WO2022267208A1 - 阀芯传动件、阀门控制器、阀门及阀门控制方法 - Google Patents

阀芯传动件、阀门控制器、阀门及阀门控制方法 Download PDF

Info

Publication number
WO2022267208A1
WO2022267208A1 PCT/CN2021/113256 CN2021113256W WO2022267208A1 WO 2022267208 A1 WO2022267208 A1 WO 2022267208A1 CN 2021113256 W CN2021113256 W CN 2021113256W WO 2022267208 A1 WO2022267208 A1 WO 2022267208A1
Authority
WO
WIPO (PCT)
Prior art keywords
main shaft
gear
valve
drive gear
drive
Prior art date
Application number
PCT/CN2021/113256
Other languages
English (en)
French (fr)
Inventor
邵泽华
Original Assignee
成都秦川物联网科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都秦川物联网科技股份有限公司 filed Critical 成都秦川物联网科技股份有限公司
Publication of WO2022267208A1 publication Critical patent/WO2022267208A1/zh
Priority to US18/323,400 priority Critical patent/US20230296189A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/53Mechanical actuating means with toothed gearing
    • F16K31/535Mechanical actuating means with toothed gearing for rotating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • F16K31/043Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/53Mechanical actuating means with toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H35/00Gearings or mechanisms with other special functional features
    • F16H35/10Arrangements or devices for absorbing overload or preventing damage by overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • F16K31/042Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves with electric means, e.g. for controlling the motor or a clutch between the valve and the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • F16K31/043Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means
    • F16K31/045Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means with torque limiters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/046Actuating devices; Operating means; Releasing devices electric; magnetic using a motor with electric means, e.g. electric switches, to control the motor or to control a clutch between the valve and the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/047Actuating devices; Operating means; Releasing devices electric; magnetic using a motor characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means
    • F16K31/048Actuating devices; Operating means; Releasing devices electric; magnetic using a motor characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means with torque limiters

Definitions

  • the invention relates to the technical field of fluid control devices, in particular to a valve core transmission part, a valve controller, a valve and a valve control method.
  • Valve components related to fluid on-off control and fluid flow regulation generally include the valve itself and a driver connected to the valve stem.
  • the driver powered by electricity generally includes a driving motor and a reducer.
  • the existing smart/smart metering equipment is generally equipped with a corresponding cut-off valve core to realize remote Automation, automatic valve opening and closing control.
  • the upper controller generally adopts a motor-driven reduction gear set, and the reduction gear set drives the spool main shaft to rotate.
  • a limit switch is set to control the rotation angle of the rotating main shaft. , so as to achieve the purpose of controlling the working state of the valve.
  • the technical solution to solve the rotation angle control problem by means of electrical control has the problems of high controller cost and relatively complicated control logic, and the corresponding controller is not conducive to the overall miniaturization design of the valve assembly.
  • the present invention provides a valve core transmission part, a valve controller, a valve and Valve control method. Both the valve controller and the valve are based on the specific application of the spool transmission part, and the control method is the same as the design concept of the spool transmission part. Adopting this solution can not only improve the reliability of the valve transmission, but also facilitate the further miniaturization design of the valve.
  • the spool transmission member includes a driving gear and a main shaft
  • the driving gear is used to drive the main shaft to rotate around the main shaft axis
  • the driving gear is an incomplete gear
  • the driving The gear can perform relative rotation around the axis of the main shaft relative to the main shaft.
  • the specific structural design of the spool transmission part aims to: improve the reliability of tooth meshing and reset, and achieve the purpose of improving the reliability of valve transmission; by reducing the reset power demand, it is beneficial to further miniaturize the design of the valve. Purpose.
  • the specific application is especially suitable for ball valve control.
  • it is used in ball valves, as an integral part of the water meter valve assembly of the Internet of Things, and can also be applied to other fluid valve assemblies.
  • the drive gear is coaxial with the main shaft, and the main shaft is rotatably connected to the drive gear through the shaft hole on the drive gear;
  • Both the main shaft and the driving gear are provided with a rotating constraining body, which is used for torque transmission between the two: the driving gear transmits torque to the main shaft through the mutual extrusion of the rotating constraining bodies .
  • the rotation constraining body on one is a key
  • the rotation constraining body on the other is a key groove
  • the width of the key groove is larger than that of the key. width.
  • the key is arranged on the main shaft, and the keyway is arranged on the driving gear;
  • the depth of the key groove is smaller than the length of the shaft hole.
  • the bottom surface of the keyway is an arc surface whose axis is coaxial with the axis of the main shaft, and the end surface of the free end of the key is an axis coaxial with the axis of the main shaft the arc surface;
  • the bottom surface of the groove is in contact with the end surface.
  • the number of keys and keyways is multiple;
  • Keys and keyways form key engagement working groups one by one;
  • the formed multiple working groups are evenly distributed in a circle relative to the axis of the main shaft;
  • the rotation constraining body on the main shaft is a boss arranged on the side of the main shaft, and there are one or two bosses on the main shaft;
  • the two bosses When there are two bosses on the main shaft, the two bosses are located at the same axis position of the main shaft, and the two bosses are arranged at intervals in the circumferential direction of the main shaft;
  • the rotation constraining body on the drive gear is a boss arranged on the end face of the drive gear.
  • the boss on the drive gear can be connected to the The contact of each boss;
  • the rotation constraining body on the drive gear is two bosses arranged on the end face of the drive gear. During the relative rotation, the boss on the main shaft can be connected with the drive gear Each boss on the contact.
  • the relative rotation is determined by the deformation of the elastic member: an elastic member is also arranged between the main shaft and the driving gear, and the driving gear is transmitted to the main shaft through the elastic member torque, and the relative rotation is realized through elastic deformation of the elastic member.
  • the drive gear is coaxial with the main shaft, and the main shaft is in clearance fit with the drive gear through the shaft hole on the drive gear.
  • the elastic part is a torsion spring sleeved on the main shaft, one end of the torsion spring is fixedly connected to the main shaft, and the other end is fixedly connected to the driving gear.
  • valve controller which includes a driving part and the valve core transmission part described in any one of the above items, and the driving part drives the driving gear to rotate by meshing with the gear teeth on the driving gear;
  • the drive gear and the main shaft have a relatively rotatable mating state.
  • the drive gear and the main shaft are in a relatively rotatable mating state.
  • the driving gear has multiple teeth;
  • the cooperation relationship between the driving component and the driving gear satisfies: under any rotation direction of the driving gear, during the process of tooth meshing reset after the teeth are disengaged, when the driving component meshes with the first tooth on the driving gear and resets, the driving gear and the first tooth on the driving gear are reset.
  • the main shaft is in a mating state capable of relative rotation.
  • the driving part includes a reduction gear set, and the drive gear is used to mesh with the final gear of the reduction gear set. More perfect, in order to make the controller include a power source for realizing the multiple meshing of the drive gear: it also includes a power component for realizing the reset of the meshing between the drive gear and the drive component.
  • the power part is an elastic limiter
  • the elastic limiting body stores energy during the rotation of the drive gear, and during the tooth meshing reset process, the elastic limiting body drives the driving gear to rotate through rebound to realize the tooth meshing reset.
  • the elastic limiter is any one or several of the following methods: spring, elastic rope, elastic rod;
  • the elastic rope is as follows: one end is connected with the driving gear, and the other end is connected with the housing of the driving part, and the elastic rope is stretched to store energy;
  • Both the spring and the elastic rod are: one end is constrained to one of the drive gear and the housing, and the other end is constrained to the other for energy storage.
  • the elastic limiter includes an elastic rod, and the elastic rod is a bent rod with a bend on it;
  • the rod sections at both ends of the bending as a first rod segment and a second rod segment, one end of the first rod segment is fixed on the drive gear, and in the radial direction of the drive gear, the two ends of the first rod segment The ends are located at different positions of the drive gear, and the free end of the second rod segment protrudes outward relative to the end face of the drive gear;
  • the end plate of the housing is also provided with a rotation limiting groove, and the second rod segment is partially embedded in the rotation limiting groove.
  • the drive gear is also provided with a groove extending along the radial direction of the drive gear, the first rod section is fixed at one end of the groove close to the main shaft, the first rod section is in a free state, and the second rod section is in a free state.
  • the extension direction of the first rod segment is the same as that of the groove, and both sides of the first rod segment have swing gaps with the side walls of the groove.
  • the setting of the length direction of the first rod section along the radial direction of the drive gear is intended to make the deformation of the elastic member have equal resistance during the forward and reverse process of the drive gear, but the second The form and direction of extension of a rod section are not restricted to the proposed radial direction along the drive gear.
  • the side walls on both sides of the groove are located on both sides of the first rod section. bump between ends;
  • This solution also discloses a valve, which includes a valve core that adjusts the opening state of the valve through rotation, and also includes a valve core transmission part or a valve controller as described in any one of the above, the valve core is fixed on the main shaft, and the main shaft As the valve stem of the valve core.
  • a valve control method which is used for the following valves: the valve realizes the on-off control of the valve by rotating the valve core, and the valve stem is driven to rotate by the incomplete gear to drive the valve core to move.
  • the gear can rotate relative to the valve stem around the axis of the valve stem;
  • the control method is as follows: before the valve stem is reversing, the incomplete gear rotates relative to the valve stem around the axis of the valve stem;
  • the incomplete gear meshes with the gear teeth used to drive the incomplete gear to rotate and resets, the incomplete gear provides torque to the valve stem to drive the spool to rotate
  • the main shaft is subsequently used as the transmission shaft driven by the valve spool, and the driving gear is used to drive the main shaft to rotate, and the design of the driving gear as an incomplete gear is adopted to make the driving gear In the process of rotation, the purpose of anti-locking can be finally achieved through the design of the hardware structure.
  • valve controller and the valve are based on the specific application of the spool transmission part, and the corresponding scheme provided by this scheme is adopted to facilitate the simplified design of the corresponding structure, the miniaturized design and the optimized reliability of the multiple meshing of the driving gear.
  • the valve control method is a specific valve control method that matches the design concepts of the above valve transmission parts, valve controllers, and valve structures.
  • Fig. 1 is a structural schematic diagram of a specific embodiment of the valve controller described in this scheme, which is a structural exploded view;
  • Fig. 2 is a structural schematic diagram of a specific embodiment of the valve controller described in this scheme, which is a top view;
  • Fig. 3 is a structural schematic diagram of a specific embodiment of the valve controller described in this scheme, the schematic diagram is a bottom view, and the transmission part is partially cut away;
  • Fig. 4 is a structural schematic diagram of a specific embodiment of the valve controller described in this solution, which is a top view, wherein the box part of the gearbox is omitted in the schematic diagram;
  • Fig. 5 is a structural schematic diagram of a specific embodiment of the valve controller described in this solution, which is a three-dimensional structural schematic diagram.
  • the spool transmission member includes a driving gear 3 and a main shaft 4, the driving gear 3 is used to drive the main shaft 4 to rotate around the axis of the main shaft 4, the driving gear 3 is an incomplete gear, and the The driving gear 3 can rotate relative to the main shaft 4 around the axis of the main shaft 4 .
  • the spool transmission part provided by this solution can be used as a component of the valve controller, and the valve controller is used to drive the action of the valve spool to change the opening and closing state and opening condition of the valve.
  • the specific structural design of the spool transmission part is aimed at the existing small fluid valves that solve the stall problem through gear transmission. After the incomplete gears are disengaged from the tooth meshing state, the subsequent tooth meshing and compound meshing needs to be considered.
  • the problem of reset power is to facilitate the realization of: improving the reliability of tooth meshing reset to achieve the purpose of improving the reliability of valve transmission; reducing the reset power demand to achieve the purpose of further miniaturization of the valve.
  • ball valve control such as being used in ball valves, as the valve core transmission parts and valve controllers of ball valves, such as as an integral part of the valve assembly of the Internet of Things water meter.
  • this structural design is not limited to the application of the ball valve and the water meter valve mentioned above: it can also be applied to other fluid valve components.
  • the main shaft 4 is subsequently used as the transmission shaft driven by the valve spool, and the driving gear 3 is used to drive the main shaft 4 to rotate.
  • the design of the driving gear 3 as an incomplete gear is adopted to make the driving gear 3 rotate In the process, the goal of anti-stall can be achieved through the design of the hardware structure.
  • a driving gear 3 is provided that can be relatively A technical scheme that rotates relative to the main shaft 4.
  • the drive gear 3 can rotate independently of the main shaft 4 through the rotation of the drive gear 3 relative to the main shaft 4 during the teeth meshing reset process, so that the drive gear 3 can rotate at a larger angle relative to the main shaft 4 , to achieve: in the relative rotation process, avoiding the linkage between the spool and the main shaft 4, the rotation resistance of the spool affects or too much affects the tooth meshing reset of the driving gear 3.
  • the final realization improve the meshing reliability, reduce the power input required for the 3-teeth meshing reset of the driving gear, and achieve the purpose of reducing the volume of the structure related to the application of this concept.
  • the relative rotation is used to provide the idling stroke of the driving gear 3 on the rotation track when the key and the keyway rotate relative to each other (before the key contacts the keyway, the convex before the contact between the platform and the corresponding boss).
  • the elastic member provided as follows is used to utilize the change in the deformation of the elastic member (as the drive gear 3 rotates, the deformation of the elastic member needs to reach a certain degree to drive the main shaft 4 to rotate), It can also be realized that the driving gear 3 rotates independently relative to the main shaft 4 at the early stage, and both the driving gear 3 and the main shaft 4 rotate at the later stage, so that the relative rotation of the driving gear 3 is finally achieved.
  • the method of using elastic parts actually drives the gear 3 to rotate with load. In specific applications, it can be used according to specific application scenarios (for example, the fluid flow area on the valve when the valve needs to be considered), and the specific structural form used Make reasonable choices.
  • this scheme takes into account the influence of the resistance existing when the main shaft 4 rotates on the rotation of the drive gear 3 to achieve tooth meshing reset.
  • this scheme is especially suitable for such as ball valve control, angle valve control etc.
  • the drive gear 3 is coaxial with the main shaft 4, and the main shaft 4 can be connected to the drive gear 3 through the shaft hole on the drive gear 3 rotary connection;
  • Both the main shaft 4 and the driving gear 3 are respectively provided with a rotating constraining body, which is used for torque transmission between the two: the driving gear 3 is squeezed toward the main shaft 4 through the rotating constraining body. transmit torque.
  • This solution uses a rotating constraint body to realize the torque transmission between the main shaft 4 and the drive gear 3. Specifically, the following keys and bosses can be used. With this solution, the elastic force that can store energy when the drive gear 3 rotates is set. The following parts can be used to realize the subsequent drive gear 3-tooth meshing reset, that is, this solution can be designed as a relatively simpler and smaller technology when matching the drive gear 3 rotation solution or obtaining a valve controller including this transmission part. plan.
  • the general inventive concept is not limited to the scheme of the above-mentioned rotating constraint body, such as adopting: the incomplete gear is provided with a complete gear coaxial with it, the main shaft 4 is a gear shaft, and the drive gear 3 and The main shaft 4 produces translation in the radial direction of the main shaft 4 to achieve the purpose of relative rotation by completely disengaging the gear from the teeth of the main shaft 4; the purpose of relative rotation is achieved by driving the gear 3 relative to the main shaft 4 to generate relative motion along the axis of the main shaft 4 .
  • the realization of the general inventive concept only needs to have the rotation gap 8 of the relative rotation: even if the relative rotation reaches the dead center position, the drive gear can also be used
  • the mechanical energy already possessed on the 3 acts on the main shaft 4 to drive the main shaft 4 to rotate, that is, even when the above-mentioned dead center position is reached, the gear teeth on the driving gear 3 may not have completed the meshing reset with the driving parts at the front end.
  • the driving gear 3 has already completed the meshing reset with the front-end driving parts, so that the torque that can be generated by the gear transmission acts directly on the main shaft 4 to complete the drive of the spool .
  • the rotation constraining body on one is a key
  • the rotation constraining body on the other is a keyway
  • the keyway The width is greater than the width of the key.
  • the difference between the keyway width and the key width is the width value of the rotation gap 8 .
  • the key is arranged on the main shaft 4, and the keyway is arranged on the driving gear 3;
  • the depth of the key groove is smaller than the length of the shaft hole.
  • the drive gear 3 is generally a plastic part.
  • the shaft hole is divided into at least two sections, which are completely cylindrical sections matching the main shaft 4,
  • the special-shaped hole section connected with the keyway adopts this scheme, and the restraint of the main shaft 4 by the cylindrical section can ensure the matching accuracy of the main shaft 4 and the driving gear 3, so as to ensure the meshing accuracy of the driving gear 3 and the front-end driving parts.
  • the main shaft 4 is a special-shaped shaft.
  • the matching section by obtaining the rotation clearance 8 on the matching section, the purpose of the relative rotation of the drive gear 3 relative to the main shaft 4 is achieved.
  • the specific concept of this program is still to achieve the purpose of driving the main shaft 4 by receiving the shear stress through the key, and the specific concept is equivalent to the above key transmission.
  • the groove bottom surface of the keyway is coaxial with the 4 axes of the main shaft arc-shaped surface
  • the end surface of the free end of the key is an arc-shaped surface whose axis is coaxial with the axis of the main shaft 4;
  • the bottom surface of the groove is in contact with the end surface.
  • Keys and keyways form key engagement working groups one by one;
  • the plurality of working groups formed are evenly distributed in a ring with respect to the axis of the main shaft 4;
  • the rotation constraining body on the main shaft 4 is a boss arranged on the side of the main shaft 4, and the boss on the main shaft 4 is one or two;
  • the two bosses When there are two bosses on the main shaft 4, the two bosses are located at the same axis position of the main shaft 4, and the two bosses are arranged at intervals in the circumferential direction of the main shaft 4;
  • the rotation constraining body on the drive gear 3 is a boss arranged on the end face of the drive gear 3, and in the process of the relative rotation, the boss on the drive gear 3 Can be in contact with each boss on the main shaft 4;
  • the rotation constraining body on the drive gear 3 is two bosses arranged on the end face of the drive gear 3.
  • the boss on the main shaft 4 Can contact with each boss on the driving gear 3.
  • the angle in the circumferential direction of the main shaft 4 related to the specific position of the side where the two bosses are respectively close to each other, and the angle on the other side.
  • the size of the distance between the left and right sides of the boss determines the size of the rotation gap 8, that is, when the drive gear 3 rotates relative to the main shaft 4 until the upper boss contacts the upper boss of the main shaft 4, the relative rotation reaches a stop. point location.
  • the drive gear 3 is coaxial with the main shaft 4, and the main shaft 4 passes through the shaft hole on the drive gear 3 and the gap between the drive gear 3 Cooperate.
  • the elastic part is a torsion spring sleeved on the main shaft 4, one end of the torsion spring is fixedly connected to the main shaft 4, and the other end is connected to the main shaft 4.
  • Drive gear 3 is fixedly connected.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • this embodiment provides a valve controller, including a driving part, and also includes the above-mentioned spool transmission member, and the driving part is driven by meshing with the gear teeth on the driving gear 3.
  • Drive gear 3 to rotate;
  • the driving gear 3 and the main shaft 4 have a relatively rotatable mating state.
  • This solution provides a specific application based on the above-mentioned transmission parts.
  • the specific design is: during the tooth meshing period, the drive gear 3 and the main shaft 4 are in a state of transmission cooperation, which aims to illustrate the relationship between the drive gear 3 and the drive components.
  • Matching state or relative position state in order to realize that the driving parts can finally drive the main shaft 4 to rotate under the meshing of the teeth;
  • the specific design is: in the process of tooth meshing reset after the tooth meshing is disengaged, the driving gear 3 and the main shaft 4 have a
  • the mating state that can be rotated relatively is intended to illustrate the mating state or relative position state of the driving gear 3 and the driving part, so that the driving gear 3 can rotate relative to the main shaft 4 to reduce the driving force during the entire process or early stage of tooth meshing reset.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • the drive gear 3 has a plurality of gear teeth
  • the matching relationship between the driving part and the driving gear 3 satisfies: under any rotation direction of the driving gear 3, during the process of tooth meshing reset after the teeth are disengaged, when the driving part meshes with the first tooth on the driving gear 3 and resets, The driving gear 3 and the main shaft 4 are in a relatively rotatable mating state.
  • the driving gear 3 is restored to the state where the driving gear 3 can provide driving force for the main shaft 4 .
  • the drive component includes a reduction gear set 7, and the drive gear 3 is used to cooperate with the reduction gear set 7
  • the final stage gear 6 meshes.
  • This scheme provides a scheme based on its deceleration gearbox.
  • the controller in order for the controller to include a power source for re-engaging the drive gear 3, it is configured to: further include a power component for realizing the re-engagement of the drive gear 3 and the drive component.
  • the energy storage of the power component is used to achieve the purpose of multiple meshing of the driving gear 3, so as to optimize the complexity of the controller structure, optimize the complexity of the controller's action control, and improve the reliability of the controller.
  • the power component is an elastic limiter 9;
  • the elastic limiting body 9 stores energy during the rotation process of the driving gear 3 , and during the tooth meshing reset process, the elastic limiting body 9 drives the driving gear 3 to rotate by rebounding to realize the tooth meshing reset.
  • a separate drive mechanism can also be used to realize multiple meshing between the drive gear 3 and the drive components.
  • the elastic limiting body 9 is any one or more of the following methods: spring, elastic rope, elastic rod;
  • the elastic rope is: one end is connected to the driving gear 3, and the other end is connected to the housing of the driving component, and the elastic rope is stretched to store energy.
  • the elastic rope can be: one end It is fixed on the drive gear 3, and one end is fixed on the gearbox seat 2 of the gearbox, and the specific position can be, for example, located on the end cover of the gearbox;
  • the spring and the elastic rod are both: one end is constrained to one of the drive gear 3 and the housing, and the other end is constrained to the other for energy storage.
  • the spring and the elastic rod can be It is: one end interacts with the drive gear 3, and the other end interacts with the casing of the gearbox.
  • the specific position can be used to act on the end cover.
  • the specific action form can be: one end of the spring and elastic rod interacts with the gearbox or The driving gear 3 is directly fixedly connected, and the force is transmitted through the mutual extrusion of the contact surface, and the other end of the spring and the elastic rod is directly fixedly connected with the gearbox or the driving gear 3, and the force is transmitted through the mutual extrusion of the contact surface.
  • the elastic limiter 9 includes an elastic rod, and the elastic rod is a bent rod with a bend on it. ;
  • the rod segments at both ends of the bending as the first rod segment and the second rod segment respectively, one end of the first rod segment is fixed on the drive gear 3, and in the radial direction of the drive gear 3, the first rod segment The two ends of each are located at different positions of the drive gear 3, and the free end of the second rod segment protrudes outward relative to the end face of the drive gear 3;
  • the end plate of the housing is also provided with a rotation limiting groove 10 , and the second rod segment is partially embedded in the rotation limiting groove 10 .
  • the elastic rod is used as a swing rod that rotates synchronously with the drive gear 3.
  • the swing is that the second rod segment embedded in the rotation limiting groove 10 is in contact with the end surface of the rotation limiting groove 10, the drive gear Under the further rotation of 3, the energy storage of the elastic member is realized.
  • the movement of the elastic member is realized. energy storage.
  • the drive gear 3 is also provided with a groove 11 extending along the radial direction of the drive gear 3, and the first rod section is fixed in the groove 11 is close to one end of the main shaft 4.
  • the extension direction of the first rod section and the groove 11 is the same, and both sides of the first rod section and the side walls of the groove 11 have a swing gap.
  • the elastic member is set as a cantilever rod located in the space occupied by the drive gear 3 to optimize the space occupied.
  • the elastic rod and the driving gear 3 are designed as an integrated design, such as the one-time injection molding to prepare the integrated structure 1.
  • the elastic rod is obtained as a cantilever rod by performing gap processing on the obtained structure after injection molding.
  • considering the angle of relative rotation it is sufficient to set the corresponding gap width.
  • the side walls on both sides of the groove 11 have a A bump 12 between the two ends of a rod section;
  • the purpose of optimizing the force on the connecting end of the first rod segment is achieved by contacting the middle/continuous segment of the first rod segment with the end of the bump 12 . More complete, it is set that the shape of the free end surface of the bump 12 is an arc surface with a smooth transition to both sides of the bump 12 in the inner and outer direction of the drive gear 3, so as to avoid the occurrence of a gap between the bump 12 and the first rod segment. severe pressure loss.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • This embodiment provides a valve on the basis of the technical solutions provided by any of the above embodiments, including a valve core that adjusts the opening state of the valve through rotation, and also includes a valve core transmission member or a valve controller as described in any one of the above , the valve core is fixed on the main shaft 4, and the main shaft 4 serves as the valve stem of the valve core.
  • This valve is based on the use of the spool transmission part or valve controller. As mentioned above, this valve not only solves the problem of stalling through the structural design, but also aims at the multiple meshing of the driving gear 3.
  • the structural design of this program also has the potential Improve the reliability of valve transmission, and at the same time facilitate the further miniaturization of the valve design.
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • This embodiment provides a valve control method, which is used for the following valves: the valve realizes the on-off control of the valve by rotating the spool, and the incomplete gear drives the valve stem to rotate to drive the spool to move, and the incomplete gear Able to rotate relative to the valve stem around the axis of the valve stem;
  • the control method is as follows: before the valve stem is reversing, the incomplete gear rotates relative to the valve stem around the axis of the valve stem;
  • This control method is a valve control method based on the above structural design concept. Based on the application of the anti-lock valve drive, this scheme provides a method that can conveniently realize the multiple meshing of the three teeth of the driving gear, improve the meshing reliability, and reduce the A technical solution that corresponds to the structural volume and performance requirements of the hardware part and reduces the complexity of the overall structure of the valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Gear Transmission (AREA)

Abstract

一种阀芯传动件、阀门控制器、阀门及阀门控制方法,阀芯传动件包括驱动齿轮(3)及主轴(4),驱动齿轮(3)用于驱动主轴(4)绕主轴(4)轴线转动,驱动齿轮(3)为不完全齿轮,驱动齿轮(3)能够相对于主轴(4)做绕主轴(4)轴线旋转的相对转动。阀门控制器与阀门均为基于阀芯传动件的具体运用,控制方法与阀芯传动件构思相同。

Description

阀芯传动件、阀门控制器、阀门及阀门控制方法 技术领域
本发明涉及流体控制器件技术领域,特别是涉及一种阀芯传动件、阀门控制器、阀门及阀门控制方法。
背景技术
涉及到流体通断控制、流体流量调节的阀门组件一般包括阀门本身以及与阀门阀杆相连的驱动器,以电力作为动力的驱动器中,一般包括驱动电机及减速器。随着物联网技术的发展,现有智能/智慧式计量设备中,一般设置有相应的截断阀芯,以在如可用量耗尽、非正常流量输出紧急情况、人为强制干预等情况下,实现远程化、自动化阀门启闭控制。
在常见的具有启闭阀芯的水表阀门为例,其上控制器普遍采用电机驱动减速齿轮组,减速齿轮组驱动阀芯主轴转动的方式,同时设置限位开关,以控制旋转主轴的旋转角度,从而达到控制阀门工作状态的目的。同时,以电气控制的方法解决旋转角度控制问题的技术方案存在控制器成本高、控制逻辑相对复杂的问题,相应控制器也不利于阀门组件整体的小型化设计。
进一步的,在以上方案的基础上以及作为效果等同的优化形式,现有技术中出现了如下解决方式:专利号为CN98241092.1,名称为《电子定位式阀门执行器》的实用新型专利提供的技术方案;专利号为CN 200720078541.1、名称为《一种微功耗电机阀阀芯》的实用新型专利提供的技术方案;专利号为CN200920032104.5、名称为《一种双向无堵转快关式电动控制阀门》的实用新型专利提供的技术方案。
对现有阀门组件的结构进行进一步的优化设计,对行业的发展和具体阀门运用均具有重要意义。
发明内容
针对上述提出的对现有阀门组件的结构进行进一步的优化设计,对行业的发展和具体阀门运用均具有重要意义的技术问题,本发明提供了一种阀芯传动件、阀门控制器、阀门及阀门控制方法。所述阀门控制器与阀门均为基于阀芯传动件的具体运用,所述控制方法与所述阀芯传动件设计构思相同。采用本方案,不仅可提升阀门传动的可靠性,同时利于对阀门进行进一步的小型化设计。
针对上述问题,本发明通过以下技术要点来解决问题:阀芯传动件,包括驱动齿轮及主轴,所述驱动齿轮用于驱动主轴绕主轴轴线转动,所述驱动齿轮为不完全齿轮,所述驱动齿轮能够相对于主轴做绕主轴轴线旋转的相对转动。
阀芯传动件的具体结构设计旨在实现:提升齿啮合复位的可靠性,达到提升阀门传动可靠性的目的;通过减小所述的复位动力需求,达到利于对阀门进行进一步的小型化设计的目的。
具体运用特别适用于球阀控制,如运用于球阀,作为物联网水表阀门组件的组成部分,亦可运用于其他流体阀门组件上。
作为阀芯传动件更进一步的技术方案:
作为一种匹配现有常规不完全齿轮设计、不完全齿轮驱动设计的技术方案:所述驱动齿轮与主轴同轴,主轴通过驱动齿轮上的轴孔与驱动齿轮可转动连接;
所述主轴、驱动齿轮两者各自上均设置有旋转约束体,所述旋转约束体用于所述两者之间的转矩传递:驱动齿轮通过旋转约束体相互挤压向主轴上传递转矩。作为一种基于键配合间隙达到相对转动目的的具体方案:所述两者中,其中一者上的旋转约束体为键,另一者上的旋转约束体为键槽,所述键槽的宽度大于键的宽度。
作为基于键配合间隙达到相对转动方案的进一步方案:所述键设置于主轴上,所述键槽设置于驱动齿轮上;
所述键槽的深度小于轴孔的长度。
为利用键自由端端面与键槽槽底相契合更进一步解决偏磨问题:所述键槽的槽底面为轴线与主轴轴线同轴的弧形面,所述键自由端的端面为轴线与主轴轴线同轴的弧形面;
所述槽底面与所述端面相贴。
为利用避免主轴在受力时因为弯矩产生的变形导致的偏磨问题:所述键及键槽的数量均为多个;
键和键槽的数量相等;
键和键槽一一形成键啮合工作组;
形成的多个工作组相对于主轴的轴线环形均布;
在所述相对转动过程中,多个工作组同步啮合或脱离。作为基于旋转约束体,同时区别于键配合方案更容易加工的技术方案:所述主轴上的旋转约束体为设置在主轴侧面上的凸台,主轴上的凸台为一个或两个;
当主轴上的凸台为两个时,两个凸台位于主轴的同一轴线位置,两个凸台在主轴的周向方向上间隔排布;
当主轴上的凸台为两个时,所述驱动齿轮上的旋转约束体为设置在驱动齿轮端面上的凸台,在所述相对转动的过程中,驱动齿轮上的凸台可与主轴上的各凸台接触;
当主轴上的凸台为一个时,所述驱动齿轮上的旋转约束体为设置在驱动齿轮端面上的两 个凸台,在所述相对转动的过程中,主轴上的凸台可与驱动齿轮上的各凸台接触。
作为一种基于弹性件弹性形变,使得所述相对转动决定于弹性件形变量大小的具体方案:所述主轴与驱动齿轮之间还设置有弹性件,驱动齿轮通过所述弹性件向主轴上传递转矩,所述相对转动通过弹性件弹性变形实现。
作为一种匹配现有常规不完全齿轮设计、不完全齿轮驱动设计的技术方案:所述驱动齿轮与主轴同轴,主轴通过驱动齿轮上的轴孔与驱动齿轮间隙配合。
作为一种便于完成弹性件连接,有利于传动件小型化设计的技术方案:弹性件为套设在主轴上的扭簧,所述扭簧一端与主轴固定连接,另一端与驱动齿轮固定连接。
本方案还公开了一种阀门控制器,包括驱动部件,还包括如上任意一项所述的阀芯传动件,所述驱动部件通过与驱动齿轮上的轮齿齿啮合驱动驱动齿轮旋转;
在所述齿啮合保持期间,驱动齿轮与主轴具有处于传动配合的配合状态;
在所述齿啮合脱开后进行齿啮合复位的过程中,驱动齿轮与主轴具有可相对转动的配合状态。作为所述阀门控制器更进一步的技术方案:
作为一种可在驱动齿轮齿啮合复位整个过程中,通过驱动齿轮全程空转,使得驱动齿轮复位所需驱动力最小的技术方案:在所述齿啮合脱开后进行齿啮合复位的过程中,驱动齿轮与主轴处于可相对转动的配合状态。针对如上提出的驱动齿轮塑料材质设计,进一步的,为优化驱动齿轮上端部轮齿的磨损问题:所述驱动齿轮上具有多个轮齿;
所述驱动部件与驱动齿轮的配合关系满足:驱动齿轮任意转动方向下,所述齿啮合脱开后进行齿啮合复位的过程中,驱动部件与驱动齿轮上的首齿啮合复位时,驱动齿轮与主轴处于可相对转动的配合状态。为减小控制器上动力源如电机的尺寸、降低对匹配电源的依赖性:所述驱动部件包括减速齿轮组,所述驱动齿轮用于与减速齿轮组的末级齿轮相啮合。更为完善的,为使得本控制器包括用于实现驱动齿轮复啮合的动力源:还包括用于实现驱动齿轮与驱动部件齿啮合复位的动力部件。
作为一种在驱动部件的动力下,利用动力部件蓄能达到驱动齿轮复啮合目的,以达到优化控制器结构复杂程度、优化控制器动作控制复杂性,达到提升控制器可靠性的技术方案:所述动力部件为弹性限位体;
所述弹性限位体在驱动齿轮转动过程中蓄能,在所述齿啮合复位过程中,弹性限位体通过回弹驱动驱动齿轮转动实现齿啮合复位。
作为所述弹性限位体的具体实现形式:所述弹性限位体为以下方式中的任意一种或几种:弹簧、弹性绳、弹性杆;
所述弹性绳为:一端与驱动齿轮相连接,另一端连接在驱动部件的壳体上,通过弹性绳 被拉伸进行蓄能;
所述弹簧及弹性杆均为:通过一端约束于驱动齿轮、壳体中的其中一个上,另一端约束于另一个上进行蓄能。
为适应于控制器结构小型化设计:所述弹性限位体包括弹性杆,所述弹性杆为其上具有折弯的弯杆;
定义所述折弯两端的杆段分别为第一杆段和第二杆段,所述第一杆段的一端固定于驱动齿轮上,在驱动齿轮的径向方向上,第一杆段的两端位于驱动齿轮的不同位置,所述第二杆段的自由端相对于驱动齿轮的端面向外侧凸出;
所述壳体的端板还设置有旋转限位槽,所述第二杆段局部嵌入所述旋转限位槽。更为具体的:所述驱动齿轮上还设置有沿着驱动齿轮径向方向延伸的凹槽,所述第一杆段固定于凹槽靠近主轴的一端,第一杆段在自由状态下,第一杆段与凹槽的延伸方向相同,第一杆段的两侧与凹槽的侧壁均具有摆动间隙。同时作为本领域技术人员,关于第一杆段的长度方向为沿着驱动齿轮径向方向的设定,旨在使得驱动齿轮在正反转过程中,弹性件变形具有对等的阻力,但第一杆段的形式和延伸方向并不局限于所提出的沿着驱动齿轮径向方向。为优化弹性杆的受力,避免因为在第一杆段的连接端产生应力集中造成本控制器的可靠性或寿命降低:所述凹槽两侧的侧壁上均具有位于第一杆段两端之间的凸块;
第一杆段在自由状态下,第一杆段各侧侧壁与该侧凸块的自由端之间均具有间隙。本方案还公开了一种阀门,包括通过转动调整阀门开启状态的阀芯,还包括如上任意一项所述的阀芯传动件或阀门控制器,所述阀芯固定于主轴上,所述主轴作为所述阀芯的阀杆。本方案还公开了一种阀门控制方法,该控制方法用于如下阀门:该阀门通过旋转阀芯的方式实现阀门通断控制,通过不完全齿轮带动阀杆转动驱动阀芯动作,所述不完全齿轮能够相对于阀杆做绕阀杆轴线旋转的相对转动;
所述控制方法为:当所述阀杆在进行换向转动前,所述不完全齿轮相对于阀杆做绕阀杆轴线旋转的相对转动;
通过所述相对转动,当不完全齿轮与用于驱动不完全齿轮旋转的齿轮齿啮合复位后,不完全齿轮向阀杆提供转矩,驱动阀芯转动
本发明具有以下有益效果:
所述阀芯传动件的具体结构设计中,所述主轴后续作为阀门阀芯驱动的传动轴,所述驱动齿轮用于驱动主轴转动,采用驱动齿轮为不完全齿轮的设计,旨在使得驱动齿轮在转动过程中,最终能够通过从硬件结构设计上,达到防堵转的目的。
进一步的,针对现有阀门防堵转设计一般具有的如下特点,提供了一种驱动齿轮能够相 对于主轴相对转动的技术方案。本方案在具体运用时,最终实现:提升啮合可靠性、减小驱动齿轮齿啮合复位所需要的动力输入,达到缩小该构思运用相关结构体积的目的。
所述阀门控制器、阀门为基于所述阀芯传动件的具体运用,采用本方案提供的相应方案,便于实现相应结构的简化设计、小型化设计和优化驱动齿轮复啮合可靠性。
所述阀门控制方法为与以上阀门传动件、阀门控制器、阀门结构设计构思匹配的具体阀门控制方法。
附图说明
图1为本方案所述的阀门控制器一个具体实施例的结构示意图,该示意图为结构爆炸图;
图2为本方案所述的阀门控制器一个具体实施例的结构示意图,该示意图为俯视图;
图3为本方案所述的阀门控制器一个具体实施例的结构示意图,该示意图为仰视图,且变速箱部分局部剖视;
图4为本方案所述的阀门控制器一个具体实施例的结构示意图,该示意图为俯视图,其中,该示意图中省略了变速箱的箱体部分;
图5为本方案所述的阀门控制器一个具体实施例的结构示意图,该示意图为立体结构示意图。
附图中的附图标记分别为:1、电机,2、变速箱座,3、驱动齿轮,4、主轴,5、变速箱盖,6、末级齿轮,7、减速齿轮组,8、转动间隙,9、弹性限位体,10、旋转限位槽,11、凹槽,12、凸块。
具体实施方式
下面结合实施例对本发明作进一步的详细说明,但是本发明不仅限于以下实施例:
实施例1:
如图1至图5所示,阀芯传动件,包括驱动齿轮3及主轴4,所述驱动齿轮3用于驱动主轴4绕主轴4轴线转动,所述驱动齿轮3为不完全齿轮,所述驱动齿轮3能够相对于主轴4做绕主轴4轴线旋转的相对转动。
本方案提供的阀芯传动件可作为阀门控制器的零部件,所述阀门控制器用于驱动阀门阀芯动作,以改变阀门的启闭状态和开启情况。阀芯传动件的具体结构设计旨在针对现有小型的、通过齿传动解决堵转问题的流体阀门中,不完全齿轮在脱开齿啮合状态后,在后续齿啮合复啮合时所需考虑的复位动力的问题,以便于实现:提升齿啮合复位的可靠性,达到提升阀门传动可靠性的目的;通过减小所述的复位动力需求,达到利于对阀门进行进一步的小型化设计的目的。
具体运用特别适用于球阀控制,如运用于球阀,作为球阀的阀芯传动件及阀门控制器, 如作为物联网水表阀门组件的组成部分。但作为本领域技术人员,该结构设计并不局限于用于球阀和具体到以上提出的水表阀门运用:亦可运用于其他流体阀门组件上。
具体结构设计中,所述主轴4后续作为阀门阀芯驱动的传动轴,所述驱动齿轮3用于驱动主轴4转动,采用驱动齿轮3为不完全齿轮的设计,旨在使得驱动齿轮3在转动过程中,最终能够通过从硬件结构设计上,达到防堵转的目的。
进一步的,针对现有阀门防堵转设计一般具有的如下特点:存在于小型化组件设计中,为达到以上提出的啮合可靠性、利于小型化设计的目的,提供了一种驱动齿轮3能够相对于主轴4相对转动的技术方案。本方案在具体运用时,通过在所述齿啮合复位过程中,通过驱动齿轮3相对于主轴4转动,使得驱动齿轮3能够独立于主轴4转动、驱动齿轮3能够相对于主轴4旋转更大角度,实现:在所述相对转动过程中,避免由于阀芯与主轴4联动,阀芯的转动阻力影响或过多影响驱动齿轮3的齿啮合复位的目的。最终实现:提升啮合可靠性、减小驱动齿轮3齿啮合复位所需要的动力输入,达到缩小该构思运用相关结构体积的目的。
在具体运用时,优选采用所述相对转动为驱动齿轮3能够相对于主轴4独立转动的实现方式,如以上相对转动通过转动间隙8实现,所述转动间隙8可采用如下提供的键与键槽配合的方案、凸台与凸台配合的方案,可以理解的,所述转动间隙8即用于提供键与键槽相对转动时,在转动轨迹上驱动齿轮3的空转行程(键与键槽接触之前、凸台与对应凸台接触之前)。除了相对于主轴4独立转动之外,采用如下提供的弹性件的方式,利用弹性件形变量的变化(随着驱动齿轮3转动,需要弹性件变形量达到一定程度才能够驱动主轴4转动),亦可实现:前期驱动齿轮3相对于主轴4独立转动,后期驱动齿轮3与主轴4均转动,最终达到驱动齿轮3相对转动的目的。区别于独立转动,采用弹性件的方式实际上为驱动齿轮3有负载转动,在具体运用时,可根据具体运用场景(如需要考虑阀门开启时阀门上的流体流通面积)、具体采用的结构形式进行合理选择。
如上所述,本方案的设计特点考虑到了主轴4转动时存在的阻力对驱动齿轮3转动以实现齿啮合复位的影响,根据现有阀门启闭形式,本方案特别适用于如球阀控制、角阀控制等。
实施例2:
本实施例在实施例1的基础上进行进一步的细化和优化:
作为一种匹配现有常规不完全齿轮设计、不完全齿轮驱动设计的技术方案,设置为:所述驱动齿轮3与主轴4同轴,主轴4通过驱动齿轮3上的轴孔与驱动齿轮3可转动连接;
所述主轴4、驱动齿轮3两者各自上均设置有旋转约束体,所述旋转约束体用于所述两者之间的转矩传递:驱动齿轮3通过旋转约束体相互挤压向主轴4上传递转矩。本方案采用旋转约束体实现主轴4、驱动齿轮3两者之间转矩传递,具体可采用如下键的方式以及凸台 的方式,采用本方案,设置在驱动齿轮3旋转时能够蓄能的弹性件即可实现后续的驱动齿轮3齿啮合复位,即本方案为在配套驱动齿轮3旋转方案或得到包括本传动件的阀门控制器时,结构可设计为相对更为简单、体积更小的技术方案。但作为本领域技术人员,总的发明构思并不局限于以上旋转约束体的方案,如采用:不完全齿轮上设置有与之同轴的完全齿轮,主轴4为齿轮轴,通过驱动齿轮3与主轴4在主轴4径向方向产生平移实现完全齿轮与主轴4齿啮合脱开达到相对转动的目的;通过驱动齿轮3相对于主轴4产生沿着主轴4轴线方向相对运动的方式达到相对转动的目的。
在具体设计时,针对能够产生上述相对转动采用转动间隙8实现的方案,总发明构思的实现只要存在相对转动的转动间隙8即可:即使相对转动达到止点位置,此时亦可利用驱动齿轮3上已经具备的机械能作用于主轴4上驱动主轴4旋转,即即使达到上述止点位置时,不一定驱动齿轮3上的轮齿已经和前端的驱动部件完成和齿啮合复位。但优选设置为当达到上述相对转动止点位置时,此时驱动齿轮3已经和前端的驱动部件完成和齿啮合复位,以利用齿传动能够产生的转矩直接作用到主轴4上完成阀芯驱动。
实施例3:
本实施例在实施例2的基础上进行进一步的细化和优化:
作为一种基于键配合间隙达到相对转动目的的具体方案,设置为:所述两者中,其中一者上的旋转约束体为键,另一者上的旋转约束体为键槽,所述键槽的宽度大于键的宽度。作为本领域技术人员,所述键槽宽度与键宽度的差值,即为所述转动间隙8的宽度值。
作为基于键配合间隙达到相对转动方案的进一步方案,设置为:所述键设置于主轴4上,所述键槽设置于驱动齿轮3上;
所述键槽的深度小于轴孔的长度。以常见水表上的球阀驱动为例,驱动齿轮3一般为塑料件,为考虑驱动齿轮3上轴孔偏磨带来的驱动齿轮3与前端驱动部件啮合精度变差的问题,本方案中,设置为键槽的深度小于轴孔的长度,实际上即为:在所述轴孔的轴线方向上,根据键槽的影响尺寸,将轴孔分割为至少两段,完全为匹配主轴4的圆柱形段、与键槽相接的异形孔段,采用本方案,利用圆柱形段对主轴4的约束,可保证主轴4与驱动齿轮3的配合精度,以利于保证驱动齿轮3与前端驱动部件的齿啮合精度。
同时作为本领域技术人员,针对以上键传动方案,亦可设置为主轴4为异形轴,驱动齿轮3上与主轴4匹配的轴孔为异形孔,异形轴与异形孔各自配合段包括截面形式不同的配合段,通过在所述配合段上获得转动间隙8,达到驱动齿轮3能够相对于主轴4产生相对旋转的目的。但可以理解的,本方案的具体构思依然是通过键受到剪应力达到驱动主轴4的目的,具体构思与以上键传动是等同的。
更进一步的,如如上提出的考虑偏磨问题,为利用键自由端端面与键槽槽底相契合更进一步解决偏磨问题,设置为:所述键槽的槽底面为轴线与主轴4轴线同轴的弧形面,所述键自由端的端面为轴线与主轴4轴线同轴的弧形面;
所述槽底面与所述端面相贴。
更进一步的,如如上提出的考虑偏磨问题,为利用避免主轴4在受力时因为弯矩产生的变形导致的偏磨问题,设置为:所述键及键槽的数量均为多个;
键和键槽的数量相等;
键和键槽一一形成键啮合工作组;
形成的多个工作组相对于主轴4的轴线环形均布;
在所述相对转动过程中,多个工作组同步啮合或脱离。本方案中,通过采用:所述工作组环形均布、工作组同步啮合或脱离,可使得主轴4上各工作组所带来的产生弯曲变形的力能够进行平衡,达到避免主轴4在驱动齿轮3的作用下产生弯曲,最终导致偏磨产生的目的。
区别于以下采用的凸台方案,由于键配合关系可全部位于驱动齿轮3的两端范围内,故该键配合方案更有利于传动件小尺寸设计。
实施例4:
本实施例在实施例2的基础上进行进一步的细化和优化:
作为基于旋转约束体,同时区别于键配合方案更容易加工的技术方案,采用:所述主轴4上的旋转约束体为设置在主轴4侧面上的凸台,主轴4上的凸台为一个或两个;
当主轴4上的凸台为两个时,两个凸台位于主轴4的同一轴线位置,两个凸台在主轴4的周向方向上间隔排布;
当主轴4上的凸台为两个时,所述驱动齿轮3上的旋转约束体为设置在驱动齿轮3端面上的凸台,在所述相对转动的过程中,驱动齿轮3上的凸台可与主轴4上的各凸台接触;
当主轴4上的凸台为一个时,所述驱动齿轮3上的旋转约束体为设置在驱动齿轮3端面上的两个凸台,在所述相对转动的过程中,主轴4上的凸台可与驱动齿轮3上的各凸台接触。本方案中,驱动齿轮3与主轴4两者中,在具有两个凸台的一者上,两个凸台各自相互靠近的一侧具体位置关联的主轴4周向上的角度、另一者上凸台左右侧之间距离的大小决定了所述转动间隙8的大小,即:当驱动齿轮3相对于主轴4旋转至其上凸台与主轴4上凸台接触时,此时相对转动达到止点位置。
实施例5:
本实施例在实施例2的基础上进行进一步的细化和优化:
作为一种基于弹性件弹性形变,使得所述相对转动决定于弹性件形变量大小的具体方案, 设置为:所述主轴4与驱动齿轮3之间还设置有弹性件,驱动齿轮3通过所述弹性件向主轴4上传递转矩,所述相对转动通过弹性件弹性变形实现。本方案中,当驱动齿轮3需要进行齿啮合复位时,此时驱动驱动齿轮3回转的力均需要考虑来自于驱动齿轮3自身以及弹性件的弹力,故相对于主轴4直接刚性作用于驱动齿轮3上,亦可达到减小驱动齿轮3回转阻力的目的。
作为一种匹配现有常规不完全齿轮设计、不完全齿轮驱动设计的技术方案,设置为:所述驱动齿轮3与主轴4同轴,主轴4通过驱动齿轮3上的轴孔与驱动齿轮3间隙配合。
作为一种便于完成弹性件连接,有利于传动件小型化设计的技术方案,设置为:弹性件为套设在主轴4上的扭簧,所述扭簧一端与主轴4固定连接,另一端与驱动齿轮3固定连接。
实施例6:
本实施例在实施例1的基础上,提供了一种阀门控制器,包括驱动部件,还包括如上所述的阀芯传动件,所述驱动部件通过与驱动齿轮3上的轮齿齿啮合驱动驱动齿轮3旋转;
在所述齿啮合保持期间,驱动齿轮3与主轴4具有处于传动配合的配合状态;
在所述齿啮合脱开后进行齿啮合复位的过程中,驱动齿轮3与主轴4具有可相对转动的配合状态。本方案提供了一种基于以上传动件的具体运用,具体设计为:在所述齿啮合保持期间,驱动齿轮3与主轴4具有处于传动配合的配合状态,旨在说明驱动齿轮3与驱动部件的配合状态或相对位置状态,以实现驱动部件能够在齿啮合下,最终驱动主轴4旋转;具体设计为:在所述齿啮合脱开后进行齿啮合复位的过程中,驱动齿轮3与主轴4具有可相对转动的配合状态,旨在说明驱动齿轮3与驱动部件的配合状态或相对位置状态,以实现在齿啮合复位的整个过程中或前期,驱动齿轮3能够相对于主轴4旋转以减小驱动齿轮3齿啮合复位所需要的驱动力。
实施例7:
本实施例在实施例6的基础上进行进一步的细化和优化:
作为一种可在驱动齿轮3齿啮合复位整个过程中,通过驱动齿轮3全程空转,使得驱动齿轮3复位所需驱动力最小的技术方案,设置为:在所述齿啮合脱开后进行齿啮合复位的过程中,驱动齿轮3与主轴4处于可相对转动的配合状态。本方案中,根据驱动齿轮3上轮齿的具体尺寸、所述转动间隙8的大小设计,即可达到相应目的,如在驱动齿轮3的周向方向上,转动间隙8大于驱动齿轮3上轮齿的齿厚(标准基本齿条轮齿的齿厚)。优选的,考虑到复啮合效率,亦可进一步放宽为等于轮齿齿顶位置的齿厚(齿顶圆位置的齿厚)。
优选的,针对如上提出的驱动齿轮3塑料材质设计,进一步的,为优化驱动齿轮3上端部轮齿的磨损问题,进一步设置为:所述驱动齿轮3上具有多个轮齿;
所述驱动部件与驱动齿轮3的配合关系满足:驱动齿轮3任意转动方向下,所述齿啮合脱开后进行齿啮合复位的过程中,驱动部件与驱动齿轮3上的首齿啮合复位时,驱动齿轮3与主轴4处于可相对转动的配合状态。本方案中,即为当所述首齿完成与驱动部件的齿啮合后,再恢复为驱动齿轮3转动至能够为主轴4提供驱动力的状态。
优选的,为减小控制器上动力源如电机1的尺寸、降低对匹配电源的依赖性,设置为:所述驱动部件包括减速齿轮组7,所述驱动齿轮3用于与减速齿轮组7的末级齿轮6相啮合。本方案即提供了一种基于其减速作用变速箱的方案。
更为完善的,为使得本控制器包括用于实现驱动齿轮3复啮合的动力源,设置为:还包括用于实现驱动齿轮3与驱动部件齿啮合复位的动力部件。
优选的,作为一种在驱动部件的动力下,利用动力部件蓄能达到驱动齿轮3复啮合目的,以达到优化控制器结构复杂程度、优化控制器动作控制复杂性,达到提升控制器可靠性的技术方案,设置为:所述动力部件为弹性限位体9;
所述弹性限位体9在驱动齿轮3转动过程中蓄能,在所述齿啮合复位过程中,弹性限位体9通过回弹驱动驱动齿轮3转动实现齿啮合复位。与本方案作用等同的,亦可采用单独的驱动机构实现驱动齿轮3与驱动部件复啮合。
作为所述弹性限位体9的具体实现形式,设置为:所述弹性限位体9为以下方式中的任意一种或几种:弹簧、弹性绳、弹性杆;
所述弹性绳为:一端与驱动齿轮3相连接,另一端连接在驱动部件的壳体上,通过弹性绳被拉伸进行蓄能,针对基于变速箱的运用,所述弹性绳可为:一端固定于驱动齿轮3上,一端固定于变速箱的变速箱座2上,具体位置可采用如位于变速箱的端盖上;
所述弹簧及弹性杆均为:通过一端约束于驱动齿轮3、壳体中的其中一个上,另一端约束于另一个上进行蓄能,针对基于变速箱的运用,所述弹簧及弹性杆可为:一端与驱动齿轮3相作用,另一端与变速箱的壳体相作用,具体位置可采用作用于所述端盖上,具体作用形式可为:弹簧及弹性杆的其中一端与变速箱或驱动齿轮3直接固定连接、通过接触面相互挤压传递作用力,弹簧及弹性杆的另一端与变速箱或驱动齿轮3直接固定连接、通过接触面相互挤压传递作用力。
为适应于控制器结构小型化设计,作为一种具体的弹性限位体9实现方式,设置为:所述弹性限位体9包括弹性杆,所述弹性杆为其上具有折弯的弯杆;
定义所述折弯两端的杆段分别为第一杆段和第二杆段,所述第一杆段的一端固定于驱动齿轮3上,在驱动齿轮3的径向方向上,第一杆段的两端位于驱动齿轮3的不同位置,所述第二杆段的自由端相对于驱动齿轮3的端面向外侧凸出;
所述壳体的端板还设置有旋转限位槽10,所述第二杆段局部嵌入所述旋转限位槽10。本方案中,所述弹性杆作为与驱动齿轮3同步转动的摆杆,当摆动为第二杆段嵌入旋转限位槽10中的杆段与旋转限位槽10的端面接触后,在驱动齿轮3的进一步旋转下,实现弹性件的蓄能。针对驱动齿轮3具体的旋转方向,第二杆段嵌入旋转限位槽10中的杆段与旋转限位槽10对应侧的端部接触后,在驱动齿轮3的进一步旋转下,实现弹性件的蓄能。
为进一步考虑控制器小型化设计,更为具体的,设置为:所述驱动齿轮3上还设置有沿着驱动齿轮3径向方向延伸的凹槽11,所述第一杆段固定于凹槽11靠近主轴4的一端,第一杆段在自由状态下,第一杆段与凹槽11的延伸方向相同,第一杆段的两侧与凹槽11的侧壁均具有摆动间隙。本方案中,将弹性件设置为位于驱动齿轮3所占空间内的悬臂杆达到优化空间占用的目的。进一步的,考虑到加工质量,避免因为悬臂杆安装给控制器之间带来的互换性问题,设置为弹性杆与驱动齿轮3为一体式设计,如采用一次性注塑制备出该一体式结构、通过注塑后对所得结构进行间隙加工获得为悬臂杆的弹性杆。作为本领域技术人员,考虑到相对转动的角度,通过设定相应的间隙宽度即可。考虑到驱动齿轮3材质,为满足弹性杆在所需的相对转动范围内产生额变形为弹性变形,选择适宜的第一杆段长度即可。
为优化弹性杆的受力,避免因为在第一杆段的连接端产生应力集中造成本控制器的可靠性或寿命降低,设置为:所述凹槽11两侧的侧壁上均具有位于第一杆段两端之间的凸块12;
第一杆段在自由状态下,第一杆段各侧侧壁与该侧凸块12的自由端之间均具有间隙。本方案中,通过第一杆段的中部/连续段与凸块12的端部接触,达到优化第一杆段连接端受力的目的。更为完整的,设置为所述凸块12自由端端面的形状为与驱动齿轮3内外方向上凸块12两侧面均光滑过渡的弧面,以避免在凸块12和第一杆段上产生严重的压损。
实施例8:
本实施例在以上任意实施例提供的技术方案的基础上,提供了一种阀门,包括通过转动调整阀门开启状态的阀芯,还包括如上任意一项所述的阀芯传动件或阀门控制器,所述阀芯固定于主轴4上,所述主轴4作为所述阀芯的阀杆。本阀门为基于所述阀芯传动件或阀门控制器的运用,如上所述,本阀门不仅通过结构设计解决了堵转问题,同时针对驱动齿轮3的复啮合,本方案的结构设计还具有可提升阀门传动的可靠性,同时利于对阀门进行进一步的小型化设计的特点。
实施例9:
本实施例提供一种阀门控制方法,该控制方法用于如下阀门:该阀门通过旋转阀芯的方式实现阀门通断控制,通过不完全齿轮带动阀杆转动驱动阀芯动作,所述不完全齿轮能够相对于阀杆做绕阀杆轴线旋转的相对转动;
所述控制方法为:当所述阀杆在进行换向转动前,所述不完全齿轮相对于阀杆做绕阀杆轴线旋转的相对转动;
通过所述相对转动,当不完全齿轮与用于驱动不完全齿轮旋转的齿轮齿啮合复位后,不完全齿轮向阀杆提供转矩,驱动阀芯转动。本控制方法为基于以上结构设计构思的阀门控制方法,本方案在防堵转阀门驱动运用的基础上,提供了一种可方便实现驱动齿轮3轮齿复啮合、提升啮合可靠性、可减小相应硬件部分结构体积和性能要求、减小阀门整体结构复杂性的技术方案。
以上内容是结合具体的优选实施方式对本发明作的进一步详细说明,不能认定本发明的具体实施方式只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明的技术方案下得出的其他实施方式,均应包含在本发明的保护范围内。

Claims (22)

  1. 阀芯传动件,包括驱动齿轮(3)及主轴(4),所述驱动齿轮(3)用于驱动主轴(4)绕主轴(4)轴线转动,所述驱动齿轮(3)为不完全齿轮,其特征在于,所述驱动齿轮(3)能够相对于主轴(4)做绕主轴(4)轴线旋转的相对转动。
  2. 根据权利要求1所述的阀芯传动件,其特征在于,所述驱动齿轮(3)与主轴(4)同轴,主轴(4)通过驱动齿轮(3)上的轴孔与驱动齿轮(3)可转动连接;
    所述主轴(4)、驱动齿轮(3)两者各自上均设置有旋转约束体,所述旋转约束体用于所述两者之间的转矩传递:驱动齿轮(3)通过旋转约束体相互挤压向主轴(4)上传递转矩。
  3. 根据权利要求2所述的阀芯传动件,其特征在于,所述两者中,其中一者上的旋转约束体为键,另一者上的旋转约束体为键槽,所述键槽的宽度大于键的宽度。
  4. 根据权利要求3所述的阀芯传动件,其特征在于,所述键设置于主轴(4)上,所述键槽设置于驱动齿轮(3)上;
    所述键槽的深度小于轴孔的长度。
  5. 根据权利要求3或4所述的阀芯传动件,其特征在于,所述键槽的槽底面为轴线与主轴轴线同轴的弧形面,所述键自由端的端面为轴线与主轴轴线同轴的弧形面;
    所述槽底面与所述端面相贴。
  6. 根据权利要求3或4所述的阀芯传动件,其特征在于,所述键及键槽的数量均为多个;
    键和键槽的数量相等;
    键和键槽一一形成键啮合工作组;
    形成的多个工作组相对于主轴(4)的轴线环形均布;
    在所述相对转动过程中,多个工作组同步啮合或脱离。
  7. 根据权利要求2所述的阀芯传动件,其特征在于,所述主轴(4)上的旋转约束体为设置在主轴(4)侧面上的凸台,主轴(4)上的凸台为一个或两个;
    当主轴(4)上的凸台为两个时,两个凸台位于主轴(4)的同一轴线位置,两个凸台在主轴(4)的周向方向上间隔排布;
    当主轴(4)上的凸台为两个时,所述驱动齿轮(3)上的旋转约束体为设置在驱动齿轮(3)端面上的凸台,在所述相对转动的过程中,驱动齿轮(3)上的凸台可与主轴(4)上的各凸台接触;
    当主轴(4)上的凸台为一个时,所述驱动齿轮(3)上的旋转约束体为设置在驱动齿轮(3)端面上的两个凸台,在所述相对转动的过程中,主轴(4)上的凸台可与驱动齿轮(3)上的各凸台接触。
  8. 根据权利要求1所述的阀芯传动件,其特征在于,所述主轴(4)与驱动齿轮(3)之间还设置有弹性件,驱动齿轮(3)通过所述弹性件向主轴(4)上传递转矩,所述相对转动通过弹性件弹性变形实现。
  9. 根据权利要求8所述的阀芯传动件,其特征在于,所述驱动齿轮(3)与主轴(4)同轴,主轴(4)通过驱动齿轮(3)上的轴孔与驱动齿轮(3)间隙配合。
  10. 根据权利要求9所述的阀芯传动件,其特征在于,弹性件为套设在主轴(4)上的扭簧,所述扭簧一端与主轴(4)固定连接,另一端与驱动齿轮(3)固定连接。
  11. 阀门控制器,包括驱动部件,其特征在于,还包括如权利要求1至10中任意一项所述的阀芯传动件,所述驱动部件通过与驱动齿轮(3)上的轮齿齿啮合驱动驱动齿轮(3)旋转;
    在所述齿啮合保持期间,驱动齿轮(3)与主轴(4)具有处于传动配合的配合状态;
    在所述齿啮合脱开后进行齿啮合复位的过程中,驱动齿轮(3)与主轴(4)具有可相对转动的配合状态。
  12. 根据权利要求11所述的阀门控制器,其特征在于,在所述齿啮合脱开后进行齿啮合复位的过程中,驱动齿轮(3)与主轴(4)处于可相对转动的配合状态。
  13. 根据权利要求11所述的阀门控制器,其特征在于,所述驱动齿轮(3)上具有多个轮齿;
    所述驱动部件与驱动齿轮(3)的配合关系满足:驱动齿轮(3)任意转动方向下,所述齿啮合脱开后进行齿啮合复位的过程中,驱动部件与驱动齿轮(3)上的首齿啮合复位时,驱动齿轮(3)与主轴(4)处于可相对转动的配合状态。
  14. 根据权利要求11所述的阀门控制器,其特征在于,所述驱动部件包括减速齿轮组(7),所述驱动齿轮(3)用于与减速齿轮组(7)的末级齿轮(6)相啮合。
  15. 根据权利要求11所述的阀门控制器,其特征在于,还包括用于实现驱动齿轮(3)与驱动部件齿啮合复位的动力部件。
  16. 根据权利要求15所述的阀门控制器,其特征在于,所述动力部件为弹性限位体(9);
    所述弹性限位体(9)在驱动齿轮(3)转动过程中蓄能,在所述齿啮合复位过程中,弹性限位体(9)通过回弹驱动驱动齿轮(3)转动实现齿啮合复位。
  17. 根据权利要求16所述的阀门控制器,其特征在于,所述弹性限位体(9)为以下方式中的任意一种或几种:弹簧、弹性绳、弹性杆;
    所述弹性绳为:一端与驱动齿轮(3)相连接,另一端连接在驱动部件的壳体上,通过弹性绳被拉伸进行蓄能;
    所述弹簧及弹性杆均为:通过一端约束于驱动齿轮(3)、壳体中的其中一个上,另一端约束于另一个上进行蓄能。
  18. 根据权利要求17所述的阀门控制器,其特征在于,所述弹性限位体(9)包括弹性杆,所述弹性杆为其上具有折弯的弯杆;
    定义所述折弯两端的杆段分别为第一杆段和第二杆段,所述第一杆段的一端固定于驱动齿轮(3)上,在驱动齿轮(3)的径向方向上,第一杆段的两端位于驱动齿轮(3)的不同位置,所述第二杆段的自由端相对于驱动齿轮(3)的端面向外侧凸出;
    所述壳体的端板还设置有旋转限位槽(10),所述第二杆段局部嵌入所述旋转限位槽(10)。
  19. 根据权利要求18所述的阀门控制器,其特征在于,所述驱动齿轮(3)上还设置有沿着驱动齿轮(3)径向方向延伸的凹槽(11),所述第一杆段固定于凹槽(11)靠近主轴(4)的一端,第一杆段在自由状态下,第一杆段与凹槽(11)的延伸方向相同,第一杆段的两侧与凹槽(11)的侧壁均具有摆动间隙。
  20. 根据权利要求19所述的阀门控制器,其特征在于,所述凹槽(11)两侧的侧壁上均具有位于第一杆段两端之间的凸块(12);
    第一杆段在自由状态下,第一杆段各侧侧壁与该侧凸块(12)的自由端之间均具有间隙。
  21. 阀门,包括通过转动调整阀门开启状态的阀芯,其特征在于,还包括如权利要求1至20中任意一项所述的阀芯传动件或阀门控制器,所述阀芯固定于主轴(4)上,所述主轴(4)作为所述阀芯的阀杆。
  22. 阀门控制方法,其特征在于,该控制方法用于如下阀门:该阀门通过旋转阀芯的方式实现阀门通断控制,通过不完全齿轮带动阀杆转动驱动阀芯动作,所述不完全齿轮能够相对于阀杆做绕阀杆轴线旋转的相对转动;
    所述控制方法为:当所述阀杆在进行换向转动前,所述不完全齿轮相对于阀杆做绕阀杆轴线旋转的相对转动;
    通过所述相对转动,当不完全齿轮与用于驱动不完全齿轮旋转的齿轮齿啮合复位后,不完全齿轮向阀杆提供转矩,驱动阀芯转动。
PCT/CN2021/113256 2021-04-28 2021-08-18 阀芯传动件、阀门控制器、阀门及阀门控制方法 WO2022267208A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/323,400 US20230296189A1 (en) 2021-04-28 2023-05-24 Valve core transmission members, valve controllers, and valve control methods thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110462997 2021-04-28
CN202110705988.1 2021-06-24
CN202110705988.1A CN113217698A (zh) 2021-04-28 2021-06-24 阀芯传动件、阀门控制器、阀门及阀门控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/323,400 Continuation-In-Part US20230296189A1 (en) 2021-04-28 2023-05-24 Valve core transmission members, valve controllers, and valve control methods thereof

Publications (1)

Publication Number Publication Date
WO2022267208A1 true WO2022267208A1 (zh) 2022-12-29

Family

ID=77081487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113256 WO2022267208A1 (zh) 2021-04-28 2021-08-18 阀芯传动件、阀门控制器、阀门及阀门控制方法

Country Status (3)

Country Link
US (1) US20230296189A1 (zh)
CN (2) CN214946780U (zh)
WO (1) WO2022267208A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214946780U (zh) * 2021-04-28 2021-11-30 成都秦川物联网科技股份有限公司 阀芯传动件、阀门控制器、阀门
CN113740056A (zh) * 2021-09-03 2021-12-03 成都秦川物联网科技股份有限公司 用于燃气表机电阀智慧生产的齿轮组啮合检测传动装置
CN113639994B (zh) * 2021-09-03 2023-06-09 成都秦川物联网科技股份有限公司 用于燃气表机电阀智慧生产的齿轮组啮合检测辅助装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062611A (en) * 1990-07-31 1991-11-05 Eaton Corporation Servo operated valve assembly
CN2603266Y (zh) * 2002-10-14 2004-02-11 朱建 无堵转低功耗高可靠的ic卡水表电机驱动阀
CN103742705A (zh) * 2013-10-11 2014-04-23 阮迪荣 一种用于机械式定时阀门的传动机构
CN103742704A (zh) * 2013-10-11 2014-04-23 阮迪荣 一种机械式定时阀门
CN112151335A (zh) * 2020-10-13 2020-12-29 上海良信电器股份有限公司 传动机构及断路器
CN113217698A (zh) * 2021-04-28 2021-08-06 成都秦川物联网科技股份有限公司 阀芯传动件、阀门控制器、阀门及阀门控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062611A (en) * 1990-07-31 1991-11-05 Eaton Corporation Servo operated valve assembly
CN2603266Y (zh) * 2002-10-14 2004-02-11 朱建 无堵转低功耗高可靠的ic卡水表电机驱动阀
CN103742705A (zh) * 2013-10-11 2014-04-23 阮迪荣 一种用于机械式定时阀门的传动机构
CN103742704A (zh) * 2013-10-11 2014-04-23 阮迪荣 一种机械式定时阀门
CN112151335A (zh) * 2020-10-13 2020-12-29 上海良信电器股份有限公司 传动机构及断路器
CN113217698A (zh) * 2021-04-28 2021-08-06 成都秦川物联网科技股份有限公司 阀芯传动件、阀门控制器、阀门及阀门控制方法

Also Published As

Publication number Publication date
CN113217698A (zh) 2021-08-06
US20230296189A1 (en) 2023-09-21
CN214946780U (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2022267208A1 (zh) 阀芯传动件、阀门控制器、阀门及阀门控制方法
CN102359640B (zh) 智能燃气表控制专用电机阀
CN107314603A (zh) 一种具有防随动结构的双门电动风门装置
CN201224496Y (zh) 一种电动舵机
CN109667978B (zh) 一种混合型角行程阀门开关的执行器
CN208658296U (zh) 自动开关抽屉机构和冰箱
CN212535382U (zh) 一种车门闭锁器
CN212509718U (zh) 一种具有手动应急开关的电动执行器
CN116291107A (zh) 一种手自一体可切换旋转执行器
CN205752062U (zh) 一种断路器储能驱动机构
WO2019062026A1 (zh) 一种摆动结构恒速空压机
CN209430638U (zh) 一种e-amt离合器的双工位控制模块
CN208352232U (zh) 一体化断路器结构
CN208041116U (zh) 一种换挡连杆机构及换挡装置
CN114183576B (zh) 一种带有双传动机构的电动阀门
CN206054888U (zh) 一种稳定型角行程执行器
CN220268453U (zh) 双联蝶阀
CN218326031U (zh) 一种手自一体旋转执行器
CN213745172U (zh) 一种气动飞轮执行机构
CN204985575U (zh) 一种正弦摆动机构
CN2675804Y (zh) 锁的驱动机构
CN103603985B (zh) 液晶显示温控的电子螺旋执行器
CN215636169U (zh) 一种具备快速组件以及耐腐蚀功能的作动器
CN211175492U (zh) 一种三通阀门
CN116447377B (zh) 一种高压远程供液管道用沟槽式阀门

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE