WO2022265112A1 - 樹脂混合体の分離回収方法 - Google Patents

樹脂混合体の分離回収方法 Download PDF

Info

Publication number
WO2022265112A1
WO2022265112A1 PCT/JP2022/024410 JP2022024410W WO2022265112A1 WO 2022265112 A1 WO2022265112 A1 WO 2022265112A1 JP 2022024410 W JP2022024410 W JP 2022024410W WO 2022265112 A1 WO2022265112 A1 WO 2022265112A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
treatment
hydrolyzable polymer
hydrolyzable
separation
Prior art date
Application number
PCT/JP2022/024410
Other languages
English (en)
French (fr)
Inventor
賢 渡邉
有朋 山口
修 佐藤
勇摩 入佐
昭 高間
昂亮 西村
浩樹 鯨岡
秀喜 宮崎
啓太 秋元
拓弥 高畑
大資 釘本
真吾 幸田
敏 羽村
孝博 今井
友美子 大森
学 加和
Original Assignee
Ube株式会社
恵和興業株式会社
東ソー株式会社
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022097671A external-priority patent/JP2023001085A/ja
Application filed by Ube株式会社, 恵和興業株式会社, 東ソー株式会社, 凸版印刷株式会社 filed Critical Ube株式会社
Priority to EP22825099.9A priority Critical patent/EP4357397A1/en
Priority to KR1020247001577A priority patent/KR20240023119A/ko
Priority to CN202280042029.9A priority patent/CN117529518A/zh
Publication of WO2022265112A1 publication Critical patent/WO2022265112A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/14Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with steam or water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for separating and recovering a hydrolyzable component of a hydrolyzable resin and a non-hydrolyzable resin from a resin mixture of a resin layer containing a hydrolyzable polymer and a resin layer containing a non-hydrolyzable polymer. .
  • multi-layered plastic molded products especially film-shaped molded products (also called multilayer plastic films), which account for a large proportion of waste plastic. If possible, the recycling efficiency will be improved, contributing to thorough recycling of carbon resources and preservation of the global environment.
  • multilayer plastic films those made of different materials (also referred to as heterogeneous multilayer films) coexist with multiple types of polymers or materials other than polymers (there may also be multiple types). Recycling the constituent polymer as it is (sometimes called material recycling), and at the same time recycling the polymer that makes up another layer into its raw material compound (sometimes called chemical recycling) (hereinafter referred to as hybrid recycling method) is highly difficult and results in low recycling efficiency.
  • the polymer recovered through a complex recycling process and contact with miscellaneous chemical components will have different properties (molecular weight distribution, etc.) compared to the polymer before recovery (the polymer that makes up the layer).
  • the polymer before recovery the polymer that makes up the layer.
  • it cannot be reused as a molding material such as a film, and even if it can be reused, its use is likely to be limited. Therefore, the recycling of such heterogeneous multi-layer films depends more on thermal recycling by combustion than the hybrid recycling method, and technical establishment of the hybrid recycling method is desired.
  • an object of the present invention is to provide a method for simultaneously separating and recovering a polymer that suppresses property changes such as changes.
  • Another object of the present invention is to provide a method for simultaneously separating and recovering a raw material compound for a hydrolyzable polymer and a non-hydrolyzable polymer from a resin mixture with high recycling efficiency.
  • the term “simultaneously” means that the hydrolyzable polymer (hydrolyzable component) and the non-hydrolyzable polymer B are separated from each other and recovered (hybrid It does not mean taking up both at the same time temporally.
  • At least one hydrolyzable polymer A is added to a mixture containing at least a resin layer 1 mainly composed of a hydrolyzable polymer A and a resin layer 2 mainly composed of a non-hydrolyzable polymer B.
  • a method for separating and recovering a decomposed component a and a non-hydrolyzable polymer B The mixture is subjected to a hydrothermal reaction treatment to hydrolyze and separate the hydrolyzable polymer A in the mixture, while maintaining the molecular weight of the non-hydrolyzable polymer B in the mixture.
  • a method for separation and recovery comprising a decomposition separation step of separating in a decomposed state.
  • the hydrothermal reaction treatment is performed under a pressure of 101 kPa (1 atm) or more, and in an orthogonal coordinate system in which the x-axis is the treatment time (minutes) and the y-axis is the treatment temperature (° C.), the point A1 (1,390 ), point 2 (1, 250), point 3 (60, 250) and point 4 (60, 375) within a rectangular area (including on the boundary line).
  • the hydrothermal reaction treatment is performed under a pressure of 101 kPa (1 atm) or more, and in an orthogonal coordinate system in which the x-axis is the treatment time (minutes) and the y-axis is the treatment temperature (° C.), the point A (1,375 ), point B (1, 325), point C (60, 275), and point D (60, 300) within a quadrangular area (including on the boundary line).
  • ⁇ 4> The separation and recovery method according to any one of ⁇ 1> to ⁇ 3>, wherein the hydrolyzed component a of the hydrolyzable polymer A is transferred to the aqueous phase.
  • ⁇ 5> The separation and recovery method according to any one of ⁇ 1> to ⁇ 4>, wherein the non-hydrolyzable polymer B is separated from the aqueous phase.
  • ⁇ 6> The separation and recovery method according to any one of ⁇ 1> to ⁇ 5>, wherein the mixture to be subjected to the hydrothermal reaction treatment is obtained by removing solid components from the melt.
  • the non-hydrolyzable polymer B separated in a molten state has an average molecular weight of at least 0.7 times the average molecular weight of the non-hydrolyzable polymer B before the hydrothermal reaction treatment.
  • ⁇ 1> to ⁇ 6> The separation and recovery method according to any one of items.
  • the hydrolysis component a is terephthalic acid, 2,6-naphthalenedicarboxylic acid, ethylene glycol, 1,3-propanediol, 1,4-butanediol, tetrahydrofuran, aminocaproic acid, ⁇ -caprolactam, and hexamethylenediamine. and adipic acid, and the separation and recovery method according to any one of ⁇ 1> to ⁇ 7>, comprising one or more components selected from the group consisting of derivatives thereof.
  • ⁇ 9> The separation according to any one of ⁇ 1> to ⁇ 8>, wherein the non-hydrolyzable polymer B is one or more polymers selected from the group consisting of polyethylene, polypropylene and polystyrene. collection method.
  • ⁇ 10> The separation and recovery method according to any one of ⁇ 1> to ⁇ 9>, wherein the mixture is a laminate.
  • ⁇ 11> The separation and recovery method according to ⁇ 10>, wherein the laminate has two or more layers of at least one of the resin layer 1 and the resin layer 2 .
  • ⁇ 12> The separation and recovery method according to ⁇ 10> or ⁇ 11>, wherein the laminate has at least one of a coating layer C and an adhesive layer D.
  • ⁇ 13> Any one of ⁇ 1> to ⁇ 12>, wherein the hydrolyzable component a is recovered at a molar ratio of 70% or more when the hydrolyzable polymer A contained in the resin layer 1 is 100%.
  • the separation and recovery method described in . ⁇ 14> The separation and recovery method according to any one of ⁇ 1> to ⁇ 13>, wherein the mixture to be subjected to the hydrothermal reaction treatment after water absorption treatment is pretreated by heating.
  • ⁇ 15> The separation and recovery method according to ⁇ 14>, wherein the heating pretreatment is performed at a temperature range of 200 to 300°C.
  • ⁇ 16> The separation and recovery method according to ⁇ 14> or ⁇ 15>, wherein the mixture to be subjected to the water absorption treatment is mechanically treated.
  • a hydrolyzable polymer as its raw material compound (hydrolysis component)
  • the non-hydrolyzable polymer can be separated and recovered as a polymer with a suppressed change in weight molecular weight.
  • FIG. 1 is a diagram showing a region of preferred hydrothermal reaction treatment conditions in the decomposition separation step of the present invention.
  • the hydrolyzable polymer is a polymer (the main chain of the polymer is hydrolyzable) in which the bonds of the constituent raw material compounds constituting the polymer are formed via hydrolyzable bonds, and the decomposition of the present invention is It refers to a polymer that undergoes hydrolysis due to the chemical properties of its constituent raw material compounds in the separation step (hydrothermal reaction treatment).
  • the non-hydrolyzable polymer is a polymer in which the bonds of the constituent raw material compounds constituting the polymer are formed via bonds that are not hydrolyzed or are not easily hydrolyzed, and in the decomposition separation step of the present invention, the polymer is A polymer that is not or hardly hydrolyzed by constituent raw material compounds, as a specific representative example, refers to a polymer in which the chemical structure of the polymer main chain (linking chain) is substantially composed only of carbon atoms.
  • a resin layer containing a specific polymer as a main component means a resin layer containing a specific polymer as a maximum content component among polymer components.
  • a polymer is used as a term meaning a polymer itself (a state in which no additives are mixed).
  • the polymer composition means a composition in which optional components (additives) are appropriately added to the polymer.
  • Resin is used as a term synonymous with polymer composition.
  • a numerical range represented using "to” means a range including the numerical values described before and after "to” as lower and upper limits.
  • the separation and recovery method of the present invention treats a mixture containing at least a resin layer 1 containing a hydrolyzable polymer A as a main component and a resin layer 2 containing a non-hydrolyzable polymer B as a main component. Since this mixture contains at least the resin layer 1 containing the hydrolyzable polymer A and the resin layer 2 containing the non-hydrolyzable polymer B, it is also called a resin mixture or a heterogeneous resin mixture.
  • the mixture may be a mixture containing the resin layer 1 and the resin layer 2, for example, a simple mixture of the resin layer 1 and the resin layer 2 which are not laminated to each other, or a laminate of the resin layer 1 and the resin layer 2. Furthermore, mixtures of simple mixtures and laminates and the like are included.
  • a laminate laminate (laminated film) can be used.
  • a multi-layered plastic film particularly a multi-layered film of different types, which is discarded in large quantities as waste plastic, can be used.
  • the shape (shape) of the mixture is not particularly limited, and the mixture or laminate can be used as it is.
  • Pulverized products (pulverized products, pulverized products, cut-out products) and fine powders (granules) are preferred in terms of reducing the size (also referred to as dispersion diameter) and improving the water absorption rate in the water absorption treatment.
  • the size of the crushed material at this time is appropriately determined in consideration of the above points, for example, so as to reduce the dispersion diameter of the polymer in water after being melted in the hydrothermal reaction treatment.
  • the size of the crushed product (pulverized product, crushed product, cut product) of the mixture is determined from the viewpoint of improving the contact area with water of the hydrolyzable polymer A during water supply treatment and the melting of the hydrolyzable polymer A during the hydrothermal treatment.
  • the mixture is a film, for example, a cut product of 50 mm or less ⁇ 50 mm or less is preferable, and a cut product of 5 mm or less ⁇ 5 mm or less is more preferable.
  • Each of the resin layer 1 and the resin layer 2 in the mixture, particularly the laminate, may be a single layer or two or more layers.
  • the mixing ratio (mass ratio) of the resin layer 1 and the resin layer 2 in the mixture is not particularly limited and can be set as appropriate. 10 (mass ratio).
  • the resin layer 1 in the mixture contains one or more hydrolyzable polymers A as a main component.
  • Hydrolyzable polymers include condensation polymers.
  • a condensation polymer is a polymer produced by polycondensation in which low-molecular-weight molecules such as water molecules and alcohol molecules are eliminated from monomers that are raw materials for polymerization reaction.
  • polyesters, polycarbonates, polyamides (sometimes abbreviated as PA in the present invention) in the present invention, for convenience, ring-opening polymerization of nylon 6 or the like produced by ring-opening polymerization of ⁇ -caprolactam instead of polycondensation Polyamides are included here.), polyacetals, and polyethers.
  • polymer is produced by a reaction mode other than polycondensation (for example, ring-opening polymerization), it is included here for convenience as long as it is the polymer exemplified above. More specific examples are given below.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PBN polybutylene naphthalate
  • PC polycarbonate
  • Polymers having repeating units in the polymer main chain nylon 6 (PA6), nylon 66 (PA66), nylon 6/66 (PA6/66), nylon 12 (PA12), aliphatic diamines such as hexamethylenediamine and phthalate Polyamides whose main raw materials are aromatic dicarboxylic acids such as acids (terephthalic acid and isophthalic acid), and polyamides whose main raw materials are aromatic diamines such as meta-xylenediamine (MXD) and aliphatic dicarboxylic acids such as adipic acid.
  • aromatic dicarboxylic acids such as acids (terephthalic acid and isophthalic acid
  • MXD meta-xylenediamine
  • aliphatic dicarboxylic acids such as adipic acid.
  • Polyamide polymers such as (typical example: PAMXD6); polyoxymethylene polymer (POM, also known as polyacetal polymer), polyphenylene ether polymer (PPE) and modified polymer alloy thereof (modified PPE; typical example is a polymer alloy of PPE and polystyrene) etc.
  • PET and PA6 are important as constituent polymers of multilayer films in terms of versatility and industrial usage.
  • the present invention is suitable for thermoplastic resin molded articles using these polymers because they are important for automobile parts, plastic parts for electrical equipment (e.g. home appliances, personal computers) and mobile communication terminals. Applies to
  • the resin layer 2 in the mixture contains one or more non-hydrolyzable polymers B as a main component.
  • the non-hydrolyzable polymer B includes non-condensation type polymers.
  • Non-condensation polymer refers to a polymer composed of only carbon atoms in the polymer main chain skeleton synthesized by addition polymerization, coordination polymerization, metathesis polymerization, etc., and includes vinyl polymers and cycloolefin polymers. do.
  • polyolefin polymers such as polyethylene (PE) and polypropylene (PP); styrenes such as polystyrene (PS), acrylonitrile-butadiene-styrene copolymer (ABS), acrylonitrile-styrene copolymer (AS or SAN) system polymer; (meth) acrylic polymer such as polymethyl methacrylate (PMMA); general-purpose acrylic monomer (e.g., (meth) acrylic compound such as methyl methacrylate, methyl acrylate, ethyl methacrylate, ethyl acrylate) and any radically polymerizable monomer and acrylic polymers such as copolymers with.
  • PO polyolefin polymers
  • PE polyethylene
  • PP polypropylene
  • styrenes such as polystyrene (PS), acrylonitrile-butadiene-styrene copolymer (ABS), acrylonitrile-s
  • PE, PP and PS are important constituent polymers of multilayer films
  • ABS and AS are important structural materials positioned between general-purpose polyolefins and engineering plastics
  • PMMA is a transparent polymer. Therefore, the present invention is preferably applied to thermoplastic resin moldings using these polymers.
  • the combination of the hydrolyzable polymer A and the non-hydrolyzable polymer B contained in the mixture includes an appropriate combination of each of the above polymers, preferably a combination of polyamide or polyester and polyethylene or polypropylene. .
  • the occurrence of the hydrolysis reaction of the hydrolyzable polymer A can be adjusted by changing the hydrothermal reaction treatment conditions. Therefore, a resin mixture having a resin layer 1 containing two or more types of hydrolyzable polymers A can be used.
  • PET polyethylene terephthalate
  • PA6 nylon 6
  • hydrolysis products thereof can be collectively produced without the need to separate them in advance. It can be collected.
  • the resin layer 1 and the resin layer 2 may each contain components other than the polymer.
  • components other than polymers include particles and fibers such as glass, carbon fiber, carbon black, silica, titanium oxide, calcium carbonate, magnesium carbonate, magnesium silicate (talc), kaolin, mica, and organic or inorganic pigments, Plasticizers such as long-chain fatty acid esters such as phthalates, adipates, phosphates and stearates, heat stabilizers such as hindered phenols, UV absorbers such as amines, polyhydric alcohols such as glycerin Lubricants such as long-chain fatty acid esters, carboxylates such as sodium benzoate, sodium phthalate, sodium salicylate, sodium 4-hydroxybenzoate, sodium stearate, sodium benzenesulfonate, toluenesulfonic acid Examples include crystal nucleating agents such as sodium salts and organic sulfonates such as sodium 4-hydroxybenzenesulfonate, release agents such as
  • each resin layer is not particularly limited, but the total amount can be 50 parts by mass or less with respect to 100 parts by mass of the polymer.
  • the resin layer 1 may be a polymer blend material composed of a plurality of types of polymer components, and may contain a non-hydrolyzable polymer B in addition to the hydrolyzable polymer A as the polymer component. It usually does not contain non-hydrolyzable polymer B.
  • the resin layer 2 may be a polymer blend material composed of a plurality of types of polymer components, and may contain a hydrolyzable polymer A in addition to the non-hydrolyzable polymer B as the polymer component. , usually does not contain hydrolyzable polymer A.
  • the resin layer 1 and the resin layer 2 are each made of a resin containing polymer A or polymer B as a main component.
  • the mixture particularly the laminate, includes a coating layer C for coating the resin layer 1 or the resin layer 2, a coating layer C, an adhesive layer D for bonding the resin layer, and the like. good too.
  • a coating layer C an appropriate layer can be mentioned depending on the use of the mixture, the required properties, etc., and for example, a function imparting layer for imparting a specific function to the mixture can be mentioned.
  • the function-imparting layer is not particularly limited, and includes, for example, a metal layer that imparts gas barrier properties, fragrance retention, light reflectivity, etc., an inorganic layer as a hard coat that imparts scratch resistance, and a printing layer. be done.
  • Examples of materials for forming the function-imparting layer include metals (vacuum processes such as sputtering and vapor deposition, plating (e.g., aluminum, silicon, a combination of copper-nickel-chromium, gold, palladium, tin, ruthenium, black trivalent chromium , transition metals such as tin-cobalt alloys, and inorganic substances such as oxides and/or nitrides of these metals.
  • metals vacuum processes such as sputtering and vapor deposition, plating (e.g., aluminum, silicon, a combination of copper-nickel-chromium, gold, palladium, tin, ruthenium, black trivalent chromium , transition metals such as tin-cobalt alloys, and inorganic substances such as oxides and/or nitrides of these metals.
  • plating e.g., aluminum, silicon, a combination of copper-nickel-chromium, gold,
  • the adhesive layer is a layer for adhering each layer constituting the mixture, the coating layer, etc., and the adhesive component is not particularly limited and is appropriately selected.
  • the combination of the polymer A or B and the material forming the coating layer C or the adhesive layer D includes appropriate combinations of the above polymers and materials, and the present invention is preferably applied to industrial Those used in large quantities, for example, (1) as a heterogeneous multilayer film, a polymer A (typical examples are PET and PA6) laminated on a polymer B such as PE, PP or PS as a base material, a coating layer C and an adhesive layer As D, a printed layer, a barrier layer (aluminum layer, silica layer, alumina layer, vinylidene chloride layer, etc.) that blocks oxygen and water, an antistatic layer, an adhesive layer that bonds different types of films, an antiblocking layer, etc. are laminated.
  • a polymer A typically examples are PET and PA6
  • a polymer B such as PE, PP or PS
  • a coating layer C and an adhesive layer As D a printed layer
  • a barrier layer aluminum layer, silica layer, alumina layer, vinyli
  • Molded products preferably manufactured by injection molding or extrusion molding of the above five major general-purpose engineering plastics (PC, PBT, POM, PPE and various PAs) coated with the above metals and ceramics
  • PC, PBT, POM, PPE and various PAs coated with the above metals and ceramics
  • a large-sized molded article eg, automobile parts, home appliance housing
  • Polymer B such as PP or ABS and coated with the above ink or ceramics.
  • the ratio (mass ratio) of the mixture to the function-imparting layer and the adhesive layer is not particularly limited and can be set as appropriate. Layers can be from 100:1 to 100:0.001 (mass ratio).
  • waste plastics can be used as the mixture. It contributes to the realization of recycling of carbon resources and conservation of the global environment.
  • the waste plastic is not particularly limited, but for example, plastic automobile parts (chassis, interior, outer layer, window glass, lighting parts such as headlamp covers and reflectors, side mirrors, display parts, safety belts, airbags, etc.
  • Safety mechanisms such as airbag covers, fuel system mechanisms such as tanks, pipes, and pumps, electrical wiring mechanisms such as connectors, mechanical mechanisms such as gears, etc.), electrical equipment (e.g.
  • plastics for mobile communication terminals Parts casings, display parts, electric circuit boards, antennas, etc.
  • various optical discs plastic parts for medical and health equipment (dialysis, infusion bags, disposable syringes, physical training equipment, etc.), containers, packaging trays, stationery,
  • Various molded products such as toys, furniture, daily necessities, home appliance housings, packaging films (including packaging for pharmaceuticals such as tablets, powders, and liquids), plastic shopping bags, etc.
  • automobile parts with large quantities If the present invention is suitably used for waste derived from electrical equipment, mobile communication terminals, various optical discs, packaging films, etc., the recycling of multilayer plastic films (multilayer plastic laminates) that are discarded in large quantities can be promoted. .
  • melt means a mixture that is in a viscous flowable state as a result of at least a portion of the polymer constituting the mixture being melted.
  • a temperature condition exceeding the softening point for example, melting point or glass transition temperature
  • Such melts may contain unmelted polymer components as long as they are viscous flowable.
  • an excessively high temperature may cause thermal degradation (e.g., thermal decomposition, oxidation, transition reaction, cross-linking reaction) of the polymer in the molten state.
  • thermal degradation e.g., thermal decomposition, oxidation, transition reaction, cross-linking reaction
  • the lower viscosity of the melt with increasing temperature promotes the hydrolysis of the hydrolyzable polymer A by a mechanism that increases the interfacial area and interfacial renewal efficiency of the hydrolysis reaction between the water phase and the polymer.
  • the mixture can be subjected to the decomposition separation step as it is (without pretreatment). It is preferable to subject the mixture to the decomposition and separation step as a molten mixture obtained by removing components. As a result, it is possible to reduce the amount of solid components remaining in the recovered polymer and suppress the occurrence of undesirable chemical reactions and by-products derived from the solid components, so that the hydrolyzable component a and the non-hydrolyzable polymer of high purity can be obtained. B can be separated and recovered with higher recycling efficiency.
  • the solid component contained in the mixture is a condition (temperature) for melting the mixture, for example, 150 to 350 ° C., the lower limit temperature is preferably 190 ° C., more preferably 220 ° C.
  • the upper limit temperature is preferably 340° C., more preferably 330° C. It is a component that exists as a solid without being melted, and examples thereof include paper such as labels and various inorganic substances.
  • the conditions for melting the mixture are set to be above the softening point of the polymer contained in the mixture and below the thermal decomposition temperature, as described above, and include the melting temperature.
  • any ordinary method can be applied without particular limitation, and examples thereof include solid-liquid separation such as filtration.
  • the above-mentioned mixture may be mixed with resin moldings containing a thermoplastic polymer and resin moldings containing a non-thermoplastic polymer.
  • resin moldings containing a thermoplastic polymer and resin moldings containing a non-thermoplastic polymer.
  • a mixture derived from waste plastics it is advantageous to mix moldings other than the above-mentioned mixtures in that it is not necessary to separate the waste plastics in advance.
  • a mixture derived from waste plastics for example, a mixture in which paper or plastic labels, inner lids of caps, and the like are mixed can be used.
  • the mixture is subjected to hydrothermal reaction treatment (decomposition separation step is performed).
  • the mixture becomes a melt, in some cases a melt mixture, hydrolyzes and separates the hydrolyzable polymer A in the mixture (melt mixture), and The non-hydrolyzable polymer B can be isolated while maintaining its molecular weight (usually molten).
  • avoiding precipitation of the hydrolyzed component a as a solid means increasing the solubility of at least one hydrolyzed component a in water at high temperatures by heating the system to hydrothermal reaction treatment conditions. It means that the hydrolyzate component a is preferably dissolved (migrated) in the aqueous phase under hydrothermal treatment conditions and is not precipitated in a solid state as crystals, aggregates, or the like in the system.
  • the hydrolyzed component a may be suppressed from precipitation to such an extent that the recovery rate satisfies the range described later.
  • the decomposition separation step is performed by heating and mixing the mixture and water.
  • Water is not particularly limited, and deionized water, reverse osmosis water, distilled water, purified water, well water, tap water, industrial water, and the like can be used.
  • the amount of water used is appropriately determined according to the type of each polymer, the content ratio of polymer A and polymer B, the hydrothermal reaction treatment conditions, etc. For example, 100 to 10,000 It is preferably parts by mass, more preferably 300 to 5000 parts by mass. From the viewpoint of energy saving and cost reduction, it is more preferably 100 to 1000 parts by mass, and even more preferably 200 to 700 parts by mass.
  • the conditions for the hydrothermal reaction treatment are as follows: Under a pressure of 101 kPa (1 atm) or higher, a temperature at which the hydrolysis reaction of the hydrolyzable polymer A proceeds and a decomposition temperature higher than the melting temperature of the non-hydrolyzable polymer B (particularly, The temperature is set to a temperature lower than the temperature at which the decomposition reaction can be suppressed and the molecular weight can be maintained), and is appropriately selected according to the type of each polymer, the combination of the coexisting polymer A and polymer B, and the like.
  • the temperature (treatment temperature) of the hydrothermal reaction treatment can be 250° C. or higher, preferably 275° C. or higher, and more preferably 300° C. or higher.
  • the upper limit of the treatment temperature is, for example, preferably 390° C. or lower, more preferably 375° C. or lower, still more preferably 350° C. or lower, and particularly preferably 330° C. or lower.
  • the treatment temperature can be appropriately set within the above range according to the types of the hydrolyzable polymer A and the non-hydrolyzable polymer B, and the like.
  • the treatment temperature is 250 to 250° C., in that the recycling efficiency of the hydrolyzable polymer A can be increased while suppressing the reaction of reducing the molecular weight of the non-hydrolyzable polymer B. It is preferably 350°C, more preferably 300 to 325°C. Moreover, when the polymer A is polyamides, particularly nylon, the temperature is preferably 300° C. or higher. On the other hand, when the polymer B is a polyolefin polymer, particularly polyethylene and polypropylene, the treatment temperature is preferably 250 to 330° C. in terms of suppressing the reaction to reduce the molecular weight. °C is more preferred.
  • one preferred aspect of the treatment temperature is 300 to 350°C, preferably 300 to 325°C. can also
  • the lower limit of the treatment time is preferably 1 minute or longer, but may be 3 minutes or longer, 8 minutes or longer, 10 minutes or longer, or even 15 minutes or longer.
  • the upper limit of the treatment time is preferably as short as possible. For example, 90 minutes or less is more preferable, and 60 minutes or less is even more preferable. Furthermore, it can be 40 minutes or less, or 30 minutes or less.
  • This treatment time can also be appropriately set within the above range according to the types of the hydrolyzable polymer A and the non-hydrolyzable polymer B, and the like.
  • the treatment time is such that the reaction to reduce the molecular weight of the non-hydrolyzable polymer B can be suppressed.
  • polymer B is a polyolefin polymer (especially polyethylene)
  • it is preferably 15 to 60 minutes.
  • the treatment time is more preferably 30 minutes or less. In the case of polyamides, it is more preferably 30 to 60 minutes.
  • the hydrothermal reaction treatment conditions are such that the hydrolyzable polymer A can be rapidly hydrolyzed while suppressing the reaction of reducing the molecular weight of the non-hydrolyzable polymer B, thereby further increasing the recycling efficiency.
  • the conditions are expressed in an orthogonal coordinate system where the x-axis is the treatment time (minutes) and the y-axis is the treatment temperature (° C.) under a pressure of 101 kPa or more. ), points 3 (60, 250) and points 4 (60, 375) as vertices (including on the boundary line).
  • the area (including the borderline ), or point A1 (1,390), point B (1,325), point C (60,275) and point D (60,300) as vertices An example is a mode in which the processing temperature and processing time are set within a rectangular area (including on the boundary line).
  • a quadrangular area (including on the boundary ) and particularly preferred embodiments include point E (5,350), point F (15,325), point C (60,275) and point D (60 , 300) are set as vertexes (including on the boundary line).
  • the combination of the treatment temperature and the treatment time in addition to the combination of the treatment temperature and the treatment time included in each of the above ranges, focuses on the types of the hydrolyzable polymer A and the non-hydrolyzable polymer B.
