WO2023019676A1 - 可拉伸、可压缩、抗冻有机水凝胶电解质、制备方法及应用 - Google Patents

可拉伸、可压缩、抗冻有机水凝胶电解质、制备方法及应用 Download PDF

Info

Publication number
WO2023019676A1
WO2023019676A1 PCT/CN2021/119268 CN2021119268W WO2023019676A1 WO 2023019676 A1 WO2023019676 A1 WO 2023019676A1 CN 2021119268 W CN2021119268 W CN 2021119268W WO 2023019676 A1 WO2023019676 A1 WO 2023019676A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel electrolyte
organic hydrogel
organic
electrolyte
preparation
Prior art date
Application number
PCT/CN2021/119268
Other languages
English (en)
French (fr)
Inventor
刘利彬
王济君
绪玉萍
刘越
班青
盖利刚
李梅
Original Assignee
齐鲁工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 齐鲁工业大学 filed Critical 齐鲁工业大学
Publication of WO2023019676A1 publication Critical patent/WO2023019676A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F289/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds not provided for in groups C08F251/00 - C08F287/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention belongs to the field of functional macromolecular hydrogels, and in particular relates to stretchable, compressible and antifreeze organic hydrogel electrolytes, preparation methods and applications.
  • Hydrogels are a special kind of material. It is formed by cross-linking hydrated polymer chain segments, and the gaps are filled with a large amount of water. Therefore, from the appearance point of view, hydrogels usually appear soft and wet. Due to the abundant hydrophilic groups in its chain segments, hydrogels usually have good water absorption and water retention properties, and some hydrogels can even absorb about 2000 times their own weight in water. These groups also provide a large number of adsorption sites for electrolyte ions in solution, making it one of the ideal materials for electrolytes.
  • hydrogel materials have good designability and adjustability, which makes it possible to adapt modified hydrogels to a variety of uses, such as stretchable hydrogels, self-healing hydrogels, Mechanochromic hydrogels, degradable hydrogels, and more.
  • Tough hydrogels (referred to as hydrogels with strong energy-absorbing capacity during plastic deformation and fracture) have attracted increasing attention due to their excellent mechanical properties and functionalities.
  • hydrogels have been widely used due to their high ductility and strength, and hydrogel electrolytes can withstand denaturation and mechanical damage to a certain extent, they have stretchable, compressible, antifreeze and low-temperature conductive properties.
  • the study of excellent hydrogel electrolytes is still in the preliminary stage, so the electrical properties, mechanical stability, and cycle stability at room temperature or low temperature are still the focus of research on hydrogel electrolytes.
  • the present invention provides a stretchable, compressible, and antifreeze organic hydrogel electrolyte, a preparation method and an application.
  • the cryogenic monomer and the strengthening and toughening components make the obtained hydrogel electrolyte have excellent stretch-compression cycle performance and conductivity.
  • a method for preparing a stretchable, compressible, antifreeze organic hydrogel electrolyte characterized in that the steps are as follows:
  • the amount of the isolated soy protein is 5-20% of the total mass of the monomer, and more preferably, the amount of the isolated soy protein is 10-15% of the total mass of the monomer; the isolated soy protein is not a monomer, and no chemical reaction occurs , because soybean protein will be negatively charged after being dispersed in water, and then it will be attracted by the positively charged groups on the polymer chain, its function is to improve the mechanical properties, dissipate the energy in the strain process, and improve the fatigue resistance; soybean protein isolate When the amount is lower than 5% of the total mass of the monomers, the effect is not obvious, and when the amount is higher than 20%, the hydrogel cannot be formed.
  • the components in the reaction system of the organic hydrogel electrolyte include: soybean protein isolate 1.8-2.2%, methacryloyl ethyl sulfobetaine (SBMA) 0-13.6%, propylene Amide (AAm) 0-13.6%, crosslinking agent 0.020-0.030%, lithium chloride 6.50-6.60%, initiator 0.020-0.030%, and the balance is solvent; SBMA and AAm content is 0 when different; further preferred, The total amount of SBMA and AAm is 13.6%.
  • the solvent described in step (1) is a mixture of dimethyl sulfoxide (DMSO) and water, and the mass ratio of DMSO and water is (2-4): (6-8); further preferably, DMSO and The mass ratio of water is 3:7, and adding DMSO to the solvent can improve the low temperature resistance of the hydrogel to a certain extent.
  • DMSO dimethyl sulfoxide
  • the mass ratio of DMSO and water is (2-4): (6-8); further preferably, DMSO and The mass ratio of water is 3:7, and adding DMSO to the solvent can improve the low temperature resistance of the hydrogel to a certain extent.
  • the mass of the solvent in step (1) is 80-90% of the total mass of the hydrogel, more preferably, the mass of the solvent is 85% of the total mass of the hydrogel.
  • the heating temperature is set at 85-95°C, and the stirring time is 1.5-2.5h. More preferably, the heating temperature is set to 90° C. and the stirring time is 2 hours.
  • the soy protein isolate has low solubility at room temperature, and the soy protein isolate is more soluble when the heating temperature is 90° C. and stirred.
  • the cross-linking agent in step (2) is N,N-methylenebisacrylamide (MBA), and the cross-linking agent is used in an amount of 0.1-0.3% of the total mass of the monomers. More preferably, the cross-linking agent is used in an amount of 0.2% of the total mass of the monomer.
  • MBA N,N-methylenebisacrylamide
  • the lithium chloride aqueous solution has a concentration of 0.5-2.5 mol ⁇ L -1 .
  • the initiator is one of ammonium persulfate and azobisisobutylamidine hydrochloride (AIBA), and the amount of the initiator is 1.4-2.8% of the total mass of monomers. Further preferably, the The initiator is ammonium persulfate.
  • the stirring time in step (3) is 20-60 minutes, and the more preferred stirring time is 30 minutes.
  • the polymerization reaction time in step (3) is 12-24 hours, the polymerization temperature is 40-50°C, more preferably, the reaction time is 12 hours, and the polymerization temperature is 40°C.
  • the Young's modulus of the hydrogel electrolyte is 1-20 kPa, more preferably, the Young's modulus is 18.4 kPa.
  • the toughness of the hydrogel electrolyte is 0.038-0.242MJ ⁇ m -3 , more preferably, the toughness is 0.2MJ ⁇ m -3 .
  • the conductivity of the hydrogel electrolyte at 20°C is 20-40 mS ⁇ cm -1 , and more preferably, the conductivity of the hydrogel electrolyte at 20°C is 21-37.5 mS ⁇ cm -1 .
  • the tensile strain at which the hydrogel electrolyte can be restored to its original state is 100-600%.
  • the hydrogel electrolyte undergoes 1 to 30 stretching cycles with a strain of 500%, the strain can still return to the original length, and the tensile stress is 26.85 kPa.
  • the compressive strain of the hydrogel electrolyte is 20-80%
  • the stress is 7.6-480kPa, and the strain can be restored to the original state.
  • the hydrogel electrolyte undergoes 30 continuous compression cycles with a strain of 80%, the strain can be restored to the original state, and the compressive stress is 355 kPa.
  • the hydrogel electrolyte produces a small strain with an elongation rate of 3%-9%, a resistance change rate of 1.2%-3.3%, and a medium strain with an elongation rate of 25%-75%, and a resistance change rate 13.5%-35%, resulting in a large strain with an elongation of 300%-500%, and a resistance change rate of 165%-355%, so the hydrogel electrolyte has good strain sensitivity and a wide sensing window , can be used as sensor material.
  • the resistance change rate of the hydrogel electrolyte is 98% after 500 100% stretching cycles, so the organic hydrogel electrolyte has stable stretch sensing performance.
  • the resistance change rate is 0-43%; further preferably, when the compression pressure is p kPa (p is 2, 3.5, 5, 12, 23 , 40, 68), when the compression time is 5-10s, the corresponding resistance change rate is r% (r is -11, -19, -23, -33, -38, -41, -43), so the The hydrogel electrolyte exhibits stable compression-sensing performance.
  • organic hydrogel electrolyte is characterized in that it is used for supercapacitor electrolyte materials and sensor materials.
  • a stretchable, compressible, antifreeze organic hydrogel electrolyte of the present invention has a maximum breaking strain of 762.5%, the tensile strain that can restore the initial state is 100-600%, and the strain is 80% after 30 times % of continuous compression cycles, the strain can still return to the original state, so the hydrogel electrolyte has excellent mechanical properties and can achieve a flexible effect as an electrolyte material for supercapacitors.
  • the room temperature conductivity of a kind of stretchable, compressible and antifreeze organic hydrogel electrolyte of the present invention can reach 37.5mS ⁇ cm -1 , and the CV curve of the supercapacitor composed of it is in the range of 20-500mV ⁇ s -1 It can maintain a regular rectangle in the scanning speed range, and has good reversibility and rate performance; at -20°C, the charge and discharge time is still 13s, so it has good low-temperature electrical properties, and can realize the use of hydrogel electrolytes as Technical effects of supercapacitor electrolytes.
  • a stretchable, compressible, and antifreeze organic hydrogel electrolyte of the present invention has significant resistance changes at different strains, and has strain sensitivity. After 500 100% stretching cycles, there is still a resistance signal, which can realize Technical effect of hydrogel electrolytes as stable sensor materials.
  • Figure 1 is the tensile cycle curves of S 1 A 4 organohydrogels with different strains (150%, 300%, 450%, 600%).
  • Fig. 2 is the tensile cycle curve of S 1 A 4 organohydrogel at 500% strain.
  • Fig. 3 is the compression cycle curves of S 1 A 4 organic hydrogel electrolyte with different strains (20%, 40%, 60%, 80%).
  • Fig. 4 is the 30 compression cycle curves of S 1 A 4 organic hydrogel electrolyte at 80% strain.
  • Fig. 5 is the change curve of resistance of S 1 A 4 organic hydrogel electrolyte with strain.
  • Figure 6 shows the resistance change of the S 1 A 4 organic hydrogel electrolyte under small strains.
  • Figure 7 shows the resistance change of the S 1 A 4 organic hydrogel electrolyte under moderate strain.
  • Figure 8 shows the resistance change of the S 1 A 4 organic hydrogel electrolyte under large strain.
  • Figure 9 shows the resistance change of the S 1 A 4 organic hydrogel electrolyte for 500 stretching cycles at 100% strain.
  • Fig. 10 shows the change of resistance of S 1 A 4 organic hydrogel electrolyte with continuous applied pressure.
  • Figure 11 shows the relative resistance change and pressure sensitivity of the S 1 A 4 organohydrogel sensor under different pressures.
  • Fig. 12 is the CV curves of S 1 A 4 electrolyte-based supercapacitors at different scan rates.
  • Fig. 13 is the GCD curves of different current densities of S 1 A 4 electrolyte-based supercapacitors.
  • S 1 A 1 , S 1 A 4 , S 1 A 8 , S 1 A 0 , S 0 A 1 correspond to the mass ratios of SBMA to acrylamide being 1:1, 1:4, 1:8, 1:0, 0:1 organic hydrogel electrolyte.
  • Methacryloyl ethyl sulfobetaine is abbreviated as SBMA, and acrylamide is abbreviated as AAm.
  • the tensile test of the hydrogel electrolyte was performed using a universal testing machine (Hensoffice, WDW-02, China).
  • the stretching speed is 100 mm ⁇ min -1
  • Young's modulus is the slope of the tensile curve in the range 0-50%. Toughness is obtained by integrating the area covered by the stress-strain curve, and the unit is MJ ⁇ m -3 .
  • the tensile cycle test is performed on a sample of the same length at a tensile speed of 100 mm ⁇ min -1 , and the maximum strain of the tensile cycle is 500%.
  • a cylindrical sample with a length of 1 cm is used for the compression test, the compression speed is 20 mm ⁇ min -1 , and the strain ranges from 20% to 80%.
  • the resistance is obtained by sandwiching the hydrogel electrolyte between two stainless steel sheets, using an electrochemical workstation in the temperature range of -20-25°C, and detecting the signal at a frequency of 0.1-1MHz and an amplitude of 5mV. The samples were stabilized at the test temperature for 30 minutes prior to measurement.
  • hydrogel electrolyte S 1 A 4 A stretchable, compressible, antifreeze organic hydrogel electrolyte S 1 A 4 and its preparation method, the hydrogel electrolyte S 1 A 4 includes the following components by mass fraction:
  • the mechanical and electrical properties of the S 1 A 4 hydrogel are shown in Table 1.
  • the preparation method of hydrogel electrolyte S1A4 comprises the following steps :
  • hydrogel electrolyte S 1 A 1 A stretchable, compressible, antifreeze organic hydrogel electrolyte S 1 A 1 and its preparation method, the hydrogel electrolyte S 1 A 1 includes the following components by mass fraction:
  • the mechanical and electrical properties of the S 1 A 1 hydrogel are shown in Table 1.
  • the preparation method of the hydrogel electrolyte S 1 A 1 is the same as in Example 1, except that the mass ratio of SBMA to AAm is 1:1.
  • hydrogel electrolyte S 1 A 8 A stretchable, compressible, antifreeze organic hydrogel electrolyte S 1 A 8 and its preparation method, the hydrogel electrolyte S 1 A 8 includes the following components by mass fraction:
  • the mechanical and electrical properties of the S 1 A 8 hydrogel are shown in Table 1.
  • the preparation method of the hydrogel electrolyte S 1 A 8 is the same as in Example 1, except that the mass ratio of SBMA to AAm is 1:8.
  • the mechanical and electrical properties of the S 1 A 0 hydrogel are shown in Table 1.
  • the preparation method of the hydrogel electrolyte S 1 A 0 is the same as in Example 1, except that no AAm is added.
  • the mechanical and electrical properties of the S 0 A 1 hydrogel are shown in Table 1.
  • the preparation method of the hydrogel electrolyte S 0 A 1 is the same as in Example 1, except that SBMA is not added.
  • a method for preparing a stretchable, compressible, antifreeze organic hydrogel electrolyte comprising the following steps:
  • An application of a stretchable and compressible antifreeze organic hydrogel electrolyte, which is applied to the preparation of a supercapacitor, and the preparation steps include:
  • the obtained supercapacitor has good reversibility and excellent rate performance (as shown in Figure 12), good electric double layer behavior (as shown in Figure 13), at 20 °C, the resistance is 5 ⁇ , and the resistance gradually increases as the temperature decreases. big. At -20°C, the resistance is 18 ⁇ .
  • the prepared organic hydrogel electrolyte not only has good strength and toughness, but also has anti-fatigue properties.
  • stretching cycles with different strains (150%, 300%, 450%, 600%) were first carried out. Even if stretched to 600% strain, the S 1 A 4 gel electrolyte can also recover to its original state. state.
  • the S 1 A 4 organic hydrogel electrolyte Since the S 1 A 4 organic hydrogel electrolyte has good ionic conductivity, it can be used as a sensor material. As shown in Figure 5, the resistance of the S 1 A 4 organic hydrogel electrolyte gradually increases with the increase of the strain. Bigger.
  • the S 1 A 4 organic hydrogel electrolyte was tested at small strains (3%, 6%, 9%), medium strains (25%, 50%, 75%) and Resistance change at large strains (300%, 400%, 500%).
  • small strains when the S 1 A 4 organic hydrogel electrolyte was stretched by 3%, 6%, and 9%, the resistance changes were 1.2%, 2.4%, and 3.3%, respectively (Fig. 6).
  • medium strain when the S 1 A 4 organic hydrogel electrolyte was stretched by 25%, 50%, and 75%, the resistance changes were 13.5%, 24.5%, and 35%, respectively (Fig. 7).
  • the S 1 A 4 organic hydrogel is a good material for the preparation of compressive sensors due to its good compressibility and self-recovery ability.
  • the resistance change of S 1 A 4 organohydrogels under different pressures was tested. It can be seen that as the compression pressure continues to increase, the resistance change gradually decreases due to the shortening of the ion transport pathway. When the pressure is kept constant, the electrical resistance remains basically unchanged, which shows that the S 1 A 4 organohydrogel is stable.
  • the pressure sensitivity of the pressure sensor indicates the slope of the relative resistance change on the voltage transformation curve, that is, the relative resistance change rate. It can be seen that the pressure sensitivity can be divided into different stages and the pressure sensitivity gradually decreases with the increase of pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明属于功能高分子水凝胶领域,特别涉及可拉伸、可压缩、抗冻有机水凝胶电解质、制备方法及应用。本发明提供的有机水凝胶电解质由甲基丙烯酰乙基磺基甜菜碱、丙烯酰胺以二甲基亚砜和水为溶剂通过自由基引发聚合形成,交联网络中掺杂有大豆蛋白。本发明提供的有机水凝胶电解质最大断裂应变可达762.5%,经过多次500%拉伸或80%的压缩应变仍能恢复至原始状态,具有优异的力学性能;室温电导率可达37.5mS·cm -1,在-20℃时,充放电时间仍有13s,因此具有良好的低温电性能,能够实现将水凝胶电解质作为超级电容器电解质的技术效果;具有应变灵敏性,能够实现水凝胶电解质作为稳定的传感器材料的技术效果。

Description

可拉伸、可压缩、抗冻有机水凝胶电解质、制备方法及应用 技术领域
本发明属于功能高分子水凝胶领域,特别涉及可拉伸、可压缩、抗冻有机水凝胶电解质、制备方法及应用。
背景技术
水凝胶是一种特殊的材料。它是由水合聚合物链段相互交联而成,其间隙中充满大量的水。因此从外观上来看,水凝胶通常表现柔软而湿润。由于其链段上存在着丰富的亲水基团,水凝胶通常都拥有良好的吸水保水性能,一些水凝胶甚至可以吸收约2000倍自身重量的水。这些基团也为溶液中的电解质离子提供了大量吸附位点,使得它成为了电解质的理想材料之一。更重要的是,水凝胶材料具有良好的可设计性和调整性,这使得改性水凝胶适应多种多样的用途成为可能,例如可拉伸水凝胶、自愈合水凝胶、机械变色水凝胶、可降解水凝胶等等。
韧性水凝胶(指在塑性变形和断裂过程中具有较强的吸收能量能力的水凝胶)由于其优异的力学性能和功能,引起了越来越多的关注。虽然水凝胶因具有较高的延展性和强度已被广泛应用,且水凝胶电解质在一定程度上能够承受变性和机械损伤,但是,具有可拉伸、可压缩、抗冻及低温导电性能优异的水凝胶电解质的研究仍处于初步阶段,因此室温或低温下的电性能、机械稳定性及循环稳定性仍是水凝胶电解质研究的焦点。
大多数水凝胶电解质的机械强度较弱,很大程度上限制了它们的实用性,所以人们利用各种方法来增强和增韧水凝胶,如中国文献(南静娅,等.大豆蛋白增强水凝胶电解质的制备及在全固态超级电容器上的应用,高分子材料科学与工程[J].2021,37(03),143-150)中以聚丙烯酰胺链交联形成三维网状结构,通过大豆蛋白纳米粒子与聚丙烯酰胺之间的静电引力,将大豆蛋白引入聚丙烯酰胺交联网络中,经磷酸溶液置换,得到一种大豆蛋白增强水凝胶电解质,是的水凝胶在80%的应变时进行100次的循环压缩后未发生结构断裂或损坏,且其与聚吡咯-碳纳米管纸组成的超级电容器具有良好的电容稳定性,但是其在低温下的电导率较低甚至无法满足极低温度下的使用。目前,对于在保持力学性能的前提下如何提高水凝胶电解质的抗冻性能已经成为研究热点。如现有技术中的一种含防冻两性离子水凝胶电解质及其制备 的超级电容器,此水凝胶电解质在-40℃下仍具有1.26S·m -1的高离子电导率,同时具有优异的拉伸压缩性能,可拉伸至325%的应变和压缩至75%的应变,然而,此电解质的机械性能及循环性能仍不能满足对于超级电容器的柔性需求,因此亟待提出一种新的综合性能优异的水凝胶电解质,并将其制备成超级电容器,以使得超级电容器的力学性能和低温性能可满足柔性可穿戴超级电容器的需求,并可将此超级电容器在极寒天气中仍能保证正常使用。
发明内容
本发明为了解决现有水凝胶材料低温性能提高的同时拉伸、压缩性能显著下降的问题,提供可拉伸、可压缩、抗冻有机水凝胶电解质、制备方法及应用,通过添加起抗冻作用的单体及增强增韧的成分,使得到的水凝胶电解质具有优异的拉伸压缩循环性能和电导率。
为了实现上述目的,本发明采用以下技术方案:
可拉伸、可压缩、抗冻有机水凝胶电解质的制备方法,其特征在于,步骤如下:
(1)将大豆分离蛋白、溶剂加入反应容器中,加热并搅拌得到混合溶液;
(2)向上述混合溶液中加入甲基丙烯酰乙基磺基甜菜碱(SBMA)与丙烯酰胺(AAm)中的一种或两种单体,再向混合溶液中加入交联剂、氯化锂水溶液和引发剂得到预聚液;
(3)将预聚液搅拌一段时间后倒入反应模具中,将反应模具置于烘箱中聚合反应,得到可拉伸、可压缩、抗冻有机水凝胶。
优选的,所述大豆分离蛋白用量为单体总质量的5-20%,进一步优选的,大豆分离蛋白用量为单体总质量的10-15%;大豆分离蛋白不是单体,不发生化学反应,由于大豆蛋白在水中分散后会带负电,然后会被聚合物链上的正电基团吸引,其作用为提高力学性能,耗散应变过程中的能量,提高抗疲劳性能;大豆分离蛋白的用量低于单体总质量的5%时作用不明显,用量高于20%时,无法形成水凝胶。
优选的,所述有机水凝胶电解质的反应体系中各组分按质量分数计包括:大豆分离蛋白1.8-2.2%,甲基丙烯酰乙基磺基甜菜碱(SBMA)0-13.6%,丙烯酰胺(AAm)0-13.6%,交联剂0.020-0.030%,氯化锂6.50-6.60%,引发剂0.020-0.030%,余量为溶剂;SBMA与AAm含量不同时为0;进一步优选的,SBMA与AAm总量为13.6%。
优选的,步骤(1)中所述溶剂为二甲基亚砜(DMSO)和水的混合物,DMSO和水的质 量比为(2-4):(6-8);进一步优选的,DMSO和水的质量比为3:7,溶剂中添加DMSO之后能够在一定程度上提高水凝胶的耐低温性能。
优选的,步骤(1)中所述溶剂质量为水凝胶总质量的80-90%,进一步优选的,溶剂质量为水凝胶总质量的85%。
优选的,步骤(1)中加热温度设置为85-95℃,搅拌时间为1.5-2.5h。更优选的,加热温度设置为90℃,搅拌时间为2h,大豆分离蛋白在室温下的溶解度较低,在加热温度为90℃并且搅拌的条件下,大豆分离蛋白更易溶解。
优选的,步骤(2)中两种单体的质量比为:SBMA:AAm=1:(1~8)。
优选的,步骤(2)中交联剂为N,N-亚甲基双丙烯酰胺(MBA),交联剂用量为单体总质量的0.1-0.3%,进一步优选的,交联剂用量为单体总质量的0.2%。
优选的,所述氯化锂水溶液的浓度为0.5-2.5mol·L -1
优选的,所述引发剂为过硫酸铵、偶氮二异丁脒盐酸盐(AIBA)中的一种,所述引发剂用量为单体总质量的1.4-2.8%,进一步优选的,所述引发剂为过硫酸铵。
优选的,步骤(3)中搅拌一定时间为20-60分钟,进一步优选的搅拌时间为30分钟。
优选的,步骤(3)中聚合反应时间为12-24h,聚合温度为40-50℃,进一步优选的,反应时间为12h,聚合温度为40℃。
优选的,所述水凝胶电解质的杨氏模量为1~20kPa,进一步优选的,杨氏模量为18.4kPa。
优选的,所述水凝胶电解质的韧性为0.038-0.242MJ·m -3,进一步优选的,韧性为0.2MJ·m -3
优选的,所述水凝胶电解质在20℃下的电导率为20~40mS·cm -1,进一步优选的,20℃时所述水凝胶电解质电导率为21~37.5mS·cm -1
优选的,所述水凝胶电解质可恢复初始状态的拉伸应变为100~600%。
优选的,所述水凝胶电解质进行1~30次应变为500%的拉伸循环,应变仍可恢复至原始长度,拉伸应力为26.85kPa。
优选的,所述水凝胶电解质在压缩应变为20~80%时,应力为7.6~480kPa,且应变可恢复至原始状态。
优选的,所述水凝胶电解质进行30次应变为80%的连续压缩循环,应变可恢复到原始状态,压缩应力为355kPa。
优选的,所述水凝胶电解质产生伸长率为3%-9%的小应变,电阻变化率为1.2%-3.3%,产生伸长率为25%-75%的中应变,电阻变化率为13.5%-35%,产生伸长率为300%-500%的大应变,电阻变化率为165%-355%,因此所述水凝胶电解质具有良好的应变灵敏性和广阔的传感窗口,可作为传感器件材料。
优选的,所述水凝胶电解质进行500次100%拉伸循环后电阻变化率为98%,因此有机水凝胶电解质具有稳定的拉伸传感性能。
优选的,所述水凝胶电解质进行压缩压力为0-68kPa时,电阻变化率为0~-43%;进一步优选的,当压缩压力为p kPa(p为2、3.5、5、12、23、40、68)、压缩时间为5~10s时,相应的电阻变化率为r%(r为-11、-19、-23、-33、-38、-41、-43),因此所述水凝胶电解质具有稳定的压缩传感性能。
如上述有机水凝胶电解质的应用,其特征在于,用于超级电容器电解质材料和传感器材料。
本发明实施例提供的一个或多个技术方案,至少具有以下技术效果:
1.本发明的一种可拉伸、可压缩、抗冻有机水凝胶电解质的最大断裂应变可达762.5%,可恢复初始状态的拉伸应变为100~600%,进行30次应变为80%的连续压缩循环,应变仍可恢复到原始状态,因此水凝胶电解质具有优异的力学性能,能够实现作为超级电容器电解质材料的柔性效果。
2.本发明的一种可拉伸、可压缩、抗冻有机水凝胶电解质的室温电导率可达37.5mS·cm -1,其组成的超级电容器的CV曲线在20-500mV·s -1的扫速范围内均可以保持规则的矩形,具有良好的可逆性、倍率性能;在-20℃时,充放电时间仍有13s,因此具有良好的低温电性能,能够实现将水凝胶电解质作为超级电容器电解质的技术效果。
3.本发明的一种可拉伸、可压缩、抗冻有机水凝胶电解质在不同应变时电阻变化显著,具有应变灵敏性,进行500次100%拉伸循环之后依然存在电阻信号,能够实现水凝胶电解质作为稳定的传感器材料的技术效果。
附图说明
图1为S 1A 4有机水凝胶不同应变(150%、300%、450%、600%)的拉伸循环曲线。
图2为S 1A 4有机水凝胶500%应变的拉伸循环曲线。
图3为S 1A 4有机水凝胶电解质不同应变(20%、40%、60%、80%)的压缩循环曲线。
图4为S 1A 4有机水凝胶电解质80%应变的30次压缩循环曲线。
图5为S 1A 4有机水凝胶电解质的电阻随应变的变化曲线。
图6为S 1A 4有机水凝胶电解质在小应变下的电阻变化。
图7为S 1A 4有机水凝胶电解质在中等应变下的电阻变化。
图8为S 1A 4有机水凝胶电解质在大应变下的电阻变化。
图9为S 1A 4有机水凝胶电解质500次100%应变的拉伸循环的电阻变化。
图10为S 1A 4有机水凝胶电解质在的电阻随着连续施加的压力的变化。
图11为S 1A 4有机水凝胶传感器在不同压力下的相对电阻变化和压力敏感性。
图12为S 1A 4电解质基超级电容器不同扫描速率的CV曲线。
图13为S 1A 4电解质基超级电容器不同电流密度的GCD曲线。
具体实施方式
下面结合具体实施例对本发明做进一步说明,但不限于此。
应当说明的是,下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂、材料和设备,如无特殊说明,均可从商业途径获得。本发明中的实施例使用的丙烯酰胺、甲基丙烯酰乙基磺基甜菜碱、过硫酸铵、氯化锂、N,N-亚甲基双丙烯酰胺购买自阿拉丁公司,大豆分离蛋白、聚偏二氟乙烯购买自麦克林公司,活性炭(YP-50F)购买自日本Kuraray,乙炔黑购买自合肥科晶。
名词解释:
S 1A 1、S 1A 4、S 1A 8、S 1A 0、S 0A 1分别对应SBMA与丙烯酰胺的质量比为1:1、1:4、1:8、1:0、0:1的有机水凝胶电解质。
甲基丙烯酰乙基磺基甜菜碱简写为SBMA,丙烯酰胺简写为AAm。
水凝胶电解质的力学性能测试:
水凝胶电解质的拉伸试验是使用通用测试机(Hensgrand,WDW-02,中国)进行测试的。拉伸速度为100mm·min -1,拉伸应变(ε)定义为ε=(l-l 0)/l 0×100%,l 0是原始长度,l是拉伸后的长度。应力计算公式为σ=F/πR 2。杨氏模量为0-50%范围内拉伸曲线的斜率。韧性通过积分应力应变曲线所包含的面积所得,单位为MJ·m -3
拉伸循环测试是使用相同长度的样品以100mm·min -1的拉伸速度进行测试,拉伸循环最大应变为500%。
采用长度为1cm的圆柱状样品进行压缩测试,压缩速度为20mm·min -1,应变的范围为20%~80%。
导电率测试:
电阻是将水凝胶电解质夹在两个不锈钢片之间,利用电化学工作站在-20-25℃的温度范围内,在频率为0.1-1MHz、振幅为5mV的条件下通过信号检测得到的。在测量之前,将样品在测试温度下稳定30分钟。离子电导率(σ)计算公式为σ=L/RS,其中R为电阻,S为水凝胶电解质的横截面积,L为水凝胶电解质的厚度。
实施例1
一种可拉伸、可压缩、抗冻有机水凝胶电解质S 1A 4及其制备方法,水凝胶电解质S 1A 4包括以下按质量分数计的组分:
大豆分离蛋白2.0%,SBMA 2.7%,AAm 10.9%,MBA 0.027%,氯化锂6.55%,过硫酸铵0.027%,余量为DMSO和水,DMSO和水的质量比为3:7。S 1A 4水凝胶的力学性能及电性能如表1所示。
水凝胶电解质S 1A 4的制备方法,包括以下步骤:
a.将0.225g的大豆分离蛋白与2.55g的DMSO和5.95g水加入20mL玻璃瓶中,将玻璃瓶置于90℃恒温水浴锅中搅拌2h;
b.将SBMA与丙烯酰胺以质量比1:4(总量为1.5g)加入玻璃瓶中,然后加入0.003g的MBA、0.72g的氯化锂、0.0225g的过硫酸铵,磁力搅拌30min得到反应液;
c.将反应液倒入内径6mm的玻璃管模具中,将模具放在40℃烘箱中聚合反应12h,得到S 1A 4水凝胶。
实施例2
一种可拉伸、可压缩、抗冻有机水凝胶电解质S 1A 1及其制备方法,水凝胶电解质S 1A 1,包括以下按质量分数计的组分:
大豆分离蛋白2.0%,SBMA 6.8%,AAm 6.8%,MBA 0.027%,氯化锂6.55%,过硫酸铵0.027%,余量为DMSO和水,DMSO和水的质量比为3:7。S 1A 1水凝胶的力学性能及电性能如表1所示。
水凝胶电解质S 1A 1的制备方法同实施例1,不同之处在于SBMA与AAm的质量比为1:1。
实施例3
一种可拉伸、可压缩、抗冻有机水凝胶电解质S 1A 8及其制备方法,水凝胶电解质S 1A 8,包括以下按质量分数计的组分:
大豆分离蛋白2.0%,SBMA 1.52%,AAm 12.1%,MBA 0.027%,氯化锂6.55%,过硫酸铵0.027%,余量为DMSO和水,DMSO和水的质量比为3:7。S 1A 8水凝胶的力学性能及电性能如表1所示。
水凝胶电解质S 1A 8的制备方法同实施例1,不同之处在于SBMA与AAm的质量比为1:8。
实施例4
一种可拉伸、可压缩、抗冻有机水凝胶电解质S 1A 0及其制备方法,水凝胶电解质S 1A 0,包括以下按质量分数计的组分:
大豆分离蛋白2.0%,SBMA 13.6%,MBA 0.027%,氯化锂6.55%,过硫酸铵0.027%,余量为DMSO和水,DMSO和水的质量比为3:7。S 1A 0水凝胶的力学性能及电性能如表1所示。
水凝胶电解质S 1A 0的制备方法同实施例1,不同之处在于不添加AAm。
实施例5
一种可拉伸、可压缩、抗冻有机水凝胶电解质S 0A 1及其制备方法,水凝胶电解质S 0A 1包括以下按质量分数计的组分:
大豆分离蛋白2.0%,AAm 13.6%,MBA 0.027%,氯化锂6.55%,过硫酸铵0.027%,余量为DMSO和水,DMSO和水的质量比为3:7。S 0A 1水凝胶的力学性能及电性能如表1所 示。
水凝胶电解质S 0A 1的制备方法同实施例1,不同之处在于不添加SBMA。
实施例6
一种可拉伸、可压缩、抗冻有机水凝胶电解质的制备方法,包括以下步骤:
a.将0.225g的大豆分离蛋白与2.55g的DMSO和5.95g水加入20mL玻璃瓶中,将玻璃瓶置于90℃恒温水浴锅中搅拌2h;
b.将SBMA与丙烯酰胺以质量比1:4(总量为1.5g)加入玻璃瓶中,然后加入0.003g的MBA、0.72g的氯化锂、0.003g的过硫酸铵,磁力搅拌30min得到反应液;
c.将反应液倒入内径6mm的玻璃管模具中,将模具放在40℃烘箱中聚合反应12h,得到S 1A 4水凝胶。S 1A 4水凝胶力学、电学性能如表1所示。
表1.水凝胶各组分质量分数及力学、电学性能
Figure PCTCN2021119268-appb-000001
实施例7
一种可拉伸、可压缩抗冻有机水凝胶电解质的应用,将其应用于制备超级电容器,制备步骤包括:
(1)电极的制备
将活性炭(YP-50F)、乙炔黑和PVDF分别按总质量的80%、10%、10%称取后,在玛瑙研钵中研磨2h,加入1g分散剂NMP(N-甲基吡咯烷酮)搅拌混合成均一的浆料;将浆料均匀涂抹于碳布上,并在80℃的真空烘箱中干燥至分散剂充分除去,每个电极上的活性物质含量约为2.2毫克。
(2)超级电容器组装:将实施例1制备的有机水凝胶S 1A 4夹在两个电极之间,即可组装超级电容器。
所得超级电容器具有良好的可逆性并具有优异的倍率性能(如图12)、良好的双电层行为(如图13),在20℃时,电阻为5Ω,随着温度的下降,电阻逐渐增大。在-20℃时,电阻为18Ω。
如图1所示,所制备有机水凝胶电解质不仅具有良好的强度和韧性,同时还具有抗疲劳性能。为了测试其抗疲劳性能,首先进行了不同应变(150%、300%、450%、600%)的拉伸循环,即使拉伸到600%应变,S 1A 4凝胶电解质同样可以恢复到初始状态。
如图2所示,为了进一步的研究其抗疲劳性能,用S 1A 4凝胶电解质进行了30次应变为500%的拉伸循环。可以看到,经过5次拉伸循环后,其应力稍有下降,由31kPa下降到29kPa。但是在经过30次循环后,S 1A 4凝胶的应力仍保持在较高的水平,并且应变仍可以恢复到原始长度。这说明S 1A 4凝胶具有令人满意的自恢复性能。
如图3所示,通过压缩循环进一步研究了S 1A 4有机水凝胶的抗疲劳性能。首先进行了不同应变下的压缩循环测试。随着压缩应变的增加,其应力逐渐增加,在80%压缩应变时,其应力为480kPa。同时,即使应变为80%的大应变,其仍然可以恢复到原始状态。
如图4所示,为了进一步表征其压缩循环性能,对其进行了连续的30次压缩循环。可以看到,第五次压缩循环时,尽管其应力由480kPa下降到400kPa,但是仍然可以恢复到原始应变。第30次循环后,可以看到多次压缩循环的应力应变曲线是基本重合的。这说明S 1A 4有机水凝胶电解质具有良好的抗疲劳性能,这保证了S 1A 4有机水凝胶电解质对不同工作环境的适应能力,扩展了应用范围。
由于S 1A 4有机水凝胶电解质具有良好的离子导电率,所以可以作为传感器件材料,如图5所示,S 1A 4有机水凝胶电解质的电阻是随着应变的变大而逐渐变大的。
如图6、图7、图8所示,测试了S 1A 4有机水凝胶电解质在小应变(3%、6%、9%)、中应变(25%、50%、75%)和大应变(300%、400%、500%)情况下的电阻变化。在小应变情况下,S 1A 4有机水凝胶电解质分别拉伸3%、6%、9%时,电阻变化分别为1.2%、2.4%、3.3%(图6)。在中应变情况下,S 1A 4有机水凝胶电解质分别拉伸25%、50%、75%时,电 阻变化分别为13.5%、24.5%以及35%(图7)。在大应变情况下,S 1A 4有机水凝胶电解质分别拉伸300%、400%、500%时,电阻变化分别为165%、251%以及355%(图8)。这说明S 1A 4有机水凝胶电解质的应变灵敏性和广阔的传感窗口。
如图9所示,为了验证S 1A 4有机水凝胶电解质传感器的稳定性,进行了500次100%拉伸循环。可以看到,随着循环次数的增多,电阻稍有变大,但是并没有电阻信号的丢失,说明S 1A 4有机水凝胶电解质传感器具有稳定性。
如图10所示,由于S 1A 4有机水凝胶具有良好的压缩性能和自恢复能力,是制备压缩传感器的良好材料。首先测试了不同压力下S 1A 4有机水凝胶的电阻变化。可以看到,随着压缩压力的不断增加,由于离子传输途径的缩短,电阻变化逐渐减小。在压力保持恒定时,电阻基本保持不变的,这说明S 1A 4有机水凝胶具有稳定性。
如图11所示,压力传感器的压力灵敏度表示相对电阻在变压曲线上变化的斜率,即相对电阻变化率。可以看到,压力敏感度可以分为不同的阶段并且压力敏感度随着压力的增大而逐渐减小。

Claims (14)

  1. 可拉伸、可压缩、抗冻有机水凝胶电解质的制备方法,其特征在于,步骤如下:
    (1)将大豆分离蛋白、溶剂加入反应容器中,加热并搅拌得到混合溶液,
    (2)向上述混合溶液中加入甲基丙烯酰乙基磺基甜菜碱与丙烯酰胺中的一种或两种单体,再向混合溶液中加入交联剂、氯化锂水溶液和引发剂得到预聚液;
    (3)将所述预聚液搅拌均匀后倒入反应模具中恒温反应,得到可拉伸、可压缩、抗冻有机水凝胶。
  2. 根据权利要求1所述的有机水凝胶电解质的制备方法,其特征在于,步骤(1)中所述大豆分离蛋白用量为单体总质量的5-20%,所述溶剂质量为水凝胶总质量的80-90%。
  3. 根据权利要求1所述的有机水凝胶电解质的制备方法,其特征在于,所述大豆分离蛋白用量为单体总质量的10-15%。
  4. 根据权利要求1所述的有机水凝胶电解质的制备方法,其特征在于,所述有机水凝胶电解质的反应体系中各组分按质量分数计包括:大豆分离蛋白1.8-2.2%,甲基丙烯酰乙基磺基甜菜碱(SBMA)0-13.6%,丙烯酰胺(AAm)0-13.6%,交联剂0.020-0.030%,氯化锂6.50-6.60%,引发剂0.020-0.030%,余量为溶剂;SBMA与AAm含量不同时为0;进一步优选的,SBMA与AAm总量为13.6%。
  5. 根据权利要求1所述的有机水凝胶电解质的制备方法,其特征在于,步骤(2)中所述交联剂为N,N-亚甲基双丙烯酰胺;所述氯化锂水溶液的浓度为0.5-2.5mol·L -1
  6. 根据权利要求1所述的有机水凝胶电解质的制备方法,其特征在于,步骤(2)中所述引发剂为过硫酸铵、偶氮二异丁脒盐酸盐中的一种;优选的,所述引发剂为过硫酸铵。
  7. 根据权利要求1所述的有机水凝胶电解质的制备方法,其特征在于,步骤(2)中所述两种单体的质量比为:甲基丙烯酰乙基磺基甜菜碱:丙烯酰胺=1:(1~8);所述引发剂用量为单体总质量的1.4-2.8%,交联剂用量为单体总质量的0.1-0.3%。
  8. 根据权利要求1所述的有机水凝胶电解质的制备方法,其特征在于,步骤(1)中温度设置为85-95℃,搅拌时间为1.5-2.5h;步骤(3)中搅拌时间为20-60分钟,聚合反应时间为12-24h,反应温度为40-50℃。
  9. 根据权利要求1-8任一项所述方法制备的有机水凝胶电解质,其特征在于,所述水凝 胶电解质的杨氏模量为1~20kPa,韧性为0.038-0.242MJ·m -3
  10. 根据权利要求9所述的有机水凝胶电解质,其特征在于,所述水凝胶电解质在20℃的电导率为20~40mS·cm -1
  11. 根据权利要求9所述的有机水凝胶电解质,其特征在于,所述水凝胶电解质在20℃下的电导率为21-37.5mS·cm -1
  12. 根据权利要求9所述的有机水凝胶电解质,其特征在于,所述水凝胶电解质进行500次100%拉伸循环后电阻变化率为90-100%.
  13. 根据权利要求9所述的有机水凝胶电解质,其特征在于,所述水凝胶电解质产生伸长率为3%~9%的小应变,电阻变化率为1.2%~3.3%,产生伸长率为25%~75%的中应变,电阻变化率为13.5%~35%,产生伸长率为300%~500%的大应变,电阻变化率为165%~355%。
  14. 权利要求1=13任一项所述的有机水凝胶电解质的应用,其特征在于,用于超级电容器电解质材料和/或传感器材料。
PCT/CN2021/119268 2021-08-18 2021-09-18 可拉伸、可压缩、抗冻有机水凝胶电解质、制备方法及应用 WO2023019676A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110947371.0A CN113683788B (zh) 2021-08-18 2021-08-18 可拉伸、可压缩、抗冻有机水凝胶电解质、制备方法及应用
CN202110947371.0 2021-08-18

Publications (1)

Publication Number Publication Date
WO2023019676A1 true WO2023019676A1 (zh) 2023-02-23

Family

ID=78580807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119268 WO2023019676A1 (zh) 2021-08-18 2021-09-18 可拉伸、可压缩、抗冻有机水凝胶电解质、制备方法及应用

Country Status (2)

Country Link
CN (1) CN113683788B (zh)
WO (1) WO2023019676A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114085391B (zh) * 2022-01-20 2022-05-13 天津大学 纯水中高灵敏度柔性压力传感材料及其应用
CN114805675B (zh) * 2022-05-05 2023-04-25 齐鲁工业大学 基于离子跃迁和Grotthuss传输机制的抗冻两性离子水凝胶电解质
CN114805673A (zh) * 2022-05-26 2022-07-29 成都芯跳医疗科技有限责任公司 一种天然高分子导电水凝胶及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358028A (zh) * 2019-06-21 2019-10-22 中国林业科学研究院林产化学工业研究所 一种具有高弹性和疲劳强度的大豆蛋白复合水凝胶及其制备方法
CN111019041A (zh) * 2019-12-24 2020-04-17 齐鲁工业大学 高导电、可拉伸压缩、可修复的两性离子凝胶聚合物电解质及其制备、应用
CN111154037A (zh) * 2019-12-27 2020-05-15 浙江大学 多功能海藻酸钠-P(SBMA-co-AAm)离子导电水凝胶及其制备方法
CN112679660A (zh) * 2020-12-21 2021-04-20 沈阳大学 一种双网络结构凝胶聚合物电解质的制备方法
CN112795029A (zh) * 2021-04-07 2021-05-14 同济大学 双网络柔性导电粘附抗冻水凝胶的制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102278613B1 (ko) * 2019-12-27 2021-07-16 한국에너지기술연구원 가공성이 향상된 고체형 고분자 전해질 및 그의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358028A (zh) * 2019-06-21 2019-10-22 中国林业科学研究院林产化学工业研究所 一种具有高弹性和疲劳强度的大豆蛋白复合水凝胶及其制备方法
CN111019041A (zh) * 2019-12-24 2020-04-17 齐鲁工业大学 高导电、可拉伸压缩、可修复的两性离子凝胶聚合物电解质及其制备、应用
CN111154037A (zh) * 2019-12-27 2020-05-15 浙江大学 多功能海藻酸钠-P(SBMA-co-AAm)离子导电水凝胶及其制备方法
CN112679660A (zh) * 2020-12-21 2021-04-20 沈阳大学 一种双网络结构凝胶聚合物电解质的制备方法
CN112795029A (zh) * 2021-04-07 2021-05-14 同济大学 双网络柔性导电粘附抗冻水凝胶的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, GAITONG, GAITONG ZHANG, XIAOLI SONG, JINGYA NAN, HONGSHENG WANG, FUXIANG CHU, CHUNPENG WANG: " Preparation of Soy Protein Hydrogel Electrolyte and Its Application in Solid-state Supercapacitors ", CHEMISTRY AND INDUSTRY OF FOREST PRODUCTS, vol. 41, no. 3, 1 June 2021 (2021-06-01), pages 55 - 62, XP093037405 *

Also Published As

Publication number Publication date
CN113683788A (zh) 2021-11-23
CN113683788B (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2023019676A1 (zh) 可拉伸、可压缩、抗冻有机水凝胶电解质、制备方法及应用
Yang et al. Polyaniline-decorated supramolecular hydrogel with tough, fatigue-resistant, and self-healable performances for all-in-one flexible supercapacitors
Liu et al. Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes
Rana et al. Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices
CN109796716B (zh) 一种可自修复的聚合物电解质及其制备方法和应用
Huang et al. Mechanically stable all flexible supercapacitors with fracture and fatigue resistance under harsh temperatures
CN110760152B (zh) 一种抗冻水凝胶及其制备方法与应用
CN106971862B (zh) 能量储存装置中的聚合电解质、产品及其用途
CN110172161B (zh) 一种三重网状结构水凝胶的制备方法及其应用
CN110767470B (zh) 一种基于抗冻水凝胶电解质的超级电容器及其制备方法
Zhu et al. Flexible all-in-one supercapacitors enabled by self-healing and anti-freezing polymer hydrogel electrolyte
WO2023004930A1 (zh) 一种两性离子防冻有机水凝胶及其制备方法、应用
CN112735849B (zh) 一种防冻两性离子水凝胶电解质及其制备方法
CN113611545B (zh) 可拉伸、可压缩、抗冻有机水凝胶电解质基超级电容器及其制备方法
CN113402651B (zh) 高强度自愈合水凝胶电解质的制备方法及其组装的柔性超级电容器、制备方法
Yang et al. Highly Conductive, Stretchable, Adhesive, and Self‐Healing Polymer Hydrogels for Strain and Pressure Sensor
Dutta et al. From ultrastiff to soft materials: Exploiting dynamic metal–ligand cross-links to access polymer hydrogels combining customized mechanical performance and tailorable functions by controlling hydrogel mechanics
Wang et al. PAMPS/PVA/MMT Semi-interpenetrating polymer network hydrogel electrolyte for solid-state supercapacitors
Wang et al. Zwitterionic ionogels with water-mediated stiffness transition for shape memory and moisture electric generation
Duan et al. Tough, highly adaptable and self-healing integrated supercapacitor based on double network gel polymer electrolyte
CN112735848B (zh) 一种含防冻两性离子水凝胶电解质的超级电容器及其制备方法
Yang et al. Spatially confined building of environmental-adaptive hydrogel electrolyte for supercapacitors
Li et al. High mass loading of polypyrrole in conductive hydrogels for stretchable all-in-one supercapacitors and self-powered strain sensing system
Zhang et al. Prestretching‐Enhanced Conductive Hydrogel Electrode for Supercapacitors with High Areal Capacitance and Excellent Stretching Stability
CN112768255A (zh) 一种防冻两性离子水凝胶电解质及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE