,所述处理器120执行所述计算机程序122时实现上述任意各个方法实施例中的步骤。
所述变频器12可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。该变频器可包括,但不仅限于,处理器120、存储器121。本领域技术人员可以理解,图12仅仅是变频器12的举例,并不构成对变频器12的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
所称处理器120可以是中央处理单元(Central Processing Unit,CPU),该处理器120还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现场可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器121在一些实施例中可以是所述变频器12的内部存储单元,例如变频器12的硬盘或内存。所述存储器121在另一些实施例中也可以是所述变频器12的外部存储设备,例如所述变频器12上配备的插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(Secure Digital, SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器121还可以既包括所述变频器12的内部存储单元也包括外部存储设备。所述存储器121用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如所述计算机程序的程序代码等。所述存储器121还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例包括一种空调设备,该空调设备包括上述的变频器。
本申请实施例还提供了一种网络设备,该网络设备包括:至少一个处理器、存储器以及存储在所述存储器中并可在所述至少一个处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述任意各个方法实施例中的步骤。
本申请实施例还提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在移动终端上运行时,使得移动终端执行时实现可实现上述各个方法实施例中的步骤。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括:能够将计算机程序代码携带到拍照装置/终端设备的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/网络设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/网络设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种性能参数记录方法,其特征在于,应用于变频器,包括:
    根据预设的第一采样周期对所述变频器的性能参数进行采样,得到第一采样数据;
    根据预设的第二采样周期对所述变频器的性能参数进行采样,得到第二采样数据,其中,所述预设的第一采样周期小于所述预设的第二采样周期;
    若所述变频器发生故障,则存储所述变频器发生故障前、后的故障数据,所述故障数据包括所述第一采样数据和所述第二采样数据。
  2. 如权利要求1所述的性能参数记录方法,其特征在于,在所述根据预设的第一采样周期对所述变频器的性能参数进行采样之前,包括:
    根据所述变频器的电机转速确定所述预设的第一采样周期。
  3. 如权利要求2所述的性能参数记录方法,其特征在于,所述根据所述变频器的电机转速确定所述预设的第一采样周期,包括:
    若所述变频器的电机转速小于第一转速值,则设置t1为所述预设的第一采样周期;
    若所述变频器的电机转速大于或等于所述第一转速值且小于第二转速值,则设置t2为所述预设的第一采样周期;
    若所述变频器的电机转速大于或等于所述第二转速值,则设置t3为所述预设的第一采样周期;
    其中,所述t3< t2< t1<预设的第二采样周期。
  4. 如权利要求1所述的性能参数记录方法,其特征在于,在所述得到第一采样数据之后,包括:
    每隔所述预设的第一采样周期,将所述第一采样数据中的N1个数据记录到所述变频器的随机存取存储器;
    在所述得到第二采样数据之后,包括:
    每隔所述预设的第二采样周期,将所述第二采样数据中的N2个数据记录到所述变频器的随机存取存储器,其中,所述N1和所述N2根据所述变频器的随机存取存储器的数量和单个所述随机存取存储器的容量确定,且所述N1、N2均为大于9的自然数;
    所述若所述变频器发生故障,则存储所述变频器发生故障前、后的故障数据,包括:
    若所述变频器发生故障,则将所述随机存取存储器中记录的所述变频器发生故障前、后的故障数据存入存储设备。
  5. 如权利要求4所述的性能参数记录方法,其特征在于,所述将所述随机存取存储器中记录的所述变频器发生故障前、后的故障数据存入存储设备,包括:
    将所述随机存取存储器中记录的所述变频器发生故障前、后的故障数据按照时间顺序排序;
    将排序后的故障数据从所述随机存取存储器存入存储设备。
  6. 如权利要求5所述的性能参数记录方法,其特征在于,所述性能参数记录方法,还包括:
    若所述变频器发生故障,则将所述变频器发生故障后的所述第一采样数据中的n1个数据和所述第二采样数据中的n2个数据均记录到所述随机存取存储器,其中,所述n1和n2均为大于1的自然数;
    所述将所述随机存取存储器中记录的所述变频器发生故障前、后的故障数据按照时间顺序排序,包括:
    将所述随机存取存储器中记录的所述变频器发生故障前的所述第一采样数据中的(N1-n1)个数据、所述变频器发生故障前的所述第二采样数据中的(N2-n2)个数据、所述变频器发生故障后的所述第一采样数据中的n1个数据、所述变频器发生故障后的所述第二采样数据中的n2个数据,按照时间顺序排序。
  7. 如权利要求6所述的性能参数记录方法,其特征在于,所述(N1-n1)/ n1=4:1;所述(N2-n2)/ n2=4:1。
  8. 如权利要求1所述的性能参数记录方法,其特征在于,所述性能参数记录方法,还包括:
    识别通信设备发送的指令是否为运行波形查询指令;
    若是运行波形查询指令,则获取最新采样的所述第一采样数据中的N1个数据,并将所述第一采样数据中的N1个数据向所述通信设备发送;
    若是故障波形查询指令,则将存储的故障数据向所述通信设备发送。
  9. 如权利要求1至8任一项所述的性能参数记录方法,其特征在于,所述变频器的性能参数包括所述变频器的一个或多个电机的性能参数。
  10. 如权利要求9所述的性能参数记录方法,其特征在于,所述性能参数包括以下至少3个:电流、电压、电机转速、电机反电动势电压。
  11. 如权利要求4至7任一项所述的性能参数记录方法,其特征在于,所述性能参数记录方法,还包括:
    将所述第一采样数据中的N1个数据和所述第二采样数据中的N2个数据分别记录到所述随机存取存储器的不同的结构体数组中。
  12. 一种性能参数记录装置,其特征在于,应用于变频器,包括:
    第一采样数据确定模块,用于根据预设的第一采样周期对所述变频器的性能参数进行采样,得到第一采样数据;
    第二采样数据确定模块,用于根据预设的第二采样周期对所述变频器的性能参数进行采样,得到第二采样数据,其中,所述预设的第一采样周期小于所述预设的第二采样周期;
    故障数据存储模块,用于若所述变频器发生故障,则存储所述变频器发生故障前、后的故障数据,所述故障数据包括所述第一采样数据和所述第二采样数据。
  13. 一种变频器,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至11任一项所述的方法。
  14. 一种空调设备,其特征在于,包括如权利要求13所述的变频器。
  15. 一种存储介质,所述存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至11任一项所述的方法。
PCT/CN2022/070152 2021-06-21 2022-01-04 性能参数记录方法、装置、变频器、空调设备及存储介质 WO2022267438A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22826949.4A EP4321880A1 (en) 2021-06-21 2022-01-04 Performance parameter recording method and apparatus, inverter, air conditioning device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110688466.5A CN113419126B (zh) 2021-06-21 2021-06-21 性能参数记录方法、装置、变频器、空调设备及存储介质
CN202110688466.5 2021-06-21

Publications (1)

Publication Number Publication Date
WO2022267438A1 true WO2022267438A1 (zh) 2022-12-29

Family

ID=77789562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070152 WO2022267438A1 (zh) 2021-06-21 2022-01-04 性能参数记录方法、装置、变频器、空调设备及存储介质

Country Status (3)

Country Link
EP (1) EP4321880A1 (zh)
CN (1) CN113419126B (zh)
WO (1) WO2022267438A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113419126B (zh) * 2021-06-21 2022-12-30 合肥美的暖通设备有限公司 性能参数记录方法、装置、变频器、空调设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738737A (zh) * 2016-02-22 2016-07-06 保定钰鑫电气科技有限公司 一种故障录波方法
CN106073764A (zh) * 2016-05-31 2016-11-09 深圳市理邦精密仪器股份有限公司 降低动态心电数据记录装置功耗的方法及装置
JP6133525B1 (ja) * 2016-09-01 2017-05-24 三菱電機株式会社 インテリジェント電子デバイス
CN110959256A (zh) * 2019-10-31 2020-04-03 深圳市汇顶科技股份有限公司 控制方法、mcu、触控设备及存储介质
CN111781450A (zh) * 2020-06-30 2020-10-16 歌尔科技有限公司 电参数采样方法、采样装置、耳机和可读存储介质
CN113419126A (zh) * 2021-06-21 2021-09-21 合肥美的暖通设备有限公司 性能参数记录方法、装置、变频器、空调设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004077224A (ja) * 2002-08-13 2004-03-11 Nec Electronics Corp 観測装置及び故障検査装置
CN105866635B (zh) * 2015-08-05 2019-02-12 深圳市赋安安全系统有限公司 一种故障电弧探测方法及装置
CN110221776A (zh) * 2019-05-10 2019-09-10 苏州汇川技术有限公司 异常信息处理方法、系统、装置即计算机可读存储介质
CN110736894A (zh) * 2019-09-19 2020-01-31 科华恒盛股份有限公司 故障录波方法、系统及终端设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738737A (zh) * 2016-02-22 2016-07-06 保定钰鑫电气科技有限公司 一种故障录波方法
CN106073764A (zh) * 2016-05-31 2016-11-09 深圳市理邦精密仪器股份有限公司 降低动态心电数据记录装置功耗的方法及装置
JP6133525B1 (ja) * 2016-09-01 2017-05-24 三菱電機株式会社 インテリジェント電子デバイス
CN110959256A (zh) * 2019-10-31 2020-04-03 深圳市汇顶科技股份有限公司 控制方法、mcu、触控设备及存储介质
CN111781450A (zh) * 2020-06-30 2020-10-16 歌尔科技有限公司 电参数采样方法、采样装置、耳机和可读存储介质
CN113419126A (zh) * 2021-06-21 2021-09-21 合肥美的暖通设备有限公司 性能参数记录方法、装置、变频器、空调设备及存储介质

Also Published As

Publication number Publication date
CN113419126B (zh) 2022-12-30
CN113419126A (zh) 2021-09-21
EP4321880A1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
US9954727B2 (en) Automatic debug information collection
US7802149B2 (en) Navigating trace data
TWI386946B (zh) 記憶卡測試裝置及其測試方法
WO2022267436A1 (zh) 故障数据处理方法、装置、变频器、空调设备及存储介质
CN104360921A (zh) 一种移动端性能监控方法、装置及系统
CN109062699A (zh) 一种资源监控方法、装置、服务器及存储介质
CN110134447A (zh) 基于操作系统的bmc即时更新硬盘信息的系统及方法
WO2022267438A1 (zh) 性能参数记录方法、装置、变频器、空调设备及存储介质
CN108304306A (zh) 一种基于blktrace的磁盘I/O性能故障定位分析方法
US9396145B1 (en) In-chip bus tracer
CN115248782B (zh) 一种自动化测试方法、装置及计算机设备
CN109446002B (zh) 一种用于服务器抓取sata硬盘的治具板、系统及方法
CN116663490A (zh) 一种异步存储芯片的验证方法、平台、装置及介质
CN108153623A (zh) 一种测试sata接口硬盘能效比的方法和装置
TW201743069A (zh) 邏輯分析儀及其資料擷取與效能測試之方法
TW201222240A (en) Testing method for automatically rebooting a motherboard and recording related debug information and rebooting device thereof
WO2020000669A1 (zh) 一种数据编码分析的方法及装置
CN115373962A (zh) 测试存储设备io性能的方法、系统、存储介质及设备
CN109491846B (zh) 一种用于服务器抓取SATA硬盘trace的方法和系统
CN109947467B (zh) 一种获取远程终端的性能火焰图的方法、装置及系统
CN112506693A (zh) 一种记录异常信息的方法、装置、存储介质和电子设备
CN110704370B (zh) 一种文件系统性能监控方法、装置、设备及可读存储介质
TW200521833A (en) System and method for automatic test script generation based on hardware level
CN109104621A (zh) 一种驾考视频推送方法、装置、终端及计算机存储介质
CN107153550A (zh) 一种基于界面的计算机故障诊断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22826949

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 22826949

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2022826949

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022826949

Country of ref document: EP

Effective date: 20231025

NENP Non-entry into the national phase

Ref country code: DE