WO2022262362A1 - 一种多质点车辆队列行驶系统的迭代学习控制方法 - Google Patents

一种多质点车辆队列行驶系统的迭代学习控制方法 Download PDF

Info

Publication number
WO2022262362A1
WO2022262362A1 PCT/CN2022/084301 CN2022084301W WO2022262362A1 WO 2022262362 A1 WO2022262362 A1 WO 2022262362A1 CN 2022084301 W CN2022084301 W CN 2022084301W WO 2022262362 A1 WO2022262362 A1 WO 2022262362A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
batch
formula
equation
iterative learning
Prior art date
Application number
PCT/CN2022/084301
Other languages
English (en)
French (fr)
Inventor
陶洪峰
周龙辉
庄志和
黄彦德
魏俊誉
王瑞
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to US17/986,431 priority Critical patent/US11975751B2/en
Publication of WO2022262362A1 publication Critical patent/WO2022262362A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/021Measuring and recording of train speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0072On-board train data handling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • B60L15/38Control or regulation of multiple-unit electrically-propelled vehicles with automatic control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0058On-board optimisation of vehicle or vehicle train operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2201/00Control methods

Definitions

  • the invention relates to the field of iterative learning control, in particular to an iterative learning control method for a multi-mass vehicle platooning system, aiming at a class of multi-mass vehicle platooning systems with structural uncertainty and input time lag.
  • the multi-particle vehicle platooning system is a kind of spatial interconnection system composed of multiple train carriages coupled with each other, which has the characteristics of time-space coupling, large number of variables, and high dimensionality.
  • On the premise of ensuring the safe operation of trains improving the speed and performance of trains running within a limited time and in batches has become the focus of attention.
  • due to the complex operating environment of the train there are often uncertainties in the actual system.
  • there is a phenomenon of interactive transmission of information in the control implementation which usually involves input time lag, which leads to a lag in the system output response and affects the stability and performance of the system.
  • iterative learning control is used to solve the tracking problem of the multi-particle vehicle platooning system.
  • Iterative Learning Control is a new type of intelligent control method, which can improve the tracking performance of the controlled system within a limited time by repeatedly learning from previous batches. Its most notable features are the small amount of calculation, low requirement for prior knowledge of system dynamics, and simplicity and ease of implementation.
  • This application applies iterative learning control to the multi-mass vehicle platoon driving system with uncertainty and input time delay, which can improve the response speed and trajectory tracking accuracy of the system, and improve the control performance.
  • the present inventor proposes an iterative learning control method for a multi-mass vehicle platoon driving system.
  • the technical scheme of the present invention is as follows:
  • An iterative learning control method for a multi-mass vehicle platooning system comprising the following steps:
  • Step 1 Establish a spatially interconnected system model of the multi-mass vehicle platooning system
  • t and s are the discrete time and the train number respectively, and the above formula is substituted into equation (1) to obtain the partial recurrence equation
  • x 1 (t+1,s) x 1 (t,s)+Tx 2 (t,s)
  • p(t,s) denotes the pseudo-input channel of structural uncertainty
  • q(t,s) denotes the pseudo-output channel of structural uncertainty
  • I rf is the identity matrix whose dimension is r f ;
  • Step 2 Transform the spatial interconnection system model
  • the model (3) is transformed into an equivalent one-dimensional dynamic model by using lifting technology, and the lifting vector is defined as follows:
  • X(t) [x(t,1) T ,x(t,2) T ,...,x(t,n) T ] T
  • V(t) [v(t,1) T ,v(t,2) T ,...,v(t,n) T ] T
  • W(t) [w(t,1) T ,w(t,2) T ,...,w(t,n) T ] T
  • Y(t) [y(t,1) T ,y(t,2) T ,...,y(t,n) T ] T
  • model (6) contains interconnected variables, then the model (6) needs to be further simplified;
  • n is a permutation matrix independent of time t
  • V(t) ⁇ -1 A 21 X(t) (8)
  • Step 3 Design an iterative learning law based on the state observer
  • k+1 represents the current running batch of the system
  • t ⁇ [0, ⁇ ] represents the limited working cycle of each batch of the system
  • the input delay constant satisfies the condition ⁇ ;
  • the current control signal U k+1 (t) is equal to the control signal U k (t) of the previous batch plus an update item r k+1 (t), and the update item r k+1 (t) is obtained from the previous batch
  • the error information is calculated;
  • the tracking error of the k+1 batch system is
  • Y r (t) is the desired output trajectory
  • K 1 , K 2 and K 3 are the learning gains to be designed
  • the update item is composed of state feedback information and PD-type previous tracking error information.
  • learning gain K 2 K 3
  • formula (22) is simplified to P-type ILC;
  • Step 4 Carry out systematic stability analysis and learning gain solution to the linear discrete repetitive process model
  • V(k,t) V 1 (t,k)+V 2 (k,t)
  • model (25) is stable along the batch, and the learning gain of the update item (22) and the gain of the state observer (20) are respectively
  • Equation (32) is equivalent to
