WO2022262319A1 - 一种粉煤灰基泡沫地聚合物及其制备方法和应用 - Google Patents

一种粉煤灰基泡沫地聚合物及其制备方法和应用 Download PDF

Info

Publication number
WO2022262319A1
WO2022262319A1 PCT/CN2022/078941 CN2022078941W WO2022262319A1 WO 2022262319 A1 WO2022262319 A1 WO 2022262319A1 CN 2022078941 W CN2022078941 W CN 2022078941W WO 2022262319 A1 WO2022262319 A1 WO 2022262319A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly ash
based foam
content
preparation
parts
Prior art date
Application number
PCT/CN2022/078941
Other languages
English (en)
French (fr)
Inventor
崔宏志
冯伟鹏
郑大鹏
金宇
董志君
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2022262319A1 publication Critical patent/WO2022262319A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the embodiment of the present application belongs to the technical field of building materials, and relates to the reuse of industrial solid waste, low-carbon cementitious materials, and green building technology, such as a fly ash-based foam geopolymer and its preparation method and application, especially a An early-strength and ultra-light fly ash-based foam geopolymer and its preparation method and application.
  • the colloids produced by the geopolymers using fly ash as raw materials in the early stage of the reaction are mainly aluminum-rich gels (GEL I), and the compressive strength of geopolymers dominated by such products is very low, so they need to be reacted in the later stage.
  • the strength will only increase when the aluminum-rich gel is converted into a silica-rich gel (GEL II), so it cannot meet the demoulding strength requirements of prefabricated components.
  • the strong alkaline solution controls the leaching of silicon, aluminum and other elements in fly ash, and promotes the geopolymerization reaction; but too high a pH value will aggravate the decomposition of hydrogen peroxide, which will bring great difficulties to the formation of a stable foam skeleton structure.
  • CN108975795A discloses a foam geopolymer and its preparation method and application.
  • the foam geopolymer comprises the following components: 30-50 parts by weight of metakaolin, 40-50 parts by weight of alkali activator, 1-4 parts by weight of fly ash, 2-5 parts by weight of foaming agent, and 0.3-5 parts by weight of foam stabilizer. 0.7 parts by weight, 0.3-0.8 parts by weight of modified sisal fiber, 1-4 parts by weight of paraffin wax emulsion, 5-10 parts by weight of water, and 0.3-0.7 parts by weight of absolute ethanol.
  • the foam geopolymer of the application Compared with traditional anti-seepage and waterproof cement-based materials and cement-based protective materials, the foam geopolymer of the application has good crack resistance, excellent waterproof performance, excellent durability, and can maintain good performance for a long time. It has the properties of acid resistance, alkali corrosion resistance, freeze-thaw resistance, carbonization resistance, etc., and can be widely used in basic engineering fields such as tunnel composite lining. But the foam geopolymer of this application does not have the characteristics of early strength and ultra-light, and the amount of solid waste fly ash used is also small.
  • the purpose of this application is to provide a fly ash-based foam polymer and its preparation method and application, especially to provide an early-strength and ultra-light fly ash-based foam polymer and its preparation method and apply.
  • the fly ash-based foam geopolymer of the present application has the advantages of high early strength and high porosity, and is especially suitable for the production of assembled non-structural prefabricated components.
  • the large-scale production of fly ash-based foam geopolymer can not only save the cost of raw materials, but also alleviate the pollution of soil and groundwater environment caused by the accumulation of solid waste.
  • the fly ash-based foam geopolymer of the present application is mainly used in the field of prefabricated building materials.
  • the embodiment of the present application provides a fly ash-based foam polymer.
  • the raw materials for the preparation of the fly ash-based foam polymer include the following components by weight:
  • the fly ash-based foam geopolymer of this application uses fly ash-based materials as the main raw material, which reduces production costs and is suitable for large-scale production. At the same time, it effectively solves the problem of industrial waste disposal, saves natural resources, and protects the environment. ecosystem.
  • the fly ash-based foam geopolymer of the present application has relatively low apparent density and high early strength.
  • the fly ash-based foam geopolymer of the present application realizes the large-scale resource utilization of industrial solid waste such as fly ash, and has the characteristics of low energy consumption and low carbon emission.
  • this application can make the fly ash-based
  • the foamed geopolymer has a large number of uniform and fine pores, and at the same time obtains high early strength.
  • the fly ash-based foam geopolymer of the present application can achieve the A05 grade dry density specified in the industry standard JGT266-2011 "Foamed Concrete" while the utilization rate of the fly ash can reach more than 90%, and it can be steam cured in one day, After 7 days of standard curing, it can reach the strength grade of C3 level, which overcomes the problem that the traditional preparation method of fly ash-based foamed concrete cannot coordinate and achieve high fly ash utilization, low density, and high strength at the same time, and meets the requirements of It meets the production needs of early demoulding of lightweight components in assembled factories and quicker mold turnover.
  • the amount of the fly ash-based material in the raw materials for preparing the fly ash-based foam geopolymer, can be 900 parts, 910 parts, 920 parts, 930 parts, 940 parts, 950 parts, 960 parts, 970 copies, 980 copies, 990 copies or 1000 copies etc.
  • the amount of the composite alkali solution in the raw materials for the preparation of the fly ash-based foam geopolymer, can be 600 parts, 610 parts, 620 parts, 630 parts, 640 parts, 650 parts, 660 parts, 670 parts , 680, 690 or 700 etc.
  • the dosage of the composite alkali solution is lower than 600 parts, it cannot fully stimulate the activity of the fly ash-based material and affect the strength of the final product. Product surface quality.
  • the amount of the thickener in the raw materials for the preparation of the fly ash-based foam geopolymer, can be 0 parts, 1 part, 2 parts, 3 parts, 4 parts, 5 parts, 6 parts, 7 parts , 8, 9 or 10 etc.
  • the amount of the foam stabilizer A in the raw materials for preparing the fly ash-based foam geopolymer, may be 2 parts, 3 parts, 4 parts, 5 parts or 6 parts, etc.
  • the amount of the water reducer in the raw materials for the preparation of the fly ash-based foam geopolymer, may be 5 parts, 6 parts, 7 parts, 8 parts, 9 parts or 10 parts, etc.
  • the amount of blowing agent in the raw materials for the preparation of the fly ash-based foam geopolymer, can be 20 parts, 23 parts, 25 parts, 28 parts, 30 parts, 33 parts, 35 parts, 38 parts or 40 copies etc.
  • the amount of foaming agent used is less than 20 parts, the final product will not achieve the foaming effect, the apparent density will be higher than expected, and the purpose of light weight of the product cannot be achieved. If the amount of foaming agent used is higher than 40 parts, it will make The final product foams too much, the apparent density of the product is lower than expected, but the product strength cannot meet the requirements.
  • the fly ash-based material is prepared by the following preparation method:
  • Fly ash and calcareous material are mixed to obtain the fly ash-based material.
  • the fly ash in this application refers to the residual product after the combustion of pulverized coal in thermal power plants.
  • the content of fly ash is 90%-100%, such as 90%, 91%, 92%, 93%, 94%, 95%, 96% %, 97%, 98%, 99% or 100%, etc.
  • the content of calcium material is 0%-10%, such as 0%, 1%, 2%, 3%, 4%, 5%, 6%, 7% %, 8%, 9% or 10%, etc.
  • the calcareous material includes any one or a combination of at least two of cement, slag, gypsum or metakaolin.
  • the composite alkali solution is prepared by the following preparation method:
  • the compound alkali activator, metal complexing agent and foam stabilizer B are mixed to obtain the compound alkali solution.
  • the content of the compound alkali activator is 95%-98%, such as 95%, 95.5%, 96%, 96.5%, 97%, 97.5% or 98% etc.
  • the content of metal complexing agent is 0.05%-0.5%, such as 0.05%, 0.1%, 0.2%, 0.3%, 0.4% or 0.5%, etc.
  • the content of foam stabilizer B is 1.95%-4.5%, such as 1.95% %, 2%, 2.5%, 3%, 3.5%, 4% or 4.5%, etc.
  • the metal complexing agent is not added, the pores formed by the foam will be enlarged, and the product strength will be reduced. If the content of the metal complexing agent is higher than 0.5%, the product will have poor fluidity and be difficult to enter the mold.
  • the modulus of the complex base activator is 1.0-1.5, such as 1.0, 1.1, 1.2, 1.3, 1.4 or 1.5.
  • the metal complexing agent comprises any one or at least two of triethanolamine, methyldiethanolamine, diisopropanolamine, diethanol monoisopropanolamine, triethanolamine or triisopropanolamine combination.
  • the solid content of the metal complexing agent is not less than 78%, such as 78%, 80%, 83%, 85%, 88% or 90%.
  • the foam stabilizer B includes any one or at least two of sodium dodecylbenzenesulfonate powder, sodium lauryl sulfate powder, trisodium phosphate powder or calcium lauryl sulfate powder combination.
  • the purity of the foam stabilizer B is not less than 88%.
  • the composite base activator is prepared by the following preparation method:
  • the content of sodium hydroxide powder is 8.5%-9%, such as 8.5%, 8.6%, 8.7%, 8.8%, 8.9% or 9%, based on the mass of the composite base activator as 100%
  • the content of water is 4.5%-7%, such as 4.5%, 5%, 5.5%, 6%, 6.5% or 7%, etc.
  • the content of water glass is 84%-87%, such as 84%, 84.5%, 85% , 85.5%, 86%, 86.5% or 87%, etc.
  • the purity of the sodium hydroxide powder is not lower than 96%.
  • the water is tap water.
  • the modulus of the water glass is 1.0-3.8, such as 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 or 3.8, etc.
  • the Baume degree is 34.0-42.0, such as 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0 or 42.0 etc.
  • the thickener includes methyl cellulose ether and/or carboxymethyl cellulose ether, preferably methyl cellulose ether and carboxymethyl cellulose ether.
  • the purity of the thickener is not lower than 96%.
  • the viscosity of the thickener is not lower than 30000 centipoise, such as 30000 centipoise, 35000 centipoise, 40000 centipoise, 45000 centipoise or 50000 centipoise.
  • the foam stabilizer A includes trisodium phosphate and/or calcium stearate powder.
  • the purity of the trisodium phosphate is not lower than 98%.
  • the purity of the calcium stearate powder is not less than 99%.
  • the water reducer includes polycarboxylate water reducer, naphthalene sulfonate water reducer, fat type water reducer, lignin sulfonate type water reducer or sulfamate type water reducer Any one or a combination of at least two.
  • the foaming agent comprises a hydrogen peroxide solution.
  • the content of the hydrogen peroxide solution is not less than 30%, such as 30%, 33%, 35%, 38% or 40%.
  • the content of hydrogen peroxide solution is not less than 30% means that in the hydrogen peroxide solution, the mass content of hydrogen peroxide solute is not less than 30%.
  • the embodiment of the present application provides a method for preparing the fly ash-based foam geopolymer described in the first aspect, the preparation method comprising the following steps:
  • step (2) adding foaming agent to the slurry obtained in step (1), stirring to obtain a mixture, and then injecting the mixture into a mould;
  • step (3) Put the mixture and the mold in step (2) into the curing cabin for curing, demold, and then place the demoulded sample in a standard curing environment for curing to obtain the fly ash-based foam geopolymer.
  • the stirring in step (1) is carried out in a stirring pot.
  • the revolution speed of the stirring blades stirred in step (1) is 115-135r/min, such as 115r/min, 120r/min, 125r/min, 130r/min or 135r/min, etc.
  • the rotation speed is 275-295r /min, such as 275r/min, 280r/min, 285r/min, 290r/min or 295r/min, etc.
  • the stirring time in step (1) is 4-6 min, such as 4 min, 4.5 min, 5 min, 5.5 min or 6 min.
  • the revolution speed of the stirring blades stirred in step (2) is 57-67r/min, such as 57r/min, 60r/min, 63r/min, 65r/min or 67r/min, etc.
  • the rotation speed is 135-145r /min, such as 135r/min, 138r/min, 140r/min, 143r/min or 145r/min, etc.
  • the stirring time in step (2) is 20-40s, such as 20s, 23s, 25s, 28s, 30s, 33s, 35s, 38s or 40s.
  • injecting the mixture into the mold in step (2) is injecting the mixture to 1/2 depth of the mold.
  • the mold is covered with a polyethylene film to avoid moisture evaporation.
  • the temperature in the curing cabin in step (3) is 65-75°C, such as 65°C, 68°C, 70°C, 73°C or 75°C.
  • the time for curing in the curing cabin in step (3) is 12-24 hours, such as 12 hours, 14 hours, 15 hours, 16 hours, 18 hours, 20 hours, 22 hours or 24 hours.
  • the temperature of the standard curing environment in step (3) is 18-22°C, such as 18°C, 19°C, 20°C, 21°C or 22°C, etc., and the humidity is above 95%, such as 95%, 96%, 97% or 98% etc.
  • the time of placing in the standard curing environment in step (3) is 7 days.
  • the embodiment of the present application provides the application of the fly ash-based foam geopolymer described in the first aspect in building materials.
  • the building materials include prefabricated building materials.
  • the embodiment of this application uses fly ash-based materials as the main raw material to prepare fly ash-based foam geopolymers, which reduces production costs and is suitable for large-scale production. At the same time, this application effectively solves the problem of industrial waste disposal. Save natural resources and protect the ecological environment;
  • the fly ash-based foam geopolymer of the embodiment of the present application has a relatively low apparent density (421.7-521.4kg/m 3 ) and high early strength (7-day compressive strength: 1.56-3.60 MPa), and the strength of the components still develops rapidly after demoulding, which can avoid the loss caused by the lifting and transportation of the components, facilitate the turnover of the molds in the fabricated components, the delivery of the finished components, and reduce the damage caused by the stacking of the components in the site. Warehousing cost pressure;
  • the preparation method of the fly ash-based foam geopolymer in the embodiment of the present application does not require ball milling, water washing, calcination and other processes for raw materials, which reduces the input of grinding equipment, water washing equipment, sewage treatment equipment and calcination equipment , reduce energy consumption and carbon emissions, and have no heavy chemical reagent smell, low cost, and no pollution to the atmospheric environment.
  • Fig. 1 is a schematic diagram of the raw materials used in the fly ash-based foam geopolymer in the examples of the present application.
  • Fig. 2 is a finished appearance view of the fly ash-based foam geopolymer prepared in Example 1.
  • Fig. 3 is an X-ray tomographic reconstruction projection diagram of the fly ash-based foam geopolymer prepared in Example 1.
  • FIG. 4 is a reconstructed pore distribution diagram of the fly ash-based foam geopolymer prepared in Example 1 by X-ray tomography.
  • Fig. 5 is a finished appearance view of the fly ash-based foam geopolymer prepared in Example 2.
  • Fig. 6 is an X-ray tomographic reconstruction projection diagram of the fly ash-based foam geopolymer prepared in Example 2.
  • Fig. 7 is the reconstructed pore distribution diagram of the X-ray tomographic scanning of the fly ash-based foam geopolymer prepared in Example 2.
  • the fly ash used in the examples of this application is grade II or above fly ash specified in the national standard GB/T 1596-2017 "Fly Ash for Cement and Concrete", SO 3 ⁇ 3.0; the examples of this application
  • the slag used in the process is not lower than the S95 grade granulated blast furnace slag powder specified in the national standard GB/T 18046-2017 "Granulated Blast Furnace Slag Powder Used in Cement, Mortar and Concrete".
  • a fly ash-based foam polymer is provided.
  • the raw materials for the preparation of the fly ash-based foam polymer include the following components by weight:
  • the foam stabilizer A is calcium stearate powder with a purity of not less than 99%;
  • the water reducer is polycarboxylate water reducer;
  • the foaming agent is hydrogen peroxide solution with a content of 30%;
  • the material is 100% fly ash.
  • Composite alkali solution is prepared by following preparation method:
  • the composite base activator, metal complexing agent and foam stabilizer B are fully stirred and mixed to obtain the composite base solution.
  • the content of the compound alkali activator is 96%, the content of the metal complexing agent is 0.3%, and the content of the foam stabilizer B is 3.7%; the modulus of the compound alkali activator is 1.0% ;
  • the metal complexing agent is triethanolamine, and its solid content is not less than 78%;
  • the foam stabilizer B is sodium dodecylbenzenesulfonate powder, and its purity is not less than 88%.
  • the composite base activator is prepared by the following preparation method:
  • the content of sodium hydroxide powder is 9%, the content of water is 5.8%, and the content of water glass is 85.2%; the purity of sodium hydroxide powder is not less than 96% ;
  • the water is tap water; the modulus of the water glass is 1.0, and the Baume degree is 34.0.
  • the preparation method of fly ash-based foam geopolymer comprises the following steps:
  • step (2) Quickly add the foaming agent to the slurry obtained in step (1), and stir at a speed of 57r/min and 135r/min with the stirring blade at a slow speed for 40s to obtain the mixture, and then quickly inject the mixture into the mold 1/2 of the depth, and then cover the mold with polyethylene film to avoid water loss;
  • step (3) Put the mixture and the mold in step (2) into a curing cabin with a temperature of 65°C for 24 hours and then release the mold, and then place the demoulded sample in a standard curing environment with a temperature of 20°C and a humidity of 95%. Under curing for 7 days, the fly ash-based foam geopolymer was obtained.
  • FIG. 1 The schematic diagram of the raw materials used in the fly ash-based foam geopolymer in this example is shown in FIG. 1 .
  • the appearance of the finished product of the fly ash-based foam geopolymer prepared in this embodiment is shown in Figure 2, the X-ray tomographic reconstruction projection is shown in Figure 3, and the pore distribution diagram after X-ray tomography reconstruction is shown in Figure 2. 4. It can be seen from the figure that the fly ash-based foam geopolymer sample prepared in this example has dense and uniform pores, good pore independence, high pore connectivity restrictions, no visible defects in the sample skeleton, and strong structural support for the pores. .
  • the size of the fly ash-based foam geopolymer sample in Fig. 2 does not represent the size of the sample prepared in this embodiment, it is just the size cut out for testing.
  • a fly ash-based foam polymer is provided.
  • the raw materials for the preparation of the fly ash-based foam polymer include the following components by weight:
  • the thickener is methyl cellulose ether with a purity of not less than 96% and a viscosity of 30,000 centipoise;
  • the foam stabilizer A is calcium stearate powder with a purity of not less than 99%;
  • the fly ash-based material is prepared by the following preparation method:
  • the mass of the fly ash-based material is 100%
  • the content of the fly ash is 90%
  • the content of the calcareous material is 10%
  • the calcareous material is slag.
  • Composite alkali solution is prepared by following preparation method:
  • the composite base activator, metal complexing agent and foam stabilizer B are fully stirred and mixed to obtain the composite base solution.
  • the content of the compound alkali activator is 95%, the content of the metal complexing agent is 0.5%, and the content of the foam stabilizer B is 4.5%; the modulus of the compound alkali activator is 1.5%
  • the metal complexing agent is triethanolamine, and its solid content is not less than 78%; the foam stabilizer B is sodium dodecylbenzenesulfonate powder, and its purity is not less than 88%.
  • the composite base activator is prepared by the following preparation method:
  • the content of sodium hydroxide powder is 8.5%, the content of water is 4.5%, and the content of water glass is 87%; the purity of sodium hydroxide powder is not less than 96%
  • the water is tap water; the modulus of the water glass is 3.8, and the Baume degree is 42.0.
  • the preparation method of fly ash-based foam geopolymer comprises the following steps:
  • step (1) Quickly add foaming agent to the slurry obtained in step (1), and stir at a speed of 67r/min and 145r/min with the stirring blade at a slow speed for 20s to obtain the mixture, and then quickly inject the mixture into the mold 1/2 of the depth, and then cover the mold with polyethylene film to avoid water loss;
  • step (3) Put the mixture and the mold in step (2) into a curing cabin with a temperature of 75°C for 24 hours and then release the mold, and then place the demoulded sample in a standard curing environment with a temperature of 20°C and a humidity of 96%. Under curing for 7 days, the fly ash-based foam geopolymer was obtained.
  • FIG. 1 The schematic diagram of the raw materials used in the fly ash-based foam geopolymer in this example is shown in FIG. 1 .
  • the appearance of the finished product of the fly ash-based foam geopolymer prepared in this embodiment is shown in Figure 5, the X-ray tomographic reconstruction projection is shown in Figure 6, and the pore distribution diagram after X-ray tomography reconstruction is shown in Figure 5. 7. It can be seen from the figure that the fly ash-based foam geopolymer sample prepared in this example has dense and uniform pores, good pore independence, high pore connectivity restrictions, no visible defects in the sample skeleton, and strong structural support for the pores. .
  • the size of the fly ash-based foam geopolymer sample in Fig. 5 does not represent the size of the sample prepared in this embodiment, it is just the size cut out for testing.
  • a fly ash-based foam polymer is provided.
  • the raw materials for the preparation of the fly ash-based foam polymer include the following components by weight:
  • the thickener is carboxymethyl cellulose ether with a purity of not less than 96% and a viscosity of 35,000 centipoise;
  • the foam stabilizer A is trisodium phosphate with a purity of not less than 98%;
  • Water agent; foaming agent is hydrogen peroxide solution, its content is 30%.
  • the fly ash-based material is prepared by the following preparation methods:
  • the mass of the fly ash-based material is 100%
  • the content of the fly ash is 92%
  • the content of the calcareous material is 8%
  • the calcareous material is slag.
  • Composite alkali solution is prepared by following preparation method:
  • Composite alkali activator, metal complexing agent and foam stabilizer B are fully stirred and mixed to obtain described composite alkali solution.
  • the content of the compound alkali activator is 98%, the content of the metal complexing agent is 0.05%, and the content of the foam stabilizer B is 1.95%; the modulus of the compound alkali activator is 1.3
  • the metal complexing agent is triethanolamine, and its solid content is not less than 78%; the foam stabilizer B is sodium dodecylbenzenesulfonate powder, and its purity is not less than 88%.
  • the composite base activator is prepared by the following preparation method:
  • the content of sodium hydroxide powder is 9%, the content of water is 7%, and the content of water glass is 84%; the purity of sodium hydroxide powder is not less than 96%. ;
  • the water is tap water; the modulus of the water glass is 2.0, and the Baume degree is 36.0.
  • the preparation method of fly ash-based foam geopolymer comprises the following steps:
  • step (2) Quickly add the foaming agent to the slurry obtained in step (1), and stir at a speed of 60r/min and 140r/min with the stirring blade at a slow speed for 30s to obtain the mixture, and then quickly inject the mixture into the mold 1/2 of the depth, and then cover the mold with polyethylene film to avoid water loss;
  • step (3) Put the mixture and the mold in step (2) into a curing cabin with a temperature of 70°C for 24 hours and then release the mold, and then place the demoulded sample in a standard curing environment with a temperature of 20°C and a humidity of 97%. Under curing for 7 days, the fly ash-based foam geopolymer was obtained.
  • FIG. 1 The schematic diagram of the raw materials used in the fly ash-based foam geopolymer in this example is shown in FIG. 1 .
  • a fly ash-based foam polymer is provided.
  • the raw materials for the preparation of the fly ash-based foam polymer include the following components by weight:
  • the thickener is carboxymethyl cellulose ether with a purity of not less than 96% and a viscosity of 40,000 centipoise;
  • the foam stabilizer A is trisodium phosphate with a purity of not less than 98%;
  • Water agent; foaming agent is hydrogen peroxide solution, its content is 30%.
  • the fly ash-based material is prepared by the following preparation method:
  • the mass of the fly ash-based material is 100%
  • the content of the fly ash is 95%
  • the content of the calcareous material is 5%
  • the calcareous material is slag
  • Composite alkali solution is prepared by following preparation method:
  • the composite base activator, metal complexing agent and foam stabilizer B are fully stirred and mixed to obtain the composite base solution.
  • the content of the compound alkali activator is 97%, the content of the metal complexing agent is 0.1%, and the content of the foam stabilizer B is 2.9%; the modulus of the compound alkali activator is 1.2%
  • the metal complexing agent is triethanolamine, and its solid content is not less than 78%; the foam stabilizer B is sodium dodecylbenzenesulfonate powder, and its purity is not less than 88%.
  • the composite base activator is prepared by the following preparation method:
  • the content of sodium hydroxide powder is 8.8%, the content of water is 5%, and the content of water glass is 86.2%; the purity of sodium hydroxide powder is not less than 96% ;
  • the water is tap water; the modulus of the water glass is 3.0, and the Baume degree is 40.0.
  • the preparation method of fly ash-based foam geopolymer comprises the following steps:
  • step (2) Quickly add the foaming agent to the slurry obtained in step (1), and stir at a speed of 65r/min and 140r/min with the stirring blade at a slow speed for 30s to obtain the mixture, and then quickly inject the mixture into the mold 1/2 of the depth, and then cover the mold with polyethylene film to avoid water loss;
  • step (3) Put the mixture and the mold in step (2) into a curing cabin with a temperature of 70°C for 24 hours, then release the mold, and then place the demoulded sample in a standard curing environment with a temperature of 20°C and a humidity of 95%. Under curing for 7 days, the fly ash-based foam geopolymer was obtained.
  • FIG. 1 The schematic diagram of the raw materials used in the fly ash-based foam geopolymer in this example is shown in FIG. 1 .
  • a fly ash-based foam polymer is provided.
  • the raw materials for the preparation of the fly ash-based foam polymer include the following components by weight:
  • the thickener is carboxymethyl cellulose ether with a purity of not less than 96% and a viscosity of not less than 30,000 centipoise;
  • the foam stabilizer A is trisodium phosphate with a purity of not less than 98%;
  • the fly ash-based material is prepared by the following preparation method:
  • the mass of the fly ash-based material is 100%
  • the content of the fly ash is 98%
  • the content of the calcareous material is 2%
  • the calcareous material is slag.
  • the preparation method of fly ash-based foam geopolymer comprises the following steps:
  • step (2) Quickly add the foaming agent to the slurry obtained in step (1), and stir at a speed of 60r/min and 135r/min with the stirring blade at a slow speed for 40s to obtain the mixture, and then quickly inject the mixture into the mold 1/2 of the depth, and then cover the mold with polyethylene film to avoid water loss;
  • step (3) Put the mixture and the mold in step (2) into a curing cabin with a temperature of 75°C for 24 hours, then release the mold, and then place the demoulded sample in a standard curing environment with a temperature of 20°C and a humidity of 95%. Under curing for 7 days, the fly ash-based foam geopolymer was obtained.
  • FIG. 1 The schematic diagram of the raw materials used in the fly ash-based foam geopolymer in this example is shown in FIG. 1 .
  • Example 1 The only difference between this embodiment and Example 1 is that no metal complexing agent is added during the preparation of the composite alkali solution, the content of the composite alkali activator is 96.3%, the content of the foam stabilizer B is 3.7%, and other conditions are the same as those in the implementation Example 1 is the same.
  • Example 1 The only difference between this embodiment and Example 1 is that the content of the metal complexing agent is 0.7% when preparing the composite alkali solution, the content of the composite alkali activator is 95.6%, the content of the foam stabilizer B is 3.7%, and other conditions All the same as in Example 1.
  • Example 1 The only difference between this comparative example and Example 1 is that in the raw materials for the preparation of the fly ash-based foam geopolymer, the addition amount of the composite alkali solution is 500 parts, and other conditions are the same as in Example 1.
  • Example 1 The only difference between this comparative example and Example 1 is that in the raw materials for the preparation of the fly ash-based foam geopolymer, the addition amount of the composite alkali solution is 800 parts, and other conditions are the same as in Example 1.
  • Example 1 The only difference between this comparative example and Example 1 is that in the raw materials for preparing the fly ash-based foam geopolymer, the amount of foaming agent added is 45 parts, and other conditions are the same as in Example 1.
  • the fly ash-based foam geopolymer prepared in Examples 1-7 and Comparative Examples 1-3 is subjected to a performance test, and the test method is as follows:
  • the fly ash-based foam geopolymer sample prepared by utilizing fly ash (fly ash utilization rate: 90%-100%) in Examples 1-5 has a low apparent density. (421.7-521.4kg/m 3 ) and high early strength (1.56-3.60MPa), it can be used as a lightweight porous building material.
  • the apparent density of the sample can be effectively increased in a small range by adding calcium materials Under the circumstances, the early compressive strength of the sample is greatly enhanced, and the sample strength and apparent density are adjustable and controllable in the actual use process, adapting to the needs of various use scenarios.
  • Example 1 Compared with Example 1, the apparent density of the fly ash-based foam geopolymer samples prepared in Example 6 and Example 7 all increased slightly, and the compressive strength all decreased obviously, which shows that the addition of metal complexing agent is too high. Too little or too much will affect the performance of the sample.
  • Example 1 Compared with Example 1, the compressive strength of the fly ash-based foam geopolymer sample prepared in Comparative Example 1 obviously decreased, although the compressive strength of the fly ash-based foam geopolymer sample prepared in Comparative Example 2 rose slightly, However, the surface of the efflorescence is whitish, which affects the surface quality of the product.
  • Example 3 Compared with Example 1, the compressive strength of the fly ash-based foam geopolymer sample prepared in Comparative Example 3 decreased significantly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本文公布一种粉煤灰基泡沫地聚合物及其制备方法和应用,所述粉煤灰基泡沫地聚合物的制备原料包括如下重量份的组分:粉煤灰基材料900-1000份;复合碱溶液600-700份;增稠剂0-10份;稳泡剂A 2-6份;减水剂5-10份;发泡剂20-40份。本申请的制备方法简单,不需要对原材料进行球磨、水洗、煅烧等工艺,减少了粉磨设备、水洗设备、污水处理设备及煅烧设备的投入,降低了能耗及碳排放。本申请利用粉煤灰基材料作为主要原材料制备的粉煤灰基泡沫地聚合物具有较低的表观密度和较高的早期强度,可用于装配式建筑领域。

Description

一种粉煤灰基泡沫地聚合物及其制备方法和应用 技术领域
本申请实施例属于建筑材料技术领域,涉及到工业固体废弃物再利用、低碳胶凝材料、绿色建筑技术,例如一种粉煤灰基泡沫地聚合物及其制备方法和应用,尤其是一种早强超轻的粉煤灰基泡沫地聚合物及其制备方法和应用。
背景技术
近年来,在国家大力推动装配式建筑发展的政策下,对于预制构件提出了新的需求,即用于构件的混凝土制品早期能快速形成强度,有助于装配式构件场内模具的周转,成品构件的出厂运输,减少构件场内堆放。泡沫混凝土作为一种多孔轻质的材料,具有良好的隔热、隔音等特点,是制备非结构预制构件的理想材料。然而,混凝土制品生产原料-水泥的生产需要消耗大量的天然资源和能源,同时排放大量二氧化碳,与我国低碳节能、绿色发展的主题及本世纪三十年代的“碳达峰”目标相悖。另一方面,我国在经济高速发展,工业化进程不断提升的过程中,产生了大量的工业固体废弃物。近年数据显示,作为工业固体废弃物之一的粉煤灰年产生量保持在5.6亿吨左右,综合利用率约为75.96%,其中中西部地区粉煤灰综合利用率仅为50%。大量粉煤灰堆存,既占用了大量的土地,其所含的重金属元素也给环境带来极大威胁。
目前,通过强碱性溶液对富含活性硅铝质的粉煤灰进行化学激发制备地聚合物是实现粉煤灰建筑制品化的新兴技术。同时,地聚合技术对重金属的高效固化是实现固废资源无害化的重要保障。利用过氧化氢在碱性条件下分解产生氧气的特性,在地聚合物中加入过氧化氢溶液能够制备泡沫地聚合物,实现替代传统泡沫混凝土的目的。然而,以粉煤灰为原料的地聚合物在反应初期生成的胶体以富铝凝胶(GEL I)为主,此类产物为主的地聚合物抗压强度非常低,需要通过后期反应,将富铝凝胶转变成富硅凝胶(GEL Ⅱ),强度才会提升,因此无法满足装配式预制构件的脱模强度需求。强碱性溶液控制粉煤灰中硅、铝等元素浸出,促进地聚合反应进行;但过高的pH值会加剧过氧化氢分解,给形成稳定的泡沫骨架结构带来极大困难。对于超轻泡沫地聚合物,过量的过氧化氢在强碱性环境下发泡效果更易失控。因此,地聚合物早期强度形成所依赖的 强碱性条件,与过氧化氢在高碱性条件下的剧烈反应这一矛盾构成了制备早强超轻粉煤灰基泡沫地聚合物所需克服的难点。
CN108975795A公开了一种泡沫地聚合物及其制备方法和应用。该泡沫地聚合物包括以下组分:偏高岭土30~50重量份、碱激发剂40~50重量份、粉煤灰1~4重量份、发泡剂2~5重量份、稳泡剂0.3~0.7重量份、改性剑麻纤维0.3~0.8重量份、石蜡乳液1~4重量份、水5~10重量份、无水乙醇0.3~0.7重量份。该申请的泡沫地聚合物与传统的抗渗防水水泥基材料及水泥基防护材料相比,材料抗裂性好、防水性能优异,具有优良的耐久性能,能较长时间保持良好的使用性能,具有耐酸、碱腐蚀、抗冻融、抗碳化等性能,能广泛应用于隧道复合式衬砌等基础工程领域。但该申请的泡沫地聚合物不具有早强超轻的特点,并且所用到的固体废弃物粉煤灰的量也较少。
因此,在本领域中,期待开发一种可充分利用固体废弃物,并且早强超轻的粉煤灰基泡沫地聚合物。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
针对相关技术的不足,本申请的目的在于提供一种粉煤灰基泡沫地聚合物及其制备方法和应用,特别提供一种早强超轻的粉煤灰基泡沫地聚合物及其制备方法和应用。本申请的粉煤灰基泡沫地聚合物同时具有早期强度高、孔隙率高的优点,特别适宜于装配式非结构预制构件的生产。同时,粉煤灰基泡沫地聚合物的规模化生产不仅可节约原材料成本,还可缓解固体废弃物堆积对土壤及地下水环境的污染。本申请的粉煤灰基泡沫地聚合物主要用于装配式建筑材料领域。
第一方面,本申请实施例提供一种粉煤灰基泡沫地聚合物,所述粉煤灰基泡沫地聚合物的制备原料包括如下重量份的组分:
Figure PCTCN2022078941-appb-000001
Figure PCTCN2022078941-appb-000002
本申请的粉煤灰基泡沫地聚合物利用粉煤灰基材料作为主要原材料,降低了生产成本,适用于大规模生产,同时,有效解决了工业废渣处置的问题,节约了自然资源,保护了生态环境。本申请的粉煤灰基泡沫地聚合物具有较低表观密度的同时,具有较高的早期强度。
与传统水泥基泡沫材料相比,本申请的粉煤灰基泡沫地聚合物实现了粉煤灰等工业固废的大规模资源化利用,具有制备能耗低、碳排放量小的特点。与相关地聚物基泡沫材料相比,本申请通过复合碱溶液调节发泡剂发泡速度、稳泡剂A调节泡沫破裂时间、增稠剂锁定泡沫空间分布的方式,能够使粉煤灰基泡沫地聚合物具备大量均匀、细密孔隙的同时,获得较高的早期强度。
本申请的粉煤灰基泡沫地聚合物在粉煤灰利用率可达到90%以上的同时,能够实现行业标准JGT266-2011《泡沫混凝土》规定的A05级别干密度,并在1天蒸汽养护、7天标准养护后即可达到C3级别的强度等级,克服了传统制备手段的粉煤灰基发泡混凝土在高粉煤灰利用率、低密度、高强度三者无法同时协调实现的问题,满足了装配式工厂轻质构件尽早脱模、加快模具周转的生产需求。
在本申请中,所述粉煤灰基泡沫地聚合物的制备原料中,粉煤灰基材料的用量可以为900份、910份、920份、930份、940份、950份、960份、970份、980份、990份或1000份等。
在本申请中,所述粉煤灰基泡沫地聚合物的制备原料中,复合碱溶液的用量可以为600份、610份、620份、630份、640份、650份、660份、670份、680份、690份或700份等。
若复合碱溶液的用量低于600份,其无法充分激发粉煤灰基材料的活性,影响最终产品的强度,若复合碱溶液的用量高于700份,容易引起产品表面泛碱发白,影响产品表面质量。
在本申请中,所述粉煤灰基泡沫地聚合物的制备原料中,增稠剂的用量可以为0份、1份、2份、3份、4份、5份、6份、7份、8份、9份或10份等。
在本申请中,所述粉煤灰基泡沫地聚合物的制备原料中,稳泡剂A的用量可以为2份、3份、4份、5份或6份等。
在本申请中,所述粉煤灰基泡沫地聚合物的制备原料中,减水剂的用量可以为5份、6份、7份、8份、9份或10份等。
在本申请中,所述粉煤灰基泡沫地聚合物的制备原料中,发泡剂的用量可以为20份、23份、25份、28份、30份、33份、35份、38份或40份等。
若发泡剂的用量低于20份,会使得最终产品达不到发泡效果,表观密度高于预期,无法实现产品轻质的目的,若发泡剂的用量高于40份,会使得最终产品发泡过量,产品表观密度低于预期,但是产品强度无法达到要求。
优选地,所述粉煤灰基材料通过以下制备方法制备得到:
将粉煤灰和钙质材料混合,得到所述粉煤灰基材料。
本申请中的粉煤灰为火力发电厂煤粉燃烧后的残余产物。
优选地,以所述粉煤灰基材料的质量为100%计,粉煤灰的含量为90%-100%,例如90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%等,钙质材料的含量为0%-10%,例如0%、1%、2%、3%、4%、5%、6%、7%、8%、9%或10%等。
优选地,所述钙质材料包括水泥、矿渣、石膏或偏高岭土中的任意一种或至少两种的组合。
优选地,所述复合碱溶液通过以下制备方法制备得到:
将复合碱激发剂、金属络合剂和稳泡剂B混合,得到所述复合碱溶液。
优选地,以所述复合碱溶液的质量为100%计,复合碱激发剂的含量为95%-98%,例如95%、95.5%、96%、96.5%、97%、97.5%或98%等,金属络合剂的含量为0.05%-0.5%,例如0.05%、0.1%、0.2%、0.3%、0.4%或0.5%等,稳泡剂B的含量为1.95%-4.5%,例如1.95%、2%、2.5%、3%、3.5%、4%或4.5%等。
若不添加金属络合剂会导致泡沫形成的孔隙粗大,产品强度下降,若金属络合剂的含量高于0.5%,会导致产品流动性差,入模困难。
优选地,所述复合碱激发剂的模数为1.0-1.5,例如1.0、1.1、1.2、1.3、1.4或1.5等。
优选地,所述金属络合剂包括三乙醇胺、甲基二乙醇胺、二异丙醇胺、二乙醇单异丙醇胺、三乙醇胺或三异丙醇胺中的任意一种或至少两种的组合。
优选地,所述金属络合剂的固含量不低于78%,例如78%、80%、83%、85%、 88%或90%等。
优选地,所述稳泡剂B包括十二烷基苯磺酸钠粉末、十二烷基硫酸钠粉末、磷酸三钠粉末或十二烷基硫酸钙粉末中的任意一种或至少两种的组合。
优选地,所述稳泡剂B的纯度不低于88%。
优选地,所述复合碱激发剂通过以下制备方法制备得到:
将氢氧化钠粉末和水倒入水玻璃中,搅拌,得到所述复合碱激发剂。
优选地,以所述复合碱激发剂的质量为100%计,氢氧化钠粉末的含量为8.5%-9%,例如8.5%、8.6%、8.7%、8.8%、8.9%或9%等,水的含量为4.5%-7%,例如4.5%、5%、5.5%、6%、6.5%或7%等,水玻璃的含量为84%-87%,例如84%、84.5%、85%、85.5%、86%、86.5%或87%等。
优选地,所述氢氧化钠粉末的纯度不低于96%。
优选地,所述水为自来水。
优选地,所述水玻璃的模数为1.0-3.8,例如1.0、1.5、2.0、2.5、3.0、3.5或3.8等,波美度为34.0-42.0,例如34.0、35.0、36.0、37.0、38.0、39.0、40.0、41.0或42.0等。
优选地,所述增稠剂包括甲基纤维素醚和/或羧甲基纤维素醚,优选甲基纤维素醚和羧甲基纤维素醚。
优选地,所述增稠剂的纯度不低于96%。
优选地,所述增稠剂的粘度不低于30000厘泊,例如30000厘泊、35000厘泊、40000厘泊、45000厘泊或50000厘泊等。
优选地,所述稳泡剂A包括磷酸三钠和/或硬脂酸钙粉末。
优选地,所述磷酸三钠的纯度不低于98%。
优选地,所述硬脂酸钙粉末的纯度不低于99%。
优选地,所述减水剂包括聚羧酸减水剂、萘磺酸盐系减水剂、脂肪系减水剂、木质素磺酸盐类减水剂或氨基磺酸盐系减水剂中的任意一种或至少两种的组合。
优选地,所述发泡剂包括过氧化氢溶液。
优选地,所述过氧化氢溶液的含量不低于30%,例如30%、33%、35%、38%或40%等。在本申请中,过氧化氢溶液的含量不低于30%指的是在过氧化氢溶液中,过氧化氢溶质的质量含量不低于30%。
第二方面,本申请实施例提供一种第一方面所述的粉煤灰基泡沫地聚合物的制备方法,所述制备方法包括以下步骤:
(1)将配方量的粉煤灰基材料、复合碱溶液、增稠剂、稳泡剂A和减水剂搅拌,得到料浆;
(2)将发泡剂加入步骤(1)得到的料浆中,搅拌,得到混合物,而后将混合物注入模具中;
(3)将步骤(2)的混合物及模具放入养护舱内养护,脱模,而后将脱模后的样品放置于标准养护环境下养护,得到所述粉煤灰基泡沫地聚合物。
优选地,步骤(1)所述搅拌在搅拌锅中进行。
优选地,步骤(1)所述搅拌的搅拌叶公转转速为115-135r/min,例如115r/min、120r/min、125r/min、130r/min或135r/min等,自转转速为275-295r/min,例如275r/min、280r/min、285r/min、290r/min或295r/min等。
优选地,步骤(1)所述搅拌的时间为4-6min,例如4min、4.5min、5min、5.5min或6min等。
优选地,步骤(2)所述搅拌的搅拌叶公转转速为57-67r/min,例如57r/min、60r/min、63r/min、65r/min或67r/min等,自转转速为135-145r/min,例如135r/min、138r/min、140r/min、143r/min或145r/min等。
优选地,步骤(2)所述搅拌的时间为20-40s,例如20s、23s、25s、28s、30s、33s、35s、38s或40s等。
优选地,步骤(2)所述将混合物注入模具中为将混合物注入至模具的1/2深度处。
优选地,将混合物注入模具中之后,在模具上覆盖聚乙烯薄膜,避免水分蒸发。
优选地,步骤(3)所述养护舱内的温度为65-75℃,例如65℃、68℃、70℃、73℃或75℃等。
优选地,步骤(3)所述放入养护舱内养护的时间为12-24h,例如12h、14h、15h、16h、18h、20h、22h或24h等。
优选地,步骤(3)所述标准养护环境的温度为18-22℃,例如18℃、19℃、20℃、21℃或22℃等,湿度为95%以上,例如95%、96%、97%或98%等。
优选地,步骤(3)所述放置于标准养护环境下养护的时间为7天。
第三方面,本申请实施例提供第一方面所述的粉煤灰基泡沫地聚合物在建筑材料中的应用。
优选地,所述建筑材料包括装配式建筑材料。
相对于相关技术,本申请实施例具有以下有益效果:
(1)本申请实施例利用粉煤灰基材料作为主要原材料制备粉煤灰基泡沫地聚合物,降低了生产成本,适用于大规模生产,同时,本申请有效解决了工业废渣处置的问题,节约了自然资源,保护了生态环境;
(2)本申请实施例的粉煤灰基泡沫地聚合物具有较低表观密度(421.7-521.4kg/m 3)的同时,具有较高的早期强度(7天抗压强度:1.56-3.60MPa),且构件脱模后强度仍快速发展,可避免构件吊运等过程造成的损耗,有助于装配式构件场内模具的周转,成品构件的出厂运输,减少构件场内堆放带来的仓储成本压力;
(3)本申请实施例的粉煤灰基泡沫地聚合物的制备方法,不需要对原材料进行球磨、水洗、煅烧等工艺,减少了粉磨设备、水洗设备、污水处理设备及煅烧设备的投入,降低能耗及碳排放,且无重化学试剂气味,成本低,对大气环境无污染。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为本申请实施例中粉煤灰基泡沫地聚合物所用原料示意图。
图2为实施例1制备的粉煤灰基泡沫地聚合物的成品外观图。
图3为实施例1制备的粉煤灰基泡沫地聚合物的X射线断层扫描重构投影图。
图4为实施例1制备的粉煤灰基泡沫地聚合物的X射线断层扫描重构后的孔隙分布图。
图5为实施例2制备的粉煤灰基泡沫地聚合物的成品外观图。
图6为实施例2制备的粉煤灰基泡沫地聚合物的X射线断层扫描重构投影 图。
图7为实施例2制备的粉煤灰基泡沫地聚合物的X射线断层扫描重构后的孔隙分布图。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本申请在说明书中所使用的术语只是为了描述具体的实施例,不是旨在于限制本申请。
本申请实施例中用到的粉煤灰为国标GB/T 1596-2017《用于水泥和混凝土的粉煤灰》规定的II级或以上的粉煤灰,SO 3≤3.0;本申请实施例中用到的矿渣为不低于国标GB/T 18046-2017《用于水泥、砂浆和混凝土中的粒化高炉矿渣粉》规定的S95级别粒化高炉矿渣粉。
实施例1
在本实施例中提供一种粉煤灰基泡沫地聚合物,所述粉煤灰基泡沫地聚合物的制备原料包括如下重量份的组分:
Figure PCTCN2022078941-appb-000003
其中,稳泡剂A为纯度不低于99%的硬脂酸钙粉末;减水剂为聚羧酸减水剂;发泡剂为过氧化氢溶液,其含量为30%;粉煤灰基材料为100%的粉煤灰。
复合碱溶液通过以下制备方法制备得到:
将复合碱激发剂、金属络合剂和稳泡剂B充分搅拌混合,得到所述复合碱溶液。
以复合碱溶液的质量为100%计,复合碱激发剂的含量为96%,金属络合剂的含量为0.3%,稳泡剂B的含量为3.7%;复合碱激发剂的模数为1.0;金属络合剂为三乙醇胺,其固含量不低于78%;稳泡剂B为十二烷基苯磺酸钠粉末, 其纯度不低于88%。
复合碱激发剂通过以下制备方法制备得到:
将氢氧化钠粉末和水倒入水玻璃中,充分搅拌后密封,静置备用,得到所述复合碱激发剂;
以所述复合碱激发剂的质量为100%计,氢氧化钠粉末的含量为9%,水的含量为5.8%,水玻璃的含量为85.2%;氢氧化钠粉末的纯度不低于96%;水为自来水;水玻璃的模数为1.0,波美度为34.0。
粉煤灰基泡沫地聚合物的制备方法包括以下步骤:
(1)将配方量的粉煤灰基材料、复合碱溶液、稳泡剂A和减水剂放入搅拌锅中,以搅拌叶公转115r/min、自转275r/min的转速,快速搅拌6min,确保净浆均匀,无固体粉体下沉,得到料浆;
(2)将发泡剂迅速加入步骤(1)得到的料浆中,以搅拌叶公转57r/min、自转135r/min的转速,慢速搅拌40s后,得到混合物,而后将混合物快速注入至模具的1/2深度处,然后在模具上覆盖聚乙烯薄膜,避免水分流失;
(3)将步骤(2)的混合物及模具放入温度为65℃的养护舱内养护24h后脱模,而后将脱模后的样品放置于温度为20℃,湿度为95%的标准养护环境下养护7天,得到所述粉煤灰基泡沫地聚合物。
本实施例中粉煤灰基泡沫地聚合物所用原料示意图如图1所示。
本实施例制备的粉煤灰基泡沫地聚合物的成品外观图如图2所示,X射线断层扫描重构投影图如图3所示,X射线断层扫描重构后的孔隙分布图如图4所示。从图中可以看出,本实施例制备的粉煤灰基泡沫地聚合物样品孔隙致密均匀,孔隙独立性好,孔隙连通性限制高,样品骨架无可见缺陷,为孔隙提供的结构性支撑强。图2中的粉煤灰基泡沫地聚合物样品的大小并不表示本实施例制备的样品大小,这只是为了做测试所截取出来的尺寸。
实施例2
在本实施例中提供一种粉煤灰基泡沫地聚合物,所述粉煤灰基泡沫地聚合物的制备原料包括如下重量份的组分:
Figure PCTCN2022078941-appb-000004
Figure PCTCN2022078941-appb-000005
其中,增稠剂为纯度不低于96%、粘度为30000厘泊的甲基纤维素醚;稳泡剂A为纯度不低于99%的硬脂酸钙粉末;减水剂为聚羧酸减水剂;发泡剂为过氧化氢溶液,其含量为30%。
粉煤灰基材料通过以下制备方法制备得到:
将粉煤灰和钙质材料放入搅拌锅中,充分搅拌混合,得到所述粉煤灰基材料。
以粉煤灰基材料的质量为100%计,粉煤灰的含量为90%,钙质材料的含量为10%;钙质材料为矿渣。
复合碱溶液通过以下制备方法制备得到:
将复合碱激发剂、金属络合剂和稳泡剂B充分搅拌混合,得到所述复合碱溶液。
以复合碱溶液的质量为100%计,复合碱激发剂的含量为95%,金属络合剂的含量为0.5%,稳泡剂B的含量为4.5%;复合碱激发剂的模数为1.5;金属络合剂为三乙醇胺,其固含量不低于78%;稳泡剂B为十二烷基苯磺酸钠粉末,其纯度不低于88%。
复合碱激发剂通过以下制备方法制备得到:
将氢氧化钠粉末和水倒入水玻璃中,充分搅拌后密封,静置备用,得到所述复合碱激发剂;
以所述复合碱激发剂的质量为100%计,氢氧化钠粉末的含量为8.5%,水的含量为4.5%,水玻璃的含量为87%;氢氧化钠粉末的纯度不低于96%;水为自来水;水玻璃的模数为3.8,波美度为42.0。
粉煤灰基泡沫地聚合物的制备方法包括以下步骤:
(1)将配方量的粉煤灰基材料、复合碱溶液、增稠剂、稳泡剂A和减水剂放入搅拌锅中,以搅拌叶公转135r/min、自转295r/min的转速,快速搅拌4min,确保净浆均匀,无固体粉体下沉,得到料浆;
(2)将发泡剂迅速加入步骤(1)得到的料浆中,以搅拌叶公转67r/min、自转145r/min的转速,慢速搅拌20s后,得到混合物,而后将混合物快速注入 至模具的1/2深度处,然后在模具上覆盖聚乙烯薄膜,避免水分流失;
(3)将步骤(2)的混合物及模具放入温度为75℃的养护舱内养护24h后脱模,而后将脱模后的样品放置于温度为20℃,湿度为96%的标准养护环境下养护7天,得到所述粉煤灰基泡沫地聚合物。
本实施例中粉煤灰基泡沫地聚合物所用原料示意图如图1所示。
本实施例制备的粉煤灰基泡沫地聚合物的成品外观图如图5所示,X射线断层扫描重构投影图如图6所示,X射线断层扫描重构后的孔隙分布图如图7所示。从图中可以看出,本实施例制备的粉煤灰基泡沫地聚合物样品孔隙致密均匀,孔隙独立性好,孔隙连通性限制高,样品骨架无可见缺陷,为孔隙提供的结构性支撑强。图5中的粉煤灰基泡沫地聚合物样品的大小并不表示本实施例制备的样品大小,这只是为了做测试所截取出来的尺寸。
实施例3
在本实施例中提供一种粉煤灰基泡沫地聚合物,所述粉煤灰基泡沫地聚合物的制备原料包括如下重量份的组分:
Figure PCTCN2022078941-appb-000006
其中,增稠剂为纯度不低于96%、粘度为35000厘泊的羧甲基纤维素醚;稳泡剂A为纯度不低于98%的磷酸三钠;减水剂为聚羧酸减水剂;发泡剂为过氧化氢溶液,其含量为30%。
粉煤灰基材料通过以下制备方法制备得到:
将粉煤灰和钙质材料放入搅拌锅中,充分搅拌混合,得到所述粉煤灰基材料。
以粉煤灰基材料的质量为100%计,粉煤灰的含量为92%,钙质材料的含量为8%;钙质材料为矿渣。
复合碱溶液通过以下制备方法制备得到:
将复合碱激发剂、金属络合剂和稳泡剂B充分搅拌混合,得到所述复合碱 溶液。
以复合碱溶液的质量为100%计,复合碱激发剂的含量为98%,金属络合剂的含量为0.05%,稳泡剂B的含量为1.95%;复合碱激发剂的模数为1.3;金属络合剂为三乙醇胺,其固含量不低于78%;稳泡剂B为十二烷基苯磺酸钠粉末,其纯度不低于88%。
复合碱激发剂通过以下制备方法制备得到:
将氢氧化钠粉末和水倒入水玻璃中,充分搅拌后密封,静置备用,得到所述复合碱激发剂;
以所述复合碱激发剂的质量为100%计,氢氧化钠粉末的含量为9%,水的含量为7%,水玻璃的含量为84%;氢氧化钠粉末的纯度不低于96%;水为自来水;水玻璃的模数为2.0,波美度为36.0。
粉煤灰基泡沫地聚合物的制备方法包括以下步骤:
(1)将配方量的粉煤灰基材料、复合碱溶液、增稠剂、稳泡剂A和减水剂放入搅拌锅中,以搅拌叶公转120r/min、自转280r/min的转速,快速搅拌5min,确保净浆均匀,无固体粉体下沉,得到料浆;
(2)将发泡剂迅速加入步骤(1)得到的料浆中,以搅拌叶公转60r/min、自转140r/min的转速,慢速搅拌30s后,得到混合物,而后将混合物快速注入至模具的1/2深度处,然后在模具上覆盖聚乙烯薄膜,避免水分流失;
(3)将步骤(2)的混合物及模具放入温度为70℃的养护舱内养护24h后脱模,而后将脱模后的样品放置于温度为20℃,湿度为97%的标准养护环境下养护7天,得到所述粉煤灰基泡沫地聚合物。
本实施例中粉煤灰基泡沫地聚合物所用原料示意图如图1所示。
实施例4
在本实施例中提供一种粉煤灰基泡沫地聚合物,所述粉煤灰基泡沫地聚合物的制备原料包括如下重量份的组分:
Figure PCTCN2022078941-appb-000007
Figure PCTCN2022078941-appb-000008
其中,增稠剂为纯度不低于96%、粘度为40000厘泊的羧甲基纤维素醚;稳泡剂A为纯度不低于98%的磷酸三钠;减水剂为聚羧酸减水剂;发泡剂为过氧化氢溶液,其含量为30%。
粉煤灰基材料通过以下制备方法制备得到:
将粉煤灰和钙质材料放入搅拌锅中,充分搅拌混合,得到所述粉煤灰基材料。
以粉煤灰基材料的质量为100%计,粉煤灰的含量为95%,钙质材料的含量为5%;钙质材料为矿渣。
复合碱溶液通过以下制备方法制备得到:
将复合碱激发剂、金属络合剂和稳泡剂B充分搅拌混合,得到所述复合碱溶液。
以复合碱溶液的质量为100%计,复合碱激发剂的含量为97%,金属络合剂的含量为0.1%,稳泡剂B的含量为2.9%;复合碱激发剂的模数为1.2;金属络合剂为三乙醇胺,其固含量不低于78%;稳泡剂B为十二烷基苯磺酸钠粉末,其纯度不低于88%。
复合碱激发剂通过以下制备方法制备得到:
将氢氧化钠粉末和水倒入水玻璃中,充分搅拌后密封,静置备用,得到所述复合碱激发剂;
以所述复合碱激发剂的质量为100%计,氢氧化钠粉末的含量为8.8%,水的含量为5%,水玻璃的含量为86.2%;氢氧化钠粉末的纯度不低于96%;水为自来水;水玻璃的模数为3.0,波美度为40.0。
粉煤灰基泡沫地聚合物的制备方法包括以下步骤:
(1)将配方量的粉煤灰基材料、复合碱溶液、增稠剂、稳泡剂A和减水剂放入搅拌锅中,以搅拌叶公转130r/min、自转285r/min的转速,快速搅拌5min,确保净浆均匀,无固体粉体下沉,得到料浆;
(2)将发泡剂迅速加入步骤(1)得到的料浆中,以搅拌叶公转65r/min、自转140r/min的转速,慢速搅拌30s后,得到混合物,而后将混合物快速注入至模具的1/2深度处,然后在模具上覆盖聚乙烯薄膜,避免水分流失;
(3)将步骤(2)的混合物及模具放入温度为70℃的养护舱内养护24h后 脱模,而后将脱模后的样品放置于温度为20℃,湿度为95%的标准养护环境下养护7天,得到所述粉煤灰基泡沫地聚合物。
本实施例中粉煤灰基泡沫地聚合物所用原料示意图如图1所示。
实施例5
在本实施例中提供一种粉煤灰基泡沫地聚合物,所述粉煤灰基泡沫地聚合物的制备原料包括如下重量份的组分:
Figure PCTCN2022078941-appb-000009
其中,增稠剂为纯度不低于96%、粘度不低于30000厘泊的羧甲基纤维素醚;稳泡剂A为纯度不低于98%的磷酸三钠;减水剂为聚羧酸减水剂;发泡剂为过氧化氢溶液,其含量为30%。
粉煤灰基材料通过以下制备方法制备得到:
将粉煤灰和钙质材料放入搅拌锅中,充分搅拌混合,得到所述粉煤灰基材料。
以粉煤灰基材料的质量为100%计,粉煤灰的含量为98%,钙质材料的含量为2%;钙质材料为矿渣。
复合碱溶液的制备方法及原料组成与实施例1相同。
复合碱激发剂的制备方法及原料组成与实施例1相同。
粉煤灰基泡沫地聚合物的制备方法包括以下步骤:
(1)将配方量的粉煤灰基材料、复合碱溶液、增稠剂、稳泡剂A和减水剂放入搅拌锅中,以搅拌叶公转125r/min、自转280r/min的转速,快速搅拌6min,确保净浆均匀,无固体粉体下沉,得到料浆;
(2)将发泡剂迅速加入步骤(1)得到的料浆中,以搅拌叶公转60r/min、自转135r/min的转速,慢速搅拌40s后,得到混合物,而后将混合物快速注入至模具的1/2深度处,然后在模具上覆盖聚乙烯薄膜,避免水分流失;
(3)将步骤(2)的混合物及模具放入温度为75℃的养护舱内养护24h后 脱模,而后将脱模后的样品放置于温度为20℃,湿度为95%的标准养护环境下养护7天,得到所述粉煤灰基泡沫地聚合物。
本实施例中粉煤灰基泡沫地聚合物所用原料示意图如图1所示。
实施例6
本实施例与实施例1不同之处仅在于,制备复合碱溶液时不添加金属络合剂,复合碱激发剂的含量为96.3%,稳泡剂B的含量为3.7%,其他条件均与实施例1相同。
实施例7
本实施例与实施例1不同之处仅在于,制备复合碱溶液时金属络合剂的含量为0.7%,复合碱激发剂的含量为95.6%,稳泡剂B的含量为3.7%,其他条件均与实施例1相同。
对比例1
本对比例与实施例1不同之处仅在于,粉煤灰基泡沫地聚合物的制备原料中,复合碱溶液的添加量为500份,其他条件均与实施例1相同。
对比例2
本对比例与实施例1不同之处仅在于,粉煤灰基泡沫地聚合物的制备原料中,复合碱溶液的添加量为800份,其他条件均与实施例1相同。
对比例3
本对比例与实施例1不同之处仅在于,粉煤灰基泡沫地聚合物的制备原料中,发泡剂的添加量为45份,其他条件均与实施例1相同。
对实施例1-7以及对比例1-3制备的粉煤灰基泡沫地聚合物进行性能测试,测试方法如下:
(1)抗压强度和表观密度按照《GBT 11969-2008蒸压加气混凝土性能实验方法》规定的方法进行测试;7天抗压强度指的是将脱模后的样品放置于标准养护环境下养护7天得到粉煤灰基泡沫地聚合物,对其进行抗压强度测试;
(2)孔隙率及孔隙圆度、等效球直径采用微米X射线断层扫描技术进行测试。
性能测试结果如表1所示。
表1
Figure PCTCN2022078941-appb-000010
由表1可以看出,实施例1-5通过大掺量的利用粉煤灰(粉煤灰利用率:90%-100%)制备的粉煤灰基泡沫地聚合物样品具有表观密度低(421.7-521.4kg/m 3)和早期强度高(1.56-3.60MPa)的特点,可用作轻质多孔建筑材料,另外,通过增加钙质材料能够有效的在小范围内增加样品表观密度的情况下,极大增强样品的早期抗压强度,实现样品强度、表观密度在实际使用过程中的可调可控,适应各种使用场景需求。
与实施例1相比,实施例6和实施例7制备的粉煤灰基泡沫地聚合物样品的表观密度均稍微上升,抗压强度均明显下降,这说明金属络合剂的添加量过 少或过多均会影响样品的性能。
与实施例1相比,对比例1制备的粉煤灰基泡沫地聚合物样品的抗压强度明显下降,对比例2制备的粉煤灰基泡沫地聚合物样品的抗压强度虽稍微上升,但其表面泛碱发白,影响产品表面质量。
与实施例1相比,对比例3制备的粉煤灰基泡沫地聚合物样品的抗压强度明显下降。
申请人声明,本申请通过上述实施例来说明本申请的粉煤灰基泡沫地聚合物及其制备方法和应用,但本申请并不局限于上述实施例,即不意味着本申请必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (16)

  1. 一种粉煤灰基泡沫地聚合物,其中,所述粉煤灰基泡沫地聚合物的制备原料包括如下重量份的组分:
    Figure PCTCN2022078941-appb-100001
  2. 根据权利要求1所述的粉煤灰基泡沫地聚合物,其中,所述粉煤灰基材料通过以下制备方法制备得到:
    将粉煤灰和钙质材料混合,得到所述粉煤灰基材料。
  3. 根据权利要求2所述的粉煤灰基泡沫地聚合物,其中,以所述粉煤灰基材料的质量为100%计,粉煤灰的含量为90%-100%,钙质材料的含量为0%-10%。
  4. 根据权利要求2所述的粉煤灰基泡沫地聚合物,其中,所述钙质材料包括水泥、矿渣、石膏或偏高岭土中的任意一种或至少两种的组合。
  5. 根据权利要求1-4任一项所述的粉煤灰基泡沫地聚合物,其中,所述复合碱溶液通过以下制备方法制备得到:
    将复合碱激发剂、金属络合剂和稳泡剂B混合,得到所述复合碱溶液;
    优选地,以所述复合碱溶液的质量为100%计,复合碱激发剂的含量为95%-98%,金属络合剂的含量为0.05%-0.5%,稳泡剂B的含量为1.95%-4.5%;
    优选地,所述复合碱激发剂的模数为1.0-1.5;
    优选地,所述金属络合剂包括三乙醇胺、甲基二乙醇胺、二异丙醇胺、二乙醇单异丙醇胺、三乙醇胺或三异丙醇胺中的任意一种或至少两种的组合;
    优选地,所述金属络合剂的固含量不低于78%;
    优选地,所述稳泡剂B包括十二烷基苯磺酸钠粉末、十二烷基硫酸钠粉末、磷酸三钠粉末或十二烷基硫酸钙粉末中的任意一种或至少两种的组合;
    优选地,所述稳泡剂B的纯度不低于88%。
  6. 根据权利要求5所述的粉煤灰基泡沫地聚合物,其中,所述复合碱激发剂通过以下制备方法制备得到:
    将氢氧化钠粉末和水倒入水玻璃中,搅拌,得到所述复合碱激发剂;
    优选地,以所述复合碱激发剂的质量为100%计,氢氧化钠粉末的含量为8.5%-9%,水的含量为4.5%-7%,水玻璃的含量为84%-87%;
    优选地,所述氢氧化钠粉末的纯度不低于96%;
    优选地,所述水为自来水;
    优选地,所述水玻璃的模数为1.0-3.8,波美度为34.0-42.0。
  7. 根据权利要求1-6中任一项所述的粉煤灰基泡沫地聚合物,其中,所述增稠剂包括甲基纤维素醚和/或羧甲基纤维素醚,优选甲基纤维素醚和羧甲基纤维素醚;
    优选地,所述增稠剂的纯度不低于96%;
    优选地,所述增稠剂的粘度不低于30000厘泊。
  8. 根据权利要求1-7中任一项所述的粉煤灰基泡沫地聚合物,其中,所述稳泡剂A包括磷酸三钠和/或硬脂酸钙粉末;
    优选地,所述磷酸三钠的纯度不低于98%;
    优选地,所述硬脂酸钙粉末的纯度不低于99%。
  9. 根据权利要求1-8中任一项所述的粉煤灰基泡沫地聚合物,其中,所述减水剂包括聚羧酸减水剂、萘磺酸盐系减水剂、脂肪系减水剂、木质素磺酸盐类减水剂或氨基磺酸盐系减水剂中的任意一种或至少两种的组合;
    优选地,所述发泡剂包括过氧化氢溶液;
    优选地,所述过氧化氢溶液的含量不低于30%。
  10. 根据权利要求1-9中任一项所述的粉煤灰基泡沫地聚合物的制备方法,其包括以下步骤:
    (1)将配方量的粉煤灰基材料、复合碱溶液、增稠剂、稳泡剂A和减水剂搅拌,得到料浆;
    (2)将发泡剂加入步骤(1)得到的料浆中,搅拌,得到混合物,而后将混合物注入模具中;
    (3)将步骤(2)的混合物及模具放入养护舱内养护,脱模,而后将脱模后的样品放置于标准养护环境下养护,得到所述粉煤灰基泡沫地聚合物。
  11. 根据权利要求10所述的制备方法,其中,步骤(1)所述搅拌在搅拌锅中进行。
  12. 根据权利要求10所述的制备方法,其中,步骤(1)所述搅拌的搅拌 叶公转转速为115-135r/min,自转转速为275-295r/min。
  13. 根据权利要求10所述的制备方法,其中,步骤(1)所述搅拌的时间为4-6min。
  14. 根据权利要求10-13任一项所述的制备方法,其中,步骤(2)所述搅拌的搅拌叶公转转速为57-67r/min,自转转速为135-145r/min;
    优选地,步骤(2)所述搅拌的时间为20-40s;
    优选地,步骤(2)所述将混合物注入模具中为将混合物注入至模具的1/2深度处;
    优选地,步骤(3)所述养护舱内的温度为65-75℃;
    优选地,步骤(3)所述放入养护舱内养护的时间为12-24h;
    优选地,步骤(3)所述标准养护环境的温度为18-22℃,湿度为95%以上;
    优选地,步骤(3)所述放置于标准养护环境下养护的时间为7天。
  15. 根据权利要求1-9中任一项所述的粉煤灰基泡沫地聚合物在建筑材料中的应用。
  16. 根据权利要求15所述的应用,其中,所述建筑材料包括装配式建筑材料。
PCT/CN2022/078941 2021-06-15 2022-03-03 一种粉煤灰基泡沫地聚合物及其制备方法和应用 WO2022262319A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110662284.0 2021-06-15
CN202110662284.0A CN113213833B (zh) 2021-06-15 2021-06-15 一种粉煤灰基泡沫地聚合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022262319A1 true WO2022262319A1 (zh) 2022-12-22

Family

ID=77080315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078941 WO2022262319A1 (zh) 2021-06-15 2022-03-03 一种粉煤灰基泡沫地聚合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113213833B (zh)
WO (1) WO2022262319A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023077A (zh) * 2022-12-27 2023-04-28 武汉大学 一种耐冻融循环损伤的碱激发胶凝材料及其制备方法
CN116081968A (zh) * 2023-01-04 2023-05-09 武汉大学 一种抑制化学收缩的碱激发胶凝材料及其制备方法
CN116120015A (zh) * 2023-02-17 2023-05-16 天元建设集团有限公司 一种轻质泡沫混凝土
CN116283078A (zh) * 2023-01-19 2023-06-23 长安大学 一种黏土砖粉-钢渣-粉煤灰基地聚物材料及其制备方法
CN116425563A (zh) * 2023-03-08 2023-07-14 广西大学 铝土尾矿基泡沫轻质土及其制备方法
CN116891373A (zh) * 2023-09-11 2023-10-17 河海大学 一种利用碱活化疏浚底泥制备免烧轻质砌块的方法
CN117185729A (zh) * 2023-09-27 2023-12-08 烟台三力轻质混凝土科技有限公司 一种轻质混凝土隔墙板的制作方法
CN117362051A (zh) * 2023-10-31 2024-01-09 河北润丰涂料有限公司 一种环保型隔热保温耐火材料及其制备方法
CN117383871A (zh) * 2023-10-13 2024-01-12 燕山大学 利用复合稳泡剂制备泡沫混凝土的方法及其自加压装置
CN117682807A (zh) * 2023-12-13 2024-03-12 江苏凯尔门业有限公司 一种低导热红外反射与辐射一体材料及其制备方法和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213833B (zh) * 2021-06-15 2022-04-19 深圳大学 一种粉煤灰基泡沫地聚合物及其制备方法和应用
CN113582194B (zh) * 2021-08-24 2022-11-08 广西民族大学 一种基于粉煤灰制备沸石微球的方法及沸石微球
CN113735504A (zh) * 2021-09-09 2021-12-03 广西北投交通养护科技集团有限公司 一种新型地聚物基泡沫轻质土的制备工艺
CN114276066A (zh) * 2022-01-12 2022-04-05 上海理工大学 一种富镁镍渣地质聚合物多孔材料及制备方法
CN115196924A (zh) * 2022-08-03 2022-10-18 新疆北新建材工业集团有限公司 一种轻质高强度固废基发泡地聚物自保温砌块的制备方法
CN115350692A (zh) * 2022-09-19 2022-11-18 北京林业大学 一种具有脱氮除磷功能的改性地聚合物-沸石及其制备方法与应用
CN115677378A (zh) * 2022-11-09 2023-02-03 安徽理工大学 一种兼具co2“储存-转化-固化”的固废基泡沫凝胶材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103524091A (zh) * 2012-07-06 2014-01-22 北京建筑技术发展有限责任公司 大掺量粉煤灰免蒸养超轻泡沫混凝土的制备方法
KR20170036584A (ko) * 2015-09-24 2017-04-03 고려대학교 산학협력단 레드머드와 미연소탄소 고함량 플라이애쉬를 이용한 경량 지오폴리머 경화체 및 그 제조 방법
CN108467224A (zh) * 2017-02-23 2018-08-31 神华集团有限责任公司 一种制粉煤灰基发泡地质聚合物的组合物和粉煤灰基发泡地质聚合物及其制备方法
CN108975795A (zh) * 2018-09-13 2018-12-11 武汉轻工大学 一种泡沫地聚合物及其制备方法和应用
CN113213833A (zh) * 2021-06-15 2021-08-06 深圳大学 一种粉煤灰基泡沫地聚合物及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107311546A (zh) * 2017-08-02 2017-11-03 广东中澳高科新技术服务中心有限公司 一种地质聚合物基泡沫材料及其制备方法
WO2020037349A1 (en) * 2018-08-22 2020-02-27 The University Of Melbourne Process for preparation of geopolymer foam compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103524091A (zh) * 2012-07-06 2014-01-22 北京建筑技术发展有限责任公司 大掺量粉煤灰免蒸养超轻泡沫混凝土的制备方法
KR20170036584A (ko) * 2015-09-24 2017-04-03 고려대학교 산학협력단 레드머드와 미연소탄소 고함량 플라이애쉬를 이용한 경량 지오폴리머 경화체 및 그 제조 방법
CN108467224A (zh) * 2017-02-23 2018-08-31 神华集团有限责任公司 一种制粉煤灰基发泡地质聚合物的组合物和粉煤灰基发泡地质聚合物及其制备方法
CN108975795A (zh) * 2018-09-13 2018-12-11 武汉轻工大学 一种泡沫地聚合物及其制备方法和应用
CN113213833A (zh) * 2021-06-15 2021-08-06 深圳大学 一种粉煤灰基泡沫地聚合物及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, ZE ET AL: "Research on Microstructure and Properties of Blast Furnace Slag-fly Ash Based Foam Geopolymer", NEW BUILDING MATERIALS, vol. 44, no. 12, 25 December 2017 (2017-12-25), pages 12 - 15, XP093015648 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023077A (zh) * 2022-12-27 2023-04-28 武汉大学 一种耐冻融循环损伤的碱激发胶凝材料及其制备方法
CN116081968A (zh) * 2023-01-04 2023-05-09 武汉大学 一种抑制化学收缩的碱激发胶凝材料及其制备方法
CN116081968B (zh) * 2023-01-04 2024-04-19 武汉大学 一种抑制化学收缩的碱激发胶凝材料及其制备方法
CN116283078B (zh) * 2023-01-19 2024-01-09 长安大学 一种黏土砖粉-钢渣-粉煤灰基地聚物材料及其制备方法
CN116283078A (zh) * 2023-01-19 2023-06-23 长安大学 一种黏土砖粉-钢渣-粉煤灰基地聚物材料及其制备方法
CN116120015B (zh) * 2023-02-17 2024-04-26 天元建设集团有限公司 一种轻质泡沫混凝土
CN116120015A (zh) * 2023-02-17 2023-05-16 天元建设集团有限公司 一种轻质泡沫混凝土
CN116425563A (zh) * 2023-03-08 2023-07-14 广西大学 铝土尾矿基泡沫轻质土及其制备方法
CN116425563B (zh) * 2023-03-08 2024-05-03 广西大学 铝土尾矿基泡沫轻质土及其制备方法
CN116891373A (zh) * 2023-09-11 2023-10-17 河海大学 一种利用碱活化疏浚底泥制备免烧轻质砌块的方法
CN116891373B (zh) * 2023-09-11 2023-11-28 河海大学 一种利用碱活化疏浚底泥制备免烧轻质砌块的方法
CN117185729A (zh) * 2023-09-27 2023-12-08 烟台三力轻质混凝土科技有限公司 一种轻质混凝土隔墙板的制作方法
CN117383871A (zh) * 2023-10-13 2024-01-12 燕山大学 利用复合稳泡剂制备泡沫混凝土的方法及其自加压装置
CN117383871B (zh) * 2023-10-13 2024-04-30 燕山大学 利用复合稳泡剂制备泡沫混凝土的方法及其自加压装置
CN117362051A (zh) * 2023-10-31 2024-01-09 河北润丰涂料有限公司 一种环保型隔热保温耐火材料及其制备方法
CN117362051B (zh) * 2023-10-31 2024-04-09 河北润丰涂料有限公司 一种环保型隔热保温耐火材料及其制备方法
CN117682807A (zh) * 2023-12-13 2024-03-12 江苏凯尔门业有限公司 一种低导热红外反射与辐射一体材料及其制备方法和应用

Also Published As

Publication number Publication date
CN113213833B (zh) 2022-04-19
CN113213833A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2022262319A1 (zh) 一种粉煤灰基泡沫地聚合物及其制备方法和应用
CN105541384B (zh) 一种超轻泡沫混凝土及其制备方法
CN106518153A (zh) 一种以磷石膏水硬性复合胶凝材料为主的发泡混凝土砌块及其制备方法
CN108726908B (zh) 一种泡沫混凝土用人造复合轻骨料的制备方法及人造复合轻骨料
CN113429141B (zh) 一种胶凝材料及其制备方法和应用
CN110451906A (zh) 一种轻质隔音材料及其制备方法
CN114573315B (zh) 一种免蒸压碳化养护再生轻质混凝土及其制备方法
CN113716919B (zh) 一种生物质灰渣基免蒸养轻质泡沫混凝土及其制备方法
CN113880516A (zh) 一种免蒸压粉煤灰加气混凝土保温砌块及其制备方法
CN108706944B (zh) 一种利用钡渣制备的磷石膏轻质板材及其制备方法
WO2024077901A1 (zh) 一种工业固废碳化固化免烧砌块及制备方法
CN106187281A (zh) 一种利用建筑垃圾制备的免蒸加气砖及其制备方法
WO2024108868A1 (zh) 一种基于膨胀土和工业固废的泡沫轻质土及其制备方法
CN116553895A (zh) 一种镁渣固碳胶凝材料及其制备方法
CN114956629A (zh) 采用建筑垃圾再生微粉制备的轻质免烧人造骨料及其制备方法
CN114605134A (zh) 一种高强低密度蒸压加气混凝土及其制备方法
CN109627039B (zh) 蒸压加气混凝土砌块及其制备方法和应用
CN108395170B (zh) 一种基于泡沫混凝土废料的发泡水泥保温板
CN112876184A (zh) 一种淤泥固化剂及其制备方法和使用方法
CN112358255A (zh) 一种环保透水砖及其制备方法
CN115716727B (zh) 一种轻质墙材及其制备方法
CN109574579A (zh) 一种生态泡沫混凝土及其制备方法
CN107324721A (zh) 一种改性纳米材料的超轻泡沫混凝土的制备方法
CN110615635B (zh) 一种改性预拌厂废浆渣及其制备方法和在泡沫混凝土中的应用
CN117700177A (zh) 一种低温负温早强型复合泡沫轻质土及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18570315

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/03/2024)