WO2022262188A1 - 一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法、核电用镍基合金焊丝及焊接裂纹检测方法 - Google Patents

一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法、核电用镍基合金焊丝及焊接裂纹检测方法 Download PDF

Info

Publication number
WO2022262188A1
WO2022262188A1 PCT/CN2021/131238 CN2021131238W WO2022262188A1 WO 2022262188 A1 WO2022262188 A1 WO 2022262188A1 CN 2021131238 W CN2021131238 W CN 2021131238W WO 2022262188 A1 WO2022262188 A1 WO 2022262188A1
Authority
WO
WIPO (PCT)
Prior art keywords
nuclear power
welding wire
based alloy
nickel
welding
Prior art date
Application number
PCT/CN2021/131238
Other languages
English (en)
French (fr)
Inventor
陈佩寅
徐锴
张俊宝
郭枭
陈波
霍树斌
姚俊俊
Original Assignee
哈尔滨焊接研究院有限公司
哈尔滨威尔焊接有限责任公司
上海核工程研究设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨焊接研究院有限公司, 哈尔滨威尔焊接有限责任公司, 上海核工程研究设计院有限公司 filed Critical 哈尔滨焊接研究院有限公司
Priority to SE2250949A priority Critical patent/SE2250949A1/en
Publication of WO2022262188A1 publication Critical patent/WO2022262188A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the invention relates to the technical field of welding materials, in particular to a composition design method of a nickel-based alloy welding wire for nuclear power to prevent welding cracks, a nickel-based alloy welding wire for nuclear power and a method for detecting welding cracks.
  • Nickel-based alloys are highly sensitive to cracks and are prone to welding cracks, especially high-temperature plastic loss cracks and crystallization cracks. Preventing cracks has always been the focus of the development of nickel-based alloy welding materials for the manufacture of third-generation nuclear power equipment, and it is also a technical difficulty.
  • the nickel-based alloy welding consumables used in the manufacture of third-generation nuclear power equipment are mainly 690 alloy welding consumables, which are highly sensitive to high-temperature plastic loss cracks.
  • High-temperature plastic loss cracks are small internal defects, which are difficult to find with current non-destructive testing techniques, and bring hidden dangers to the manufacturing quality and safe operation of nuclear power equipment.
  • the first 690 alloy welding wire used in nuclear power engineering is ASME SFA-5.14ERNiCrFe-7 welding wire, its chemical composition (mass content) is: C ⁇ 0.04%, Mn ⁇ 1.0%, Fe:7.0-11.0%, P ⁇ 0.02%, S ⁇ 0.015%, Si ⁇ 0.50%, Cu ⁇ 0.30%, Al ⁇ 1.1%, Ti ⁇ 1.0%, Cr:28.0-31.5%, Nb+Ta ⁇ 0.10%, Mo ⁇ 0.50%, Al+Ti ⁇ 1.5% , other ⁇ 0.50%. Due to its high susceptibility to high-temperature plastic loss cracking, the number of current applications is small.
  • ASME SFA-5.14ERNiCrFe-7A welding wire is the only 690 alloy welding wire widely used in nuclear power equipment manufacturing at home and abroad. Its chemical composition (mass content) is: C ⁇ 0.04%, Mn ⁇ 1.0%, Fe: 7.0-11.0%, P ⁇ 0.02%, S ⁇ 0.015%, Si ⁇ 0.50%, Cu ⁇ 0.30%, Co ⁇ 0.12%, Al ⁇ 1.1%, Ti ⁇ 1.0%, Cr:28.0-31.5%, Nb+Ta:0.5-1.0% , Mo ⁇ 0.50%, Al+Ti ⁇ 1.5%, B ⁇ 0.005%, Zr ⁇ 0.02%, others ⁇ 0.50%.
  • ERNiCrFe-7A welding wire has two main features. First, by adding a certain amount of Nb, the number of grain boundary precipitates is increased, and the ability to resist high temperature plastic loss cracks is improved; second, adding A certain amount of B and Zr improve the grain boundary strength and the ability to resist high temperature plastic cracking.
  • the third-generation nuclear power equipment puts forward higher requirements for nickel-based alloy welding technology, which is characterized by increased structural thickness of nuclear power main equipment, increased restraint of welded joints, and increased probability of welding cracks.
  • ERNiCrFe-7A welding wire has the problem of insufficient resistance to high temperature plastic loss cracks, which increases the difficulty of equipment manufacturing and quality stability.
  • Chinese patent CN101144130A proposes a kind of overlay welding parts and corresponding welding materials.
  • the chemical composition (mass content) of the overlay welding seam is: Cr: 28.5-31.0%, Fe: 7.0- 10.5%, Mn ⁇ 1.0%, Nb+Ta:2.1-4.0%, Mo:3.0-5.0%, Si ⁇ 0.50%, Ti:0.01-0.35%, Al ⁇ 0.25%, Cu ⁇ 0.20%, W ⁇ 1.0% , Co ⁇ 0.12%, Zr ⁇ 0.10%, S ⁇ 0.01%, B ⁇ 0.01%, C ⁇ 0.03%, P ⁇ 0.02%, Mg+Ca: 0.002-0.015%, the balance Ni and incidental impurities.
  • This patent solves the problem of ERNiCrFe-7A welding wire "under unfavorable weld shape and very high heat input, the occasional high-temperature plastic loss cracks are found".
  • This patent greatly increases the content of Nb+Ta, adds a large amount of Mo, increases the grain boundary strength, increases the number of precipitates, and forms curved grain boundaries, which further improves the ability of the weld to resist high temperature plastic loss cracks.
  • the STF test results provided by the patent illustrate the effectiveness of the embodiments in preventing high-temperature plastic failure cracks.
  • the STF test is only a high-temperature plastic loss crack sensitivity test, and its results cannot be used to evaluate the crystal crack sensitivity, and the patent does not specify the crystal crack sensitivity of the examples.
  • the object of the present invention is to provide a composition design method of nickel-based alloy welding wire for nuclear power, a nickel-based alloy welding wire for nuclear power and a welding crack detection method for preventing welding cracks.
  • the design method provided by the invention can prevent crystallization cracks and high temperature resistance at the same time Loss of plastic cracks to solve the problem of welding cracks in nickel-based alloys for main equipment of third-generation nuclear power plants.
  • the invention provides a composition design method of a nickel-based alloy welding wire for nuclear power to prevent welding cracks, comprising the following steps:
  • the Laves phase volume percentage of the ingot is calculated by software
  • the chemical composition of the ingot is taken as the chemical composition of the nickel-based alloy welding wire for nuclear power.
  • the chemical formula of the Laves phase is A 2 B, wherein A includes one or more of Ni, Fe, Cr and Co, and B includes one or more of Nb, Ti, Si, Mo and Ta.
  • the software described in step (3) is JMatPro software.
  • the calculation method of the Laves phase volume percentage includes: using the JMatPro software to calculate the type, quantity and evolution of the fibrous tissue during the solidification process; calculation parameters include: initial temperature 1900 ° C, calculation step size 2 ° C, cooling The speed is 200°C/s; the volume percentage of Laves phase when cooled to 1000°C is taken as the calculation result.
  • the Laves phase volume percentage of the ingot is > 1.0%, then adjust the chemical composition design value of the welding wire in step (1), and repeat steps (2) to (3) until the Laves phase volume percentage of the ingot is ⁇ 1.0%.
  • the volume percentage of the Laves phase is 0-0.03%.
  • the present invention provides a nickel-based alloy welding wire for nuclear power obtained by adopting the composition design method described in the above technical solution.
  • the chemical composition includes: C: 0.015-0.035%, Si ⁇ 0.30%, Mn: 0.20- 1.00%, Cr: 29.0 ⁇ 31.5%, Fe: 8 ⁇ 12%, Ta: 1.5 ⁇ 4.0%, Nb ⁇ 1.4%, Ti ⁇ 0.5%, Al ⁇ 0.5%, Mo: 3.0 ⁇ 5.0% and Ni .
  • the chemical composition includes: C: 0.025-0.033%, Si: 0.08-0.12%, Mn: 0.78-0.82%, Cr: 29.89-31.33%, Fe: 8.12-11.53%, Ta : 1.60-3.51%, Nb ⁇ 0.98%, Ti: 0.18-0.19%, Al: 0.19-0.32%, Mo: 3.40-3.60%, and Ni in the balance.
  • the chemical composition further includes: Cu ⁇ 0.1%, Co ⁇ 0.10%, S ⁇ 0.0020%, P ⁇ 0.0020%, B ⁇ 0.001%, Zr ⁇ 0.002%.
  • the chemical composition further includes: N: 0.006-0.012%, O ⁇ 0.005%.
  • the diameter of the nickel-based alloy welding wire for nuclear power is 1.2mm.
  • the present invention also provides a method for detecting welding cracks of nickel-based alloy welding wire for nuclear power described in the above technical solution, comprising the following steps:
  • the nickel-based alloy welding wire used for nuclear power is surfacing welded seam on the test base metal. After the surfacing welding is completed, the sample is cut from the surfacing welding seam by wire cutting method;
  • Grinding machine is used to grind the sample, and the grinding direction is perpendicular to the welding direction; after grinding, carry out colored flaw detection on the surface of the sample, and mark the display of colored flaw detection; then observe the flaw detection display under a metallographic microscope to determine Whether it is a welding crack;
  • the crack resistance is good; if the number of cracks is ⁇ 10, the crack resistance is average; if the number of cracks is more than 10, the crack resistance is poor.
  • the base material for the test is low carbon steel or low alloy steel.
  • the process parameters of the surfacing welding include: welding current 220A, arc voltage 12-14V, welding speed 170mm/min, wire feeding speed 1200mm/min, interpass temperature ⁇ 100°C, and shielding gas with a volume fraction of 99.99%.
  • the flow rate of shielding gas is 14 ⁇ 18L/min.