  • the following combination is also one of the preferred embodiments. That is, when the hydrolyzable polymer A is a polyester (especially polyethylene terephthalate), point a (5,350), point b (5,325), point c (10,300), point d (60,250) And it is preferable to set the processing temperature and processing time included in the pentagonal area (including the boundary line) with the point e (60, 350) as the vertex.
  • the hydrolyzable polymer A is a polyamide, a quadrangle with points A1 (1,390), points 2 (1,250), points D (60,300) and points e (60,350) as vertices It is preferable to set the processing temperature and processing time included in the area (including the boundary line), point D (60, 300), point e (60, 350), point f (15, 350) and point F It is more preferable to set the processing temperature and the processing time within a quadrangular region (including on the boundary line) with (15, 325) as the vertex.
  • polymer B is a polyolefin polymer (particularly polyethylene (LDPE, LLDPE)), point h (2,350), point i (2,300), point j (15,250), point d (60,250) ) and point k (60, 330) as vertices (including on the boundary line).
  • polyethylene LDPE, LLDPE
  • the polymer B is a polyolefin polymer (especially polypropylene), a square with points m (2,330), points n (2,250), points d (60,250) and points k (60,330) as vertices It is preferable to set the processing temperature and processing time included in the area (including on the boundary line), point p (2,300), point n (2,250), point q (30,250) and point r ( 30, 330), it is more preferable to set the processing temperature and the processing time within a quadrangular region (including on the boundary line).
  • the vertices of the above-described polygons representing combinations of processing temperature and processing time are appropriately changed to points representing combinations of processing temperature and processing time in Examples described later, and new polygons are formed. can be formed.
  • the treatment temperature in the hydrothermal reaction treatment can be set lower than the above treatment temperature.
  • the lower limit of the processing temperature can be set to 200° C.
  • the lower limit of the processing temperature in each of the temperature ranges and regions described above can be set to 200° C.
  • the pressure under the hydrothermal reaction treatment conditions is water vapor pressure at the treatment temperature up to the critical temperature of water (e.g., 101 kPa at 100° C., 12.86 MPa at 330° C.) or higher, and is usually set to a pressure of 101 kPa or higher.
  • the critical pressure is 22.1 MPa or higher at processing temperatures above the critical temperature.
  • the upper limit of the pressure at the treatment temperature equal to or higher than the critical temperature is not particularly limited, and can be, for example, the critical pressure + 40 MPa or less.
  • the hydrothermal reaction treatment is preferably carried out in the absence of an acid or a base in terms of workability and the need for no post-treatment. In this case, it is preferable to carry out in the presence of a base.
  • "in the absence of an acid or base” means that no acid or base is actively used, and that the pH of the water with which the mixture is brought into contact is in the range of 6-8.
  • the acid is not particularly limited, and examples thereof include organic acids such as acetic acid, and inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid and sulfuric acid.
  • the base is not particularly limited, and examples thereof include organic bases such as alkylammonium salts, indefinite bases such as metal hydroxides, aqueous ammonia, and the like.
  • organic bases such as alkylammonium salts
  • indefinite bases such as metal hydroxides, aqueous ammonia, and the like.
  • the amounts of acid and base to be used are not particularly limited and are determined as appropriate.
  • the atmosphere (environment) in the hydrothermal reaction treatment conditions is not particularly limited, and can be, for example, the air (environment) under the above pressure.
  • the non-hydrolyzable polymer B can be recovered at a high molecular weight retention rate by suppressing the reaction to reduce the molecular weight, it can be recovered in an oxygen-free environment, such as dry air, using an inert gas (eg, argon gas, helium gas, nitrogen gas). ) is preferred.
  • an inert gas eg, argon gas, helium gas, nitrogen gas.
  • the reaction to reduce the molecular weight of the non-hydrolyzable polymer B can be effectively performed. can be suppressed.
  • the hydrothermal reaction treatment (decomposition separation process) is usually performed in a sealed state, and can be performed either batchwise or continuously.
  • the reaction vessel used in the batch system includes closed reaction vessels such as autoclaves and reaction tubes.
  • the hydrothermal reaction treatment is preferably performed under the hydrothermal reaction treatment conditions, so that the mixture is first melted, and in some cases, it may become a molten mixture that is immiscible with water. .
  • hydrolyzable polymer A undergoes a hydrolysis reaction to produce hydrolyzed component a.
  • This hydrolyzate component a separates from the mixture, and the water-soluble components migrate to the aqueous phase.
  • the hydrolyzable component a is a compound produced according to the type of the hydrolyzable polymer A, and is usually a raw material compound (monomer) forming the hydrolyzable polymer A or a monomer thereof.
  • the hydrolyzable component a preferably includes raw material compounds (monomers) such as polyamides, polyesters and polycarbonates, and more preferably from industrial importance, terephthalic acid, 2,6-naphthalene dicarboxylic acid, ethylene glycol, One or two or more components selected from the group consisting of 1,3-propanediol, 1,4-butanediol, tetrahydrofuran, aminocaproic acid, ⁇ -caprolactam, hexamethylenediamine, adipic acid, and derivatives thereof mentioned.
  • raw material compounds such as polyamides, polyesters and polycarbonates, and more preferably from industrial importance, terephthalic acid, 2,6-naphthalene dicarboxylic acid, ethylene glycol, One or two or more components selected from the group consisting of 1,3-propanediol, 1,4-butanediol, tetrahydrofuran, aminocaproic acid, ⁇ -caprol
  • the term “derivatives thereof” refers to a compound produced by further reaction or the like under hydrolysis conditions of the hydrolyzed component a produced by hydrolysis of the hydrolyzable polymer A. Hydrolyzed component a and hydrolyzed Determined by conditions.
  • the non-hydrolyzable polymer B effectively suppresses the progress of the decomposition reaction during and after the melting of the mixture, and the non-hydrolyzable polymer B present in the resin layer 2 is It separates in the molten state from the aqueous phase (mixture) while maintaining its original molecular weight.
  • the hydrolyzable polymer A becomes hydrolyzable component a, and those exhibiting water solubility migrate to the aqueous phase and are separated from the non-hydrolyzable polymer B in the molten state. After such separation in the molten state, the non-hydrolyzable polymer B is solidified by cooling and recovered. During recovery of the non-hydrolyzable polymer B, the technique of pelletization by melt extrusion is preferably used.
  • the recovery rate of hydrolyzable component a varies depending on the type of hydrolyzable polymer A, hydrothermal reaction treatment conditions, etc., but for example, hydrolyzable polymer contained in resin layer 1
  • A is 100%, 60% or more can be achieved, and a high recovery (on a molar basis) of 70% or more, and further 80% or more can be achieved.
  • the recovery rate of the non-hydrolyzable polymer B varies depending on the type of the non-hydrolyzable polymer B, the hydrothermal reaction treatment conditions, etc., but for example, the non-hydrolyzable polymer B contained in the resin layer 2 is 100%, 80% or more can be achieved, and a high recovery rate (molar basis) of 90% or more can be achieved.
  • the recovered non-hydrolyzable polymer B maintains a good molecular weight distribution of the non-hydrolyzable polymer B present in the resin layer 2 .
  • the behavior of the molecular weight distribution of the recovered non-hydrolyzable polymer B is not unique depending on the type of polymer B, hydrothermal reaction treatment conditions, and the like.
  • the recovered non-hydrolyzable polymer B maintains an average molecular weight of 0.7 times or more the average molecular weight of the non-hydrolyzable polymer B before the hydrothermal reaction treatment.
  • the average molecular weight of the polymer is the value measured by the method described in Examples below.
  • the average molecular weight of the non-hydrolyzable polymer B present in the resin layer 2 is the average molecular weight of the non-hydrolyzable polymer B extracted from the resin layer 2 of the mixture before the hydrothermal reaction treatment.
  • the recovered hydrolyzable component a and non-hydrolyzable polymer B can also be appropriately purified by conventional methods.
  • steps other than the decomposition/separation step may be performed before or after the decomposition/separation step. For example, pre-melting the mixture, removing solid components from the melt of the mixture, as described above, and further sorting the mixture, for example, by the type of polymer contained; , a step of purifying the recovered hydrolyzable component a and the non-hydrolyzable polymer B, a step of drying the non-hydrolyzable polymer, and a step of pelletizing the non-hydrolyzable polymer. .
  • Various known methods can be applied without particular limitation for the purification method and the like.
  • the separation and recovery method of the present invention it is preferable from the viewpoint of recycling efficiency to further include a step of pre-melting the mixture before the decomposition and separation step.
  • the step of pre-melting the mixture is a step of kneading the mixture in a molten state using, for example, an extruder, and a known machine can be used.
  • the machine used is not particularly limited, and for example, an extruder having a short shaft or multiple shafts, a gear pump, or the like can be used.
  • the conditions for melting the mixture are not particularly limited as long as the mixture is melted, but from the viewpoint of uniformity of the melt, the set temperature is preferably 100° C. or higher, more preferably 200° C. or higher, and 260° C.
  • the temperature is preferably 350°C or lower, more preferably 300°C or lower, and even more preferably 280°C or lower.
  • the set temperature is the set temperature of an extruder or the like.
  • a higher treatment temperature (heating temperature) than in the separation and decomposition step can be applied as a hydrothermal reaction treatment condition.
  • the processing time can be shortened by having a melt-kneading step. That is, the temperature is set to a temperature equal to or higher than the highest melting point and lower than the lowest decomposition temperature of the polymer contained in the mixture, and the temperature range is generally 100 to 350°C. It is preferably the melting point of the polymer having the highest melting point or higher and the melting point +50° C. or lower, and more preferably the melting point +10° C. or higher and the melting point +30° C.
  • the temperature is preferably 230 to 280°C, more preferably 240 to 260°C, and when the polymer having the highest melting point is PA6/66, the temperature is preferably 200 to 250°C. .
  • the treatment time is not particularly limited, but a long treatment time increases the possibility of thermal decomposition of the polymer progressing. Based on this, it is desirable to make the time as short as possible.
  • the step of purifying the recovered hydrolyzable component a and non-hydrolyzable polymer B is not particularly limited, and is usually employed depending on the type of hydrolyzable component a, the type of non-hydrolyzable polymer B, etc.
  • a purification process can be applied.
  • the hydrolyzable component a is a carboxylic acid compound, an amine compound, or the like
  • purification by acid-base treatment may be performed.
  • the water-absorbed mixture (water-absorbed state) is pretreated under heating (referred to as preheating treatment).
  • preheating treatment is expected to improve the recovery rate while effectively suppressing the progress of the decomposition reaction of the non-hydrolyzable polymer B, and furthermore, the hydrothermal reaction treatment is performed under milder conditions (reduction of treatment temperature, treatment time It is preferable in that it can be implemented by shortening the time, reducing the amount of water used, etc.).
  • the improvement in recovery rate is remarkable when the hydrolyzable polymer A is polyesters, polyamides, or the like.
  • the hydrolyzable polymer A contained in the mixture subjected to the hydrothermal reaction treatment generally has a hydrolyzable chemical bond such as an ester bond, an amide bond, or a carbonate bond in the repeating unit structure of the polymer main chain. Therefore, it has a property (water absorption) of accepting hydration to such a hydrolyzable chemical bond and coordination of water molecules around it. Therefore, by performing such water absorption treatment and heating pretreatment before the hydrothermal reaction treatment in the present invention, hydrolysis can be advanced to some extent, so the hydrothermal reaction treatment intended to hydrolyze to the monomer.
  • the hydrolyzable polymer A in order to effectively hydrolyze the hydrolyzable polymer A in the pre-heating treatment, it is necessary that the hydrolyzable polymer A be in a state of water absorption to the extent that the effect is sufficiently exhibited.
  • the water absorption treatment conditions for achieving such a water absorption state are from the viewpoint of reducing deterioration (due to heat or oxidation) of the coexisting non-hydrolyzable polymer B, or industrial productivity (energy cost, reduction of required time, etc.). , low temperature and/or short duration.
  • the hydrolyzable polymer A is brought close to a saturated water absorption state by such a water absorption treatment.
  • water permeability and/or reactivity when the hydrolyzable polymer A forms a laminate with the non-hydrolyzable polymer B, which has low water permeability, the area that can be contacted with water is limited. , the hydrolysis of the hydrolyzable polymer A is suppressed.
  • a laminate with polyethylene (PE), polypropylene, etc. which is a non-hydrolyzable polymer B with low water permeability
  • PE polyethylene
  • polypropylene etc.
  • a structure sandwiched between non-hydrolyzable polymers B with low water permeability (“sandwich type”), for example, a three-layer structure of PE/hydrolyzable polymer A/PE (sometimes referred to as “B/A/B structure”). Therefore, water absorption or hydrolysis of the hydrolyzable polymer A is restricted except for the end faces.
  • mechanical treatment Therefore, by applying mechanical treatment (application of stress elements such as tension, bending, compression, shearing, for example, means such as tearing, piercing, cutting, polishing) to the hydrolyzable polymer A, scratches, perforations, Increasing the contact area with water such as the end face can improve the water absorption rate and the water absorption amount, and can further promote hydrolysis in the preheating treatment.
  • the mechanical treatment can be performed under appropriate conditions, and can also be performed before and/or simultaneously with the water absorption treatment described below. The purpose of this mechanical treatment is to increase the contact area with water in the stage of pre-heating treatment, which will be described later. For example, when starting from a mixture containing polyamides (e.g.
  • PA6 that tend to increase in toughness (softening) due to water absorption, it is more effective to apply mechanical treatment before excessively increasing the water absorption rate of the multilayer film. may injure the
  • a mechanical treatment to the mixture prior to the water absorption treatment described later, the mixture, usually the hydrolyzable polymer A, can be made easier to come into contact with water, and the hydrolysis of the hydrolyzable polymer A can be promoted.
  • Mechanical treatment is not particularly limited, but for example, a shredder or crusher may be used.
  • the "water penetration paths or hydrolysis reaction points such as scratches, perforations, and end faces” newly generated by mechanical treatment are newly added to the hydrolyzable polymer A. It is preferable to increase the exposed area (hereinafter referred to as "new exposed area"). Such a new exposed area can be calculated by multiplying the length of scratches, perforations, end faces, etc. in the surface direction of the mixture such as a multilayer film (peripheral length of the hole in the case of perforation) by the thickness.
  • the increase rate of the above "length of scratches, perforations, end faces, etc.” (hereinafter referred to as "end face increase rate”) can be used.
  • end face increase rate the increase rate of the above "length of scratches, perforations, end faces, etc.”
  • the end face increase magnification is normally 1.1 times or more, preferably 2 times or more, and more preferably 10 times or more. Such end face increase magnification is evaluated by observing and measuring selected representative points on a given sample, but if necessary, an average value obtained by evaluating a plurality of points may be adopted.
  • the water absorption treatment includes a method of exposing and retaining the mixture in an appropriate vessel in an atmosphere of liquid water or steam at an arbitrary temperature and pressure different from the hydrothermal reaction treatment. °C.
  • the lower limit temperature is preferably 20°C, more preferably 50°C. °C, more preferably 100°C.
  • the time of such water absorption treatment (average residence time in the case of continuous type) is usually 1 minute to 24 hours, but the mixture can be stored for a long period of time exceeding 24 hours in a storage tank such as a silo. In some cases, it is also possible to reach a sufficient water absorption state in such a storage tank.
  • the lower limit of the water absorption treatment time depends on the shape and size of the mixture, but is preferably 5 minutes, more preferably 10 minutes in terms of ensuring an effective water absorption rate, and the upper limit is the coexisting non-hydrolyzable It is preferably 18 hours, more preferably 12 hours, from the viewpoint of reducing deterioration of polymer B (due to heat or oxidation) or industrial productivity.
  • water absorption treatment when exposed to water, it is preferable to immerse the mixture in water. A relative humidity of 100% is most preferred when exposed to water (water vapor).
  • the amount of water used when exposing to liquid water, the amount of water used must be such that the hydrolyzable polymer A contained in the mixture to be treated reaches a saturated water absorption state.
  • an excess amount of water is usually used with respect to the number of moles concerned.
  • water with a mass of 0.5 to 100 times the mass of the hydrolyzable polymer A, and in terms of industrial processes such as transportability and transferability of the object to be treated (e.g., water slurry)
  • the lower limit is preferably 1-fold, more preferably 5-fold, while the upper limit is preferably 50-fold from the viewpoint of economic rationality to minimize the amount of water used. , and more preferably 10 times.
  • the water-absorbing mixture means that the hydrolyzable polymer A is in a water-absorbing state.
  • the water absorption amount is preferably such that the hydrolyzable polymer A is allowed to absorb water up to a known saturated water absorption rate in water.
  • Such saturated water absorption in water varies depending on the measurement conditions (sample shape, sample molding conditions, water temperature, etc.), but as a representative value for various polymers by general molding methods such as injection molding and film molding, PA6 is 10 to 11% by mass, 8 to 10% by mass of PA66, 11 to 12% by mass of PA6/66 copolymer, 6 to 10% by mass of PAMXD6, 0.4 to 0.6% by mass of PET, and 0% of PBT 4 to 0.6% by mass, and in fact, saturated water absorption samples of various polymers in Examples described later are at the level of such representative values.
  • the water absorption is most preferably the saturated water absorption of the hydrolyzable polymer A, but it varies depending on the type of the hydrolyzable polymer A, the temperature, etc., and cannot be generalized. is preferred.
  • the apparatus for carrying out the water absorption treatment there is no restriction on the apparatus for carrying out the water absorption treatment, and either a batch system or a continuous system is possible.
  • the water absorption treatment is usually carried out as a pre-stage of the heating pretreatment. However, it is also possible to advance the water absorption to the stage of the pre-heating treatment. For example, as a means for raising the temperature in the pre-heating treatment, a process of pushing out the water absorption by introducing high-temperature steam into the apparatus can be mentioned.
  • heating pretreatment The mixture that has absorbed water as described above is heated before being subjected to hydrothermal reaction treatment (heating pretreatment).
  • This pre-heating treatment differs from the above-described hydrothermal reaction treatment in that the mixture in a water-absorbing state is heat-treated. That is, the purpose of the preheating treatment is to promote hydrolysis by the water taken into the hydrolyzable polymer A in the water absorption treatment, and an excessive amount (for example, relative to 100 parts by mass of the mixture) is used as in the hydrothermal reaction treatment. 100 parts by mass or more) of water and heating, but preferably the mixture in a water-absorbing state is heated as it is without being mixed with water.
  • the heat pretreatment it is preferable to select a condition and/or an apparatus that does not excessively desorb (dry) water from the water-absorbing mixture (hydrolyzable polymer A).
  • the hydrophilic chemical bond e.g., amide bond, ester bond
  • the effectiveness of the preheating treatment is affected by three factors: the water absorption rate of the hydrolyzable polymer A, reaction time and temperature. Therefore, equipment factors (eg, agitation) are incidental.
  • equipment factors eg, agitation
  • the temperature range for the pre-heating treatment is usually 120°C to 350°C, and the lower limit temperature is preferably 150°C, more preferably 200°C in terms of hydrolysis effect.
  • the upper limit temperature is preferably 300° C., more preferably the thermal mobility of the polymer chains of the hydrolyzable polymer A increases. It is a temperature condition near the softening point of the polymer (approximately 220° C. to 270° C., ie, a temperature range in which the main hydrolyzable polymer A such as polyester and polyamide can flow).
  • the time for the preheating treatment depends on the selection of the treatment temperature, but is usually 1 minute to 12 hours. It is 5 minutes, more preferably 10 minutes, and the upper limit is preferably 6 hours, more preferably 3 hours from the viewpoint of reducing deterioration of the coexisting non-hydrolyzable polymer B or industrial productivity. If the process design allows this pre-heating treatment to be carried out in a storage tank such as a silo for a long period of time exceeding 12 hours, it is also possible to carry out the treatment in such a storage tank. In the case of such long-term storage, it is preferable to select a relatively low temperature range from the viewpoints of reducing thermal deterioration of the non-hydrolyzable polymer B and energy costs.
  • the mixture that has undergone preheating treatment may be cooled once and taken out, or it may be added with necessary water or the like as it is and subjected to the above-mentioned hydrothermal reaction treatment continuously.
  • the hydrolysis of the hydrolyzable polymer A in the mixture to be hydrothermally treated is promoted, and the conditions for the subsequent hydrothermal reaction treatment are moderated. and the deterioration of the non-hydrolyzable polymer B can be suppressed. Also, it is possible to reduce the amount of water used in the hydrothermal reaction treatment described above.
  • Example 1 In a stainless steel reaction tube with an internal volume of 10 cm 3 , a pulverized sample of "a laminated film in which a polyethylene terephthalate resin layer with a thickness of 12 ⁇ m and a polyethylene (LDPE) resin layer with a thickness of 50 ⁇ m are laminated with a urethane adhesive", which is a waste plastic ( 0.5 g) and water (5 cm 3 ) were introduced and sealed.
  • This reaction tube was placed in a molten salt bath, and hydrothermal reaction treatment was performed at the reaction temperature and reaction time shown in Table 2.
  • the pulverized material was melted, the hydrolyzed component a of the hydrolyzed polymer was not precipitated, and the non-hydrolyzable polymer was separated from the aqueous phase in a molten state.
  • the reaction tube was cooled with water and the reactant was filtered.
  • the solid non-hydrolyzable polymer and hydrolyzed component a1 and the hydrolyzed component a2 dissolved in the aqueous phase were recovered.
  • the solid non-hydrolyzable polymer and the hydrolyzable component a1 were not compatible with each other and could be easily separated.
  • the non-hydrolyzable polymer and hydrolyzable component a were identified by the following method and conditions.
  • the non-hydrolyzable polymer was polyethylene
  • hydrolyzable component a was terephthalic acid and ethylene glycol
  • hydrolyzable component a1 was terephthalic acid
  • hydrolyzable component a2 was ethylene glycol.
  • Hydrolyzed component a1 was dissolved in methanol, and when HPLC was measured under the following conditions, the retention time coincided with the retention time of terephthalic acid estimated as component a1, so component a1 was identified as terephthalic acid.
  • HPLC device Prominence-i LC-2030C (manufactured by Shimadzu Corporation) Column: ODS-100V (5 ⁇ m, 4.6 mmID ⁇ 150 mm) (manufactured by Tosoh) Column Thermostat: 30° C.
  • the amount of polyethylene terephthalate contained in the polyethylene terephthalate resin layer was calculated by the following method.
  • the polyethylene terephthalate resin layer used has a purity of 99.9% or higher.
  • Silica filler is contained as an impurity for anti-blocking effect, but polyethylene terephthalate, which was introduced as an impurity in this study, was regarded as having a purity of 100%.
  • the recovery rate (mol%) of the hydrolyzed component was calculated when the calculated amount of polyethylene terephthalate was taken as 100 mol%.
  • Non-hydrolyzable polymers were identified by DSC and NMR.
  • High-temperature GPC device HLC-8321GPC/HT (manufactured by Tosoh Corporation, detector: RI)
  • Undegraded PET means PET that has not been hydrolyzed under the hydrothermal reaction treatment conditions.
  • Example 2 As a sample, pulverized material (0.5 g) of waste plastic "a laminated film in which a 15 ⁇ m-thick polyamide (nylon 6) resin layer and a 50 ⁇ m-thick polyethylene (LLDPE) resin layer are laminated with a urethane adhesive" was used.
  • the hydrothermal reaction treatment was performed in the same manner as in Example 1 except that the thermal reaction treatment conditions were set to the conditions shown in Table 4 below, and the solid non-hydrolyzable polymer and the water dissolved in the aqueous phase were A decomposition component a3 was recovered.
  • the pulverized material was melted and the non-hydrolyzable polymer was separated from the aqueous phase in a molten state.
  • the non-hydrolyzable polymer was polyethylene and the hydrolyzable component a3 was ⁇ -caprolactam.
  • the recovery rate and average molecular weight retention rate were calculated in the same manner as in Example 1.
  • the recovered hydrolyzed component a3 was dissolved in methanol, measured by HPLC under the following method and conditions, identified by coincidence of retention times, and the recovery rate was calculated according to the following method and conditions. Table 4 shows the results obtained.
  • HPLC device 1200 (manufactured by Agilent Technologies)
  • Column constant temperature bath 35°C
  • Gradient conditions shown in Table 3 below.
  • Flow rate 0.4 mL/min Detector: UV detector Wavelength: 210 nm
  • polyamide (nylon 6) was first calculated by the following method and conditions.
  • the polyamide (nylon 6) resin layer used has a purity of 99.9% or more. Silica filler is contained as an impurity for anti-blocking effect, but the nylon (polyamide 6) introduced as an impurity in this study was assumed to have a purity of 100%.
  • the recovery rate of the hydrolyzed component a3 was calculated by the following method when the calculated amount of nylon (polyamide 6) was taken as 100 mol %. (Method) The recovery rate was calculated from the total mass of the hydrolyzed component a3 contained in the aqueous phase recovered by the hydrothermal treatment.
  • Undegraded Ny means nylon 6 that has not been hydrolyzed under the hydrothermal reaction treatment conditions.
  • Example 3 Pellets (0.5 g) of "polyamide (nylon 6) or polyethylene (LDPE)" as a sample and water (5 cm 3 ) were introduced into a reaction tube having an internal volume of 10 cm 3 and sealed. This reaction tube was placed in a molten salt bath, and hydrothermal reaction treatment was performed at the reaction temperature and reaction time shown in Table 5. In this hydrothermal treatment, the pulverized material melted and the non-hydrolyzable polymer separated from the aqueous phase in a molten state. After the hydrothermal reaction treatment, the reaction tube was cooled with water and the reactant was filtered.
  • the solid non-hydrolyzable polymer and the hydrolyzed component a3 dissolved in the aqueous phase were recovered.
  • the non-hydrolyzable polymer and hydrolyzable component a3 were identified by the following method and conditions.
  • the non-hydrolyzable polymer was polyethylene and the hydrolyzable component a3 was ⁇ -caprolactam.
  • the recovery rate and average molecular weight retention rate were calculated in the same manner as in Example 1.
  • the recovery rate of the recovered hydrolyzed component a3 was calculated in the same manner as in Example 2. Table 5 shows the results obtained.
  • hydrolyzed component a3 The hydrolyzed component a was dissolved in water, measured by HPLC under the following conditions, and identified by matching retention times.
  • LC device 1200 type manufactured by Agilent Technologies
  • MS device 6140 type manufactured by Agilent Technologies Column: Scherzo SW-C18 manufactured by Imtakt Column temperature: 35°C
  • Mobile phase A 0.01% formic acid aqueous solution
  • Example 4 In a reaction tube with an internal volume of 8 cm 3 , a multilayer film (polyamide content 29.4 mass% )”, in the same manner as in Example 3, under the hydrothermal treatment conditions shown in Table 6 below, a solid non-hydrolyzable polymer and a water phase The dissolved hydrolysis component a3 was recovered. In the hydrothermal treatment, the pulverized material was melted and the non-hydrolyzable polymer was separated from the aqueous phase in a molten state. When the recovered non-hydrolyzable polymer and the hydrolyzable component a3 were identified, the non-hydrolyzable polymer was polyethylene and the hydrolyzable component a3 was ⁇ -caprolactam. The recovery rate and average molecular weight retention rate of the non-hydrolyzable polymer were calculated, the hydrolyzable component a3 was identified, and its recovery rate was calculated. Table 6 shows the results obtained.
  • hydrolyzed component a3 was dissolved in water, measured by HPLC under the following conditions, and identified by matching retention times.
  • LCMS device LCMS2020 type manufactured by Shimadzu Corporation Column: ODP-40 4E manufactured by SHODEX Column temperature: 40°C Mobile phase A: 0.1% formic acid aqueous solution Mobile phase B: acetonitrile Detector: PDA, MS Ionization method, polarity: electrospray ionization (ESI), positive
  • GPC weight average molecular weight
  • High-temperature GPC device HLC-8321GPC/HT (manufactured by Tosoh Corporation, detector: RI)
  • Eluent o-dichlorobenzene
  • Flow rate 1.0 mL/min
  • Column temperature 145°C
  • Sample concentration 0.1 wt/vol%
  • Calibration curve Approximate curve using standard polystyrene.
  • Example 5 In the same manner as in Example 3, except that pellets (0.5 g) of "polyamide (nylon 6/66) or polyethylene (LDPE)" were used as samples, under the hydrothermal reaction treatment conditions shown in Table 7 below, A solid non-hydrolyzable polymer and a hydrolyzed component a dissolved in the aqueous phase were recovered. In the hydrothermal treatment, the pulverized material was melted and the non-hydrolyzable polymer was separated from the aqueous phase in a molten state.
  • the non-hydrolyzable polymer was polyethylene and the hydrolyzable component a was ⁇ -caprolactam.
  • the recovery rate of the non-hydrolyzable polymer and the average molecular weight retention rate were calculated, and the recovery rate of the hydrolyzable component a was calculated and shown in Table 7.
  • Example 6 In the same manner as in Example 3, except that the hydrothermal reaction treatment conditions were changed to the hydrothermal reaction treatment conditions shown in Table 8 below, the solid non-hydrolyzable polymer and the hydrolyzate dissolved in the aqueous phase Component a was recovered. As shown in Table 8 below, the recovered non-hydrolyzable polymer has a weight-average molecular weight retention rate of less than 80% at 350° C. under hydrothermal reaction treatment conditions, indicating that the weight-average molecular weight prior to hydrothermal treatment cannot be maintained. rice field.
  • Example 7 In the same manner as in Example 5, except that the hydrothermal reaction treatment conditions were changed to the hydrothermal reaction treatment conditions shown in Table 9 below, the solid non-hydrolyzable polymer and the hydrolyzate dissolved in the aqueous phase Component a was recovered. As shown in Table 9 below, the recovered non-hydrolyzable polymer had a weight-average molecular weight retention rate of less than 80% at 350° C. under the hydrothermal reaction treatment conditions, indicating that the weight-average molecular weight prior to the hydrothermal treatment could not be maintained. rice field.
  • Example 8 In Example 8, hydrolysis conditions were further investigated using the "polyethylene terephthalate resin layer" separated from the pulverized product used in Example 1. That is, in Example 1, the above “polyethylene terephthalate resin layer” was used, and the “polyethylene terephthalate resin layer ” was subjected to hydrothermal reaction treatment (hydrolysis), and the recovery rates of terephthalic acid and ethylene glycol were calculated. Table 10 shows the results. As shown in Table 10, it can be seen that as the reaction time becomes higher, terephthalic acid and ethylene glycol can be recovered at relatively high recovery rates even if the reaction time is shortened.
  • Example 9 hydrolysis conditions were further investigated using the "polyamide (nylon 6) resin layer" separated from the pulverized material used in Example 2. That is, in Example 2, the above “polyamide (nylon 6) resin layer” was used, and the hydrothermal reaction treatment conditions were changed to the conditions shown in Table 11 below. (Nylon 6) resin layer” was subjected to hydrothermal reaction treatment (hydrolysis), and the recovery rate of ⁇ -caprolactam was calculated. The results are shown in Table 11. As shown in Table 11, as the reaction time becomes higher, ⁇ -caprolactam can be recovered at a relatively high recovery rate even if the reaction time is shortened.
  • Example 10 the "polyethylene (LLDPE) resin layer" separated from the pulverized material used in Example 2 was used to further examine the average molecular weight retention rate. That is, in Example 2, the above “polyethylene (LLDPE) resin layer” was used, and the hydrothermal reaction treatment conditions were changed to the conditions shown in Table 12 below. LLDPE) resin layer” was subjected to hydrothermal reaction treatment (hydrolysis), and the average molecular weight retention rate of polyethylene was calculated. The results are shown in Table 12. As shown in Table 12, it can be seen that the shorter the reaction time of the hydrothermal reaction treatment, the higher the average molecular weight retention rate of polyethylene.
  • Example 11 the "polyethylene terephthalate resin layer" peeled off from the pulverized product used in Example 1 was subjected to a hydrothermal reaction treatment in the presence of an acid or base, and the recovery rate of ethylene glycol was examined. That is, in Example 1, the "polyethylene terephthalate resin layer” was subjected to hydrothermal reaction treatment shown in Table 13 below in pure water, 0.1 mass% HNO3 aqueous solution, or 0.1 mass% NH3 aqueous solution.
  • the "polyethylene terephthalate resin layer” was subjected to hydrothermal reaction treatment (hydrolysis) in the same manner as in Example 1, except that the hydrothermal reaction treatment was performed under the conditions, and the recovery rate of ethylene glycol was calculated.
  • the results are shown in Table 13. As shown in Table 13, it can be seen that the recovery of ethylene glycol is improved when the hydrothermal reaction treatment is performed in the presence of an acid or base, preferably in the presence of a base.
  • Example 12 the "polyethylene (LDPE) resin layer” and “polyethylene (LLDPE) resin layer” peeled from the pulverized material used in Examples 1 and 2 were used in an atmospheric environment or a nitrogen gas environment. A hydrothermal reaction treatment was performed, and the maintenance rate of the number average molecular weight was examined. That is, after allowing water to stand overnight in a glove box in a nitrogen gas atmosphere, each resin layer (0.5 g) and (5 cm 3 ) were introduced into a reaction tube (inner volume: 10 cm 3 ) in the glove box. , was purged with nitrogen gas. In addition, when performing under an atmospheric environment, purging of nitrogen gas was omitted.
  • LDPE low density polyethylene
  • LLDPE polyethylene
  • This reaction tube was placed in a molten salt bath, and hydrothermal reaction treatment was performed at the reaction temperature and reaction time shown in Table 14. After the hydrothermal reaction treatment, the reaction tube was cooled with water and the treated product was filtered (solid-liquid separation) to obtain a solid. The number average molecular weight of this solid was measured in the same manner as ⁇ measurement of average molecular weight retention rate of recovered non-hydrolyzable polymer> in Example 1, and the average molecular weight retention rate was calculated. The results are shown in Table 14. As shown in Table 14, it can be seen that the molecular weight retention rate of the recovered polyethylene can be further increased by performing the hydrothermal reaction treatment in the absence of oxygen gas such as nitrogen gas.
  • Example 13 In Example 13, the "polypropylene resin layer" was used, hydrothermal reaction treatment was performed in a nitrogen gas environment, and the maintenance rate of the number average molecular weight was examined. That is, after allowing water to stand overnight in a glove box in a nitrogen gas atmosphere, hydrothermally treated CPP (unstretched polypropylene) or OPP (biaxially stretched polypropylene) was added to a reaction tube (with an internal volume of 10 cm 3 ) in the glove box. 0.5 g each and 5 cm 3 of water were introduced and purged with nitrogen gas. This reaction tube was placed in a molten salt bath, and hydrothermal reaction treatment was performed at the reaction temperature and reaction time shown in Table 15.
  • CPP unstretched polypropylene
  • OPP biaxially stretched polypropylene
  • Example 14 As a sample, pulverized material (0.5 g) of "multilayer film (polyamide content 25.2% by mass) formed by laminating a polyamide (nylon 6) resin layer, a polyethylene (LDPE) resin layer and an adhesive layer" which is a waste plastic. A solid non-hydrolyzable polymer and a hydrolyzable component a3 dissolved in the aqueous phase were recovered under the hydrothermal reaction treatment conditions shown in Table 16 below in the same manner as in Example 3, except that they were used. . In the hydrothermal treatment, the pulverized material was melted and the non-hydrolyzable polymer was separated from the aqueous phase in a molten state.
  • the non-hydrolyzable polymer was polyethylene and the hydrolyzable component a3 was ⁇ -caprolactam.
  • the hydrolyzed component a3 was identified and its recovery rate was calculated. The results obtained are shown in Table 16.
  • hydrolyzed component a3 was dissolved in water, measured by HPLC under the following conditions, and identified by matching retention times.
  • LC device 1200 type manufactured by Agilent Technologies
  • MS device 6140 type manufactured by Agilent Technologies
  • Column Scherzo SW-C18 manufactured by Imtakt Column temperature: 35°C
  • Mobile phase A 0.01% formic acid aqueous solution
  • Detector PDA, MS Ionization method, polarity: electrospray ionization (ESI), positive
  • Example 15 In a reaction tube with an internal volume of 10 cm 3 , a multilayer film (polyamide content 24.7 mass% )”, in the same manner as in Example 4, under the hydrothermal treatment conditions shown in Table 17 below, a solid non-hydrolyzable polymer and a water phase The dissolved hydrolysis component a3 was recovered. In the hydrothermal treatment, the pulverized material was melted and the non-hydrolyzable polymer was separated from the aqueous phase in a molten state. When the recovered non-hydrolyzable polymer and the hydrolyzable component a3 were identified, the non-hydrolyzable polymer was polyethylene and the hydrolyzable component a3 was ⁇ -caprolactam. The hydrolyzed component a3 was identified and its recovery rate was calculated. The results obtained are shown in Table 17.
  • hydrolyzed component a3 was dissolved in water, measured by HPLC under the following conditions, and identified by matching retention times.
  • LC device 1200 type manufactured by Agilent Technologies
  • MS device 6140 type manufactured by Agilent Technologies
  • Column Scherzo SW-C18 manufactured by Imtakt Column temperature: 35°C
  • Mobile phase A 0.01% formic acid aqueous solution
  • Detector PDA, MS Ionization method, polarity: electrospray ionization (ESI), positive
  • Example 16 a hydrothermal reaction was performed using a pulverized product of "multilayer film (polyamide content: 25.2% by mass) formed by laminating a polyamide (nylon 6) resin layer, a polyethylene (LDPE) resin layer, and an adhesive layer.” The amount of water for treatment conditions was examined. That is, in Example 3, the above “multilayer film formed by laminating a polyamide (nylon 6) resin layer, a polyethylene (LDPE) resin layer, and an adhesive layer” was used, and the hydrothermal reaction treatment conditions were as shown in Table 18 below.
  • a solid non-hydrolyzable polymer and a hydrolyzable component a3 dissolved in the aqueous phase were recovered in the same manner as in Example 3, except that it was changed to .
  • the pulverized material was melted and the non-hydrolyzable polymer was separated from the aqueous phase in a molten state.
  • the non-hydrolyzable polymer was polyethylene and the hydrolyzable component a3 was ⁇ -caprolactam.
  • the hydrolyzed component a3 was identified and its recovery rate was calculated. The results obtained are shown in Table 18.
  • the “mass ratio of water added” in Table 18 indicates the mass ratio of water used per unit mass of the multilayer film used in the hydrothermal reaction treatment step.
  • the amount of water used with respect to 100 parts by mass of the multilayer film is the value obtained by multiplying the numerical value of the "water content ratio" by 100.
  • hydrolyzed component a3 was dissolved in water, measured by HPLC under the following conditions, and identified by matching retention times.
  • LC device 1200 type manufactured by Agilent Technologies
  • MS device 6140 type manufactured by Agilent Technologies
  • Column Scherzo SW-C18 manufactured by Imtakt Column temperature: 35°C
  • Mobile phase A 0.01% formic acid aqueous solution
  • Detector PDA, MS Ionization method, polarity: electrospray ionization (ESI), positive
  • Example 17 a pulverized product of a "multilayer film (polyamide content: 24.7% by mass) formed by laminating a polyamide (nylon 6/66) resin layer, a polyethylene (LDPE) resin layer, and an adhesive layer" was used.
  • the amount of water for thermal reaction treatment conditions was investigated. That is, in Example 4, using the "multilayer film formed by laminating a polyamide (nylon 6/66) resin layer, a polyethylene (LDPE) resin layer, and an adhesive layer", the hydrothermal reaction treatment conditions are shown in Table 19 below.
  • a solid non-hydrolyzable polymer and a hydrolyzed component a3 dissolved in the aqueous phase were recovered in the same manner as in Example 4, except that the conditions were changed as shown.
  • the pulverized material was melted and the non-hydrolyzable polymer was separated from the aqueous phase in a molten state.
  • the non-hydrolyzable polymer was polyethylene and the hydrolyzable component a3 was ⁇ -caprolactam.
  • the hydrolyzed component a3 was identified and its recovery rate was calculated. The results obtained are shown in Table 19.
  • hydrolyzed component a3 was dissolved in water, measured by HPLC under the following conditions, and identified by matching retention times.
  • LC device 1200 type manufactured by Agilent Technologies
  • MS device 6140 type manufactured by Agilent Technologies
  • Column Scherzo SW-C18 manufactured by Imtakt Column temperature: 35°C
  • Mobile phase A 0.01% formic acid aqueous solution
  • Detector PDA, MS Ionization method, polarity: electrospray ionization (ESI), positive
  • Example 18 In Example 18, a hydrothermal reaction was carried out using a pulverized product of "multilayer film (polyamide content: 25.2% by mass) formed by laminating a polyamide (nylon 6) resin layer, a polyethylene (LDPE) resin layer, and an adhesive layer.” The effects of raw material shape on processing conditions were investigated.
  • the pulverized material was melted and the non-hydrolyzable polymer was separated from the aqueous phase in a molten state.
  • the non-hydrolyzable polymer was polyethylene and the hydrolyzable component a3 was ⁇ -caprolactam.
  • the hydrolyzed component a3 was identified and its recovery rate was calculated. The results obtained are shown in Table 20.
  • hydrolyzed component a3 was dissolved in water, measured by HPLC under the following conditions, and identified by matching retention times.
  • LC device 1200 type manufactured by Agilent Technologies
  • MS device 6140 type manufactured by Agilent Technologies
  • Column Scherzo SW-C18 manufactured by Imtakt Column temperature: 35°C
  • Mobile phase A 0.01% formic acid aqueous solution
  • Detector PDA, MS Ionization method, polarity: electrospray ionization (ESI), positive
  • Example 19 a pulverized product of a "multilayer film (polyamide content: 24.7% by mass) formed by laminating a polyamide (nylon 6/66) resin layer, a polyethylene (LDPE) resin layer, and an adhesive layer" was used. The effect of raw material shape on thermal reaction treatment conditions was investigated.
  • the above “multilayer film formed by laminating a polyamide (nylon 6/66) resin layer, a polyethylene (LDPE) resin layer and an adhesive layer” (0.5 g, of the size shown in the "raw material shape” column in Table 21)
  • the hydrothermal reaction treatment was performed under the hydrothermal reaction treatment conditions shown in Table 21 below in the same manner as in Example 3, except that water (5 cm 3 ) was used and water (5 cm 3 ) was used to obtain a solid non-hydrothermal reaction treatment.
  • a hydrolyzable polymer and a hydrolyzed component a3 dissolved in the aqueous phase were recovered.
  • the pulverized material was melted and the non-hydrolyzable polymer was separated from the aqueous phase in a molten state.
  • the non-hydrolyzable polymer was polyethylene and the hydrolyzable component a3 was ⁇ -caprolactam.
  • the hydrolyzed component a3 was identified and its recovery rate was calculated. The results obtained are shown in Table 21.
  • hydrolyzed component a3 was dissolved in water, measured by HPLC under the following conditions, and identified by matching retention times.
  • LC device 1200 type manufactured by Agilent Technologies
  • MS device 6140 type manufactured by Agilent Technologies
  • Column Scherzo SW-C18 manufactured by Imtakt Column temperature: 35°C
  • Mobile phase A 0.01% formic acid aqueous solution
  • Detector PDA, MS Ionization method, polarity: electrospray ionization (ESI), positive
  • the fragments subjected to the hydrothermal treatment retain their shape and are “cured” (specifically, As a result of the surfaces being fused to each other while maintaining the shape of the individual fragments, they were fused together into a large mass with gaps).
  • the hydrothermal treatment here was a stationary condition in which stirring was not intentionally performed, so viscous flow due to its own weight did not actually occur (thermal "settling” did not occur)
  • High viscosity state was presumed to be due to the retention of
  • the plating layer was mostly adhered to the polymer, but it was in a state where it was easily peeled off when scratched with the tip of a fingernail.
  • the plating layer can be peeled off by hydrothermal treatment at a temperature condition substantially below the softening point where viscous flow under its own weight does not actually occur. ) can be chemically recycled.
  • the hydrothermal reaction treatment is performed under the conditions included in each of the above-described regions as the hydrothermal reaction treatment conditions, for example, the quadrangular region with points A to D as vertices, the raw material compound of the hydrolyzable polymer A, Alternatively, the non-hydrolyzable polymer B having a high average molecular weight retention rate can be recycled at a high recycling rate.
  • Example A Experiment to verify effects of mechanical treatment, water absorption treatment and preheating treatment
  • the separation and recovery method shown in the following examples using the multilayer film having the above-mentioned B/A/B structure and the simple substance of various hydrolyzable polymers A
  • the water contained in the mixture subjected to the hydrothermal reaction treatment To effectively hydrolyze a degradable polymer (various types) in a heat pretreatment, and to make the non-hydrolyzable polymer B (typical example PE) suitable for material recycling without deteriorating due to the heat pretreatment. indicates The common operations are described below.
  • ⁇ Common operation (2) saturated water absorption treatment> While heating each absolute dry sample obtained by vacuum drying in boiling water of 10 times the mass under atmospheric pressure (only for the PE/PA6/PE three-layer film described later, the water temperature is was set at 90° C.) and gently stirred for a total of 24 hours. A sample obtained by heating in water for 24 hours is sometimes called a "saturated water absorption sample”. Water adhering to the surface of each saturated water absorption sample thus obtained was wiped off with a wiper, and the mass was quickly measured to calculate the water absorption (% by mass).
  • the heating container in which the sample is sealed is placed in a heating furnace that has reached the target temperature (either of 150 ° C, 200 ° C, 250 ° C and 300 ° C) (in the case of 300 ° C, a high temperature heating furnace, otherwise a forced circulation dryer ) was opened and left at rest for 1 hour. After cooling, the adhered water on the outside of the heating container was wiped off, and the adhered water was removed by vacuum drying at 40°C, and then the mass was measured. Immediately after opening the heating container under atmospheric pressure, it was sealed and the mass was measured again. There was no appreciable gas release). The package was opened again and the heat-treated sample was taken out. When the sample was melted, it sometimes adhered and remained on the inner wall of the container and could not be completely recovered.
  • the target temperature either of 150 ° C, 200 ° C, 250 ° C and 300 ° C
  • 300 ° C a high temperature heating furnace, otherwise a forced circulation dryer
  • Example A-3 the concentration was based on the calculated mass of the PA6 portion.
  • Sample injection volume 20 ⁇ L -
  • Sample pretreatment A sample was weighed, a predetermined amount of eluent was added, and the sample was allowed to stand overnight at room temperature for dissolution. After gently shaking, the mixture was filtered through a PTFE cartridge filter with a pore size of 0.45 ⁇ m. By visual observation, insoluble matter was confirmed only in the case of the "PE/PA6/PE three-layer film" of Example A-3 described later. It was believed that this was because the PE portion did not dissolve.
  • Calibration curve a three-dimensional approximate curve using standard PMMA (polymethyl methacrylate; manufactured by Agilent Technologies). Therefore, the value obtained by this is the PMMA equivalent molecular weight.
  • Example A-1 In Example A-1, the single PA6 pellets used in Example 3 were treated. Using this PA6 pellet as a starting sample, the common operations (1) to (3) were carried out. The water content at the saturated water absorption sample stage was 11.1% by mass. The treatment temperature in common operation (3) was three levels of 200° C. (Example A-1a), 250° C. (Example A-1b) and 300° C. (Example A-1c). The following molecular weight change rates of the product (water-decomposable polymer) by heat treatment at each temperature were 83%, 21% and 12%, respectively.
  • Molecular weight change rate (%) [MwA/MwF] x 100
  • MwF indicates the weight average molecular weight of the absolute dry hydrolyzable polymer
  • MwA indicates the weight average molecular weight of the product hydrolyzable polymer.
  • all the products were in the form of melted lumps. In the case of 200°C treatment, it retained toughness that does not break even if it is cut with scissors. The result was a product that was soft to cut and had lost the characteristic properties of the polymer). From the above observations and the results of molecular weight change rate (%), it was found that the molecular weight of PA6 in a saturated water absorption state decreased at 200°C or higher, and embrittlement and softening occurred at 250°C or higher.
  • the PA 6 layer in the multilayer film is made to absorb water in advance, it is possible to advance hydrolysis to some extent by preheating at a temperature of about 200 ° C. or higher, and about 250 ° C. It has been found that under the above temperature conditions, brittleness or softening is accompanied by deterioration in the adhesion between the layers of the multilayer film and the progress of peeling, so that the conditions for the subsequent hydrothermal reaction treatment can be made mild.
  • the reason why PA6 melted and became lumpy even when heated at 200 ° C., which is lower than the generally known melting point (about 230 ° C.), is that the low melting point fraction increases due to the decrease in molecular weight due to hydrolysis. Therefore, it was presumed that the apparent melting point of the entire sample decreased and the sample melted and flowed. It was considered that the hydrolysis reaction was accelerated by an effect similar to agitation due to the initiation of such flow.
  • Example A-2 is the same as Example A-1c except that the common operation (2) is not performed in Example A-1c (no saturated water absorption), PA6 pellets alone (absolutely dry state) are treated. performed as a target.
  • the molecular weight change rate after heating at 300° C. for 1 hour was 109%. Since the weight-average molecular weight does not decrease, it was confirmed that the molecular weight of PA6 is substantially retained even after heating at 300° C. for 1 hour in an absolutely dry state.
  • the weight average molecular weight Mw of PA6 alone in the absolute dry state increased slightly by heating at 300 ° C. for 1 hour, but this was due to the volatilization and/or molecular weight distribution of the low molecular weight components contained. It was speculated that the progress of a chemical reaction (eg, polymerization reaction, transamidation reaction) that changes the
  • Example A-3 is "a laminated film in which a 15 ⁇ m thick polyamide (nylon 6; abbreviated as PA6) resin layer and a 50 ⁇ m thick polyethylene (LLDPE) resin layer are laminated with a urethane adhesive" (PE/PA6/PE 3 layers (sometimes abbreviated as film) was processed.
  • PA6 polyamide
  • LLDPE polyethylene
  • PE/PA6/PE 3 layers sometimes abbreviated as film
  • the end face increase magnification was 3.5 times.
  • the common operations (1) to (3) were performed.
  • the water content at the saturated water absorption sample stage was 2.93% by mass.
  • the specific gravities of the PE and PA portions are 0.9 and 1.1, respectively, and that the PE portion does not absorb water, and using the thickness of each layer, the moisture content of the PA6 portion was calculated to be 11.7% by mass. Therefore, it was presumed that the PA6 portion here was in a state of water absorption equivalent to the measured value (11.1% by mass) in Example A-1.
  • the treatment temperature in common operation (3) was 200° C. (Example A-3a), 250° C.
  • Example A-3b Example A-3b and 300° C. (Example A-3c). All of the products of these three examples were lumps of fused films, and some parts tending to peel off (bubbles and unevenness thought to be caused by foaming, rough feeling, etc.) were observed here and there. This is presumed to be due to the weakened adhesion of the interface with PE due to self-destruction (brittleness, softening, or foaming) due to hydrolysis of PA6, which is the inner layer. More foaming (bubbles) was observed in the product treated at 250° C. (Example A-3b), and a slight amine odor was felt.
  • Example A-3c The product treated at 300°C (Example A-3c) was a soft, porous mass with increased opacity and an amine smell that could easily be broken by hand. , PA6 no longer had a polymeric property and became waxy, and as a result, the adhesion interface with PE was considered to be in a state where it was easily peeled off by an external force.
  • the GPC evaluation results show that the weight average molecular weight Mw of the PA6 portion is 65,000, 22,000, and 10,000 for each product treated at 200°C, 250°C, and 300°C, and the weight average molecular weight Mw of the PE portion is 200. and 52,000 and 51,000, respectively (the product processed at 300°C was not evaluated by GPC). From the above results, the PA6 portion showed the same molecular weight reduction behavior due to hydrolysis as in Example A-1 (heating of PA6 alone in a water-absorbing state), and under such heating conditions, the molecular weight of the PE portion did not decrease. was confirmed.
  • the caprolactam recovery rate depending on the shape (film cutout size) when the same PE/PA6/PE three-layer film was subjected to hydrothermal reaction treatment at 300 ° C. for 1 hour We obtained experimental results that a difference in That is, when the cut-out size of the film was 50 mm ⁇ 50 mm and 5 mm ⁇ 5 mm, the caprolactam recovery rates were 64% and 85%, respectively. This caprolactam recovery can be regarded as an index of the degree of hydrolysis.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PA6/66 nylon 6/66 copolymer
  • PAMXD6 polyamide obtained by polymerizing meta-xylene diamine and adipic acid
  • Example A-4 PET alone
  • Toyobo Ester (registered trademark) film E5102 (trade name, Toyobo Co., Ltd., PET film) (weight average molecular weight Mw in absolute dry sample state is 24,000) was used as a starting sample, and the same as in Example A-1.
  • An experimental operation was performed.
  • the water content at the saturated water absorption sample stage was 0.38% by mass.
  • the treatment temperature in the common operation (3) was two levels of 200°C and 250°C.
  • the weight average molecular weights Mw of the products obtained by heat treatment at each temperature were observed to be 19,000 and 0.81,000, respectively.
  • the 200° C. treatment gave a product that retained the original film shape and toughness, but the 250° C.
  • Example A-5 PBT alone
  • PBT manufactured by Mitsubishi Engineering-Plastics Co., Ltd. registered trademark “Novaduran”, grade name “5008”.
  • White pellets, weight average molecular weight Mw of absolute dry sample state is 24,000 was used as a starting sample.
  • An experimental procedure similar to that of Example A-4 was performed.
  • the water content at the saturated water absorption sample stage was 0.56% by mass.
  • the weight average molecular weight Mw of the heat-treated product was observed to be 21,000 at 200°C treatment and 14,000 at 250°C treatment. In the case of 200 ° C. treatment, the product retained the original pellet shape and toughness, but in the 250 ° C. treatment, it was a molten mass and gave a brittle product that cracked when cut with scissors. Consideration and speculation similar to -4 are possible.
  • Example A-6 PA6/66 alone
  • PA6/66 used in Example 5 (slightly transparent white pellet shape, weight average molecular weight Mw in absolute dry sample state is 85,000) was used as a starting sample, and the same as in Example A-4. was performed.
  • the water content at the saturated water absorption sample stage was 13.4% by mass.
  • the weight-average molecular weight Mw of the heat-treated product was observed to be 66,000 when treated at 200°C and 16,000 when treated at 250°C.
  • the 200° C. treatment gave a molten mass that retained its toughness
  • the 250° C. treatment gave a molten mass with increased opacity and a waxy product that could be cut softly when cut with scissors. Consideration and speculation similar to 4 are possible.
  • Example A-7 PAMXD6 alone
  • PAMXD6 manufactured by Mitsubishi Engineering-Plastics Co., Ltd. registered trademark “Renny”, grade name “6000”, slightly transparent white pellet shape, weight average molecular weight Mw of absolute dry sample state is 54,000
  • the water content at the saturated water absorption sample stage was 7.0% by mass.
  • the weight-average molecular weight Mw of the heat-treated product was observed to be 39,000 when treated at 200°C and 15,000 when treated at 250°C.
  • the product was a pellet-like (partially fused) product that maintained its toughness, but in the 250°C treatment, it became a molten lump with increased opacity, and it was brittle and cracked when cut with scissors. Consideration and speculation similar to those of Example A-4 are possible.
  • water absorption treatment and heat pretreatment of the mixture before hydrothermal reaction treatment maintain or improve the recovery rate of the hydrolyzable polymer A, and the average molecular weight retention rate of the non-hydrolyzable polymer B It can be seen that the conditions for the hydrothermal reaction treatment (specifically, lowering the treatment temperature) can be set without causing a decrease in the , and the hybrid recycling can be performed at a lower cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

加水分解性ポリマーAを主成分とする樹脂層1と、非加水分解性ポリマーBを主成分とする樹脂層2とを少なくとも含む混合体から、加水分解性ポリマーAの加水分解成分aと非加水分解性ポリマーBとを分離回収する方法であって、混合体を水熱反応処理に付して、加水分解性ポリマーAを加水分解して分離させるとともに、非加水分解性ポリマーBをその分子量を維持した状態で分離させる分解分離工程を有する、分離回収方法を提供する。

Description

樹脂混合体の分離回収方法
 本発明は、加水分解性ポリマーを含む樹脂層と非加水分解性ポリマーを含む樹脂層との樹脂混合体から加水分解性樹脂の加水分解成分と非加水分解性樹脂とを分離、回収する方法に関する。
 持続可能な社会の構築のために、炭素資源の徹底的な循環と地球環境の保全が求められており、廃棄されたプラスチック成形体等の廃プラスチックのリサイクル推進が1つの大きな課題となっている。
 廃プラスチックをリサイクルする技術として、例えば、多層プラスチック成形品と水とを高温で処理してプラスチック成形品を形成するポリマー又はその加水分解物を回収する技術が提案されている(例えば、特許文献1及び2参照。)。
特開平05-271328号公報 特開平11-323006号公報
 廃プラスチックのリサイクル技術において、多層構造からなるプラスチック成形品、中でも廃プラスチックとして大きな割合を占めるフィルム状の成形品(多層プラスチックフィルムともいう)に対して、ポリマー又はその原料化合物をそれぞれ回収することができると、リサイクル効率が向上して、炭素資源の徹底的な循環と地球環境の保全に資する。
 しかし、多層プラスチックフィルムの中でも特に異種材料で構成したもの(異種多層フィルムともいう)は、複数種のポリマー又はポリマー以外の材料(これも複数種があり得る)が共存しているため、層を構成するポリマーをそのままリサイクル(マテリアルリサイクルと呼ぶ場合がある。)するとともに、同時に別の層を構成するポリマーをその原料化合物にリサイクル(ケミカルリサイクルと呼ぶ場合がある。)すること(以下、ハイブリッドリサイクル法と呼ぶ場合がある。)は、高難度であり、リサイクル効率が低くなる。また、かかる場合、複雑なリサイクル工程や雑多な化学成分との接触を経て回収したポリマーは、回収前のポリマー(層を構成しているポリマー)に対して、その特性(分子量分布等)が変化して、フィルム等の成形材料として再利用できず、再利用可能であってもその用途は限られる可能性が高い。そのため、このような異種多層フィルムのリサイクルは、ハイブリッドリサイクル法よりも燃焼によるサーマルリサイクルへの依存が大きくなっており、ハイブリッドリサイクル法の技術的な確立が望まれている。
 本発明は、加水分解性ポリマーを含む樹脂層と非加水分解性ポリマーを含む樹脂層とを含む樹脂混合体から、加水分解性ポリマーをその原料化合物として、また非加水分解性ポリマーを分子量分布の変化等の特性変化を抑えたポリマーとして、同時に分離、回収する方法を提供することを、課題とする。更に、本発明は、樹脂混合体から加水分解性ポリマーの原料化合物及び非加水分解性ポリマーを、高いリサイクル効率で同時に分離、回収する方法を提供することを、課題とする。
 本発明において、「同時に」とは、1回の水熱反応処理の実施により、加水分解性ポリマー(加水分解成分)と非加水分解性ポリマーBとを互いに分離して両者を回収すること(ハイブリッドリサイクルを可能とすること)を意味し、時間的に両者を同時に取り上げることを意味するものではない。
 本発明の課題は以下の手段によって達成された。
<1>加水分解性ポリマーAを主成分とする樹脂層1と、非加水分解性ポリマーBを主成分とする樹脂層2とを少なくとも含む混合体から、加水分解性ポリマーAの少なくとも1つの加水分解成分aと非加水分解性ポリマーBとを分離回収する方法であって、
 前記混合体を水熱反応処理に付して、前記混合体中の前記加水分解性ポリマーAを加水分解して分離させるとともに、前記混合体中の前記非加水分解性ポリマーBをその分子量を維持した状態で分離させる分解分離工程を有する、分離回収方法。
<2>前記水熱反応処理を、101kPa(1atm)以上の圧力下において、処理時間(分)をx軸、処理温度(℃)をy軸とする直交座標系において、点A1(1,390)、点2(1,250)、点3(60,250)及び点4(60,375)を頂点とする四角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間で行う、<1>に記載の分離回収方法。
<3>前記水熱反応処理を、101kPa(1atm)以上の圧力下において、処理時間(分)をx軸、処理温度(℃)をy軸とする直交座標系において、点A(1,375)、点B(1,325)、点C(60,275)及び点D(60,300)を頂点とする四角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間で行う、<1>又は<2>に記載の分離回収方法。
<4>前記加水分解性ポリマーAの加水分解成分aを水相に移行させる、<1>~<3>のいずれか1項に記載の分離回収方法。
<5>前記非加水分解性ポリマーBを水相から分離する、<1>~<4>のいずれか1項に記載の分離回収方法。
<6>前記水熱反応処理に付す混合体を、その溶融物から固体成分を除去して得る、<1>~<5>のいずれか1項に記載の分離回収方法。
<7>溶融状態で分離させた前記非加水分解性ポリマーBが前記水熱反応処理前の非加水分解性ポリマーBの平均分子量に対して少なくとも0.7倍の平均分子量を有している、<1>~<6>いずれか1項に記載の分離回収方法。
<8>前記加水分解成分aが、テレフタル酸、2,6-ナフタレンジカルボン酸、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、テトラヒドロフラン、アミノカプロン酸、ε-カプロラクタム、ヘキサメチレンジアミン及びアジピン酸、並びにこれらの誘導体からなる群から選択される1種又は2種以上の成分を含む、<1>~<7>のいずれか1項に記載の分離回収方法。
<9>前記非加水分解性ポリマーBがポリエチレン、ポリプロピレン及びポリスチレンからなる群から選択される1種又は2種以上のポリマーである、<1>~<8>のいずれか1項に記載の分離回収方法。
<10>前記混合体が積層体である、<1>~<9>のいずれか1項に記載の分離回収方法。
<11>前記積層体が前記樹脂層1及び前記樹脂層2の少なくとも一方を2層以上有する、<10>に記載の分離回収方法。
<12>前記積層体が被覆層C及び接着層Dの少なくとも一方を有する、<10>又は<11>に記載の分離回収方法。
<13>前記樹脂層1に含まれる前記加水分解性ポリマーAを100%としたとき、70%以上のモル割合で前記加水分解成分aを回収する<1>~<12>のいずれか1項に記載の分離回収方法。
<14>吸水処理した前記水熱反応処理に付す前記混合体を加熱前処理する<1>~<13>のいずれか1項に記載の分離回収方法。
<15>前記加熱前処理を200~300℃の温度範囲で行う<14>に記載の分離回収方法。
<16>前記吸水処理に付す前記混合体に機械的処理を加える<14>又は<15>に記載の分離回収方法。
 本発明の分離回収方法は、加水分解性ポリマーを含む樹脂層と非加水分解性ポリマーを含む樹脂層とを含む樹脂混合体から、加水分解性ポリマーをその原料化合物(加水分解成分)として、また非加水分解性ポリマーを重量分子量の変化を抑えたポリマーとして、同時に、分離、回収することができる。
図1は、本発明の分解分離工程における好ましい水熱反応処理条件の領域を示す図である。 本発明の上記及び他の特徴及び利点は、適宜に添付の図面を参照して、下記の記載からより明らかになるであろう。
 本発明において、加水分解性ポリマーとは、ポリマーを構成する構成原料化合物の結合が加水分解可能な結合を介して構成されたポリマー(ポリマーの主鎖が加水分解可能)であり、本発明の分解分離工程(水熱反応処理)において、ポリマーがその構成原料化合物の化学的性質に起因して加水分解を受けるポリマーをいう。一方、非加水分解性ポリマーとは、ポリマーを構成する構成原料化合物の結合が加水分解されない若しくは加水分解されにくい結合を介して構成されたポリマーであり、本発明の分解分離工程において、ポリマーがその構成原料化合物に加水分解されない若しくは加水分解されにくいポリマー、具体的な代表例としては高分子主鎖(連結鎖)の化学構造が実質的に炭素原子だけで構成されているポリマーをいう。
 本発明において、特定のポリマーを主成分とする樹脂層とはポリマー成分のうち特定のポリマーを最大含有量成分として含有する樹脂層をいう。
 本発明において、ポリマーは重合体そのもの(添加剤を一切混合していない状態)を意味する用語として用いる。また、ポリマー組成物は、ポリマーに対して、適宜に任意成分(添加剤)を含有させた組成物を意味する。樹脂はポリマー組成物と同じ意味を有する用語として用いる。
 本発明において、「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
[本発明の分離回収方法]
<混合体>
 本発明の分離回収方法は、加水分解性ポリマーAを主成分とする樹脂層1と、非加水分解性ポリマーBを主成分とする樹脂層2とを少なくとも含む混合体を、処理対象とする。この混合体は、少なくとも、加水分解性ポリマーAを含む樹脂層1と非加水分解性ポリマーBを含む樹脂層2とを含むため、樹脂混合体又は異種樹脂混合体ともいう。
 混合体は、樹脂層1と樹脂層2とを含む混合物であればよく、例えば、互いに積層されていない樹脂層1及び樹脂層2同士の単純混合物、樹脂層1と樹脂層2との積層体、更には単純混合物と積層体との混合物等が挙げられる。混合体としては、積層体(積層フィルム)を用いることができ、この場合、廃プラスチックとして大量に廃棄される多層プラスチックフィルム、特に異種多層フィルムを適用できる。混合体の形態(形状)は、特に制限されず、上記混合物や積層体のまま用いることができるが、水熱反応処理において速やかに溶融する点、溶融後の水の中でのポリマーの塊の大きさ(分散径ともいう)を小さくする点、更に吸水処理における吸水速度の向上の点で、破砕物(粉砕物、解砕物、切り出し品)、微細な粉末(顆粒)状物が好ましい。このときの破砕物等のサイズは、上記点を考慮して、例えば水熱反応処理において溶融した後の水の中でのポリマーの分散径を小さくするように、適宜に決定される。
 混合物の破砕物(粉砕物、解砕物、切り出し品)のサイズとしては、給水処理時の加水分解性ポリマーAの水との接触面積の向上の観点と水熱処理時の加水分解性ポリマーAの溶融後の分散径を小さくする観点から、小さい方が好ましい。混合物がフィルムの場合、例えば、50mm以下×50mm以下の切り出し品が好ましく、5mm以下×5mm以下の切り出し品がより好ましい。
 混合体、特に積層体における樹脂層1及び樹脂層2は、それぞれ、単層でも2層以上でもよい。
 混合体における、樹脂層1と樹脂層2との混合割合(質量比)は、特に制限されず、適宜に設定できるが、例えば、樹脂層1:樹脂層2=1:0.1~1:10(質量比)とすることができる。
 混合体における樹脂層1は、主成分として加水分解性ポリマーAを1種又は2種以上含有している。加水分解性ポリマーとしては、縮合系ポリマーが挙げられる。縮合系ポリマーとは、重合反応原料となるモノマーから水分子やアルコール分子等の低分子量分子が脱離する重縮合により生成するポリマーである。例えば、ポリエステル類、ポリカーボネート類、ポリアミド(本発明ではPAと略記する場合がある)類(本発明では、便宜上、重縮合ではなくε-カプロラクタムの開環重合で生成するナイロン6等の開環重合ポリアミド類をここに包含する。)、ポリアセタール類、ポリエーテル類が挙げられる。なお、本発明においては、重縮合ではない反応様式(例えば開環重合)で生成する場合であっても、上記例示のポリマー類であれば、便宜的に、ここに包含する。更に具体的に以下例示する。
 ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレフタレート(PEN)、ポリブチレンナフタレート(PBN)、ビスフェノールAを主原料とするポリカーボネート(PC)等のエステル結合(-COO-)を高分子主鎖の繰り返し単位に有する高分子;ナイロン6(PA6)、ナイロン66(PA66)、ナイロン6/66(PA6/66)、ナイロン12(PA12)、ヘキサメチレンジアミン等の脂肪族ジアミンとフタル酸類(テレフタル酸やイソフタル酸)等の芳香族ジカルボン酸を主原料とするポリアミド、更には、メタキシレンジアミン(MXD)等の芳香族ジアミンとアジピン酸等の脂肪族ジカルボン酸を主原料とするポリアミド(代表例:PAMXD6)等のポリアミドポリマー;ポリオキシメチレンポリマー(POM、別称はポリアセタールポリマー)、ポリフェニレンエーテルポリマー(PPE)及びそのポリマーアロイ変性品(変性PPE;代表例はPPEとポリスチレンのポリマーアロイ)等が挙げられる。中でも、汎用性と工業的な使用数量の点で、PET及びPA6は多層フィルムの構成ポリマーとして重要であり、5大汎用エンジニアリングプラスチックであるPC、PBT、POM、PPE及び各種PAは耐熱性や機械的強度の点で自動車部品、電気機器(例:家電、パソコン)や携帯通信端末のプラスチック部品等において重要であるので、これらのポリマーが使用された熱可塑性樹脂成形体に対して本発明は好適に適用される。
 混合体における樹脂層2は、主成分として非加水分解性ポリマーBを1種又は2種以上含有している。非加水分解性ポリマーBとしては、非縮合系ポリマーが挙げられる。非縮合系ポリマーとは、付加重合、配位重合、メタセシス重合等により合成される高分子主鎖骨格が炭素原子のみで構成されるポリマーをいい、ビニル系ポリマーやシクロオレフィンポリマーと呼ばれるものを包含する。例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィンポリマー(PO);ポリスチレン(PS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、アクリロニトリル-スチレン共重合体(AS又はSAN)等のスチレン系ポリマー;ポリメチルメタクリレート(PMMA)等の(メタ)アクリルポリマー;汎用のアクリルモノマー(例えば、メチルメタクリレート、メチルアクリレート、エチルメタクリレート、エチルアクリレート等の(メタ)アクリル化合物)と任意のラジカル重合性モノマーとの共重合体等のアクリル系ポリマーが挙げられる。中でも、PE、PP及びPSは多層フィルムの構成ポリマーとして重要であり、ABS及びASは汎用ポリオレフィンとエンジニアリングプラスチックの間に位置する重要な構造材料として、PMMAは透明ポリマーとして、それぞれ産業上幅広く利用されているので、これらのポリマーが使用された熱可塑性樹脂成形体に対して本発明は好適に適用される。
 混合体に含有される加水分解性ポリマーAと非加水分解性ポリマーBとの組み合わせは、上記の各ポリマーの適宜の組み合わせが挙げられ、好ましくはポリアミド又はポリエステルと、ポリエチレン又はポリプロピレンとの組み合わせである。
 本発明の分離回収方法では、水熱反応処理条件を変更することにより、加水分解性ポリマーAの加水分解反応の生起を調整できる。このため、加水分解性ポリマーAを2種以上含有している樹脂層1を有する樹脂混合体を用いることができる。例えば、加水分解性ポリマーAとしてポリエチレンテレフタレート(PET)とナイロン6(PA6)が積層された樹脂層1を有する樹脂混合体や、PETとPA6が独立して(非積層状態で)混在している樹脂混合体の場合は、PETとPA6それぞれに好適な加水分解条件が重なり合う水熱反応処理条件を選ぶことにより、それらを予め分別する手間をかけることなく、一括してそれらの加水分解生成物を回収することが可能となる。
 樹脂層1及び樹脂層2は、それぞれ、上記ポリマー以外の成分を含有していてもよい。
ポリマー以外の成分としては、例えば、ガラス、炭素繊維、カーボンブラック、シリカ、酸化チタン、炭酸カルシウム、炭酸マグネシウム、珪酸マグネシウム(タルク)、カオリン、雲母、有機又は無機からなる顔料等の粒子及びファイバー、フタル酸エステル、アジピン酸エステル、リン酸エステル、ステアリン酸エステル等の長鎖脂肪酸エステル類等の可塑剤、ヒンダードフェノール系等の熱安定剤、アミン系等の紫外線吸収剤、グリセリン等多価アルコールの長鎖脂肪酸エステル等の滑剤、安息香酸ナトリウム塩、フタル酸ナトリウム塩、サリチル酸ナトリウム塩、4-ヒドロキシ安息香酸ナトリウム塩、ステアリン酸ナトリウム塩等のカルボン酸塩、ベンゼンスルホン酸ナトリウム塩、トルエンスルホン酸ナトリウム塩、4-ヒドロキシベンゼンスルホン酸ナトリウム塩等の有機スルホン酸塩等の結晶核剤、シリコーン系等の離型剤、カーボンブラック、各種顔料・染料等の着色剤等が挙げられる。各樹脂層におけるこれら成分の含有量は、特に制限されないが、ポリマー100質量部に対して、合計量で50質量部以下とすることができる。
 また、樹脂層1は、複数種のポリマー成分からなるポリマーブレンド材であってもよく、ポリマー成分として、加水分解性ポリマーAに加えて非加水分解性ポリマーBを含有していてもよいが、通常、非加水分解性ポリマーBを含有していない。同様に、樹脂層2は、複数種のポリマー成分からなるポリマーブレンド材であってもよく、ポリマー成分として、非加水分解性ポリマーBに加えて加水分解性ポリマーAを含有していてもよいが、通常、加水分解性ポリマーAを含有していない。
 樹脂層1及び樹脂層2はそれぞれポリマーA又はポリマーBを主成分とする樹脂で形成されている。
 混合体、特に積層体は、樹脂層1及び樹脂層2以外に、樹脂層1若しくは樹脂層2を被覆する被覆層C、更に被覆層C、樹脂層を接着させる接着層D等を含んでいてもよい。
 被覆層Cとしては、混合体の用途、要求特性等に応じて適宜の層が挙げられ、例えば、混合体に特定の機能を付与する機能付与層が挙げられる。機能付与層としては、特に制限されず、例えば、ガスバリヤ性、保香性、光反射性等を付与する金属層、耐擦傷性を付与するハードコートとしての無機物層、更には印刷層等が挙げられる。
 機能付与層を形成する材料としては、例えば、金属(スパッタや蒸着等の真空プロセス、メッキ(例えば、アルミニウム、ケイ素、銅-ニッケル-クロムの組み合わせ、金、パラジウム、スズ、ルテニウム、黒色三価クロム、錫コバルト合金等の遷移金属、これら金属の酸化物及び/又は窒化物等の無機物が挙げられる。例えば、塚田理研工業社のホームページ「https://www.tukada-riken.co.jp/products/index.html#wc_anc00001」が参考となる。))、アルミナ、シリカ、ジルコニア、チタニア等の金属酸化物を主体とするセラミクス(耐擦傷性を付与するハードコート、更に遷移金属酸化物組成を加えた紫外線吸収コートや反射防止コート等に利用される。)、インキ(例えば、有機顔料、無機顔料、染料、塩化ビニル樹脂、酢酸ビニル樹脂)等が挙げられる。機能付与層は、複数種が任意の組み合わせと積層構造で使用されていてもよい。
 接着層は、混合体を構成する各層、上記被覆層等を接着させる層であり、接着成分は特に限定されず、適宜に選択される。
 ポリマーA若しくはBと被覆層C若しくは接着層Dを形成している材料との組み合わせは、上記の各ポリマー及び材料の適宜の組み合わせが挙げられ、本発明が好ましく適用されるのは、産業上の使用数量の大きなもの、例えば、(1)異種多層フィルムとして基材としてPE、PP又はPS等のポリマーBにポリマーA(代表例はPET及びPA6)が積層されたものに被覆層C及び接着層Dとして印刷層、酸素および水を遮断するバリア層(アルミ層やシリカ層、アルミナ層、塩化ビニリデン層など)、帯電防止層、異種フィルムを接着させる接着剤層、ブロッキング防止層等が積層されたもの、(2)上記5大汎用エンジニアリングプラスチック(PC、PBT、POM、PPE及び各種PA)の成形品(好ましくは射出成型や押出成形により製造される。)に上記金属やセラミクスのコーティングを施したもの、(3)PPやABS等のポリマーBの大型成形品(例:自動車部品、家電筐体)に上記インキやセラミクスのコーティングを施したものである。
 機能付与層を有する混合体において、混合体と機能付与層及び接着層との割合(質量比)は、特に制限されず、適宜に設定できるが、通常、例えば、混合体:機能付与層及び接着層=100:1~100:0.001(質量比)とすることができる。
 混合体としては、未使用の混合物の他に、廃プラスチック(使用済み成形品、成形不良品若しくは成形カス等の廃棄物若しくは回収物)等を用いることができ、特に廃プラスチックを用いることにより、炭素資源の循環と地球環境の保全との実現に資する。廃プラスチックとしては、特に制限されないが、例えば、プラスチック製自動車部品(車台、内装、外層、窓ガラス部、ヘッドランプカバーや反射板等の照明部、サイドミラー、ディスプレイ部、安全ベルト・エアバッグ・エアバッグカバー等の安全機構、タンク・配管・ポンプ等の燃料系機構、コネクター等の電気配線機構、歯車等の機械的機構等)、電気機器(例:家電、パソコン)や携帯通信端末のプラスチック部品(筐体、ディスプレイ部品、電気回路基板、アンテナ等)、各種光ディスク、医療・健康器具のプラスチック部品(人工透析、輸液バッグ、使い捨てシリンジ、体力トレーニング器具等)、容器、包装用トレー、文具、玩具、家具、日用品、家電筐体等の各種成形品、更に、包装用フィルム(含:錠剤・粉体・液体等の医薬品の包装)、レジ袋等が挙げられ、中でも、数量の大きな自動車部品、電気機器や携帯通信端末、各種光ディスク、包装用フィルム等に由来する廃棄物に対して本発明を好適に用いると、大量に廃棄される多層プラスチックフィルム(多層プラスチック積層体)のリサイクルを促進できる。
 混合体は、本発明の分離回収方法における分解分離工程において、溶融物として用いられる。ここでいう溶融物とは、混合体の構成成分であるポリマーの少なくとも一部が溶融した結果、粘性流動可能な状態となった混合物を意味する。混合体を溶融物とするためには、混合体の構成成分であるポリマーの少なくとも一部の軟化点(例えば、融点やガラス転移温度)を超えた温度条件が必要である。かかる溶融物においては、それが粘性流動可能である限り、溶融していないポリマー成分が含まれていても構わない。ポリマーの加水分解を促進する場合、固体状態のポリマーを溶融状態とした方が好ましいので、混合体を溶融物とする温度は、加水分解性ポリマーAの軟化点を超えた温度条件が好ましい。同時に、過度な高温は溶融状態のポリマーの熱劣化(例:熱分解、酸化、転移反応、架橋反応)を起こす恐れがあるので、非加水分解性ポリマーBの熱劣化を抑制可能な温度条件を選ぶことが好ましい。加えて、温度の上昇に伴う溶融物の低粘度化は、水相とポリマーの加水分解反応の界面面積と界面更新効率を増大させる機構により、加水分解性ポリマーAの加水分解を促進すると考えられる。
 混合体は、そのまま(前処理を行わずに)分解分離工程に供することができるが、混合体が水熱反応処理条件で溶融しない固体成分等を含有する場合、予め溶融させた溶融物から固体成分を除去して得た溶融混合物として分解分離工程に供することが好ましい。これにより、固体成分の回収ポリマーへの残存を低減し、かつ、固体成分に由来する望ましくない化学反応や副生成物の発生を抑制できるので、高純度の加水分解成分a及び非加水分解性ポリマーBを、より高いリサイクル効率で、分離回収できる。混合体が含有する固体成分は、混合体を溶融させる条件(温度)、例えば150~350℃、溶融物の溶融粘度の点で下限温度は好ましくは190℃、更に好ましくは220℃、一方熱劣化の抑制の点で上限温度は好ましくは340℃、更に好ましくは330℃℃において、溶融せずに固体として存在する成分であり、例えば、ラベル等の紙、各種無機物等が挙げられる。
 混合体を溶融させる条件は、上記の通り混合体が含有するポリマーの軟化点以上熱分解温度未満に設定され、上記溶融させる温度が挙げられる。混合体の溶融物から固体成分を除去する方法は、通常の方法を特に制限されることなく適用することができ、例えば、ろ過等の固液分離等が挙げられる。
 本発明の分離回収方法に用いる混合体は、上述の混合体に、熱可塑性ポリマーを含む樹脂の成形体、非熱可塑性ポリマーを含む樹脂の成形体が混在していてもよい。特に、廃プラスチックに由来する混合体を用いる場合、上述の混合体以外の成形体の混在は予め廃プラスチックの分別が不要となる点で好都合である。また、廃プラスチックに由来する混合体を用いる場合、例えば、紙若しくはプラスチック製のラベル、キャップの内蓋等が混在した混合体を用いることもできる。
<分解分離工程>
 本発明の分離回収方法は、上記混合体を水熱反応処理に付す(分解分離工程を行う)。水熱反応処理において、混合体は溶融物となり、場合によっては溶融混合物となり、混合体(溶融混合物)中の加水分解性ポリマーAを加水分解して分離させるとともに、混合体(溶融混合物)中の非加水分解性ポリマーBをその分子量を維持した状態(通常、溶融している)で分離させることができる。この分離の際、加水分解性ポリマーAの加水分解成分aが固体として析出することを避けることが、両者を簡便かつ高純度で分離させることができる点で、好ましい。
 本発明において、加水分解成分aが固体として析出することを避けるとは、系を水熱反応処理条件に加熱することによって、少なくとも1種の加水分解成分aについて高温での水への溶解度を増大させることにより、この加水分解成分aを、好ましくは、水熱処理条件下にある水相に溶解(移行)させて、系内で結晶や凝集体等として固体状に析出させないことを意味する。ここで、加水分解成分aは、後述する範囲を満たす回収率となる程度に析出を抑制できていればよい。
 分解分離工程(水熱反応処理)は、混合体と水とを加熱混合して行う。水としては、特に制限されず、脱イオン水、逆浸透水、蒸留水、精製水の他に、井水、水道水、工業用水等を用いることができる。
 水の使用量は、各ポリマーの種類、ポリマーA及びポリマーBの含有割合、水熱反応処理条件等に応じて適宜に決定されるが、例えば、混合体100質量部に対して、100~10000質量部であることが好ましく、300~5000質量部であることがより好ましい。省エネルギー、費用削減の観点からは、100~1000質量部であることがより好ましく、200~700質量部であることが更に好ましい。
 水熱反応処理の条件は、101kPa(1atm)以上の圧力下において、加水分解性ポリマーAの加水分解反応が進行する温度以上で、かつ非加水分解性ポリマーBの溶融温度以上分解温度(特に、分解反応を抑制して分子量を維持可能な温度)未満の温度に設定され、各ポリマーの種類、共存するポリマーAとポリマーBとの組み合わせ等に応じて適宜に選択される。
 例えば、水熱反応処理の温度(処理温度)としては、250℃以上とすることができ、275℃以上が好ましく、300℃以上がより好ましい。処理温度の上限は、例えば、390℃以下が好ましく、375℃以下がより好ましく、350℃以下が更に好ましく、330℃以下が特に好ましい。
 処理温度は、加水分解性ポリマーA及び非加水分解性ポリマーBの種類等に応じて上記の範囲内から適宜に設定することができる。例えば、非加水分解性ポリマーBの低分子量化反応を抑えつつ加水分解性ポリマーAのリサイクル効率を高めることができる点で、ポリマーAがポリエステル類、特にポリエチレンテレフタレートである場合、処理温度は250~350℃であることが好ましく、300~325℃であることがより好ましい。また、ポリマーAがポリアミド類、特にナイロンである場合、300℃以上であることが好ましい。一方、ポリマーBがポリオレフィンポリマー、特にポリエチレン及びポリプロピレンである場合、処理温度は、低分子量化反応を抑えることができる点で、250~330℃であることが好ましく、ポリプロピレンである場合、250~300℃であることがより好ましい。加水分解性ポリマーA及び非加水分解性ポリマーBの組み合わせがポリエステル類又はポリアミド類とポリオレフィンポリマーである場合の処理温度の好適な一態様は、300~350℃であり、300~325℃とすることもできる。
 また、水熱反応処理の時間(処理時間)としては、水熱反応処理が十分進行するのであれば短いほど好ましい。例えば、処理時間の下限は、1分以上が好ましいが、3分以上、8分以上、10分以上、更には15分以上とすることもできる。非加水分解性ポリマーBの劣化を低減させる観点から、処理時間の上限は、短いほど好ましく、例えば、90分以下がより好ましく、60分以下が更に好ましい。更には、40分以下、30分以下とすることもできる。
 この処理時間も加水分解性ポリマーA及び非加水分解性ポリマーBの種類等に応じて上記の範囲内から適宜に設定することができる。例えば、処理時間は、非加水分解性ポリマーBの低分子量化反応を抑えることができる点で、加水分解性ポリマーAがポリエステル類(特にポリエチレンテレフタレート)又はポリアミド類である場合、及び非加水分解性ポリマーBがポリオレフィンポリマー(特にポリエチレン)である場合、いずれも、15~60分であることが好ましい。加水分解性ポリマーAがポリエステル類(特にポリエチレンテレフタレート)である場合、及びポリオレフィンポリマー(特にポリエチレン、ポリプロピレン)である場合、処理時間は、30分以下であることがより好ましく、加水分解性ポリマーAがポリアミド類である場合、30~60分であることがより好ましい。
 水熱反応処理条件は、非加水分解性ポリマーBの低分子量化反応を抑えつつ加水分解性ポリマーAを速やかに加水分解反応させて、リサイクル効率を更に高めることができる点で、水熱反応処理条件は、101kPa以上の圧力下において、処理時間(分)をx軸、処理温度(℃)をy軸とする直交座標系で表すと、点A1(1,390)、点2(1,250)、点3(60,250)及び点4(60,375)を頂点とする四角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間に設定することが好ましい。
 より好ましい態様としては、点A(1,375)、点2(1,250)、点3(60,250)及び点4(60,375)を頂点とする四角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間に設定する態様、又は、点A1(1,390)、点B(1,325)、点C(60,275)及び点D(60,300)を頂点とする四角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間に設定する態様が挙げられる。
 更に好ましい態様としては、点A(1,375)、点B(1,325)、点C(60,275)及び点D(60,300)を頂点とする四角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間に設定する態様が挙げられ、特に好ましい態様として、点E(5,350)、点F(15,325)、点C(60,275)及び点D(60,300)を頂点とする四角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間に設定する態様も挙げられる。
 本発明において、処理温度及び処理時間の組み合わせは、上記の各領域内に含まれる処理温度及び処理時間の組み合わせの他に、加水分解性ポリマーA及び非加水分解性ポリマーBの種類に着目すると、下記の組み合わせも好ましい態様の1つである。
 すなわち、加水分解性ポリマーAがポリエステル類(特にポリエチレンテレフタレート)である場合、点a(5,350)、点b(5,325)、点c(10,300)、点d(60,250)及び点e(60,350)を頂点とする五角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間に設定することが好ましく、点f(15,350)、点g(15,300)、点d(60,250)及び点e(60,350)を頂点とする四角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間に設定することがより好ましい。
 また、加水分解性ポリマーAがポリアミド類である場合、点A1(1,390)、点2(1,250)、点D(60,300)及び点e(60,350)を頂点とする四角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間に設定することが好ましく、点D(60,300)、点e(60,350)、点f(15,350)及び点F(15,325)を頂点とする四角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間に設定することがより好ましい。
 一方、ポリマーBがポリオレフィンポリマー(特にポリエチレン(LDPE、LLDPE))である場合、点h(2,350)、点i(2,300)、点j(15,250)、点d(60,250)及び点k(60,330)を頂点とする五角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間に設定することが好ましく、点l(15,330)、点j(15,250)、点d(60,250)及び点k(60,330)を頂点とする四角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間に設定することがより好ましい。ポリマーBがポリオレフィンポリマー(特にポリプロピレン)である場合、点m(2,330)、点n(2,250)、点d(60,250)及び点k(60,330)を頂点とする四角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間に設定することが好ましく、点p(2,300)、点n(2,250)、点q(30,250)及び点r(30,330)を頂点とする四角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間に設定することがより好ましい。
 なお、本発明において、処理温度及び処理時間の組み合わせを示す上述の各多角形の頂点は、後述する実施例における処理温度及び処理時間の組み合わせを示す点に適宜に変更して、新たな多角形を形成することができる。
 本発明の分離回収方法において、後述する吸水処理及び加熱前処理を行う場合、水熱反応処理における処理温度は、上記処理温度よりも低く設定することができる。例えば、処理温度の下限値として、200℃とすることができ、上述の各温度範囲及び各領域における処理温度の下限値として200℃に設定することができる。
 水熱反応処理条件における圧力は、水の臨界温度までは処理温度における水蒸気圧(例えば、100℃で101kPa、330℃で12.86MPa)以上であり、通常、101kPa以上の圧力に設定され、例えば、臨界温度以上の処理温度では臨界圧力22.1MPa以上である。臨界温度以上の処理温度における圧力の上限は、特に制限されず、例えば、臨界圧力+40MPa以下とすることができる。
 水熱反応処理は、作業性、後処理を不要とする点で、酸又は塩基の非存在下で行うことが好ましいが、加水分解成分aの回収率の向上を目的として、酸又は塩基の存在下で行うこともでき、この場合、塩基の存在下で行うことが好ましい。ここで、酸又は塩基の非存在下とは、酸又は塩基を積極的に使用しないことをいい、混合物を接触させる水のpHとしては6~8の範囲にあることをいう。
 酸としては、特に限定されず、例えば、酢酸等の有機酸、塩酸、硝酸、リン酸、硫酸等の無機酸が挙げられる。塩基としては、特に制限されず、例えば、アルキルアンモニウム塩等の有機塩基、金属水酸化物等の無期塩基、アンモニア水等が挙げられる。
 酸及び塩基の使用量は、特に制限されず、適宜に決定される。
 水熱反応処理条件における雰囲気(環境)は、特に制限されず、例えば、上記圧力下における大気(環境)中とすることもできる。非加水分解性ポリマーBの低分子量化反応を抑えて高い分子量維持率で回収できる点で、酸素ガス非存在環境、例えば、乾燥空気中、不活性ガス(例えば、アルゴンガス、ヘリウムガス、窒素ガス)が好ましい。特に、酸素ガス非存在環境によって、系内の酸素、具体的には水熱反応処理に使用する水中の溶存酸素の量を低減すると、非加水分解性ポリマーBの低分子量化反応を効果的に抑えることができる。
 水熱反応処理(分解分離工程)は、通常、密閉状態で行われ、回分式(バッチ式)で行うこともでき、連続式で行うこともできる。回分式に用いる反応容器としては、密閉型反応容器、例えば、オートクレーブ、反応管が挙げられる。
 本発明の分離回収方法において、上記水熱反応処理を好ましくは上記水熱反応処理条件で行うことにより、まず、混合体が溶融して、場合によっては水と和しない溶融混合物となることもある。
 混合体の溶融と同時に、又は溶融後に、加水分解性ポリマーAは、加水分解反応を受けて、加水分解成分aを生成する。この加水分解成分aは混合体から分離し、そのうち水溶性を示すものは水相に移行する。加水分解成分aは、加水分解性ポリマーAの種類に応じて生成する化合物であり、通常、加水分解性ポリマーAを形成する原料化合物(モノマー)又はその数量体となる。加水分解成分aとしては、好ましくは、ポリアミド、ポリエステル、ポリカーボネート等の原料化合物(モノマー)が挙げられ、工業的な重要性からより好ましくは、テレフタル酸、2,6-ナフタレンジカルボン酸、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、テトラヒドロフラン、アミノカプロン酸、ε-カプロラクタム、ヘキサメチレンジアミン及びアジピン酸、並びにこれらの誘導体からなる群から選択される1種又は2種以上の成分が挙げられる。ここで、「これらの誘導体」とは、加水分解性ポリマーAの加水分解により生じた加水分解成分aが加水分解条件で更に反応等をして生成する化合物をいい、加水分解成分a及び加水分解条件等により決定される。
 一方、非加水分解性ポリマーBは、混合体の溶融時及び溶融後の水熱反応処理において、分解反応の進行が効果的に抑制され、樹脂層2中に存在する非加水分解性ポリマーBが有していた分子量を維持しながら、水相(混合体)から溶融状態で分離する。
 水熱反応処理の進行とともに、加水分解性ポリマーAは加水分解成分aとなって、更に水溶性を示すものは水相に移動して、溶融状態の非加水分解性ポリマーBから分離される。かかる溶融状態における分離の後に、非加水分解性ポリマーBを冷却固化させて回収する。非加水分解性ポリマーBの回収の際、好ましくは溶融押出によるペレット化の手法を用いる。
 本発明の分離回収方法において、加水分解成分aの回収率は、加水分解性ポリマーAの種類、水熱反応処理条件等の変更により変動するが、例えば、樹脂層1に含まれる加水分解性ポリマーAを100%としたとき、60%以上を達成することができ、70%以上、更には80%以上の高い回収率(モル基準)を達成することができる。同様に、非加水分解性ポリマーBの回収率は、非加水分解性ポリマーBの種類、水熱反応処理条件等の変更により変動するが、例えば、樹脂層2に含まれる非加水分解性ポリマーBを100%としたとき、80%以上を達成することができ、更に90%以上の高い回収率(モル基準)を達成することができる。
 回収された非加水分解性ポリマーBは、樹脂層2中に存在する非加水分解性ポリマーBの分子量分布を良好に維持している。回収された非加水分解性ポリマーBの分子量分布の挙動は、ポリマーBの種類、水熱反応処理条件等の変更によって一義的ではない。本発明の分離回収方法では、例えば、回収された非加水分解性ポリマーBは、水熱反応処理前の非加水分解性ポリマーBの平均分子量に対して、0.7倍以上の平均分子量を維持する(分子量維持率70%以上)ことができ、処理条件の最適化により、0.8倍以上の平均分子量を維持する(分子量維持率80%以上)こともできる。回収された非加水分解性ポリマーBが上記範囲の分子量維持率を示すと、非加水分解性ポリマーBが本来有する性能を維持でき、回収された非加水分解性ポリマーBを成形品等へのリサイクルを更に促進できる。
 本発明において、ポリマーの平均分子量は、後述する実施例で説明する方法で測定した値とする。なお、樹脂層2中に存在する非加水分解性ポリマーBの平均分子量は、水熱反応処理する前に、混合体の樹脂層2から取り出した非加水分解性ポリマーBの平均分子量とする。
 回収された加水分解成分a及び非加水分解性ポリマーBは、それぞれ、適宜に、通常の方法により、精製することもできる。
<その他の工程>
 本発明の分離回収方法においては、上記分解分離工程の前又は後に、分解分離工程以外の工程を行うこともできる。例えば、混合体を予め溶融する工程、上述の、混合体の溶融物から固体成分を除去する工程、更には、混合体を例えば含有ポリマー種によって分別する工程、混合体を洗浄して予め汚れ成分を低減する工程、回収した加水分解成分a及び非加水分解性ポリマーBを精製する工程、非加水分解性ポリマーを乾燥させる工程、非加水分解性ポリマーを造粒(ペレタイズ)する工程等が挙げられる。精製方法等は、公知の各種方法を特に制限されることなく適用できる。
 中でも本発明の分離回収方法において、分解分離工程の前に混合体を予め溶融する工程を更に有することがリサイクル効率の観点から好ましい。混合体を予め溶融する工程は、混合体を例えば押出機を用いて溶融状態で混練する工程であり、公知の機械を用いることができる。用いる機械に制限はないが、例えば短軸、複数軸を有する押出機や、ギアポンプ等を用いることができる。混合体を溶融する条件は混合体が溶融する条件であれば特に制限はないが、溶融物の均一性の観点から設定温度は100℃以上が好ましく、200℃以上がより好ましく、260℃以上が更に好ましい。また溶融物中のポリマーの分解及び劣化を抑制する観点から350℃以下が好ましく、300℃以下がより好ましく、280℃以下が更に好ましい。ここで設定温度は押出機等の設定温度である。
 分解分離工程の前に溶融混練工程(混合体を予め溶融する工程)を有する場合は、分離分解工程に比べ、より高い処理温度(加熱温度)を水熱反応処理条件として適用することもでき、加えて溶融混練工程を有することにより、処理時間を短縮することができる。すなわち、混合体に含まれるポリマーの最も高い融点以上で最も低い分解温度未満の温度に設定され、その温度範囲は一般的に100~350℃である。最も高い融点を持つポリマーの融点以上、融点+50℃以下が好ましく、融点+10℃以上、融点+30℃以下がより好ましい。具体的には、最も高い融点を持つポリマーがPA6の場合は230~280℃が好ましく、240~260℃がより好ましく、最も高い融点を持つポリマーがPA6/66の場合は200~250℃が好ましく、210~230℃がより好ましく、最も高い融点を持つポリマーがPA66またはPETの場合は250~300℃が好ましく、260~280がより好ましい。また、処理時間(加熱時間)としては、特に制限されないが、処理時間を長く取ることで、ポリマーの熱分解が進行する可能性が高くなる。これを踏まえ、実現できる範囲において短時間とすることが望ましい。
 回収した加水分解成分a及び非加水分解性ポリマーBを精製する工程としては、特に制限されず、加水分解成分aの種類、及び非加水分解性ポリマーBの種類等に応じて、通常採用される精製工程を適用できる。例えば、加水分解成分aがカルボン酸化合物やアミン化合物等である場合、酸塩基処理による精製等が挙げられる。
 本発明の分離回収方法は、分解分離工程の前(予め溶融する工程を有する場合は、その前)に、吸水処理した混合体(吸水状態)を加熱下で前処理(加熱前処理という。)を行うことが、非加水分解性ポリマーBの分解反応の進行を効果的に抑制しながら回収率の向上が見込める点、更には水熱反応処理をより温和な条件(処理温度の低減、処理時間の短縮、水の使用量低減等)で実施可能となる点で、好ましい。回収率の向上は、加水分解性ポリマーAがポリエステル類、ポリアミド類などの場合に顕著になる。
 上記水熱反応処理に付す混合体に含まれる加水分解性ポリマーAは、一般に、エステル結合、アミド結合、カーボネート結合等の加水分解性を有する化学結合を高分子主鎖における繰り返し単位構造中に有するので、かかる加水分解性を有する化学結合への水和及びその周辺における水分子の配位を受け入れる性質(吸水性)を有する。したがって、本発明における水熱反応処理の前段に、かかる吸水処理と加熱前処理を施すことにより、ある程度、加水分解を進めることができるので、モノマーにまで加水分解することを意図する水熱反応処理の条件(温度、時間及び使用量)を小さくすることができ、その結果、マテリアルリサイクルを目的とする非加水分解性ポリマーBの劣化を抑制できるのではないかと着想した。
 この着想において、加水分解性ポリマーAを加熱前処理において効果的に加水分解させるためには、その効果が十分に発現する程度の吸水状態となっている必要がある。かかる吸水状態を達成するための吸水処理の条件は、共存する非加水分解性ポリマーBの劣化(熱や酸化による)の低減、若しくは工業生産性(エネルギーコスト、所要時間の削減等)の観点から、低温及び又は短時間であることが望ましい。かかる吸水処理により、好ましくは加水分解性ポリマーAを飽和吸水状態に近づけることが好ましい。このような好ましい吸水状態を実現するためには、加水分解性ポリマーAが水に接する面積、すなわち、水分子が浸透及び又は反応する面積を大きくすることが好ましい。
 この水の浸透性及び又は反応性の点で、加水分解性ポリマーAが水の透過性が小さい非加水分解性ポリマーBと積層体を成している場合、水との接触可能面積が制限され、加水分解性ポリマーAの加水分解が抑制される。例えば、水の透過性が小さい非加水分解性ポリマーBであるポリエチレン(PE)、ポリプロピレン等との積層体が挙げられ、特に、水の透過性が小さい非加水分解性ポリマーBに挟まれた構造(「サンドイッチ型」)、例えばPE/加水分解性ポリマーA/PEの3層構造(「B/A/B構造」と呼ぶ場合がある。)を含む場合は、その表面と裏面は、PEとなるため、端面以外は加水分解性ポリマーAの吸水又は加水分解が制限される。
(機械的処理)
 したがって、機械的処理(引張り・曲げ・圧縮・せん断等の応力要素の印加、例えば、切り裂き、突き刺し、裁断、研磨等の手段)を加水分解性ポリマーAに対して加えることにより、傷・穿孔・端面などの水と接触面積を増やすことが、吸水速度の向上と吸水量の向上ができ、加熱前処理において加水分解をより進行させることができる。機械的処理は、適宜の条件で行うことができ、また後述する吸水処理の前及び又は吸水処理と同時に行うこともできる。この機械的処理は、後述する加熱前処理の段階における水の接触面積を増やすことが目的であるので、それが有効に達成できる条件や工程段階において行うことが望ましい。例えば、吸水により靭性(軟化)が増す傾向があるポリアミド類(例:PA6)を含む混合体を出発原料とする場合、吸水率を過度に高める前に機械的処理を加える方が有効に多層フィルムに傷をつけることができる場合がある。
 後述する吸水処理する前に混合体に機械的処理を加えることにより、混合体、通常加水分解性ポリマーAに水を接触しやすくして、加水分解性ポリマーAの加水分解を促進することができる。
 機械的処理は、特に制限されないが、例えば、シュレッダーや粉砕器を用いてもよい。
 機械的処理により新たに生成する「傷・穿孔・端面などの水の侵入経路又は加水分解反応点」は、後記に詳述する吸水処理の有効性の点で、加水分解性ポリマーAが新たに露出する面積(以下「新規露出面積」という)として増加させることが好ましい。
 かかる新規露出面積は、多層フィルム等の混合体の面方向における傷・穿孔・端面などの長さ(穿孔の場合は孔の外周長)に厚さを掛けて算出可能であるが、当該混合体の厚さはおしなべて均ーと仮定した定量的な有効性評価指標として、上記「傷・穿孔・端面などの長さ」の増加倍率(以下「端面増加倍率」という)を用いることができる。例えば、後述する実施例A-3におけるフィルムの切り出し寸法の効果については、50mm×50mmのフィルムが機械的処理により100個の5mm×5mm破片に裁断された結果、端面面積は10倍に増加したとみなすことができるので、この場合の端面増加倍率は10倍となる。
 処理対象の混合体が細かく破砕されている場合、多数の傷を有する場合等には、工程増(即ち時間とコストの増)を勘案して機械的処理を新たに行う必要はないと判断される可能性はあるものの、かかる端面増加倍率は、適常1.1倍以上、好ましくは2倍以上、更に好ましくは10倍以上とする。かかる端面増加倍率は、与えられた試料における代表的な箇所を選んで観察・測定して評価されるが、必要に応じて複数箇所を評価した平均値を採用してもよい。
(吸水処理)
 吸水処理としては、混合体を適当な容器内で水熱反応処理とは異なる任意の温度及び圧力の液体の水又は水蒸気雰囲気に暴露・滞留させる方法が挙げられ、その温度条件は通常0~150℃とすることができる。吸水効率の観点から、下限温度は、好ましくは20℃、更に好ましくは50℃であり、上限温度は共存する非加水分解性ポリマーBの劣化の低減、若しくは工業生産性の観点から、好ましくは120℃、更に好ましくは100℃である。かかる吸水処理の時間(連続式の場合は平均滞留時間)は、通常1分~24時間であるが、混合体をサイロのような貯留槽中に24時間を超えるような長期間保管が可能な場合は、かかる貯留槽において十分な吸水状態に到達させることもできる。吸水処理の時間の下限は、混合体の形状や寸法にもよるが、有効な吸水率の確保の点で、好ましくは5分、更に好ましくは10分であり、上限は共存する非加水分解性ポリマーBの劣化(熱や酸化による)の低減、若しくは工業生産性の観点から、好ましくは18時間、更に好ましくは12時間である。
 吸水処理において、水に暴露させる場合、混合物を水に浸けることが好ましい。水(水蒸気)に暴露する場合の相対湿度は100%が最も好ましい。
 吸水処理において、液体の水に暴露させる場合、使用する水の量については、処理対象の混合体に含まれる加水分解性ポリマーAが飽和吸水状態に達するモル数の水が必要であるが、かかる吸水を速やかに進める速度論の観点から、通常、当該モル数に対して過剰量の水を使用する。具体的には、当該加水分解性ポリマーAの質量の0.5~100倍の質量の水を使用可能であり、処理対象(例:水スラリー)の搬送性・移送性といった工業プロセスの点で一定の流動性が必要な場合にはその下限は好ましくは1倍、更に好ましくは5倍であり、一方、水の使用量を最小限とする経済合理性の点ではその上限は好ましくは50倍、更に好ましくは10倍である。
 こうして、必要に応じて過剰に用いた水から取り出して、加水分解性ポリマーAに吸水させて吸水状態の混合体を得ることができる。ここで、非加水分解性ポリマーは通常吸水しにくいので吸水状態の混合体は、加水分解性ポリマーAが吸水状態にあることを意味する。このときの吸水量は、加水分解性ポリマーAを公知の水中での飽和吸水率程度まで吸水させるのが好ましい。かかる水中での飽和吸水率は、測定条件(サンプル形状、サンプル成形条件、水温他)によりばらつきは見られるが、射出成形やフィルム成形等一般的な成形方法による諸ポリマーの代表値として、PA6は10~11質量%、PA66は8~10質量%、PA6/66共重合体は11~12質量%、PAMXD6は6~10質量%、PETは0.4~0.6質量%、PBTは0.4~0.6質量%を例示でき、実際、後述の実施例における諸ポリマーの飽和吸水試料は、かかる代表値のレベルとなっている。吸水量は、加水分解性ポリマーAの飽和吸水率が最も好ましいが、加水分解性ポリマーAの種類、温度等によっても異なり、一概にいえず、例えば、飽和吸水率の1/10~1/1の吸水量が好ましい。
 吸水処理を実施する装置に制限はなく、回分式又は連続式のいずれも可能である。
 吸水処理は、通常、加熱前処理の前段階として実施する。但し、加熱前処理の段階に吸水を進めることも可能であり、例えば、加熱前処理における昇温手段として高温の水蒸気を装置内部に導入することにより吸水を押し切るプロセスが挙げられる。
(加熱前処理)
 上述のようにして吸水させた混合体を水熱反応処理する前に加熱する(加熱前処理)。この加熱前処理は、吸水状態にある混合体を加熱処理する点で、上述の水熱反応処理とは異なる。すなわち、加熱前処理は、吸水処理で加水分解性ポリマーA中に取り込まれる水分により加水分解を進めることが目的であり、水熱反応処理のように過剰量(例えば、混合体100質量部に対して100質量部以上)の水と混合して加熱する処理ではなく、吸水状態にある混合体を、好ましくは水と混合せずにそのまま加熱する処理である。
 この加熱前処理は、吸水状態の混合体(加水分解性ポリマーA)からの水の脱離(乾燥)が過度に進まない条件及び又は装置を選ぶことが好ましい。これは、加水分解性ポリマーAが含有する親水性化学結合(例:アミド結合、エステル結合)又はその近傍に吸水された水分子が、当該化学結合の加水分解の源泉であるので、その水の量を減少させないことが原理的に好ましいためである。この原理から、加熱前処理の有効性は、加水分解性ポリマーAの吸水率、反応時間と温度の3つの要因に影響される。したがって、装置的要因(例:撹拌)は付随的なものとなる。加熱前処理を実施する装置に制限はなく、回分式又は連続式の装置を使用可能である。
 加熱前処理の温度範囲は、通常120℃~350℃、加水分解効果の点で、その下限温度は、好ましくは150℃であり、更に好ましくは200℃である。一方、非加水分解性ポリマーBの熱劣化を抑制する点で、その上限温度は、好ましくは300℃であり、より好ましくは加水分解性ポリマーAの高分子鎖の熱的な可動性が上昇する当該ポリマーの軟化点近傍の温度条件(凡そ220℃~270℃、すなわちポリエステルやポリアミド等主要な加水分解性ポリマーAが流動可能な温度範囲)である。
 加熱前処理の時間(連続式の場合は平均滞留時間)は、処理温度の選択にもよるが、通常1分~12時間であり、その下限は、加水分解を十分に進行させる点で好ましくは5分、更に好ましくは10分であり、上限は、共存する非加水分解性ポリマーBの劣化の低減、若しくは工業生産性の観点から、好ましくは6時間、更に好ましくは3時間である。この加熱前処理をサイロのような貯留槽中で行う工程設計により12時間を超えるような長時間貯留が可能な場合は、かかる貯留槽において実施することも可能である。かかる長時間貯留の場合は、非加水分解性ポリマーBの熱劣化の低減とエネルギーコストの観点で、好ましくは比較的低温の温度範囲を選ぶことが好ましい。
 加熱前処理を行った混合体は、一旦冷却して取り出してもよく、またそのまま必要な水等を加えて連続的に上述の水熱反応処理を行ってもよい。
 水熱反応処理する混合体を上述の吸水処理及び加熱前処理することによって、水熱反応処理する混合体の加水分解性ポリマーAの加水分解を進め、その後に行う水熱反応処理の条件を温和にすることができ、非加水分解性ポリマーBの劣化を抑制することができる。また、上述の水熱反応処理に使用する水の量を低減することも可能となる。
 以下に、実施例に基づき本発明について更に詳細に説明するが、本発明はこれにより限定して解釈されるものではない。
[実施例1]
 内容積10cmのステンレス製反応管に、サンプルとして廃プラスチックである「厚み12μmのポリエチレンテレフタレート樹脂層と厚み50μmのポリエチレン(LDPE)樹脂層をウレタン系接着剤でラミネートした積層フィルム」の粉砕物(0.5g)と水(5cm)を導入して、密封した。この反応管を溶融塩浴に投入して、表2に記載の反応温度及び反応時間で水熱反応処理を行った。この水熱反応処理において、粉砕物は溶融し、加水分解ポリマーの加水分解成分aは析出せず、非加水分解性ポリマーは溶融状態で水相から分離した。水熱反応処理後に、反応管を水冷して、反応物をろ過した。こうして、固体状の非加水分解性ポリマー及び加水分解成分a1と、水相に溶解している加水分解成分a2とを回収した。固体状の非加水分解性ポリマーと加水分解成分a1は相溶しておらず容易に選別可能であった。
 非加水分解性ポリマー及び加水分解成分aは、下記方法及び条件にて、同定した。その結果、非加水分解性ポリマーはポリエチレンであり、加水分解成分aはテレフタル酸及びエチレングリコールであり、そのうち加水分解成分a1はテレフタル酸であり、加水分解成分a2はエチレングリコールであった。
<加水分解成分a1の同定>
 加水分解成分a1はメタノールに溶解し、下記条件でHPLCを測定したところ、その保持時間が成分a1として推定されるテレフタル酸の保持時間と一致したため、成分a1がテレフタル酸であると同定した。
HPLC装置:Prominence-i LC-2030C(島津製作所製)
カラム:ODS-100V(5μm,4.6mmI.D.×150mm)(東ソー製)カラム恒温槽:30℃
移動相組成:
(移動相A)0.1%トリフルオロ酢酸/アセトニトリル=90/10
(移動相B)0.1%トリフルオロ酢酸/アセトニトリル=60/40
グラジエント条件:下記表1に示す。
流速:0.8mL/min
検出器:UV検出器
波長:242nm
Figure JPOXMLDOC01-appb-T000001
<加水分解成分a2の同定>
 ろ過によって得られた水相をそのままHPLCにて分析し、加水分解成分a2の同定、定量を行った。
 HPLC装置:Prominence糖分析システム(島津製作所製)
 カラム:Phenomenex製 RezexTM RPM-Monosaccharide Pb+2(8%) 300×7.8 mm
 カラム温度:70℃
 移動相:水
 流速:0.7mL/min
 検出器:示差屈折率検出器
<回収率>
 加水分解成分の回収率の算出に際して、まず、ポリエチレンテレフタレート樹脂層に含まれるポリエチレンテレフタレート量を下記方法で算出した。用いたポリエチレンテレフタレート樹脂層は99.9%以上の純度である。不純物としては、ブロッキング防止効果の為のシリカフィラーが含有されているが本検討では不問として導入したポリエチレンテレフタレートを純度100%とみなした。
 次いで、算出したポリエチレンテレフタレート量を100モル%としたときの加水分解成分の回収率(mol%)を算出した。
<回収した非加水分解性ポリマーの同定>
 DSCとNMRにより非加水分解性ポリマーを同定した。
<回収した非加水分解性ポリマーの回収率の算出>
 非加水分解性ポリマーの回収率の算出に際して、まず、ポリエチレン樹脂層に含まれるポリエチレンを下記方法で算出した。
(回収率の算出)
 回収した固体に含まれる非加水分解性ポリマー含有量をTG-DTAで測定した。この際、純粋ポリエチレン、もしくは純粋加水分解性ポリマーそれぞれをTG-DTA分析し、そのピーク面積をそれぞれの重量と相関した検量線を作成し、それを元に含有量を求めた。
<回収した非加水分解性ポリマーの平均分子量維持率の測定>
 回収した固体状の非加水分解性ポリマーについて、下記方法及び条件にて、GPC測定して、重量平均分子量Mwを測定した。また、同様に、サンプルから抽出した非加水分解性ポリマーの重量平均分子量Mwを測定した。この水熱反応処理前の非加水分解性ポリマーの重量平均分子量Mwに対する、回収した非加水分解性ポリマーの重量平均分子量Mwの割合([Mw/Mw]×100(%))を算出して、表2に示す。
 
(重量平均分子量(GPC)の測定)
高温GPC装置:HLC-8321GPC/HT(東ソー社製、検出器:RI)
カラム:TSKgel guardcolumnHHR(30)HT(7.5mmI.D
    .×7.5cm)×1本 + TSKgel GMHHR-H(20)HT(7
    .8mmI.D.×30cm)×3本(いずれも東ソー社製)
溶離液:1,2,4-トリクロロベンゼン+ジブチルヒドロキシトルエン(BHT、0.
    05質量%)
流量:1.0mL/min
カラム温度:140℃
試料濃度:1mg/mL
検量線:東ソー社製標準ポリスチレンを用いた5次近似曲線。分子量はQファクターを用いたPE換算値
Figure JPOXMLDOC01-appb-T000002
 「未分解PET」は当該水熱反応処理条件において加水分解されていないPETを意味する。
[実施例2]
 サンプルとして廃プラスチックである「厚み15μmのポリアミド(ナイロン6)樹脂層と厚み50μmのポリエチレン(LLDPE)樹脂層をウレタン系接着剤でラミネートした積層フィルム」の粉砕物(0.5g)を用いて水熱反応処理条件を下記表4に示す条件に設定したこと以外は、実施例1と同様にして水熱反応処理を行い、固体状の非加水分解性ポリマーと、水相に溶解している加水分解成分a3を回収した。水熱反応処理において粉砕物は溶融し、非加水分解性ポリマーは溶融状態で水相から分離していた。回収した非加水分解性ポリマーと加水分解成分a3を同定したところ、非加水分解性ポリマーはポリエチレンであり、加水分解成分a3はε-カプロラクタムであった。
 非加水分解性ポリマーについては、実施例1と同様の方法で、回収率及び平均分子量維持率を算出した。また、回収した加水分解成分a3は、メタノールに溶解し、下記方法及び条件にてHPLCを測定して保持時間の一致により同定し、かつ下記方法及び条件にて回収率を算出した。得られた結果を表4に示す。
<加水分解成分a3の同定>
HPLC装置:1200(Agirent Technologies製)
カラム:Scherzo SW-C18(3.0mmI.D.×150mm)(Imtact製)
カラム恒温槽:35℃
移動相組成:
(移動相A)0.01%ギ酸水溶液
(移動相B)200mMギ酸アンモニウム水溶液/アセトニトリル=50/50
グラジエント条件:下記表3に示す。
流速:0.4mL/min
検出器:UV検出器
波長:210nm
Figure JPOXMLDOC01-appb-T000003
<加水分解成分a3の回収率の算出>
 加水分解成分の回収率の算出に際して、まず、ポリアミド(ナイロン6)を下記方法及び条件で、算出した。
(方法及び条件)
 用いたポリアミド(ナイロン6)樹脂層は99.9%以上の純度である。不純物としては、ブロッキング防止効果の為のシリカフィラーが含有されているが本検討では不問として導入したナイロン(ポリアミド6)は純度100%とした。
 次いで、算出したナイロン(ポリアミド6)量を100モル%としたときの加水分解成分a3の回収率を、下記方法により算出した。
(方法)水熱処理で回収した水相に含まれる加水分解成分a3の全質量により回収率を計算により算出した。
Figure JPOXMLDOC01-appb-T000004
 「未分解Ny」は当該水熱反応処理条件において加水分解されていないナイロン6を意味する。
[実施例3]
 内容積10cmの反応管に、サンプルとして「ポリアミド(ナイロン6)又はポリエチレン(LDPE)」のペレット(0.5g)と水(5cm)を導入して、密封した。この反応管を溶融塩浴に投入して、表5に記載の反応温度及び反応時間で水熱反応処理を行った。この水熱反応処理において粉砕物は溶融し、非加水分解性ポリマーは溶融状態で水相から分離した。水熱反応処理後に、反応管を水冷して、反応物をろ過した。こうして、固体状の非加水分解性ポリマーと、水相に溶解している加水分解成分a3を回収した。
 非加水分解性ポリマー及び加水分解成分a3は、下記方法及び条件にて、同定した。その結果、非加水分解性ポリマーはポリエチレンであり、加水分解成分a3はε-カプロラクタムであった。
 非加水分解性ポリマーについては、実施例1と同様の方法で、回収率及び平均分子量維持率を算出した。また、回収した加水分解成分a3は実施例2と同様の方法で回収率を算出した。得られた結果を表5に示す。
<加水分解成分a3の同定>
 加水分解成分aは水に溶解し、下記条件でHPLCを測定して保持時間の一致により同定した。
LC装置:Agilent Technologies製1200型
MS装置:Agilent Technologies製6140型
カラム:Imtakt製Scherzo SW-C18
カラム温度:35℃
移動相A:0.01%ギ酸水溶液
移動相B:200mMギ酸アンモニウム水溶液/アセトニトリル=1/1(v/v)
検出器:PDA、MS
イオン化法、極性:エレクトロスプレーイオン化法(ESI)、Positive
Figure JPOXMLDOC01-appb-T000005
[実施例4]
 内容積8cmの反応管に、サンプルとして廃プラスチックである「ポリアミド(ナイロン6/66)樹脂層とポリエチレン(LDPE)樹脂層と接着層が積層してなる多層フィルム(ポリアミド含量29.4質量%)」の粉砕物(0.3g)を用いたこと以外は、実施例3と同様にして、下記表6に示す水熱反応処理条件で、固体状の非加水分解性ポリマーと、水相に溶解している加水分解成分a3を回収した。水熱反応処理において粉砕物は溶融し、非加水分解性ポリマーは溶融状態で水相から分離していた。回収した非加水分解性ポリマーと加水分解成分a3を同定したところ、非加水分解性ポリマーはポリエチレンであり、加水分解成分a3はε-カプロラクタムであった。
 非加水分解性ポリマーの回収率及び平均分子量維持率を算出し、加水分解成分a3を同定し、その回収率を算出した。得られた結果を表6に示す。
<加水分解成分a3の同定>
 加水分解成分a3は水に溶解し、下記条件でHPLCを測定して保持時間の一致により同定した。
LCMS装置:島津製作所製LCMS2020型
カラム:SHODEX製ODP-40 4E
カラム温度:40℃
移動相A:0.1%ギ酸水溶液
移動相B:アセトニトリル
検出器:PDA、MS
イオン化法、極性:エレクトロスプレーイオン化法(ESI)、Positive
<重量平均分子量(GPC)の測定>
高温GPC装置:HLC-8321GPC/HT(東ソー社製、検出器:RI)
カラム:TSKgel guardcolumnHHR(S)) + TSKgel G
    MHHR-H(S)HT×2本
溶離液:o-ジクロロベンゼン
流量:1.0mL/min
カラム温度:145℃
試料濃度:0.1wt/vol%
検量線:標準ポリスチレンを用いた近似曲線。
Figure JPOXMLDOC01-appb-T000006
[実施例5]
 サンプルとして「ポリアミド(ナイロン6/66)又はポリエチレン(LDPE)」のペレット(0.5g)を用いたこと以外は、実施例3と同様にして、下記表7に示す水熱反応処理条件で、固体状の非加水分解性ポリマーと、水相に溶解している加水分解成分aを回収した。水熱反応処理において粉砕物は溶融し、非加水分解性ポリマーは溶融状態で水相から分離していた。回収した非加水分解性ポリマーと加水分解成分aを同定したところ、非加水分解性ポリマーはポリエチレンであり、加水分解成分aはε-カプロラクタムであった。
 非加水分解性ポリマーの回収率及び平均分子量維持率を算出し、加水分解成分aの回収率を算出して、表7に示す。
Figure JPOXMLDOC01-appb-T000007
[実施例6]
 水熱反応処理条件を下記表8に示す水熱反応処理条件に変更したこと以外は、実施例3と同様にして、固体状の非加水分解性ポリマーと、水相に溶解している加水分解成分aを回収した。下記表8の通り、回収した非加水分解性ポリマーは、水熱反応処理条件350℃において重量平均分子量維持率が80%未満であり、水熱処理前の重量平均分子量を維持できていないことが分かった。
Figure JPOXMLDOC01-appb-T000008
[実施例7]
 水熱反応処理条件を下記表9に示す水熱反応処理条件に変更したこと以外は、実施例5と同様にして、固体状の非加水分解性ポリマーと、水相に溶解している加水分解成分aを回収した。下記表9の通り、回収した非加水分解性ポリマーは、水熱反応処理条件350℃において重量平均分子量維持率が80%未満であり、水熱処理前の重量平均分子量を維持できていないことが分かった。
Figure JPOXMLDOC01-appb-T000009
[実施例8]
 実施例8は、実施例1で用いた粉砕物から剥離した「ポリエチレンテレフタレート樹脂層」を用いて、加水分解条件を更に検討した。
 すなわち、実施例1において、上記「ポリエチレンテレフタレート樹脂層」を用いて、水熱反応処理条件を下記表10に示す条件に変更したこと以外は、実施例1と同様にして、「ポリエチレンテレフタレート樹脂層」を水熱反応処理(加水分解)して、テレフタル酸及びエチレングリコールの回収率を算出した。その結果を表10に示す。
 表10に示されるように、反応時間が高温になるほど、反応時間を短くしてもテレフタル酸及びエチレングリコールを比較的高い回収率で回収できることが分かる。
Figure JPOXMLDOC01-appb-T000010
[実施例9]
 実施例9は、実施例2で用いた粉砕物から剥離した「ポリアミド(ナイロン6)樹脂層」を用いて、加水分解条件を更に検討した。
 すなわち、実施例2において、上記「ポリアミド(ナイロン6)樹脂層」を用いて、水熱反応処理条件を下記表11に示す条件に変更したこと以外は、実施例2と同様にして、「ポリアミド(ナイロン6)樹脂層」を水熱反応処理(加水分解)して、ε-カプロラクタムの回収率を算出した。その結果を表11に示す。
 表11に示されるように、反応時間が高温になるほど、反応時間を短くしてもε-カプロラクタムを比較的高い回収率で回収できることが分かる。
Figure JPOXMLDOC01-appb-T000011
[実施例10]
 実施例10は、実施例2で用いた粉砕物から剥離した「ポリエチレン(LLDPE)樹脂層」を用いて、平均分子量維持率を更に検討した。
 すなわち、実施例2において、上記「ポリエチレン(LLDPE)樹脂層」を用いて、水熱反応処理条件を下記表12に示す条件に変更したこと以外は、実施例2と同様にして、「ポリエチレン(LLDPE)樹脂層」を水熱反応処理(加水分解)して、ポリエチレンの平均分子量維持率を算出した。その結果を表12に示す。
 表12に示されるように、水熱反応処理の反応時間が短い方が、ポリエチレンの平均分子量維持率は高くなる傾向が分かる。
Figure JPOXMLDOC01-appb-T000012
[実施例11]
 実施例11は、実施例1で用いた粉砕物から剥離した「ポリエチレンテレフタレート樹脂層」を用いて、酸又は塩基の存在下で水熱反応処理を行い、エチレングリコールの回収率を検討した。
 すなわち、実施例1において、上記「ポリエチレンテレフタレート樹脂層」を、純水中、0.1質量%HNO水溶液中又は0.1質量%NH水溶液中において、下記表13に示す水熱反応処理条件で水熱反応処理を行ったこと以外は、実施例1と同様にして、「ポリエチレンテレフタレート樹脂層」を水熱反応処理(加水分解)して、エチレングリコールの回収率を算出した。その結果を表13に示す。
 表13に示されるように、水熱反応処理を、酸又は塩基の存在下で行うと、好ましくは塩基の存在下で行うと、エチレングリコールの回収率が向上することが分かる。
Figure JPOXMLDOC01-appb-T000013
[実施例12]
 実施例12は、実施例1及び実施例2で用いた粉砕物から剥離した「ポリエチレン(LDPE)樹脂層」及び「ポリエチレン(LLDPE)樹脂層」を用いて、大気環境下又は窒素ガス環境下で水熱反応処理を行い、数平均分子量の維持率を検討した。
 すなわち、窒素ガス雰囲気にしたグローブボックスに水を一晩静置後、このグローブボックス内で反応管(内容積10cm)に、各樹脂層(0.5g)と(5cm)を導入して、窒素ガスをパージした。なお、大気環境下で行う場合は、窒素ガスのパージを省いた。この反応管を溶融塩浴に投入して、表14に記載の反応温度及び反応時間で水熱反応処理を行った。水熱反応処理後に反応管を水冷して処理物をろ過(固液分離)して、固体を得た。
 この固体を、実施例1における<回収した非加水分解性ポリマーの平均分子量維持率の測定>と同様にして、数平均分子量を測定し、平均分子量維持率を算出した。その結果を表14に示す。
 表14に示されるように、窒素ガス等の酸素ガス非存在環境下で水熱反応処理を行うと、回収されるポリエチレンの分子量維持率を更に高めることができることが分かる。
Figure JPOXMLDOC01-appb-T000014
[実施例13]
 実施例13は、「ポリプロピレン樹脂層」を用いて、窒素ガス環境下で水熱反応処理を行い、数平均分子量の維持率を検討した。
 すなわち、窒素ガス雰囲気にしたグローブボックスに水を一晩静置後、このグローブボックス内で反応管(内容積10cm)に、水熱処理CPP(無延伸ポリプロピレン)又はOPP(二軸延伸ポリプロピレン)の各0.5gと水5cmを導入して、窒素ガスをパージした。この反応管を溶融塩浴に投入して、表15に記載の反応温度及び反応時間で水熱反応処理を行った。水熱反応処理後に反応管を水冷して処理物をろ過(固液分離)して、固体を得た。
 この固体を、実施例1における<回収した非加水分解性ポリマーの平均分子量維持率の測定>と同様にして、数平均分子量を測定し、平均分子量維持率を算出した。その結果を表15に示す。
 表15に示されるように、窒素ガス等の酸素ガス非存在環境下で水熱反応処理を行うと、ポリエチレンよりも分解しやすいポリプロピレンであっても、十分な分子量維持率で回収できることが分かる。
Figure JPOXMLDOC01-appb-T000015
[実施例14]
 サンプルとして廃プラスチックである「ポリアミド(ナイロン6)樹脂層とポリエチレン(LDPE)樹脂層と接着層が積層してなる多層フィルム(ポリアミド含量25.2質量%)」の粉砕物(0.5g)を用いたこと以外は、実施例3と同様にして、下記表16に示す水熱反応処理条件で、固体状の非加水分解性ポリマーと、水相に溶解している加水分解成分a3を回収した。水熱反応処理において粉砕物は溶融し、非加水分解性ポリマーは溶融状態で水相から分離していた。回収した非加水分解性ポリマーと加水分解成分a3を同定したところ、非加水分解性ポリマーはポリエチレンであり、加水分解成分a3はε-カプロラクタムであった。
 加水分解成分a3を同定し、その回収率を算出した。得られた結果を表16に示す。
<加水分解成分a3の同定>
 加水分解成分a3は水に溶解し、下記条件でHPLCを測定して保持時間の一致により同定した。
LC装置:Agilent Technologies製1200型
MS装置:Agilent Technologies製6140型
カラム:Imtakt製Scherzo SW-C18
カラム温度:35℃
移動相A:0.01%ギ酸水溶液
移動相B:200mMギ酸アンモニウム水溶液/アセトニトリル=1/1(v/v)
検出器:PDA、MS
イオン化法、極性:エレクトロスプレーイオン化法(ESI)、Positive
Figure JPOXMLDOC01-appb-T000016
[実施例15]
 内容積10cmの反応管に、サンプルとして廃プラスチックである「ポリアミド(ナイロン6/66)樹脂層とポリエチレン(LDPE)樹脂層と接着層が積層してなる多層フィルム(ポリアミド含量24.7質量%)」の粉砕物(0.5g)を用いたこと以外は、実施例4と同様にして、下記表17に示す水熱反応処理条件で、固体状の非加水分解性ポリマーと、水相に溶解している加水分解成分a3を回収した。水熱反応処理において粉砕物は溶融し、非加水分解性ポリマーは溶融状態で水相から分離していた。回収した非加水分解性ポリマーと加水分解成分a3を同定したところ、非加水分解性ポリマーはポリエチレンであり、加水分解成分a3はε-カプロラクタムであった。
 加水分解成分a3を同定し、その回収率を算出した。得られた結果を表17に示す。
<加水分解成分a3の同定>
 加水分解成分a3は水に溶解し、下記条件でHPLCを測定して保持時間の一致により同定した。
LC装置:Agilent Technologies製1200型
MS装置:Agilent Technologies製6140型
カラム:Imtakt製Scherzo SW-C18
カラム温度:35℃
移動相A:0.01%ギ酸水溶液
移動相B:200mMギ酸アンモニウム水溶液/アセトニトリル=1/1(v/v)
検出器:PDA、MS
イオン化法、極性:エレクトロスプレーイオン化法(ESI)、Positive
Figure JPOXMLDOC01-appb-T000017
[実施例16]
 実施例16は、「ポリアミド(ナイロン6)樹脂層とポリエチレン(LDPE)樹脂層と接着層が積層してなる多層フィルム(ポリアミド含量25.2質量%)」の粉砕物を用いて、水熱反応処理条件の水量を検討した。
 すなわち、実施例3において、上記「ポリアミド(ナイロン6)樹脂層とポリエチレン(LDPE)樹脂層と接着層が積層してなる多層フィルム」を用いて、水熱反応処理条件を下記表18に示す条件に変更したこと以外は、実施例3と同様にして、固体状の非加水分解性ポリマーと、水相に溶解している加水分解成分a3を回収した。水熱反応処理において粉砕物は溶融し、非加水分解性ポリマーは溶融状態で水相から分離していた。回収した非加水分解性ポリマーと加水分解成分a3を同定したところ、非加水分解性ポリマーはポリエチレンであり、加水分解成分a3はε-カプロラクタムであった。
 加水分解成分a3を同定し、その回収率を算出した。得られた結果を表18に示す。
 表18における「加水質量比率」とは、水熱反応処理工程において、使用した多層フィルムの単位質量当たりの、使用した水の質量割合を示す。なお、多層フィルム100質量部に対する水の使用量は「加水質量比率」の数値を100倍にした値となる。
<加水分解成分a3の同定>
 加水分解成分a3は水に溶解し、下記条件でHPLCを測定して保持時間の一致により同定した。
LC装置:Agilent Technologies製1200型
MS装置:Agilent Technologies製6140型
カラム:Imtakt製Scherzo SW-C18
カラム温度:35℃
移動相A:0.01%ギ酸水溶液
移動相B:200mMギ酸アンモニウム水溶液/アセトニトリル=1/1(v/v)
検出器:PDA、MS
イオン化法、極性:エレクトロスプレーイオン化法(ESI)、Positive
Figure JPOXMLDOC01-appb-T000018
[実施例17]
 実施例17は、「ポリアミド(ナイロン6/66)樹脂層とポリエチレン(LDPE)樹脂層と接着層が積層してなる多層フィルム(ポリアミド含量24.7質量%)」の粉砕物を用いて、水熱反応処理条件の水量を検討した。
 すなわち、実施例4において、上記「ポリアミド(ナイロン6/66)樹脂層とポリエチレン(LDPE)樹脂層と接着層が積層してなる多層フィルム」を用いて、水熱反応処理条件を下記表19に示す条件に変更したこと以外は、実施例4と同様にして、固体状の非加水分解性ポリマーと、水相に溶解している加水分解成分a3を回収した。水熱反応処理において粉砕物は溶融し、非加水分解性ポリマーは溶融状態で水相から分離していた。回収した非加水分解性ポリマーと加水分解成分a3を同定したところ、非加水分解性ポリマーはポリエチレンであり、加水分解成分a3はε-カプロラクタムであった。
 加水分解成分a3を同定し、その回収率を算出した。得られた結果を表19に示す。
<加水分解成分a3の同定>
 加水分解成分a3は水に溶解し、下記条件でHPLCを測定して保持時間の一致により同定した。
LC装置:Agilent Technologies製1200型
MS装置:Agilent Technologies製6140型
カラム:Imtakt製Scherzo SW-C18
カラム温度:35℃
移動相A:0.01%ギ酸水溶液
移動相B:200mMギ酸アンモニウム水溶液/アセトニトリル=1/1(v/v)
検出器:PDA、MS
イオン化法、極性:エレクトロスプレーイオン化法(ESI)、Positive
Figure JPOXMLDOC01-appb-T000019
[実施例18]
 実施例18は、「ポリアミド(ナイロン6)樹脂層とポリエチレン(LDPE)樹脂層と接着層が積層してなる多層フィルム(ポリアミド含量25.2質量%)」の粉砕物を用いて、水熱反応処理条件の原料形状の影響を検討した。
 すなわち、サンプルとして上記「ポリアミド(ナイロン6)樹脂層とポリエチレン(LDPE)樹脂層と接着層が積層してなる多層フィルム」(0.5g、表20の「原料形状」欄に示すサイズの矩形に切り出したもの)と水(5cm)を用いたこと以外は、実施例3と同様にして、下記表20に示す水熱反応処理条件で水熱反応処理を行って、固体状の非加水分解性ポリマーと、水相に溶解している加水分解成分a3を回収した。水熱反応処理において粉砕物は溶融し、非加水分解性ポリマーは溶融状態で水相から分離していた。回収した非加水分解性ポリマーと加水分解成分a3を同定したところ、非加水分解性ポリマーはポリエチレンであり、加水分解成分a3はε-カプロラクタムであった。
 加水分解成分a3を同定し、その回収率を算出した。得られた結果を表20に示す。
<加水分解成分a3の同定>
 加水分解成分a3は水に溶解し、下記条件でHPLCを測定して保持時間の一致により同定した。
LC装置:Agilent Technologies製1200型
MS装置:Agilent Technologies製6140型
カラム:Imtakt製Scherzo SW-C18
カラム温度:35℃
移動相A:0.01%ギ酸水溶液
移動相B:200mMギ酸アンモニウム水溶液/アセトニトリル=1/1(v/v)
検出器:PDA、MS
イオン化法、極性:エレクトロスプレーイオン化法(ESI)、Positive
Figure JPOXMLDOC01-appb-T000020
[実施例19]
 実施例19は、「ポリアミド(ナイロン6/66)樹脂層とポリエチレン(LDPE)樹脂層と接着層が積層してなる多層フィルム(ポリアミド含量24.7質量%)」の粉砕物を用いて、水熱反応処理条件の原料形状の影響を検討した。
 すなわち、サンプルとして上記「ポリアミド(ナイロン6/66)樹脂層とポリエチレン(LDPE)樹脂層と接着層が積層してなる多層フィルム」(0.5g、表21の「原料形状」欄に示すサイズの矩形に切り出したもの)と水(5cm)を用いたこと以外は、実施例3と同様にして、下記表21に示す水熱反応処理条件で水熱反応処理を行って、固体状の非加水分解性ポリマーと、水相に溶解している加水分解成分a3を回収した。水熱反応処理において粉砕物は溶融し、非加水分解性ポリマーは溶融状態で水相から分離していた。回収した非加水分解性ポリマーと加水分解成分a3を同定したところ、非加水分解性ポリマーはポリエチレンであり、加水分解成分a3はε-カプロラクタムであった。
 加水分解成分a3を同定し、その回収率を算出した。得られた結果を表21に示す。
<加水分解成分a3の同定>
 加水分解成分a3は水に溶解し、下記条件でHPLCを測定して保持時間の一致により同定した。
LC装置:Agilent Technologies製1200型
MS装置:Agilent Technologies製6140型
カラム:Imtakt製Scherzo SW-C18
カラム温度:35℃
移動相A:0.01%ギ酸水溶液
移動相B:200mMギ酸アンモニウム水溶液/アセトニトリル=1/1(v/v)
検出器:PDA、MS
イオン化法、極性:エレクトロスプレーイオン化法(ESI)、Positive
Figure JPOXMLDOC01-appb-T000021
[参考例1]
 市販の自動車ドアハンドル(熱可塑性樹脂成形体はPC/ABS共重合体製、機能付与層として金属メッキ層)を、ハンマーにより人力で数センチメートル大(差し渡し幅は概ね3~5cm程度)に破砕した(1回目の機械的処理)が、粉砕できなかった。そのため、粉砕装置としてオリエントミル(オリエント粉砕機社製)を用いて、自動車ドアハンドルを破砕した。条件としては、資料投入量約3kg、破砕時間600秒とした。こうして2回目の機械的処理を行い、8mm及び10mmのふるいを通過したものを、集めた。得られた粉砕物を確認したところ、金属メッキ層は完全に剥離していなかったものの、金属メッキを主成分とする粉末が生成した。
 次いで、内容積100cmの反応管に、2回目の機械的処理で得られたドアハンドルの粉砕物2.99gと水(50cm)を導入して、密封した。この反応管を溶融塩浴に投入して、水熱処理温度250℃、水熱処理時間1時間の水熱処理条件で、水熱処理した。その結果、ポリマー成分であるPC及びABSの軟化点はそれぞれ150℃及び80~110℃ではあるが、水熱処理に供した破片はその形状をほぼ保ったまま「おこし状」(具体的には、個々の破片の形状はほぼ保ったまま表面同士が融着した結果、隙間のある大きな塊となった状態)に融着していた。これは、ここでの水熱処理は、撹拌は意図的に行わない静置条件であったため、自重での粘性流動は事実上起きない(熱的な「へたり」は起きない)高粘度の状態を保持したためであるものと推定された。メッキ層は概ねポリマーに付着していたが、爪の先で引っ掻くと容易に剥離する状態であったことから、軽い機械的処理を付加することで容易にメッキ層を剥離し、これをポリマーとの比重差等の原理で分離可能であるものと推定された。更に、真っ白い微粉の副生が目視で確認されたことから、これは、PCが加水分解して生成したビスフェノールAであると推定された。以上のことから、自重での粘性流動は事実上起きないような実質的に軟化点を下回る温度条件の水熱処理により、メッキ層は剥離可能であり、PCの加水分解生成物(ビスフェノールAと推定)をケミカルリサイクルできることがわかった。
 表2及び表4~表21に示されるように、加水分解性ポリマーを含む樹脂層と非加水分解性ポリマーを含む樹脂層とを含む混合体を水熱反応処理することにより、混合体中の加水分解性ポリマーAを加水分解して分離させ、加水分解性ポリマーAをその原料化合物としてケミカルリサイクルすることができる。また、混合体中の非加水分解性ポリマーBをその分子量分布を良好に維持しながら溶融状態で分離させて、非加水分解性ポリマーBを平均分子量の低下を抑えたポリマーとしてマテリアルリサイクルすることができる。この水熱反応処理において、加水分解性ポリマーAの加水分解成分aを固体として析出すること(非加水分解性ポリマーへの混入)を避けることもできる。特に非加水分解性ポリマーBがPE(LDPE、LLDPE)である場合、マテリアルリサイクルされたPEの分子量は水熱処理条件に大きく依存し、処理温度の上昇、処理時間の延長により低下した。(特にLLDPEは)狭い分子量分布を保ったまま分子量が低下することも分かる。
 また、水熱反応処理条件として上述の各領域内、例えば点A~点Dを頂点とする四角形の領域内に含まれる条件で水熱反応処理を行うと、加水分解性ポリマーAの原料化合物、又は、平均分子量維持率の高い非加水分解性ポリマーBを高いリサイクル率でリサイクルできる。
 以上の結果から、加水分解性ポリマーAと非加水分解性ポリマーBとを含む混合体であっても、混合体中の加水分解性ポリマーAを加水分解して分離させるとともに、混合体中の非加水分解性ポリマーBをその分子量分布を良好に維持した状態で分離させて、ハイブリッドリサイクルが可能となることが分かる。
[実施例A:機械的処理、吸水処理及び加熱前処理の効果検証実験]
 上述のB/A/B構造の多層フィルムと、各種加水分解性ポリマーAの単体とを用いて下記実施例に示す分離回収方法を行うことによって、水熱反応処理に付す混合体に含まれる加水分解性ポリマー(各種)を加熱前処理において効果的に加水分解させること、並びに、かかる加熱前処理により非加水分解性ポリマーB(代表例はPE)を劣化せずにマテリアルリサイクルに好適となることを示す。その共通操作を以下に説明する。
 
<共通操作(1):真空乾燥処理>
 各出発試料(通常の室内の温度及び湿度の条件下に保管されていたもの。フィルム試料の場合ははさみで適当な大きさに裁断した。)を精秤し、120℃に温度設定した(後述するPE/PA6/PE3層フィルムに限りPE部分の軟化・融着を避けるために90℃に設定した。)真空オーブン中で一晩乾燥した。この真空乾燥前後の質量差から出発試料の状態での吸水率(質量%)を算出した。この真空乾燥で得た試料を「絶乾試料」と呼ぶ場合がある。
<共通操作(2):飽和吸水処理>
 真空乾燥処理で得た各絶乾試料を、大気圧下、10倍質量の沸騰水中で加熱しながら(後述するPE/PA6/PE3層フィルムに限りPE部分の軟化・融着を避けるために水温を90℃に設定した。)、延べ24時間緩やかに撹拌した。この水中24時間加熱で得た試料を「飽和吸水試料」と呼ぶ場合がある。こうして得た各飽和吸水試料は、表面に付着している水をワイパーで拭き取り、手早く質量を測定して吸水率(質量%)を算出した。
<共通操作(3):加熱前処理>
 飽和吸水処理で得た各飽和吸水試料を、予め乾燥窒素気流(流速:100mL/分)で1分間パージした加熱容器(1/2インチ(直径10mm×長さ50mm)SUS316製スウェージロック配管、両端は1/4インチプラグで密栓可能)に装入し、両端を密栓した。この操作の途上で、加熱容器の風袋質量、試料装入直後の質量、窒素気流パージ後の質量をそれぞれ測定し、装入した試料の質量及び窒素気流パージ後の試料の質量を算出することにより、窒素パージによる含水率の低下の程度を把握した。試料を密封した加熱容器を、目標温度(150℃、200℃、250℃及び300℃のいずれか)に達している加熱炉(300℃の場合は高温加熱炉、それ以外は強制循環式乾燥器)の扉を開けて手早く静置した時点から1時間後に取り出し、室温の水中に投入して冷却した。
 冷却後、加熱容器外側の付着水を拭き取り、40℃で真空乾燥して付着水を除去した後、質量を測定した。加熱容器を大気圧下開封した直後、密栓して再度質量を測定した(化学反応により気体が発生している可能性に鑑み、放圧後の質量を測定する意図。実際には、実験者が感知できる気体の放出はなかった)。再度開封して加熱処理済みの試料を取り出した。試料が溶融した場合は、容器内壁に付着・残存して全量を回収できない場合があったが、目視観察及びGPCによる分子量分布測定に支障のない量を回収できた。
<加水分解挙動の評価>
 加熱前処理(モデル実験)で得られた回収物を、(A)目視観察(必要に応じて手で曲げたり刃物で切断したりして靭性の保持具合を定性的に確認)、並びに、(B)GPC測定により分子量分布を確認した(測定条件を以下説明する)。
(常温GPCの測定条件)
・GPC装置:HLC-8420GPC(東ソー製)
・カラム:TSKGel Super AWM-H (6.0mm径×15cm)×2本(東ソー製)
・検出器:示差屈折率計(RI検出器)、Polarity=(+)
・溶離液:1,1,1,3,3,3-ヘキサフルオロー2-プロパノール(略称HFIP;富士フイルム和光純薬製)+10mM-トリフルオロ酢酸ナトリウム塩
・流速:毎分0.3mL
・カラム温度:40℃
・試料濃度:1mg/mL。但し、後記実施例A-3の「PE/PA6/PE3層フィルム」についてはPA6部分の計算質量に基づく濃度とした。
・試料注入量:20μL
・試料前処理:試料を秤量し、所定量の溶離液を加えて室温で一晩静置溶解させた。緩やかに振り混ぜた後、孔径0.45μmのPTFEカートリッジフィルターでろ過した。目視観察により、後記実施例A-3の「PE/PA6/PE3層フィルム」の場合にのみ不溶解物が確認された。これはPE部分が溶解しなかったものと考えられた。
・検量線:標準PMMA(ポリメチルメタクリレート;Agilent Technologies製)を用いた3次元近似曲線。従って、これにより得られる値はPMMA換算分子量である。
(高温GPCの測定条件)
 後記実施例A-3の「PE/PA6/PE3層フィルム」を構成するPE部分の評価に関してのみ、この高温GPCを適用した。
・GPC装置:HLC-8320GPC/HT(東ソー製)
・カラム:TSKGel guardcolumnHHR(30)HT (7.5mm径×7.5cm)×1本+TSKGel GMHHR(20)HT (7.8mm径×30cm)×3本(いずれも東ソー製)
・検出器:示差屈折率計(RI検出器)、Polarity=(-)
・溶離液:1,2,4-トリクロロベンゼン(略称TCB;富士フイルム和光純薬製GPC用)+ジブチルヒドロキシトルエン(略称BHT;濃度は0.05wt%)
・流速:毎分1.0mL
・カラム温度:140℃
・試料濃度:1mg/mL
・試料注入量:0.3mL
・システム温度:40℃
・試料前処理:PE/PA6/PE3層フィルム又はその加熱前処理(モデル実験)で得られた試料を50mg秤量し、40mLの1,1,1,3,3,3-ヘキサフルオロー2-プロパノール(略称HFIP;富士フイルム和光純薬製)に室温で18時間浸け込んだ。試料(非溶解物)を取り出し、新たなHFIP(20mL)に室温で3時間浸け込んだ。溶け残った固体を室温の真空乾燥機で2時間乾燥した。こうして得た真空乾燥試料を秤量し、1mg/mLの濃度となる量のTCB(BHT含有)中で140℃1時間振盪溶解させた。全ての試料において微小かつ白色を呈した非溶解物が確認された。孔径0.5μmの焼結フィルターによる加熱濾過によりこの非溶解物を濾別し、可溶成分(溶液部分)のみをGPC測定に供した。
・検量線:標準ポリスチレン(東ソー製)を用いた5次元近似曲線を用い、Q-ファクターを用いてPE換算分子量に変換した。
[実施例A-1]
 実施例A-1は、実施例3で使用したPA6ペレット単体を処理対象として行った。
 このPA6ペレットを出発試料として使用し、前記共通操作(1)~(3)を行った。飽和吸水試料の段階での含水率は11.1質量%であった。共通操作(3)における処理温度は200℃(実施例A-1a)、250℃(実施例A-1b)及び300℃(実施例A-1c)の3水準とした。各温度の加熱処理による生成物(水分解性ポリマー)の下記分子量変化率は、それぞれ、83%、21%及び12%であった。
 
 分子量変化率(%)=[MwA/MwF]×100
 ここで、MwFは絶乾品の加水分解性ポリマーの重量平均分子量を示し、MwAは生成物水分解性ポリマーの重量平均分子量を示す。
 
 また、いずれの生成物も溶融した塊状であった。200℃処理の場合は、はさみで切れ込みを入れても割れない靭性を保持していたが、250℃処理では不透明感の増大とともに脆化し、300℃処理では全く不透明な蝋状(はさみで手ごたえなく軟らかく切れる、ポリマー特有の性質を喪失した状態)の生成物となった。
 以上の観察と分子量変化率(%)の結果から、飽和吸水状態のPA6は200℃以上で分子量が低下し、250℃以上では脆化や軟化が起きることがわかった。このことから、多層フィルムにおけるPA6層に予め吸水させておけば、200℃程度以上の温度条件で加熱前処理しておくことにより加水分解をある程度進めておくことが可能であること、250℃程度以上の温度条件では脆化又は軟化により、多層フィルム層間の接着性の低下や剥離の進行を伴って後段の水熱反応処理の条件を温和なものとできる可能性があることがわかった。なお、PA6の一般的に知られている融点(230℃程度)よりも低温である200℃における加熱でも溶融して塊状となった理由は、加水分解による分子量低下により低融点のフラクションが増大することで、試料全体の見かけの融点が低下して溶融・流動したためであると推定した。かかる流動開始による撹拌に類似した効果により加水分解反応は促進されると考えられた。
[実施例A-2]
 実施例A-2は、実施例A-1cにおいて、共通操作(2)を行わない(飽和吸水させない)他は、実施例A-1cと同様にして、PA6ペレット単体(絶乾状態)を処理対象として行った。
 その結果、300℃1時間加熱後の分子量変化率は109%であった。重量平均分子量は低下しないことから、絶乾状態であれば、PA6は300℃1時間の加熱を経ても分子量は実質的に保持されることが確認された。なお、この実験で、300℃1時間の加熱で絶乾状態のPA6単体の重量平均分子量Mwは若干増大して観測されたが、これは、含有されていた低分子量成分の揮発及び又は分子量分布を変化させる化学反応(例:重合反応、アミド交換反応)の進行が原因と推測された。
[実施例A-3]
 実施例A-3は、「厚み15μmのポリアミド(ナイロン6;略称はPA6)樹脂層と厚み50μmのポリエチレン(LLDPE)樹脂層をウレタン系接着剤でラミネートした積層フィルム」(PE/PA6/PE3層フィルムと略記する場合がある)を処理対象として行った。
 その結果、絶乾試料状態のGPC評価により、PA6及びPEの各部分の重量平均分子量Mwはそれぞれ7.1万および5.0万と観測された。
 出発試料の段階で意図的に機械的処理(刃物を用いた手作業による切り裂きと突き刺し)を施して、水の侵入経路又は加水分解反応点を増やすことを意図した。この機械的処理により作られた多数の傷の寸法を定規で測定・積算した結果、端面増加倍率は3.5倍であった。
 その上で、前記共通操作(1)~(3)を行った。飽和吸水試料の段階での含水率は2.93質量%であった。PE及びPAの各部分の比重はそれぞれ0.9及び1.1、PE部分の吸水はないと仮定し、前記各層の厚みを用いると、PA6部分の含水率は11.7質量%と算出されるので、ここでのPA6部分は実施例A-1における実測値(11.1質量%)と同等の吸水状態にあると推定した。共通操作(3)の処理温度は200℃(実施例A-3a)、250℃(実施例A-3b)及び300℃(実施例A-3c)とした。これら3つの実施例の生成物は、いずれもフィルムが融着した塊状であり、ところどころ剥離傾向の部分(発泡によると考えられた気泡と凹凸、ザラザラ感等)が観察された。これは、内層であるPA6の加水分解による自壊(脆化又は軟化や発泡)により、PEとの界面の接着性が弱くなったためと推測された。250℃処理品(実施例A-3b)では発泡(気泡)がより多く観察され、アミン臭が微かに感じられた。300℃処理品(実施例A-3c)は、不透明感とアミン臭が増した軟らかく手で簡単に折れる多孔質の塊であり、手で折り曲げて破断した断面はささくれと白化があったことから、PA6がもはやポリマー性を喪失して蝋状となった結果、PEとの接着界面が外力で容易に剥離する状態であるものと考えられた。
 GPC評価結果は、PA6部分の重量平均分子量Mwは200℃、250℃及び300℃の各処理品それぞれ6.5万、2.2万及び1.0万、PE部分の重量平均分子量Mwは200℃及び250℃の各処理品それぞれ5.2万及び5.1万(300℃処理品はGPC評価せず)であった。以上結果により、PA6部分は実施例A-1(PA6単体の吸水状態での加熱)と同様の加水分解による分子量低下挙動を示したこと、並びに、かかる加熱条件ではPE部分の分子量低下はないことが確認された。
 以上3つの実施例における機械的処理の効果に関する知見として、同一のPE/PA6/PE3層フィルムに300℃1時間の水熱反応処理を行った場合の形状(フィルム切り出しの寸法)によるカプロラクタム回収率の差が見られるという実験結果を得た。すなわち、フィルムの切り出し寸法を50mm×50mm及び5mm×5mmで比較すると、カプロラクタム回収率はそれぞれ64%及び85%であった。このカプロラクタム回収率は加水分解の程度の指標とみなせるものである。
 次に、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PA6/66(ナイロン6/66共重合体)及びPAMXD6(メタキシレンジアミンとアジピン酸を重合原料として得られるポリアミド)の各加水分解性ポリマーについて、実施例A-1と同様にして、各ポリマー単体に対して機械的処理、吸水処理及び加熱前処理の効果を検証した。その結果を以下に示す。
[実施例A-4:PET単体]
 東洋紡エステル(登録商標)フィルム E5102(商品名、東洋紡株式会社、PETフィルム)(絶乾試料状態の重量平均分子量Mwは2.4万)を出発試料として使用し、実施例A-1と同様の実験操作を行った。
 飽和吸水試料の段階での含水率は0.38質量%であった。共通操作(3)における処理温度は200℃及び250℃の2水準とした。GPC評価の結果、各温度の加熱処理による生成物の重量平均分子量Mwは、それぞれ、1.9万及び0.81万と観測された。200℃処理の場合は元のフィルム形状と靭性を保った生成物であったが、250℃処理では融着傾向の塊でありはさみで切り込みを入れると割れる脆性の生成物を与えた。このことから、多層フィルムにおけるPET層に予め吸水させておけば、200℃程度以上の温度条件で加熱前処理しておくことにより加水分解をある程度進めておくことが可能であること、250℃程度以上の温度条件では脆化により、多層フィルム層間の接着性の低下や剥離の進行を伴って後段の水熱反応処理の条件を温和なものとできる可能性があることがわかった。
[実施例A-5:PBT単体]
 三菱エンジニアリングプラスチックス株式会社製のPBT(登録商標「ノバデュラン」、グレード名「5008」。白色のペレット状、絶乾試料状態の重量平均分子量Mwは2.4万)を出発試料として使用し、実施例A-4と同様の実験操作を行った。
 飽和吸水試料の段階での含水率は0.56質量%であった。加熱処理生成物の重量平均分子量Mwは、200℃処理では2.1万、250℃処理では1.4万と観測された。200℃処理の場合は元のペレット形状と靭性を保った生成物であったが、250℃処理では溶融塊でありはさみで切り込みを入れると割れる脆性の生成物を与えたことから、実施例A-4と同様の考察と推測が可能である。
[実施例A-6:PA6/66単体]
 実施例5で使用したPA6/66(若干の透明感のある白色のペレット状、絶乾試料状態の重量平均分子量Mwは8.5万)を出発試料として使用し、実施例A-4と同様の実験操作を行った。
 飽和吸水試料の段階での含水率は13.4質量%であった。加熱処理生成物の重量平均分子量Mwは、200℃処理では6.6万、250℃処理では1.6万と観測された。200℃処理では靭性を保持した溶融塊を、250℃処理では不透明感が増した溶融塊でありはさみで切り込みを入れると軟らかく切れる蝋状の生成物を、それぞれ与えたことから、実施例A-4と同様の考察と推測が可能である。
[実施例A-7:PAMXD6単体]
 三菱エンジニアリングプラスチックス株式会社製のPAMXD6(登録商標「レニー」、グレード名「6000」。若干の透明感のある白色のペレット状、絶乾試料状態の重量平均分子量Mwは5.4万)を出発試料として使用し、実施例A-4と同様の実験操作を行った。
 飽和吸水試料の段階での含水率は7.0質量%であった。加熱処理生成物の重量平均分子量Mwは、200℃処理では3.9万、250℃処理では1.5万と観測された。200℃処理の場合は靭性を保ったペレット状(一部が融着)の生成物であったが、250℃処理では不透明感が増した溶融塊でありはさみで切り込みを入れると割れる脆性の生成物を与えたことから、実施例A-4と同様の考察と推測が可能である。
 以上の結果から、水熱反応処理に供する前に、混合体を吸水処理及び加熱前処理すると、加水分解性ポリマーAの回収率を維持もしくは向上し、非加水分解性ポリマーBの平均分子量維持率の低下を招かない、水熱反応処理の条件(具体的には処理温度の低温化)にでき、ハイブリッドリサイクルを更に低コストで実施可能となることが分かる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2021年6月18日本国で特許出願された特願2021-101556、及び2022年6月16日本国で特許出願された特願2022-097671に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (16)

  1.  加水分解性ポリマーAを主成分とする樹脂層1と、非加水分解性ポリマーBを主成分とする樹脂層2とを少なくとも含む混合体から、加水分解性ポリマーAの少なくとも1つの加水分解成分aと非加水分解性ポリマーBとを分離回収する方法であって、
     前記混合体を水熱反応処理に付して、前記混合体中の前記加水分解性ポリマーAを加水分解して分離させるとともに、前記混合体中の前記非加水分解性ポリマーBをその分子量を維持した状態で分離させる分解分離工程を有する、分離回収方法。
  2.  前記水熱反応処理を、101kPa(1atm)以上の圧力下において、処理時間(分)をx軸、処理温度(℃)をy軸とする直交座標系において、点A1(1,390)、点2(1,250)、点3(60,250)及び点4(60,375)を頂点とする四角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間で行う、請求項1に記載の分離回収方法。
  3.  前記水熱反応処理を、101kPa(1atm)以上の圧力下において、処理時間(分)をx軸、処理温度(℃)をy軸とする直交座標系において、点A(1,375)、点B(1,325)、点C(60,275)及び点D(60,300)を頂点とする四角形の領域内(境界線上を含む)に含まれる処理温度及び処理時間で行う、請求項1に記載の分離回収方法。
  4.  前記加水分解性ポリマーAの加水分解成分aを水相に移行させる、請求項1に記載の分離回収方法。
  5.  前記非加水分解性ポリマーBを水相から分離する、請求項1に記載の分離回収方法。
  6.  前記水熱反応処理に付す混合体を、その溶融物から固体成分を除去して得る、請求項1に記載の分離回収方法。
  7.  溶融状態で分離させた前記非加水分解性ポリマーBが前記水熱反応処理前の非加水分解性ポリマーBの平均分子量に対して少なくとも0.7倍の平均分子量を有している、請求項1に記載の分離回収方法。
  8.  前記加水分解成分aが、テレフタル酸、2,6-ナフタレンジカルボン酸、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、テトラヒドロフラン、アミノカプロン酸、ε-カプロラクタム、ヘキサメチレンジアミン及びアジピン酸、並びにこれらの誘導体からなる群から選択される1種又は2種以上の成分を含む、請求項1に記載の分離回収方法。
  9.  前記非加水分解性ポリマーBがポリエチレン、ポリプロピレン及びポリスチレンからなる群から選択される1種又は2種以上のポリマーである、請求項1に記載の分離回収方法。
  10.  前記混合体が積層体である、請求項1に記載の分離回収方法。
  11.  前記積層体が前記樹脂層1及び前記樹脂層2の少なくとも一方を2層以上有する、請求項9に記載の分離回収方法。
  12.  前記積層体が被覆層C及び接着層Dの少なくとも一方を有する、請求項9に記載の分離回収方法。
  13.  前記樹脂層1に含まれる前記加水分解性ポリマーAを100%としたとき、70%以上のモル割合で前記加水分解成分aを回収する請求項1に記載の分離回収方法。
  14.  吸水処理した前記水熱反応処理に付す前記混合体を加熱前処理する請求項1~13のいずれか1項に記載の分離回収方法。
  15.  前記加熱前処理を200~300℃の温度範囲で行う請求項14に記載の分離回収方法。
  16.  前記吸水処理に付す前記混合体に機械的処理を加える請求項14に記載の分離回収方法。
PCT/JP2022/024410 2021-06-18 2022-06-17 樹脂混合体の分離回収方法 WO2022265112A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22825099.9A EP4357397A1 (en) 2021-06-18 2022-06-17 Separation/collection method for resin mixture
KR1020247001577A KR20240023119A (ko) 2021-06-18 2022-06-17 수지 혼합체의 분리 회수 방법
CN202280042029.9A CN117529518A (zh) 2021-06-18 2022-06-17 树脂混合体的分离回收方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021101556 2021-06-18
JP2021-101556 2021-06-18
JP2022097671A JP2023001085A (ja) 2021-06-18 2022-06-16 樹脂混合体の分離回収方法
JP2022-097671 2022-06-16

Publications (1)

Publication Number Publication Date
WO2022265112A1 true WO2022265112A1 (ja) 2022-12-22

Family

ID=84526538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024410 WO2022265112A1 (ja) 2021-06-18 2022-06-17 樹脂混合体の分離回収方法

Country Status (3)

Country Link
EP (1) EP4357397A1 (ja)
KR (1) KR20240023119A (ja)
WO (1) WO2022265112A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271328A (ja) 1991-12-20 1993-10-19 Exxon Res & Eng Co 非加水分解性の廃プラスチックから加水分解性物質を分離する方法
JPH06198652A (ja) * 1993-01-06 1994-07-19 Mitsubishi Petrochem Co Ltd 塗装プラスチック成形体の処理方法及びその再生方法
JPH0892411A (ja) * 1994-09-19 1996-04-09 Mitsubishi Chem Corp ポリオレフィンの回収方法
JPH08302061A (ja) * 1995-04-27 1996-11-19 Mitsui Petrochem Ind Ltd 芳香族ポリエステル廃棄物から芳香族ジカルボン酸の回収方法
JPH11323006A (ja) 1998-05-14 1999-11-26 Agency Of Ind Science & Technol プラスチック多層成形品の分解方法及び付加重合体固形物の油化方法
JP2000169623A (ja) * 1998-12-10 2000-06-20 Is:Kk ポリエチレンテレフタレ―ト廃棄物のケミカルリサイクル方法
JP2007002160A (ja) * 2005-06-27 2007-01-11 Teijin Fibers Ltd 生分解性ポリエステルの解重合方法
JP2021101556A (ja) 2015-08-21 2021-07-08 株式会社半導体エネルギー研究所 半導体装置及び電子機器
JP2022097671A (ja) 2008-11-17 2022-06-30 株式会社三洋物産 遊技機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271328A (ja) 1991-12-20 1993-10-19 Exxon Res & Eng Co 非加水分解性の廃プラスチックから加水分解性物質を分離する方法
JPH06198652A (ja) * 1993-01-06 1994-07-19 Mitsubishi Petrochem Co Ltd 塗装プラスチック成形体の処理方法及びその再生方法
JPH0892411A (ja) * 1994-09-19 1996-04-09 Mitsubishi Chem Corp ポリオレフィンの回収方法
JPH08302061A (ja) * 1995-04-27 1996-11-19 Mitsui Petrochem Ind Ltd 芳香族ポリエステル廃棄物から芳香族ジカルボン酸の回収方法
JPH11323006A (ja) 1998-05-14 1999-11-26 Agency Of Ind Science & Technol プラスチック多層成形品の分解方法及び付加重合体固形物の油化方法
JP2000169623A (ja) * 1998-12-10 2000-06-20 Is:Kk ポリエチレンテレフタレ―ト廃棄物のケミカルリサイクル方法
JP2007002160A (ja) * 2005-06-27 2007-01-11 Teijin Fibers Ltd 生分解性ポリエステルの解重合方法
JP2022097671A (ja) 2008-11-17 2022-06-30 株式会社三洋物産 遊技機
JP2021101556A (ja) 2015-08-21 2021-07-08 株式会社半導体エネルギー研究所 半導体装置及び電子機器

Also Published As

Publication number Publication date
KR20240023119A (ko) 2024-02-20
EP4357397A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
EP3778744B1 (en) Processes for recycling polyethylene terephthalate
JP6519605B2 (ja) ポリエステルフィルム
CA3112586C (en) Continuous reprocessing of waste polyalkylene terephthalate
KR20180048675A (ko) 푸란디카르복실레이트 단위를 함유하는 폴리에스테르 필름
WO2021200754A1 (ja) 二軸延伸ポリエステル樹脂系フィルム及びその製造方法
JP5610383B2 (ja) ポリオレフィン類を含む複合プラスチックの分離方法とその分離装置
WO2018159648A1 (ja) フランジカルボン酸ユニットを有するポリエステルフィルムの製造方法
WO2022265113A1 (ja) 水熱処理による熱可塑性樹脂成形体の回収方法
US8293160B2 (en) Biaxially stretched polyamide resin film, and process for production thereof
TW201809145A (zh) 具有經改良的耐化學性之聚芳硫醚樹脂組成物
EP3938431A1 (en) A process and an apparatus for manufacturing bi-axially oriented polyester film from rpet
WO2017130952A1 (ja) 半導体パッケージの製造方法および半導体パッケージの製造工程用離型フィルム
WO2022265112A1 (ja) 樹脂混合体の分離回収方法
KR100635622B1 (ko) 폴리에스테르의 클리닝 및 오염 제거 방법
JP2023001085A (ja) 樹脂混合体の分離回収方法
CN114746247A (zh) 双轴取向聚酯薄膜和其制造方法
CN117529518A (zh) 树脂混合体的分离回收方法
JP6572703B2 (ja) ポリアリーレンスルフィドフィルム、及びそれを用いた金属・樹脂・フィルムの何れか1種以上との複合体からなる電池用部材、自動車用部材、電気・電子用部材
JP7512316B2 (ja) 樹脂組成物、成形体、包装体及び樹脂組成物の製造方法
WO2022265111A1 (ja) 分離回収装置
US20020130436A1 (en) Resin composition, method of molding the same, and method of recycling resin composition
WO2023054541A1 (ja) 環状オレフィン系樹脂の回収方法
WO2023157729A1 (ja) 二軸配向ポリエステルフィルム
JP2023001084A (ja) 分離回収装置
JP2022151607A (ja) 樹脂組成物、成形体、包装体及び樹脂組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280042029.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2301008166

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 18570704

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20247001577

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247001577

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022825099

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022825099

Country of ref document: EP

Effective date: 20240118