WO2022257633A1 - 电梯导轨垫片连续自动送料与智能定位拉铆装置及其送料拉铆方法 - Google Patents

电梯导轨垫片连续自动送料与智能定位拉铆装置及其送料拉铆方法 Download PDF

Info

Publication number
WO2022257633A1
WO2022257633A1 PCT/CN2022/089425 CN2022089425W WO2022257633A1 WO 2022257633 A1 WO2022257633 A1 WO 2022257633A1 CN 2022089425 W CN2022089425 W CN 2022089425W WO 2022257633 A1 WO2022257633 A1 WO 2022257633A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasket
image
riveting
positioning
hole
Prior art date
Application number
PCT/CN2022/089425
Other languages
English (en)
French (fr)
Inventor
庄宏
周志凯
郭胜
祁崇文
唐文献
徐根元
曹秦
李小宝
钱超
Original Assignee
江苏科技大学
镇江宇诚智能装备科技有限责任公司
张家港市通达电梯装璜有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学, 镇江宇诚智能装备科技有限责任公司, 张家港市通达电梯装璜有限公司 filed Critical 江苏科技大学
Publication of WO2022257633A1 publication Critical patent/WO2022257633A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/003Positioning devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/006Feeding elongated articles, such as tubes, bars, or profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/02Advancing work in relation to the stroke of the die or tool
    • B21D43/021Control or correction devices in association with moving strips
    • B21D43/023Centering devices, e.g. edge guiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/02Advancing work in relation to the stroke of the die or tool
    • B21D43/026Combination of two or more feeding devices provided for in B21D43/04 - B21D43/18
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/02Advancing work in relation to the stroke of the die or tool
    • B21D43/027Combined feeding and ejecting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/02Advancing work in relation to the stroke of the die or tool
    • B21D43/04Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work
    • B21D43/14Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work by turning devices, e.g. turn-tables

Definitions

  • the invention relates to an elevator guide rail gasket continuous automatic feeding and intelligent positioning riveting device.
  • the T-shaped hollow elevator guide rail assembly process includes the riveting process of the elevator guide rail and the guide rail gasket. It is necessary to take the guide rail gasket (plate-shaped workpiece) out of the material area, and then send the gasket to the workpiece positioning mechanism. The spacer is fed into the inside of the rail, and finally the spacer is fixed to the end of the rail by riveting.
  • the existing elevator guide rail and gasket equipment as described in the patent CN201821752418.8, the guide rail gaskets are arranged and placed on the material tray, the gaskets are grabbed by the feeding manipulator, and then passed to the positioning mechanism, and the empty materials The tray is sent away by the conveyor and replaced with a new magazine.
  • the device has a large volume and takes a long time for the manipulator to pick up materials, which delays the production cycle of guide rail and gasket installation.
  • the positioning device In order to ensure the installation accuracy of the gasket, during the gasket positioning process (sending the gasket to the riveting position), it is necessary to constrain the gasket in two degrees of freedom in the horizontal and vertical directions. After the gasket positioning riveting is completed, the positioning device Must exit the inside of the guide rail. Since the lateral dimension of the inner wall of the guide rail is only 1 to 2 mm larger than the lateral dimension of the gasket, the conventional positioning device cannot perform bidirectional positioning of the gasket in a small space. After the riveting of the sheet is completed, the gasket is fixedly connected with the guide rail, and the positioning device cannot be withdrawn. Moreover, the conventional feeding positioning method cannot ensure the precise alignment of the riveting holes of the gasket and the guide rail.
  • Visual processing can be used to identify the workpiece holes to achieve alignment.
  • the assembly site environment is harsh, the surface of the workpiece is dusty, and the images collected by the CCD camera are noisy. There are many and complex holes, and it is difficult to identify hole positions by conventional image processing methods.
  • the technical problem to be solved by the present invention is to provide a continuous automatic feeding and intelligent positioning riveting device for elevator guide rail gaskets.
  • the technical solution adopted by the present invention is: the elevator guide rail gasket continuous automatic feeding and intelligent positioning riveting device, including the base, and the rotary feeding mechanism arranged on the base, the two-way positioning feeding mechanism and the three-axis vision Riveting mechanism;
  • the rotary feeding mechanism includes a gear shaft installed on the base, which is driven by a motor to drive the circular rotating material tray installed on the base to rotate.
  • the outer side of the center of the material tray is provided with a gasket outlet, and the inner side of the material box near the center of the rotating material tray is provided with a push plate push hole.
  • the pushing cylinder is installed on the base and is located in the circular rotating material tray.
  • the end of the rod is provided with a push plate that matches the pushing hole of the push plate.
  • the two-way positioning feeding mechanism includes a feeding module set on the base, a base plate is arranged on the moving platform of the feeding module, a positioning bottom plate is arranged on the base plate, a top-tightening cylinder is set on the tail of the positioning bottom plate, and a top-tightening cylinder is set on the piston rod of the top-tightening cylinder.
  • a top tightening block the side of the lower part of the top tightening block away from the top tightening cylinder is provided with a self-locking rod parallel to the piston rod of the top tightening cylinder, and the head of the positioning bottom plate is hinged with an L-shaped rotation positioning driven by the self-locking rod.
  • the distance between the two side positioning blocks is equal to the width of the gasket.
  • the optical axis is covered with a spring, and the tail of the optical axis moves through the optical axis support set on the base plate;
  • the side positioning block close to the rotary feeding mechanism is provided with a gasket inlet, and the upper surface of the gasket inlet is aligned with the positioning
  • the upper surface of the base plate is flat;
  • the side positioning block near the end of the spring is provided with a limit bump that matches the end face of the mounting seat, and the side positioning block is under the action of the spring. ;
  • the three-axis visual riveting mechanism includes an X-direction module set on the base, and a Y-direction module is installed on the X-direction module; a Z-direction module is installed on the Y-direction module, and a riveting is installed on the Z-direction module.
  • the gun mounting base, the riveting gun mounting base is fixed with a riveting gun, and the Z-direction module is also equipped with a CCD camera and light source electrically connected to the control center.
  • the mounting seat is provided with a slot with an inverted T-shaped cross section, and the lower part of the sliding seat is provided with a snap-in part matching the slot.
  • the bottom of the positioning base plate is provided with a self-locking rod guide block for the self-locking rod to pass through;
  • the technical problem to be solved by the present invention is: to provide a feeding riveting method for the elevator guide rail gasket continuous automatic feeding and intelligent positioning riveting device.
  • the method adopted by the present invention is: the feeding and riveting method of the elevator guide rail gasket continuously and automatically feeding and the intelligent positioning riveting device as described in any item above, comprising the following steps:
  • Control the movement of the three-axis visual riveting mechanism drive the CCD camera to the position of taking pictures of the elevator guide rail, make the riveting hole of the elevator guide rail within the field of view of the CCD camera, and collect the image of the end of the elevator guide rail through the CCD camera;
  • the collected image is grayscale processed, the target area is determined by template matching, and the target area is cut out as the source image for subsequent hole position recognition processing;
  • the source image in step 1.2 is denoised by combined filtering; combined filtering includes mean filtering, Gaussian filtering, median filtering, and bilateral filtering, and the kernel size of each filter is set. After performing combined filtering, a denoised image is produced. image; the details are as follows:
  • each filter kernel size record the average filter kernel size as Ka, the Gaussian filter kernel size as Kb, the median filter kernel size as Kc, the bilateral filter kernel size as Kd, and the value ranges are [ 1,20];
  • each filter kernel size is averaged from the value range to take m values, each filter takes out a kernel size value respectively, and obtains m 4 filter kernel size combination values, and adopts m 4 filter kernel size combinations Values are respectively used as combined filter parameters to perform noise reduction processing on the image to obtain m 4 noise-reduced images, calculate the signal-to-noise ratio of the m 4 noise-reduced images, and select the image with the largest signal-to-noise ratio, and the corresponding filter
  • the combined value of the kernel size is recorded as [Ka', Kb', Kc', Kd'];
  • the morphological operations include image erosion and expansion, and perform an expansion operation on the eroded image to remove the interference area and keep the original hole area outline unchanged;
  • the contour recognition method is used to identify the hole features in the image, and the coordinates of the riveted hole in the image coordinate system are obtained;
  • the position coordinates of the riveting holes on the two guide rails are (x1, y 1) and (x2, y 2 ); wherein, the coordinate transformation matrix is obtained in the CCD camera calibration process;
  • the push cylinder extends to drive the push plate to extend, the push plate enters the material box through the push hole of the push plate, pushes the gasket in the material box to pass through the gasket discharge hole, and enters the two-way positioning feeding mechanism; if the current position of the material box After the inner gasket is pushed, the motor drives the gear shaft to rotate, drives the rotating material tray to rotate, and then pushes the push plate of the next position material box into the hole and aligns it with the push plate;
  • the gasket When the gasket is pushed out from the rotary feeding mechanism, the gasket enters the two-way positioning feeding mechanism through the gasket slideway. At this time, the clamping cylinder stretches out, driving the clamping block to move forward, and the clamping block pushes the gasket forward Movement, during the movement of the gasket, under the limit condition of the sliding positioning blocks on both sides, the lateral position accuracy is guaranteed; the top tightening block drives the self-locking lever to move forward, and before the gasket reaches the position of the rotating positioning block, the self-locking lever will The rotating positioning block is lifted and rotated, and locked to the vertical state, and the tightening block pushes the gasket to tighten the rotating positioning block to realize the longitudinal positioning of the gasket;
  • the feeding module drives the gasket to move to the photographing position, and moves the CCD camera backward along the Y direction for a distance ⁇ to the photographing position;
  • the collected image is grayscale processed, the target area is determined by template matching, and the target area is cut out as the source image for subsequent hole position recognition processing;
  • the image in step 4.2 is denoised by combined filtering; combined filtering includes mean filtering, Gaussian filtering, median filtering, and bilateral filtering, and the kernel size of each filter is set. After performing combined filtering, a denoised image is generated. image, as follows:
  • each filter kernel size is averaged from the value range to take i values, and each filter takes out a kernel size value respectively to obtain i 4 filter kernel size combination values, using i 4 filter kernel size combinations Values are respectively used as combined filter parameters to perform noise reduction processing on the image to obtain i 4 noise-reduced images, calculate the signal-to-noise ratio of the i 4 noise-reduced images, and select the image with the largest signal-to-noise ratio, and the corresponding filter
  • the combined value of the kernel size is recorded as [La', Lb', Lc', Ld'];
  • the morphological operation includes image erosion and expansion, and the expansion operation on the eroded image can remove the interference area and keep the outline of the original hole area unchanged;
  • the contour recognition method is used to identify the hole features in the image, and the coordinates of the riveted hole in the image coordinate system are obtained;
  • the position coordinates of the two gasket riveting holes are (Px1, Py1) and (Px2, Py2 );
  • the three-axis visual riveting mechanism drives the riveting gun to move the riveting hole position according to the coordinates (x1, y1) and (x2, y2) of the riveting hole of the guide rail, and completes the gasket riveting;
  • the jacking cylinder retracts, driving the self-locking lever to retract.
  • the rotating positioning block can be rotated, and the locked state of the rotating positioning block is released.
  • the feeding module drives the positioning mechanism to return, and the sliding positioning blocks on both sides are in the spring. Reset under action.
  • the m is any integer from 5 to 10
  • the n is any integer from 5 to 10
  • i is any integer from 5 to 10
  • j is any integer from 5 to 10.
  • This device adopts a self-locking longitudinal positioning mechanism to ensure the longitudinal positioning accuracy of the gasket. Due to the narrow space inside the guide rail, it is impossible to add a power device at the end of the longitudinal positioning mechanism to realize the movement of the longitudinal positioning block. Therefore, the self-locking structure is adopted, and only need to be tightened The telescopic movement of the cylinder drives the rotation of the longitudinal positioning block, which can realize the longitudinal positioning and tightening of the gasket without additional power devices.
  • the positioning self-locking is released, so that the positioning device can exit the guide rail smoothly;
  • the telescopic lateral positioning mechanism is adopted to ensure that the lateral position of the gasket does not deviate during the longitudinal positioning process, ensuring the alignment accuracy of the riveting hole position of the gasket and the guide rail in the lateral degree of freedom; when the gasket enters the guide rail process In the process, the lateral positioning device is retracted to prevent the lateral positioning structure from entering the narrow space inside the guide rail, resulting in a large lateral positioning error of the gasket.
  • This feeding riveting method adopts the visual processing method to respectively locate the riveting hole positions of the guide rail and the gasket, and calculate the difference in the longitudinal degree of freedom between the guide rail and the gasket riveting hole as the longitudinal feeding amount of the material, ensuring that the gasket and guide rail