  • the invention provides a composition design method of a nickel-based alloy welding wire for nuclear power that prevents welding cracks, comprising the following steps: (1) determining the chemical composition design value of the welding wire according to the principle that the Laves phase volume percentage is ⁇ 1.0%; (2) Prepare an ingot according to the chemical composition design value of the welding wire, and obtain the chemical composition of the ingot; (3) calculate the Laves phase volume percentage of the ingot according to the chemical composition of the ingot by using software; (4) if If the Laves phase volume percentage of the ingot is ⁇ 1.0%, the chemical composition of the ingot is taken as the chemical composition of the nickel-based alloy welding wire for nuclear power.
  • the present invention prevents crystallization cracks by controlling the volume percentage of the Laves phase in the microstructure, which is more direct and effective than preventing crystallization cracks by controlling the chemical composition; the present invention combines the numerical simulation technology of the welding wire with the crack resistance test results, and finds the influence An important factor of crystal cracks, and a criterion for preventing crystal cracks is proposed.
  • using this criterion can predict the crack resistance results within the design point of the welding wire composition and the fluctuation range, and improve the yield; the present invention can be based on The chemical composition analysis results of the ingot (the first process of welding wire manufacturing), calculate the number of Laves phases, and predict the crack resistance of the welding wire.
  • the welding wire must be manufactured first, and then the crack resistance results can be obtained through relevant tests before the crack resistance can be determined.
  • the invention not only greatly shortens the decision-making time, but also greatly shortens the supply cycle, reduces the cost of welding wire, and significantly improves the benefit.
  • the present invention also provides the nickel-based alloy welding wire for nuclear power obtained by adopting the composition design method described in the above technical scheme.
  • the present invention reduces the amount of Laves phase by reasonably matching the contents of Nb, Ta, Mo, Cr, Fe, Ti and other elements. Control in an appropriate range to prevent crystallization cracks; at the same time, pay attention to the influence of the above elements on high temperature plastic loss cracks, maintain sufficient resistance to high temperature plastic loss cracks, and achieve the goal of preventing 690 alloy welding cracks (including crystallization cracks and high temperature plastic loss cracks). Objective To solve the problem of welding cracks in nickel-based alloys for main equipment of third-generation nuclear power plants.
  • Fig. 1 is embodiment 1 surfacing welding seam cutting sample's horizontal sample colored flaw detection result figure
  • Fig. 2 is the coloring flaw detection result figure of the longitudinal sample of the sample taken from the surfacing welding seam of embodiment 1;
  • Fig. 3 is the coloring flaw detection result diagram of the transverse sample of the sample cut from the surfacing welding seam of comparative example 1;
  • Fig. 4 is a picture of the coloring flaw detection results of the longitudinal sample of the sample cut from the surfacing weld of Comparative Example 1.
  • the invention provides a composition design method of a nickel-based alloy welding wire for nuclear power to prevent welding cracks, comprising the following steps:
  • the Laves phase volume percentage of the ingot is calculated by software
  • the chemical composition of the ingot is taken as the chemical composition of the nickel-based alloy welding wire for nuclear power.
  • the invention determines the design value of the chemical composition of the welding wire.
  • the volume percentage of the Laves phase is preferably 0-0.03%.
  • the Laves phase is an intermetallic compound with a hexagonal crystal structure and a chemical formula of A 2 B, wherein A includes one or more of Ni, Fe, Cr and Co, and B includes Nb, Ti, Si One or more of , Mo and Ta.
  • A includes one or more of Ni, Fe, Cr and Co
  • B includes Nb, Ti, Si One or more of , Mo and Ta.
  • Most of the above-mentioned chemical elements are constituent elements of nickel-based alloy welding wire for nuclear power, and some are effective elements to prevent high-temperature plastic cracking. If the matching is not appropriate, it is easy to cause crystallization cracks due to excessive Laves phase content.
  • the present invention After determining the design value of the chemical composition of the welding wire, the present invention prepares an ingot according to the design value of the chemical composition of the welding wire to obtain the chemical composition of the ingot.
  • the present invention has no special requirements on the specific preparation method of the ingot, and the ingot preparation process in the welding wire manufacturing process well known to those skilled in the art can be used.
  • the present invention uses software to calculate the Laves phase volume percentage of the ingot according to the chemical composition of the ingot.
  • the software is preferably JMatPro software.
  • the calculation method of Laves phase volume percentage comprises: adopt JMatPro software 11.2 editions of Sente Software company to calculate the type, quantity and evolution process of microstructure in the solidification process; Calculation parameters include: initial temperature 1900 °C, the calculation step is 2 °C, and the cooling rate is 200 °C/s; the volume percentage of the Laves phase when cooled to 1000 °C is taken as the calculation result of the present invention.
  • the chemical composition of the ingot is taken as the chemical composition of the nickel-based alloy welding wire for nuclear power.
  • the Laves phase volume percentage of the ingot>1.0% then preferably adjust the chemical composition design value of the welding wire in step (1), and repeat steps (2) to (3) until the Laves phase of the ingot Volume percentage ⁇ 1.0%.
  • the present invention also provides a nickel-based alloy welding wire for nuclear power obtained by adopting the composition design method described in the above technical solution.
  • the chemical composition includes: C: 0.015-0.035%, Si ⁇ 0.30%, Mn: 0.20 ⁇ 1.00%, Cr: 29.0 ⁇ 31.5%, Fe: 8 ⁇ 12%, Ta: 1.5 ⁇ 4.0%, Nb ⁇ 1.4%, Ti ⁇ 0.5%, Al ⁇ 0.5%, Mo: 3.0 ⁇ 5.0% and the balance Ni.
  • the nickel-based alloy welding wire for nuclear power provided by the present invention contains C: 0.015-0.035%, preferably 0.025-0.033%.
  • C is a carbide forming element, which is beneficial for preventing high-temperature plastic cracking.
  • the present invention controls the C content within the above range, which can avoid excessive C content, which may form excessive M 23 C 6 carbides at the grain boundaries, resulting in poor Cr in the grain boundaries and reducing the corrosion resistance of the weld.
  • the nickel-based alloy welding wire for nuclear power provided by the invention contains Si ⁇ 0.30%, preferably 0.08-0.12%.
  • Si can form a low-melting eutectic with Ni in the nickel-based alloy weld, and at the same time promote the generation of Laves phase, which is easy to cause crystal cracks. If the content is too high, it will also reduce the mechanical properties of the weld.
  • the nickel-based alloy welding wire for nuclear power provided by the invention contains Mn: 0.20-1.00%, preferably 0.78-0.82%.
  • Mn can be preferentially combined with S to form MnS with a higher melting point and reduce the harmful effect of S; it can also increase the surface energy of the solid-liquid phase, hinder the formation of a low melting point eutectic liquid film, and improve the weld seam Thermal crack resistance; Mn is a Laves phase promoting element, which can increase the number of Laves phases in the weld and increase the sensitivity of crystallization cracks.
  • the nickel-based alloy welding wire for nuclear power provided by the present invention includes Cr: 29.0-31.5%, preferably 29.89-31.33%.
  • Cr is the matrix element of Ni-Cr-Fe alloy for nuclear power, not only plays a role of solid solution strengthening, but also is the main element to improve corrosion resistance; Cr is also a Laves phase forming element, which directly affects the number of Laves phases.
  • the nickel-based alloy welding wire for nuclear power provided by the present invention contains Fe: 8-12%, preferably 8.12-11.53%.
  • Fe is the matrix element of Ni-Cr-Fe alloy for nuclear power, which can improve the weld strength through solid solution strengthening; Fe is also a Laves phase forming element, which directly affects the number of Laves phases.
  • the nickel-based alloy welding wire for nuclear power provided by the present invention includes Ta: 1.5-4.0%, preferably 1.60-3.51%.
  • the price of Ta is very high, and it is a strong carbide forming element, which can improve the grain boundary strength. It is the main element for preventing high-temperature plastic loss cracks in the present invention; it is also a Laves phase-forming element, and its content is too low to easily cause high-temperature plastic loss cracks; High, the cost of welding wire is too high.
  • the nickel-based alloy welding wire for nuclear power provided by the present invention contains Nb ⁇ 1.4%, preferably ⁇ 0.98%, more preferably ⁇ 0.1%.
  • Nb is a strong Laves phase forming element, which directly affects the number of Laves phases; it is also a carbide and nitride forming element, which can increase the grain boundary strength. Since Nb has a great influence on the number of Laves phases, the content of Nb in the present invention should be properly limited, and its main function is to cooperate with Ta to increase the ability to resist plastic loss at high temperature.
  • the nickel-based alloy welding wire for nuclear power provided by the invention contains Ti ⁇ 0.5%, preferably 0.18-0.19%.
  • Ti is an element forming carbides and nitrides, which can increase the strength of grain boundaries and prevent high-temperature plastic loss cracks; it is also a strong deoxidizing element, which can purify weld seams.
  • the nickel-based alloy welding wire for nuclear power provided by the invention contains Al ⁇ 0.50%, preferably 0.19-0.32%.
  • Al is a strong deoxidizing element, which can purify the molten pool and improve the performance of the weld; if the content is too high, there will be more scum on the surface of the weld bead, which will reduce the welding performance.
  • the nickel-based alloy welding wire for nuclear power provided by the present invention includes Mo: 3.0-5.0%, preferably 3.40-3.60%.
  • Mo is a solid-solution strengthening element of nickel-based alloys, which can effectively increase high-temperature strength and corrosion resistance, but also promote the formation of Laves phase and brittle phase.
  • the nickel-based alloy welding wire for nuclear power provided by the present invention preferably further includes Cu ⁇ 0.1%, Co ⁇ 0.10%, S ⁇ 0.0020%, P ⁇ 0.0020%, B ⁇ 0.001%, Zr ⁇ 0.002%.
  • Cu is easy to form the second phase in the welding process, which improves the tendency of weld thermal cracking, and the content is controlled at Cu ⁇ 0.1%
  • Co is an impurity element, which should be strictly controlled when working in an irradiation environment, and the content is controlled at Co ⁇ 0.10%
  • S and P are unavoidable harmful elements that increase the sensitivity of crystal cracks, and the content is controlled at S ⁇ 0.0020%, P ⁇ 0.0020%
  • B and Zr are easy to segregate at grain boundaries, causing crystal cracks, and the content is controlled at B ⁇ 0.001%, Zr ⁇ 0.002%.
  • the nickel-based alloy welding wire for nuclear power provided by the present invention preferably further includes N: 0.006-0.012%, O ⁇ 0.005%.
  • the nickel-based alloy welding wire for nuclear power provided by the present invention includes a balance of Ni.
  • the diameter of the nickel-based alloy welding wire for nuclear power is preferably 1.2 mm.
  • the present invention has no special requirements for the preparation method of the nickel-based alloy welding wire for nuclear power, and the preparation method of the nickel-based alloy welding wire for nuclear power well known to those skilled in the art can be adopted, which specifically includes: vacuum smelting + electroslag remelting or Vacuum smelting + electroslag remelting + vacuum self-consumption to prepare an alloy billet; the alloy billet is sequentially forged, rolled, multi-pass cold drawn, on-line annealed and cleaned.
  • the present invention has no special requirements on the specific process parameters in the preparation process, as long as the final chemical composition of the welding wire meets the requirements of the nickel-based alloy welding wire for nuclear power described in the above technical solution.
  • the present invention also provides a welding crack detection method for nickel-based alloy welding wire for nuclear power described in the above technical solution, preferably comprising the following steps:
  • the nickel-based alloy welding wire used for nuclear power is surfacing welded seam on the test base metal. After the surfacing welding is completed, the sample is cut from the surfacing welding seam by wire cutting method;
  • Grinding machine is used to grind the sample, and the grinding direction is perpendicular to the welding direction; after grinding, carry out colored flaw detection on the surface of the sample, and mark the display of colored flaw detection; then observe the flaw detection display under a metallographic microscope to determine Whether it is a welding crack;
  • the crack resistance is good; if the number of cracks is ⁇ 10, the crack resistance is average; if the number of cracks is more than 10, the crack resistance is poor.
  • the base material for the test is preferably low-carbon steel or low-alloy steel; the size of the base material for the test is preferably 400mm ⁇ 300mm ⁇ 60mm.
  • the size of the weld seam is preferably 300mm ⁇ 200mm ⁇ 40mm.
  • the process parameters of the surfacing welding include: welding current 220A, arc voltage 12-14V, welding speed 170mm/min, wire feeding speed 1200mm/min, interpass temperature ⁇ 100°C, shielding gas 99.99% volume Fraction of Ar, the flow rate of protective gas is 14 ⁇ 18L/min.
  • the thickness of the sample cut from the surfacing weld is preferably 4mm; preferably, three samples are cut along the transverse and longitudinal directions respectively.
  • the grinding direction is perpendicular to the welding direction, which is beneficial to the display of cracks.
  • the defects of coloring flaw detection can be opened, and the nature of the crack can be determined through the fracture morphology.
  • the JMatPro software version 11.2 of Sente Software Company was used to calculate the type, quantity and evolution process of the microstructure during the solidification process; the calculation parameters were: initial temperature 1900 °C, calculation step size 2 °C, cooling rate 200 °C/s; cooling to The volume percentage of Laves phase at 1000°C is taken as the calculation result of the present invention.
  • the nickel-based alloy welding wire used for nuclear power is placed on the test base metal for surfacing welds. After the surfacing is completed, the method of wire cutting is adopted to cut the sample from the surfacing welds; the test base metal is low Carbon steel; the size of the base metal for the test is 400mm ⁇ 300mm ⁇ 60mm; the size of the weld seam is 300mm ⁇ 200mm ⁇ 40mm, the welding process parameters are: welding current 220A, arc voltage 12-14V, welding speed 170mm/min, send The wire speed is 1200mm/min, the interpass temperature is ⁇ 100°C, the protective gas is 99.99% Ar, the flow rate is 14-18L/min; the thickness of the sample is 4mm, and 3 samples are taken along the transverse and longitudinal sections respectively;
  • the crack resistance is good; if the number of cracks is ⁇ 10, the crack resistance is average; if the number of cracks is more than 10, the crack resistance is poor.
  • the chemical composition of nickel-based alloy welding wire for nuclear power is: Al: 0.32%, Cr: 31.33%, Fe: 11.53%, Mn: 0.82%, Mo: 3.60%, Nb ⁇ 0.1%, Si: 0.12%, Ta: 3.51%, Ti: 0.19%, C: 0.033%, N: 0.012%, Cu ⁇ 0.10%, Co ⁇ 0.10%, O ⁇ 0.005%, P ⁇ 0.002%, S ⁇ 0.002%, B ⁇ 0.001%, Zr ⁇ 0.002%.
  • the conversion coefficient of the chemical composition when calculating the volume percentage of Laves phase is: Cr:0.97, the calculated value of the element whose measurement result is not indicated is 0, and the value of Laves phase is 0. Crack resistance test results were good.
  • the chemical composition of nickel-based alloy welding wire for nuclear power is: Al: 0.19%, Cr: 29.89%, Fe: 8.12%, Mn: 0.78%, Mo: 3.40%, Nb: 0.98%, Si: 0.08%, Ta: 1.60%, Ti: 0.18%, C: 0.025%, N: 0.006%, Cu ⁇ 0.10%, Co ⁇ 0.10%, O ⁇ 0.005%, P ⁇ 0.002%, S ⁇ 0.002%, B ⁇ 0.001%, Zr ⁇ 0.002%.
  • the conversion coefficient of the chemical composition when calculating the volume percentage of Laves phase is: Cr:0.97, the calculated value of elements without indicated measurement results is 0, and the Laves phase is 0.03%. Crack resistance test results were good.
  • the chemical composition of nickel-based alloy welding wire for nuclear power is: Al: 0.32%, Cr: 31.11%, Fe: 10.84%, Mn: 0.87%, Mo: 3.49%, Nb: 2.00%, Si: 0.09%, Ta: 1.46%, Ti: 0.19%, C: 0.028%, N: 0.016%, Cu ⁇ 0.10%, Co ⁇ 0.10%, O ⁇ 0.005%, P ⁇ 0.002%, S ⁇ 0.002%, B ⁇ 0.001%, Zr ⁇ 0.002%.
  • the conversion coefficient of the chemical composition when calculating the volume percentage of the Laves phase is: Cr:0.97, the calculated value of the element that does not indicate the measurement result is 0, and the Laves phase is 1.94%>1.0%.
  • the result of the crack resistance test was poor.
  • Figure 3 shows the coloring flaw detection results of the transverse sample and the coloring flaw detection result of the longitudinal sample of the sample cut from the surfacing welding seam of this comparative example.
  • the positions indicated by the arrows in Figures 3 to 4 are cracks, and it can be seen from Figures 3 to 4 that there are cracks in the welding.
  • the chemical composition of nickel-based alloy welding wire for nuclear power is: Al: 0.19%, Cr: 29.89%, Fe: 8.12%, Mn: 0.89%, Mo: 4.01%, Nb: 2.46%, Si: 0.12%, Ta ⁇ 0.1%, Ti:0.18%, C:0.03%, N:0.0061%, Cu ⁇ 0.10%, Co ⁇ 0.10%, O ⁇ 0.005%, P ⁇ 0.002%, S ⁇ 0.002%, B ⁇ 0.001%, Zr ⁇ 0.002%.
  • the conversion coefficient of the chemical composition when calculating the volume percentage of Laves phase is: Cr:0.97, the calculated value of the element without indicating the measurement result is 0, and the Laves phase is 1.55%>1.0%.
  • the result of the crack resistance test was poor.

Abstract

一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法、核电用镍基合金焊丝及焊接裂纹检测方法,通过控制显微组织Laves相的体积百分比来防止结晶裂纹。

Description

一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法、核电用镍基合金焊丝及焊接裂纹检测方法
本申请要求于2021年06月16日提交中国专利局、申请号为CN202110696313.5、发明名称为“一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法、核电用镍基合金焊丝”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及焊接材料技术领域,具体涉及一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法、核电用镍基合金焊丝及焊接裂纹检测方法。
背景技术
镍基合金裂纹敏感性高,容易产生焊接裂纹,特别是高温失塑裂纹和结晶裂纹。防止裂纹一直是三代核电装备制造用镍基合金焊接材料研制的重点,也是技术难点。三代核电装备制造用镍基合金焊接材料主要是690合金焊接材料,其高温失塑裂纹敏感性较高。高温失塑裂纹是尺寸较小的内部缺陷,现行无损检测技术难以发现,给核电装备的制造质量和安全运行带来了隐患。国内外核电装备在制造、运行阶段曾多次发现过690合金高温失塑裂纹,对核电主设备的质量和安全运行产生了重大影响,在工程中防止690镍基合金高温失塑裂纹至今仍是核电行业关注的重点。
核电工程最先使用的690合金焊丝为ASME SFA-5.14ERNiCrFe-7焊丝,其化学成分(质量含量)为:C≤0.04%,Mn≤1.0%,Fe:7.0-11.0%,P≤0.02%,S≤0.015%,Si≤0.50%,Cu≤0.30%,Al≤1.1%,Ti≤1.0%,Cr:28.0-31.5%,Nb+Ta≤0.10%,Mo≤0.50%,Al+Ti≤1.5%,其它≤0.50%。因其具有较高的高温失塑裂纹敏感性,目前的应用数量很小。
ASME SFA-5.14ERNiCrFe-7A焊丝是目前国内外核电装备制造大规模应用的唯一690合金焊丝,其化学成分(质量含量)为:C≤0.04%,Mn≤1.0%,Fe:7.0-11.0%,P≤0.02%,S≤0.015%,Si≤0.50%,Cu≤0.30%, Co≤0.12%,Al≤1.1%,Ti≤1.0%,Cr:28.0-31.5%,Nb+Ta:0.5-1.0%,Mo≤0.50%,Al+Ti≤1.5%,B≤0.005%,Zr≤0.02%,其它≤0.50%。与ERNiCrFe-7焊丝相比,ERNiCrFe-7A焊丝主要有两个特点,其一,通过添加一定数量的Nb,增加了晶界析出物的数量,提高了抗高温失塑裂纹能力;其二,添加一定数量的B、Zr改善晶界强度,提高抗高温失塑裂纹能力。
三代核电装备对镍基合金焊接技术提出了更高的要求,其特点是核电主设备的结构厚度增大,焊接接头拘束增加,产生焊接裂纹的几率提高。在有些条件下,ERNiCrFe-7A焊丝存在抗高温失塑裂纹能力不足的问题,增加了装备制造的难度和质量稳定性。
作为防止高温失塑裂纹的现有技术,中国专利CN101144130A提出了一种堆焊件和对应的焊接材料,堆焊焊缝化学成分(质量含量)为:Cr:28.5-31.0%,Fe:7.0-10.5%,Mn<1.0%,Nb+Ta:2.1-4.0%,Mo:3.0-5.0%,Si<0.50%,Ti:0.01-0.35%,Al≤0.25%,Cu<0.20%,W<1.0%,Co<0.12%,Zr<0.10%,S<0.01%,B<0.01%,C<0.03%,P<0.02%,Mg+Ca:0.002-0.015%,余量Ni和附带的杂质。这项专利解决了ERNiCrFe-7A焊丝“在不利的焊缝形状和非常高的热输入下,发现的偶见高温失塑裂纹”问题。这项专利通过大幅提高Nb+Ta含量,添加较多数量的Mo,提高晶界强度、增加析出物数量,形成弯曲晶界,进一步改善了焊缝抗高温失塑裂纹的能力。专利提供的STF试验结果说明了实施例对防止高温失塑裂纹的有效性。但是,STF试验只是高温失塑裂纹敏感性试验,其结果不能用于评价结晶裂纹敏感性,且该专利也没有说明实施例的结晶裂纹敏感性大小。事实上,由于这项专利提高了Laves相形成元素的含量,增加了结晶裂纹敏感性,在核电装备焊接的条件下可能产生结晶裂纹,没有真正解决核电工程用镍基合金焊接裂纹(结晶裂纹)问题。
为了满足我国核电装备自主创新的发展需求,需要研制不仅能够防止高温失塑裂纹,也能够防止结晶裂纹的核电用镍基合金焊丝。
发明内容
本发明的目的在于提供一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法、核电用镍基合金焊丝及焊接裂纹检测方法,采用本发明提供的设计方法能够同时防止结晶裂纹和抗高温失塑裂纹,解决三代核电主设备镍基合金焊接裂纹问题。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法,包括以下步骤:
(1)按照Laves相体积百分比≤1.0%的原则,确定焊丝的化学成分设计值;
(2)按照所述焊丝的化学成分设计值制备铸锭,得到所述铸锭的化学成分;
(3)根据所述铸锭的化学成分,采用软件计算得到铸锭的Laves相体积百分比;
(4)若所述铸锭的Laves相体积百分比≤1.0%,则以所述铸锭的化学成分为核电用镍基合金焊丝的化学成分。
优选地,所述Laves相化学式为A 2B,其中A包括Ni、Fe、Cr和Co中的一种或几种,B包括Nb、Ti、Si、Mo和Ta中的一种或多种。
优选地,步骤(3)所述软件为JMatPro软件。
优选地,所述Laves相体积百分比的计算方法包括:采用所述JMatPro软件计算凝固过程中纤维组织的种类、数量和演变过程;计算参数包括:起始温度1900℃,计算步长2℃,冷却速度200℃/s;将冷却至1000℃时的Laves相体积百分数作为计算结果。
优选地,若所述铸锭的Laves相体积百分比>1.0%,则调整步骤(1)焊丝的化学成分设计值,重复进行步骤(2)~(3),直到铸锭的Laves相体积百分比≤1.0%。
优选地,所述Laves相体积百分比为0~0.03%。
本发明提供了采用上述技术方案所述的成分设计方法得到的核电用镍基合金焊丝,以质量百分含量计,化学成分包括:C:0.015~0.035%、Si≤0.30%、Mn:0.20~1.00%、Cr:29.0~31.5%、Fe:8~12%、Ta:1.5~4.0%、 Nb≤1.4%、Ti≤0.5%、Al≤0.5%、Mo:3.0~5.0%和余量的Ni。
优选地,以质量百分含量计,化学成分包括:C:0.025~0.033%、Si:0.08~0.12%、Mn:0.78~0.82%、Cr:29.89~31.33%、Fe:8.12~11.53%、Ta:1.60~3.51%、Nb≤0.98%、Ti:0.18~0.19%、Al:0.19~0.32%、Mo:3.40~3.60%和余量的Ni。
优选地,以质量百分含量计,化学成分还包括:Cu≤0.1%、Co≤0.10%、S≤0.0020%、P≤0.0020%、B≤0.001%、Zr≤0.002%。
优选地,以质量百分含量计,化学成分还包括:N:0.006~0.012%、O<0.005%。
优选地,所述核电用镍基合金焊丝的直径为1.2mm。
本发明还提供了上述技术方案所述核电用镍基合金焊丝的焊接裂纹检测方法,包括以下步骤:
将核电用镍基合金焊丝在试验用母材上堆焊焊缝,堆焊完成后,采用线切割的方法从堆焊焊缝切取试样;
采用磨床对所述试样进行磨削加工,磨削方向与焊接方向垂直;磨削加工后,对试样表面进行着色探伤,标记着色探伤的显示;然后在金相显微镜下观察探伤显示,确定是否是焊接裂纹;
单个裂纹长度≤1mm,且数量≤3个,抗裂性能为好;裂纹数量≤10个,抗裂性能为一般;裂纹数量>10个,抗裂性能为差。
优选地,所述试验用母材为低碳钢或低合金钢。
优选地,所述堆焊的工艺参数包括:焊接电流220A,电弧电压12~14V,焊接速度170mm/min,送丝速度1200mm/min,道间温度≤100℃,保护气体为99.99%体积分数的Ar,保护气体的流量为14~18L/min。
本发明提供了一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法,包括以下步骤:(1)按照Laves相体积百分比≤1.0%的原则,确定焊丝的化学成分设计值;(2)按照所述焊丝的化学成分设计值制备铸锭,得到所述铸锭的化学成分;(3)根据所述铸锭的化学成分,采用软件计算得到铸锭的Laves相体积百分比;(4)若所述铸锭的Laves相体积百分比≤1.0%,则以所述铸锭的化学成分为核电用镍基合金焊丝的化 学成分。本发明通过控制显微组织Laves相的体积百分比防止结晶裂纹,比通过控制化学成分防止结晶裂纹更直接、更有效;本发明将焊丝的数值模拟技术与抗裂性试验结果相结合,发现了影响结晶裂纹的重要因素,提出了防止结晶裂纹的判据,在焊丝成分设计时,使用该判据能够预测得到焊丝成分设计点及波动范围内的抗裂性结果,提高成品率;本发明可以依据铸锭(焊丝制造的首个工序)的化学成分分析结果,计算Laves相数量,预判焊丝的抗裂性。现有技术必须先完成焊丝的制造,再通过相关试验得到抗裂性结果,才能确定抗裂性。本发明与现有技术相比,不仅大大缩短了决策时间,还大幅缩短供货周期、降低焊丝成本,显著提高效益。
本发明还提供了采用上述技术方案所述的成分设计方法得到的核电用镍基合金焊丝,本发明通过合理匹配Nb、Ta、Mo、Cr、Fe、Ti等元素的含量,将Laves相的数量控制在适当的范围,防止结晶裂纹;同时,关注上述元素对高温失塑裂纹的影响,保持足够的抗高温失塑裂纹能力,达到防止690合金焊接裂纹(包括结晶裂纹和高温失塑裂纹)的目的,解决三代核电主设备镍基合金焊接裂纹问题。
说明书附图
图1为实施例1堆焊焊缝切取试样的横向试样着色探伤结果图;
图2为实施例1堆焊焊缝切取试样的纵向试样着色探伤结果图;
图3为对比例1堆焊焊缝切取试样的横向试样着色探伤结果图;
图4为对比例1堆焊焊缝切取试样的纵向试样着色探伤结果图。
具体实施方式
本发明提供了一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法,包括以下步骤:
(1)按照Laves相体积百分比≤1.0%的原则,确定焊丝的化学成分设计值;
(2)按照所述焊丝的化学成分设计值制备铸锭,得到所述铸锭的化学成分;
(3)根据所述铸锭的化学成分,采用软件计算得到铸锭的Laves相体积百分比;
(4)若所述铸锭的Laves相体积百分比≤1.0%,则以所述铸锭的化学成分为核电用镍基合金焊丝的化学成分。
本发明按照Laves相体积百分比≤1.0%的原则,确定焊丝的化学成分设计值。在本发明中,所述Laves相体积百分比优选为0~0.03%。在本发明中,Laves相是一种金属间化合物,具有六方晶体结构,化学式为A 2B,其中A包括Ni、Fe、Cr和Co中的一种或几种,B包括Nb、Ti、Si、Mo和Ta中的一种或多种。上述化学元素大多是核电用镍基合金焊丝的组成元素,有些还是防止高温失塑裂纹的有效元素,如果匹配不合适,容易因Laves相含量过多引发结晶裂纹。
确定焊丝的化学成分设计值后,本发明按照所述焊丝的化学成分设计值制备铸锭,得到所述铸锭的化学成分。本发明对所述铸锭的具体制备方法没有特殊要求,采用本领域技术人员所熟知的焊丝制造过程中的铸锭制备工艺即可。
得到所述铸锭的化学成分后,本发明根据所述铸锭的化学成分,采用软件计算得到铸锭的Laves相体积百分比。在本发明中,所述软件优选为JMatPro软件。在本发明的具体实施例中,Laves相体积百分比的计算方法包括:采用Sente Software公司的JMatPro软件11.2版计算凝固过程中显微组织的种类、数量和演变过程;计算参数包括:起始温度1900℃,计算步长2℃,冷却速度200℃/s;将冷却至1000℃时的Laves相体积百分数作为本发明的计算结果。
得到铸锭的Laves相体积百分比后,若所述铸锭的Laves相体积百分比≤1.0%,则以所述铸锭的化学成分为核电用镍基合金焊丝的化学成分。在本发明中,若所述铸锭的Laves相体积百分比>1.0%,则优选调整步骤(1)焊丝的化学成分设计值,重复进行步骤(2)~(3),直到铸锭的Laves相体积百分比≤1.0%。
本发明还提供了采用上述技术方案所述的成分设计方法得到的核电用镍基合金焊丝,以质量百分含量计,化学成分包括:C:0.015~0.035%、 Si≤0.30%、Mn:0.20~1.00%、Cr:29.0~31.5%、Fe:8~12%、Ta:1.5~4.0%、Nb≤1.4%、Ti≤0.5%、Al≤0.5%、Mo:3.0~5.0%和余量的Ni。
以质量百分含量计,本发明提供的核电用镍基合金焊丝包括C:0.015~0.035%,优选为0.025~0.033%。在本发明中,C是碳化物形成元素,对防止高温失塑裂纹有益。本发明将C的含量控制在上述范围,能够避免C含量过高,在晶界可能形成过量的M 23C 6型碳化物,导致晶界贫Cr,降低焊缝抗腐蚀能力。
以质量百分含量计,本发明提供的核电用镍基合金焊丝包括Si≤0.30%,优选为0.08~0.12%。在本发明中,Si在镍基合金焊缝中能够与Ni形成低熔点共晶,同时促进产生Laves相,容易引发结晶裂纹,含量过高,还会降低焊缝力学性能。
以质量百分含量计,本发明提供的核电用镍基合金焊丝包括Mn:0.20~1.00%,优选为0.78~0.82%。在本发明中,Mn能够优先与S结合,形成熔点较高的MnS,降低S的有害作用;还可以提高固液相表面能,对低熔点共晶液膜的形成有阻碍作用,改善焊缝抗热裂纹能力;Mn是Laves相促进元素,可以增加焊缝Laves相数量,增加结晶裂纹敏感性。
以质量百分含量计,本发明提供的核电用镍基合金焊丝包括Cr:29.0~31.5%,优选为29.89~31.33%。在本发明中,Cr是核电用Ni-Cr-Fe合金的基体元素,不仅起固溶强化作用,而且是提高耐腐蚀能力的主要元素;Cr也是Laves相形成元素,直接影响Laves相数量。
以质量百分含量计,本发明提供的核电用镍基合金焊丝包括Fe:8~12%,优选为8.12~11.53%。在本发明中,Fe是核电用Ni-Cr-Fe合金的基体元素,可以通过固溶强化提高焊缝强度;Fe也是Laves相形成元素,直接影响Laves相数量。
以质量百分含量计,本发明提供的核电用镍基合金焊丝包括Ta:1.5~4.0%,优选为1.60~3.51%。Ta的价格很高,是强碳化物形成元素,可以提高晶界强度,是本发明防止高温失塑裂纹的主要元素;也是Laves相形成元素,含量过低,容易引发高温失塑裂纹;含量过高,焊丝成本过高。
以质量百分含量计,本发明提供的核电用镍基合金焊丝包括Nb≤1.4%,优选为≤0.98%,更优选为<0.1%。在本发明中,Nb是强Laves相形成元素,直接影响Laves相的数量;还是碳化物、氮化物形成元素,可以提高晶界强度。由于Nb对Laves相数量影响较大,本发明中Nb的含量要适当限制,其主要作用是配合Ta,增加抗高温失塑能力。
以质量百分含量计,本发明提供的核电用镍基合金焊丝包括Ti≤0.5%,优选为0.18~0.19%。在本发明中,Ti是碳化物、氮化物形成元素,可以提高晶界强度,防止高温失塑裂纹;还是强脱氧元素,可以净化焊缝。
以质量百分含量计,本发明提供的核电用镍基合金焊丝包括Al≤0.50%,优选为0.19~0.32%。在本发明中,Al是强脱氧元素,可以净化熔池,提高焊缝性能;含量过高,焊道表面浮渣较多,降低焊接操作性能。
以质量百分含量计,本发明提供的核电用镍基合金焊丝包括Mo:3.0~5.0%,优选为3.40~3.60%。在本发明中,Mo是镍基合金固溶强化元素,可以有效增加高温强度和耐腐蚀能力,但也会促进Laves相和脆性相的形成。
以质量百分含量计,本发明提供的核电用镍基合金焊丝优选还包括Cu≤0.1%、Co≤0.10%、S≤0.0020%、P≤0.0020%、B≤0.001%、Zr≤0.002%。在本发明中,Cu在焊接过程中容易形成第二相,提高焊缝热裂纹倾向,含量控制在Cu≤0.1%;Co是杂质元素,在辐照环境下工作应严格控制,含量控制在Co≤0.10%;S、P是不可避免的有害元素,增加结晶裂纹敏感性,含量控制在S≤0.0020%,P≤0.0020%;B、Zr易在晶界偏聚,引发结晶裂纹,含量控制在B≤0.001%,Zr≤0.002%。
以质量百分含量计,本发明提供的核电用镍基合金焊丝优选还包括N:0.006~0.012%、O<0.005%。
以质量百分含量计,本发明提供的核电用镍基合金焊丝包括余量的Ni。
在本发明中,所述核电用镍基合金焊丝的直径优选为1.2mm。
本发明对所述核电用镍基合金焊丝的制备方法没有特殊要求,采用本领域技术人员所熟知的核电用镍基合金焊丝的制备方法即可,具体包括:采用真空冶炼+电渣重熔或真空冶炼+电渣重熔+真空自耗制备得到合金坯;将所述合金坯依次进行锻造、轧制、多道次冷拉、在线退火和清洗。本发明对所述制备过程中的具体工艺参数没有特殊要求,只要焊丝最终的化学成分满足上述技术方案所述核电用镍基合金焊丝的要求即可。
本发明还提供了上述技术方案所述核电用镍基合金焊丝的焊接裂纹检测方法,优选包括以下步骤:
将核电用镍基合金焊丝在试验用母材上堆焊焊缝,堆焊完成后,采用线切割的方法从堆焊焊缝切取试样;
采用磨床对所述试样进行磨削加工,磨削方向与焊接方向垂直;磨削加工后,对试样表面进行着色探伤,标记着色探伤的显示;然后在金相显微镜下观察探伤显示,确定是否是焊接裂纹;
单个裂纹长度≤1mm,且数量≤3个,抗裂性能为好;裂纹数量≤10个,抗裂性能为一般;裂纹数量>10个,抗裂性能为差。
在本发明中,所述试验用母材优选为低碳钢或低合金钢;所述试验用母材的尺寸优选为400mm×300mm×60mm。
在本发明中,所述焊缝的尺寸优选为300mm×200mm×40mm。
在本发明中,所述堆焊的工艺参数包括:焊接电流220A,电弧电压12~14V,焊接速度170mm/min,送丝速度1200mm/min,道间温度≤100℃,保护气体为99.99%体积分数的Ar,保护气体的流量为14~18L/min。
在本发明中,从堆焊焊缝切取的试样的厚度优选为4mm;优选分别沿横、纵切取3个试样。
本发明进行磨削加工时,磨削方向与焊接方向垂直,有利于裂纹显示。
在本发明中,必要时,可将着色探伤的缺陷打开,通过断口形貌确定裂纹性质。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下实施例和对比例中,Laves相体积百分比的计算方法:
采用Sente Software公司的JMatPro软件11.2版计算凝固过程中显微组织的种类、数量和演变过程;计算参数为:起始温度1900℃,计算步长2℃,冷却速度200℃/s;将冷却至1000℃时的Laves相体积百分数作为本发明的计算结果。
以下实施例和对比例中,核电用镍基合金焊丝的焊接裂纹检测方法:
(1)按照实施例和对比例的化学成分,采用现有技术制成直径1.2mm的核电用镍基合金焊丝;
(2)将所述核电用镍基合金焊丝在试验用母材上堆焊焊缝,堆焊完成后,采用线切割的方法从堆焊焊缝切取试样;所述试验用母材为低碳钢;所述试验用母材的尺寸为400mm×300mm×60mm;焊缝尺寸为300mm×200mm×40mm,焊接工艺参数为:焊接电流220A,电弧电压12~14V,焊接速度170mm/min,送丝速度1200mm/min,道间温度≤100℃,保护气体为99.99%Ar,流量14~18L/min;试样厚度4mm,分别沿横、纵切取3个试样;
(3)采用磨床对所述试样进行磨削加工,磨削方向与焊接方向垂直;磨削加工后,对试样表面进行着色探伤,标记着色探伤的显示;然后在金相显微镜下观察探伤显示,确定是否是焊接裂纹;
单个裂纹长度≤1mm,且数量≤3个,抗裂性能为好;裂纹数量≤10个,抗裂性能为一般;裂纹数量>10个,抗裂性能为差。
实施例1
以质量百分含量计,核电用镍基合金焊丝的化学成分为:Al:0.32%,Cr:31.33%,Fe:11.53%,Mn:0.82%,Mo:3.60%,Nb<0.1%,Si:0.12%,Ta:3.51%,Ti:0.19%,C:0.033%,N:0.012%,Cu<0.10%,Co<0.10%,O<0.005%,P<0.002%,S<0.002%,B<0.001%,Zr<0.002%。
进行Laves相体积百分比计算时化学成分的折算系数为:Cr:0.97,未标明测量结果的元素计算值取0,Laves相为0。抗裂性试验结果为好。
本实施例堆焊焊缝切取试样的横向试样着色探伤结果如图1所示,纵 向试样着色探伤结果如图2所示。由图1~2可以看出,焊接无裂纹。
实施例2
以质量百分含量计,核电用镍基合金焊丝的化学成分为:Al:0.19%,Cr:29.89%,Fe:8.12%,Mn:0.78%,Mo:3.40%,Nb:0.98%,Si:0.08%,Ta:1.60%,Ti:0.18%,C:0.025%,N:0.006%,Cu<0.10%,Co<0.10%,O<0.005%,P<0.002%,S<0.002%,B<0.001%,Zr<0.002%。
进行Laves相体积百分比计算时化学成分的折算系数为:Cr:0.97,未标明测量结果的元素计算值取0,Laves相为0.03%。抗裂性试验结果为好。
对比例1
以质量百分含量计,核电用镍基合金焊丝的化学成分为:Al:0.32%,Cr:31.11%,Fe:10.84%,Mn:0.87%,Mo:3.49%,Nb:2.00%,Si:0.09%,Ta:1.46%,Ti:0.19%,C:0.028%,N:0.016%,Cu<0.10%,Co<0.10%,O<0.005%,P<0.002%,S<0.002%,B<0.001%,Zr<0.002%。
进行Laves相体积百分比计算时化学成分的折算系数为:Cr:0.97,未标明测量结果的元素计算值取0,Laves相为1.94%>1.0%。抗裂性试验结果为差。
本对比例堆焊焊缝切取试样的横向试样着色探伤结果如图3所示,纵向试样着色探伤结果如图4所示。图3~4中箭头指的位置为裂纹,由图3~4可以看出,焊接有裂纹。
对比例2
以质量百分含量计,核电用镍基合金焊丝的化学成分为:Al:0.19%,Cr:29.89%,Fe:8.12%,Mn:0.89%,Mo:4.01%,Nb:2.46%,Si:0.12%,Ta<0.1%,Ti:0.18%,C:0.03%,N:0.0061%,Cu<0.10%,Co<0.10%,O<0.005%,P<0.002%,S<0.002%,B<0.001%,Zr<0.002%。
进行Laves相体积百分比计算时化学成分的折算系数为:Cr:0.97,未标明测量结果的元素计算值取0,Laves相为1.55%>1.0%。抗裂性试验结果为差。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应 当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法,包括以下步骤:
    (1)按照Laves相体积百分比≤1.0%的原则,确定焊丝的化学成分设计值;
    (2)按照所述焊丝的化学成分设计值制备铸锭,得到所述铸锭的化学成分;
    (3)根据所述铸锭的化学成分,采用软件计算得到铸锭的Laves相体积百分比;
    (4)若所述铸锭的Laves相体积百分比≤1.0%,则以所述铸锭的化学成分为核电用镍基合金焊丝的化学成分。
  2. 根据权利要求1所述的成分设计方法,其特征在于,所述Laves相化学式为A 2B,其中A包括Ni、Fe、Cr和Co中的一种或几种,B包括Nb、Ti、Si、Mo和Ta中的一种或多种。
  3. 根据权利要求1所述的成分设计方法,其特征在于,步骤(3)所述软件为JMatPro软件。
  4. 根据权利要求3所述的成分设计方法,其特征在于,所述Laves相体积百分比的计算方法包括:采用所述JMatPro软件计算凝固过程中纤维组织的种类、数量和演变过程;计算参数包括:起始温度1900℃,计算步长2℃,冷却速度200℃/s;将冷却至1000℃时的Laves相体积百分数作为计算结果。
  5. 根据权利要求1所述的成分设计方法,其特征在于,若所述铸锭的Laves相体积百分比>1.0%,则调整步骤(1)焊丝的化学成分设计值,重复进行步骤(2)~(3),直到铸锭的Laves相体积百分比≤1.0%。
  6. 根据权利要求1~5任一项所述的成分设计方法,其特征在于,所述Laves相体积百分比为0~0.03%。
  7. 采用权利要求1~6任一项所述的成分设计方法得到的核电用镍基合金焊丝,以质量百分含量计,化学成分包括:C:0.015~0.035%、Si≤0.30%、 Mn:0.20~1.00%、Cr:29.0~31.5%、Fe:8~12%、Ta:1.5~4.0%、Nb≤1.4%、Ti≤0.5%、Al≤0.5%、Mo:3.0~5.0%和余量的Ni。
  8. 根据权利要求7所述的核电用镍基合金焊丝,其特征在于,以质量百分含量计,化学成分包括:C:0.025~0.033%、Si:0.08~0.12%、Mn:0.78~0.82%、Cr:29.89~31.33%、Fe:8.12~11.53%、Ta:1.60~3.51%、Nb≤0.98%、Ti:0.18~0.19%、Al:0.19~0.32%、Mo:3.40~3.60%和余量的Ni。
  9. 根据权利要求7或8所述的核电用镍基合金焊丝,其特征在于,以质量百分含量计,化学成分还包括:Cu≤0.1%、Co≤0.10%、S≤0.0020%、P≤0.0020%、B≤0.001%、Zr≤0.002%。
  10. 根据权利要求7或8所述的核电用镍基合金焊丝,其特征在于,以质量百分含量计,化学成分还包括:N:0.006~0.012%、O<0.005%。
  11. 根据权利要求7所述的核电用镍基合金焊丝,其特征在于,所述核电用镍基合金焊丝的直径为1.2mm。
  12. 核电用镍基合金焊丝的焊接裂纹检测方法,包括以下步骤:
    将核电用镍基合金焊丝在试验用母材上堆焊焊缝,堆焊完成后,采用线切割的方法从堆焊焊缝切取试样;
    采用磨床对所述试样进行磨削加工,磨削方向与焊接方向垂直;磨削加工后,对试样表面进行着色探伤,标记着色探伤的显示;然后在金相显微镜下观察探伤显示,确定是否是焊接裂纹;
    单个裂纹长度≤1mm,且数量≤3个,抗裂性能为好;裂纹数量≤10个,抗裂性能为一般;裂纹数量>10个,抗裂性能为差。
  13. 根据权利要求12所述的焊接裂纹检测方法,其特征在于,所述试验用母材为低碳钢或低合金钢。
  14. 根据权利要求12所述的焊接裂纹检测方法,其特征在于,所述堆焊的工艺参数包括:焊接电流220A,电弧电压12~14V,焊接速度170mm/min,送丝速度1200mm/min,道间温度≤100℃,保护气体为99.99%体积分数的Ar,保护气体的流量为14~18L/min。
PCT/CN2021/131238 2021-06-16 2021-11-17 一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法、核电用镍基合金焊丝及焊接裂纹检测方法 WO2022262188A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE2250949A SE2250949A1 (en) 2021-06-16 2021-11-17 Method for designing composition of nickel-based alloy welding wire for nuclear power capable of preventing weld cracking and nickel-based alloy welding wire for nuclear power

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110696313.5 2021-06-16
CN202110696313.5A CN113319468B (zh) 2021-06-16 2021-06-16 一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法、核电用镍基合金焊丝

Publications (1)

Publication Number Publication Date
WO2022262188A1 true WO2022262188A1 (zh) 2022-12-22

Family

ID=77424485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131238 WO2022262188A1 (zh) 2021-06-16 2021-11-17 一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法、核电用镍基合金焊丝及焊接裂纹检测方法

Country Status (3)

Country Link
CN (1) CN113319468B (zh)
SE (1) SE2250949A1 (zh)
WO (1) WO2022262188A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113319468B (zh) * 2021-06-16 2023-04-14 哈尔滨焊接研究院有限公司 一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法、核电用镍基合金焊丝

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744531A (zh) * 2012-07-31 2012-10-24 宝山钢铁股份有限公司 一种镍基合金焊丝
US20140305921A1 (en) * 2011-02-01 2014-10-16 Nippon Welding Rod Co., Ltd. HIGH Cr Ni-BASED ALLOY WELDING WIRE, SHIELDED METAL ARC WELDING ROD, AND WELD METAL FORMED BY SHIELDED METAL ARC WELDING
CN104331549A (zh) * 2014-10-27 2015-02-04 扬州大学 基于Jmatpro材料性能计算的奥贝球铁合金成分的优化设计方法
CN105215572A (zh) * 2015-09-22 2016-01-06 机械科学研究院哈尔滨焊接研究所 一种核岛主设备用抗裂纹缺陷镍基焊丝及制备方法
CN105397331A (zh) * 2015-09-22 2016-03-16 机械科学研究院哈尔滨焊接研究所 一种高Mn高Nb的抗裂纹缺陷镍基焊丝及焊接方法
CN110560961A (zh) * 2019-10-12 2019-12-13 哈尔滨威尔焊接有限责任公司 一种核电设备用Ta&Nb复合型镍基焊丝及焊接方法
CN111681716A (zh) * 2020-06-19 2020-09-18 国电锅炉压力容器检验有限公司 一种617镍基高温合金的成分优化设计方法
CN113319468A (zh) * 2021-06-16 2021-08-31 哈尔滨焊接研究院有限公司 一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法、核电用镍基合金焊丝

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2059620B1 (en) * 2006-08-08 2013-01-16 Huntington Alloys Corporation Welding alloy and articles for use in welding, weldments and method for producing weldments
CN101716706B (zh) * 2009-08-06 2011-01-26 江苏立新合金实业总公司 一种高强度合金实芯焊丝
JP5441870B2 (ja) * 2010-11-12 2014-03-12 株式会社神戸製鋼所 溶接用Ni基合金ソリッドワイヤ
CN103484649A (zh) * 2013-09-18 2014-01-01 太原钢铁(集团)有限公司 一种gh4700合金铸锭均匀化处理方法
CN105543747B (zh) * 2015-12-21 2017-11-21 西北工业大学 一种保留有Laves相的增材制造镍基高温合金的制备方法
US10072504B2 (en) * 2015-12-22 2018-09-11 General Electric Company Alloy, welded article and welding process
CN107460374A (zh) * 2016-06-03 2017-12-12 株式会社日本制钢所 高强度Ni基高温合金
JP6796962B2 (ja) * 2016-07-13 2020-12-09 株式会社神戸製鋼所 サブマージアーク溶接方法
CN106222457B (zh) * 2016-08-15 2018-09-28 李宏亮 一种高温合金的制备方法
US20180057920A1 (en) * 2016-08-31 2018-03-01 General Electric Company Grain refinement in in706 using laves phase precipitation
CN107843706A (zh) * 2016-09-20 2018-03-27 中国科学院金属研究所 基于布氏硬度组织和析出相特征综合的火电发电厂用t/p92耐热钢老化评级方法
KR102020513B1 (ko) * 2017-12-11 2019-09-10 주식회사 포스코 고온 내산화성이 우수한 페라이트계 스테인리스강 및 그 제조방법
TWI657147B (zh) * 2017-12-20 2019-04-21 國家中山科學研究院 一種高應力鎳基合金
US20190226065A1 (en) * 2018-01-25 2019-07-25 Ut-Battelle, Llc Low-cost cast creep-resistant austenitic stainless steels that form alumina for high temperature oxidation resistance
CN108436083A (zh) * 2018-04-19 2018-08-24 南昌航空大学 一种激光增材制造镍基高温合金脆性相的控制方法及装置
CN108723637B (zh) * 2018-06-20 2020-12-08 华能国际电力股份有限公司 一种700℃超超临界电站锅炉用镍铁基焊丝
CN109967742A (zh) * 2019-04-30 2019-07-05 西北工业大学 一种镍基高温合金及其制备方法
GB2584654B (en) * 2019-06-07 2022-10-12 Alloyed Ltd A nickel-based alloy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140305921A1 (en) * 2011-02-01 2014-10-16 Nippon Welding Rod Co., Ltd. HIGH Cr Ni-BASED ALLOY WELDING WIRE, SHIELDED METAL ARC WELDING ROD, AND WELD METAL FORMED BY SHIELDED METAL ARC WELDING
CN102744531A (zh) * 2012-07-31 2012-10-24 宝山钢铁股份有限公司 一种镍基合金焊丝
CN104331549A (zh) * 2014-10-27 2015-02-04 扬州大学 基于Jmatpro材料性能计算的奥贝球铁合金成分的优化设计方法
CN105215572A (zh) * 2015-09-22 2016-01-06 机械科学研究院哈尔滨焊接研究所 一种核岛主设备用抗裂纹缺陷镍基焊丝及制备方法
CN105397331A (zh) * 2015-09-22 2016-03-16 机械科学研究院哈尔滨焊接研究所 一种高Mn高Nb的抗裂纹缺陷镍基焊丝及焊接方法
CN110560961A (zh) * 2019-10-12 2019-12-13 哈尔滨威尔焊接有限责任公司 一种核电设备用Ta&Nb复合型镍基焊丝及焊接方法
CN111681716A (zh) * 2020-06-19 2020-09-18 国电锅炉压力容器检验有限公司 一种617镍基高温合金的成分优化设计方法
CN113319468A (zh) * 2021-06-16 2021-08-31 哈尔滨焊接研究院有限公司 一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法、核电用镍基合金焊丝

Also Published As

Publication number Publication date
CN113319468B (zh) 2023-04-14
CN113319468A (zh) 2021-08-31
SE2250949A1 (en) 2022-08-05

Similar Documents

Publication Publication Date Title
US8187725B2 (en) Welding alloy and articles for use in welding, weldments and method for producing weldments
JP5212533B2 (ja) 継目無オーステナイト系耐熱合金管
KR20190117605A (ko) Ni기 내열 합금 및 그 제조 방법
WO2016204005A1 (ja) 高Cr系オーステナイトステンレス鋼
CN105081620B (zh) 一种适用于全位置焊接的镍基625药芯焊丝
JP5820341B2 (ja) 溶接熱影響部の靭性に優れた鋼材
JP2012036444A (ja) ブラックスポットの生成の少ないフェライト系ステンレス鋼
KR20160118980A (ko) Ni기 내열합금 용접 조인트의 제조 방법 및 그것을 이용하여 얻어지는 용접 조인트
JPH028840B2 (zh)
CN111826583B (zh) 一种高耐蚀硼不锈钢材料及制备方法和应用
WO2022262188A1 (zh) 一种防止焊接裂纹的核电用镍基合金焊丝的成分设计方法、核电用镍基合金焊丝及焊接裂纹检测方法
JP6978614B2 (ja) ガスメタルアーク溶接用ソリッドワイヤおよびガスメタルアーク溶接方法
CN101486134A (zh) 一种gh4169高温合金管材专用焊材
CN112453754A (zh) 用于k418b高温合金导向器铸造缺陷的焊料及补焊方法
JP2831051B2 (ja) オーステナイト系ステンレス鋼溶接用ワイヤ
CN113319467B (zh) 一种核电用镍基合金焊带
US3574605A (en) Weldable,nonmagnetic austenitic manganese steel
CN111151920A (zh) 一种3425lc焊带及其生产工艺
JP4357080B2 (ja) 凝固結晶粒微細化鋼及び凝固結晶粒微細化オーステナイト系ステンレス鋼並びにそれらの溶接継ぎ手
JP2002146481A (ja) 電縫溶接性に優れた酸化物分散強化型フェライト系電縫ボイラ用鋼および鋼管
JP3837083B2 (ja) 溶接熱影響部靭性の優れた1パス大入熱溶接方法
JPH06271989A (ja) 核融合炉用フェライト系耐熱鋼及びその製造方法
JPS61180693A (ja) 高延性オ−ステナイトステンレス鋼の溶接方法
CN117226339A (zh) 一种高温气冷堆核电设备用镍合金焊丝及其制备方法
Hosseini et al. The Effect of Boron and Zirconium on Microstructure and Stress-Rupture Life of Nickel-based Superalloy ATI 718Plus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE