WO2024108868A1 - 一种基于膨胀土和工业固废的泡沫轻质土及其制备方法 - Google Patents

一种基于膨胀土和工业固废的泡沫轻质土及其制备方法 Download PDF

Info

Publication number
WO2024108868A1
WO2024108868A1 PCT/CN2023/087430 CN2023087430W WO2024108868A1 WO 2024108868 A1 WO2024108868 A1 WO 2024108868A1 CN 2023087430 W CN2023087430 W CN 2023087430W WO 2024108868 A1 WO2024108868 A1 WO 2024108868A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
solid waste
foam
parts
expansive soil
Prior art date
Application number
PCT/CN2023/087430
Other languages
English (en)
French (fr)
Inventor
李勖晟
刘松玉
黄蕾
童立元
王正成
孙家伟
郑舒文
马雯娥
郑芝芸
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2024108868A1 publication Critical patent/WO2024108868A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to a lightweight soil based on expansive soil and industrial solid waste foam and a preparation method thereof, belonging to the technical field of civil engineering materials.
  • Expansive soil also known as “swelling and shrinking soil” is a clay soil that expands dramatically after immersion in water and shrinks significantly after water loss. Because the soil contains a lot of clay minerals such as montmorillonite and illite, it is very hydrophilic. When the natural water content is high, the expansion amount and expansion force after immersion in water are small, while the shrinkage amount and shrinkage force after water loss are large, which will cause serious harm to buildings. However, in the natural state, the strength is generally high and the compressibility is low, which can be easily mistaken for a good foundation. Expansive soil is distributed in southern and central my country. At present, the research on the treatment of expansive soil is still incomplete.
  • Foamed lightweight soil is a new type of lightweight thermal insulation material with a large number of closed pores, which is formed by fully foaming the foaming agent mechanically through the foaming system of the bubble machine, and evenly mixing the foam with the raw material slurry, and then pouring it into place or forming it into a mold through the pumping system of the foaming machine, and then naturally curing it.
  • the research and application of this material has developed rapidly in recent years and is widely used in roadbed backfilling, underground structure load reduction, tunnel cavity grouting, old bridge reinforcement, sandwich component production, landscaping, emergency rescue and other fields.
  • foamed lightweight soil mainly uses cement as a cementitious material, but this preparation method has the disadvantages of high cost, high energy consumption, and high pollution, which does not conform to the principle of green environmental protection; at the same time, foamed lightweight soil prepared by cement is easy to dry and crack, has poor early strength, and its strength basically stops increasing after 7d to 14d, which limits the scope of its engineering application.
  • Some typical industrial solid wastes have good properties.
  • the carbide slag produced by the ethylene industry can provide a large amount of calcium and alkaline environment to promote the hydration and gelation reaction; the blast furnace slag produced by iron smelting is rich in cementitious material components, which can play a certain role in replacing cement and has a very high application potential.
  • the present invention discloses a method for preparing a slag-bearing material using expansive soil, cement, carbide slag and blast furnace slag as raw materials.
  • the foamed lightweight soil prepared by using raw materials and the preparation method thereof.
  • the foamed lightweight soil uses a large amount of expansive soil, and industrial solid waste is used to partially and effectively replace cement. It has the characteristics of reliable quality and simple construction, and can be used as an effective means to treat expansive soil.
  • the invention provides a foamed lightweight soil based on expansive soil and industrial solid waste.
  • the raw material composition comprises, by weight, 300-500 parts of expansive soil, 100-400 parts of cement, 50-150 parts of carbide slag, 100-350 parts of blast furnace slag, 400-600 parts of water and 1-2 parts of foaming agent.
  • the free expansion rate of the expansive soil is not less than 20%.
  • the raw soil is air-dried, crushed and sieved through a 2 mm sieve.
  • mud removal and necessary screening treatment should be carried out in advance.
  • the cement is Portland cement, which is a typical industrial silicate cement.
  • the carbide slag mainly contains calcium oxide and silicon dioxide, and contains a small amount of oxides of potassium, sodium and iron metal elements; the carbide slag needs to be pre-treated by ball milling to make its specific surface area not less than 250m2 /kg.
  • Carbide slag is a solid waste produced by the acetylene industry.
  • the mass fraction of calcium oxide in its main minerals is greater than 55%, and the mass fraction of silicon dioxide is greater than 30%.
  • the blast furnace slag mainly contains calcium oxide, silicon dioxide, aluminum oxide and magnesium oxide; contains a small amount of oxides of iron and titanium metal elements; the blast furnace slag needs to be pre-treated by ball milling to make its surface area not less than 250m2 /kg.
  • Blast furnace slag is a solid waste produced by the steel smelting industry. Its main mineral components are calcium oxide with a mass fraction greater than 30%, silicon dioxide with a mass fraction greater than 30%, aluminum oxide with a mass fraction greater than 10%, and magnesium oxide with a mass fraction greater than 5%.
  • the water is tap water, purified water or distilled water, including water required for foaming.
  • the foaming agent is any one or more mixtures of rosin resin (rosin soap foaming agent, etc.), synthetic surfactant (sodium lauryl alcohol ether sulfate, sodium dodecylbenzene sulfonate, etc.), protein (plant protein and animal protein foaming agent), composite foaming agent (plant-derived composite foaming agent, etc.), etc.
  • rosin resin and synthetic surfactant foaming agents an appropriate amount of foam stabilizer can be mixed according to the situation, including but not limited to cellulose ether, lauryl alcohol, triethanolamine, calcium stearate, etc.
  • the present invention also provides a preparation method based on expansive soil and industrial solid waste foam lightweight soil, the steps are as follows:
  • Raw material preparation Weigh the raw materials as needed and set aside.
  • Foam preparation Add the foaming agent into the water according to the dilution multiple and stir slightly. Connect the mixed liquid to the foaming machine through a plastic tube, and then open the foam valve.
  • the optimal speed ratio of the water pump varies with different foaming agents and different foaming agent dilution ratios. Adjust the pressure and water pump speed ratio according to demand, control the pressure range to 0.1mpa-0.4mpa, the water pump speed ratio to 20-80, and the corresponding water pump flow rate to 1L/min-4L/min, to release fine and stable foam. Collect the foam in a container and set aside.
  • the present invention proposes an operating method for preparing foamed lightweight soil using expansive soil and industrial solid waste, thereby effectively promoting the development and application of foundation treatment technology, promoting the disposal of expansive soil and industrial solid waste, saving land resources, and turning waste into treasure.
  • the present invention selects typical industrial solid waste carbide slag and blast furnace slag to partially replace cement as cementitious materials, and reduces the amount of cement by utilizing waste, thereby helping to reduce energy consumption and the emission of a large amount of toxic substances such as CO2 , SO2 and dust generated in the cement production process, reducing pollution to the environment, and providing a new method for reducing carbon emissions.
  • the good synergistic properties of carbide slag and blast furnace slag can effectively prevent the common cracking problem of cement-based foamed lightweight soil, while making the lightweight soil have a certain early strength.
  • the strength can continue to increase with age, and the preparation method is simple. It can be applied to projects with special requirements to improve project safety.
  • FIG. 1 is a flow chart of a method for preparing foamed lightweight soil according to the present invention.
  • FIG. 2 is the appearance of the foamed lightweight soil prepared in Example 1.
  • FIG3 is the appearance of the foamed lightweight soil prepared in Example 2.
  • FIG. 4 is the appearance of the foamed lightweight soil prepared in Comparative Example 1.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a lightweight soil based on expansive soil and industrial solid waste foam the raw materials are selected according to the following mass fractions:
  • the cement used is Conch 42.5 cement, 250 parts.
  • the foaming agent is 1 part of cement foaming agent with sodium dodecylbenzenesulfonate as the main raw material, and the dilution water is 100 parts.
  • the water is tap water, and the remaining water is 500 parts except the dilution water.
  • the preparation method is as follows:
  • Raw material preparation According to the implementation plan, measure the required raw materials and set them aside.
  • Foam preparation Add the foaming agent into water to dilute it and stir it slightly. Connect the mixed liquid to the foaming machine through a plastic tube, then open the foam valve, control the pressure range to 0.2 MPa, the water pump speed to 50, and the corresponding water pump flow rate to 2 L/min, and release fine and stable foam. Collect the foam in a container and set aside.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the difference between this embodiment and embodiment 1 is that the cement is 100 parts, the carbide slag is 150 parts, and the blast furnace slag is 250 parts.
  • Example 1 The difference between this comparative example and Example 1 is that the cement content is 500 parts, the carbide slag content is 0 parts, and the blast furnace slag content is 0 parts. It should be pointed out that among the samples in Comparative Example 1 with a curing age of more than 7 days, 33.3% of them have cracked and broken, and only the uncracked samples are used in the test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

一种基于膨胀土和工业固废的泡沫轻质土及其制备方法,属于土木建筑工程材料技术领域。泡沫轻质土的原料组成包括膨胀土、水泥、电石渣、高炉矿渣、水、发泡剂;原料组成按重量份比为:膨胀土300-500份,水泥100-400份,电石渣50-150份,高炉矿渣100-350份,水400-600份,发泡剂1-2份。本发明鉴于膨胀土治理改良和大规模利用缺少有效途径这一问题,提出了一种利用膨胀土和工业固废制备泡沫轻质土的操作方法,从而有效推动地基处理技术的发展和应用,促进膨胀土、工业固废的消纳,节约土地资源,变废为宝。

Description

一种基于膨胀土和工业固废的泡沫轻质土及其制备方法 技术领域
本发明涉及一种基于膨胀土和工业固废泡沫轻质土及其制备方法,属于土木建筑工程材料技术领域。
背景技术
膨胀土亦称“胀缩性土”,是浸水后体积剧烈膨胀,失水后体积显著收缩的黏性土。由于土中含有较多的蒙脱石、伊利石等黏土矿物,故亲水性很强。当天然含水率较高时,浸水后的膨胀量与膨胀力均较小,而失水后的收缩量与收缩力则很大,会对建筑物会造成严重危害,但在天然状态下强度一般较高,压缩性低,易被误认为是较好的地基。膨胀土在我国南方、中部等地均有分布。目前对膨胀土的治理研究还不完善,在实际工程中或采用复杂的桩基基础,或将膨胀土清理后回填优质土,工程造价高、效率较低。特别是清理后的膨胀土缺少有效利用途径,往往只能堆放于渣土场中,占用巨量土地资源。
泡沫轻质土是通过气泡机的发泡系统将发泡剂用机械方式充分发泡,并将泡沫与原材料浆液均匀混合,然后经过发泡机的泵送系统进行现浇施工或模具成型,经自然养护所形成的一种含有大量封闭气孔的新型轻质保温材料。该材料的研究和应用在近年来发展迅速,被广泛应用于路基回填、地下结构物减荷、隧道空洞注浆、旧桥加固、夹芯构件制作、园林绿化、抢险救灾等领域。
目前泡沫轻质土主要采用水泥作为胶凝材料,但此制备方法具有成本高、能耗大、污染大的缺点,不符合绿色环保的原则;同时,水泥制备的泡沫轻质土易于干裂,早强性差,在7d~14d后强度基本停止增长,限制了其工程应用的范围。部分典型的工业固废具有良好的性质,乙烯工业产生的电石渣能够提供大量的钙和碱性环境,促进水化胶凝反应的进行;炼铁产生的高炉矿渣富含胶凝材料成分,能够对水泥起到一定的替代作用,具备非常高的应用潜力。
发明内容
技术问题:
为解决上述问题,本发明公开了一种以膨胀土、水泥和电石渣、高炉矿渣作为原 料制备的泡沫轻质土及其制备方法。该泡沫轻质土中大量使用膨胀土,利用工业固废部分地、有效地替代了水泥,具有质量可靠、施工简便的特点,可作为治理膨胀土的有效手段。
技术方案:
本发明采用如下技术方案:
本发明提供了一种基于膨胀土和工业固废泡沫轻质土,其原料组成按重量份比包括:膨胀土300-500份,水泥100-400份,电石渣50-150份,高炉矿渣100-350份,水400-600份,发泡剂1-2份。
优选地,所述膨胀土的自由膨胀率不低于20%,将原料土风干后粉碎并过2mm筛,对于不满足要求的原料土,应事先进行解泥及必要的筛分处理。
优选地,所述水泥为波特兰水泥,即典型的工业硅酸盐水泥。
优选地,所述电石渣主要矿物成分为氧化钙、二氧化硅,含有少量钾、钠、铁金属元素的氧化物;电石渣需经过球磨等预处理,使其比表面积不低于250m2/kg。
电石渣为乙炔工业所产生的固体废物,主要矿物中氧化钙的质量分数大于55%,二氧化硅的质量分数大于30%。
优选地,所述高炉矿渣主要矿物成分为氧化钙、二氧化硅、三氧化二铝、氧化镁;含有少量铁、钛金属元素的氧化物;高炉矿渣需经过球磨等预处理,使其表面积不低于250m2/kg。
高炉矿渣为钢铁冶炼工业所产生的固体废物,主要矿物成分为氧化钙中质量分数大于30%、二氧化硅的质量分数大于30%、三氧化二铝的质量分数大于10%、氧化镁的质量分数大于5%。
优选地,所述水为自来水、纯净水或蒸馏水,包含发泡所需的水。
优选地,所述发泡剂为松香树脂类(松香皂发泡剂等)、合成表面活性类(十二烷基醇醚硫酸钠、十二苯磺酸钠等)、蛋白质类(植物蛋白和动物蛋白发泡剂)、复合类发泡剂(植物源复合发泡剂等)等中任一种或多种混合物。当使用松香树脂类和合成表面活性类发泡剂时,可根据情况混合适量稳泡剂,包括但不限于纤维素醚、十二醇、三乙醇胺、硬脂酸钙等。
本发明还提供了基于膨胀土和工业固废泡沫轻质土的制备方法,步骤如下:
S1、原料准备。按照需要称量原料,备用。
S2、浆料制备。将膨胀土、水泥、电石渣和高炉矿渣按照比例投入搅拌装置,以不低于120r/min的转速搅拌2-3min,使原材料均匀混合。将水分成2组,1组为发泡剂份数的30-100倍,具体数值需根据发泡剂种类决定,备用;另一组分成2-3份,向混合料中依次加入,每次加水后需搅拌1min-2min,直至水添加完,搅拌过程中注意混合料不能沉底、结团,确保浆料均匀、无沉积、不挂壁。
S3、泡沫制备。按稀释倍数将发泡剂添入水中稀释,略微搅拌。将混合后的液体通过塑料管与发泡机器相连,然后打开出泡沫阀,不同的发泡剂、不同的发泡剂稀释比例水泵的最佳速比都不尽相同,根据需求调节压力大小和水泵速比,控制压力范围在0.1mpa-0.4mpa,水泵速比在20-80,对应水泵流量为1L/min-4L/min,放出细密、稳定的泡沫。用容器接取泡沫,备用。
S4、混合搅拌。将泡沫倒入浆料中搅拌,搅拌速度在100r/min-200r/min,不宜过快,避免泡沫破裂。搅拌时间控制在10min-12min,确保气泡分布均匀,且浆料细密、无沉积,即得到拌合好的混合料。
S5、制样养护。立即将拌合好的混合料浇筑入模,密封,1d-2d后脱模,并在标准养护室(相对湿度99%,温度25℃)内养护至制定龄期,以获得所述的泡沫轻质土。
有益效果:
本发明鉴于膨胀土治理改良和大规模利用缺少有效途径这一问题,提出了一种利用膨胀土和工业固废制备泡沫轻质土的操作方法,从而有效推动地基处理技术的发展和应用,促进膨胀土、工业固废的消纳,节约土地资源,变废为宝。
膨胀土的性能将显著增加工程结构的开裂风险,将其制成泡沫轻质土后,细密的孔隙和化学成分的共同作用,可以有效降低其干缩性,从而具备良好的工程应用性能。
本发明选用了典型工业固废电石渣和高炉矿渣部分代替水泥作为胶凝材料,通过废物利用的方式,减少水泥用量,从而协助降低水泥生产过程中产生的能耗以及大量CO2、SO2和粉尘等有毒物质的排放,减小对环境的污染,为减碳排放提供了新方法。
电石渣和高炉矿渣良好的协同性能可有效防止水泥基泡沫轻质土常见的开裂问题,同时使得轻质土有一定的早强性,强度还能随着龄期的增长持续提高,且制备方法简单,可应用于有特殊要求的工程,提高工程安全性。
附图说明
图1是本发明的泡沫轻质土制备方法的流程图。
图2是实施例1所制备的泡沫轻质土外观。
图3是实施例2所制备的泡沫轻质土外观。
图4是对照例1所制备的泡沫轻质土外观。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1:
一种基于膨胀土和工业固废泡沫轻质土,按照以下质量分数选取原料:
膨胀土取自安徽合肥某工地,500份,基本性质如表1所示。风干粉碎后过2mm筛。
表1膨胀土基本性质
电石渣100份,高炉矿渣150份,组成成分如表2所示。
表2电石渣和高炉矿渣的主要组成成分(质量分数%)
水泥选取海螺42.5水泥,250份。发泡剂选取以十二苯磺酸钠为主要原料的水泥发泡剂1份,稀释水量100份。水选取自来水,除稀释水量外,剩余水量500份。
制备方法按照如下步骤:
S1、原料准备。根据实施方案,量取所需原料后,备用。
S2、浆料制备。将粉料按照比例投入搅拌装置中,以120r/min的转速搅拌2min,使其充分混合。将500份水均分为3份,依次投入搅拌装置,每次投入后搅拌2min,直至水添加完,搅拌过程中注意混合料不能沉底、结团,确保浆料均匀、无沉积、不挂壁。
S3、泡沫制备。将发泡剂添入水中稀释,略微搅拌。将混合后的液体通过塑料管与发泡机器相连,然后打开出泡沫阀,控制压力范围在0.2mpa,水泵比转速在50,对应水泵流量为2L/min,放出细密、稳定的泡沫。用容器接取泡沫,备用。
S4、将泡沫倒入浆料中搅拌,搅拌速度在100r/min,搅拌时间10-min,确保气泡分布均匀,且浆料细密、无沉积。
S5、立即将拌合好的混合料浇筑入模,密封,2d后脱模,并在标准养护室(相对湿度99%,温度25℃)内养护至测试龄期。
实施例2:
本实施例与实施例1的区别仅在于水泥份数为100份,电石渣150份,高炉矿渣250份。
对比例1:
本对比例与实施例1的区别仅在于水泥份数为500份,电石渣0份,高炉矿渣0份。需要指出的是,在对比例1养护龄期达到7d以上的试样中,有33.3%出现了开裂破碎的现象,测试时仅采用未开裂的试样。
对实施例1、2和对比例1中制备的泡沫轻质土性能进行测试,结果如表3所示。
表3泡沫轻质土性能测试结果
由表3可知,实施例1、2的无侧限抗压强度略低对对比例1,但体积收缩率好于对比例1。根据中国工程建设协会标准CECS249:2008《现浇泡沫轻质土技术规程》,实施例1、2的湿密度和流动度均满足规程要求,无侧限抗压强度分别可达到F1.0和F0.6级,可在工程中应用。
最后,本申请的方法仅为较佳的实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于膨胀土和工业固废的泡沫轻质土,其特征在于:泡沫轻质土的原料组成包括膨胀、水泥、电石渣、高炉矿渣、水、发泡剂;
    原料组成按重量份比为:
    膨胀土300-500份,
    水泥100-400份,
    电石渣50-150份,
    高炉矿渣100-350份,
    水400-600份,
    发泡剂1-2份。
  2. 根据权利要求1所述的基于膨胀土和工业固废泡沫轻质土,其特征在于:所述的膨胀土自由膨胀率不低于20%。
  3. 根据权利要求1所述的基于膨胀土和工业固废泡沫轻质土,其特征在于:所述的水泥为硅酸盐水泥。
  4. 根据权利要求1所述的基于膨胀土和工业固废泡沫轻质土,其特征在于:所述的电石渣为乙炔工业所产生的固体废物,电石渣中氧化钙的质量分数大于55%、二氧化硅的质量分数大于30%。
  5. 根据权利要求1所述的基于膨胀土和工业固废泡沫轻质土,其特征在于:所述的高炉矿渣为钢铁冶炼工业所产生的固体废物,高炉矿渣中氧化钙的质量分数大于30%、二氧化硅的质量分数大于30%、三氧化二铝的质量分数大于10%、氧化镁的质量分数大于5%。
  6. 根据权利要求1所述的基于膨胀土和工业固废泡沫轻质土,其特征在于:所述发泡剂为松香树脂类、合成表面活性类、蛋白质类、复合类发泡剂中任一种或多种混合物。
  7. 一种基于膨胀土和工业固废泡沫轻质土的制备方法,其特征在于,该制备方法包括以下步骤:
    S1、原料准备:按照需要称量原料,备用;
    S2、浆料制备:将膨胀土、水泥、电石渣和高炉矿渣按照比例投入搅拌装置,以不低于120r/min的转速搅拌2-3min,使原材料均匀混合,形成混合干料;
    向混合干料中依次加入水,每次加水收每次加水后需搅拌1-2mins,直至水添加完形成浆料;
    S3、泡沫制备:按稀释倍数将发泡剂添入水中稀释;将混合后的液体通过塑料管与发泡机器相连,然后打开出泡沫阀,根据需求调节压力大小和水泵速比,放出细密、稳定的泡沫,用容器接取泡沫,备用;
    S4、混合搅拌:将S3中得到备用泡沫倒入S2中得到的备用浆料中搅拌,搅拌后即得到 拌合好的混合料;
    S5、制样养护:立即将拌合好的混合料浇筑入模,密封,1d-2d后脱模,并在标准养护室内养护至制定龄期,即获得泡沫轻质土。
  8. 根据权利要求7所述的基于膨胀土和工业固废泡沫轻质土的制备方法,其特征在于,S3中发泡剂添入水中为发泡剂份数的30-100倍进行稀释。
  9. 根据权利要求7所述的基于膨胀土和工业固废泡沫轻质土的制备方法,其特征在于,S3中泡沫阀的控制压力范围在0.1mpa-0.4mpa,水泵比转速在20-80,对应水泵流量为1L/min-4L/min。
  10. 根据权利要求7所述的基于膨胀土和工业固废泡沫轻质土的制备方法,其特征在于,S4中搅拌速度在100-r/min 200r/min,搅拌时间控制在10min-12min。
PCT/CN2023/087430 2022-11-25 2023-04-11 一种基于膨胀土和工业固废的泡沫轻质土及其制备方法 WO2024108868A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211492391.4 2022-11-25
CN202211492391.4A CN115745519A (zh) 2022-11-25 2022-11-25 一种基于膨胀土和工业固废的泡沫轻质土及其制备方法

Publications (1)

Publication Number Publication Date
WO2024108868A1 true WO2024108868A1 (zh) 2024-05-30

Family

ID=85338202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087430 WO2024108868A1 (zh) 2022-11-25 2023-04-11 一种基于膨胀土和工业固废的泡沫轻质土及其制备方法

Country Status (2)

Country Link
CN (1) CN115745519A (zh)
WO (1) WO2024108868A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115745519A (zh) * 2022-11-25 2023-03-07 东南大学 一种基于膨胀土和工业固废的泡沫轻质土及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102162241A (zh) * 2011-03-07 2011-08-24 东南大学 一种用废弃电石渣改良膨胀土路基填料的方法
CN102249581A (zh) * 2011-05-17 2011-11-23 河海大学 电石渣改良膨胀土的方法及施工方法
WO2015181479A1 (fr) * 2014-05-27 2015-12-03 Saint-Gobain Weber Procede de fabrication d'une composition de béton ou mortier allegé
CN113754394A (zh) * 2021-08-30 2021-12-07 广东盛瑞科技股份有限公司 一种泡沫聚合土及其制备方法
CN115745519A (zh) * 2022-11-25 2023-03-07 东南大学 一种基于膨胀土和工业固废的泡沫轻质土及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033247A1 (en) * 2009-08-06 2011-02-10 American Accutech Ltd. Co. Effective Approach to Preventing and Remedying Distresses in Soils and Construction Materials
CN107805499A (zh) * 2017-10-11 2018-03-16 大连理工大学 一种基于纳米二氧化硅和普通水泥混合改良膨胀土的方法
CN107602046A (zh) * 2017-11-02 2018-01-19 中晶蓝实业有限公司 基于赤泥的烟气脱硫脱硝生产发泡保温材料的方法
CN114743605A (zh) * 2022-03-21 2022-07-12 山东大学 一种全固废泡沫轻质填料的设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102162241A (zh) * 2011-03-07 2011-08-24 东南大学 一种用废弃电石渣改良膨胀土路基填料的方法
CN102249581A (zh) * 2011-05-17 2011-11-23 河海大学 电石渣改良膨胀土的方法及施工方法
WO2015181479A1 (fr) * 2014-05-27 2015-12-03 Saint-Gobain Weber Procede de fabrication d'une composition de béton ou mortier allegé
CN113754394A (zh) * 2021-08-30 2021-12-07 广东盛瑞科技股份有限公司 一种泡沫聚合土及其制备方法
CN115745519A (zh) * 2022-11-25 2023-03-07 东南大学 一种基于膨胀土和工业固废的泡沫轻质土及其制备方法

Also Published As

Publication number Publication date
CN115745519A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
CN105272027A (zh) 一种抗压强度300MPa以上超高性能混凝土及其制备方法
CN105801017B (zh) 常温养护型活性粉末混凝土及其制备方法
CN109608068A (zh) 一种胶凝材料、混凝土预制件及混凝土预制件的制备方法
CN106747128A (zh) 一种大流态高强无收缩灌浆料及其制备方法
CN110452015A (zh) 一种高强度泡沫混凝土及其制备方法
CN106082901B (zh) 一种加固软弱地基的绿色混凝土预制桩及施工方法
CN103449744A (zh) 一种粉煤灰基地质聚合物及其制备方法
CN106587788A (zh) 一种低水泥用量自密实混凝土及其制备方法
CN104150840A (zh) 一种c60全机制砂超高层泵送混凝土
CN107572981A (zh) 一种混凝土修补用自密实混凝土及其制备方法
CN105060786A (zh) 一种长石废料混凝土及其制备方法
CN115215597A (zh) 一种盾构渣浆碱激发再生砂浆及其制备方法和应用
WO2024108868A1 (zh) 一种基于膨胀土和工业固废的泡沫轻质土及其制备方法
CN111253127A (zh) 一种c30碳纤维碎砖再生混凝土及其制备方法
CN114605121B (zh) 一种钨尾矿蒸压加气混凝土及其制备方法
CN114538843A (zh) 一种低能耗生态型超高性能混凝土及其制备方法
CN103965918A (zh) 一种水淬锰渣软土固化剂
Vivek et al. Strength and microstructure properties of self-compacting concrete using mineral admixtures. Case study I
CN109400066A (zh) 一种光伏用高强度再生混凝土管桩及其制备方法
CN106316302A (zh) C20级掺钢渣再生骨料自密实混凝土及其制备方法
CN109467370A (zh) 一种高掺量混合瓷砖骨料c160uhpc及其制备方法
CN108947463A (zh) 基于磷镁材料的装配式建筑套筒连接灌浆料及施工方法
CN113636802A (zh) 一种超高性能混凝土及其制备方法
CN116217193B (zh) 用于岛礁的碱激发全固废海水海砂珊瑚混凝土及制备工艺
CN102211918B (zh) 一种以钢渣为集料的快速结构加固材料