WO2022259706A1 - 接触検知装置 - Google Patents

接触検知装置 Download PDF

Info

Publication number
WO2022259706A1
WO2022259706A1 PCT/JP2022/014313 JP2022014313W WO2022259706A1 WO 2022259706 A1 WO2022259706 A1 WO 2022259706A1 JP 2022014313 W JP2022014313 W JP 2022014313W WO 2022259706 A1 WO2022259706 A1 WO 2022259706A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
detection device
contact detection
driven member
rotation angle
Prior art date
Application number
PCT/JP2022/014313
Other languages
English (en)
French (fr)
Inventor
孝行 東
麻美 大塚
Original Assignee
東京計器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京計器株式会社 filed Critical 東京計器株式会社
Publication of WO2022259706A1 publication Critical patent/WO2022259706A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices

Definitions

  • the present invention relates to technology for detecting contact.
  • a contact sensor detects contact by detecting physical displacement caused by contact with an object in the driven member.
  • a torque sensor detects contact by detecting an increase in torque in the motor.
  • Current sensing detects contact by detecting an increase in current in the motor.
  • a mutually independent first detection means for detecting contact between the robot and the outside, and a first detection means
  • the first detection means is a first system consisting of three torque sensors provided on the first, second and third axes of the multi-joint
  • the second detection means is a second system with a 3-DOF force torque sensor provided in the installation part of the base, and the robot is safely controlled by the detection signals obtained from the first detection means and the second detection means.
  • An object of the embodiments of the present invention is to provide a contact detection device that detects contact between a driven member and an object at a lower cost.
  • the contact detection device provides a contact sensor that detects contact with an object by a driven member that is rotatably or swingably provided by a rotary drive unit that generates a rotational force.
  • a detection device comprising: a drive control unit that rotationally drives the rotary drive unit with a predetermined torque; a drive monitoring unit that periodically acquires the rotation angle of the rotary drive unit measured by a rotation sensor; a contact determination unit that determines that the driven member has come into contact with the object when a change in the rotation angle based on the rotation angle is zero.
  • contact between the driven member and the object can be detected at a lower cost.
  • FIG. 4 is a schematic diagram showing a robot hand in a state where contact has been detected; It is a schematic diagram showing a robot arm to which a contact detection device is applied.
  • FIG. 4 is a schematic diagram showing the robot arm in a state where contact is detected; It is a schematic diagram showing a multi-vehicle connection robot to which a contact detection device is applied.
  • FIG. 4 is a schematic diagram showing the multi-vehicle articulated robot in a state where contact is detected;
  • FIG. 1 is a block diagram showing the hardware configuration of a system including a contact detection device according to this embodiment.
  • the contact detection system 1 can communicate with a rotation driving section 11, a rotation sensor 12, a driven member 13, and a rotation driving section 11 and a rotation sensor 12 as hardware. and a contact sensing device 14 connected to.
  • the rotary drive unit 11 outputs a rotary drive force for rotating or swinging a driven member 13, which will be described in detail later, and is, for example, a rotary motor.
  • the rotation sensor 12 is a sensor that measures the rotation angle of the rotation drive section 11 .
  • the driven member 13 is a member provided so as to be rotatable or swingable by the rotation driving section 11 .
  • the rotation drive unit 11 and the rotation sensor 12 are connected so that the rotation force is transmitted to each other, rather than the rotation force is unilaterally transmitted from the rotation drive unit 11 to the driven member 13 .
  • the contact detection device 14 includes, as hardware, a CPU (Central Processing Unit) 141 and a memory 142 that implement various functions.
  • the contact detection device 14 includes a drive control section 151, a drive monitoring section 152, and a contact determination section 153 as functions realized by the CPU 141 and the memory 142.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • the drive control unit 151 drives and controls the rotation drive unit 11 so that it rotates at a predetermined torque.
  • the drive monitoring unit 152 periodically acquires the rotation angle of the rotation drive unit 11 measured by the rotation sensor 12 .
  • the contact determination unit 153 determines whether or not the driven member 13 is in contact with the object based on the rotation angle of the rotation driving unit 11 acquired by the drive monitoring unit 152 .
  • FIG. 3 is a flow chart showing the operation of the contact detection device. It should be noted that the operation shown in FIG. 3 is assumed to be executed at predetermined intervals.
  • the drive control unit 151 rotates the rotation drive unit 11 with a predetermined torque, specifically, a torque set low enough to stop the driven member 13 when it comes into contact with an object.
  • Drive is controlled (S101).
  • the driving monitoring unit 152 acquires the rotation angle of the rotation driving unit 11 in the state of being driven and controlled by the driving control unit 151, which is measured by the rotation sensor 12 (S102).
  • the contact determination unit 153 determines whether or not the change in the rotation angle acquired by the drive monitoring unit 152, that is, the difference between the rotation angle in the previous cycle and the rotation angle in the current cycle is zero. (S103).
  • the contact determination unit 153 determines that the driven member 13 is in contact with the object (S104). is driven and controlled (S101).
  • the contact determination unit 153 determines that the driven member 13 is not in contact with the object (S105).
  • the drive of the unit 11 is controlled (S101).
  • contact detection can be performed without adding other hardware to the servomotor provided with the rotation drive section 11 and the rotation sensor 12.
  • contact determination can be performed without increasing the cost and weight.
  • each function included in the contact detection device 14 can also be realized on another control device that controls the entire device including the rotation driving section 11 , the rotation sensor 12 and the driven member 13 .
  • FIG. 4 is a schematic diagram showing a robot hand to which the contact detection device is applied.
  • FIG. 5 is a schematic diagram showing the robot hand in a state where contact is detected.
  • the robot hand 2 is a device configured to be able to grip an object O.
  • Two grippers 23 a and 23 b corresponding to the drive member 13 , two transmission gears 26 a and 26 b, and a contact detection device 14 communicatively connected to the servo motor 21 are provided.
  • Each of the two grippers 23a and 23b is a generally rod-shaped member extending in one direction as a whole, and is provided swingably with one end serving as a fulcrum.
  • the transmission gear 26a is provided so as to be rotated by the servomotor 21, and the transmission gear 26b is provided so as to mesh with the transmission gear 26a and transmit the rotation of the servomotor 21 through the transmission gear 26a.
  • the gripper 23a is directly oscillated by the rotational force of the servomotor 21, and the gripper 23b is oscillated by the rotational force of the servomotor 21 via the transmission gear 26b.
  • FIG. 6 is a schematic diagram showing a robot arm to which the contact detection device is applied.
  • FIG. 7 is a schematic diagram showing the robot arm in a state where contact is detected.
  • the robot arm 3 is a device configured such that a portion thereof can come into contact with the object O.
  • a corresponding servo motor 31 , a second arm 33 corresponding to the driven member 13 , and a contact detection device 14 communicably connected to the servo motor 31 are provided.
  • Each of the first arm 30 and the second arm 33 is a substantially bar-shaped member extending in one direction as a whole.
  • the first arm 30 has a lower end connected to a base placed on the ground surface of the robot arm 3, and a servomotor 31 provided at an upper end.
  • the second arm 33 is provided so as to be swingable by the rotational force of the servomotor 31 with one end serving as a fulcrum.
  • FIG. 8 is a schematic diagram showing a multi-vehicle connection robot to which a contact detection device is applied.
  • FIG. 9 is a schematic diagram showing the multi-vehicle articulated robot in a state where contact is detected.
  • the multi-vehicle articulated robot 4 is a mobile device in which a plurality of vehicles are articulated in the traveling direction, and the two vehicles that are articulated with each other have a rear vehicle. It is configured to be able to pitch the forward vehicle.
  • the contact detection device 14 (not shown in FIGS. 8 and 9) is applied to the leading vehicle in the multi-vehicle connection robot 4, and the wall surface W perpendicular to the ground is the object of contact detection.
  • the leading vehicle includes a housing portion 40, a servo motor 41 corresponding to the rotation driving portion 11 and the rotation sensor 12, wheels 42 corresponding to the driven members 13, and a servo motor 41 built in the housing portion 40. and a contact sensing device 14 communicatively connected to the.
  • the wheel 42 is a member formed in a substantially circular shape as a whole and configured to be able to run on the ground or wall W as a running surface, and is rotatable about the center of the circle by the servomotor 41 .
  • the contact detection device 14 can be used to detect contact between the driven member 13 and the object O in any device that rotates or swings the driven member 13 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

回転力を発生させる回転駆動部により回転可能または揺動可能に設けられた被駆動部材による対象物への接触を検知する接触検知装置14であって、回転駆動部を所定のトルクにより回転駆動させる駆動制御部151と、回転センサにより測定された回転駆動部の回転角度を周期的に取得する駆動監視部152と、取得された回転角度に基づく回転角度の変化がゼロである場合、被駆動部材が対象物に接触したと判定する接触判定部153とを備える。

Description

接触検知装置
 本発明は、接触を検知する技術に関する。
 従来、モータにより駆動される被駆動部材の対象物への接触検知は、接触センサ、トルクセンサ、電流検出などによりなされていた。接触センサは被駆動部材において対象物との接触により生じる物理的変位を検知することにより接触を検知する。トルクセンサは、モータにおけるトルクの増加を検出することにより接触を検知する。電流検出は、モータにおける電流の増加を検出することにより接触を検知する。
 また、関連する技術として、基台の上部に3軸以上の多関節を有するロボットの外部接触2重チェック装置において、ロボットと外部との接触を検知する相互に独立した第1検知手段及び、第2検知手段の2つの検知手段を有し、第1検知手段は多関節のうち第1軸と第2軸と第3軸に設けた3つのトルクセンサによる第1系統であり、第2検知手段は基台の設置部に設けた3自由度力トルクセンサによる第2系統であり、第1検知手段及び第2検知手段から得られる検知信号により、ロボットを安全に制御することを特徴とするロボットの外部接触2重チェック装置、が知られている(特許文献1参照)。
特開2019-42906号公報
 接触センサ、トルクセンサ、電流検出のそれぞれによる接触検知によれば、被駆動部材またはモータに対して追加の専用部品や専用回路が必要となるため、コストが増大する、という問題がある。
 本発明の実施形態は、より低コストで被駆動部材と対象物との接触を検知する接触検知装置を提供することを目的とする。
 上述した課題を解決するため、本実施形態に係る接触検知装置は、回転力を発生させる回転駆動部により回転可能または揺動可能に設けられた被駆動部材による対象物への接触を検知する接触検知装置であって、前記回転駆動部を所定のトルクにより回転駆動させる駆動制御部と、回転センサにより測定された前記回転駆動部の回転角度を周期的に取得する駆動監視部と、前記取得された回転角度に基づく回転角度の変化がゼロである場合、前記被駆動部材が前記対象物に接触したと判定する接触判定部とを備える。
 本発明の実施形態によれば、より低コストで被駆動部材と対象物との接触を検知することができる。
実施形態に係る接触検知システムのハードウェア構成を示すブロック図である。 接触検知装置の機能構成を示すブロック図である。 接触検知装置の動作を示すフローチャートである。 接触検知装置を適用したロボットハンドを示す概略図である。 接触が検知された状態におけるロボットハンドを示す概略図である。 接触検知装置を適用したロボットアームを示す概略図である。 接触が検知された状態におけるロボットアームを示す概略図である。 接触検知装置を適用した多車両連結ロボットを示す概略図である。 接触が検知された状態における多車両連結ロボットを示す概略図である。
 以下、図面を参照しながら、本発明の実施形態について説明する。
(接触検知装置の構成)
 本実施形態に係る接触検知装置のハードウェア構成及び機能構成について説明する。図1は、本実施形態に係る接触検知装置を含むシステムのハードウェア構成を示すブロック図である。
 図1に示すように、本実施形態に係る接触検知システム1は、ハードウェアとして、回転駆動部11と、回転センサ12と、被駆動部材13と、回転駆動部11及び回転センサ12と通信可能に接続される接触検知装置14とを備える。回転駆動部11は、後に詳述する被駆動部材13を回転または揺動させる回転駆動力を出力するものであり、例えば回転モータである。回転センサ12は、回転駆動部11の回転角度を測定するセンサである。被駆動部材13は、回転駆動部11により回転可能または揺動可能に設けられた部材である。
 なお、回転駆動部11と回転センサ12とは、回転駆動部11から被駆動部材13に一方的に回転力が伝達されるのではなく、互いに回転力が伝達されるように接続されているものとする。
 接触検知装置14は、ハードウェアとして、各種機能を実現するCPU(Central Processing Unit)141とメモリ142とを備える。また、接触検知装置14は、図2に示すように、CPU141及びメモリ142により実現される機能として、駆動制御部151、駆動監視部152、接触判定部153を備える。
 駆動制御部151は、所定のトルクで回転するように回転駆動部11を駆動制御する。駆動監視部152は、回転センサ12により測定された回転駆動部11の回転角度を周期的に取得する。接触判定部153は、駆動監視部152により取得された回転駆動部11の回転角度に基づいて、被駆動部材13が対象物に接触しているか否かを判定する。
(接触検知装置の動作)
 接触検知装置の動作について説明する。図3は、接触検知装置の動作を示すフローチャートである。なお、図3に示す動作は、所定の周期毎に実行されるものとする。
 図3に示すように、まず、駆動制御部151は、所定のトルク、具体的には被駆動部材13が対象物に接触した場合に停止する程度に低く設定されたトルクにより回転駆動部11を駆動制御する(S101)。次に、駆動監視部152は、回転センサ12により測定された、駆動制御部151により駆動制御された状態における回転駆動部11の回転角度を取得する(S102)。
 次に、接触判定部153は、駆動監視部152により取得された回転角度に関して、回転角度変化、即ち、前周期の回転角度と現周期の回転角度との差がゼロであるか否かを判定する(S103)。
 回転角度変化がゼロである場合(S103,YES)、接触判定部153は、被駆動部材13が対象物に接触していると判定し(S104)、再度、駆動制御部151が回転駆動部11を駆動制御する(S101)。
 一方、回転角度変化がゼロではない場合(S103,NO)、接触判定部153は、被駆動部材13が対象物に接触していないと判定し(S105)、再度、駆動制御部151が回転駆動部11を駆動制御する(S101)。
 このような接触検知装置14によれば、回転駆動部11と回転センサ12とを備えたサーボモータに他のハードウェアを追加することなく接触検知を行うことができる。これによって、サーボモータを用いた装置において、コスト、重量が増加させることなく接触判定を行うことができる。また、接触検知装置14に含まれる各機能についても、回転駆動部11、回転センサ12、被駆動部材13を含む装置全体を制御する他の制御装置上で実現することができる。
(第1の適用例)
 第1の適用例として、接触検知装置を適用したロボットハンドについて説明する。図4は、接触検知装置を適用したロボットハンドを示す概略図である。図5は、接触が検知された状態におけるロボットハンドを示す概略図である。
 図4に示すように、第1の適用例に係るロボットハンド2は、対象物Oを把持可能に構成された装置であり、回転駆動部11及び回転センサ12に相当するサーボモータ21と、被駆動部材13に相当する2つのグリッパ23a,23bと、2つの伝達ギヤ26a,26bと、サーボモータ21と通信可能に接続される接触検知装置14とを備える。
 2つのグリッパ23a,23bは、それぞれ、全体として、一方向に延在する略棒状に形成された部材であり、一端部を支点として揺動可能に設けられる。伝達ギヤ26aは、サーボモータ21により回転されるように設けられたギヤであり、伝達ギヤ26bは、伝達ギヤ26aと噛み合い、伝達ギヤ26aによりサーボモータ21の回転が伝達されるように設けられたギヤである。グリッパ23aは、サーボモータ21の回転力により直接に揺動され、グリッパ23bは、伝達ギヤ26bを介してサーボモータ21の回転力により揺動される。
 図5に示すように、図5中反時計周りの回転力がサーボモータ21に発生されることによって、2つのグリッパ23a,23bは、それぞれにおける揺動支点とは逆側の端部が互いに近接するように揺動される。この際、2つのグリッパ23a,23bが対象物Oに接触するとサーボモータ21の回転角度変化がゼロとなり、接触検知装置14により接触が検知される。
(第2の適用例)
 第2の適用例として、接触検知装置を適用したロボットアームについて説明する。図6は、接触検知装置を適用したロボットアームを示す概略図である。図7は、接触が検知された状態におけるロボットアームを示す概略図である。
 図6に示すように、第2の適用例に係るロボットアーム3は、一部分が対象物Oに接触可能に構成された装置であり、第1アーム30と、回転駆動部11及び回転センサ12に相当するサーボモータ31と、被駆動部材13に相当する第2アーム33と、サーボモータ31と通信可能に接続される接触検知装置14とを備える。
 第1アーム30、第2アーム33は、それぞれ、全体として一方向に延在する略棒状に形成された部材である。第1アーム30は、下端部がロボットアーム3の接地面に載置された基台に接続され、上端部にサーボモータ31が設けられる。第2アーム33は、一端部を支点としてサーボモータ31の回転力により揺動可能に設けられる。
 図7に示すように、図7中反時計回りの回転力がサーボモータ31により発生されることによって、第2アーム33が揺動されて対象物Oに接触すると、サーボモータ31の回転角度変化がゼロとなり、接触検知装置14により接触が検知される。
(第3の適用例)
 第3の適用例として接触検知装置を適用した多車両連結ロボットについて説明する。図8は、接触検知装置を適用した多車両連結ロボットを示す概略図である。図9は、接触が検知された状態における多車両連結ロボットを示す概略図である。
 図8に示すように、第3の適用例に係る多車両連結ロボット4は、複数の車両が進行方向に連結された移動装置であって、互いに連結される2つの車両において、後方の車両が前方の車両をピッチング可能に構成される。接触検知装置14(図8、図9に不図示)は、多車両連結ロボット4における先頭の車両に適用され、地面と直交する壁面Wを接触検知対象とする。
 先頭の車両は、筐体部40と、回転駆動部11及び回転センサ12に相当するサーボモータ41と、被駆動部材13に相当する車輪42と、筐体部40内に内蔵され、サーボモータ41と通信可能に接続される接触検知装置14とを備える。車輪42は、地面または壁面Wを走行面として走行可能に構成された全体として略円形に形成された部材であり、サーボモータ41により円中心周りに回転可能に設けられる。
 図9に示すように、図9中時計回りの回転力がサーボモータ41により発生された状態において、多車両連結ロボット4が壁面Wに向かって走行し、車輪42が壁面Wに当接すると、車輪42の回転が停止される。これによって、サーボモータ41の回転角度変化がゼロとなり、接触検知装置14により接触が検知される。
 以上に説明したように、接触検知装置14は、被駆動部材13を回転または揺動させるあらゆる装置において、被駆動部材13と対象物Oとの接触検知に用いることができる。
 本発明の実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
14 接触検知装置
151 駆動制御部
152 駆動監視部
153 接触判定部

Claims (3)

  1.  回転力を発生させる回転駆動部により回転可能または揺動可能に設けられた被駆動部材による対象物への接触を検知する接触検知装置であって、
     前記回転駆動部を所定のトルクにより回転駆動させる駆動制御部と、
     回転センサにより測定された前記回転駆動部の回転角度を周期的に取得する駆動監視部と、
     前記取得された回転角度に基づく回転角度の変化がゼロである場合、前記被駆動部材が前記対象物に接触したと判定する接触判定部と
     を備える接触検知装置。
  2.  前記被駆動部材は、略円形に形成され、前記回転駆動部により円中心周りに回転されることを特徴とする請求項1に記載の接触検知装置。
  3.  前記被駆動部材は、一方向に延在するように形成され、前記回転駆動部により一端部を支点として揺動されることを特徴とする請求項1に記載の接触検知装置。
PCT/JP2022/014313 2021-06-09 2022-03-25 接触検知装置 WO2022259706A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021096598 2021-06-09
JP2021-096598 2021-06-09

Publications (1)

Publication Number Publication Date
WO2022259706A1 true WO2022259706A1 (ja) 2022-12-15

Family

ID=84425203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014313 WO2022259706A1 (ja) 2021-06-09 2022-03-25 接触検知装置

Country Status (1)

Country Link
WO (1) WO2022259706A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224991A (ja) * 1985-07-26 1987-02-02 松下電器産業株式会社 産業用ロボツト
JPH10249539A (ja) * 1997-03-11 1998-09-22 Honda Motor Co Ltd 溶接ロボットのティーチング方法
JP2011088177A (ja) * 2009-10-21 2011-05-06 Fanuc Ltd 溶接ワーク位置検出方法
WO2014129110A1 (ja) * 2013-02-25 2014-08-28 パナソニック株式会社 ロボット、ロボットの制御装置及び制御方法、並びに、ロボット用制御プログラム
JP2015058519A (ja) * 2013-09-20 2015-03-30 株式会社豊田自動織機 ロボットハンド
WO2016103300A1 (ja) * 2014-12-26 2016-06-30 川崎重工業株式会社 ロボット
JP2018006309A (ja) * 2016-06-28 2018-01-11 株式会社オートネットワーク技術研究所 ワイヤーハーネスの製造方法及び電線端末加工装置
JP2018020419A (ja) * 2016-08-05 2018-02-08 株式会社リコー 把持装置及び把持移載装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224991A (ja) * 1985-07-26 1987-02-02 松下電器産業株式会社 産業用ロボツト
JPH10249539A (ja) * 1997-03-11 1998-09-22 Honda Motor Co Ltd 溶接ロボットのティーチング方法
JP2011088177A (ja) * 2009-10-21 2011-05-06 Fanuc Ltd 溶接ワーク位置検出方法
WO2014129110A1 (ja) * 2013-02-25 2014-08-28 パナソニック株式会社 ロボット、ロボットの制御装置及び制御方法、並びに、ロボット用制御プログラム
JP2015058519A (ja) * 2013-09-20 2015-03-30 株式会社豊田自動織機 ロボットハンド
WO2016103300A1 (ja) * 2014-12-26 2016-06-30 川崎重工業株式会社 ロボット
JP2018006309A (ja) * 2016-06-28 2018-01-11 株式会社オートネットワーク技術研究所 ワイヤーハーネスの製造方法及び電線端末加工装置
JP2018020419A (ja) * 2016-08-05 2018-02-08 株式会社リコー 把持装置及び把持移載装置

Similar Documents

Publication Publication Date Title
JP5195054B2 (ja) アームの関節、及びそれを有するロボット
CN102015223B (zh) 机械手及其控制方法
TWI544994B (zh) 機器人及機器人之雜訊除去方法
WO2013175553A1 (ja) ロボット
JP2011177010A (ja) 直列弾性アクチュエータの力およびインピーダンスのロバスト制御のための構成
US7100733B2 (en) Method to initialize steering wheel in a steer-by-wire system
CN101007545A (zh) 具有转向角传感器的电动式转向装置
CN109249984B (zh) 用于线控转向系统的转向装置
US10351173B2 (en) Wheel carrier for a two-track motor vehicle
CN112955366B (zh) 测定车轮驱动模块的车轮的状态值的方法
WO2022259706A1 (ja) 接触検知装置
JP6812718B2 (ja) エンコーダ装置、ロボット
JP3577190B2 (ja) 操舵制御装置
JP5549503B2 (ja) 故障検知装置、故障検知方法、及び倒立移動体。
KR100757373B1 (ko) 조향각 센싱장치
CN110360313A (zh) 挡位切换控制装置
JP2019111597A (ja) ロボットアーム、ロボット装置
US8024088B2 (en) Rear steering sensor diagnostic algorithm for four-wheel steering systems
JP2020032517A (ja) ロボットおよびロボットシステム
JP5418029B2 (ja) 原点位置設定装置、原点位置設定方法、リンク機構及び脚車輪型ロボット
KR20080006197A (ko) 자동차용 회전반경 축소시스템
JPH10118974A (ja) 多関節ロボットにおけるハンドの回転位置検出装置
JP2020075328A5 (ja) ロボット、ロボット装置、ロボットの制御方法、ロボット装置を用いた物品の製造方法、制御プログラムおよび記録媒体
JP2024016475A (ja) 通知用プロセッサ及びそれを備えた制御システム
JP2001066201A (ja) トルクセンサ及びこれを用いた電動式舵取装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE