WO2022264905A1 - 転がり軸受の荷重推定装置、転がり軸受を備える機械装置の制御装置、荷重推定方法、およびプログラム - Google Patents

転がり軸受の荷重推定装置、転がり軸受を備える機械装置の制御装置、荷重推定方法、およびプログラム Download PDF

Info

Publication number
WO2022264905A1
WO2022264905A1 PCT/JP2022/023202 JP2022023202W WO2022264905A1 WO 2022264905 A1 WO2022264905 A1 WO 2022264905A1 JP 2022023202 W JP2022023202 W JP 2022023202W WO 2022264905 A1 WO2022264905 A1 WO 2022264905A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling bearing
load
vibration
estimating
rotation speed
Prior art date
Application number
PCT/JP2022/023202
Other languages
English (en)
French (fr)
Inventor
謹次 湯川
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to JP2023529825A priority Critical patent/JP7491471B2/ja
Priority to US18/282,389 priority patent/US20240035906A1/en
Priority to EP22824895.1A priority patent/EP4357611A1/en
Priority to CN202280022996.9A priority patent/CN117043571A/zh
Publication of WO2022264905A1 publication Critical patent/WO2022264905A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • F03D17/005Monitoring or testing of wind motors, e.g. diagnostics using computation methods, e.g. neural networks
    • F03D17/006Estimation methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • F03D17/009Monitoring or testing of wind motors, e.g. diagnostics characterised by the purpose
    • F03D17/011Monitoring or testing of wind motors, e.g. diagnostics characterised by the purpose for monitoring mechanical loads or assessing fatigue; for monitoring structural integrity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • F03D17/027Monitoring or testing of wind motors, e.g. diagnostics characterised by the component being monitored or tested
    • F03D17/032Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0244Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0292Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power to reduce fatigue
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • F03D80/703Shaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/527Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to vibration and noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/90Braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a rolling bearing load estimating device, a control device for a mechanical device equipped with rolling bearings, a load estimating method, and a program.
  • Patent Document 1 discloses a method of measuring the load based on the relative displacement between the outer ring and the inner ring in a main shaft bearing of a wind turbine generator.
  • Patent Literature 2 discloses a method of measuring vibration generated during rotational operation of a rolling bearing and calculating a load based on the frequency obtained from the measured vibration.
  • the method using a strain gauge or a displacement sensor like the technique of Patent Document 1 is difficult to install and is expensive, and the method using a vibration sensor or an ultrasonic sensor is difficult to measure with high accuracy.
  • the technique of Patent Document 2 may not be sufficient for applications where the rotational speed changes.
  • the load estimation based on the contact angle as in Patent Document 2 can only be applied to bearings whose contact angle changes according to the contact load, and the error is large unless the load is close to a pure axial load.
  • the load can be calculated when the rolling bearing is rotating in a stable state.
  • the present invention provides a device equipped with rolling bearings capable of prolonging the life and preventing defects by coping with changes in rotational speed caused by instantaneous changes in wind during rotation. intended to
  • a rolling bearing load estimating device comprising: a vibration sensor that measures vibration of the rolling bearing during rotation; a rotation speed sensor that measures the rotation speed of the rolling bearing during rotation; Derivation means for deriving a vibration value of a predetermined vibration frequency using vibration information measured by the vibration sensor; The rotation speed measured by the rotation speed sensor and the vibration value derived by the derivation means using a table that defines the correspondence between the load on the rolling bearing, the vibration value of the predetermined vibration frequency, and the rotation speed. and estimating means for estimating the load applied to the rolling bearing.
  • a rolling bearing load estimating device comprising: a vibration sensor that measures vibration of the rolling bearing during rotation; a rotation speed sensor that measures the rotation speed of the rolling bearing during rotation; Derivation means for deriving a vibration value of a predetermined vibration frequency using vibration information measured by the vibration sensor; Data composed of pairs of the load on the rolling bearing, the vibration value of the predetermined vibration frequency of the rolling bearing, and the rotation speed are used as learning data, and the load on the rolling bearing is used as output data to perform learning processing. Using the learned model, the rolling bearing corresponding to the vibration value of the predetermined vibration frequency derived by the deriving means and the rotational speed measured by the rotational speed sensor is loaded. and an estimating means for estimating the load.
  • a control device for a mechanical device comprising a rolling bearing, a load estimator; a control means; has
  • the load estimation device is a vibration sensor that measures vibration of the rolling bearing during rotation; a rotation speed sensor that measures the rotation speed of the rolling bearing during rotation; Derivation means for deriving a vibration value of a predetermined vibration frequency using vibration information measured by the vibration sensor; Data composed of pairs of the load on the rolling bearing, the vibration value of the predetermined vibration frequency of the rolling bearing, and the rotation speed are used as learning data, and the load on the rolling bearing is used as output data to perform learning processing.
  • the rolling bearing corresponding to the vibration value of the predetermined vibration frequency derived by the deriving means and the rotational speed measured by the rotational speed sensor is loaded.
  • estimating means for estimating the load has The control means controls at least one of torque about the shaft supported by the rolling bearing and rotation of the rolling bearing according to the load estimated by the estimation means.
  • a rolling bearing load estimation method comprising: a first measuring step of measuring vibrations of the rolling bearing during rotation; a second measuring step of measuring the rotational speed of the rolling bearing during rotation; a derivation step of deriving a vibration value of a predetermined vibration frequency using the vibration information measured in the first measurement step; The rotation speed measured in the second measurement step and the derivation step are derived using a table that defines the correspondence between the load on the rolling bearing, the vibration value of the predetermined vibration frequency, and the rotation speed. and an estimating step of estimating a load applied to the rolling bearing corresponding to the vibration value.
  • a rolling bearing load estimation method comprising: a first measuring step of measuring vibrations of the rolling bearing during rotation; a second measuring step of measuring the rotational speed of the rolling bearing during rotation; a derivation step of deriving a vibration value of a predetermined vibration frequency using the vibration information measured in the first measurement step; Data composed of pairs of the load on the rolling bearing, the vibration value of the predetermined vibration frequency of the rolling bearing, and the rotation speed are used as learning data, and the load on the rolling bearing is used as output data to perform learning processing.
  • a load is applied to the rolling bearing corresponding to the vibration value of the predetermined vibration frequency derived in the derivation step and the rotational speed measured in the second measurement step. and an estimating step of estimating the load that is applied.
  • another form of this invention has the following structures. That is, the program the computer, a first acquisition means for acquiring vibration information of the rotating rolling bearing; a second acquiring means for acquiring the rotational speed of the rolling bearing during rotation; Derivation means for deriving a vibration value of a predetermined vibration frequency using the vibration information; The rotation speed acquired by the second acquisition means and the derivation means derived by using a table that defines the correspondence between the load on the rolling bearing, the vibration value of the predetermined vibration frequency, and the rotation speed It functions as estimation means for estimating the load applied to the rolling bearing corresponding to the vibration value.
  • another form of this invention has the following structures. That is, the program the computer, a first acquisition means for acquiring vibration information of the rotating rolling bearing; a second acquisition means for acquiring information about the rotational speed of the rolling bearing during rotation; Derivation means for deriving a vibration value of a predetermined vibration frequency using the vibration information; Data composed of pairs of the load on the rolling bearing, the vibration value of the predetermined vibration frequency of the rolling bearing, and the rotation speed are used as learning data, and the load on the rolling bearing is used as output data to perform learning processing. Using the learned model, the rolling bearing corresponding to the vibration value of the predetermined vibration frequency derived by the derivation means and the rotational speed acquired by the second acquisition means is loaded. function as an estimating means for estimating the applied load.
  • FIG. 2 is a conceptual diagram for explaining the functional configuration and measurement according to the first embodiment; The figure which shows an example of the data detected by various sensors. The figure which shows an example of the data detected by various sensors.
  • the object to be measured is a wind turbine generator including rolling bearings, but is not limited to the wind turbine generator. It is possible to estimate the load.
  • FIG. 1 is a schematic configuration diagram of a wind power generator to which the load estimation method according to this embodiment is applied.
  • a wind turbine generator 10 includes a tower 11 erected on the ground or on the sea, a nacelle 12 supported on the upper end of the tower 11, and a rotor 13 provided at the end of the nacelle 12. It has A rotation mechanism 14 for adjusting the direction of the nacelle 12 (yaw control) is provided between the tower 11 and the nacelle 12 .
  • a drive train section 21 is stored in the nacelle 12 .
  • the drive train section 21 includes a main shaft 22 , a gearbox 23 , a generator 24 and a bearing unit 25 .
  • the main shaft 22 is connected to a generator 24 via a gearbox 23 .
  • the main shaft 22 is rotatably supported within the nacelle 12 by bearing units 25 .
  • a bearing unit 25 that supports the main shaft 22 is provided with a vibration sensor 27 to measure vibrations generated in the bearing unit 25 .
  • a rotation speed sensor 26 for detecting the rotation speed of the main shaft 22 is also provided.
  • the power generator 24 is provided with a power generation amount measuring device 31 for measuring the power generation amount.
  • the rotor 13 has a hub 16 and a plurality of blades 15. Blades 15 extend radially from hub 16 .
  • the rotor 13 is provided at the end of the main shaft 22 of the drive train section 21 .
  • the hub 16 adjusts the orientation of each of the plurality of blades 15 (pitch control) by controlling rotation around a rotation axis (not shown) corresponding to each of the plurality of blades 15 .
  • Rotational speed sensors 28 and 30 are provided on the rotor 13 side and the generator 24 side of the gearbox 23, respectively.
  • the rotation speed sensor 28 detects the rotation speed of the rotation shaft on the rotor 13 side (that is, the input side of the gearbox 23).
  • the rotation speed sensor 30 detects the rotation speed of the rotating shaft on the generator 24 side (that is, on the output side of the gearbox 23). Since the speed increaser 23 speeds up the rotation of the main shaft 22 via a gear (not shown) or the like, the rotational speeds of the input side and the output side of the rotating shaft fluctuate.
  • the gearbox 23 is provided with a vibration sensor 29 to measure vibrations generated in the gearbox 23 .
  • the drive train section 21 is provided with a braking device (not shown) for stopping or decelerating the rotation of the main shaft 22 as necessary.
  • the rotational speed sensor 26 provided for the bearing unit 25 and the rotational speed sensors 28 and 30 provided for the gearbox 23 may have the same configuration or may have different configurations.
  • a delay occurs between the main shaft 22 and the rotation shaft on the output side of the gearbox 23 because torque is transmitted by a plurality of rotation shafts and gears. Therefore, as shown in FIG. 2, it is more accurate to attach the rotational speed sensor 28 to the input side and the output side of the gearbox 23, but depending on the configuration, either one may be used.
  • the vibration sensor 27 provided for the bearing unit 25 and the vibration sensor 29 provided for the gearbox 23 may have the same configuration or may have different configurations.
  • FIG. 1 shows a configuration in which one bearing unit 25 is provided for one wind turbine generator 10 in order to simplify the explanation, but the configuration is not limited to this configuration.
  • a plurality of bearing units 25 may be provided in the wind turbine generator 10 .
  • FIG. 2 is a conceptual diagram for explaining the functional configuration and measurement according to this embodiment.
  • FIG. 2 shows the configuration of the gearbox 23 to which the load estimation by the load estimation method according to the present embodiment is applied, and the load estimation device 200 that performs the load estimation.
  • a rolling bearing 101 that supports a rotary shaft 105 that transmits the rotation of the main shaft 22 is provided in the speed increaser 23 .
  • the rolling bearing 101 can be applied to, for example, a tapered roller bearing, a cylindrical roller bearing, or the like, but is not limited to these.
  • FIG. 2 shows an example in which one rolling bearing 101 is provided in the gearbox 23 for the sake of simplicity of explanation.
  • the present invention is not limited to this configuration, and one gearbox 23 may be provided with a plurality of rolling bearings 101 .
  • components for transmitting rotation and increasing speed are further included in the speed increasing gear 23, but they are omitted here.
  • the speed increaser 23 is taken as an example of an object to which the load estimation method according to the present embodiment is applied, but the bearing unit 25 and the generator 24 may also be applied.
  • the load estimation device 200 may be provided inside the wind turbine generator 10 shown in FIG. 1 or may be provided outside the wind turbine generator 10 .
  • FIG. 2 shows a configuration in which one load estimation device 200 is provided for one gearbox 23 in order to simplify the explanation.
  • one load estimation device 200 performs load estimation on a plurality of wind turbine generators 10 (that is, a plurality of gearboxes 23, a plurality of bearing units 25, and a plurality of generators 24). may be configured to perform
  • the rolling bearing 101 rotatably supports the rotating shaft 105 .
  • the rotating shaft 105 is supported by a housing 100 covering the outside of the gearbox 23 or a planet carrier (not shown) via a rolling bearing 101 which is a rotating component.
  • the rolling bearing 101 includes a rotating ring fitted on the rotating shaft 105, an inner ring 104 which is a fixed ring fitted on a planetary shaft (not shown), a fixed ring fitted on the housing 100, or a planetary wheel (not shown). ), a plurality of rollers (balls), which are a plurality of rolling elements 103 arranged between the outer ring 102 and the inner ring 104 and the outer ring 102, and the rolling elements 103 are rotatably held.
  • a retainer (not shown) is provided.
  • lubrication method is not particularly limited, for example, grease lubrication, oil lubrication, or the like is used. Also, the type of lubricant is not particularly limited.
  • the speed increaser 23 is provided with a vibration sensor 29 that detects vibration generated from the rolling bearing 101 while the rotary shaft 105 is rotating.
  • the vibration sensor 29 is fixed in the vicinity of the outer ring of the housing 100 by bolting, bonding, bolting and bonding, embedding with a molding material, or the like.
  • a detent function may be provided in the case of fixing with bolts. It should be noted that the vibration sensor 29 is not limited to being fixedly installed at the detection position, and may be installed at a position for detecting vibration by the rolling bearing 101 during load estimation. Therefore, the vibration sensor 29 may be detachable or movable.
  • the vibration sensor 29 may be any device capable of detecting vibration, such as an acceleration sensor, an AE (Acoustic Emission) sensor, an ultrasonic sensor, a shock pulse sensor, etc. Anything that can convert vibration into an electric signal, such as a mold, can be used.
  • an acceleration sensor such as an acceleration sensor, an AE (Acoustic Emission) sensor, an ultrasonic sensor, a shock pulse sensor, etc. Anything that can convert vibration into an electric signal, such as a mold, can be used.
  • the vibration sensor 29 uses a vibration detection element such as a piezoelectric element, the element may be molded in plastic or the like.
  • the gearbox 23 is provided with a rotation speed sensor 28 that detects the rotation speed of the inner ring 104 fitted on the rotating shaft 105 .
  • the rotational speed sensor 28 arranged on the rotor 13 side will be described as an example.
  • the inner ring 104 which is a rotating ring
  • the rotating shaft 105 have the same rotational speed and rotational speed.
  • the torque and rotational speed of the rotating shaft 105 to which the rotation is transmitted from the main shaft 22 may vary depending on the direction and amount of wind received by the wind turbine generator 10, the wind pressure, the pitch angle and yaw angle of the blades 15, and the output of the generator 24.
  • the rotational speed can be regulated by a braking device (not shown).
  • the rotation speed sensor 28 may detect the rotation speed by detecting an encoder (not shown) provided on the inner ring 104 of the rolling bearing 101, for example. Note that the vibration sensor 29 and the rotational speed sensor 28 detect only at a specified timing (for example, when estimating the load) based on instructions from the user of the load estimating device 200 (for example, the administrator of the wind turbine generator 10). , or may be configured to always perform the detection operation.
  • the load estimation device 200 may be realized, for example, by an information processing device including a control device, a storage device, and an input/output device (not shown).
  • the control device may consist of a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Single Processor), or a dedicated circuit.
  • the storage device consists of volatile and non-volatile storage media such as HDD (Hard Disk Drive), ROM (Read Only Memory), RAM (Random Access Memory), etc.
  • Various information can be input and output according to instructions from the control device. It is possible.
  • the output device is composed of a display device such as a liquid crystal display, or a speaker and a light, and notifies the operator according to instructions from the control device.
  • the notification method by the output device is not particularly limited, but for example, it may be visual notification by screen output, auditory notification by sound, external Various input/output operations may be performed by transmitting/receiving data to/from a device (not shown).
  • the load estimation device 200 includes a vibration signal acquisition unit 201, a rotation speed acquisition unit 202, a vibration analysis unit 203, a load estimation unit 204, an information storage unit 205, a notification processing unit 206, a communication processing unit 207, and a mechanism control unit 208. consists of Each part may be implemented by reading out a corresponding program from the storage device and executing it by the control device described above. Furthermore, various operations such as notification operation and communication operation may be performed by the control device controlling the input/output device.
  • the vibration signal acquisition unit 201 acquires the electric signal detected by the vibration sensor 29 as vibration information.
  • the vibration signal acquisition unit 201 may perform A/D (Analog/Digital) conversion by an AD converter (not shown) or signal amplification processing by an amplifier (not shown) according to the content of the electrical signal.
  • the acquired vibration information is output to the information storage unit 205 .
  • the rotation speed acquisition unit 202 acquires the rotation speed of the rotation shaft 105 (or the inner ring 104) detected by the rotation speed sensor 28.
  • the acquired rotational speed information is output to the information storage unit 205 .
  • the vibration analysis unit 203 can apply envelope processing, predetermined filter processing, or the like to the vibration information stored in the information storage unit 205 .
  • a frequency band corresponding to the theoretical frequency of the rolling bearing 101 is extracted from the vibration information indicated by the electrical signal acquired by the vibration sensor 29 .
  • the contents of data processing or filtering here are not particularly limited, and LPF (Low Pass Filter) for removing predetermined high frequency components from vibration information, HPF (High Pass Filter) for removing predetermined low frequency components. may be performed. Alternatively, processing using a BPF (Band Pass Filter) that extracts a predetermined frequency component may be performed. Further, the vibration analysis unit 203 uses the filtered vibration information to perform frequency analysis of the vibration indicated by the vibration information.
  • vibration analysis unit 203 derives vibration values (acceleration, velocity, displacement) corresponding to the theoretical frequency of rolling bearing 101 . Note that it is not necessary to derive all of the acceleration, velocity, and displacement as the vibration value, and any one of them may be used.
  • the load estimation unit 204 estimates the load applied to the rolling bearing 101 based on the vibration value derived by the vibration analysis unit 203 .
  • the details of the estimation method according to this embodiment will be described later.
  • the information storage unit 205 timely receives and stores vibration information and rotation speed information output from the vibration signal acquisition unit 201 and the rotation speed acquisition unit 202 . At this time, the detection timings of the vibration sensor 29 and the rotational speed sensor 28 correspond to each other, and the detection information is associated and stored. In addition, the information storage unit 205 timely provides stored various information to other parts such as the vibration analysis unit 203 . Further, the information storage unit 205 may store the analysis result of the vibration analysis unit 203 and the estimation result of the load estimation unit 204 as history information.
  • the notification processing unit 206 performs notification processing based on the estimation result by the load estimation unit 204 .
  • a communication processing unit 207 controls communication with the outside via a network (not shown). For example, the communication processing unit 207 transmits the estimation result by the load estimation unit 204 to an external device (not shown).
  • the mechanism control unit 208 controls the operation of the wind turbine generator 10 based on the estimation result by the load estimation unit 204.
  • the rotation mechanism 14 may be controlled to adjust the orientation of the nacelle 12 (yaw control), or the hub 16 may be controlled to adjust the orientation of each of the plurality of blades 15 (pitch control).
  • the output of the generator 24 may be controlled.
  • a brake mechanism (not shown) may be used to control the rotation speed or rotation acceleration of the main shaft 22 to a predetermined value.
  • FIG. 3A and 3B are diagrams showing examples of data detected by various sensors.
  • FIG. 3A shows an example of vibration information detected by the vibration sensor 29.
  • FIG. The horizontal axis indicates time, and the vertical axis indicates signal strength (amplitude).
  • signals of various frequencies are synthesized.
  • Vibration information such as that shown in FIG. 3A is subjected to frequency analysis by performing envelope processing and filtering as necessary, thereby extracting vibration in a desired frequency band and deriving a vibration value.
  • FIG. 3B shows an example of detection information indicating the rotational speed of the rolling bearing 101 detected by the rotational speed sensor 28.
  • FIG. The horizontal axis indicates time, and the vertical axis indicates signal intensity.
  • the rotation speed of the rotating shaft 105 (or the inner ring 104) is specified according to the detection result of the pulse signal. It should be noted that the rotational speed may also fluctuate during one rotation of the rotating shaft 105 .
  • FIG. 4A and 4B are conceptual diagrams when estimating the load applied to the rolling bearing of the mechanical device.
  • FIG. 4A is data obtained by analyzing the vibration information of the mechanical device and deriving the relationship between the vibration frequency and the vibration value.
  • the mechanical device here is described as having three rolling bearings (bearing A, bearing B, and bearing C) incorporated therein, but the basic concept remains the same even if the number of rolling bearings is increased or decreased. be.
  • Each rolling bearing has a theoretical frequency determined from bearing specifications, and FIG. 4A shows the theoretical frequency of each rolling bearing and its higher-order frequencies.
  • Line 401 shows the theoretical frequency of bearing A and its higher frequencies.
  • Line 402 shows the theoretical frequency of bearing B and its higher frequencies.
  • Line 403 shows the theoretical frequency of bearing C and its higher frequencies.
  • Zfc Z ⁇ fc Zfi: Z x fi 2fb: 2 ⁇ fb fi: fr-fc Z (number of rolling elements [piece]), fc (revolution frequency of rolling elements [Hz]), fr (rotational frequency of inner ring [Hz]), and fb (rotational frequency of rolling elements [Hz]).
  • FIG. 4B shows one of the theoretical frequencies of the rolling bearing 101 in FIG. 4A.
  • the portion indicated by ⁇ in FIG. 4A (corresponding to the theoretical frequency of bearing A) is taken as an example.
  • attention is focused on the strength of the vibration value with respect to the theoretical frequency of the rolling bearing 101 and its higher-order (Nth-order) vibration frequency.
  • Nth-order vibration frequency it is derived that the higher the vibration value of the theoretical vibration frequency, the higher the load on the rolling bearing 101 .
  • the load is derived using a predefined table.
  • the rolling bearing 101 is in a state where the bearing load can be estimated (constant speed and constant torque) using a device that simulates the necessary parts of the mechanical device in which the rolling bearing 101 is actually used, or Rotate in a state where the bearing load can be measured with a strain gauge or the like. Then, by performing measurements while changing the load and rotation speed of the rolling bearing 101, the correspondence relationship between the load, the rotation speed, and the vibration (vibration value) of the generated vibration frequency is specified. Then, this correspondence relationship is defined in advance in the form of a table.
  • FIG. 9 shows an example of a table showing the correspondence between the vibration value of a predetermined vibration frequency and the load at each rotation speed.
  • the vibration value and the rotation speed may be defined in association with each other in units of a certain numerical range.
  • the table may further define the wind direction, wind volume, wind pressure, pitch angle of the blades 15, output of the generator 24, operating state of the brake device (not shown), etc. in association with each other.
  • the table may be defined in association with the deterioration state of the lubricant used in the rolling bearing 101 and the operation history of the rolling bearing 101 (total number of rotations, operating time, etc.).
  • a predefined table is stored in the information storage unit 205 .
  • the rotational speed may be used to determine which of the theoretical frequency and its higher-order vibration frequency the corresponding vibration value should be used for estimating the load.
  • noise may increase at the theoretical frequency and its higher-order vibration frequencies, so load estimation may be performed on vibration frequencies with less noise.
  • the vibration frequency of interest is defined in advance according to the rotation speed.
  • the configuration may be such that the average of the vibration values of the theoretical frequency and its higher-order vibration frequencies is used. As a result, even if noise is included at some vibration frequencies, it is possible to suppress its influence.
  • FIG. 5 is a flow chart of load estimation processing according to the present embodiment. This processing is executed by the load estimating device 200.
  • a control device (not shown) provided in the load estimating device 200 reads a program for realizing each part shown in FIG. may be realized.
  • the load estimation device 200 acquires vibration information of the rolling bearing 101 detected by the vibration sensor 27 and stored in the information storage unit 205 .
  • the structure which acquires the signal detected by the vibration sensor 29 directly may be sufficient.
  • the load estimation device 200 acquires the rotation speed of the rolling bearing 101 detected by the rotation speed sensor 28 and stored in the information storage unit 205 .
  • the structure which directly acquires the signal detected by the rotational speed sensor 28 may be sufficient.
  • the vibration information acquired in S501 and the rotation speed acquired in S502 correspond in detection timing.
  • the load estimation device 200 performs vibration analysis processing based on the vibration information acquired at S501.
  • a process of deriving a vibration value corresponding to each vibration frequency is performed using vibration information.
  • the vibration analysis process may be performed after performing the envelope process or the LPF or BPF filter process.
  • the load estimating device 200 determines the vibration frequency of interest from among the theoretical frequency of the rolling bearing 101 and its higher-order vibration frequencies, according to the rotational speed acquired at S502.
  • the correspondence between the vibration frequency of interest and the rotation speed is defined in advance, and is determined based on the correspondence. At this time, attention may be paid to one or more vibration frequencies.
  • the load estimation device 200 extracts the vibration value of the vibration frequency determined at S504 from the vibration analysis results obtained at S503.
  • the load estimation device 200 acquires the table from the information storage unit 205 .
  • the information storage unit 205 defines and stores a table in which the load, the rotation speed, and the vibration value of the predetermined vibration frequency are associated with each other.
  • the load estimation device 200 estimates the load on the rolling bearing 101 based on the rotation speed acquired at S502, the vibration value extracted at S505, and the table acquired at S506. Note that if it is determined in S504 to pay attention to a plurality of vibration frequencies, for example, the load may be derived based on the vibration value of each vibration frequency, and the largest load among them may be treated as the estimation result. Alternatively, the average load value derived based on the vibration value of each vibration frequency may be treated as the estimation result. Then, this processing flow ends.
  • the mechanical device does not require large-scale processing for estimating the load, and the load can be estimated at low cost.
  • learning processing is performed using this information, assuming that there is a correlation between the vibration value, rotational speed, and load in the rolling bearing.
  • FIG. 6 is a conceptual diagram for explaining the functional configuration and measurement according to this embodiment.
  • the load estimation device 200 includes a learned model management unit 601.
  • the learned model management unit 601 may be implemented by reading out a program corresponding to the control device described above from the storage device and executing it.
  • the learned model management unit 601 manages the learned model generated by the learning process performed in advance.
  • the trained model is described as being generated by the learning process performed in advance, but the learning process is performed again at a predetermined timing (for example, the timing when a certain amount of data is collected). It may be configured such that the learned model managed by the learned model management unit 601 is updated with the learned model generated as a result of execution.
  • the learning process may be configured to be executed by the load estimation device 200, or may be configured to be executed by an external learning server (not shown) connected via a network (not shown). may
  • the load estimation unit 204 acquires the learned model managed by the learned model management unit 601, and inputs the analysis result analyzed by the vibration analysis unit 203 to the learned model. treated as As a result, load estimation unit 204 estimates the output data output from the learned model as the load on rolling bearing 101 .
  • [Learning process] the theoretical frequency, vibration value, and rotational speed of the rolling bearing 101 are used as input data, and a learned model for outputting the load is generated.
  • the learning method according to the present embodiment uses supervised learning by a neural network, other methods (algorithms, etc.) may be used.
  • FIG. 7 is a diagram for explaining the concept of learning processing according to this embodiment.
  • the learning data used in this embodiment consists of a pair of input data and teacher data.
  • the input data includes, for example, the vibration frequency of the rolling bearing 101 (theoretical frequency and its higher-order vibration frequency), vibration value, and rotation speed.
  • a value indicating the load is output as output data.
  • the output data is compared with the teacher data (here, the value of the weight), and the weight in the learning model is adjusted according to the difference, so that the parameters of the learning model are Updated.
  • a trained model is generated by repeating this process. That is, in this embodiment, a trained model for estimating the load by regression is generated. As described above, the learning process may be repeated each time a certain amount of learning data is added, and the learned model may be updated with the learning results.
  • wind information for example, wind direction, wind volume, wind pressure, etc.
  • control information of the wind turbine generator 10 may be included.
  • the control device here may include, for example, control values for pitch and yaw by the blade 15 and rotation mechanism 14, and control values for a brake mechanism (not shown).
  • FIG. 8 is a flowchart of load estimation processing according to the present embodiment. This processing is executed by the load estimating device 200.
  • a control device (not shown) provided in the load estimating device 200 reads a program for realizing each part shown in FIG. may be realized.
  • the load estimation device 200 acquires vibration information of the rolling bearing 101 detected by the vibration sensor 29 and stored in the information storage unit 205 .
  • the structure which acquires the signal detected by the vibration sensor 29 directly may be sufficient.
  • the load estimation device 200 acquires the rotation speed of the rolling bearing 101 detected by the rotation speed sensor 28 and stored in the information storage unit 205 .
  • the structure which directly acquires the signal detected by the rotational speed sensor 28 may be sufficient.
  • the vibration information acquired in S801 and the rotational speed acquired in S802 correspond in detection timing.
  • the load estimation device 200 performs vibration analysis processing based on the vibration information acquired at S801.
  • a process of deriving a vibration value corresponding to each vibration frequency is performed using vibration information.
  • vibration analysis processing may be performed after performing envelope processing or filter processing using LPF, BPF, or the like.
  • the load estimating device 200 determines the vibration frequency of interest from among the theoretical frequency of the rolling bearing 101 and its higher-order vibration frequencies according to the rotational speed acquired at S802.
  • the correspondence between the vibration frequency of interest and the rotation speed is defined in advance, and is determined based on the correspondence.
  • the load estimation device 200 extracts the vibration value of the vibration frequency determined at S804 from the vibration analysis results obtained at S803.
  • the load estimation device 200 acquires a learned model.
  • the trained model is managed by the trained model management unit 601, and the latest trained model is acquired.
  • the load estimation device 200 applies the rotation speed acquired in S802, the vibration frequency determined in S804, and the vibration value extracted in S805 as input data to the trained model acquired in S806. Then, the load obtained as the output data is estimated as the load on the rolling bearing 101 . Then, this processing flow ends.
  • the mechanical device does not require large-scale processing for estimating the load, and the load can be estimated at low cost.
  • a third embodiment of the present invention will be described.
  • the description of the configuration that overlaps with that of the first embodiment will be omitted, and the description will focus on the differences.
  • a configuration will be described in which the load on the wind turbine generator 10 is estimated and then the wind turbine generator 10 is controlled based on the estimation result.
  • the device, functional configuration, signal configuration, etc. are the same as those described with reference to FIGS. 1 to 4 in the first embodiment.
  • FIG. 10 is a flow chart of control processing of the wind turbine generator 10 based on load estimation according to the present embodiment. This processing is executed by the load estimating device 200.
  • a control device (not shown) provided in the load estimating device 200 reads a program for realizing each part shown in FIG. may be realized.
  • the load estimation device 200 acquires vibration information of the rolling bearing 101 detected by the vibration sensor 27 and stored in the information storage unit 205 .
  • the structure which acquires the signal detected by the vibration sensor 29 directly may be sufficient.
  • the load estimation device 200 acquires the rotation speed of the rolling bearing 101 detected by the rotation speed sensor 28 and stored in the information storage unit 205 .
  • the structure which directly acquires the signal detected by the rotational speed sensor 28 may be sufficient.
  • the vibration information acquired in S1001 and the rotation speed acquired in S1002 correspond in detection timing.
  • the load estimation device 200 performs vibration analysis processing based on the vibration information acquired at S1001.
  • a process of deriving a vibration value corresponding to each vibration frequency is performed using vibration information.
  • vibration analysis processing may be performed after performing envelope processing or filter processing using LPF, BPF, or the like.
  • the load estimating device 200 determines the vibration frequency of interest from among the theoretical frequency of the rolling bearing 101 and its higher-order vibration frequency, according to the rotational speed acquired at S1002.
  • the correspondence between the vibration frequency of interest and the rotation speed is defined in advance, and is determined based on the correspondence. At this time, attention may be paid to one or more vibration frequencies.
  • the load estimation device 200 extracts the vibration value of the vibration frequency determined at S1004 from the vibration analysis result obtained at S1003.
  • the load estimation device 200 acquires the table from the information storage unit 205 .
  • the information storage unit 205 defines and stores a table in which the load, the rotation speed, and the vibration value of the predetermined vibration frequency are associated with each other.
  • load estimation device 200 load estimation device 200 estimates the load on rolling bearing 101 based on the rotation speed acquired at S1002, the vibration value extracted at S1005, and the table acquired at S1006. . If it is determined in S1004 to focus on a plurality of vibration frequencies, for example, the load may be derived based on the vibration value of each vibration frequency, and the largest load among them may be treated as the estimation result. Alternatively, the average load value derived based on the vibration value of each vibration frequency may be treated as the estimation result.
  • the load estimation device 200 determines whether or not the load estimated at S1007 is equal to or greater than the threshold.
  • the threshold here is defined in advance and stored in the information storage unit 205 .
  • the threshold may be a constant value, or may vary based on the operation history of the wind turbine generator 10 .
  • the threshold may be changed according to the total number of rotations of the rolling bearing 101 .
  • the load estimated in the past may be stored, and the threshold may be changed according to the accumulation of the load. More specifically, when the total number of rotations or the load accumulated in the past exceeds a certain value, the threshold value may be set low.
  • the control for reducing the load (the load on the wind turbine generator 10) (the process of S1009 in the latter stage) can be executed earlier. If the load is equal to or greater than the threshold (YES at S1008), the process of load estimation device 200 proceeds to S1009, and if it is less than the threshold (NO at S1008), the process of load estimation device 200 returns to S1001. to continue.
  • the load estimation device 200 controls the wind turbine generator 10 based on the load estimated at S1007. Details of this step will be described later with reference to FIG. Then, this processing flow ends.
  • FIG. 11 is a flow chart of control processing corresponding to the step of S1009 in FIG.
  • the load estimating device 200 sets the target torque and target rotation speed generated in the rotor 13 based on the estimated bearing load.
  • the target torque and target rotation speed may be defined, for example, based on the difference between the threshold used in S1008 and the estimated bearing load.
  • a table in which the difference is associated with the target torque and target rotation speed may be held, and the target torque and target rotation speed may be determined based on this table.
  • the target torque and target rotation speed are set to values that keep the load on rolling bearing 101 within an appropriate range. By setting within this range, the occurrence of excessive or insufficient load is suppressed.
  • the load estimation device 200 sets the target pitch (pitch angle) of the blades 15 based on the set target torque and target rotation speed.
  • the target pitch may be defined, for example, based on the difference between the threshold used in S1008 and the estimated load.
  • a table in which the difference is associated with the target pitch may be held, and the target pitch may be determined based on this table.
  • the target pitch is set to a value that keeps the load on the rolling bearing 101 within an appropriate range.
  • the load estimation device 200 performs pitch control of the blades 15 based on the target pitch set at S1102.
  • the control amount of the rotation around the rotor shaft (not shown) corresponding to each of the plurality of blades 15 may be determined in consideration of the time required to reach the target pitch.
  • the load estimation device 200 controls the rotation speed for adjusting the rotation speed by a brake mechanism (not shown) based on the detected rotation speed (the rotation speed acquired at S1002) and the target rotation speed set at S1101. Determine the amount of control.
  • the control amount may be determined in consideration of the time required to reach the target rotation speed.
  • the load estimating device 200 uses the control amount determined at S1105 to perform rotational speed adjustment control by a brake mechanism (not shown).
  • the load estimation device 200 sets the power generation amount of the generator 24 based on the set target torque and target rotation speed.
  • the power generation amount set here may be defined based on, for example, the difference between the threshold value used in S1008 and the estimated load.
  • a table in which the difference and the power generation amount are associated with each other may be held, and the power generation amount may be set based on this table.
  • the load estimation device 200 controls the power generation amount of the generator 24 based on the power generation amount set at S1107. After the pitch control (S1102-S1103), the rotation speed control (S1104-S1105) by the brake mechanism, and the power generation amount control (S1106-S1107) are performed, this processing flow ends.
  • pitch control (S1102-S1103), rotational speed control (S1104-S1105) by the brake mechanism, and power generation control (S1106-S1107) are controlled in parallel. It is not limited to parallel flow. For example, part of each control may be performed serially. Further, it may be configured such that one of the above three controls is not performed according to the difference between the load and the threshold.
  • the set values for the target pitch, target torque, and target rotation speed in the control process of FIG. 11 may be set in consideration of the past control history.
  • the set values used in the immediately preceding control process shown in FIG. 11 and the elapsed time from the immediately preceding control process are stored in a storage device, and the set values are derived using the history information.
  • the load is estimated in response to the momentary change in the rotational speed of the rolling bearing provided in the mechanical device, and the result of the estimation is used to control the mechanical device, thereby extending the life of the mechanical device. It is possible to prevent defects.
  • the mechanical device does not require large-scale processing for estimating the load, and the load can be estimated at low cost.
  • the frequency analysis may be performed by the normal (sampling time fixed) method or the order ratio analysis.
  • a program or application for realizing the functions of one or more embodiments described above is supplied to a system or device using a network or a storage medium, and one or more programs in the computer of the system or device It is also possible to implement a process in which the processor reads and executes the program.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the present invention is not limited to the above-described embodiments, and those skilled in the art can make modifications and applications by combining each configuration of the embodiments with each other, based on the description of the specification and well-known techniques. It is also contemplated by the present invention that it falls within the scope of protection sought.
  • a rolling bearing load estimating device comprising: a vibration sensor that measures vibration of the rolling bearing during rotation; a rotation speed sensor that measures the rotation speed of the rolling bearing during rotation; Derivation means for deriving a vibration value of a predetermined vibration frequency using vibration information measured by the vibration sensor; The rotation speed measured by the rotation speed sensor and the vibration value derived by the derivation means using a table that defines the correspondence between the load on the rolling bearing, the vibration value of the predetermined vibration frequency, and the rotation speed. and estimating means for estimating the load applied to the rolling bearing. According to this configuration, it is possible to estimate the load on the rolling bearing that can cope with momentary changes in the load during rotation.
  • a rolling bearing load estimating device comprising: a vibration sensor that measures vibration of the rolling bearing during rotation; a rotation speed sensor that measures the rotation speed of the rolling bearing during rotation; Derivation means for deriving a vibration value of a predetermined vibration frequency using vibration information measured by the vibration sensor; Data composed of pairs of the load on the rolling bearing, the vibration value of the predetermined vibration frequency of the rolling bearing, and the rotation speed are used as learning data, and the load on the rolling bearing is used as output data to perform learning processing. Using the learned model, the rolling bearing corresponding to the vibration value of the predetermined vibration frequency derived by the deriving means and the rotational speed measured by the rotational speed sensor is loaded. estimating means for estimating a load. According to this configuration, it is possible to estimate the load on the rolling bearing that can cope with momentary changes in the load during rotation.
  • the predetermined vibration frequency is one or more of the theoretical frequency of the rolling bearing and its higher-order vibration frequency.
  • Load estimator According to this configuration, it is possible to estimate the load corresponding to the configuration of the rolling bearing.
  • (5) further comprising determining means for determining a vibration frequency of interest from among the theoretical frequency of the rolling bearing and its higher-order vibration frequency based on the rotational speed measured by the rotational speed sensor;
  • the load estimation device according to any one of (1) to (4), wherein the derivation means derives the vibration value of the predetermined vibration frequency from the vibration frequency determined by the determination means.
  • a control device for a mechanical device comprising a rolling bearing, (1) to (8) the load estimating device; control means for controlling at least one of torque around the shaft supported by the rolling bearing and rotation of the rolling bearing according to the load estimated by the estimating means;
  • a control device comprising: According to this configuration, the load is estimated in response to an instantaneous change in the rotational speed of the rolling bearing provided in the mechanical device, and control is performed using the estimation result, thereby extending the life of the mechanical device and preventing defects. can be prevented.
  • the mechanical device is a wind turbine generator
  • the control means further performs at least one of blade pitch control, power generation amount control, or brake control provided in the wind power generator according to the load estimated by the estimation means
  • the control means is In the pitch control, based on the difference between the threshold value and the estimated load, the pitch angle is flattened when positive, and the pitch angle is raised when negative,
  • the brake mechanism In the control of the brake, based on the difference between the threshold and the estimated load, the brake mechanism is operated to reduce the rotation speed of the rotating shaft when the difference is positive, and the brake mechanism is disabled when the difference is negative.
  • the control device characterized by: According to this configuration, in the wind power generator, by performing pitch control and brake control according to the load, it is possible to reduce the load on the rolling bearings, extend the life of the mechanical equipment, and prevent defects. Become.
  • (12) further comprising storage means for storing control history information by the control means; Any one of (9) to (11), wherein the control means sets a torque about an axis supported by the rolling bearing and a control amount of rotation of the rolling bearing based on the control history. 1.
  • the control device according to 1. According to this configuration, by setting the next control amount according to the control history, more appropriate control becomes possible.
  • a rolling bearing load estimation method comprising: a first measuring step of measuring vibrations of the rolling bearing during rotation; a second measuring step of measuring the rotational speed of the rolling bearing during rotation; a derivation step of deriving a vibration value of a predetermined vibration frequency using the vibration information measured in the first measurement step; The rotation speed measured in the second measurement step and the derivation step are derived using a table that defines the correspondence between the load on the rolling bearing, the vibration value of the predetermined vibration frequency, and the rotation speed. and an estimating step of estimating a load applied to the rolling bearing corresponding to the vibration value. According to this configuration, it is possible to estimate the load on the rolling bearing that can cope with momentary changes in the load during rotation.
  • a method for estimating a load on a rolling bearing comprising: a first measuring step of measuring vibrations of the rolling bearing during rotation; a second measuring step of measuring the rotational speed of the rolling bearing during rotation; a derivation step of deriving a vibration value of a predetermined vibration frequency using the vibration information measured in the first measurement step; Data composed of pairs of the load on the rolling bearing, the vibration value of the predetermined vibration frequency of the rolling bearing, and the rotation speed are used as learning data, and the load on the rolling bearing is used as output data to perform learning processing.
  • a load is applied to the rolling bearing corresponding to the vibration value of the predetermined vibration frequency derived in the derivation step and the rotational speed measured in the second measurement step. and an estimating step of estimating the load that is applied. According to this configuration, it is possible to estimate the load on the rolling bearing that can cope with momentary changes in the load during rotation.
  • a computer a first acquisition means for acquiring vibration information of the rotating rolling bearing; a second acquiring means for acquiring the rotational speed of the rolling bearing during rotation; Derivation means for deriving a vibration value of a predetermined vibration frequency using the vibration information; The rotation speed acquired by the second acquisition means and the derivation means derived by using a table that defines the correspondence between the load on the rolling bearing, the vibration value of the predetermined vibration frequency, and the rotation speed
  • a computer (16) a computer; a first acquisition means for acquiring vibration information of the rotating rolling bearing; a second acquisition means for acquiring information about the rotational speed of the rolling bearing during rotation; Derivation means for deriving a vibration value of a predetermined vibration frequency using the vibration information; Data composed of pairs of the load on the rolling bearing, the vibration value of the predetermined vibration frequency of the rolling bearing, and the rotation speed are used as learning data, and the load on the rolling bearing is used as output data to perform learning processing. Using the learned model, the rolling bearing corresponding to the vibration value of the predetermined vibration frequency derived by the derivation means and the rotational speed acquired by the second acquisition means is loaded. A program for functioning as an estimating means for estimating the load that is applied. According to this configuration, it is possible to estimate the load on the rolling bearing that can cope with momentary changes in the load during rotation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Acoustics & Sound (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

転がり軸受の荷重推定装置は、回転中の前記転がり軸受の振動を測定する振動センサと、回転中の転がり軸受の回転速度を測定する回転速度センサと、振動センサにて測定された振動情報を用いて所定の振動周波数の振動値を導出する導出手段と、転がり軸受に対する荷重、所定の振動周波数の振動値、および回転速度の対応関係が規定されたテーブルを用いて、回転速度センサにて測定した回転速度と導出手段にて導出した振動値に対応する、転がり軸受に対して負荷されている荷重を推定する推定手段とを有する。

Description

転がり軸受の荷重推定装置、転がり軸受を備える機械装置の制御装置、荷重推定方法、およびプログラム
 本願発明は、転がり軸受の荷重推定装置、転がり軸受を備える機械装置の制御装置、荷重推定方法、およびプログラムに関する。
 従来、風車などの機械装置では、その内部に設けられる転がり軸受などの回転部品に対する荷重に合わせた制御を行うことが求められる。例えば、転がり軸受において、荷重が小さくなりすぎると自転滑りや公転滑りが発生してスミアリングが発生したり、その一方で、荷重が大きくなりすぎると早期はくりや異常発熱が発生したりするなどの不具合が生じる恐れがある。このような不具合は、装置の誤作動や短寿命化の原因となりうる。そのため、不具合を防止するために、転がり軸受に対して負荷されている荷重を測定するための方法が求められている。例えば、風力発電装置では、瞬間的な風向きや風量の変化が生じ、それらの変化に応じて転がり軸受の回転速度や荷重も変化する。このような急激な回転速度の変化に伴う荷重の変化は風力発電装置が備える転がり軸受の寿命に悪影響を与える。そのため、転がり軸受の状態を監視して状況に応じたフィードバック制御を行う方法が提案されている。また、例えば、風力発電装置では、瞬間的な風向きや風量の変化に応じて回転速度等の制御を行う必要がある。しかし、風力発電装置が安定した状態で回転している場合には荷重の計算は可能である。一方、瞬間的に回転数が変動回転している場合には荷重の計算は難しいため、荷重を実測することが求められるが、風の影響により瞬間的に回転速度が変動しうる環境下においては、回転動作中の荷重を測定することは困難であった。
 例えば、特許文献1では、風力発電装置の主軸軸受において外輪と内輪の相対変位に基づいて、荷重を測定する方法が開示されている。また、特許文献2では、転がり軸受の回転動作時において発生する振動を測定し、測定した振動から得られる周波数に基づいて荷重を演算する方法が開示されている。
日本国特開2010-159710号公報 日本国特開平11-002239号公報
 しかしながら、特許文献1の技術のようなひずみゲージ、または変位センサを用いる方法はそれらの取り付けは困難であり高コストとなり、また、振動センサ、超音波センサを用いる方法は精度の高い測定が難しい場合がある。特許文献2の技術では回転速度が変化する用途には十分ではない可能性がある。また、特許文献2のような接触角による荷重推定は接触荷重により接触角が変化する軸受にしか適用できず、また純アキシアル荷重に近い場合以外は誤差が大きい。つまり、従来の手法では、転がり軸受が安定した状態で回転している場合には、荷重の計算は可能である。しかし、風などの外的な要因により瞬間的に回転速度が変動し得る環境下においては、回転動作中の荷重を測定することは困難であった。
 上記課題を鑑み、本願発明は、回転動作中の瞬間的な風の変化に伴う回転速度の変化にも対応して、転がり軸受を備える装置の長寿命化や不具合防止を可能とすることを提供することを目的とする。
 上記課題を解決するために本願発明は以下の構成を有する。すなわち、転がり軸受の荷重推定装置であって、
 回転中の前記転がり軸受の振動を測定する振動センサと、
 回転中の前記転がり軸受の回転速度を測定する回転速度センサと、
 前記振動センサにて測定された振動情報を用いて所定の振動周波数の振動値を導出する導出手段と、
 前記転がり軸受に対する荷重、前記所定の振動周波数の振動値、および回転速度の対応関係が規定されたテーブルを用いて、前記回転速度センサにて測定した回転速度と前記導出手段にて導出した振動値に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定手段とを有する。
 また、本願発明の別の形態は以下の構成を有する。すなわち、転がり軸受の荷重推定装置であって、
 回転中の前記転がり軸受の振動を測定する振動センサと、
 回転中の前記転がり軸受の回転速度を測定する回転速度センサと、
 前記振動センサにて測定された振動情報を用いて所定の振動周波数の振動値を導出する導出手段と、
 前記転がり軸受に対する荷重と、前記転がり軸受の所定の振動周波数の振動値および回転速度との対から構成されるデータを学習用データとし、前記転がり軸受に対する荷重を出力データとして学習処理を行って得られた学習済みモデルを用いて、前記導出手段にて導出した前記所定の振動周波数の振動値と前記回転速度センサにて測定された回転速度に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定手段とを有する。
 また、本願発明の別の形態は以下の構成を有する。すなわち、転がり軸受を備える機械装置の制御装置であって、
 荷重推定装置と、
 制御手段と、
を有し、
 前記荷重推定装置は、
 回転中の前記転がり軸受の振動を測定する振動センサと、
 回転中の前記転がり軸受の回転速度を測定する回転速度センサと、
 前記振動センサにて測定された振動情報を用いて所定の振動周波数の振動値を導出する導出手段と、
 前記転がり軸受に対する荷重と、前記転がり軸受の所定の振動周波数の振動値および回転速度との対から構成されるデータを学習用データとし、前記転がり軸受に対する荷重を出力データとして学習処理を行って得られた学習済みモデルを用いて、前記導出手段にて導出した前記所定の振動周波数の振動値と前記回転速度センサにて測定された回転速度に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定手段と、
を有し、
 前記制御手段は、前記推定手段にて推定された荷重に応じて、前記転がり軸受に支持されている軸周りのトルク、および、前記転がり軸受の回転の少なくとも一方を制御する。
 また、本願発明の別の形態は以下の構成を有する。すなわち、転がり軸受の荷重推定方法であって、
 回転中の前記転がり軸受の振動を測定する第1の測定工程と、
 回転中の前記転がり軸受の回転速度を測定する第2の測定工程と、
 前記第1の測定工程にて測定された振動情報を用いて所定の振動周波数の振動値を導出する導出工程と、
 前記転がり軸受に対する荷重、前記所定の振動周波数の振動値、および回転速度の対応関係が規定されたテーブルを用いて、前記第2の測定工程にて測定した回転速度と前記導出工程にて導出した振動値に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定工程とを有する。
 また、本願発明の別の形態は以下の構成を有する。すなわち、転がり軸受の荷重推定方法であって、
 回転中の前記転がり軸受の振動を測定する第1の測定工程と、
 回転中の前記転がり軸受の回転速度を測定する第2の測定工程と、
 前記第1の測定工程にて測定された振動情報を用いて所定の振動周波数の振動値を導出する導出工程と、
 前記転がり軸受に対する荷重と、前記転がり軸受の所定の振動周波数の振動値および回転速度との対から構成されるデータを学習用データとし、前記転がり軸受に対する荷重を出力データとして学習処理を行って得られた学習済みモデルを用いて、前記導出工程にて導出した前記所定の振動周波数の振動値と前記第2の測定工程にて測定された回転速度に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定工程とを有することを特徴とする荷重推定方法。
 また、本願発明の別の形態は以下の構成を有する。すなわち、プログラムであって、
 コンピュータを、
 回転中の転がり軸受の振動情報を取得する第1の取得手段、
 回転中の前記転がり軸受の回転速度を取得する第2の取得手段、
 前記振動情報を用いて所定の振動周波数の振動値を導出する導出手段、
 前記転がり軸受に対する荷重、前記所定の振動周波数の振動値、および回転速度の対応関係が規定されたテーブルを用いて、前記第2の取得手段にて取得した回転速度と前記導出手段にて導出した振動値に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定手段として機能させる。
 また、本願発明の別の形態は以下の構成を有する。すなわち、プログラムであって、
 コンピュータを、
 回転中の転がり軸受の振動情報を取得する第1の取得手段、
 回転中の前記転がり軸受の回転速度の情報を取得する第2の取得手段、
 前記振動情報を用いて所定の振動周波数の振動値を導出する導出手段、
 前記転がり軸受に対する荷重と、前記転がり軸受の所定の振動周波数の振動値および回転速度との対から構成されるデータを学習用データとし、前記転がり軸受に対する荷重を出力データとして学習処理を行って得られた学習済みモデルを用いて、前記導出手段にて導出した前記所定の振動周波数の振動値と前記第2の取得手段にて取得した回転速度に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定手段として機能させる。
 本願発明により、回転動作中の瞬間的な風の変化に伴う回転速度の変化にも対応して、転がり軸受を備える装置の長寿命化や不具合防止が可能となる。
第1の実施形態に係る装置構成の例を示す概略図。 第1の実施形態に係る機能構成および測定を説明するための概念図 各種センサにて検出されるデータの一例を示す図。 各種センサにて検出されるデータの一例を示す図。 第1の実施形態に係る荷重推定の方法を説明するための概念図。 第1の実施形態に係る荷重推定の方法を説明するための概念図。 第1の実施形態に係る荷重導出処理のフローチャート。 第2の実施形態に係る機能構成および測定を説明するための概念図。 第2の実施形態に係る学習処理を説明するための概略図。 第2の実施形態に係る荷重導出処理のフローチャート。 各回転速度における所定の振動周波数の振動値と荷重の対応関係を表すテーブルの例を示す図。 第3の実施形態に係る風力発電装置の全体処理のフローチャート。 第3の実施形態に係る風力発電装置の荷重に基づく制御処理のフローチャート。
 以下、本願発明を実施するための形態について図面などを参照して説明する。なお、以下に説明する実施形態は、本願発明を説明するための一実施形態であり、本願発明を限定して解釈されることを意図するものではなく、また、各実施形態で説明されている全ての構成が本願発明の課題を解決するために必須の構成であるとは限らない。また、各図面において、同じ構成要素については、同じ参照番号を付すことにより対応関係を示す。
 <第1の実施形態>
 以下、本願発明の第1の実施形態について説明を行う。
 [装置構成]
 以下、本願発明に係る荷重推定方法を適用可能な装置の一実施形態を説明する。なお、以下の説明では、被測定物として、例えば、転がり軸受を含む風力発電装置を例にとって説明するが、風力発電装置に限定されず、それ以外の機械装置であっても同様に転がり軸受に対する荷重を推定することが可能である。
 図1は、本実施形態に係る荷重推定方法を適用された風力発電装置の概略構成図である。図1に示すように、風力発電装置10は、地上、あるいは洋上に立設されたタワー11と、タワー11の上端に支持されたナセル12と、ナセル12の端部に設けられたローター13とを備えている。また、タワー11とナセル12の間には、ナセル12の向きを調整(ヨー制御)するための回動機構14が備えられる。
 ナセル12には、ドライブトレイン部21が格納されている。ドライブトレイン部21は、主軸22、増速機23、発電機24、および軸受ユニット25を備える。主軸22は、増速機23を介して発電機24に接続されている。主軸22は、軸受ユニット25によってナセル12内に回転可能に支持されている。この主軸22を支持する軸受ユニット25には、振動センサ27が設けられて軸受ユニット25にて生じる振動を測定する。また、主軸22の回転速度を検出する回転速度センサ26が配設される。発電機24には、発電量を測定する発電量測定装置31が配設されている。
 ローター13は、ハブ16と、複数のブレード15とを有している。ブレード15は、ハブ16から放射状に延在されている。ローター13は、ドライブトレイン部21の主軸22の端部に設けられている。ハブ16は、複数のブレード15それぞれに対応する回転軸(不図示)周りの回転を制御することで、複数のブレード15それぞれの向きを調整(ピッチ制御)する。
 また、風力発電装置10は、増速機23や発電機24の回転軸も転がり軸受によって支持されている。増速機23のローター13側と発電機24側にそれぞれ、回転速度センサ28、30が備えられる。回転速度センサ28は、ローター13側(すなわち、増速機23の入力側)の回転軸の回転速度を検出する。また、回転速度センサ30は、発電機24側(すなわち、増速機23の出力側)の回転軸の回転速度を検出する。増速機23は、主軸22の回転を歯車(不図示)等を介して増速させるため、入力側と出力側の回転軸の回転速度が変動する。更に、増速機23には、振動センサ29が設けられて増速機23にて生じる振動を測定する。また、ドライブトレイン部21には、主軸22の回転を必要に応じて停止または減速させるためのブレーキ装置(不図示)が設けられている。なお、軸受ユニット25に対して備えられる回転速度センサ26と、増速機23に対して備えられる回転速度センサ28、30はそれぞれ同じ構成であってもよいし、異なる構成であってもよい。主軸22と増速機23の出力側の回転軸間は複数の回転軸や歯車でトルクを伝達しているため遅延が発生する。そのため、図2に示すように、回転速度センサ28は、増速機23の入力側と出力側に取り付ける方が正確であるが構成によっては片方でもよい。また、軸受ユニット25に対して備えられる振動センサ27と、増速機23に対して備えられる振動センサ29は、同じ構成であってもよいし、異なる構成であってもよい。
 上記構造の風力発電装置10は、ローター13のブレード15が風を受けることで主軸22が回転される。すると、その主軸22の回転が増速機23によって増速されて発電機24に伝達され、発電機24によって発電される。また、ローター13のブレード15が風を受けることで、主軸22を介して軸受ユニット25や増速機23に対して、荷重(ラジアル荷重およびアキシアル荷重)が負荷される。なお、図1では、説明を簡略化するために1の風力発電装置10に対して、1の軸受ユニット25が設けられた構成を示しているが、この構成に限定するものではなく、1の風力発電装置10において複数の軸受ユニット25が設けられてもよい。
 [機能構成]
 図2は、本実施形態に係る機能構成および測定を説明するための概念図である。図2には、本実施形態に係る荷重推定方法による荷重推定が適用される増速機23と、荷重推定を行う荷重推定装置200の構成が示される。増速機23内には、主軸22の回転を伝達する回転軸105を支持する転がり軸受101が設けられる。なお、本実施形態において、転がり軸受101として、例えば、円すいころ軸受、円筒ころ軸受などに適用可能であるが、これらに限定するものではない。図2においては、説明を簡略化するために増速機23に1の転がり軸受101が備えられた例を示している。しかし、この構成に限定するものではなく、1の増速機23に複数の転がり軸受101が備えられてよい。また、増速機23内部には、回転を伝達、増速するための各部品が更に含まれるがここでは省略する。また、図2では、本実施形態に係る荷重推定方法を適用する対象として、増速機23を例に挙げて説明するが、軸受ユニット25や発電機24を対象として適用してもよい。
 荷重推定装置200は、図1に示した風力発電装置10内に設けられてもよいし、風力発電装置10の外部に設けられてもよい。また、図2では、説明を簡略化するために1の増速機23に対して、1の荷重推定装置200が設けられた構成を示している。しかし、この構成に限定するものではなく、1の荷重推定装置200が、複数の風力発電装置10(すなわち、複数の増速機23、複数の軸受ユニット25、複数の発電機24)に対する荷重推定を行うような構成であってもよい。
 転がり軸受101は、回転軸105を回転自在に支持する。回転軸105は、回転部品である転がり軸受101を介して、増速機23の外側を覆うハウジング100、あるいはプラネットキャリア(不図示)に支持される。転がり軸受101は、回転軸105に外嵌される回転輪、或いはプラネタリシャフト(不図示)に外嵌される固定輪である内輪104、ハウジング100に内嵌される固定輪、或いはプラネタリホイール(不図示)に内装される回転輪である外輪102、内輪104及び外輪102との間に配置された複数の転動体103である複数のころ(玉)、および転動体103を転動自在に保持する保持器(不図示)を備える。また、転がり軸受101において、所定の潤滑方式により、内輪104と転動体103の間、および、外輪102と転動体103の間の摩擦が軽減される。潤滑方式は特に限定するものではないが、例えば、グリース潤滑や油潤滑などが用いられる。また、潤滑剤の種類についても特に限定するものではない。
 増速機23において、回転軸105の回転中に転がり軸受101から発生する振動を検出する振動センサ29が備えられる。振動センサ29は、ボルト固定、接着、ボルト固定と接着、或いはモールド材による埋め込み等によってハウジング100の外輪近傍に固定されている。なお、ボルト固定の場合には、回り止め機能を備えるようにしてもよい。なお、振動センサ29は、検出位置に固定して設置される構成に限定するものではなく、荷重推定時に転がり軸受101による振動を検出するための位置に設置されればよい。そのため、振動センサ29は、着脱可能もしくは移動可能な構成であってもよい。
 また、振動センサ29は、振動を検出可能なものであればよく、加速度センサ、AE(Acoustic Emission)センサ、超音波センサ、及びショックパルスセンサ等、検出される加速度、速度、歪み、応力、変位型等、振動を電気信号化できるものであればよい。また、ノイズが多いような環境に位置する風力発電装置10に取り付ける際には、絶縁型を使用する方がノイズの影響を受けることが少ないためより好ましい。さらに、振動センサ29が、圧電素子等の振動検出素子を使用する場合には、この素子をプラスチック等にモールドして構成してもよい。
 また、増速機23には、回転軸105に外嵌される内輪104の回転速度を検出する回転速度センサ28が設けられる。ここでは、ローター13側に配置された回転速度センサ28を例に挙げて説明する。本実施形態において、回転輪である内輪104と回転軸105の回転速度および回転数は一致している。主軸22から回転が伝達される回転軸105のトルクや回転速度は、風力発電装置10が受ける風の向きや風量、風圧、ブレード15のピッチ角、ヨー角、発電機24の出力により変動し得る。更には、ブレーキ装置(不図示)により、回転速度は調整され得る。回転速度センサ28は、例えば、転がり軸受101の内輪104に設けられたエンコーダ(不図示)を検出することで、その回転速度を検出してよい。なお、振動センサ29や回転速度センサ28は、荷重推定装置200の利用者(例えば、風力発電装置10の管理者)の指示等に基づき、指定されたタイミング(例えば、荷重推定時)のみ検出動作を行うような構成であってもよいし、常時検出動作を行うような構成であってもよい。
 荷重推定装置200は、例えば、不図示の制御装置、記憶装置、および入出力装置を含んで構成される情報処理装置にて実現されてよい。制御装置は、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Single Processor)、または専用回路などから構成されてよい。記憶装置は、HDD(Hard Disk Drive)、ROM(Read Only Memory)やRAM(Random Access Memory)等の揮発性および不揮発性の記憶媒体により構成され、制御装置からの指示により各種情報の入出力が可能である。出力装置は、液晶ディスプレイ等の表示デバイス、或いはスピーカやライトから構成され、制御装置からの指示により、作業者への報知を行う。出力装置による報知方法は特に限定するものではないが、例えば、画面出力による視覚的な報知であっても良いし音声による聴覚的な報知であってもよく、ネットワーク(不図示)を介した外部装置(不図示)とのデータの送受信により各種入出力動作を行ってもよい。
 荷重推定装置200は、振動信号取得部201、回転速度取得部202、振動解析部203、荷重推定部204、情報記憶部205、報知処理部206、通信処理部207、および機構制御部208を含んで構成される。各部位は、上述した制御装置が対応するプログラムを記憶装置から読み出して実行することで実現してもよい。更には、制御装置が入出力装置を制御することで報知動作や通信動作などの各種動作が行われてもよい。
 振動信号取得部201は、振動センサ29にて検出された電気信号を振動情報として取得する。振動信号取得部201は、電気信号の内容に応じて、AD変換器(不図示)によるA/D(Analog/Digital)変換や、増幅器(不図示)による信号の増幅処理を行ってもよい。取得した振動情報は、情報記憶部205へ出力される。
 回転速度取得部202は、回転速度センサ28にて検出された回転軸105(または、内輪104)の回転速度を取得する。取得した回転速度の情報は、情報記憶部205へ出力される。
 振動解析部203は、情報記憶部205に記憶されている振動情報に対して包絡処理、あるいは所定のフィルタ処理等を適用できる。振動センサ29にて取得される電気信号が示す振動情報において、転がり軸受101の理論周波数に対応した周波数帯域が抽出される。ここでのデータ処理あるいはフィルタ処理の内容は特に限定するものではなく、振動情報から所定の高周波成分を除去するLPF(Low Pass Filter)や、所定の低周波成分を除去するHPF(High Pass Filter)を用いた処理が行われてよい。もしくは、所定の周波数成分を抽出するBPF(Band Pass Filter)を用いた処理が行われてよい。また、振動解析部203は、フィルタ処理が適用された振動情報を用いて、その振動情報が示す振動の周波数分析を行う。より具体的には、振動解析部203は、転がり軸受101の理論周波数に対応する振動値(加速度、速度、変位)を導出する。なお、振動値は、加速度、速度、変位の全てを導出する必要はなく、いずれか1つであってもよい。
 荷重推定部204は、振動解析部203にて導出された振動値に基づいて、転がり軸受101に対して負荷されている荷重を推定する。本実施形態に係る推定方法の詳細は、後述する。
 情報記憶部205は、振動信号取得部201や回転速度取得部202から出力される振動情報や回転速度の情報を適時受信し、記憶する。このとき、振動センサ29と回転速度センサ28の検出タイミングは対応し、その検出情報は、対応付けて記憶される。また、情報記憶部205は、振動解析部203などの他の部位に対して記憶している各種情報を適時提供する。また、情報記憶部205は、振動解析部203の解析結果や荷重推定部204の推定結果を履歴情報として記憶してもよい。報知処理部206は、荷重推定部204による推定結果に基づいて報知処理を行う。通信処理部207は、ネットワーク(不図示)を介して外部との通信を制御する。例えば、通信処理部207は、荷重推定部204による推定結果を外部装置(不図示)へ送信する。
 機構制御部208は、荷重推定部204による推定結果に基づいて、風力発電装置10の動作を制御する。具体的には、回動機構14を制御してナセル12の向きを調整(ヨー制御)してもよいし、ハブ16を制御して複数のブレード15それぞれの向きを調整(ピッチ制御)してもよいし、発電機24の出力を制御してもよい。また、ブレーキ機構(不図示)により、主軸22の回転速度あるいは回転加速度が所定の数値となるように制御してよい。
 [検出データ]
 図3Aおよび図3Bは、各種センサにて検出されるデータの一例を示す図である。図3Aは、振動センサ29にて検出された振動情報の例を示す。横軸は時間を示し、縦軸は信号強度(振幅)を示す。図3Aでは、様々な周波数の信号が合成された状態である。図3Aに示すような振動情報に対して、必要に応じて包絡処理やフィルタ処理を行い周波数解析を行うことで、所望の周波数帯域の振動を抽出し、振動値を導出する。
 図3Bは、回転速度センサ28にて検出された転がり軸受101の回転速度を示す検出情報の例を示す。横軸は時間を示し、縦軸は信号強度を示す。パルス信号の検出結果に応じて、回転軸105(または、内輪104)の回転速度が特定される。なお、回転速度は、回転軸105が1回転する間にも変動し得る。
 図4Aおよび図4Bは、機械装置の転がり軸受に対して負荷されている荷重を推定する際の概念図である。図4Aは、機械装置の振動情報を解析し振動周波数と振動値の関係を導出したデータである。ここでの機械装置には、3つの転がり軸受(軸受A、軸受B、軸受C)が組み込まれているものとして説明するが、転がり軸受の数が増減しても、基本的な考え方は同じである。各転がり軸受は軸受諸元より求まる理論周波数があり、図4Aにおいて、各転がり軸受の理論周波数及びその高次の周波数を示す。線401は、軸受Aの理論周波数およびその高次の周波数を示す。線402は、軸受Bの理論周波数およびその高次の周波数を示す。線403は、軸受Cの理論周波数およびその高次の周波数を示す。例えば、軸受Aの軸受荷重を調べる場合は、軸受Aの理論周波数及びその高次の振動周波数のうち、軸受以外の振動(ノイズ)とのS/N比が高く、また他の軸受の固有振動数と干渉しない周波数を1点、もしくは複数点用いる。以下に、本実施形態にて用いる転がり軸受の理論周波数の算出式を示す。
 Zfc:Z×fc
 Zfi:Z×fi
 2fb:2×fb
 fi:fr-fc
なお、Z(転動体の数[個])、fc(転動体の公転周波数[Hz])、fr(内輪の回転周波数[Hz])、fb(転動体の自転周波数[Hz])である。
 図4Bは、図4Aのうち、転がり軸受101の理論周波数の一つに着目して示したものである。ここでは、図4Aの〇にて示した箇所(軸受Aの理論周波数に相当)を例に挙げる。本実施形態に係る荷重推定方法では、転がり軸受101の理論周波数およびその高次(N次)の振動周波数に対する振動値の強弱に着目する。本実施形態では、理論振動周波数の振動値が高いほど転がり軸受101への荷重が高いものとして導出する。本実施形態においては、予め規定されたテーブルを用いて荷重を導出する。
 本実施形態において、例えば、転がり軸受101が実際に使用される機械装置の必要な部分を模した装置を用いて、転がり軸受101を軸受荷重が推定できる状態(一定速かつ一定のトルク)、あるいはひずみゲージなどにより軸受荷重が測定できる状態にて回転させる。そして、転がり軸受101の荷重、回転数を変化させて測定を行うことで、荷重、回転速度、および発生する振動周波数の振動(振動値)との対応関係を特定する。そして、この対応関係をテーブル形式にて予め規定する。図9に、各回転速度における所定の振動周波数の振動値と荷重の対応関係を示すテーブルの例を示す。なお、テーブルにおいて、振動値や回転速度は一定の数値範囲を単位として対応付けて規定されてもよい。テーブルは更に、風の向きや風量、風圧、ブレード15のピッチ角、発電機24の出力、ブレーキ装置(不図示)の動作状態などと対応付けられて規定されていてもよい。更には、テーブルは、転がり軸受101にて用いられている潤滑剤の劣化状況や、転がり軸受101の動作履歴(総回転数や稼働時間など)に対応付けて規定されていてもよい。予め規定されたテーブルは、情報記憶部205にて記憶される。
 また、理論周波数に加え、その高次(N次)の振動周波数を用いて荷重を推定する場合には、理論周波数とその高次の振動周波数に対しては異なるテーブルを用いてもよい。また、理論周波数およびその高次の振動周波数のうち、いずれに対応する振動値を用いて荷重を推定するかは、回転速度に応じて決定してもよい。回転速度によっては、理論周波数およびその高次の振動周波数において、ノイズが増加する場合が想定されるため、そのノイズが少ない振動周波数を対象として荷重推定を行ってよい。この場合、回転速度に応じて着目する振動周波数は予め規定される。または、理論周波数とその高次の振動周波数それぞれの振動値の平均を用いるような構成であってもよい。これにより、一部の振動周波数にてノイズが含まれている場合でも、その影響を抑制することが可能となる。
 [処理フロー]
 図5は、本実施形態に係る荷重推定処理のフローチャートである。本処理は、荷重推定装置200により実行され、例えば、荷重推定装置200が備える制御装置(不図示)が図1に示した各部位を実現するためのプログラムを記憶装置から読み出して実行することにより実現されてよい。
 S501にて、荷重推定装置200は、情報記憶部205にて記憶されている、振動センサ27にて検出した転がり軸受101の振動情報を取得する。なお、荷重推定をリアルタイムで行う場合には、振動センサ29にて検出される信号を直接取得するような構成であってもよい。
 S502にて、荷重推定装置200は、情報記憶部205にて記憶されている、回転速度センサ28にて検出した転がり軸受101の回転速度を取得する。なお、荷重推定をリアルタイムで行う場合には、回転速度センサ28にて検出される信号を直接取得するような構成であってもよい。上述したように、S501にて取得される振動情報とS502にて取得される回転速度とは、その検出タイミングが対応している。
 S503にて、荷重推定装置200は、S501にて取得した振動情報に基づいて振動解析処理を行う。ここでは、振動情報を用いて、各振動周波数に対応する振動値を導出する処理が行われる。このとき、包絡処理、あるいはLPFやBPFフィルタ処理を行った上で、振動解析処理が行われてもよい。
 S504にて、荷重推定装置200は、S502にて取得した回転速度に応じて、転がり軸受101の理論周波数およびその高次の振動周波数の中から着目する振動周波数を決定する。着目する振動周波数と回転速度との対応関係は予め規定されており、その対応関係に基づいて決定する。このとき、1または複数の振動周波数に着目してよい。
 S505にて、荷重推定装置200は、S503による振動解析結果から、S504にて決定した振動周波数の振動値を抽出する。
 S506にて、荷重推定装置200は、情報記憶部205からテーブルを取得する。上述したように、荷重、回転速度、および所定の振動周波数の振動値が対応付けられたテーブルが規定されて情報記憶部205に記憶されている。
 S507にて、荷重推定装置200は、S502にて取得した回転速度、S505にて抽出した振動値と、S506にて取得したテーブルとに基づいて、転がり軸受101に対する荷重を推定する。なお、S504にて複数の振動周波数に着目すると決定されていた場合、例えば、各振動周波数の振動値に基づいて荷重を導出し、それらの中から最も大きな荷重を推定結果として扱ってもよい。または、各振動周波数の振動値に基づいて導出された荷重の平均値を推定結果として扱ってもよい。そして、本処理フローを終了する。
 以上、本実施形態により、回転動作中の瞬間的な荷重の変化にも対応可能な、転がり軸受に対する荷重の推定が可能となる。また、機械装置において、荷重を推定するための大掛かりな加工が必要ではなく、低コストにて荷重推定を行うことができる。
 <第2の実施形態>
 本願発明の第2の実施形態について説明する。なお、第1の実施形態と重複する構成については説明を省略し、差分に着目して説明を行う。第2の実施形態では、振動情報、回転速度、及び荷重を含む学習用データを用いて学習処理を行うことで生成された学習済みモデルを用いた荷重推定方法について説明する。
 第1の実施形態と同様、転がり軸受において、振動値、回転速度、および荷重には相関関係があるものとして、これらの情報を用いて学習処理を行う。
 [機能構成]
 図6は、本実施形態に係る機能構成および測定を説明するための概念図である。第1の実施形態にて、図2を用いて説明した機能構成との差分として、荷重推定装置200は、学習済みモデル管理部601を備える。学習済みモデル管理部601は、上述した制御装置が対応するプログラムを記憶装置から読み出して実行することで実現してよい。
 学習済みモデル管理部601は、予め行われた学習処理により生成された学習済みモデルを管理する。本実施形態においては、学習済みモデルは、事前に行われた学習処理により生成されているものとして説明するが、所定のタイミング(例えば、一定量のデータが収集されたタイミング)で学習処理を再度実行し、その結果生成された学習済みモデルにて、学習済みモデル管理部601にて管理されている学習済みモデルを更新するような構成であってもよい。また、学習処理は、荷重推定装置200が実行するような構成であってもよいし、ネットワーク(不図示)を介して接続された外部の学習サーバ(不図示)が実行するような構成であってもよい。
 本実施形態においては、荷重推定部204は、学習済みモデル管理部601にて管理されている学習済みモデルを取得し、振動解析部203にて解析された解析結果を学習済みモデルへの入力データとして扱う。その結果、荷重推定部204は、学習済みモデルから出力される出力データを転がり軸受101への荷重として推定する。
 [学習処理]
 本実施形態では、転がり軸受101の理論周波数、振動値、回転速度を入力データとし、荷重を出力するための学習済みモデルを生成する。本実施形態に係る学習方法は、ニューラルネットワークによる教師あり学習を用いるものとして説明するが、これ以外の手法(アルゴリズム等)が用いられてよい。
 図7は、本実施形態に係る学習処理の概念を説明するための図である。本実施形態にて用いる学習用データは、入力データと教師データとの対から構成される。入力データは、例えば、転がり軸受101の振動周波数(理論周波数およびその高次の振動周波数)、振動値、および回転速度を含む。
 学習モデルに入力データを入力すると、荷重を示す値が出力データとして出力される。そして、損失関数を用いて、出力データと、教師データ(ここでは、荷重の値)との比較が行われ、その差分に応じて学習モデルにおける重みが調整されることで、学習モデルのパラメータが更新される。この処理を繰り返すことで学習済みモデルが生成される。つまり、本実施形態において、回帰による荷重の推定を行うための学習済みモデルが生成される。上述したように、学習処理は、一定量の学習用データが追加されるごとに繰り返されてよく、その学習結果により学習済みモデルが更新されてよい。
 なお、上述した学習用データのうちの入力データの項目は一例であり、他の種類の情報が加えられてもよい。例えば、風力発電装置10が備える風センサ(不図示)にて取得される風情報(例えば、風の向き、風量、風圧など)を含めてもよい。また、風力発電装置10の制御情報を含めてもよい。ここでの制御装置としては、例えば、ブレード15や回動機構14によるピッチやヨーの制御値、ブレーキ機構(不図示)の制御値が含まれてよい。
 [処理フロー]
 図8は、本実施形態に係る荷重推定処理のフローチャートである。本処理は、荷重推定装置200により実行され、例えば、荷重推定装置200が備える制御装置(不図示)が図1に示した各部位を実現するためのプログラムを記憶装置から読み出して実行することにより実現されてよい。
 S801にて、荷重推定装置200は、情報記憶部205にて記憶されている、振動センサ29にて検出した転がり軸受101の振動情報を取得する。なお、荷重推定をリアルタイムで行う場合には、振動センサ29にて検出される信号を直接取得するような構成であってもよい。
 S802にて、荷重推定装置200は、情報記憶部205にて記憶されている、回転速度センサ28にて検出した転がり軸受101の回転速度を取得する。なお、荷重推定をリアルタイムで行う場合には、回転速度センサ28にて検出される信号を直接取得するような構成であってもよい。上述したように、S801にて取得される振動情報とS802にて取得される回転速度とは、その検出タイミングが対応している。
 S803にて、荷重推定装置200は、S801にて取得した振動情報に基づいて振動解析処理を行う。ここでは、振動情報を用いて、各振動周波数に対応する振動値を導出する処理が行われる。このとき、包絡処理、あるいはLPFやBPFなどを用いたフィルタ処理を行った上で、振動解析処理が行われてよい。
 S804にて、荷重推定装置200は、S802にて取得した回転速度に応じて、転がり軸受101の理論周波数およびその高次の振動周波数の中から着目する振動周波数を決定する。着目する振動周波数と回転速度との対応関係は予め規定されており、その対応関係に基づいて決定する。
 S805にて、荷重推定装置200は、S803による振動解析結果から、S804にて決定した振動周波数の振動値を抽出する。
 S806にて、荷重推定装置200は、学習済みモデルを取得する。上述したように、学習済みモデルは学習済みモデル管理部601にて管理されており、最新の学習済みモデルが取得される。
 S807にて、荷重推定装置200は、S802にて取得した回転速度、S804にて決定した振動周波数、S805にて抽出した振動値を入力データとして、S806にて取得した学習済みモデルに適用することで、その出力データとして得られる荷重を、転がり軸受101に対する荷重として推定する。そして、本処理フローを終了する。
 以上、本実施形態により、回転動作中の瞬間的な荷重の変化にも対応可能な、転がり軸受に対する荷重の推定が可能となる。また、機械装置において、荷重を推定するための大掛かりな加工が必要ではなく、低コストにて荷重推定を行うことができる。
 <第3の実施形態>
 本願発明の第3の実施形態について説明する。なお、第1の実施形態と重複する構成については説明を省略し、差分に着目して説明を行う。第3の実施形態では、風力発電装置10における荷重を推定した上で、その推定結果に基づいて風力発電装置10を制御する形態について説明する。装置や機能構成、信号の構成などは、第1の実施形態にて図1~図4を用いて説明したものと同様である。
 [処理フロー]
 図10は、本実施形態に係る荷重推定に基づく風力発電装置10の制御処理のフローチャートである。本処理は、荷重推定装置200により実行され、例えば、荷重推定装置200が備える制御装置(不図示)が図1に示した各部位を実現するためのプログラムを記憶装置から読み出して実行することにより実現されてよい。
 S1001にて、荷重推定装置200は、情報記憶部205にて記憶されている、振動センサ27にて検出した転がり軸受101の振動情報を取得する。なお、荷重推定をリアルタイムで行う場合には、振動センサ29にて検出される信号を直接取得するような構成であってもよい。
 S1002にて、荷重推定装置200は、情報記憶部205にて記憶されている、回転速度センサ28にて検出した転がり軸受101の回転速度を取得する。なお、荷重推定をリアルタイムで行う場合には、回転速度センサ28にて検出される信号を直接取得するような構成であってもよい。上述したように、S1001にて取得される振動情報とS1002にて取得される回転速度とは、その検出タイミングが対応している。
 S1003にて、荷重推定装置200は、S1001にて取得した振動情報に基づいて振動解析処理を行う。ここでは、振動情報を用いて、各振動周波数に対応する振動値を導出する処理が行われる。このとき、包絡処理、あるいはLPFやBPFなどを用いたフィルタ処理を行った上で、振動解析処理が行われてもよい。
 S1004にて、荷重推定装置200は、S1002にて取得した回転速度に応じて、転がり軸受101の理論周波数およびその高次の振動周波数の中から着目する振動周波数を決定する。着目する振動周波数と回転速度との対応関係は予め規定されており、その対応関係に基づいて決定する。このとき、1または複数の振動周波数に着目してよい。
 S1005にて、荷重推定装置200は、S1003による振動解析結果から、S1004にて決定した振動周波数の振動値を抽出する。
 S1006にて、荷重推定装置200は、情報記憶部205からテーブルを取得する。上述したように、荷重、回転速度、および所定の振動周波数の振動値が対応付けられたテーブルが規定されて情報記憶部205に記憶されている。
 S1007にて、荷重推定装置200荷重推定装置200は、S1002にて取得した回転速度、S1005にて抽出した振動値と、S1006にて取得したテーブルとに基づいて、転がり軸受101に対する荷重を推定する。なお、S1004にて複数の振動周波数に着目すると決定されていた場合、例えば、各振動周波数の振動値に基づいて荷重を導出し、それらの中から最も大きな荷重を推定結果として扱ってもよい。または、各振動周波数の振動値に基づいて導出された荷重の平均値を推定結果として扱ってもよい。
 S1008にて、荷重推定装置200は、S1007にて推定した荷重が閾値以上か否かを判定する。ここでの閾値は、予め規定されて、情報記憶部205に記憶されている。閾値は、一定の値であってもよいし、風力発電装置10の動作履歴に基づいて変動してもよい。例えば、転がり軸受101の総回転数に応じて閾値を変動させてもよい。または、過去に推定した荷重を記憶しておき、その荷重の負荷の蓄積に応じて閾値を変動させてもよい。より具体的には、総回転数や過去の蓄積した荷重が一定値を超えている場合には、閾値を低く設定するような構成であってよい。これにより、荷重(風力発電装置10に対する負荷)を軽減するための制御(後段のS1009の処理)をより早期に実行することが可能となる。荷重が閾値以上である場合(S1008にてYES)、荷重推定装置200の処理はS1009へ進み、閾値未満である場合(S1008にてNO)、荷重推定装置200の処理は、S1001へ戻り、処理を継続する。
 S1009にて、荷重推定装置200は、S1007にて推定した荷重に基づいて、風力発電装置10の制御を行う。本工程の詳細は、図11を用いて後述する。そして本処理フローを終了する。
 (推定した荷重に基づく風力発電装置の制御)
 図11は、図10のS1009の工程に対応する制御処理のフローチャートである。
 S1101にて、荷重推定装置200は、推定した軸受荷重に基づいてローター13に発生する目標トルク、および目標回転数を設定する。目標トルク、および目標回転数は、例えば、S1008にて用いた閾値と推定した軸受荷重との差分に基づいて規定されてよい。このとき、差分と、目標トルクおよび目標回転数とが対応付けられたテーブルを保持しておき、これに基づいて目標トルク、および目標回転数を決定してよい。このとき、目標トルク、および目標回転数は、転がり軸受101に対する負荷を適正な範囲に収める値が設定される。この範囲内に設定することで、過大もしくは過小な荷重の発生を抑制させる。S1101の処理の後、ピッチ制御(S1102~S1103)、ブレーキ機構による回転速度制御(S1104~S1105)、および発電量制御(S1106~S1107)がそれぞれ実施される。
 S1102にて、荷重推定装置200は、設定した目標トルク、および目標回転数に基づいてブレード15の目標ピッチ(ピッチ角)を設定する。目標ピッチは、例えば、S1008にて用いた閾値と推定した荷重との差分に基づいて規定されてもよい。このとき、差分と目標ピッチとが対応付けられたテーブルを保持しておき、これに基づいて目標ピッチを決定してよい。このとき、目標ピッチは、転がり軸受101に対する負荷が適正な範囲に収める値が設定される。
 S1103にて、荷重推定装置200は、S1102にて設定した目標ピッチに基づいてブレード15のピッチ制御を実施する。このとき、目標ピッチに達するまでに要する時間を考慮して複数のブレード15それぞれに対応するローター軸(不図示)周りの回転の制御量を決定してよい。
 S1104にて、荷重推定装置200は、検出した回転速度(S1002にて取得した回転速度)と、S1101にて設定した目標回転数に基づいてブレーキ機構(不図示)による回転速度の調整のための制御量を決定する。このとき、目標とする回転速度に達するまでに要する時間を考慮して制御量を決定してよい。
 S1105にて、荷重推定装置200は、S1105にて決定した制御量を用いてブレーキ機構(不図示)による回転速度の調整制御を行う。
 S1106にて、荷重推定装置200は、設定した目標トルク、および目標回転数に基づいて発電機24による発電量を設定する。ここで設定される発電量は、例えば、S1008にて用いた閾値と推定した荷重との差分に基づいて規定されてもよい。このとき、差分と発電量とが対応付けられたテーブルを保持しておき、これに基づいて発電量を設定してよい。
 S1107にて、荷重推定装置200は、S1107にて設定した発電量に基づいて発電機24による発電量制御を実施する。ピッチ制御(S1102~S1103)、ブレーキ機構による回転速度制御(S1104~S1105)、および発電量制御(S1106~S1107)が実施された後、本処理フローは終了する。
 図10、図11の処理を繰り返すことで、転がり軸受101に対する荷重を増減させつつ、環境に適した制御を行わせることができる。
 なお、図11の例では、ピッチ制御(S1102~S1103)、ブレーキ機構による回転速度制御(S1104~S1105)、発電量制御(S1106~S1107)が並列に制御される流れを説明したが、この同時並行的な流れに限定するものではない。例えば、各制御の一部が直列的に行われてもよい。また、荷重と閾値との差分に応じて、上記3つの制御のうちのいずれかが行われないような構成であってもよい。
 また、図11の制御処理における目標ピッチ、目標トルクおよび目標回転数の設定値は、過去の制御履歴を考慮して設定されてもよい。例えば、直前に行った図11に示す制御処理にて用いた設定値や、直前の制御処理からの経過時間を記憶装置にて記憶しておき、それらの履歴情報を用いて設定値を導出してもよい。
 また、図11の制御処理では、ブレード15のピッチ変更、発電量の制御によるトルクの制御や、回転速度を制御するためのブレーキ機構による制御を示したが、これに限定するものではなく、その他の制御を組み合わせてもよい。
 以上、本実施形態により、機械装置が備える転がり軸受の瞬間的な回転速度の変化に対応して、荷重推定を行い、その推定結果を用いて制御を行うことで、機械装置の長寿命化や不具合防止が可能となる。また、機械装置において、荷重を推定するための大掛かりな加工が必要ではなく、低コストにて荷重推定を行うことができる。
 <その他の実施形態>
 なお、上記実施形態にて述べた各種データは一例であり、他のデータを用いてもよい。例えば、測定データ、学習データとして振動と回転数の他に軸受予圧、内部隙間、負荷圏、温度(軸受温度、油音、軸・ハウジング温度)、トルク、発電量、油種など加えてもよい。周波数分析には通常(サンプリング時間固定)のやり方でも良いし次数比分析を行ってもよい。
 また、本願発明において、上述した1以上の実施形態の機能を実現するためのプログラムやアプリケーションを、ネットワーク又は記憶媒体等を用いてシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。
 また、1以上の機能を実現する回路(例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array))によって実現してもよい。
 このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
 以上の通り、本明細書には次の事項が開示されている。
 (1) 転がり軸受の荷重推定装置であって、
 回転中の前記転がり軸受の振動を測定する振動センサと、
 回転中の前記転がり軸受の回転速度を測定する回転速度センサと、
 前記振動センサにて測定された振動情報を用いて所定の振動周波数の振動値を導出する導出手段と、
 前記転がり軸受に対する荷重、前記所定の振動周波数の振動値、および回転速度の対応関係が規定されたテーブルを用いて、前記回転速度センサにて測定した回転速度と前記導出手段にて導出した振動値に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定手段とを有することを特徴とする荷重推定装置。
 この構成によれば、回転動作中の瞬間的な荷重の変化にも対応可能な、転がり軸受に対する荷重の推定が可能となる。
 (2) 前記所定の振動周波数の振動値が大きくなるに従って、前記転がり軸受に負荷されている荷重が大きくなるように前記テーブルは規定されていることを特徴とする(1)に記載の荷重推定装置。
 この構成によれば、振動値の増加に伴って荷重が増加する傾向に基づいて、荷重の推定が可能となる。
 (3) 転がり軸受の荷重推定装置であって、
 回転中の前記転がり軸受の振動を測定する振動センサと、
 回転中の前記転がり軸受の回転速度を測定する回転速度センサと、
 前記振動センサにて測定された振動情報を用いて所定の振動周波数の振動値を導出する導出手段と、
 前記転がり軸受に対する荷重と、前記転がり軸受の所定の振動周波数の振動値および回転速度との対から構成されるデータを学習用データとし、前記転がり軸受に対する荷重を出力データとして学習処理を行って得られた学習済みモデルを用いて、前記導出手段にて導出した前記所定の振動周波数の振動値と前記回転速度センサにて測定された回転速度に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定手段とを有することを特徴とする荷重推定装置。
 この構成によれば、回転動作中の瞬間的な荷重の変化にも対応可能な、転がり軸受に対する荷重の推定が可能となる。
 (4) 前記所定の振動周波数は、前記転がり軸受の理論周波数およびその高次の振動周波数のうちの1または複数が用いられることを特徴とする(1)~(3)のいずれかに記載の荷重推定装置。
 この構成によれば、転がり軸受の構成に対応して荷重の推定が可能となる。
 (5) 前記回転速度センサにて測定された回転速度に基づいて、前記転がり軸受の理論周波数およびその高次の振動周波数の中から着目する振動周波数を決定する決定手段を更に有し、
 前記導出手段は、前記決定手段にて決定した振動周波数を前記所定の振動周波数の振動値を導出することを特徴とする(1)~(4)のいずれかに記載の荷重推定装置。
 この構成によれば、転がり軸受の回転速度に応じて着目する振動周波数を変更することができ、その着目した振動周波数の振動値に基づいて精度良く荷重の推定が可能となる。
 (6) 前記理論周波数は、Zfc、Zfi、および2fbのいずれかに基づくことを特徴とする(4)または(5)に記載の荷重推定装置。
 この構成によれば、転がり軸受の構成に対応した理論周波数に基づいて荷重の推定が可能となる。
 (7) 前記所定の振動周波数の振動値は、加速度、速度、変位のいずれかであることを特徴とする(1)~(6)のいずれかに記載の荷重推定装置。
 この構成によれば、振動値として、加速度、速度、変位のいずれかに基づいて荷重の推定を行うことができる。
 (8) 前記転がり軸受は、風力発電装置の回転軸を支持する転がり軸受であることを特徴とする(1)~(7)のいずれかに記載の荷重推定装置。
 この構成によれば、風の影響などにより瞬間的に主軸の回転速度が変動し得る風力発電装置であっても転がり軸受に対する荷重を推定することができる。
 (9) 転がり軸受を備える機械装置の制御装置であって、
 (1)~(8)に記載の荷重推定装置と、
 前記推定手段にて推定された荷重に応じて、前記転がり軸受に支持されている軸周りのトルク、および、前記転がり軸受の回転の少なくとも一方を制御する制御手段と、
を有することを特徴とする制御装置。
 この構成によれば、機械装置が備える転がり軸受の瞬間的な回転速度の変化に対応して、荷重推定を行い、その推定結果を用いて制御を行うことで、機械装置の長寿命化や不具合防止が可能となる。
 (10) 前記制御装置は、前記転がり軸受の回転数または回転速度を制御することを特徴とする(9)に記載の制御装置。
 この構成によれば、転がり軸受の回転数または回転速度を制御することにより、転がり軸受に対する負荷を低減させ、機械装置の長寿命化や不具合防止を実現することが可能となる。
 (11) 前記機械装置は、風力発電装置であって、
 前記制御手段は更に、前記推定手段にて推定された荷重に応じて、前記風力発電装置が備えるブレードのピッチ制御、発電量の制御、あるいは、ブレーキの制御の少なくとも一つを行い、
 前記制御手段は、
  前記ピッチ制御では、閾値と前記推定された荷重との差分に基づき、プラスのときはピッチ角を寝かせ、マイナスのときはピッチ角を立て、
  前記ブレーキの制御では、閾値と前記推定された荷重との差分に基づき、プラスのときは回転軸の回転速度を減速させるようにブレーキ機構を作動させ、マイナスのときはブレーキ機構を不作動とすることを特徴とする(9)または(10)に記載の制御装置。
 この構成によれば、風力発電装置において、荷重に応じてピッチ制御や、ブレーキの制御行うことにより、転がり軸受に対する負荷を低減させ、機械装置の長寿命化や不具合防止を実現することが可能となる。
 (12) 前記制御手段による制御履歴の情報を記憶する記憶手段を更に有し、
 前記制御手段は、前記制御履歴に基づいて、前記転がり軸受に支持されている軸周りのトルク、前記転がり軸受の回転の制御量を設定することを特徴とする(9)~(11)のいずれかに記載の制御装置。
 この構成によれば、制御履歴に応じて、次の制御量を設定することで、より適切な制御が可能となる。
 (13) 転がり軸受の荷重推定方法であって、
 回転中の前記転がり軸受の振動を測定する第1の測定工程と、
 回転中の前記転がり軸受の回転速度を測定する第2の測定工程と、
 前記第1の測定工程にて測定された振動情報を用いて所定の振動周波数の振動値を導出する導出工程と、
 前記転がり軸受に対する荷重、前記所定の振動周波数の振動値、および回転速度の対応関係が規定されたテーブルを用いて、前記第2の測定工程にて測定した回転速度と前記導出工程にて導出した振動値に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定工程とを有することを特徴とする荷重推定方法。
 この構成によれば、回転動作中の瞬間的な荷重の変化にも対応可能な、転がり軸受に対する荷重の推定が可能となる。
 (14) 転がり軸受の荷重推定方法であって、
 回転中の前記転がり軸受の振動を測定する第1の測定工程と、
 回転中の前記転がり軸受の回転速度を測定する第2の測定工程と、
 前記第1の測定工程にて測定された振動情報を用いて所定の振動周波数の振動値を導出する導出工程と、
 前記転がり軸受に対する荷重と、前記転がり軸受の所定の振動周波数の振動値および回転速度との対から構成されるデータを学習用データとし、前記転がり軸受に対する荷重を出力データとして学習処理を行って得られた学習済みモデルを用いて、前記導出工程にて導出した前記所定の振動周波数の振動値と前記第2の測定工程にて測定された回転速度に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定工程とを有することを特徴とする荷重推定方法。
 この構成によれば、回転動作中の瞬間的な荷重の変化にも対応可能な、転がり軸受に対する荷重の推定が可能となる。
 (15) コンピュータを、
 回転中の転がり軸受の振動情報を取得する第1の取得手段、
 回転中の前記転がり軸受の回転速度を取得する第2の取得手段、
 前記振動情報を用いて所定の振動周波数の振動値を導出する導出手段、
 前記転がり軸受に対する荷重、前記所定の振動周波数の振動値、および回転速度の対応関係が規定されたテーブルを用いて、前記第2の取得手段にて取得した回転速度と前記導出手段にて導出した振動値に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定手段として機能させるためのプログラム。
 この構成によれば、回転動作中の瞬間的な荷重の変化にも対応可能な、転がり軸受に対する荷重の推定が可能となる。
 (16) コンピュータを、
 回転中の転がり軸受の振動情報を取得する第1の取得手段、
 回転中の前記転がり軸受の回転速度の情報を取得する第2の取得手段、
 前記振動情報を用いて所定の振動周波数の振動値を導出する導出手段、
 前記転がり軸受に対する荷重と、前記転がり軸受の所定の振動周波数の振動値および回転速度との対から構成されるデータを学習用データとし、前記転がり軸受に対する荷重を出力データとして学習処理を行って得られた学習済みモデルを用いて、前記導出手段にて導出した前記所定の振動周波数の振動値と前記第2の取得手段にて取得した回転速度に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定手段として機能させるためのプログラム。
 この構成によれば、回転動作中の瞬間的な荷重の変化にも対応可能な、転がり軸受に対する荷重の推定が可能となる。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2021年6月16日出願の日本特許出願(特願2021-100416)、および2021年9月3日出願の日本特許出願(特願2021-143992)に基づくものであり、その内容は本出願の中に参照として援用される。
10…風力発電装置
11…タワー
12…ナセル
13…ローター
14…回動機構
15…ブレード
16…ハブ
21…ドライブトレイン部
22…主軸
23…増速機
24…発電機
25…軸受ユニット
26…回転速度センサ
27…振動センサ
28…回転速度センサ
29…振動センサ
30…回転速度センサ
31…発電量測定装置
100…ハウジング
101…転がり軸受
102…外輪
103…転動体
104…内輪
105…回転軸
200…荷重推定装置
201…振動信号取得部
202…回転速度取得部
203…振動解析部
204…荷重推定部
205…情報記憶部
206…報知処理部
207…通信処理部
208…機構制御部
601…学習済みモデル管理部

Claims (16)

  1.  転がり軸受の荷重推定装置であって、
     回転中の前記転がり軸受の振動を測定する振動センサと、
     回転中の前記転がり軸受の回転速度を測定する回転速度センサと、
     前記振動センサにて測定された振動情報を用いて所定の振動周波数の振動値を導出する導出手段と、
     前記転がり軸受に対する荷重、前記所定の振動周波数の振動値、および回転速度の対応関係が規定されたテーブルを用いて、前記回転速度センサにて測定した回転速度と前記導出手段にて導出した振動値に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定手段とを有することを特徴とする荷重推定装置。
  2.  前記所定の振動周波数の振動値が大きくなるに従って、前記転がり軸受に負荷されている荷重が大きくなるように前記テーブルは規定されていることを特徴とする請求項1に記載の荷重推定装置。
  3.  転がり軸受の荷重推定装置であって、
     回転中の前記転がり軸受の振動を測定する振動センサと、
     回転中の前記転がり軸受の回転速度を測定する回転速度センサと、
     前記振動センサにて測定された振動情報を用いて所定の振動周波数の振動値を導出する導出手段と、
     前記転がり軸受に対する荷重と、前記転がり軸受の所定の振動周波数の振動値および回転速度との対から構成されるデータを学習用データとし、前記転がり軸受に対する荷重を出力データとして学習処理を行って得られた学習済みモデルを用いて、前記導出手段にて導出した前記所定の振動周波数の振動値と前記回転速度センサにて測定された回転速度に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定手段とを有することを特徴とする荷重推定装置。
  4.  前記所定の振動周波数は、前記転がり軸受の理論周波数およびその高次の振動周波数のうちの1または複数が用いられることを特徴とする請求項1に記載の荷重推定装置。
  5.  前記回転速度センサにて測定された回転速度に基づいて、前記転がり軸受の理論周波数およびその高次の振動周波数の中から着目する振動周波数を決定する決定手段を更に有し、
     前記導出手段は、前記決定手段にて決定した振動周波数を前記所定の振動周波数の振動値を導出することを特徴とする請求項1に記載の荷重推定装置。
  6.  前記理論周波数は、Zfc、Zfi、および2fbのいずれかに基づくことを特徴とする請求項4に記載の荷重推定装置。
  7.  前記所定の振動周波数の振動値は、加速度、速度、変位のいずれかであることを特徴とする請求項1に記載の荷重推定装置。
  8.  前記転がり軸受は、風力発電装置の主軸を支持する転がり軸受であることを特徴とする請求項1に記載の荷重推定装置。
  9.  転がり軸受を備える機械装置の制御装置であって、
     請求項1に記載の荷重推定装置と、
     前記推定手段にて推定された荷重に応じて、前記転がり軸受に支持されている軸周りのトルク、および、前記転がり軸受の回転の少なくとも一方を制御する制御手段と、
    を有することを特徴とする制御装置。
  10.  前記制御装置は、前記転がり軸受の回転数または回転速度を制御することを特徴とする請求項9に記載の制御装置。
  11.  前記機械装置は、風力発電装置であって、
     前記制御手段は更に、前記推定手段にて推定された荷重に応じて、前記風力発電装置が備えるブレードのピッチ制御、発電量の制御、あるいは、ブレーキの制御の少なくとも一つを行い、
     前記制御手段は、
      前記ピッチ制御では、閾値と前記推定された荷重との差分に基づき、プラスのときはピッチ角を寝かせ、マイナスのときはピッチ角を立て、
      前記ブレーキの制御では、閾値と前記推定された荷重との差分に基づき、プラスのときは回転軸の回転速度を減速させるようにブレーキ機構を作動させ、マイナスのときはブレーキ機構を不作動とすることを特徴とする請求項9に記載の制御装置。
  12.  前記制御手段による制御履歴の情報を記憶する記憶手段を更に有し、
     前記制御手段は、前記制御履歴に基づいて、前記転がり軸受に支持されている軸周りのトルク、前記転がり軸受の回転の制御量を設定することを特徴とする請求項9に記載の制御装置。
  13.  転がり軸受の荷重推定方法であって、
     回転中の前記転がり軸受の振動を測定する第1の測定工程と、
     回転中の前記転がり軸受の回転速度を測定する第2の測定工程と、
     前記第1の測定工程にて測定された振動情報を用いて所定の振動周波数の振動値を導出する導出工程と、
     前記転がり軸受に対する荷重、前記所定の振動周波数の振動値、および回転速度の対応関係が規定されたテーブルを用いて、前記第2の測定工程にて測定した回転速度と前記導出工程にて導出した振動値に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定工程とを有することを特徴とする荷重推定方法。
  14.  転がり軸受の荷重推定方法であって、
     回転中の前記転がり軸受の振動を測定する第1の測定工程と、
     回転中の前記転がり軸受の回転速度を測定する第2の測定工程と、
     前記第1の測定工程にて測定された振動情報を用いて所定の振動周波数の振動値を導出する導出工程と、
     前記転がり軸受に対する荷重と、前記転がり軸受の所定の振動周波数の振動値および回転速度との対から構成されるデータを学習用データとし、前記転がり軸受に対する荷重を出力データとして学習処理を行って得られた学習済みモデルを用いて、前記導出工程にて導出した前記所定の振動周波数の振動値と前記第2の測定工程にて測定された回転速度に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定工程とを有することを特徴とする荷重推定方法。
  15.  コンピュータを、
     回転中の転がり軸受の振動情報を取得する第1の取得手段、
     回転中の前記転がり軸受の回転速度を取得する第2の取得手段、
     前記振動情報を用いて所定の振動周波数の振動値を導出する導出手段、
     前記転がり軸受に対する荷重、前記所定の振動周波数の振動値、および回転速度の対応関係が規定されたテーブルを用いて、前記第2の取得手段にて取得した回転速度と前記導出手段にて導出した振動値に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定手段として機能させるためのプログラム。
  16.  コンピュータを、
     回転中の転がり軸受の振動情報を取得する第1の取得手段、
     回転中の前記転がり軸受の回転速度の情報を取得する第2の取得手段、
     前記振動情報を用いて所定の振動周波数の振動値を導出する導出手段、
     前記転がり軸受に対する荷重と、前記転がり軸受の所定の振動周波数の振動値および回転速度との対から構成されるデータを学習用データとし、前記転がり軸受に対する荷重を出力データとして学習処理を行って得られた学習済みモデルを用いて、前記導出手段にて導出した前記所定の振動周波数の振動値と前記第2の取得手段にて取得した回転速度に対応する、前記転がり軸受に対して負荷されている荷重を推定する推定手段として機能させるためのプログラム。
PCT/JP2022/023202 2021-06-16 2022-06-08 転がり軸受の荷重推定装置、転がり軸受を備える機械装置の制御装置、荷重推定方法、およびプログラム WO2022264905A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023529825A JP7491471B2 (ja) 2021-06-16 2022-06-08 転がり軸受の荷重推定装置、転がり軸受を備える機械装置の制御装置、荷重推定方法、およびプログラム
US18/282,389 US20240035906A1 (en) 2021-06-16 2022-06-08 Load estimating device for rolling bearing, control device for mechanical device provided with rolling bearing, load estimating method, and program
EP22824895.1A EP4357611A1 (en) 2021-06-16 2022-06-08 Load estimating device for rolling bearing, control device for mechanical device provided with rolling bearing, load estimating method, and program
CN202280022996.9A CN117043571A (zh) 2021-06-16 2022-06-08 滚动轴承的载荷推算装置、具备滚动轴承的机械装置的控制装置、载荷推算方法以及程序

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021100416 2021-06-16
JP2021-100416 2021-06-16
JP2021-143992 2021-09-03
JP2021143992 2021-09-03

Publications (1)

Publication Number Publication Date
WO2022264905A1 true WO2022264905A1 (ja) 2022-12-22

Family

ID=84527476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023202 WO2022264905A1 (ja) 2021-06-16 2022-06-08 転がり軸受の荷重推定装置、転がり軸受を備える機械装置の制御装置、荷重推定方法、およびプログラム

Country Status (4)

Country Link
US (1) US20240035906A1 (ja)
EP (1) EP4357611A1 (ja)
JP (1) JP7491471B2 (ja)
WO (1) WO2022264905A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283323A (ja) * 2004-03-30 2005-10-13 Nsk Ltd 転がり軸受ユニットの荷重測定装置
JP2006300086A (ja) * 2005-04-15 2006-11-02 Nsk Ltd 荷重測定装置付転がり軸受ユニット
JP2010159710A (ja) 2009-01-09 2010-07-22 Ntn Corp 風力発電装置の主軸軸受の監視装置
CN205876607U (zh) * 2016-07-20 2017-01-11 锐电科技有限公司 一种风电机组载荷优化控制系统
JP2018179735A (ja) * 2017-04-12 2018-11-15 日本精工株式会社 回転部品の異常診断方法及び異常診断装置
WO2019012788A1 (ja) * 2017-07-12 2019-01-17 株式会社日立製作所 風力発電システム
JP2019132773A (ja) * 2018-02-01 2019-08-08 オークマ株式会社 回転軸装置の診断装置
JP2021100416A (ja) 2016-05-25 2021-07-08 エヴォックス・セラピューティクス・リミテッド 治療的ポリペプチドを含むエクソソーム
JP2021143992A (ja) 2020-03-13 2021-09-24 株式会社日立製作所 塗装剥離検査装置および検査方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283323A (ja) * 2004-03-30 2005-10-13 Nsk Ltd 転がり軸受ユニットの荷重測定装置
JP2006300086A (ja) * 2005-04-15 2006-11-02 Nsk Ltd 荷重測定装置付転がり軸受ユニット
JP2010159710A (ja) 2009-01-09 2010-07-22 Ntn Corp 風力発電装置の主軸軸受の監視装置
JP2021100416A (ja) 2016-05-25 2021-07-08 エヴォックス・セラピューティクス・リミテッド 治療的ポリペプチドを含むエクソソーム
CN205876607U (zh) * 2016-07-20 2017-01-11 锐电科技有限公司 一种风电机组载荷优化控制系统
JP2018179735A (ja) * 2017-04-12 2018-11-15 日本精工株式会社 回転部品の異常診断方法及び異常診断装置
WO2019012788A1 (ja) * 2017-07-12 2019-01-17 株式会社日立製作所 風力発電システム
JP2019132773A (ja) * 2018-02-01 2019-08-08 オークマ株式会社 回転軸装置の診断装置
JP2021143992A (ja) 2020-03-13 2021-09-24 株式会社日立製作所 塗装剥離検査装置および検査方法

Also Published As

Publication number Publication date
US20240035906A1 (en) 2024-02-01
JPWO2022264905A1 (ja) 2022-12-22
JP7491471B2 (ja) 2024-05-28
EP4357611A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
US7322794B2 (en) Method and apparatus for condition-based monitoring of wind turbine components
JP6250345B2 (ja) 監視システムおよび監視方法
JP6407592B2 (ja) 風力発電装置の異常診断装置および異常診断方法
WO2011081085A1 (ja) 転がり軸受の異常診断装置、風力発電装置および異常診断システム
WO2017018112A1 (ja) 異常診断装置およびセンサ外れ検知方法
US20080262787A1 (en) Method and apparatus of monitoring a machine
JP6958068B2 (ja) 回転機械設備の異常診断システム及び異常診断方法
JP4935165B2 (ja) 異常診断装置及び異常診断方法
WO2017170270A1 (ja) 歯車装置の状態監視システムおよび状態監視方法
WO2017145687A1 (ja) 異常診断装置および異常診断方法
JP2011185632A (ja) 軸受の異常検出装置および異常検出方法
JP2009115537A (ja) 振動測定方法
JP2019074059A (ja) 風力発電システム
JP6824076B2 (ja) 状態監視システムおよび風力発電装置
WO2022264905A1 (ja) 転がり軸受の荷重推定装置、転がり軸受を備える機械装置の制御装置、荷重推定方法、およびプログラム
JP2017181267A (ja) 転がり軸受診断装置
JP5534875B2 (ja) 軸受のスミアリング損傷防止装置および軸受のスミアリング損傷防止方法
CN117043571A (zh) 滚动轴承的载荷推算装置、具备滚动轴承的机械装置的控制装置、载荷推算方法以及程序
JP2019128179A (ja) 振動センサの脱落検知方法及び異常診断装置
JP2015175828A (ja) 転動装置の状態監視装置およびそれを備える風力発電設備
WO2023282028A1 (ja) 機械装置の状態監視装置、風力発電装置、状態監視方法、およびプログラム
JP2023075685A (ja) 機械装置の状態監視方法、状態監視システム、状態監視装置、風力発電装置およびプログラム
JP2017150884A (ja) 異常診断装置および異常診断方法
JP2017181283A (ja) シングルピニオン式の遊星歯車装置の歯数特定装置および歯数特定方法
JP2023009579A (ja) 転がり軸受内の接触の強さの監視装置、風力発電装置、接触の強さの監視方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023529825

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18282389

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280022996.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022824895

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022824895

Country of ref document: EP

Effective date: 20240116