  • Equation (31) the model (25) is robust and stable along the batch, and the learning gain of the update item (22) and the gain of the state observer (20) are given by Equation (31).
  • the multi-particle train dynamics equation is discretized using the finite difference method to obtain a partial recurrence equation, and then Transform it into a spatial interconnection system model;
  • the lifting technology to convert the spatial interconnection system model into an equivalent one-dimensional dynamic model to compensate for the input time lag; design an iterative learning law based on the state observer, and according to the designed iterative learning law will
  • the controlled object is transformed into an equivalent discrete repetitive process, and the sufficient conditions for the stability of the system along the batch are obtained according to the stability theory of the repeated process, and the controller synthesis problem is transformed into a linear matrix inequality.
  • the method is simple and easy to implement, solves the problem of output response lag caused by input time lag, and considers the structural uncertainty of the system, and has good control performance and robustness.
  • Fig. 1 is a structural diagram of a multi-mass vehicle platoon driving system provided by the present application.
  • Fig. 2 is a structural diagram of the spatial interconnection system model provided by the present application.
  • Fig. 3 is the output curve of the first train particle under the nominal condition provided by the present application.
  • Fig. 4 is the output curve of the second train particle under the nominal condition provided by the present application.
  • Fig. 5 is the output curve of the third train particle under the nominal condition provided by the present application.
  • Fig. 6 is the RMS comparison curve of the nominal system provided by the present application.
  • Fig. 7 is the output curve of the first train mass point under uncertain conditions provided by the present application.
  • Fig. 8 is the output curve of the second train particle under the uncertain condition provided by the present application.
  • Fig. 9 is the output curve of the third train particle under the uncertain situation provided by the present application.
  • Fig. 10 is the RMS comparison curve of the uncertain system provided by the present application.
  • Figure 2 is the structural diagram of the spatial interconnection system model, and each parameter matrix of model (3) is
  • the working cycle is 20s, and the speed reference trajectory of each vehicle is
  • the reference track signal is given by a waveform generator.
  • the learning gain and the corresponding observer gain of the P-type ILC are the same.
  • the above-mentioned iterative learning controller is realized by a STM32F103RCT6 chip.
  • the input signal of the chip is collected by BENTLY 74712 speed sensor.
  • the input signal enters the stm32 chip through the conditioning circuit for storage and calculation, and is used to construct an iterative learning update law.
  • the signal obtained after CPU calculation is used as the control signal U k+1 (t) of the current batch.
  • the control signal acts on the stepper motor DM3622 through the D/A conversion circuit, which is used to update the speed of the train particle until it tracks the given reference speed trajectory.
  • Figure 3 is the output curve of the mass point of the first train under the nominal condition
  • Figure 4 is the output curve of the mass point of the second train under the nominal condition
  • Figure 5 is the output curve of the mass point of the third train under the nominal condition.
  • Figure 6 is the RMS comparison curve of the nominal system. It can be seen that in the case of a constant input time delay, the state after the ⁇ step of the system estimated by the state observer is used as feedback, so that the system output responds in advance, and the input time delay is realized. compensation. With the increase of the number of iterations, the control signal is constantly updated, and the output of each train gradually tracks the expected speed trajectory, which verifies the effectiveness of the method of the present invention. In addition, compared with P-type ILC, PD-type ILC utilizes more tracking error information, and the root mean square error converges faster along the batch, which can achieve more perfect tracking performance.
  • Figure 7 is the output curve of the mass point of the first train under uncertain conditions
  • Figure 8 is the output curve of the mass points of the second train under uncertain conditions
  • Figure 9 is the output curve of the mass points of the third train under uncertain conditions
  • Figure 10 Represents the RMS contrast curve for an uncertain system.
  • the state observer is used to estimate the future state of the system and form a feedback to act on the system, so that the system outputs a timely response after the time delay ⁇ , which improves the control process.
  • the output of each train asymptotically tracks the desired velocity trajectory, and the tracking error converges along the batches, demonstrating the effectiveness of the proposed method and its robustness to the structural uncertainty of the system.
  • PD-type ILC requires almost 7 batches to achieve perfect tracking. Compared with P-type ILC, the convergence time is shorter, the convergence speed is faster, and the tracking performance is better.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种多质点车辆队列行驶系统的迭代学习控制方法,涉及迭代学习控制领域,该方法包括:首先利用有限差分法对多质点列车动力学方程进行离散化得到偏递推方程,然后将其转化为空间互联系统模型;其次,使用提升技术将空间互联系统模型转换为等价的一维动态模型,为补偿输入时滞,基于状态观测器设计迭代学习律;再次,根据迭代学习律将被控对象转化为等价的离散重复过程,基于重复过程的稳定性分析将控制器综合问题转换成线性矩阵不等式。该方法简单易于实现,解决了输入时滞引起的系统输出响应滞后的问题,并且考虑了系统的结构不确定性,具有良好的控制性能与鲁棒性。

Description

一种多质点车辆队列行驶系统的迭代学习控制方法 技术领域
本发明涉及迭代学习控制领域,尤其是一种多质点车辆队列行驶系统的迭代学习控制方法,针对一类具有结构不确定性和输入时滞的多质点车辆队列行驶系统。
背景技术
近年来,随着铁路的飞速发展,列车的高效出行方式深受人们的欢迎。多质点车辆队列行驶系统是一类由多个列车车厢相互耦合构成的空间互联系统,具有时空耦合、变量数目多、维数高的特性。在保证列车安全运行的前提下,提高列车有限时间和批次内运行的速度和性能成为了关注的重点。然而,由于列车复杂的运行环境,实际系统往往存在不确定性。此外,在控制实施中存在信息交互传输的现象,通常会涉及到输入时滞,导致系统输出响应滞后,影响系统的稳定和性能。针对上述多质点车辆队列行驶系统的运行特点,迭代学习控制被用于解决多质点车辆队列行驶系统的跟踪问题。
迭代学习控制(Iterative Learning Control,ILC)是一种新型的智能控制方法,通过从先前的批次中重复学习,能在有限时间内提高被控系统的跟踪性能。它最显著的特点是计算量小,对系统动力学的先验知识要求低,简单易于实现。本申请将迭代学习控制应用于具有不确定性和输入时滞的多质点车辆队列行驶系统可以提高系统的响应速度和轨迹跟踪精度,改善控制性能。
发明内容
本发明人针对上述问题及技术需求,提出了一种多质点车辆队列行驶系统的迭代学习控制方法,本发明的技术方案如下:
一种多质点车辆队列行驶系统的迭代学习控制方法,包括如下步骤:
第一步:建立多质点车辆队列行驶系统的空间互联系统模型
所述多质点车辆队列行驶系统的动力学方程描述为
Figure PCTCN2022084301-appb-000001
其中,
Figure PCTCN2022084301-appb-000002
表示第i辆车的位置,
Figure PCTCN2022084301-appb-000003
是控制输入,表示列车的牵引力,τ是由信号传输所引起的时滞常量,
Figure PCTCN2022084301-appb-000004
是测量输出,表示列车的速度;m表示每辆列车质量,其变化范围是
Figure PCTCN2022084301-appb-000005
k是弹簧系数,其变化范围是
Figure PCTCN2022084301-appb-000006
选择采样时间T,利用有限差分法对方程(1)进行近似离散化,即
Figure PCTCN2022084301-appb-000007
其中,t和s分别为离散时间和列车序号,将上述公式代入方程(1)得到偏递推方程
x 1(t+1,s)=x 1(t,s)+Tx 2(t,s)
Figure PCTCN2022084301-appb-000008
y(t,s)=x 2(t,s)
设车辆间互相传递的信息为各自的位置信息,即令互联变量w +(t,s)=w -(t,s)=x 1(t,s),v +(t,s)=x 1(t,s-1),v -(t,s)=x 1(t,s+1),输出变量y(t,s)=x 2(t,s),将方程(2)转化为不确定空间互联系统模型,即
Figure PCTCN2022084301-appb-000009
其中,
Figure PCTCN2022084301-appb-000010
Figure PCTCN2022084301-appb-000011
上式x(t,s)∈R n、u(t,s)∈R q和y(t,s)∈R m分别表示第s个子系统的状态、输入和输出变量;τ(0<τ<α)表示时滞常量;
Figure PCTCN2022084301-appb-000012
Figure PCTCN2022084301-appb-000013
表示相邻子系统间的互联作用,且满足
Figure PCTCN2022084301-appb-000014
其边界条件为v +(1)=w -(1)=0,v -(n)=w +(n)=0,n为子系统数目;
p(t,s)表示结构不确定性的伪输入通道,q(t,s)表示结构不确定性的伪输出通道,且
p(t,s)=θ sq(t,s)                       (5)
其中,不确定块
Figure PCTCN2022084301-appb-000015
δ i∈R,|δ i|≤1,i=1,…,f,δ i描述了系统动力学参数的变化,I rf为维度为r f的单位矩阵;
第二步:对空间互联系统模型进行转换
利用提升技术将模型(3)转化为等价的一维动态模型,定义提升向量如下:
X(t)=[x(t,1) T,x(t,2) T,…,x(t,n) T] T
V(t)=[v(t,1) T,v(t,2) T,…,v(t,n) T] T
W(t)=[w(t,1) T,w(t,2) T,…,w(t,n) T] T
P(t)=[p(t,1) T,p(t,2) T,…,p(t,n) T] T
Q(t)=[q(t,1) T,q(t,2) T,…,q(t,n) T] T
U(t-τ)=[u(t-τ,1) T,u(t-τ,2) T,…,u(t-τ,n) T] T
Y(t)=[y(t,1) T,y(t,2) T,…,y(t,n) T] T
则整个不确定空间互联系统模型由以下模型等价描述
Figure PCTCN2022084301-appb-000016
其中,
Figure PCTCN2022084301-appb-000017
Figure PCTCN2022084301-appb-000018
Figure PCTCN2022084301-appb-000019
Figure PCTCN2022084301-appb-000020
模型(6)中包含互联变量,则需对所述模型(6)进一步简化;
利用式(4)的互联特性及其边界条件,得到互联变量间的等式关系
W(t)=ηV(t)                         (7)
其中,η是与时间t无关的置换矩阵;
将式(7)代入(6)中,得到
V(t)=η -1A 21X(t)                        (8)
然后将式(8)代入(6),消去互联变量W(t)和V(t),得到以下等价的不确定模型
Figure PCTCN2022084301-appb-000021
其中,
Figure PCTCN2022084301-appb-000022
Figure PCTCN2022084301-appb-000023
根据式(5)得到
P(t)=θQ(t)                        (10)
其中不确定性块θ=diag{θ 1,…,θ n},θ i≤I,i=1,…,n;
将式(10)代入(9),得到
Figure PCTCN2022084301-appb-000024
然后将式(11)代入(9),利用消元法消去不确定变量P(t)和Q(t),得到一般形式的状态空间模型
Figure PCTCN2022084301-appb-000025
其中,
Figure PCTCN2022084301-appb-000026
Figure PCTCN2022084301-appb-000027
ΔB=B 11θ(I-D 11θ) -1D 12
第三步:基于状态观测器设计迭代学习律
将状态空间模型(12)描述为ILC结构形式
Figure PCTCN2022084301-appb-000028
其中k+1表示系统当前运行批次,t∈[0,α]表示系统每一批次的有限工作周期,输入时滞常量满足条件τ<α;
则所述迭代学习律表示为
U k+1(t)=U k(t)+r k+1(t)                    (14)
当前控制信号U k+1(t)等于前一批次的控制信号U k(t)加上一个更新项r k+1(t),所述更新项r k+1(t)由前次误差信息计算得到;
第k+1批次系统的跟踪误差为
e k+1(t)=Y r(t)-Y k+1(t)                    (15)
其中,Y r(t)为期望输出轨迹;
考虑到输出响应存在滞后,因此将所述跟踪误差重新描述为
e k+1(t)=Y r(t-τ)-Y k+1(t)                   (16)
引入状态误差向量
Figure PCTCN2022084301-appb-000029
假设Y r(0)=Y k(0)=CX k(0)和
Figure PCTCN2022084301-appb-000030
即系统每一批次都返回至相同初始状态,则
Figure PCTCN2022084301-appb-000031
Figure PCTCN2022084301-appb-000032
为了补偿输入时滞,利用当前批次的输出信息构造了如下的状态观测器
Figure PCTCN2022084301-appb-000033
其中,
Figure PCTCN2022084301-appb-000034
Figure PCTCN2022084301-appb-000035
是状态
Figure PCTCN2022084301-appb-000036
的τ步超前预测,即
Figure PCTCN2022084301-appb-000037
Figure PCTCN2022084301-appb-000038
的估计值;L是待设计的观测器增益;
定义观测误差为
Figure PCTCN2022084301-appb-000039
设学习律(14)中的更新项为
Figure PCTCN2022084301-appb-000040
其中,K 1、K 2和K 3是待设计的学习增益;
所述更新项由状态反馈信息和PD型前次跟踪误差信息构成,当学习增益K 2=K 3时,式(22)简化为P型ILC;
将(22)代入(20),得到
Figure PCTCN2022084301-appb-000041
并且
Figure PCTCN2022084301-appb-000042
Figure PCTCN2022084301-appb-000043
K=K 2-K 3,得到以下具有时滞的线性离散重复过程模型
Figure PCTCN2022084301-appb-000044
其中,
Figure PCTCN2022084301-appb-000045
Figure PCTCN2022084301-appb-000046
Figure PCTCN2022084301-appb-000047
Figure PCTCN2022084301-appb-000048
第四步:对所述线性离散重复过程模型进行系统的稳定性分析和学习增益求解
选取李雅普诺夫函数为
V(k,t)=V 1(t,k)+V 2(k,t)
Figure PCTCN2022084301-appb-000049
Figure PCTCN2022084301-appb-000050
其中,S=diag{S 1,S 2}>0,Q=diag{Q 1,Q 2}>0,P 2>P 1>0;V 1(t,k)表示沿一个批次的能量变化,V 2(k,t)表示批次间的能量变化;各子函数增量为
Figure PCTCN2022084301-appb-000051
Figure PCTCN2022084301-appb-000052
其中,
Figure PCTCN2022084301-appb-000053
总的函数增量为
Figure PCTCN2022084301-appb-000054
其中,
Figure PCTCN2022084301-appb-000055
如果对任意的k和t,ΔV(k,t)<0都成立,则模型(25)沿批次稳定,其等价条件为Π<0;对Π<0使用Schur补引理,在不等式两边分别左乘和右乘
Figure PCTCN2022084301-appb-000056
并且作变量代换,令
Figure PCTCN2022084301-appb-000057
Figure PCTCN2022084301-appb-000058
Figure PCTCN2022084301-appb-000059
得到以下结论:
对于式(25)所描述的具有时滞的标称线性离散重复过程模型,若存在矩阵W=diag{W 1,W 2}>0,X=diag{X 1,X 2}>0,Z 1>0,Z 2>0和矩阵R、R 1、R 2、R 3使得下列线性矩阵不等式成立
Figure PCTCN2022084301-appb-000060
则模型(25)沿批次稳定,更新项(22)的学习增益和状态观测器(20)的增益分别为
Figure PCTCN2022084301-appb-000061
当考虑系统存在结构不确定性时,对Π<0使用Schur补引理,并在不等式两边分别左乘和右乘
Figure PCTCN2022084301-appb-000062
并且作变量代换,令
Figure PCTCN2022084301-appb-000063
Figure PCTCN2022084301-appb-000064
Figure PCTCN2022084301-appb-000065
得到
Ξ 1+MΘN+N TΘ TM T<0                 (32)
其中,
Figure PCTCN2022084301-appb-000066
Figure PCTCN2022084301-appb-000067
Θ=θ(I-D 11θ) -1Tθ≤I
式(32)等价于
Figure PCTCN2022084301-appb-000068
其中ε>0;
根据Schur补引理,式(33)描述为
Figure PCTCN2022084301-appb-000069
对上式分别左乘和右乘diag{I,εI,εI},并用ε替换ε 2,得出以下结论:
对于式(25)所描述的具有时滞的不确定线性离散重复过程模型,若存在矩阵W=diag{W 1,W 2}>0,X=diag{X 1,X 2}>0,Z 1>0,Z 2>0和矩阵R、R 1、R 2、R 3使得下列线性矩阵不等式成立
Figure PCTCN2022084301-appb-000070
其中,
Figure PCTCN2022084301-appb-000071
Figure PCTCN2022084301-appb-000072
则模型(25)沿批次鲁棒稳定,更新项(22)的学习增益和状态观测器(20)的增益由式(31)给出。
本发明的有益技术效果是:
本申请研究了一种具有结构不确定性和输入时滞的多质点车辆队列行驶系统的鲁棒ILC方法,首先利用有限差分法对多质点列车动力学方程进行离散化得到偏递推方程,然后将其转化为空间互联系统模型;其次使用提升技术将空间互联系统模型转换为等价的一维动态模型,为补偿输入时滞;基于状态观测器设计迭代学习律,根据设计的迭代学习律将被控对象转化为等价的离散重复过程,根据重复过程稳定性理论得到系统沿批次稳定的充分条件,将控制器综合问题转换成线性矩阵不等式。该方法简单易于实现,解决了输入时滞引起的输出响应滞后问题,并且考虑了系统的结构不确定性,具有良好的控制性能与鲁棒性。
附图说明
图1是本申请提供的多质点车辆队列行驶系统的结构图。
图2是本申请提供的空间互联系统模型的结构图。
图3是本申请提供的标称情况下第1个列车质点的输出曲线。
图4是本申请提供的标称情况下第2个列车质点的输出曲线。
图5是本申请提供的标称情况下第3个列车质点的输出曲线。
图6是本申请提供的标称系统的RMS对比曲线。
图7是本申请提供的不确定情况下第1个列车质点的输出曲线。
图8是本申请提供的不确定情况下第2个列车质点的输出曲线。
图9是本申请提供的不确定情况下第3个列车质点的输出曲线。
图10是本申请提供的不确定系统的RMS对比曲线。
具体实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
图1为多质点车辆队列行驶系统的结构图,对于其动力学方程(1),取时滞常量τ=4;每辆列车质量m=2[kg],变化范围
Figure PCTCN2022084301-appb-000073
弹簧系数k=2[N/m],变化范围
Figure PCTCN2022084301-appb-000074
采样时间T=0.05[s]。
图2为空间互联系统模型的结构图,则模型(3)的各个参数矩阵为
Figure PCTCN2022084301-appb-000075
Figure PCTCN2022084301-appb-000076
Figure PCTCN2022084301-appb-000077
考虑3辆列车互联的多质点车辆队列行驶系统,设系统初始条件为x 0(0,1)=x 0(0,2)=x 0(0,3)=0,每一批次的有限工作周期为20s,每辆车的速度参考轨迹为
Figure PCTCN2022084301-appb-000078
Figure PCTCN2022084301-appb-000079
Figure PCTCN2022084301-appb-000080
参考轨迹信号由波形发生器给出。
求解式(25),得到标称系统PD型ILC的学习增益和观测器增益为
Figure PCTCN2022084301-appb-000081
Figure PCTCN2022084301-appb-000082
Figure PCTCN2022084301-appb-000083
P型ILC的学习增益和相应的观测器增益为
Figure PCTCN2022084301-appb-000084
Figure PCTCN2022084301-appb-000085
Figure PCTCN2022084301-appb-000086
上述迭代学习控制器的实现通过一块STM32F103RCT6芯片实现。芯片的输入信号由BENTLY 74712速度传感器采集得到。输入信号通过调理电路进入stm32芯片进行存储和计算,并用于构造迭代学习更新律,CPU计算后得到的信号作为当前批次的控制信号U k+1(t)。控制信号通过D/A转换电路作用于步进电机DM3622,用于更新列车质点的速度,直到跟踪上给定的参考速度轨迹。
图3为标称情况下第1辆列车质点的输出曲线,图4为标称情况下第2辆列车质点的输出曲线,图5为标称情况下第3辆列车质点的输出曲线。为进一步评价系统跟踪性能,引入均方根误差性能指标
Figure PCTCN2022084301-appb-000087
图6为标称系统的RMS对比曲线,可以看出在输入时滞常量的情况下,利用状态观测器估计的系统τ步以后的状态作为反馈,使系统输出提前响应,实现了对输入时滞的补偿。随着迭代次数的增加,控制信号不断更新,每辆列车的输出逐渐跟踪上期望的速度轨迹,验证了本发明方法的有效性。此外,相比于P型ILC,PD型ILC利用了更多的跟踪误差信息,均方根误差沿批次收敛 的速度更快,可以实现更完美的跟踪性能。
求解式(34),得到不确定系统的PD型ILC的学习增益和观测器增益为
Figure PCTCN2022084301-appb-000088
Figure PCTCN2022084301-appb-000089
Figure PCTCN2022084301-appb-000090
同理,P型ILC的学习增益和相应的观测器增益为
Figure PCTCN2022084301-appb-000091
Figure PCTCN2022084301-appb-000092
Figure PCTCN2022084301-appb-000093
图7为不确定情况下第1辆列车质点的输出曲线,图8为不确定情况下第2辆列车质点的输出曲线,图9为不确定情况下第3辆列车质点的输出曲线,图10表示不确定系统的RMS对比曲线。
可以看出在时滞常量和结构不确定性同时存在的情况下,利用状态观测器对系统未来状态进行估计并构成反馈作用于系统,使得系统在经过时滞τ后输出及时响应,改善了控制过程。随着迭代次数的增加,每辆列车的输出渐近跟踪上期望的速度轨迹,跟踪误差沿批次收敛,说明了本发明方法的有效性,并且对系统的结构不确定性具有鲁棒性。另外,PD型ILC实现完美跟踪需要几乎7个批次,相比于P型ILC收敛时间更短,收敛速度更快,跟踪性能更好。
以上所述的仅是本申请的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。

Claims (1)

  1. 一种多质点车辆队列行驶系统的迭代学习控制方法,其特征在于,所述方法包括:
    第一步:建立多质点车辆队列行驶系统的空间互联系统模型
    所述多质点车辆队列行驶系统的动力学方程描述为
    Figure PCTCN2022084301-appb-100001
    其中,
    Figure PCTCN2022084301-appb-100002
    表示第i辆车的位置,
    Figure PCTCN2022084301-appb-100003
    是控制输入,表示列车的牵引力,τ是由信号传输所引起的时滞常量,
    Figure PCTCN2022084301-appb-100004
    是测量输出,表示列车的速度;m表示每辆列车质量,其变化范围是
    Figure PCTCN2022084301-appb-100005
    k是弹簧系数,其变化范围是
    Figure PCTCN2022084301-appb-100006
    选择采样时间T,利用有限差分法对方程(1)进行近似离散化,即
    Figure PCTCN2022084301-appb-100007
    其中,t和s分别为离散时间和列车序号,将上述公式代入方程(1)得到偏递推方程
    Figure PCTCN2022084301-appb-100008
    设车辆间互相传递的信息为各自的位置信息,即令互联变量w +(t,s)=w -(t,s)=x 1(t,s),v +(t,s)=x 1(t,s-1),v -(t,s)=x 1(t,s+1),输出变量y(t,s)=x 2(t,s),将方程(2)转化为不确定空间互联系统模型,即
    Figure PCTCN2022084301-appb-100009
    其中,
    Figure PCTCN2022084301-appb-100010
    Figure PCTCN2022084301-appb-100011
    上式x(t,s)∈R n、u(t,s)∈R q和y(t,s)∈R m分别表示第s个子系统的状态、输入和输出变量;τ(0<τ<α)表示时滞常量;
    Figure PCTCN2022084301-appb-100012
    Figure PCTCN2022084301-appb-100013
    表示相邻子系统间的互联作用,且满足
    Figure PCTCN2022084301-appb-100014
    其边界条件为v +(1)=w -(1)=0,v -(n)=w +(n)=0,n为子系统数目;
    p(t,s)表示结构不确定性的伪输入通道,q(t,s)表示结构不确定性的伪输出通道,且
    p(t,s)=θ sq(t,s)  (5)
    其中,不确定块
    Figure PCTCN2022084301-appb-100015
    δ i∈R,|δ i|≤1,i=1,…,f,δ i描述了系统动力学参数的变化,
    Figure PCTCN2022084301-appb-100016
    为维度为r f的单位矩阵;
    第二步:对空间互联系统模型进行转换
    利用提升技术将模型(3)转化为等价的一维动态模型,定义提升向量如下:
    X(t)=[x(t,1) T,x(t,2) T,…,x(t,n) T] T
    V(t)=[v(t,1) T,v(t,2) T,…,v(t,n) T] T
    W(t)=[w(t,1) T,w(t,2) T,…,w(t,n) T] T
    P(t)=[p(t,1) T,p(t,2) T,…,p(t,n) T] T
    Q(t)=[q(t,1) T,q(t,2) T,…,q(t,n) T] T
    U(t-τ)=[u(t-τ,1) T,u(t-τ,2) T,…,u(t-τ,n) T] T
    Y(t)=[y(t,1) T,y(t,2) T,…,y(t,n) T] T
    则整个不确定空间互联系统模型由以下模型等价描述
    Figure PCTCN2022084301-appb-100017
    其中,
    Figure PCTCN2022084301-appb-100018
    Figure PCTCN2022084301-appb-100019
    Figure PCTCN2022084301-appb-100020
    Figure PCTCN2022084301-appb-100021
    模型(6)中包含互联变量,则需对所述模型(6)进一步简化;
    利用式(4)的互联特性及其边界条件,得到互联变量间的等式关系
    W(t)=ηV(t)  (7)
    其中,η是与时间t无关的置换矩阵;
    将式(7)代入(6)中,得到
    V(t)=η -1A 21X(t)  (8)
    然后将式(8)代入(6),消去互联变量W(t)和V(t),得到以下等价的不确定模型
    Figure PCTCN2022084301-appb-100022
    其中,
    Figure PCTCN2022084301-appb-100023
    Figure PCTCN2022084301-appb-100024
    根据式(5)得到
    P(t)=θQ(t)  (10)
    其中不确定性块θ=diag{θ 1,…,θ n},θ i≤I,i=1,…,n;
    将式(10)代入(9),得到
    Figure PCTCN2022084301-appb-100025
    然后将式(11)代入(9),利用消元法消去不确定变量P(t)和Q(t),得到一般形式的状态空间模型
    Figure PCTCN2022084301-appb-100026
    其中,
    Figure PCTCN2022084301-appb-100027
    Figure PCTCN2022084301-appb-100028
    ΔB=B 11θ(I-D 11θ) -1D 12
    第三步:基于状态观测器设计迭代学习律
    将状态空间模型(12)描述为ILC结构形式
    Figure PCTCN2022084301-appb-100029
    其中k+1表示系统当前运行批次,t∈[0,α]表示系统每一批次的有限工作周期,输入时滞常量满足条件τ<α;
    则所述迭代学习律表示为
    U k+1(t)=U k(t)+r k+1(t)  (14)
    当前控制信号U k+1(t)等于前一批次的控制信号U k(t)加上一个更新项r k+1(t),所述 更新项r k+1(t)由前次误差信息计算得到;
    第k+1批次系统的跟踪误差为
    e k+1(t)=Y r(t)-Y k+1(t)  (15)
    其中,Y r(t)为期望输出轨迹;
    考虑到输出响应存在滞后,因此将所述跟踪误差重新描述为
    e k+1(t)=Y r(t-τ)-Y k+1(t)  (16)
    引入状态误差向量
    Figure PCTCN2022084301-appb-100030
    假设Y r(0)=Y k(0)=CX k(0)和
    Figure PCTCN2022084301-appb-100031
    即系统每一批次都返回至相同初始状态,则
    Figure PCTCN2022084301-appb-100032
    Figure PCTCN2022084301-appb-100033
    为了补偿输入时滞,利用当前批次的输出信息构造了如下的状态观测器
    Figure PCTCN2022084301-appb-100034
    其中,
    Figure PCTCN2022084301-appb-100035
    是状态
    Figure PCTCN2022084301-appb-100036
    的τ步超前预测,即
    Figure PCTCN2022084301-appb-100037
    Figure PCTCN2022084301-appb-100038
    的估计值;L是待设计的观测器增益;
    定义观测误差为
    Figure PCTCN2022084301-appb-100039
    设学习律(14)中的更新项为
    Figure PCTCN2022084301-appb-100040
    其中,K 1、K 2和K 3是待设计的学习增益;
    所述更新项由状态反馈信息和PD型前次跟踪误差信息构成,当学习增益K 2=K 3时,式(22)简化为P型ILC;
    将(22)代入(20),得到
    Figure PCTCN2022084301-appb-100041
    并且
    Figure PCTCN2022084301-appb-100042
    Figure PCTCN2022084301-appb-100043
    K=K 2-K 3,得到以下具有时滞的线性离散重复过程模型
    Figure PCTCN2022084301-appb-100044
    其中,
    Figure PCTCN2022084301-appb-100045
    Figure PCTCN2022084301-appb-100046
    Figure PCTCN2022084301-appb-100047
    Figure PCTCN2022084301-appb-100048
    第四步:对所述线性离散重复过程模型进行系统的稳定性分析和学习增益求解
    选取李雅普诺夫函数为
    Figure PCTCN2022084301-appb-100049
    其中,S=diag{S 1,S 2}>0,Q=diag{Q 1,Q 2}>0,P 2>P 1>0;V 1(t,k)表示沿一个批次的能量变化,V 2(k,t)表示批次间的能量变化;各子函数增量为
    Figure PCTCN2022084301-appb-100050
    Figure PCTCN2022084301-appb-100051
    其中,
    Figure PCTCN2022084301-appb-100052
    总的函数增量为
    Figure PCTCN2022084301-appb-100053
    其中,
    Figure PCTCN2022084301-appb-100054
    如果对任意的k和t,ΔV(k,t)<0都成立,则模型(25)沿批次稳定,其等价条件为Π<0;对Π<0使用Schur补引理,在不等式两边分别左乘和右乘
    Figure PCTCN2022084301-appb-100055
    并且作变量代换,令
    Figure PCTCN2022084301-appb-100056
    Figure PCTCN2022084301-appb-100057
    Figure PCTCN2022084301-appb-100058
    得到以下结论:
    对于式(25)所描述的具有时滞的标称线性离散重复过程模型,若存在矩阵W=diag{W 1,W 2}>0,X=diag{X 1,X 2}>0,Z 1>0,Z 2>0和矩阵R、R 1、R 2、R 3使得下列线性矩阵不等式成立
    Figure PCTCN2022084301-appb-100059
    则模型(25)沿批次稳定,更新项(22)的学习增益和状态观测器(20)的增益分别为
    Figure PCTCN2022084301-appb-100060
    当考虑系统存在结构不确定性时,对Π<0使用Schur补引理,并在不等式两边分别左乘和右乘
    Figure PCTCN2022084301-appb-100061
    并且作变量代换,令
    Figure PCTCN2022084301-appb-100062
    Figure PCTCN2022084301-appb-100063
    Figure PCTCN2022084301-appb-100064
    得到
    Ξ 1+MΘN+N TΘ TM T<0  (32)
    其中,
    Figure PCTCN2022084301-appb-100065
    Figure PCTCN2022084301-appb-100066
    Θ=θ(I-D 11θ) -1Tθ≤I
    式(32)等价于
    Figure PCTCN2022084301-appb-100067
    其中ε>0;
    根据Schur补引理,式(33)描述为
    Figure PCTCN2022084301-appb-100068
    对上式分别左乘和右乘diag{I,εI,εI},并用ε替换ε 2,得出以下结论:
    对于式(25)所描述的具有时滞的不确定线性离散重复过程模型,若存在矩阵W=diag{W 1,W 2}>0,X=diag{X 1,X 2}>0,Z 1>0,Z 2>0和矩阵R、R 1、R 2、R 3使得下列线性矩阵不等式成立
    Figure PCTCN2022084301-appb-100069
    其中,
    Figure PCTCN2022084301-appb-100070
    Figure PCTCN2022084301-appb-100071
    则模型(25)沿批次鲁棒稳定,更新项(22)的学习增益和状态观测器(20)的增益由式(31)给出;
    第五步:给出所述多质点车辆队列行驶系统的具体参数,确定所述迭代学习律的学习增益及相应的观测器增益,对ILC状态空间模型施加本批次的控制信号,得到本批次的输出,然后通过所述迭代学习律的反复调节控制,使得车辆队列行驶系统每辆列车的输出渐近跟踪上期望的速度轨迹。
PCT/CN2022/084301 2021-06-18 2022-03-31 一种多质点车辆队列行驶系统的迭代学习控制方法 WO2022262362A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/986,431 US11975751B2 (en) 2021-06-18 2022-11-14 Iterative learning control method for multi-particle vehicle platoon driving system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110680017.6A CN113341726B (zh) 2021-06-18 2021-06-18 一种多质点车辆队列行驶系统的迭代学习控制方法
CN202110680017.6 2021-06-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/986,431 Continuation US11975751B2 (en) 2021-06-18 2022-11-14 Iterative learning control method for multi-particle vehicle platoon driving system

Publications (1)

Publication Number Publication Date
WO2022262362A1 true WO2022262362A1 (zh) 2022-12-22

Family

ID=77477685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084301 WO2022262362A1 (zh) 2021-06-18 2022-03-31 一种多质点车辆队列行驶系统的迭代学习控制方法

Country Status (3)

Country Link
US (1) US11975751B2 (zh)
CN (1) CN113341726B (zh)
WO (1) WO2022262362A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113341726B (zh) * 2021-06-18 2022-05-27 江南大学 一种多质点车辆队列行驶系统的迭代学习控制方法
CN114185274B (zh) * 2021-12-06 2023-07-04 东北大学 基于迭代学习的钢铁生产过程重复性误差补偿控制方法
CN114625003B (zh) * 2022-03-09 2023-09-22 西南交通大学 一种基于多质点模型的高速列车分布式轨迹跟踪控制方法
CN114721268B (zh) * 2022-04-08 2022-11-04 江南大学 注塑成型喷嘴压力鲁棒启发式迭代学习控制方法
CN115047763B (zh) * 2022-06-08 2023-10-13 国网安徽省电力有限公司天长市供电公司 一种多无人机系统的最小能量控制方法
CN116118822B (zh) * 2023-04-13 2023-07-28 江西科骏实业有限公司 一种列车编组运行时的主动避碰控制方法、系统及介质
CN117008473A (zh) * 2023-06-29 2023-11-07 南京工业大学 一种基于观测器的电路系统迭代学习控制方法
CN116700017B (zh) * 2023-08-08 2023-11-03 北京航空航天大学 一种基于观测状态的可重入制造系统的动态调控方法
CN117806175B (zh) * 2024-03-01 2024-04-30 北京理工大学 分布式驱动车辆模型误差自学习轨迹跟踪控制方法及系统
CN118259596B (zh) * 2024-05-30 2024-08-02 西华大学 一种基于迭代学习的高速列车运行控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846979A (zh) * 2010-06-29 2010-09-29 北京航空航天大学 一种精确目标跟踪的超前迭代学习控制方法
CN109031958A (zh) * 2018-10-16 2018-12-18 廊坊师范学院 分数阶多智能体追踪一致性的迭代学习控制方法
CN110032066A (zh) * 2019-01-10 2019-07-19 廊坊师范学院 分数阶非线性系统轨迹跟踪的自适应迭代学习控制方法
CN113341726A (zh) * 2021-06-18 2021-09-03 江南大学 一种多质点车辆队列行驶系统的迭代学习控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170309187A1 (en) * 2016-04-22 2017-10-26 Hsin-Nan Lin Vehicle platoon system and method thereof
EP3798075B1 (en) * 2019-09-25 2023-08-02 Ningbo Geely Automobile Research & Development Co. Ltd. A method for driving a vehicle platoon
EP3836111A1 (en) * 2019-12-09 2021-06-16 Ningbo Geely Automobile Research & Development Co. Ltd. A method for operating a transportation system
CN111158349B (zh) * 2020-01-15 2021-01-08 浙江大学 基于多步线性化策略的无人驾驶车辆模型预测控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846979A (zh) * 2010-06-29 2010-09-29 北京航空航天大学 一种精确目标跟踪的超前迭代学习控制方法
CN109031958A (zh) * 2018-10-16 2018-12-18 廊坊师范学院 分数阶多智能体追踪一致性的迭代学习控制方法
CN110032066A (zh) * 2019-01-10 2019-07-19 廊坊师范学院 分数阶非线性系统轨迹跟踪的自适应迭代学习控制方法
CN113341726A (zh) * 2021-06-18 2021-09-03 江南大学 一种多质点车辆队列行驶系统的迭代学习控制方法

Also Published As

Publication number Publication date
US11975751B2 (en) 2024-05-07
CN113341726B (zh) 2022-05-27
CN113341726A (zh) 2021-09-03
US20230078812A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
WO2022262362A1 (zh) 一种多质点车辆队列行驶系统的迭代学习控制方法
Wang et al. Self-learning cruise control using kernel-based least squares policy iteration
AU2021100338A4 (en) Speed tracking control method and system for heavy-haul train
Yin et al. Data-driven models for train control dynamics in high-speed railways: LAG-LSTM for train trajectory prediction
CN104238366B (zh) 基于神经元网络的压电陶瓷执行器的预测控制方法及装置
CN109933021A (zh) 考虑车辆动力学参数不确定性的车辆队列稳定性控制方法
CN103324085A (zh) 基于监督式强化学习的最优控制方法
CN103246200B (zh) 一种基于分布式模型的动车组同步跟踪控制方法
CN111258218B (zh) 基于最大相关熵准则的智能车辆路径跟踪方法
CN114253274B (zh) 基于数据驱动的网联混合车辆编队滚动优化控制方法
CN116027669A (zh) 一种高速列车自适应滑模控制方法、系统及电子设备
Guo et al. Adaptive fuzzy sliding mode control for high‐speed train using multi‐body dynamics model
Yin et al. Expandable deep width learning for voltage control of three-state energy model based smart grids containing flexible energy sources
Li et al. Robust point‐to‐point iterative learning control for high speed trains with model uncertainty and wind gust
CN107450311A (zh) 逆模型建模方法及装置、以及自适应逆控制方法及装置
Zhou et al. Data-driven integral sliding mode control based on disturbance decoupling technology for electric multiple unit
Trudgen et al. Robust cooperative adaptive cruise control design and implementation for connected vehicles
Tiganasu et al. Design and simulation evaluation of cooperative adaptive cruise control for a platoon of vehicles
CN116880184A (zh) 无人船轨迹追踪预测控制方法、系统及存储介质
Guo et al. Data-mechanism adaptive switched predictive control for heterogeneous platoons with wireless communication interruption
US11981212B1 (en) Cooperative control method for electro-hydraulic hybrid braking of middle-low speed maglev train
Ji et al. A Novel Model-Free Adaptive Recursive Optimal Control for Time-Varying Nonlinear Systems
Lin et al. Research on speed tracking control algorithm of the high-speed train based on equivalent sliding mode and RBF neural network
CN111123706B (zh) 高速列车半主动悬挂系统控制方法
Yang et al. Trajectory Tracking Control of Autonomous Vehicles Based on Reinforcement Learning and Curvature Feedforward

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22823853

Country of ref document: EP

Kind code of ref document: A1