WO2022262349A1 - 多功能生物基可穿戴传感凝胶及其制备方法 - Google Patents

多功能生物基可穿戴传感凝胶及其制备方法 Download PDF

Info

Publication number
WO2022262349A1
WO2022262349A1 PCT/CN2022/082743 CN2022082743W WO2022262349A1 WO 2022262349 A1 WO2022262349 A1 WO 2022262349A1 CN 2022082743 W CN2022082743 W CN 2022082743W WO 2022262349 A1 WO2022262349 A1 WO 2022262349A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
graphene oxide
multifunctional bio
based wearable
gel
Prior art date
Application number
PCT/CN2022/082743
Other languages
English (en)
French (fr)
Inventor
蔡红珍
韩祥生
徐航
高锋
张文彬
原研浩
Original Assignee
山东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东理工大学 filed Critical 山东理工大学
Publication of WO2022262349A1 publication Critical patent/WO2022262349A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces

Definitions

  • the invention belongs to the technical field of new composite materials, and in particular relates to a multifunctional bio-based wearable sensing gel and a preparation method thereof.
  • Biomimetic sensors based on conductive hydrogels are able to convert external stimuli (e.g., strain or pressure) into detectable electrical signals (e.g., resistance, voltage, or capacitance), showing advanced applications in personal healthcare and artificial intelligence.
  • external stimuli e.g., strain or pressure
  • detectable electrical signals e.g., resistance, voltage, or capacitance
  • traditional conductive hydrogels using pure water as the dispersion medium usually suffer from two problems: at sub-zero temperatures, freezing-induced hardening problems, which greatly limit the operating temperature range of the hydrogels.
  • Another problem is structural failure caused by water evaporation, which greatly shortens the lifetime of the hydrogel at room temperature. Therefore, it is highly desirable to develop a new type of conductive hydrogel with long-term environmental stability while maintaining the advantageous properties of conventional hydrogels.
  • the purpose of the present invention is to provide a multifunctional bio-based wearable sensing gel.
  • the sensing gel has excellent mechanical properties, frost resistance, moisture retention, adhesion, recyclability and sensing.
  • the invention also provides its preparation method.
  • the multifunctional bio-based wearable sensing gel of the present invention is composed of flour, graphene oxide solution, glycerol solution and ascorbic acid solution, wherein the mass volume ratio of flour to graphene oxide solution is 1.65-2.5 : 1, the unit is g/ml; the mass volume ratio of the ascorbic acid solution and the graphene oxide solution is 1:12.5, the unit is g/ml; the concentration of the graphene oxide solution is 0.1-4mg/ml.
  • the concentration of the glycerol solution is 40%-60%, preferably, the concentration of the glycerol solution is 50%; the concentration of the ascorbic acid solution is 15-25mg/ml, preferably, the concentration of the ascorbic acid solution is 20mg/ml; Triol solution, ascorbic acid solution and graphene oxide solution all use water as solvent.
  • the volume ratio of graphene oxide solution and glycerol solution is 1:4.
  • the preparation method of the multifunctional bio-based wearable sensing gel of the present invention consists of the following steps:
  • step (2) The dough prepared in step (1) is cleaned with deionized water until the dough is completely changed from white to pale yellow;
  • step (3) putting the material obtained in step (2) into a glycerol solution for shaking, and performing solvent exchange;
  • the starch and other water-soluble components in the dough are removed through washing in step (2), and the remaining components are proteins mainly glutenin and gliadin.
  • the shaking time described in step (3) is 12h-24h, and the shaking temperature is 25-30°C.
  • the reduction reaction temperature in step (4) is 50-70°C, preferably 60°C, and the reduction reaction time is 6-12h.
  • the standing time described in step (5) is 12-24h, and the standing temperature is room temperature.
  • the antifreeze and moisture retention properties of organogels are mainly because internal glycerol and water will form strong hydrogen bonds, which can reduce the crystallization point on the one hand, so that organogels will not freeze below zero.
  • the hydrogen bond formed by glycerol and water hinders the loss of water inside the organogel and improves the moisture retention of the organogel.
  • the conductivity of the organogel is due to the gradual improvement of the conductive path formed with the increase of the concentration of the reduced graphene oxide, so that the conductivity of the organogel gradually increases.
  • a variety of amino acids in gluten can form interactions with different material surfaces, such as hydrogen bonds or electrostatic forces, endowing the gel with excellent adhesion. Non-covalent forces in gluten give the gel its self-healing properties.
  • the present invention has the following beneficial effects:
  • the multifunctional bio-based wearable sensing gel of the present invention takes biomass flour material as a skeleton, uses graphene oxide as a filler, and uses glycerol with a volume fraction of 40-60% to carry out gel Solvent exchange treatment, preparation of gluten/reduced graphene oxide organogel by water washing and redox method.
  • the multifunctional bio-based wearable sensing gel of the present invention uses a glycerol solution with a volume fraction of 40-60% to perform simple solvent exchange to obtain a new type of organic gel, which effectively improves the hydraulic coagulation
  • the mechanical properties of the glue while enhancing the antifreeze and moisture retention of traditional hydrogels, broaden the application fields and working ranges of traditional hydrogel sensors.
  • the preparation method of the multifunctional bio-based wearable sensing gel of the present invention is simple, novel, green, low in energy consumption, and low in cost.
  • the multifunctional bio-based wearable sensor gel prepared by the method of the present invention has excellent mechanical strength, frost resistance, moisture retention, electrical conductivity and high adhesion, and can be recycled. Compared with traditional biomass sensing gels, the effective working temperature range of the gel is wider and the service life is longer.
  • Fig. 1 is the flow chart of the preparation method of the multifunctional bio-based wearable sensing gel of the present invention
  • Fig. 2 is the graph of the relative current change when the sensing gel prepared in Example 2 detects different bending angles of the finger based on the gel sensor;
  • Fig. 3 is the graph of the relative current change when the sensing gel prepared in Example 2 is based on the gel sensor to detect the same angle of elbow bending;
  • Fig. 4 is a diagram of the relative current change when the sensing gel prepared in Example 2 is based on the gel sensor to detect the same bending angle of the knee.
  • raw materials are composed of 20g flour, 10ml graphene oxide solution, 40ml glycerol solution and 0.8g ascorbic acid solution, wherein the concentration of glycerol solution is 50 %, the concentration of the ascorbic acid solution is 20 mg/ml, and the concentration of the graphene oxide solution is 0.1 mg/ml.
  • the preparation method of the multifunctional bio-based wearable sensing gel described in Example 1 consists of the following steps:
  • step (3) Put the material obtained in step (2) into a glycerol solution with a volume fraction of 50% and shake at 25° C. for 24 hours to perform solvent exchange;
  • raw materials are composed of 20g flour, 10ml graphene oxide solution, 40ml glycerol solution and 0.8g ascorbic acid solution, wherein the concentration of glycerol solution is 50 %, the concentration of ascorbic acid solution is 20mg/ml, and the concentration of graphene oxide solution is 0.2mg/ml.
  • the preparation method of the multifunctional bio-based wearable sensing gel described in Example 2 consists of the following steps:
  • step (3) Put the material obtained in step (2) into a glycerol solution with a volume fraction of 50% and shake at 25° C. for 24 hours to perform solvent exchange;
  • raw materials are composed of 20g flour, 10ml graphene oxide solution, 40ml glycerol solution and 0.8g ascorbic acid solution, wherein the concentration of glycerol solution is 50 %, the concentration of ascorbic acid solution is 20mg/ml, and the concentration of graphene oxide solution is 0.4mg/ml.
  • the preparation method of the multifunctional bio-based wearable sensing gel described in Example 3 consists of the following steps:
  • step (3) Put the material obtained in step (2) into a glycerol solution with a volume fraction of 50% and shake at 25° C. for 24 hours to perform solvent exchange;
  • raw materials are made up of 20g flour, 10ml graphene oxide solution, 40ml glycerol solution and 0.8g ascorbic acid solution, wherein the concentration of glycerol solution is 50 %, the concentration of ascorbic acid solution is 20mg/ml, and the concentration of graphene oxide solution is 0.8mg/ml.
  • the preparation method of the multifunctional bio-based wearable sensing gel described in Example 4 consists of the following steps:
  • step (3) Put the material obtained in step (2) into a glycerol solution with a volume fraction of 50% and shake at 25° C. for 24 hours to perform solvent exchange;
  • the multifunctional bio-based wearable sensor gel described in Example 5 is made up of 20g flour, 10ml graphene oxide solution, 40ml glycerol solution and 0.8g ascorbic acid solution, wherein the glycerol solution has a concentration of 50 %, the concentration of ascorbic acid solution is 20mg/ml, and the concentration of graphene oxide solution is 4mg/ml.
  • the preparation method of the multifunctional bio-based wearable sensing gel described in Example 5 consists of the following steps:
  • step (3) Put the material obtained in step (2) into a glycerol solution with a volume fraction of 50% and shake at 25° C. for 24 hours to perform solvent exchange;
  • raw materials are composed of 20g flour, 8ml graphene oxide solution, 32ml glycerol solution and 0.64g ascorbic acid solution, wherein the concentration of glycerol solution is 50 %, the concentration of ascorbic acid solution is 20mg/ml, and the concentration of graphene oxide solution is 0.2mg/ml.
  • the preparation method of the multifunctional bio-based wearable sensing gel described in Example 6 consists of the following steps:
  • step (3) Put the material obtained in step (2) into a glycerol solution with a volume fraction of 50% and shake at 28° C. for 18 hours to perform solvent exchange;
  • raw materials are composed of 20g flour, 12ml graphene oxide solution, 48ml glycerol solution and 0.96g ascorbic acid solution, wherein the concentration of glycerol solution is 50 %, the concentration of ascorbic acid solution is 20mg/ml, and the concentration of graphene oxide solution is 0.2mg/ml.
  • the preparation method of the multifunctional bio-based wearable sensing gel described in Example 7 consists of the following steps:
  • step (3) Put the material obtained in step (2) into a glycerol solution with a volume fraction of 50% and shake at 30° C. for 12 hours to perform solvent exchange;
  • the gel material described in Comparative Example 1 is made of flour and glycerol solution, wherein the concentration of glycerol solution is 50%.
  • the preparation method of the gel material described in this Comparative Example 1 consists of the following steps:
  • step (3) Put the material obtained in step (2) into a glycerol solution with a volume fraction of 50% and shake at 25° C. for 24 hours to perform solvent exchange;
  • the gel material described in this comparative example 2 is made up of 20g flour, 10ml graphene oxide solution, 40ml aqueous solution and 0.8g ascorbic acid solution, wherein the concentration of ascorbic acid solution is 20mg/ml, and the concentration of graphene oxide solution is 0.2mg /ml.
  • the preparation method of the gel material described in this comparative example 2 consists of the following steps:
  • step (3) Put the material obtained in step (2) into an aqueous solution and shake at 25° C. for 24 hours to perform solvent exchange;
  • the properties of the sensing gels prepared in Examples 1-7 and Comparative Examples 1-2 were tested, and the results are shown below.
  • the mechanical strength is tested by a universal mechanical testing machine, the moisture retention is measured in a closed environment at 25°C, 60% humidity, and 30 days, and the quality change is measured.
  • the electrical conductivity is measured by an electrochemical workstation, and the adhesion is measured by lap joints.
  • the method of shearing was used to test its adhesion strength, and the frost resistance was to place the material at -20°C in advance, and measure the change of its conductivity after 24 hours; the sensing gels prepared in Examples 1-7 and Comparative Examples 1-2 were tested.
  • Adhesion test the results are shown in Table 4 below; the influence of different water contents on the adhesion strength of the sensing gel prepared in Test Example 2, the initial water content is 21%, the results are shown in Table 5; as shown in Figure 2
  • the sensory gel prepared in Example 2 is tested for sensing performance, and the relative current changes when the gel sensor detects different bending angles of the finger; as shown in Figure 3, the sensory gel prepared in Example 2 The gel was tested for sensing performance, based on the gel sensor to detect the relative current change when the elbow was bent at the same angle; as shown in Figure 4, the sensing gel prepared in Example 2 was tested for sensing performance, based on the gel sensor Detects the relative current change when the knee is bent at the same angle.
  • the sensing gel prepared in Example 2 has excellent sensitivity, not only can detect small body changes such as finger bending at different angles, but also can detect large body movements, such as hand Elbows bent and knees bent.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于新型复合材料技术领域,具体的涉及一种多功能生物基可穿戴传感凝胶及其制备方法。所述的传感凝胶原料由面粉、氧化石墨烯溶液、丙三醇溶液和抗坏血酸溶液组成,其中,面粉与氧化石墨烯溶液的质量体积比为1.65-2.5:1,单位为g/ml;抗坏血酸溶液与氧化石墨烯溶液的质量体积比为1:12.5,单位为g/ml;氧化石墨烯溶液的浓度为0.1-4mg/ml。采用本发明所述的方法制备得到的多功能生物基可穿戴传感凝胶,具备优秀的机械强度,抗冻性,保湿性,导电性和高粘附性,可循环利用,与传统生物质传感凝胶相比,凝胶的有效工作温度范围更广,使用寿命更长。

Description

多功能生物基可穿戴传感凝胶及其制备方法 技术领域
本发明属于新型复合材料技术领域,具体的涉及一种多功能生物基可穿戴传感凝胶及其制备方法。
背景技术
随着互联网的快速发展和人机界面需求的不断增加,在过去的20年里,软性和柔性离子导体由于其高伸展性、透明度、可调控的机械性能、生物相容性等固有特性而备受关注。基于导电水凝胶的仿生传感器能够将外部刺激(例如:应变或压力)转变成可检测的电子信号(例如:电阻、电压或电容),在个人保健和人工智能领域显示出先进的应用。然而,使用纯水作为分散介质的传统导电水凝胶通常受到两个问题的困扰:在零度以下的温度下,冻结引起的硬化问题,这大大限制了水凝胶的操作温度范围。另一个问题是水蒸发引起的结构失效,这大大缩短了水凝胶在室温下的寿命。因此,非常希望开发一种具有长期环境稳定性的新型导电水凝胶,同时保持传统水凝胶的优势特性。
发明内容
本发明的目的是:提供一种多功能生物基可穿戴传感凝胶。该传感凝胶具备优良的力学性能、抗冻性、保湿性、粘附性、可循环利用和可传感性。本发明同时提供了其制备方法。
本发明所述的多功能生物基可穿戴传感凝胶,原料由面粉、氧化石墨烯溶液、丙三醇溶液和抗坏血酸溶液组成,其中,面粉与氧化石墨烯溶液的质量体积比为1.65-2.5:1,单位为g/ml;抗坏血酸溶液与氧化石墨烯溶液的质量体积比为1:12.5,单位为g/ml;氧化石墨烯溶液的浓度为0.1-4mg/ml。
其中:
丙三醇溶液的浓度为40%-60%,优选的,丙三醇溶液的浓度为50%;抗坏血酸溶液的浓度为15-25mg/ml,优选的,抗坏血酸溶液的浓度为20mg/ml;丙三醇溶液、抗坏血酸溶液和氧化石墨烯溶液均以水为溶剂。
氧化石墨烯溶液和丙三醇溶液的体积比为1:4。
本发明所述的多功能生物基可穿戴传感凝胶的制备方法,由以下步骤组成:
(1)将面粉和氧化石墨烯溶液混合,揉捏成面团直至混合均匀;
(2)采用去离子水对步骤(1)制备的面团进行清洗,直至面团由白色完全转变为淡黄色;
(3)将步骤(2)得到的材料放入丙三醇溶液中震荡,进行溶剂交换;
(4)以抗坏血酸作为还原剂,将其加入到溶液中,进行氧化石墨烯还原反应,制备得到有机凝胶;
(5)将有机凝胶取出后利用吸水纸擦去表面溶剂,静置一段时间,制备得到多功能生物基可穿戴传感凝胶。
其中:
步骤(2)中所述的经过清洗去除面团中的淀粉和其他溶于水的成分,剩余成分为以麦谷蛋白和麦醇溶蛋白为主的蛋白质。
步骤(3)中所述的震荡时间为12h-24h,震荡温度为25-30℃。
步骤(4)中所述的还原反应的温度为50-70℃,优选60℃,还原反应的时间为6-12h。
步骤(5)中所述的静置时间为12-24h,静置温度为室温。
将氧化石墨烯与谷蛋白(生物质)简单的物理结合形成水凝胶,浸泡在40-60%的丙三醇溶液中,由于水凝胶内外浓度差的不同,丙三醇分子会进入水凝胶中,并且置换出部分水分子,形成以谷蛋白和氧化石墨烯为主体的有机凝胶,抗坏血酸加入到溶液中并放置在50-70℃环境下,利用抗坏血酸的还原性还原有机凝胶中的氧化石墨烯,在此期间,50-70℃不仅加速了还原过程,并且提高了丙三醇和水的置换速度。将有机凝胶取出后擦干。有机凝胶的抗冻性和保湿性主要是因为内部丙三醇和水会形成作用力较强的氢键,一方面可以降低了结晶点,使有机凝胶不会在零度以下结冰。另一方面,丙三醇和水形成的氢键阻碍了有机凝胶内部水分的散失,提高了有机凝胶的保湿性。有机凝胶的导电能力是由于随着还原氧化石墨烯的浓度升高,所构成的导电通路逐渐完善,使得有机凝胶的电导率逐渐升高。谷蛋白中的多种氨基酸可以和不同的材料表面形成相互作用力,如氢键或者静电力,赋予了凝胶优秀的粘附性。谷蛋白中的非共价作用力赋予了凝胶自愈的性质。
本发明与现有技术相比,具有以下有益效果:
(1)本发明所述的多功能生物基可穿戴传感凝胶,以生物质面粉材料为骨架,以氧化石墨烯为填料,用体积分数为40-60%的丙三醇对凝胶进行溶剂交换处理,通过水洗,氧化还原的方法制备谷蛋白/还原氧化石墨烯有机凝胶。
(2)本发明所述的多功能生物基可穿戴传感凝胶,利用体积分数40-60%丙三醇溶液进行简单的溶剂交换,得到了一种新型有机凝胶,有效改善了水凝胶的力学性能,同时增强了传统水凝胶的抗冻性,保湿性,拓宽了传统水凝胶传感器的应用领域和工作范围。
(3)本发明所述的多功能生物基可穿戴传感凝胶的制备方法,简易新颖,绿色低能耗,成本低。
(4)采用本发明所述的方法制备得到的多功能生物基可穿戴传感凝胶,具备优秀的机械 强度,抗冻性,保湿性,导电性和高粘附性,可循环利用,与传统生物质传感凝胶相比,凝胶的有效工作温度范围更广,使用寿命更长。
附图说明
图1是本发明所述的多功能生物基可穿戴传感凝胶的制备方法流程图;
图2是实施例2制备的传感凝胶基于凝胶传感器检测手指不同弯曲角度时的相对电流变化图;
图3是实施例2制备的传感凝胶基于凝胶传感器检测手肘弯曲相同角度时的相对电流变化图;
图4是实施例2制备的传感凝胶基于凝胶传感器检测膝盖弯曲相同角度时的相对电流变化图。
具体实施方式
以下结合实施例对本发明作进一步描述。
实施例1
本实施例1所述的多功能生物基可穿戴传感凝胶,原料由20g面粉、10ml氧化石墨烯溶液、40ml丙三醇溶液和0.8g抗坏血酸溶液组成,其中丙三醇溶液的浓度为50%,抗坏血酸溶液的浓度为20mg/ml,氧化石墨烯溶液的浓度为0.1mg/ml。
本实施例1所述的多功能生物基可穿戴传感凝胶的制备方法,由以下步骤组成:
(1)将20g面粉和10ml的0.1mg/ml的氧化石墨烯溶液混合,揉捏成面团直至均匀;
(2)利用去离子水去除面团中的淀粉和其他溶于水的成分,直至面团由白色完全转变为淡黄色;
(3)将步骤(2)得到的材料放到体积分数为50%的丙三醇溶液中于25℃震荡24h,进行溶剂交换;
(4)以20mg/ml浓度的抗坏血酸作为还原剂,将其加入到溶液中,并在60℃的条件下放置12h,进行氧化石墨烯还原反应;
(5)将有机凝胶取出后利用吸水纸擦去表面溶剂,室温下静止12h待其稳定,制备得到多功能生物基可穿戴传感凝胶。
实施例2
本实施例2所述的多功能生物基可穿戴传感凝胶,原料由20g面粉、10ml氧化石墨烯溶液、40ml丙三醇溶液和0.8g抗坏血酸溶液组成,其中丙三醇溶液的浓度为50%,抗坏血酸溶液的浓度为20mg/ml,氧化石墨烯溶液的浓度为0.2mg/ml。
本实施例2所述的多功能生物基可穿戴传感凝胶的制备方法,由以下步骤组成:
(1)将20g面粉和10ml的0.2mg/ml的氧化石墨烯溶液混合,揉捏成面团直至均匀;
(2)利用去离子水去除面团中的淀粉和其他溶于水的成分,直至面团由白色完全转变为淡黄色;
(3)将步骤(2)得到的材料放到体积分数为50%的丙三醇溶液中于25℃震荡24h,进行溶剂交换;
(4)以20mg/ml浓度的抗坏血酸作为还原剂,将其加入到溶液中,并在60℃的条件下放置12h,进行氧化石墨烯还原反应;
(5)将有机凝胶取出后利用吸水纸擦去表面溶剂,室温下静止12h待其稳定,制备得到多功能生物基可穿戴传感凝胶。
实施例3
本实施例3所述的多功能生物基可穿戴传感凝胶,原料由20g面粉、10ml氧化石墨烯溶液、40ml丙三醇溶液和0.8g抗坏血酸溶液组成,其中丙三醇溶液的浓度为50%,抗坏血酸溶液的浓度为20mg/ml,氧化石墨烯溶液的浓度为0.4mg/ml。
本实施例3所述的多功能生物基可穿戴传感凝胶的制备方法,由以下步骤组成:
(1)将20g面粉和10ml的0.4mg/ml的氧化石墨烯溶液混合,揉捏成面团直至均匀;
(2)利用去离子水去除面团中的淀粉和其他溶于水成分,直至面团由白色完全转变为淡黄色;
(3)将步骤(2)得到的材料放到体积分数为50%的丙三醇溶液中于25℃震荡24h,进行溶剂交换;
(4)以20mg/ml浓度的抗坏血酸作为还原剂,将其加入到溶液中,并在60℃的条件下放置12h,进行氧化石墨烯还原反应;
(5)将有机凝胶取出后利用吸水纸擦去表面溶剂,室温下静止12h待其稳定,制备得到多功能生物基可穿戴传感凝胶。
实施例4
本实施例4所述的多功能生物基可穿戴传感凝胶,原料由20g面粉、10ml氧化石墨烯溶液、40ml丙三醇溶液和0.8g抗坏血酸溶液组成,其中丙三醇溶液的浓度为50%,抗坏血酸溶液的浓度为20mg/ml,氧化石墨烯溶液的浓度为0.8mg/ml。
本实施例4所述的多功能生物基可穿戴传感凝胶的制备方法,由以下步骤组成:
(1)将20g面粉和10ml的0.8mg/ml的氧化石墨烯溶液混合,揉捏成面团直至均匀;
(2)利用去离子水去除面团中的淀粉和其他溶于水的成分,直至面团由白色完全转变为淡黄色;
(3)将步骤(2)得到的材料放到体积分数为50%的丙三醇溶液中于25℃震荡24h,进行溶剂交换;
(4)以20mg/ml浓度的抗坏血酸作为还原剂,将其加入到溶液中,并在60℃的条件下放置12h,进行氧化石墨烯还原反应;
(5)将有机凝胶取出后利用吸水纸擦去表面溶剂,室温下静止12h待其稳定,制备得到多功能生物基可穿戴传感凝胶。
实施例5
本实施例5所述的多功能生物基可穿戴传感凝胶,原料由20g面粉、10ml氧化石墨烯溶液、40ml丙三醇溶液和0.8g抗坏血酸溶液组成,其中丙三醇溶液的浓度为50%,抗坏血酸溶液的浓度为20mg/ml,氧化石墨烯溶液的浓度为4mg/ml。
本实施例5所述的多功能生物基可穿戴传感凝胶的制备方法,由以下步骤组成:
(1)将20g面粉和10ml的4mg/ml的氧化石墨烯溶液混合,揉捏成面团直至均匀;
(2)利用去离子水去除面团中的淀粉和其他溶于水的成分,直至面团由白色完全转变为淡黄色;
(3)将步骤(2)得到的材料放到体积分数为50%的丙三醇溶液中于25℃震荡24h,进行溶剂交换;
(4)以20mg/ml浓度的抗坏血酸作为还原剂,将其加入到溶液中,并在60℃的条件下放置12h,进行氧化石墨烯还原反应;
(5)将有机凝胶取出后利用吸水纸擦去表面溶剂,室温下静止12h待其稳定,制备得到多功能生物基可穿戴传感凝胶。
实施例6
本实施例6所述的多功能生物基可穿戴传感凝胶,原料由20g面粉、8ml氧化石墨烯溶液、32ml丙三醇溶液和0.64g抗坏血酸溶液组成,其中丙三醇溶液的浓度为50%,抗坏血酸溶液的浓度为20mg/ml,氧化石墨烯溶液的浓度为0.2mg/ml。
本实施例6所述的多功能生物基可穿戴传感凝胶的制备方法,由以下步骤组成:
(1)将20g面粉和8ml的0.2mg/ml的氧化石墨烯溶液混合,揉捏成面团直至均匀;
(2)利用去离子水去除面团中的淀粉和其他溶于水的成分,直至面团由白色完全转变为淡黄色;
(3)将步骤(2)得到的材料放到体积分数为50%的丙三醇溶液中于28℃震荡18h,进行溶剂交换;
(4)以20mg/ml浓度的抗坏血酸作为还原剂,将其加入到溶液中,并在55℃的条件下 放置12h,进行氧化石墨烯还原反应;
(5)将有机凝胶取出后利用吸水纸擦去表面溶剂,室温下静止16h待其稳定,制备得到多功能生物基可穿戴传感凝胶。
实施例7
本实施例7所述的多功能生物基可穿戴传感凝胶,原料由20g面粉、12ml氧化石墨烯溶液、48ml丙三醇溶液和0.96g抗坏血酸溶液组成,其中丙三醇溶液的浓度为50%,抗坏血酸溶液的浓度为20mg/ml,氧化石墨烯溶液的浓度为0.2mg/ml。
本实施例7所述的多功能生物基可穿戴传感凝胶的制备方法,由以下步骤组成:
(1)将20g面粉和12ml的0.2mg/ml的氧化石墨烯溶液混合,揉捏成面团直至均匀;
(2)利用去离子水去除面团中的淀粉和其他溶于水的成分,直至面团由白色完全转变为淡黄色;
(3)将步骤(2)得到的材料放到体积分数为50%的丙三醇溶液中于30℃震荡12h,进行溶剂交换;
(4)以20mg/ml浓度的抗坏血酸作为还原剂,将其加入到溶液中,并在70℃的条件下放置6h,进行氧化石墨烯还原反应;
(5)将有机凝胶取出后利用吸水纸擦去表面溶剂,静止24h待其稳定,制备得到多功能生物基可穿戴传感凝胶。
对比例1
本对比例1所述的凝胶材料,原料由面粉和丙三醇溶液组成,其中丙三醇溶液的浓度为50%。
本对比例1所述的凝胶材料的制备方法,由以下步骤组成:
(1)将20g面粉和10ml去离子水混合,揉捏成面团直至均匀;
(2)利用去离子水去除面团中的淀粉和其他溶于水成分,直至面团由白色完全转变为淡黄色;
(3)将步骤(2)得到的材料放到体积分数为50%的丙三醇溶液中于25℃震荡24h,进行溶剂交换;
(4)并于60℃的条件下放置12h;
(5)将有机凝胶取出后利用吸水纸擦去表面溶剂,室温下静止12h待其稳定,制备得到凝胶材料。
对比例2
本对比例2所述的凝胶材料,原料由20g面粉、10ml氧化石墨烯溶液、40ml水溶液和 0.8g抗坏血酸溶液组成,其中抗坏血酸溶液的浓度为20mg/ml,氧化石墨烯溶液的浓度为0.2mg/ml。
本对比例2所述的凝胶材料的制备方法,由以下步骤组成:
(1)将20g面粉和10ml的0.2mg/ml的氧化石墨烯溶液混合,揉捏成面团直至均匀;
(2)利用去离子水去除面团中的淀粉和其他溶于水的成分,直至面团由白色完全转变为淡黄色;
(3)将步骤(2)得到的材料放到水溶液中于25℃震荡24h,进行溶剂交换;
(4)以20mg/ml浓度的抗坏血酸作为还原剂,将其加入到溶液中,并在60℃的条件下放置12h,进行氧化石墨烯还原反应;
(5)将有机凝胶取出后利用吸水纸擦去表面溶剂,静止12h待其稳定,制备得到凝胶材料。
对实施例1-7以及对比例1-2制备的传感凝胶的性能进行测试,结果如下所示。其中,机械强度利用万能力学试验机进行测试,保湿性是在25℃,60%湿度,30天的密闭环境下,测量质量变化,导电性利用电化学工作站测量电导率,粘附性采用搭接剪切的方法测试其黏附强度,抗冻性是将材料提前放置在-20℃,24h后测量其电导率的变化;对实施例1-7和对比例1-2制备的传感凝胶进行机械性能测试,结果如表1所示;对实施例2制备的传感凝胶在25℃以及-20℃下进行抗冻性测试,测试其电导率,结果如表2所示;对实施例2、6、7和对比例2制备的传感凝胶进行保湿性测试,结果如下表3所示;对实施例1-7和对比例1-2制备的传感凝胶进行导电性和粘附性测试,结果如下表4所示;测试实施例2制备得到的传感凝胶的不同含水量对黏附强度的影响,初始含水量为21%,结果如表5所示;如附图2所示,对实施例2制备的传感凝胶进行传感性能测试,基于凝胶传感器检测手指不同弯曲角度时的相对电流变化;如附图3所示,对实施例2制备的传感凝胶进行传感性能测试,基于凝胶传感器检测手肘弯曲相同角度时的相对电流变化;如附图4所示,对实施例2制备的传感凝胶进行传感性能测试,基于凝胶传感器检测膝盖弯曲相同角度时的相对电流变化。
对比例2凝胶缺少丙三醇,导致材料无法成型,故无法测试其具体性能。
通过附图2-4,可以得出实施例2制备的传感凝胶有着优秀的灵敏度,不仅可以检测人体小的肢体变化例如手指弯曲不同角度,而且可以检测幅度较大的肢体运动,例如手肘弯曲和膝盖弯曲。
表1机械强度测试结果
Figure PCTCN2022082743-appb-000001
Figure PCTCN2022082743-appb-000002
表2实施例2制备得到的传感凝胶的抗冻性测试结果
序号 电导率/(S/m)
实施例2(25℃) 3.4×10 -4
实施例2(-20℃) 3.1×10 -4
表3实施例2、6-7和对比例2制备得到的传感凝胶的保湿性测试结果
序号 质量损失/%
实施例2 15
实施例6 15.3
实施例7 14.9
对比例2 62.5
表4实施例1-7和对比例1-2制备得到的传感凝胶的导电性和粘附性测试结果
序号 电导率(S/m,25℃) 黏附强度/KPa
对比例1 1.6×10 -4 25.5
实施例1 3.08×10 -4 25.7
实施例2 3.4×10 -4 26.8
实施例3 4.3×10 -4 21.7
实施例4 3.8×10 -4 23
实施例5 3.4×10 -4 12.7
实施例6 3.2×10 -4 27
实施例7 3.3×10 -4 27.2
表5实施例2制备得到的传感凝胶的不同含水率对黏附强度的影响
含水率/% 黏附强度/KPa
21 26.8
13.6 35.7
11.8 68.8
10% 43.3

Claims (8)

  1. 一种多功能生物基可穿戴传感凝胶,其特征在于:原料由面粉、氧化石墨烯溶液、丙三醇溶液和抗坏血酸溶液组成,其中,面粉与氧化石墨烯溶液的质量体积比为1.65-2.5:1,单位为g/ml;抗坏血酸溶液与氧化石墨烯溶液的质量体积比为1:12.5,单位为g/ml;氧化石墨烯溶液的浓度为0.1-4mg/ml。
  2. 根据权利要求1所述的多功能生物基可穿戴传感凝胶,其特征在于:丙三醇溶液的浓度为40%-60%,抗坏血酸溶液的浓度为15-25mg/ml。
  3. 根据权利要求1或2任一所述的多功能生物基可穿戴传感凝胶,其特征在于:丙三醇溶液的浓度为50%,抗坏血酸溶液的浓度为20mg/ml。
  4. 根据权利要求1所述的多功能生物基可穿戴传感凝胶,其特征在于:氧化石墨烯溶液和丙三醇溶液的体积比为1:4。
  5. 一种权利要求1所述的多功能生物基可穿戴传感凝胶的制备方法,其特征在于:由以下步骤组成:
    (1)将面粉和氧化石墨烯溶液混合,揉捏成面团直至混合均匀;
    (2)采用去离子水对步骤(1)制备的面团进行清洗,直至面团由白色完全转变为淡黄色;
    (3)将步骤(2)得到的材料放入丙三醇溶液中震荡,进行溶剂交换;
    (4)以抗坏血酸作为还原剂,将其加入到溶液中,进行氧化石墨烯还原反应,制备得到有机凝胶;
    (5)将有机凝胶取出后利用吸水纸擦去表面溶剂,静置一段时间,制备得到多功能生物基可穿戴传感凝胶。
  6. 根据权利要求5所述的多功能生物基可穿戴传感凝胶的制备方法,其特征在于:步骤(3)中所述的震荡时间为12h-24h,震荡温度为25-30℃。
  7. 根据权利要求5所述的多功能生物基可穿戴传感凝胶的制备方法,其特征在于:步骤(4)中所述的还原反应的温度为50-70℃,还原反应的时间为6-12h。
  8. 根据权利要求5所述的多功能生物基可穿戴传感凝胶的制备方法,其特征在于:步骤(5)中所述的静置时间为12-24h,静置温度为室温。
PCT/CN2022/082743 2021-06-15 2022-03-24 多功能生物基可穿戴传感凝胶及其制备方法 WO2022262349A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110662410.2 2021-06-15
CN202110662410.2A CN113447060B (zh) 2021-06-15 2021-06-15 多功能生物基可穿戴传感凝胶及其制备方法

Publications (1)

Publication Number Publication Date
WO2022262349A1 true WO2022262349A1 (zh) 2022-12-22

Family

ID=77811393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082743 WO2022262349A1 (zh) 2021-06-15 2022-03-24 多功能生物基可穿戴传感凝胶及其制备方法

Country Status (2)

Country Link
CN (1) CN113447060B (zh)
WO (1) WO2022262349A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113447060B (zh) * 2021-06-15 2022-05-27 山东理工大学 多功能生物基可穿戴传感凝胶及其制备方法
CN116396448A (zh) * 2023-04-11 2023-07-07 山东理工大学 一种可聚合深共晶凝胶及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073665A (zh) * 2013-01-19 2013-05-01 华南理工大学 高强度、温度敏感的聚合物-氧化石墨烯复合水凝胶和导电石墨烯复合水凝胶及其制备方法
CN108147394A (zh) * 2018-01-24 2018-06-12 上海理工大学 一种制备不同微观尺寸石墨烯气凝胶的方法
CN109294134A (zh) * 2018-09-29 2019-02-01 福建农林大学 一种自修复超灵敏导电电子皮肤传感器材料及其制备方法
WO2020254813A1 (en) * 2019-06-19 2020-12-24 The University Court Of The University Of Edinburgh Defect mediated lyotropic nematic gel
CN112852145A (zh) * 2021-01-08 2021-05-28 天津科技大学 一种新型纳米纤维素基压力传感材料及其制备方法
CN113447060A (zh) * 2021-06-15 2021-09-28 山东理工大学 多功能生物基可穿戴传感凝胶及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9284193B2 (en) * 2013-10-21 2016-03-15 The Penn State Research Foundation Method for preparing graphene oxide films and fibers
US20160235347A1 (en) * 2015-02-13 2016-08-18 Maarij Baig Artificial sensors and methods of manufacture thereof
US20160326343A1 (en) * 2015-05-08 2016-11-10 Celanese Acetate Llc Densified Cellulose Ester Pellets
CN110265190A (zh) * 2018-03-12 2019-09-20 深圳先进技术研究院 一种三维柔性导体的制备方法
WO2019195843A1 (en) * 2018-04-06 2019-10-10 Rowan University Bio-ionic liquid hydrogels and use of same
CN108777232A (zh) * 2018-05-17 2018-11-09 中南大学 一种基于微波固化耐热凝胶电解液的电容器及其制备方法
CN109115266B (zh) * 2018-07-25 2020-11-20 复旦大学 一种可穿戴多功能柔性传感器及其制备方法
CN109265771B (zh) * 2018-09-12 2020-10-09 青岛科技大学 一种石墨烯/天然胶乳复合气凝胶及其制备方法、应用
CN109557138A (zh) * 2018-10-25 2019-04-02 北京镭硼科技有限责任公司 一种金属钯负载的石墨烯基气敏传感材料及制备与应用
CN109975365A (zh) * 2019-03-12 2019-07-05 复旦大学 一种可穿戴液体传感器及其制备方法
CN110207585A (zh) * 2019-05-08 2019-09-06 沈阳航空航天大学 一种石墨烯柔性传感器及其制备方法
CN111551290A (zh) * 2020-05-18 2020-08-18 西安理工大学 一种可穿戴柔性电容式压力传感器及其制备方法
CN112212779B (zh) * 2020-09-04 2022-05-17 厦门大学 一种水凝胶柔性应变传感器的制备方法
CN112254630B (zh) * 2020-09-24 2022-07-19 浙江工业大学 一种具有高灵敏度、高形变范围的柔性可穿戴传感器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073665A (zh) * 2013-01-19 2013-05-01 华南理工大学 高强度、温度敏感的聚合物-氧化石墨烯复合水凝胶和导电石墨烯复合水凝胶及其制备方法
CN108147394A (zh) * 2018-01-24 2018-06-12 上海理工大学 一种制备不同微观尺寸石墨烯气凝胶的方法
CN109294134A (zh) * 2018-09-29 2019-02-01 福建农林大学 一种自修复超灵敏导电电子皮肤传感器材料及其制备方法
WO2020254813A1 (en) * 2019-06-19 2020-12-24 The University Court Of The University Of Edinburgh Defect mediated lyotropic nematic gel
CN112852145A (zh) * 2021-01-08 2021-05-28 天津科技大学 一种新型纳米纤维素基压力传感材料及其制备方法
CN113447060A (zh) * 2021-06-15 2021-09-28 山东理工大学 多功能生物基可穿戴传感凝胶及其制备方法

Also Published As

Publication number Publication date
CN113447060B (zh) 2022-05-27
CN113447060A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2022262349A1 (zh) 多功能生物基可穿戴传感凝胶及其制备方法
Wang et al. Lignin and cellulose derivatives-induced hydrogel with asymmetrical adhesion, strength, and electriferous properties for wearable bioelectrodes and self-powered sensors
Wu et al. Mussel-inspired self-adhesive, antidrying, and antifreezing poly (acrylic acid)/bentonite/polydopamine hybrid glycerol-hydrogel and the sensing application
Tang et al. Double-network physical cross-linking strategy to promote bulk mechanical and surface adhesive properties of hydrogels
CN110922611B (zh) 高强度导电且耐高低温的MXene水凝胶及其制备方法和应用
Mondal et al. High lignin containing hydrogels with excellent conducting, self-healing, antibacterial, dye adsorbing, sensing, moist-induced power generating and supercapacitance properties
Tang et al. Plant-inspired conductive adhesive organohydrogel with extreme environmental tolerance as a wearable dressing for multifunctional sensors
WO2023004930A1 (zh) 一种两性离子防冻有机水凝胶及其制备方法、应用
Mondal et al. Lignin-containing hydrogels with anti-freezing, excellent water retention and super-flexibility for sensor and supercapacitor applications
WO2023019676A1 (zh) 可拉伸、可压缩、抗冻有机水凝胶电解质、制备方法及应用
Yu et al. Mussel-inspired hydrogels as tough, self-adhesive and conductive bioelectronics: a review
CN113717405A (zh) 一种柔性导电水凝胶及其制备方法和应用
Zhao et al. Graphene oxide-based composite organohydrogels with high strength and low temperature resistance for strain sensors
CN114805673A (zh) 一种天然高分子导电水凝胶及其制备方法和应用
Zhao et al. High-stretchable, self-healing, self-adhesive, self-extinguishing, low-temperature tolerant starch-based gel and its application in stimuli-responsiveness
Yang et al. Spatially confined building of environmental-adaptive hydrogel electrolyte for supercapacitors
CN113185715B (zh) 一种自愈合导电聚乙烯醇基水凝胶及其制备方法与应用
Luo et al. Strong and Multifunctional Lignin/Liquid Metal Hydrogel Composite as Flexible Strain Sensors
Bao et al. Ultrafast gelation of silk fibroin-assisted conductive hydrogel with long-term environmental stability using self-catalytic dopamine/metal/H2O2 system
Huang et al. Highly ion-conducting, robust and environmentally stable poly (vinyl alcohol) eutectic gels designed by natural polyelectrolytes for flexible wearable sensors and supercapacitors
Zhao et al. Preparation and electromechanical properties of the chitosan gel polymer actuator based on heat treating
Wang et al. Rapid preparation of dynamic-crosslinked nanocomposite hydrogel sensors with efficiency self-healing and adhesion properties for elderly health and sleep management
Cao et al. PVA/KGM dual network hydrogels doped with carbon nanotube-collagen corona as flexible sensors for human motion monitoring
CN113462032A (zh) 一种离子型电活性驱动器制备方法
CN118165451A (zh) 一种3d打印自愈合弹性体离子皮肤的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22823840

Country of ref document: EP

Kind code of ref document: A1