  • the alignment accuracy of the riveting holes in the longitudinal degree of freedom; at the same time, the position coordinates of the riveting holes on the guide rail are used as the moving coordinates of the automatic riveting device to ensure the accuracy of the riveting position.
  • the feeding riveting method adopts combined filtering method to process the collected workpiece images, and adopts the secondary optimization method to find the optimal filtering combination, reduces the calculation amount of image processing, improves the filtering effect of images, and is beneficial to the recognition accuracy of workpiece hole positions.
  • Fig. 1 is the figure of gasket positioning device of the present invention
  • Fig. 2 is a schematic diagram of gasket positioning and riveting of the present invention
  • Fig. 3 is a diagram of the rotary feeding mechanism of the present invention.
  • Fig. 4 is the bidirectional positioning feeding mechanism diagram of the present invention.
  • Fig. 5 is a partial view of the bidirectional positioning feeding mechanism of the present invention.
  • Fig. 6 is a self-locking state diagram of the longitudinal positioning mechanism of the present invention.
  • Fig. 7 is a diagram of the three-axis visual riveting mechanism of the present invention.
  • Fig. 8 is the flow chart of identification and positioning of riveting holes of the present invention
  • Base 2. Rotary feeding mechanism; 21. Gear shaft; 22. Rotating tray; 23. Material box; 231. Gasket discharge hole; 232.
  • 3 bidirectional positioning feeding mechanism 31 feeding module; 32 bottom plate; 33 positioning bottom plate; 34 top tightening cylinder; 35 top tightening block; 36 rotating positioning block; ; 310 optical axis; 311 optical axis support; 312 self-locking rod; 313 self-locking rod guide block; 314 guide rail; 315 slider;
  • the elevator guide rail gasket continuous automatic feeding and intelligent positioning riveting device includes a base 1, a rotating feeding mechanism 2 arranged on the base, a bidirectional positioning feeding mechanism 3 and a three-axis visual riveting mechanism 4;
  • this device is used to accurately send the gasket 6 to the inside of the guide rail 5, and align the riveting hole 51 of the guide rail with the riveting hole 61 of the gasket;
  • the rotary feeding mechanism 2 includes a gear shaft 21 that is arranged on the base, and the gear shaft 21 is driven by a motor to drive the ring-shaped rotary feeder 22 installed on the base 1 to rotate, and the rotary feeder 22 lasts.
  • the bidirectional positioning feeding mechanism 3 includes a feeding module 31 arranged on the base 1, a base plate 32 is provided on the mobile platform of the feeding module 31, a positioning base plate 33 is provided on the base plate 32, and a positioning base plate 33 Tail is provided with jacking cylinder 34, and the piston rod of jacking cylinder 34 is provided with jacking block 35, and the side of jacking block 35 bottoms away from jacking cylinder 34 is provided with the piston rod parallel to jacking cylinder 34.
  • the positioning base plate 33 head is hinged with the L-shaped rotation positioning block 36 that is promoted and rotated by self-locking lever 312, and the positioning base plate 33 bottom is provided with the self-locking lever guide block 313 that passes through for self-locking lever 312;
  • Both sides of the positioning base plate 33 are provided with mounting seats 315 respectively, and the mounting seats 315 are provided with a sliding seat 314.
  • the mounting seat 315 is provided with a draw-in groove with an inverted T-shaped cross section. of the card joint.
  • Both side slides 314 are provided with side positioning blocks 37,38, the distance between the two side positioning blocks 37,38 is equal to the width of the gasket, and the side positioning blocks 37,38 are provided with an optical axis 310, and the optical axis 310
  • the side positioning block 38 close to the rotary feeding mechanism 2 is provided with a gasket inlet 39, and the upper surface of the gasket inlet 39 is It is flat with the upper surface of the positioning base plate 33;
  • the side positioning blocks 37, 38 are provided with a limit projection that matches the end surface of the mounting seat 315 below the end of the
  • the three-axis visual riveting mechanism 4 includes an X-direction module 41 arranged on the base 1, and a Y-direction module 42 is arranged on the X-direction module 41;
  • the module 43 is provided with a riveting gun mount 44, the riveting gun mount is fixed with a riveting gun 45, and the Z-direction module 43 is also provided with a CCD camera 46 and a light source 47 electrically connected to the control center.
  • the gasket 6 After the gasket 6 is released from the rotary feeding mechanism 2, the gasket 6 enters the two-way positioning feeding mechanism 3 through the gasket inlet 39. At this time, the top tightening cylinder 34 stretches out, driving the top tightening block 35 to move forward, and the top tight The block 35 pushes the gasket 6 to move forward. During the movement of the gasket 6, the lateral position accuracy is ensured under the limits of the two side positioning blocks 37 and 38; at the same time, the top tightening block 35 drives the self-locking rod 312 to move forward, Before the gasket reaches the position of the rotating positioning block 36, the self-locking lever 312 lifts the rotating positioning block 36 and rotates until it is vertical, as shown in Figure 6. At this time, the top tightening block 35 pushes the gasket 6 to tighten the rotating positioning block 36, realizing the longitudinal positioning of the gasket 6;
  • the feeding module 31 drives the base plate 32 to move forward, and the spacer 6 is sent to the interior of the hollow elevator guide rail 5.
  • the two side sliding positioning blocks 37 , 38 contact the outer contour of the hollow elevator guide rail 5, and the outer contour of the hollow elevator guide rail 5 compresses the positioning side sliding positioning blocks 37, 38 and moves backward;
  • the jacking cylinder 34 retracts, driving the self-locking rod 312 to retract, Release the locked state of the rotating positioning block 36, the rotating positioning block 36 rotates downward, the feeding module 31 drives the positioning mechanism to retreat, and the positioning blocks 37 and 38 on both sides reset under the action of the spring;
  • the three-axis visual riveting mechanism 4 includes an X-direction module 41, and a Y-direction module 42 is installed on the X-direction module 41; a Z-direction module 43 is installed on the Y-direction module 42, and the Z-direction module 43 43 is equipped with riveting gun mount 44, is fixed with riveting gun 45 on the riveting gun mount, and CCD camera 46 and light source 47 are also housed on Z to module 43.
  • the feeding and riveting method of the above-mentioned elevator guide rail gasket continuous automatic feeding and intelligent positioning riveting device includes the following steps:
  • Control the movement of the three-axis visual riveting mechanism 4 drive the CCD camera 46 to the elevator guide rail photographing position, make the elevator guide rail riveting hole 51 in the field of view of the CCD camera 46, and collect the image of the end of the elevator guide rail 5 through the CCD camera 46;
  • the collected image is grayscale processed, the target area is determined by template matching, and the target area is cut out as the source image for subsequent hole position recognition processing;
  • the source image in step 1.2 is denoised by combined filtering; combined filtering includes mean filtering, Gaussian filtering, median filtering, and bilateral filtering, and the kernel size of each filter is set. After performing combined filtering, a denoised image is produced. image; the details are as follows:
  • each filter kernel size record the average filter kernel size as Ka, the Gaussian filter kernel size as Kb, the median filter kernel size as Kc, the bilateral filter kernel size as Kd, and the value ranges are [ 1,20];
  • each filter kernel is averaged from the value range to take m values, m is any integer in the range of 5 to 10, and each filter takes a kernel size value respectively, and obtains the combination value of m 4 filter kernel sizes , use m 4 combined values of filter kernel size as combined filter parameters respectively, and denoise the image to obtain m 4 denoised images, calculate the signal-to-noise ratio of m 4 denoised images, and select the signal For the image with the largest noise ratio, the corresponding filter kernel size combination value is recorded as [Ka', Kb', Kc', Kd'];
  • the morphological operations include image erosion and expansion, and perform an expansion operation on the eroded image to remove the interference area and keep the original hole area outline unchanged;
  • the contour recognition method is used to identify the hole features in the image, and the coordinates of the riveted hole in the image coordinate system are obtained;
  • the riveting hole coordinates in the image coordinate system are multiplied by the coordinate transformation matrix to obtain the coordinates in the 4-coordinate system of the three-axis visual riveting mechanism, and the position coordinates of the two guide rail riveting holes 51 are respectively (x1, y1 ) and (x2, y 2); wherein, the coordinate transformation matrix is obtained in the CCD camera 46 calibration process;
  • the pushing cylinder 24 stretches out to drive the push plate 25 to stretch out, and the push plate 25 enters the material box 23 through the push plate push hole 232, and pushes the gasket 6 in the material box 23 through the gasket discharge hole 231 to enter the bidirectional positioning.
  • Feeding mechanism 3 if the gasket 6 in the current position material box 23 is pushed out, the motor drives the gear shaft 21 to rotate, drives the rotating material tray 22 to rotate, and pushes the push plate of the next position material box 23 into the hole 232 to align with the push plate 25 is enough;
  • the gasket 6 After the gasket 6 is released from the rotary feeding mechanism 2, the gasket 6 enters the two-way positioning feeding mechanism 3 through the gasket slideway 39. At this time, the top tightening cylinder 34 stretches out, driving the top tightening block 35 to move forward, and the top tightening block 35 moves forward. The tight block 35 pushes the gasket 6 to move forward.
  • the top tight block 35 drives the self-locking rod 312 to move forward, and the Before the gasket arrives at the position of the rotating positioning block 36, the self-locking lever 312 lifts the rotating positioning block 36 and rotates it, and locks it to a vertical state, as shown in Figure 7. At this time, the pressing block 35 can continue to move forward. Push the gasket 6 against the rotating positioning block 36 to realize the longitudinal positioning of the gasket 6;
  • the feeding module 31 drives the gasket 6 to move to the photographing position.
  • the front end of the gasket 6 at the photographing position is 5-15mm away from the end surface of the guide rail 5, so that the position of the riveting hole 61 of the gasket is at the position of the CCD camera 46 Within the field of view, the CCD camera 46 must be moved backwards along the Y direction for a distance ⁇ , ⁇ is set according to the site conditions;
  • the collected image is grayscale processed, the target area is determined by template matching, and the target area is cut out as the source image for subsequent hole position recognition processing;
  • step 4.2 The image in step 4.2 is denoised by means of combined filtering
  • Combined filtering includes mean filtering, Gaussian filtering, median filtering, and bilateral filtering. Set the kernel size of each filter. After performing combined filtering, a denoised image is generated.
  • the specific method is as follows:
  • Average filtering kernel size La Gaussian filtering kernel size Lb, median filtering kernel size Lc, bilateral filtering kernel size Ld, and the value range is [1, 20];
  • each filter kernel size is averaged from the value range to take i values, i is 5 to 10, each filter takes a kernel size value respectively, and obtains i 4 filter kernel size combination values, using i
  • the combined values of the 4 filter kernel sizes are used as combined filter parameters respectively, and the image is subjected to noise reduction processing to obtain m4 noise-reduced images, and the signal-to-noise ratios of i 4 noise-reduced images are calculated, and the one with the largest signal-to-noise ratio is selected Image, the corresponding filter kernel size combination value is recorded as [La', Lb', Lc', Ld'];
  • the morphological operation includes image erosion and expansion, and the expansion operation on the eroded image can remove the interference area and keep the outline of the original hole area unchanged;
  • the contour recognition method is used to identify the hole features in the image, and the coordinates of the riveted hole in the image coordinate system are obtained;
  • the three-axis visual riveting mechanism 4 drives the riveting gun 45 to move the riveting hole position according to the coordinates (x1, y1) and (x2, y2) of the riveting hole 51 of the guide rail, and completes the gasket riveting;
  • the jacking cylinder 34 retracts, driving the self-locking rod 312 to retract, and now the rotating positioning block 36 can rotate, and the locked state of the rotating positioning block 36 is released.
  • the feeding module 31 drives the positioning mechanism to retreat, and the two sides The sliding positioning blocks 37 and 38 reset under the action of springs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

本发明公开一种电梯导轨垫片连续自动送料与智能定位拉铆装置,包括底座、以及设置在底座上的旋转补料机构、双向定位送料机构和三轴视觉拉铆机构;三轴视觉拉铆机构上固定有拉铆枪、与控制中心电连接的CCD相机和光源。本发明还公开了该装置的送料拉铆方法。

Description

电梯导轨垫片连续自动送料与智能定位拉铆装置及其送料拉铆方法 技术领域
本发明涉及一种电梯导轨垫片连续自动送料与智能定位拉铆装置。
背景技术
T型空心电梯导轨装配工艺中包含电梯导轨与导轨垫片的铆接工艺,需要将导轨垫片(板状工件)从物料区中取出,再将垫片送到工件定位机构中,通过定位机构将垫片送入导轨内部,最终通过铆接形式将垫片固定在导轨端部。现有的电梯导轨与垫片装备,如专利CN201821752418.8所述,导轨垫片排列好放在料盘上,由上料机械手抓取其中的垫片,再传递给定位机构,而空的料盘由输送装置送走并换上新的料盒。该装置体积较大,且机械手取料时间较长,拖延了导轨与垫片安装的生产周期。
为了保证垫片的安装精度,在垫片定位过程(将垫片送至铆接位置)中,需要在横向和纵向两个自由度上对垫片进行约束定位,垫片定位铆接完成后,定位装置须退出导轨内部。由于导轨内壁横向尺寸仅比垫片横向尺寸大1~2mm,常规的定位装置,无法在狭小的空间内对垫片进行双向定位,此外,垫片的纵向定位结构若为固定形式,则当垫片铆接完成后,垫片与导轨固连,定位装置无法退出。并且,常规的送料定位方式,无法确保垫片和导轨的铆接孔位精准对齐,采用视觉处理可以识别工件孔位实现对齐,但装配现场环境恶劣,工件表面灰尘较多,CCD相机采集的图像噪点多且复杂,采用常规图像处理方法来识别孔位比较困难。
发明内容
本发明所要解决的技术问题是:提供一种电梯导轨垫片连续自动送料与智能定位拉铆装置。
为解决上述技术问题,本发明采取的技术方案为:电梯导轨垫片连续自动送料与智能定位拉铆装置,包括底座、以及设置在底座上的旋转补料机构、双向定位送料机构和三轴视觉拉铆机构;
旋转补料机构包括转动设置在底座上的齿轮轴,齿轮轴由电机驱动转动,带动安装在底座上的环形旋转料盘转动,旋转料盘上周向均匀设有若干料盒,料盒远离旋转料盘中心的外侧设有垫片出料口,料盒靠近旋转料盘中心的内侧设有推板推入孔,推料气缸安装在底座上且位于环形旋转料盘中,推料气缸的活塞杆端部上设有与推板推入孔相配合的推板,推料气缸带动推板伸出时,推板通过推板推入孔进入料盒内,推动料盒内的垫片经垫片出料孔进入双向定位送料机构;
双向定位送料机构包括设置在底座上的送料模组,送料模组的移动平台上设有基板,基板上设有定位底板,定位底板尾部上设有顶紧气缸,顶紧气缸的活塞杆上设有顶紧块,顶紧块下部上远离顶紧气缸的一侧设有平行于顶紧气缸的活塞杆的自锁杆,定位底板头部铰接有由自锁杆推动旋转的L形的转动定位块,
定位底板两侧分别设有安装座,安装座上设有滑座,两侧滑座上都设有侧定位块,两个侧定位块之间的距离与垫片宽度相等,侧定位块上设有光轴,光轴上套有弹簧,光轴尾部活动穿过设置在基板上的光轴支座;靠近旋转补料机构的侧定位块上设有垫片进口,垫片进口上表面与定位底板上表面持平;侧定位块靠近弹簧的端部下方设有与安装座端面相配合的限位凸块,侧定位块在弹簧作用下限位凸块顶紧安装座端面使得侧定位块保持位置固定;
三轴视觉拉铆机构包括设置在底座上的X向模组,X向模组上设有Y向模组;Y向模组上设有Z向模组,Z向模组上设有拉铆枪安装座,拉铆枪安装座上固定有拉铆枪,Z向模组上还设有与控制中心电连接的CCD相机和光源。
作为一种优选的方案,所述安装座上设有截面呈倒T形的卡槽,所述滑座下部设有与卡槽相配合的卡接部。
作为一种优选的方案,所述定位底板底部设有供自锁杆穿过的自锁杆导向块;
本发明所要解决的技术问题是:提供一种电梯导轨垫片连续自动送料与智能定位拉铆装置的送料拉铆方法。
为解决上述技术问题,本发明采取的方法为:如上任意项所述的电梯导轨垫片连续自动送料与智能定位拉铆装置的送料拉铆方法,包括以下步骤:
1、导轨铆接孔定位
1.1图像采集
控制三轴视觉拉铆机构运动,带动CCD相机至电梯导轨拍照位置,使电梯导轨铆接孔处于CCD相机视野内,通过CCD相机采集电梯导轨端部图像;
1.2模板匹配
将采集的图像进行灰度化处理,采用模板匹配确定目标区域,将目标区域裁剪出来,作为后续孔位识别处理的源图像;
1.3图像预处理
采用组合滤波的方式对步骤1.2的源图像进行降噪处理;组合滤波中包含均值滤波、高斯滤波、中值滤波、双边滤波,设定各滤波的内核大小,执行组合滤波后,产生去噪后的图像;具体如下:
a.设定各滤波内核大小的取值范围:记均值滤波内核大小为Ka,高斯滤波内核大小为Kb,中值滤波内核大小为Kc,双边滤波内核大小为Kd,且取值范围均为[1,20];
b.一次寻优,分别将各滤波内核大小从取值范围内平均取m个值,各个滤波分别取出一个内核大小值,得到m 4个滤波内核大小组合值,采用m 4个滤波内核大小组合值分别作为组合滤波参数,对图像进行降噪处理,得到m 4个降噪后的图像,计算m 4个降噪后图像的信噪比,从中选出信噪比最大的图像,对应的滤波内核大小组合值记为[Ka′,Kb′,Kc′,Kd′];
c.二次寻优,将上一步得到的滤波内核大小组合值[Ka′,Kb′,Kc′,Kd′]扩大范围,得到新的滤波内核大小取值范围:均值滤波内核取值范围为[Ka′-T,Ka′+T]];高斯滤波内核取值范围为[Kb′-T,Kb′+T];中值滤波内核取值范围为[Kc′-T,Kc′+T];双边滤波内核取值范围为[Kd′-T,Kd′+T],T取[0.2,1.2];将各个滤波内核值从新的取值范围内平均取出n个值,得到n 4个滤波内核组合值,采用n 4个滤波内核大小组合值分别作为组合滤波参数,对图像进行降噪处理得到n 4个降噪后的图像,计算n 4个降噪后图像的信噪比,从中选出 信噪比最大的图像,作为后续处理的源图像;
1.4图像强化
对步骤1.3预处理后的源图像进行二值化和形态学操作,形态学操作包括图像腐蚀和膨胀,对腐蚀后的图像进行膨胀操作,以去除干扰区域并保持原始孔位区域轮廓不变;
1.5孔位识别
采用轮廓识别方法,识别图像中的孔特征,得到铆接孔在图像坐标系中的坐标;
1.7孔坐标变换
将图像坐标系中的铆接孔坐标与坐标变换矩阵相乘,得到三轴视觉拉铆机构坐标系中的坐标,两个导轨铆接孔位置坐标分别为(x1, y1)和(x2, y2);其中,坐标变换矩阵在CCD相机标定过程中获得;
2、垫片补料
推料气缸伸出带动推板伸出,推板通过推板推入孔进入料盒内,推动料盒内的垫片经过垫片出料孔后,进入双向定位送料机构;若当前位置料盒内的垫片推完,电机带动齿轮轴转动,驱动旋转料盘转动,将下一位置料盒的推板推入孔对准推板即可;
3、垫片双向定位
当垫片从旋转补料机构中推出后,垫片经过垫片滑道进入双向定位送料机构中,此时顶紧气缸伸出,带动顶紧块向前运动,顶紧块推动垫片向前运动,垫片运动过程中,在两侧滑动定位块限位条件下,保证横向位置精度;顶紧块带动自锁杆向前运动,在垫片到达转动定位块位置处之前,自锁杆将转动定位块顶起转动,并锁死至垂直状态,顶紧块推动垫片顶紧转动定位块,实现垫片纵向定位;
4、垫片铆接孔定位
4.1图像采集
垫片双向定位完成后,送料模组带动垫片移动至拍照位,并将CCD相机沿Y方向向后移动距离ε至拍照位;
4.2模板匹配
将采集的图像进行灰度化处理,采用模板匹配确定目标区域,将目标区域裁剪出来,作为后续孔位识别处理的源图像;
4.3图像预处理
采用组合滤波的方式对步骤4.2的图像进行降噪处理;组合滤波中包含均值滤波、高斯滤波、中值滤波、双边滤波,设定各滤波的内核大小,执行组合滤波后,产生去噪后的图像,具体如下:
a.设定各滤波内核大小的取值范围,记均值滤波内核大小为La,高斯滤波内核大小为Lb,中值滤波内核大小为Lc,双边滤波内核大小为Ld,取值范围均为[1,20];
b.一次寻优,分别将各滤波内核大小从取值范围内平均取i个值,各个滤波分别取出一个内核大小值,得到i 4个滤波内核大小组合值,采用i 4个滤波内核大小组合值分别作为组合滤波参数,对图像进行降噪处理,得到i 4个降噪后的图像,计算i 4个降噪后图像的信噪比,从中选出信噪比最大的图像,对应的滤波内核大小组合值记为[La′,Lb′,Lc′,Ld′];
c.二次寻优,将上一步得到的滤波内核大小组合值[La′,Lb′,Lc′,Ld′]扩大范围,得到新的滤波内核大小取值范围:均值滤波内核取值范围为[La′-P,La′+P]];高斯滤波 内核取值范围为[Lb′-P,Lb′+P];中值滤波内核取值范围为[Lc′-P,Lc′+P];双边滤波内核取值范围为[Ld′-P,Ld′+P],P取[0.2,1.2];将各个滤波内核值从心的取值范围内平均取出j个值,得到j 4个滤波内核组合值,采用j 4个滤波内核大小组合值分别作为组合滤波参数,对图像进行降噪处理得到j 4个降噪后的图像,计算j 4个降噪后图像的信噪比,从中选出信噪比最大的图像,作为后续处理的源图像;
4.4图像强化
对预处理后的图像进行二值化和形态学操作,形态学操作包括图像腐蚀和膨胀,对腐蚀后的图像进行膨胀操作,可去除干扰区域并保持原始孔位区域轮廓不变;
4.5孔位识别
采用轮廓识别方法,识别图像中的孔特征,得到铆接孔在图像坐标系中的坐标;
4.6孔坐标变换
将图像坐标系中的铆接孔坐标,与坐标变换矩阵相乘,得到三轴视觉拉铆机构坐标系中的坐标,两个垫片铆接孔位置坐标分别为(Px1,Py1)和(Px2,Py2);
5、垫片送料
计算导轨铆接孔和垫片铆接孔位置坐标的纵向差值δ,作为送料模组的进给量,保证导轨铆接孔和垫片铆接孔精准对齐;
其中,纵向差值
Figure PCTCN2022089425-appb-000001
6、自动铆接
三轴视觉拉铆机构根据导轨铆接孔的坐标(x1,y1)和(x2,y2),带动拉铆枪移动铆接孔位,完成垫片铆接;
7、定位机构复位
铆接完成后,顶紧气缸缩回,带动自锁杆缩回,此时转动定位块可转动,解除转动定位块锁死状态,此时送料模组带动定位机构退回,两侧滑动定位块在弹簧作用下复位。
作为一种优选的方案,所述m为5~10中任意整数,所述n为5~10中任意整数,i取5~10中任意整数,j取5~10中任意整数。
本发明的有益效果为:
本装置采用自锁式纵向定位机构,保证垫片纵向定位精度,由于导轨内部空间狭小,无法在纵向定位机构端部增加动力装置实现纵向定位块的动作,因此采用自锁结构,只需顶紧气缸的伸缩运动带动纵向定位块转动,即可实现垫片的纵向定位和顶紧,无需额外增加动力装置,同时在垫片铆接完成后,解除定位自锁,使定位装置顺利退出导轨内部;由于采用伸缩式横向定位机构,保证垫片纵向定位过程中,垫片的横向位置不发生偏置,保证了垫片和导轨的铆接孔位在横向自由度上的对齐精度;在垫片进入导轨过程中,横向定位装置缩回,避免横向定位结构无法进入导轨内部狭小空间而导致垫片横向定位误差大。
本送料拉铆方法采用视觉处理方法,分别定位导轨和垫片的铆接孔位置,并计算导轨和垫片铆接孔在纵向自由度上的差值作为送料纵向进给量,保证了垫片和导轨铆接孔在纵向自由度上的对齐精度;同时,以导轨上铆接孔位置坐标作为自动拉铆装置的移动坐标,保证了铆接位置的精准度。
本送料拉铆方法采用组合滤波方式处理采集的工件图像,采用二次寻优方法寻找 最优滤波组合,降低图像处理计算量,提高图像的滤波效果,利于工件孔位的识别精度。
附图说明
图1为本发明垫片定位装置图;
图2为本发明垫片定位铆接示意图;
图3为本发明旋转补料机构图;
图4为本发明双向定位送料机构图;
图5为本发明双向定位送料机构局部视图;
图6为本发明纵向定位机构自锁状态图;
图7为本发明三轴视觉拉铆机构图。
图8为本发明的铆接孔识别定位流程图
图1至图8中:
1底座;2旋转补料机构;21齿轮轴;22旋转料盘;23料盒;231垫片出料孔;232推板推入孔;24推料气缸;25推板;
3双向定位送料机构;31送料模组;32底板;33定位底板;34顶紧气缸;35顶紧块;36转动定位块;37左滑动定位块;38右滑动定位块;39垫片滑道;310光轴;311光轴支座;312自锁杆;313自锁杆导向块;314导轨;315滑块;
4三轴视觉拉铆机构;41X向模组;42Y向模组;43Z向模组;44拉铆枪安装座;45拉铆枪;46CCD相机;47光源;5导轨;51导轨铆接孔;6垫片;61垫片铆接孔。
具体实施方式
下面结合附图,详细描述本发明的具体实施方案。
如图1所示,电梯导轨垫片连续自动送料与智能定位拉铆装置,包括底座1、及设置在底座上的旋转补料机构2、双向定位送料机构3和三轴视觉拉铆机构4;
如图2所示,本装置用于将垫片6准确送至导轨5内部,并将导轨铆接孔51和垫片铆接孔61对齐;
如图3所示,旋转补料机构2包括转动设置在底座上的齿轮轴21,齿轮轴21由电机驱动转动,带动安装在底座1上的环形旋转料盘22转动,旋转料盘22上周向均匀设有若干料盒23,料盒23远离旋转料盘中心的外侧设有垫片出料口231,料盒23靠近旋转料盘中心的内侧设有推板推入孔232,推料气缸24安装在底座上且位于环形旋转料盘中,推料气缸24的活塞杆端部上设有与推板推入孔232相配合的推板25,推料气缸24带动推板25伸出时,推板25通过推板推入孔232进入料盒23内,推动料盒23内的垫片6经垫片出料孔231进入双向定位送料机构3;
如图4~6所示,双向定位送料机构3包括设置在底座1上的送料模组31,送料模组31的移动平台上设有基板32,基板32上设有定位底板33,定位底板33尾部上设有顶紧气缸34,顶紧气缸34的活塞杆上设有顶紧块35,顶紧块35下部上远离顶紧气缸34的一侧设有平行于顶紧气缸34的活塞杆的自锁杆312,定位底板33头部铰接有由自锁杆312推动旋转的L形的转动定位块36,定位底板33底部设有供自锁杆312穿过的自锁杆导向块313;
定位底板33两侧分别设有安装座315,安装座315上设有滑座314,安装座315上设 有截面呈倒T形的卡槽,所述滑座314下部设有与卡槽相配合的卡接部。两侧滑座314上都设有侧定位块37、38,两个侧定位块37、38之间的距离与垫片宽度相等,侧定位块37、38上设有光轴310,光轴310上套有弹簧316,光轴310尾部活动穿过设置在基板32上的光轴支座311;靠近旋转补料机构2的侧定位块38上设有垫片进口39,垫片进口39上表面与定位底板33上表面持平;侧定位块37、38靠近弹簧316的端部下方设有与安装座315端面相配合的限位凸块,侧定位块37、38在弹簧316作用下限位凸块顶紧安装座315端面使得侧定位块37、38保持位置固定;
三轴视觉拉铆机构4包括设置在底座1上的X向模组41,X向模组41上设有Y向模组42;Y向模组42上设有Z向模组43,Z向模组43上设有拉铆枪安装座44,拉铆枪安装座上固定有拉铆枪45,Z向模组43上还设有与控制中心电连接的CCD相机46和光源47。
当垫片6从旋转补料机构2中推出后,垫片6经过垫片进口39进入双向定位送料机构3中,此时顶紧气缸34伸出,带动顶紧块35向前运动,顶紧块35推动垫片6向前运动,垫片6运动过程中,在两个侧定位块37、38限位下,保证横向位置精度;同时,顶紧块35带动自锁杆312向前运动,在垫片到达转动定位块36位置处之前,自锁杆312将转动定位块36顶起转动直至垂直状态,如图6所示,此时,顶紧块35推动垫片6顶紧转动定位块36,实现垫片6纵向定位;
垫片6定位锁紧后,送料模组31带动基板32向前运动,将垫片6送至空心电梯导轨5内部,当垫片6进入空心电梯导轨5内部时,两个侧滑动定位块37、38接触空心电梯导轨5外轮廓,空心电梯导轨5外轮廓将定位侧滑动定位块37、38压缩向后移动;当铆接完成后,顶紧气缸34缩回,带动自锁杆312缩回,解除转动定位块36锁死状态,转动定位块36向下转动,送料模组31带动定位机构退回,两侧定位块37、38在弹簧作用下复位;
如图7所示,三轴视觉拉铆机构4包括X向模组41,X向模组41上装有Y向模组42;Y向模组42上装有Z向模组43,Z向模组43上装有拉铆枪安装座44,拉铆枪安装座上固定有拉铆枪45,Z向模组43上还装有CCD相机46和光源47。
如图8所示,上述电梯导轨垫片连续自动送料与智能定位拉铆装置的送料拉铆方法,包括以下步骤:
1、导轨铆接孔定位
1.1图像采集
控制三轴视觉拉铆机构4运动,带动CCD相机46至电梯导轨拍照位置,使电梯导轨铆接孔51处于CCD相机46视野内,通过CCD相机46采集电梯导轨5端部图像;
1.2模板匹配
将采集的图像进行灰度化处理,采用模板匹配确定目标区域,将目标区域裁剪出来,作为后续孔位识别处理的源图像;
1.3图像预处理
采用组合滤波的方式对步骤1.2的源图像进行降噪处理;组合滤波中包含均值滤波、高斯滤波、中值滤波、双边滤波,设定各滤波的内核大小,执行组合滤波后,产生去噪后的图像;具体如下:
a.设定各滤波内核大小的取值范围:记均值滤波内核大小为Ka,高斯滤波内核大小为Kb,中值滤波内核大小为Kc,双边滤波内核大小为Kd,且取值范围均为[1,20];
b.一次寻优,分别将各滤波内核大小从取值范围内平均取m个值,m为5~10中任意整数,各个滤波分别取出一个内核大小值,得到m 4个滤波内核大小组合值,采用m 4个滤波内核大小组合值分别作为组合滤波参数,对图像进行降噪处理,得到m 4个降噪后的图像,计算m 4个降噪后图像的信噪比,从中选出信噪比最大的图像,对应的滤波内核大小组合值记为[Ka′,Kb′,Kc′,Kd′];
c.二次寻优,将上一步得到的滤波内核大小组合值[Ka′,Kb′,Kc′,Kd′]扩大范围,得到新的滤波内核大小取值范围:均值滤波内核取值范围为[Ka′-T,Ka′+T]];高斯滤波内核取值范围为[Kb′-T,Kb′+T];中值滤波内核取值范围为[Kc′-T,Kc′+T];双边滤波内核取值范围为[Kd′-T,Kd′+T],T取[0.2,1.2];将各个滤波内核值从新的取值范围内平均取出n个值,n为5~10中任意整数,得到n 4个滤波内核组合值,采用n 4个滤波内核大小组合值分别作为组合滤波参数,对图像进行降噪处理得到n 4个降噪后的图像,计算n 4个降噪后图像的信噪比,从中选出信噪比最大的图像,作为后续处理的源图像;
1.4图像强化
对步骤1.3预处理后的源图像进行二值化和形态学操作,形态学操作包括图像腐蚀和膨胀,对腐蚀后的图像进行膨胀操作,以去除干扰区域并保持原始孔位区域轮廓不变;
1.5孔位识别
采用轮廓识别方法,识别图像中的孔特征,得到铆接孔在图像坐标系中的坐标;
1.7孔坐标变换
将图像坐标系中的铆接孔坐标与坐标变换矩阵相乘,得到三轴视觉拉铆机构4坐标系中的坐标,两个导轨铆接孔51位置坐标分别为(x1, y1)和(x2, y2);其中,坐标变换矩阵在CCD相机46标定过程中获得;
2、垫片补料
推料气缸24伸出带动推板25伸出,推板25通过推板推入孔232进入料盒23内,推动料盒23内的垫片6经过垫片出料孔231后,进入双向定位送料机构3;若当前位置料盒23内的垫片6推完,电机带动齿轮轴21转动,驱动旋转料盘22转动,将下一位置料盒23的推板推入孔232对准推板25即可;
3、垫片双向定位
当垫片6从旋转补料机构2中推出后,垫片6经过垫片滑道39进入双向定位送料机构3中,此时顶紧气缸34伸出,带动顶紧块35向前运动,顶紧块35推动垫片6向前运动,垫片6运动过程中,在两侧滑动定位块限位条件下,保证横向位置精度;同时,顶紧块35带动自锁杆312向前运动,在垫片到达转动定位块36位置处之前,自锁杆312将转动定位块36顶起转动,并锁死至垂直状态,如图7所示,此时,顶紧块35可继续向前运动,推动垫片6顶紧转动定位块36,实现垫片6纵向定位;
4、垫片铆接孔定位
4.1图像采集
垫片6双向定位完成后,送料模组31带动垫片6移动至拍照位,拍照位处的垫片6前端面距离导轨5端面5~15mm,为使垫片铆接孔61位置处于CCD相机46视野内,须将CCD相机46沿Y方向向后移动距离ε,ε根据现场情况设定;
4.2模板匹配
将采集的图像进行灰度化处理,采用模板匹配确定目标区域,将目标区域裁剪出来,作为后续孔位识别处理的源图像;
4.3图像预处理
采用组合滤波的方式对步骤4.2的图像进行降噪处理;
组合滤波中包含均值滤波、高斯滤波、中值滤波、双边滤波,设定各滤波的内核大小,执行组合滤波后,产生去噪后的图像,具体方法如下:
a.设定各滤波内核大小的取值范围,具体如下;
均值滤波内核大小La,高斯滤波内核大小Lb,中值滤波内核大小Lc,双边滤波内核大小Ld,取值范围均为[1,20];
b.一次寻优,分别将各滤波内核大小从取值范围内平均取i个值,i取5~10,各个滤波分别取出一个内核大小值,得到i 4个滤波内核大小组合值,采用i 4个滤波内核大小组合值分别作为组合滤波参数,对图像进行降噪处理,得到m4个降噪后的图像,计算i 4个降噪后图像的信噪比,从中选出信噪比最大的图像,对应的滤波内核大小组合值记为[La′,Lb′,Lc′,Ld′];
c.二次寻优,将上一步得到的滤波内核大小组合值[La′,Lb′,Lc′,Ld′]扩大范围,得到新的滤波内核大小取值范围:均值滤波内核取值范围为[La′-P,La′+P]];高斯滤波内核取值范围为[Lb′-P,Lb′+P];中值滤波内核取值范围为[Lc′-P,Lc′+P];双边滤波内核取值范围为[Ld′-P,Ld′+P],P取[0.2,1.2];将各个滤波内核值从心的取值范围内平均取出j个值,j取5~10,得到j 4个滤波内核组合值,采用j 4个滤波内核大小组合值分别作为组合滤波参数,对图像进行降噪处理得到j 4个降噪后的图像,计算j 4个降噪后图像的信噪比,从中选出信噪比最大的图像,作为后续处理的源图像;
4.4图像强化
对预处理后的图像进行二值化和形态学操作,形态学操作包括图像腐蚀和膨胀,对腐蚀后的图像进行膨胀操作,可去除干扰区域并保持原始孔位区域轮廓不变;
4.5孔位识别
采用轮廓识别方法,识别图像中的孔特征,得到铆接孔在图像坐标系中的坐标;
4.6孔坐标变换
将图像坐标系中的铆接孔坐标,与坐标变换矩阵相乘,得到三轴视觉拉铆机构4坐标系中的坐标,两个垫片铆接孔61位置坐标分别为(Px1,Py1)和(Px2,Py2);
5、垫片送料
计算导轨铆接孔51和垫片铆接孔61位置坐标的纵向差值δ,作为送料模组31的进给量,保证导轨铆接孔51和垫片铆接孔61精准对齐;
其中,纵向差值
Figure PCTCN2022089425-appb-000002
6、自动铆接
三轴视觉拉铆机构4根据导轨铆接孔51的坐标(x1,y1)和(x2,y2),带动拉铆枪45移动铆接孔位,完成垫片铆接;
7、定位机构复位
铆接完成后,顶紧气缸34缩回,带动自锁杆312缩回,此时转动定位块36可转动, 解除转动定位块36锁死状态,此时送料模组31带动定位机构退回,两侧滑动定位块37和38在弹簧作用下复位。
上述的实施例仅例示性说明本发明创造的原理及其功效,以及部分运用的实施例,而非用于限制本发明;应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (5)

  1. 电梯导轨垫片连续自动送料与智能定位拉铆装置,其特征在于:包括底座、以及设置在底座上的旋转补料机构、双向定位送料机构和三轴视觉拉铆机构;
    旋转补料机构包括转动设置在底座上的齿轮轴,齿轮轴由电机驱动转动,带动安装在底座上的环形旋转料盘转动,旋转料盘上周向均匀设有若干料盒,料盒远离旋转料盘中心的外侧设有垫片出料口,料盒靠近旋转料盘中心的内侧设有推板推入孔,推料气缸安装在底座上且位于环形旋转料盘中,推料气缸的活塞杆端部上设有与推板推入孔相配合的推板,推料气缸带动推板伸出时,推板通过推板推入孔进入料盒内,推动料盒内的垫片经垫片出料孔进入双向定位送料机构;
    双向定位送料机构包括设置在底座上的送料模组,送料模组的移动平台上设有基板,基板上设有定位底板,定位底板尾部上设有顶紧气缸,顶紧气缸的活塞杆上设有顶紧块,顶紧块下部上远离顶紧气缸的一侧设有平行于顶紧气缸的活塞杆的自锁杆,定位底板头部铰接有由自锁杆推动旋转的L形的转动定位块,
    定位底板两侧分别设有安装座,安装座上设有滑座,两侧滑座上都设有侧定位块,两个侧定位块之间的距离与垫片宽度相等,侧定位块上设有光轴,光轴上套有弹簧,光轴尾部活动穿过设置在基板上的光轴支座;靠近旋转补料机构的侧定位块上设有垫片进口,垫片进口上表面与定位底板上表面持平;侧定位块靠近弹簧的端部下方设有与安装座端面相配合的限位凸块,侧定位块在弹簧作用下限位凸块顶紧安装座端面使得侧定位块保持位置固定;
    三轴视觉拉铆机构包括设置在底座上的X向模组,X向模组上设有Y向模组;Y向模组上设有Z向模组,Z向模组上设有拉铆枪安装座,拉铆枪安装座上固定有拉铆枪,Z向模组上还设有与控制中心电连接的CCD相机和光源。
  2. 如权利要求1所述的电梯导轨垫片连续自动送料与智能定位拉铆装置,其特征在于:所述安装座上设有截面呈倒T形的卡槽,所述滑座下部设有与卡槽相配合的卡接部。
  3. 如权利要求2所述的电梯导轨垫片连续自动送料与智能定位拉铆装置,其特征在于:所述定位底板底部设有供自锁杆穿过的自锁杆导向块。
  4. 如权利要求1-3中任意项所述的电梯导轨垫片连续自动送料与智能定位拉铆装置的送料拉铆方法,包括以下步骤:
    1、导轨铆接孔定位
    1.1图像采集
    控制三轴视觉拉铆机构运动,带动CCD相机至电梯导轨拍照位置,使电梯导轨铆接孔处于CCD相机视野内,通过CCD相机采集电梯导轨端部图像;
    1.2模板匹配
    将采集的图像进行灰度化处理,采用模板匹配确定目标区域,将目标区域裁剪出来,作为后续孔位识别处理的源图像;
    1.3图像预处理
    采用组合滤波的方式对步骤1.2的源图像进行降噪处理;组合滤波中包含均值滤波、高斯滤波、中值滤波、双边滤波,设定各滤波的内核大小,执行组合滤波后,产生去噪后的图像;具体如下:
    a.设定各滤波内核大小的取值范围:记均值滤波内核大小为Ka,高斯滤波内核大小为 Kb,中值滤波内核大小为Kc,双边滤波内核大小为Kd,且取值范围均为[1,20];
    b.一次寻优,分别将各滤波内核大小从取值范围内平均取m个值,各个滤波分别取出一个内核大小值,得到m 4个滤波内核大小组合值,采用m 4个滤波内核大小组合值分别作为组合滤波参数,对图像进行降噪处理,得到m 4个降噪后的图像,计算m 4个降噪后图像的信噪比,从中选出信噪比最大的图像,对应的滤波内核大小组合值记为[Ka′,Kb′,Kc′,Kd′];
    c.二次寻优,将上一步得到的滤波内核大小组合值[Ka′,Kb′,Kc′,Kd′]扩大范围,得到新的滤波内核大小取值范围:均值滤波内核取值范围为[Ka′-T,Ka′+T]];高斯滤波内核取值范围为[Kb′-T,Kb′+T];中值滤波内核取值范围为[Kc′-T,Kc′+T];双边滤波内核取值范围为[Kd′-T,Kd′+T],T取[0.2,1.2];将各个滤波内核值从新的取值范围内平均取出n个值,得到n 4个滤波内核组合值,采用n 4个滤波内核大小组合值分别作为组合滤波参数,对图像进行降噪处理得到n 4个降噪后的图像,计算n 4个降噪后图像的信噪比,从中选出信噪比最大的图像,作为后续处理的源图像;
    1.4图像强化
    对步骤1.3预处理后的源图像进行二值化和形态学操作,形态学操作包括图像腐蚀和膨胀,对腐蚀后的图像进行膨胀操作,以去除干扰区域并保持原始孔位区域轮廓不变;
    1.5孔位识别
    采用轮廓识别方法,识别图像中的孔特征,得到铆接孔在图像坐标系中的坐标;
    1.7孔坐标变换
    将图像坐标系中的铆接孔坐标与坐标变换矩阵相乘,得到三轴视觉拉铆机构坐标系中的坐标,两个导轨铆接孔位置坐标分别为(x1,y1)和(x2,y2);其中,坐标变换矩阵在CCD相机标定过程中获得;
    2、垫片补料
    推料气缸伸出带动推板伸出,推板通过推板推入孔进入料盒内,推动料盒内的垫片经过垫片出料孔后,进入双向定位送料机构;若当前位置料盒内的垫片推完,电机带动齿轮轴转动,驱动旋转料盘转动,将下一位置料盒的推板推入孔对准推板即可;
    3、垫片双向定位
    当垫片从旋转补料机构中推出后,垫片经过垫片滑道进入双向定位送料机构中,此时顶紧气缸伸出,带动顶紧块向前运动,顶紧块推动垫片向前运动,垫片运动过程中,在两侧滑动定位块限位条件下,保证横向位置精度;顶紧块带动自锁杆向前运动,在垫片到达转动定位块位置处之前,自锁杆将转动定位块顶起转动,并锁死至垂直状态,顶紧块推动垫片顶紧转动定位块,实现垫片纵向定位;
    4、垫片铆接孔定位
    4.1图像采集
    垫片双向定位完成后,送料模组带动垫片移动至拍照位,并将CCD相机沿Y方向向后移动距离ε至拍照位;
    4.2模板匹配
    将采集的图像进行灰度化处理,采用模板匹配确定目标区域,将目标区域裁剪出来,作为后续孔位识别处理的源图像;
    4.3图像预处理
    采用组合滤波的方式对步骤4.2的图像进行降噪处理;组合滤波中包含均值滤波、高斯滤波、中值滤波、双边滤波,设定各滤波的内核大小,执行组合滤波后,产生去噪后的图像,具体如下:
    a.设定各滤波内核大小的取值范围,记均值滤波内核大小为La,高斯滤波内核大小为Lb,中值滤波内核大小为Lc,双边滤波内核大小为Ld,取值范围均为[1,20];
    b.一次寻优,分别将各滤波内核大小从取值范围内平均取i个值,各个滤波分别取出一个内核大小值,得到i 4个滤波内核大小组合值,采用i 4个滤波内核大小组合值分别作为组合滤波参数,对图像进行降噪处理,得到i 4个降噪后的图像,计算i 4个降噪后图像的信噪比,从中选出信噪比最大的图像,对应的滤波内核大小组合值记为[La′,Lb′,Lc′,Ld′];
    c.二次寻优,将上一步得到的滤波内核大小组合值[La′,Lb′,Lc′,Ld′]扩大范围,得到新的滤波内核大小取值范围:均值滤波内核取值范围为[La′-P,La′+P]];高斯滤波内核取值范围为[Lb′-P,Lb′+P];中值滤波内核取值范围为[Lc′-P,Lc′+P];双边滤波内核取值范围为[Ld′-P,Ld′+P],P取[0.2,1.2];将各个滤波内核值从心的取值范围内平均取出j个值,得到j 4个滤波内核组合值,采用j 4个滤波内核大小组合值分别作为组合滤波参数,对图像进行降噪处理得到j 4个降噪后的图像,计算j 4个降噪后图像的信噪比,从中选出信噪比最大的图像,作为后续处理的源图像;
    4.4图像强化
    对预处理后的图像进行二值化和形态学操作,形态学操作包括图像腐蚀和膨胀,对腐蚀后的图像进行膨胀操作,可去除干扰区域并保持原始孔位区域轮廓不变;
    4.5孔位识别
    采用轮廓识别方法,识别图像中的孔特征,得到铆接孔在图像坐标系中的坐标;
    4.6孔坐标变换
    将图像坐标系中的铆接孔坐标,与坐标变换矩阵相乘,得到三轴视觉拉铆机构坐标系中的坐标,两个垫片铆接孔位置坐标分别为(Px1,Py1)和(Px2,Py2);
    5、垫片送料
    计算导轨铆接孔和垫片铆接孔位置坐标的纵向差值δ,作为送料模组的进给量,保证导轨铆接孔和垫片铆接孔精准对齐;
    其中,纵向差值
    Figure PCTCN2022089425-appb-100001
    6、自动铆接
    三轴视觉拉铆机构根据导轨铆接孔的坐标(x1,y1)和(x2,y2),带动拉铆枪移动铆接孔位,完成垫片铆接;
    7、定位机构复位
    铆接完成后,顶紧气缸缩回,带动自锁杆缩回,此时转动定位块可转动,解除转动定位块锁死状态,此时送料模组带动定位机构退回,两侧滑动定位块在弹簧作用下复位。
  5. 如权利要求4所述的电梯导轨垫片连续自动送料与智能定位拉铆装置的送料拉铆方法,其特征在于:所述m为5~10中任意整数,所述n为5~10中任意整数,i取5~10中任意整数,j取5~10中任意整数。
PCT/CN2022/089425 2021-06-10 2022-04-27 电梯导轨垫片连续自动送料与智能定位拉铆装置及其送料拉铆方法 WO2022257633A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110647023.1 2021-06-10
CN202110647023.1A CN113510196A (zh) 2021-06-10 2021-06-10 电梯导轨垫片连续自动送料与智能定位拉铆装置及其送料拉铆方法

Publications (1)

Publication Number Publication Date
WO2022257633A1 true WO2022257633A1 (zh) 2022-12-15

Family

ID=78065410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089425 WO2022257633A1 (zh) 2021-06-10 2022-04-27 电梯导轨垫片连续自动送料与智能定位拉铆装置及其送料拉铆方法

Country Status (2)

Country Link
CN (1) CN113510196A (zh)
WO (1) WO2022257633A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115990854A (zh) * 2023-03-23 2023-04-21 天津津荣天宇精密机械股份有限公司 一种自动检测并压入橡胶套的方法
CN117206409A (zh) * 2023-11-06 2023-12-12 包头江馨微电机科技有限公司 一种音圈马达壳体裁切装置及系统
CN117583496A (zh) * 2024-01-17 2024-02-23 潍坊宝润机械有限公司 一种汽车发动机配件的冲压装置及其方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113510196A (zh) * 2021-06-10 2021-10-19 江苏科技大学 电梯导轨垫片连续自动送料与智能定位拉铆装置及其送料拉铆方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292266A (ja) * 2002-03-29 2003-10-15 Toshiba Elevator Co Ltd エレベータ用ガイドレールの取付部材
CN106142094A (zh) * 2015-04-20 2016-11-23 鸿富锦精密工业(深圳)有限公司 夹持机构
CN209064999U (zh) * 2018-10-26 2019-07-05 张家港市通达电梯装璜有限公司 一种电梯导轨与其垫块的自动装配设备
CN113510196A (zh) * 2021-06-10 2021-10-19 江苏科技大学 电梯导轨垫片连续自动送料与智能定位拉铆装置及其送料拉铆方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292266A (ja) * 2002-03-29 2003-10-15 Toshiba Elevator Co Ltd エレベータ用ガイドレールの取付部材
CN106142094A (zh) * 2015-04-20 2016-11-23 鸿富锦精密工业(深圳)有限公司 夹持机构
CN209064999U (zh) * 2018-10-26 2019-07-05 张家港市通达电梯装璜有限公司 一种电梯导轨与其垫块的自动装配设备
CN113510196A (zh) * 2021-06-10 2021-10-19 江苏科技大学 电梯导轨垫片连续自动送料与智能定位拉铆装置及其送料拉铆方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115990854A (zh) * 2023-03-23 2023-04-21 天津津荣天宇精密机械股份有限公司 一种自动检测并压入橡胶套的方法
CN115990854B (zh) * 2023-03-23 2023-05-23 天津津荣天宇精密机械股份有限公司 一种自动检测并压入橡胶套的方法
CN117206409A (zh) * 2023-11-06 2023-12-12 包头江馨微电机科技有限公司 一种音圈马达壳体裁切装置及系统
CN117206409B (zh) * 2023-11-06 2024-01-12 包头江馨微电机科技有限公司 一种音圈马达壳体裁切装置及系统
CN117583496A (zh) * 2024-01-17 2024-02-23 潍坊宝润机械有限公司 一种汽车发动机配件的冲压装置及其方法

Also Published As

Publication number Publication date
CN113510196A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2022257633A1 (zh) 电梯导轨垫片连续自动送料与智能定位拉铆装置及其送料拉铆方法
CN109201413B (zh) 一种视觉定位点胶系统及其方法
CN109604096B (zh) 一种车轴自动喷漆装置和方法
CN107116281B (zh) 大范围智能坡口切割系统及方法
CN113155834A (zh) 一种数据采集工作站的连接件检测设备
CN110814398B (zh) 一种机器视觉辅助曲面加工装置及方法
CN112345553A (zh) 一种硬盘零件检测装置及检测方法
CN114705693A (zh) 用于壳体结构缺陷检测的ai视觉检测设备和系统
CN215199755U (zh) 用于飞机蒙皮制孔锪窝的视觉定位及检测机构
CN209525282U (zh) 一种led双面自动光学检测机
CN105783719A (zh) 一种利用平面镜进行货架横梁安装孔检测的装置
CN209841714U (zh) 一种机器视觉检测装置
CN112485255A (zh) 一种基于机器视觉的汽车零部件装配精确度检测方法
CN215786268U (zh) 电梯导轨垫片连续自动送料与智能定位拉铆装置
CN214472829U (zh) 一种基于人工智能的笔记本电脑外观检测设备
CN213633195U (zh) 一种工件底部的视觉检测设备
CN116087222A (zh) 晶圆暗场检测装置及检测方法
CN113507555B (zh) 一种可灵活多角度调节的计算机图像识别装置
CN213398249U (zh) 一种基于机器视觉的零件表面缺陷检测设备
CN105508822B (zh) 一种镜头夹持装置
CN210063624U (zh) 拍照贴标机构
JP3755179B2 (ja) 車両ドアの取外し装置
CN219933499U (zh) 一种传感器视觉检测机拍摄装置
CN111390725A (zh) 高铁铝合金涂装车体腻子自动化打磨系统
CN107839329A (zh) 一种基于多尺寸芯片与多膜片匹配的cob自动贴膜机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22819235

Country of ref document: EP

Kind code of ref document: A1