WO2022257626A1 - 足部矫正件的制造方法和足部矫正件 - Google Patents

足部矫正件的制造方法和足部矫正件 Download PDF

Info

Publication number
WO2022257626A1
WO2022257626A1 PCT/CN2022/089048 CN2022089048W WO2022257626A1 WO 2022257626 A1 WO2022257626 A1 WO 2022257626A1 CN 2022089048 W CN2022089048 W CN 2022089048W WO 2022257626 A1 WO2022257626 A1 WO 2022257626A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
correction
foot
user
orthotic
Prior art date
Application number
PCT/CN2022/089048
Other languages
English (en)
French (fr)
Inventor
姚志锋
李杨
李威
Original Assignee
清锋(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清锋(北京)科技有限公司 filed Critical 清锋(北京)科技有限公司
Publication of WO2022257626A1 publication Critical patent/WO2022257626A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43DMACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
    • A43D1/00Foot or last measuring devices; Measuring devices for shoe parts
    • A43D1/02Foot-measuring devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • A61B5/1038Measuring plantar pressure during gait
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1072Measuring physical dimensions, e.g. size of the entire body or parts thereof measuring distances on the body, e.g. measuring length, height or thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1079Measuring physical dimensions, e.g. size of the entire body or parts thereof using optical or photographic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • A61B5/1128Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique using image analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/14Special medical insertions for shoes for flat-feet, club-feet or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present application relates to the field of orthotics, in particular to a method of manufacturing a orthotic and a orthotic.
  • the foot is an important part of the human body movement system. Under normal circumstances, when the foot is in contact with the ground during exercise, the force on the foot is normally distributed on the soles of the feet at different stages of exercise, providing power for human movement and ensuring the stability of movement. Done successfully. However, under the influence of common factors such as lack of exercise, sedentary, bad posture, etc., abnormalities in the foot structure of human feet are becoming more and more frequent.
  • the abnormal structure of the foot will lead to uneven force on the foot, and the pressure will be concentrated on a certain area of the foot to cause pain, which will affect the activity of the human body and prompt the human body to form a compensatory mechanism to compensate for the changes in the foot structure, abnormal function and loss of the ankle. Resulting decrease in mobility.
  • flat feet are a common foot structural abnormality characterized by a low or missing arch. When standing and walking, the arch of the flat foot collapses, causing foot pain.
  • the foot orthotic is a treatment device for abnormal foot structure, which can adjust the position of the plantar load point, transfer the stress concentration point of the foot, provide force compensation for the abnormal part of the foot force, reasonably disperse the pressure on the plantar, and reduce the pressure on the foot. The effect of pain, but during the correction process, the user will feel very uncomfortable.
  • one of the embodiments of the present application provides a method for manufacturing a foot orthotic, the manufacturing method includes the following steps: acquiring user information; the user information includes plantar information of the user's foot to be corrected; wherein , the plantar information includes foot arch information and foot length information; based on the user information, at least two correction cycles are determined; based on the user information, an orthotic model corresponding to at least one correction cycle is determined.
  • one of the embodiments of the present application further provides a foot orthotic, which is manufactured by the manufacturing method described in any of the above technical solutions.
  • Fig. 1 is a schematic structural view of a foot orthosis according to some embodiments of the present application
  • FIG. 2 is a flowchart of a method of manufacturing a foot orthotic according to some embodiments of the present application
  • FIG. 3 is a flow chart of a method for determining a correction cycle according to some embodiments of the present application.
  • Fig. 4 is a flowchart of a method for determining a correction model according to some embodiments of the present application.
  • Fig. 5 is a flowchart of a method for determining a correction model according to other embodiments of the present application.
  • Fig. 6A is a schematic diagram of a plantar outline of a normal foot according to some embodiments of the present application.
  • Fig. 6B is a schematic diagram of a plantar outline of a flat foot according to some embodiments of the present application.
  • the flow chart is used in this application to illustrate the operations performed by the system according to the embodiment of this application. It should be understood that the preceding or following operations are not necessarily performed in the exact order. Instead, various steps may be processed in reverse order or simultaneously. At the same time, other operations can be added to these procedures, or a certain step or steps can be removed from these procedures.
  • a foot orthotic is an orthotic treatment device used to correct structural abnormalities of the foot.
  • Fig. 1 is a schematic structural view of a foot orthosis according to some embodiments of the present application.
  • the foot orthotic is an orthotic insole for correcting flat feet.
  • the orthotic insole may include a forefoot part 110 , an arch support part 120 and a heel part 130 arranged in sequence from front to back. It can be understood that when the user uses the orthotic insole, the forefoot of the user's foot can be correspondingly located at the forefoot portion 110 of the orthotic insole, and the arch of the user's foot can be correspondingly located at the arch support portion 120 of the orthotic insole.
  • the heel of the user's foot can be correspondingly located on the heel portion 130 of the orthotic insole.
  • the foot orthotic may be a shoe for correcting the foot, and the insole used in the shoe may have a structure similar to the orthotic insole shown in FIG. 1 .
  • the height b of the arch support portion 120 (ie, the vertical distance between the highest point of the arch support portion 120 and the bottom surface of the orthotic insole) may be higher than the height a of the forefoot portion 110 (ie, the vertical distance between the forefoot portion 110 The vertical distance between the highest point and the bottom surface of the orthotic insole) and the height c of the heel portion 130 (ie the vertical distance between the highest point of the heel portion 130 and the bottom surface of the orthotic insole).
  • the height a of the forefoot part, the height b of the arch support part 120 and the height c of the heel part 130 can be understood as the height of the orthopedic insole when it is not compressed (that is, when it is not worn).
  • the shape and height of the arch support portion 130 may be determined based on correction-related information of the user's foot (foot length information, foot arch information, etc. as described below). During the correction process, the arch support portion 130 of the corrective insole can contact with the arch of the user's foot and provide support for the arch, so as to improve the stress on the arch and change the shape of the arch.
  • the orthotic may be prefabricated.
  • the corresponding types of orthotics can be produced directly according to the classification of common foot deformities.
  • the orthotics may be custom made.
  • plantar orthotics corresponding to the user's plantar deformity classification and plantar information can be manufactured based on the user's plantar information (such as foot arch information and foot length information).
  • foot orthotics classified as flat feet Taking the foot orthotics classified as flat feet as an example, a foot that can compensate for the height difference between the user's arch and the normal arch can be designed and manufactured based on the user's arch height and normal arch height.
  • the foot orthotic can be used to provide force compensation for the stress-bearing parts of the sole of the foot.
  • the force compensation provided by the foot orthosis designed and manufactured by the above-mentioned method is generally very rigid, and the user feels severe pain when using the foot orthosis, and it is difficult to agree on using it.
  • correction of structural abnormalities of the foot may be achieved in stages. Foot orthotics with different correction amounts can be used correspondingly in each correction stage, so that the foot orthotics used in each stage can ensure a better correction effect and reduce the user's pain.
  • Some embodiments of the present application provide a method for manufacturing a foot orthotic and the foot orthosis. The manufacturing method can determine at least two correction cycles based on user information (such as foot arch information), and based on user information (such as foot arch information) and foot length information) to determine the orthosis model for at least one cycle.
  • the orthotics generated based on the orthotic model can correct the foot in stages, so that the user can correct the foot in each orthotic cycle.
  • the pain is greatly reduced, the user experience is improved, and the user is more likely to use the orthotics persistently to ensure the corrective effect.
  • the staged orthotic manufacturing method can be used to manufacture flatfoot, eversion orthotics, as well as hallux varus orthotics.
  • the manufacturing method of the staged orthotics can also be used for other parts of the orthosis, for example, it is also possible to manufacture the staged cervical orthodontics, and the staged lumbar orthotics and other orthotics.
  • Fig. 2 is an exemplary flowchart of a method for manufacturing a foot orthotic according to some embodiments of the present specification. As shown in Fig. 2 , the process 200 may include the following steps:
  • Step 210 acquire user information.
  • the user information includes the sole information of the user's foot to be corrected, and the sole information includes arch information and foot length information.
  • User information may be understood as information related to the foot correction of a user wearing the foot orthosis.
  • the user information may include plantar information of the user's foot to be corrected.
  • Plantar information can be understood as information that can reflect at least one of the size, contour, and stress of the sole of the foot (including the forefoot, arch, heel, etc.).
  • Plantar information may include arch information and foot length information.
  • Foot arch information can be understood as relevant information that can reflect the shape of the foot arch.
  • the arch information may include arch height information, arch shape information, and the like.
  • the height information of the arch of the foot may include the height of one or more positions of the arch of the foot to be corrected.
  • the height information of the arch of the foot may include the height of the highest point of the arch of the foot (that is, the maximum height of the arch of the foot) of the foot to be corrected.
  • the shape information of the arch of the foot may include profile data of the arch of the foot.
  • the foot length information may be understood as information related to the length of the user's foot.
  • the foot length information may include the length of the foot, and the length of the foot may be the distance from the most front end of the foot (the front end of the front toe) to the rearmost end of the foot (the rear end of the rear heel).
  • the foot length information may also include shoe size information corresponding to the user's feet (such as size 38, size 42, etc.).
  • the plantar information may further include at least one of plantar shape information, plantar pressure information, gait information, and plantar injury location information.
  • the sole shape information may reflect information on the outer contour of the sole.
  • FIG. 6A shows the outer contour of the sole of a normal foot
  • FIG. 6B shows the outer contour of the sole of a foot with flat feet to be corrected.
  • the plantar pressure information can reflect the pressure values of each area of the sole of the user when the user is standing normally.
  • the gait information may reflect the shape of the user's feet when walking, for example, the angle information between the feet and the angle information between the feet and the ground.
  • the plantar injury position information may reflect the specific position of the plantar injury area of the foot to be corrected.
  • the user information may also include at least one of full-foot information of the foot to be corrected, user demand information, and user weight information.
  • Full-foot information can be understood as information that reflects the size, contour, and stress of the full-foot.
  • full foot dimensions may include instep height dimensions, thumb height dimensions, heel width dimensions, and the like.
  • the outline of the whole foot may include a three-dimensional outline of the whole foot.
  • the force of the whole foot can include the force of each area of the foot during walking and standing.
  • the user demand information can be understood as the personalized demand information of the user wearing the foot orthotic during the correction process.
  • user demand information may include information such as the correction time expected by the user, the correction strength the user can bear, and the like.
  • the user's weight information can largely affect the pressure on each part of the plantar part of the foot to be corrected.
  • the user information may also include information such as the user's gender, height, age, and disease history.
  • the method for obtaining plantar information and/or full-foot information can be manual measurement, and the measured plantar information and/or full-foot information-related data can be manually input into a processing device (such as a device for constructing an orthotic model. computer).
  • the manual measurement may be to manually measure the user's feet with a measuring tool, where the measuring tool may include a ruler, a tape measure, a vernier caliper, and the like.
  • the method for obtaining plantar information and full-foot information can be to use a measuring device to perform machine measurement, and the measuring device can transmit the measured data (such as through a network) to a processing device (such as performing orthotic model construction). computer).
  • the measuring device may photograph or scan the user's foot to obtain a two-dimensional image and/or a three-dimensional image of the user's foot, so as to obtain the outline of the sole of the foot and/or the three-dimensional outline of the whole foot.
  • the measurement device can also determine plantar information and full-foot information based on the two-dimensional image and/or three-dimensional image of the user's foot, or send the two-dimensional image and/or three-dimensional image to a relevant processing device for processing. Further processing to obtain the user's foot length information, sole shape information, full foot shape information, etc.
  • the measuring device may be a photographing device or a scanning device or the like.
  • Capture devices may include digital video cameras, infrared cameras, low-light cameras, thermal imaging cameras, or other devices capable of visual recording.
  • Scanning devices may include 3D scanners (eg, laser scanners, 3D photo scanners, etc.), ultrasound imaging devices, and the like.
  • the method for obtaining user demand information may be based on the user's dictation, which is entered by the operator in a processing device (such as a computer for constructing an orthotic model).
  • a processing device such as a computer for constructing an orthotic model
  • the method of obtaining user demand information may also be that after the user enters the user's own demand information in the terminal device (such as the user's mobile phone or personal computer, etc.), the terminal device then transmits the user demand information (such as through wired or wireless network transmission) ) to processing equipment (such as a computer for orthotic model building).
  • the method for obtaining the user's weight information may be to measure through a weighing device (such as a scale), and then input by the operator on a processing device (such as a computer for constructing a model of the orthotic), or the weighing device
  • a processing device such as a computer for constructing a model of the orthotic
  • the user's weight information is transmitted (such as via a wired or wireless network) to a processing device (such as a computer for orthotic model building).
  • user information may be measured in real time.
  • the user information may be pre-stored in the storage device, and obtaining the user information may refer to calling the user information in the storage device.
  • Step 220 based on the user information, determine at least two correction periods.
  • Determining at least two correction cycles may be determining a specific number of correction cycles, and the number of correction cycles is at least two.
  • the at least two remediation cycles may be two, three, five, seven, etc. number of remediation cycles. Users can use different foot orthotics in different correction cycles, and different correction cycles can correspond to foot orthotics with different correction ranges.
  • the specific number of correction cycles can be determined based at least on the arch information of the foot. For example, after determining the maximum height of the arch of the foot, when the difference between the maximum height of the arch of the foot of the foot to be corrected and the normal maximum height of the arch of the foot of the foot to be corrected is large (for example, the difference is greater than the preset difference Threshold), indicating that the user's foot arch collapse problem is more serious, you can set more correction cycles, such as setting the number of correction cycles to five, seven, etc.
  • the difference between the maximum height of the arch of the foot to be corrected and the normal maximum height of the arch of the foot to be corrected is small (for example, the difference is less than or equal to the preset difference threshold), it means that the user's If the problem of foot arch collapse is relatively mild, you can set the number of correction cycles to be less, such as setting the number of correction cycles to two, three, etc.
  • the number of remediation cycles may be adjusted based on user demand information. For example, if the correction strength that the user can bear is small (that is, the pain threshold of the user is low), the number of correction cycles is increased.
  • the method shown in FIG. 3 can also be used to determine at least two correction cycles based on the arch information.
  • the method shown in FIG. 3 can also be used to determine at least two correction cycles based on the arch information.
  • Step 230 based on the user information, determine the orthodontic part model corresponding to at least one orthodontic cycle.
  • the orthotic model corresponding to at least one orthotic cycle may be determined based at least on the arch information and the foot length information.
  • the orthotic model can be understood as a three-dimensional digital model of the orthotic. Different correction periods may correspond to different correction part models.
  • the related size data of the orthotic model can be determined based on the arch information and the foot length information, and then the orthotic model can be determined based on the related size data of the orthotic model. Taking the corrective insole for flat feet as an example, the length of the corrective insole can be determined based on the foot length information, and the thickness of the arch support portion 120 of the corrective insole can be determined based on the arch information.
  • orthotic insole can be determined based on empirical data.
  • the orthotic model can also be determined based on the method shown in FIG. 4 , please refer to the related description of FIG. 4 for details.
  • the orthopedic model can be constructed manually by the designer in the modeling software based on user information (such as foot arch information and foot length information), or it can be automatically generated by a computer based on user information through relevant algorithms stored in the computer , can also be obtained after further adjustment by the designer after the preliminary model is automatically generated by the computer.
  • the designer may draw the corresponding orthodontic part model in a proportional proportion in the modeling software according to the relevant dimensional data of the orthodontic part model.
  • modeling software may include Rhino, Solidworks, Catia, or UG, among others.
  • multiple orthotic models adapted to different user information can be pre-stored in the database, and when the user information of the foot to be corrected is obtained, multiple Select the orthotic model that is suitable for the foot to be corrected from the orthotic models.
  • the orthosis model may be determined based on a three-dimensional contour model of the orthosis.
  • the three-dimensional outline model of the orthosis can be determined first based on the user information, and then a hollow mesh is constructed on the basis of the three-dimensional outline model, so as to obtain the orthosis model.
  • a hollow mesh is constructed on the basis of the three-dimensional outline model, so as to obtain the orthosis model.
  • determining an orthosis model corresponding to at least one orthosis cycle may include determining an orthosis model for one orthosis cycle. In some other embodiments, determining the orthosis model corresponding to at least one correction cycle may include determining the orthosis model for two correction cycles. In still other embodiments, determining the orthotic part model corresponding to at least one orthotic cycle includes determining the orthotic part model for at least three orthotic cycles (eg, all the orthotic cycles).
  • the orthotic model for one cycle may be determined first, and then the orthotic models corresponding to the remaining correction cycles may be determined after the user wears it.
  • step 230 may include the following steps: based on user information, determine an orthotic part model corresponding to one correction cycle; obtain correction result information; and determine orthotic part models corresponding to other correction cycles based on the correction result information.
  • the orthotic model corresponding to one orthotic cycle can be determined based on the arch information and the foot length information. In some embodiments, one or more of the above corrections may be adjusted based on one or more of plantar shape information, plantar pressure information, gait information, plantar injury location information, full-foot information, user demand information, and user weight information. Orthotic model corresponding to the period.
  • the correction result information is used to reflect the correction result of the foot to be corrected after wearing the foot correction device for at least one cycle.
  • the correction result information may include foot arch information after the user wears the foot correction device for at least one correction period. In some embodiments, the correction result information may also include other plantar information after the user wears the plantar orthotic for at least one correction cycle.
  • the correction result information may include foot length information, plantar shape information, plantar pressure information, gait information, and plantar injury position information after the user wears the plantar orthotic for at least one correction cycle. one or more.
  • the correction result information may also include full-foot information after the user wears the plantar orthosis for at least one correction period.
  • foot length information, plantar shape information, plantar pressure information, gait information, plantar injury location information, full-foot information, user weight information, etc. please refer to the relevant content about user information in step 210 .
  • the correction result information may also include user experience feedback information, that is, subjective feeling information fed back by the user after wearing the device. For example, if the user feels that the arch height of the foot is too high after wearing the orthotic, the discomfort will be severe during use. At this time, the number of correction cycles and the single correction amount corresponding to the rest of the correction cycles can be adjusted based on the user experience feedback information (for the relevant description of the single correction amount, please refer to the relevant content in FIG. 4 ).
  • user experience feedback information that is, subjective feeling information fed back by the user after wearing the device. For example, if the user feels that the arch height of the foot is too high after wearing the orthotic, the discomfort will be severe during use.
  • the number of correction cycles and the single correction amount corresponding to the rest of the correction cycles can be adjusted based on the user experience feedback information (for the relevant description of the single correction amount, please refer to the relevant content in FIG. 4 ).
  • the softness and hardness of the foot orthosis corresponding to the rest of the correction cycle can be adjusted based on the user experience feedback information (the foot orthosis Please refer to the relevant content in Figure 5 for the relevant description of softness and hardness).
  • the orthotic model of the next correction cycle (such as the second correction cycle) can be determined first based on the correction result information, and the correction result can be obtained again after the user wears the plantar correction part of the next correction cycle Information (such as the arch information after the second correction cycle of the user wearing the foot correction), and based on the correction result information, determine the correction model for the remaining one or more correction cycles.
  • the orthodontic part models of the remaining multiple orthodontic cycles may be directly determined based on the orthodontic result information.
  • the correction result information (including arch information, plantar shape information, plantar pressure information, gait information, plantar injury position information, full foot information, etc.) can be based on the user wearing a foot correction piece.
  • the measurement data of the arch size after the orthotic cycle is determined. That is to say, the arch information of the user after wearing the foot orthotic for one correction period may be determined after measuring the arch of the user's foot after wearing the orthosis for one correction period.
  • the measurement of the specific relevant information in the correction result information may be performed according to the measurement method of the corresponding information in step 210 .
  • the correction result information may be determined based on the prediction data of the arch size of the foot after the user wears the foot correction device for one correction period. That is to say, the arch information after the user wears the foot orthotic for one correction cycle can be based on the arch information of the foot to be corrected and the relevant size (such as the height of the foot arch) of the foot orthosis in the above-mentioned one cycle. Determined after forecasting.
  • the prediction data can be determined using simulation software based on the arch information of the foot to be corrected and the related dimensions (such as arch height) of the above-mentioned one cycle of the orthotic.
  • the arch information of the foot to be corrected (such as information such as the height of the arch, plantar pressure data) and the relevant dimensions of the foot orthotics of the above-mentioned one cycle (such as the height of the arch support portion of the insole). , the softness and hardness of the arch support, etc.) to predict the plantar pressure data (such as the plantar pressure distribution map) of the foot to be corrected after using the orthotic (such as the corrective insole).
  • the bottom pressure data can determine the correction result information, thereby determining the correction effect of this one correction cycle.
  • the orthotic model may be adjusted and modified based on plantar shape information, plantar pressure information, gait information, plantar injury location information, etc. of the plantar information.
  • the forefoot, arch support, and/or arch support of a foot orthotic may be adjusted based on one or more of plantar shape information, plantar pressure information, and gait information. or height and profile.
  • the degree of softness and hardness (such as hardness value) of each area on the foot orthotic (such as the orthotic insole) can be adjusted based on the location information of the plantar injury. For example, the hardness value of the orthotic may be reduced in the area corresponding to the location of the plantar injury.
  • the size of the whole shoe can be designed based on the full-foot information, for example, the height of the upper can be designed based on the height of the instep.
  • the width of the sole can be designed based on the width of the forefoot.
  • the single correction amount, softness and hardness (such as hardness value) of the foot orthotic can be adjusted based on user demand information.
  • the softness and hardness (hardness value) of the foot orthosis can be designed based on the user's weight information. For example, the heavier the user, the harder the orthotic may be designed to be.
  • Step 240 based on the model of the orthotic, use 3D printing to print out the orthotic of the foot corresponding to at least one orthotic cycle.
  • the relevant size data of the orthotic model can be transmitted to the 3D printing device or its supporting processing software to realize 3D printing.
  • the graphic data of the orthodontic model can be transmitted to the 3D printing device or its matching processing software to realize 3D printing.
  • the 3D printing method may include a photocuring printing method, a fused deposition modeling printing method or a laser sintering printing method and the like.
  • 3D printing materials can be powdered metals or bondable materials such as resins.
  • the 3D printing device may be a photocuring 3D printer, a fused deposition 3D printer, or a laser sintering 3D printer, etc.
  • the processing software supporting the 3D printing equipment can include Cura, EasyPrint3D, Slic3r, NetfabbBasic, etc.
  • the 3D printing method is selected as a photocuring printing method.
  • the light-curing printing method has the advantages of fast printing speed and high printing accuracy.
  • the printing material for photocuring imaging can be selected as resin.
  • the resin material is flexible and elastic, which makes the flat product easy to bend, and can also meet the elastic requirements of the footwear product.
  • the supporting processing software of the 3D printer can make the orthotic model with a certain thickness along the thickness direction Divided into at least two cured layers, the photo-curing printer can sequentially expose the at least two cured layers, and the thicknesses of the at least two cured layers can be the same or different.
  • the orthodontic model can be divided into a first cured layer, a second cured layer, and a third cured layer, and the photocuring printer can sequentially expose the first cured layer, the second cured layer, and the third cured layer, wherein , the first cured layer is formed on the forming table of the printer, the second cured layer is formed on the formed first cured layer, and the third cured layer is formed on the formed second cured layer.
  • the thicknesses of the first cured layer, the second cured layer and the third cured layer may be the same, partially the same, or different.
  • the thickness of the first cured layer may be 1.5 mm
  • the thickness of the second cured layer may be 1.0 mm
  • the thickness of the third cured layer may be 0.5 mm.
  • the thickness of the first cured layer, the second cured layer and the third cured layer may be 0.005mm-2.0mm.
  • the thickness of the first cured layer, the second cured layer and the third cured layer may be 0.01mm-0.2mm.
  • the foot orthotic may include a resilient resin material.
  • the elastic resin material may be one or more combinations of urethane acrylate, urethane (meth)acrylate, polyester acrylate, epoxy acrylate, and thiourethane.
  • the elastic resin material may also be an elastic resin material having one or more components and capable of multiple curing.
  • the elastic resin material may also be an elastic resin material that has two components and is capable of dual curing.
  • the modulus of elasticity of the foot orthotic is from 1 MPa to 50 MPa.
  • the modulus of elasticity of the foot orthotic may be 1 MPa, 10 MPa, 35 MPa, 50 MPa, etc.
  • the elastic modulus refers to the value of the stress divided by the strain in this direction under the action of unidirectional stress on the foot orthotic.
  • the modulus of elasticity of the foot orthotic can measure the degree of difficulty of the elastic deformation of the foot orthosis. The greater the elastic modulus, the greater the stress that causes the foot orthotic to undergo a certain elastic deformation.
  • the modulus of elasticity of the foot orthotic can be designed based on the weight of the user, for example, the greater the weight of the user, the greater the modulus of elasticity of the foot orthosis can be designed.
  • the tensile strength of the foot orthotic is from 5 MPa to 50 MPa.
  • the tensile strength of the foot orthotic may be 5 MPa, 205 MPa, 45 MPa, 50 MPa, etc.
  • the tensile strength refers to the maximum bearing capacity of the foot orthotic under static tension conditions.
  • the tensile strength of the foot orthotic can be designed based on the specific application scenario of the foot orthotic.
  • the orthotic has an elongation at break of 50%-60%.
  • the elongation at break of the foot orthotic is 50%, 52%, 57%, 60%, etc.
  • the elongation at break refers to the ratio of the elongation length before and after stretching to the length before stretching when the foot orthotic is broken by external force.
  • the elongation at break of the foot orthosis can be designed based on the specific application scenario of the foot orthosis.
  • the foot orthotic may be manufactured using thermocompression molding, injection molding, etc. based on the orthotic model.
  • Fig. 3 is a flowchart of a method for determining a correction cycle according to some embodiments of the present application. As shown in Figure 3, the process 300 may include the following steps:
  • Step 310 based on the user information, determine the information of the normal foot corresponding to the foot to be corrected.
  • the information of the normal foot corresponding to the foot to be corrected may be determined based at least on the foot length information. In some other embodiments, the information of the normal foot corresponding to the foot to be corrected may also be determined based on the shape information of the sole of the foot and/or the information of the whole foot. In some embodiments, the normal foot corresponding to the foot to be corrected may be a normal foot having the same length as the corrected foot. For example, a normal foot may be determined that is the same shoe size as the orthotic foot based at least on the foot length information. As another example, based at least on the foot length information, a normal foot having the same foot length dimension as the orthotic foot may be determined.
  • the information of the normal foot includes at least arch information of the normal foot.
  • the arch information of the normal foot may include arch size information, arch shape information, and the like of the normal foot.
  • the normal foot information may also include normal foot length information, plantar shape information, plantar pressure information and gait information.
  • the foot length information, plantar shape information, plantar pressure information, and gait information of the normal foot are similar to the above information of the foot to be corrected. For details, please refer to the foot length information, plantar shape information, plantar Description of pressure information, gait information, etc.
  • Step 320 based on the information of the normal foot and the arch information, determine the total amount of correction of the foot to be corrected.
  • the total amount of correction can be understood as the correction value that needs to be achieved after all the correction cycles of the foot to be corrected.
  • the total amount of correction may include the normal maximum height of the arch of the foot to be corrected and the height of the arch of the foot to be corrected. The difference between the actual maximum height of .
  • the correction total when the arch information includes arch heights at multiple positions of the arch of the foot to be corrected, the correction total includes height correction values at multiple positions of the arch of the foot to be corrected.
  • the height correction value can be understood as the difference between the normal arch height of the arch of the foot to be corrected at a certain position and the arch height of the arch of the foot to be corrected at this position.
  • the height correction value of each position in the plurality of positions is 0.1-0.5 times of the arch height of the corresponding position.
  • the height correction value of each position in the plurality of positions is 0.25 times the arch height of the corresponding position.
  • Step 330 based on the total amount of correction, determine the number of correction cycles, so as to determine at least two correction cycles.
  • the number of correction cycles may be determined according to a comparison result between the total amount of correction and a preset threshold.
  • the aforementioned preset threshold may be determined based on the user's foot length information. For example, the longer the foot length, the higher the arch of the user's foot, and the larger the preset threshold may be. Taking the correction of flat feet as an example, the comparison result of the total amount of correction and the preset threshold can reflect the severity of the user's arch collapse problem, and then determine the number of correction cycles based on this.
  • the number of correction cycles can be set to be more, for example, the number of correction cycles is greater than four.
  • the number of correction cycles can be set to be less, for example, the number of correction cycles can be set to be less than or equal to four.
  • Fig. 4 is a flowchart of a method for determining a correction model according to some embodiments of the present application. As shown in Figure 4, the process 400 includes the following steps:
  • Step 410 based on the total amount of correction and the number of correction cycles, determine a single correction amount corresponding to at least one correction cycle.
  • the single correction amount can be obtained by dividing the total amount of correction by the number of correction cycles. In this way, the single correction amount is obtained, and the single correction amounts corresponding to any two correction cycles are equal.
  • determining the single correction amount corresponding to at least one correction cycle may be determining the single correction amount corresponding to one correction cycle. For example, it can be to determine the single correction amount of the first correction cycle. In some embodiments, determining a single correction amount corresponding to at least one correction cycle may be determining a single correction amount corresponding to each correction cycle in multiple correction cycles. For example, it may be to determine the single correction amount corresponding to each correction cycle of all the correction cycles, or to determine the single correction amount corresponding to each correction cycle of several correction cycles among all the correction cycles.
  • the number of remediation cycles may be at least three.
  • a single correction amount for each correction cycle in at least three correction cycles can be determined.
  • the single correction amount of the previous correction cycle may be smaller than the single correction amount of the subsequent correction cycle.
  • the single correction amount of the previous correction cycle may also be greater than the single correction amount of the subsequent correction cycle.
  • the difference between the single correction amounts corresponding to any two adjacent correction cycles is equal. That is to say, the single correction amounts corresponding to each correction period can be arranged in an arithmetic sequence. Through such a setting, the foot to be corrected can be corrected step by step, and the design process of the correcting part model corresponding to each correcting cycle can be greatly simplified.
  • the ratio between the single correction amounts corresponding to any two adjacent correction cycles is equal. That is to say, the single correction amount corresponding to each correction period can be arranged in a geometric sequence.
  • Step 420 based on the single correction amount corresponding to the at least one correction cycle and the information of the normal foot, determine the orthosis model corresponding to the at least one correction cycle.
  • the relevant size data of the orthotic model can be determined based on the single correction amount corresponding to at least one correction cycle and the information of the normal foot, and then modeled based on the relevant dimensional data of the orthotic model, so as to determine at least A correction part model corresponding to a correction cycle.
  • the relevant size parameters of the orthotic model may include one or more of the total length of the orthotic insole, the height of the forefoot, the height of the arch support, and the height of the heel .
  • the initial model of the orthosis can be determined first, and then the initial model can be adjusted to determine the model of the orthosis.
  • the initial model may be a model stored in a database, and the corresponding initial model in the database may be matched based on the foot length information and the foot arch information.
  • the process 420 of determining the model of the orthotic part corresponding to at least one correction period may include the following steps: determining the initial model of the correction part based on the information of the normal foot; Second correction amount, determine the correction part model corresponding to the at least one correction cycle.
  • the initial model of the orthotic can be determined after modeling based on information of normal feet.
  • the corresponding contour of the initial model can be corrected according to a single correction amount, so as to obtain the correction part model.
  • the arch support part in the initial model can be adjusted based on a single correction amount, for example, the profile of the arch support part in the initial model can be adjusted to change the height of each position of the arch support part.
  • the operation of determining the model of the orthotic may firstly determine the three-dimensional contour model of the foot orthotic, and then determine the model of the orthotic based on the three-dimensional contour model. In some embodiments, after the three-dimensional contour model of the orthotic is determined, the degree of softness and hardness (such as hardness value) of the orthotic can be further designed and adjusted to finally determine the model of the orthotic.
  • the design of the firmness and softness of the foot orthotic can be performed automatically based on the design system. In some embodiments, based on user information, the degree of softness and hardness (such as hardness value) of the foot orthotic can be automatically designed. In some embodiments, based on the weight information of the user, the degree of softness and hardness (such as the hardness value) of the foot orthotic can be automatically designed.
  • adjusting the softness and firmness of the foot orthotic can be achieved by setting the material of the foot orthotic.
  • the firmness and softness of the foot orthotic can be adjusted by selecting the material of the foot orthotic or by adjusting the formulation of the materials included in the foot orthotic.
  • adjusting the softness and hardness of the foot orthotic can be realized by constructing a hollow grid and adjusting various data in the information of the hollow grid.
  • a hollow grid For details, please refer to the related description of FIG. 5 .
  • the model of the orthosis may be determined based on constructing a hollow mesh on a three-dimensional contour model of the orthosis.
  • Fig. 5 is a flow chart of the process of determining the orthotic model shown in some embodiments of the present application. As shown in Fig. 5, the process of determining the orthotic model may include the following steps:
  • Step 510 based on the user information, determine the three-dimensional outline model of the foot orthosis corresponding to at least one orthotic period.
  • the method for determining the three-dimensional contour model may refer to the method for determining the model of the orthodontic part described in step 230 and process 400 above.
  • the three-dimensional contour model of the foot orthosis corresponding to at least one orthotic period may be determined based on at least arch information and foot length information.
  • the three-dimensional contour model can be modeled based on arch information, foot length information, normal foot information, total correction amount, and single correction amount to generate a three-dimensional contour model.
  • the above-mentioned three-dimensional contour can be adjusted based on one or more of plantar shape information, plantar pressure information, gait information, plantar injury location information, full-foot information, user demand information, and user weight information. Model.
  • Step 520 constructing a hollow grid on the three-dimensional contour model to obtain the orthotic model.
  • constructing the hollow mesh on the three-dimensional outline model may first construct an inner cavity inside the three-dimensional outline model, and then fill the hollow mesh in the inner cavity.
  • constructing the hollow grid on the three-dimensional outline model may refer to filling the entire three-dimensional outline model with the hollow grid.
  • constructing a hollow grid on the three-dimensional outline model may refer to filling part of the three-dimensional outline model with the hollow grid.
  • the hollow grid includes a plurality of interconnected units (each grid can be understood as a unit), each unit can include a plurality of pillars, and adjacent units can be connected to each other by sharing the pillars.
  • the multiple units included in the hollow grid may be in the shape of polyhedrons such as prisms, pyramids, tetrahedrons, hexahedrons, octahedrons, hexahedrons, and icosahedrons.
  • the multiple units included in the hollow grid may also be of irregular shape.
  • the different cells may be identical in shape and size. In other embodiments, the different cells may vary in shape and size.
  • the step of constructing the hollow grid on the three-dimensional outline model may include the following sub-steps: based on user information, determining the information of the hollow grid; based on the information of the hollow grid, constructing the hollow grid on the three-dimensional outline model grid.
  • the information of the hollow grid may include one or more combinations of shape data of the hollow grid, size data of the hollow grid, and size data of pillars constituting the hollow grid.
  • the information of the hollow mesh can determine the physical performance of each position of the foot orthotic, for example, the larger the mesh size (eg volume) of the hollow mesh, the softer the foot orthosis. As another example, the larger the size (eg, diameter) of the struts making up the hollow grid, the stiffer the orthotic.
  • the larger the mesh size (eg volume) of the hollow mesh the softer the foot orthosis.
  • the larger the size (eg, diameter) of the struts making up the hollow grid the stiffer the orthotic.
  • the information of the hollow grid is determined based on user information, which may be based on user demand information, plantar injury location information, and the like. For example, if the user demand information shows that the correction strength that the user can bear is weak, then the foot orthotics can be designed to be softer (increase the size of the hollow mesh and/or reduce the strength of the pillars) through the design information of the hollow grid. size). For another example, after the specific location of the plantar injury area is determined, the corresponding position of the plantar injury area on the foot orthotic can be designed to be softer.
  • the information of the hollow grid is determined based on the user information, which may be based on the user's weight information.
  • multiple weight ranges of the user and the degree of softness and hardness (such as hardness value) of the foot orthotics corresponding to each range can be preset.
  • the degree of softness and hardness of the foot orthosis can be determined, and then the various data in the information of the hollow grid can be adjusted based on the degree of softness and hardness, so that the foot orthosis after setting the hollow grid can reach The degree of softness and hardness.
  • the hollow grid information of the foot orthosis can be automatically designed to adjust the softness and hardness (such as hardness value) of the foot orthosis.
  • the possible beneficial effects of the application embodiments include but are not limited to: (1) By dividing the correction process into multiple correction cycles, and determining the correction part model of at least one correction cycle, the foot correction part generated based on the correction part model The foot can be corrected in stages, so that the pain of the user in each correction cycle is greatly reduced, the user experience is improved, and the user is more likely to use the foot correction piece persistently to ensure the correction effect; (2) based on the The correction result information of the previous correction cycle is used to determine the orthotic model of one or more subsequent correction cycles, so that the plantar correction parts corresponding to the subsequent correction cycle can be adjusted according to the user's correction situation to ensure better Correction effect; (3) Obtaining the orthotic model by constructing a hollow grid can facilitate the adjustment of various physical properties of the foot orthosis to reduce the user’s pain when wearing the foot orthosis; (4) through Using 3D printing to print the foot orthotics and avoiding the use of multiple molds to manufacture the foot orthotics can simplify the manufacturing process of the foot orthotics and reduce manufacturing costs. It should
  • the embodiment of the present application also provides a foot orthotic, which is manufactured by the manufacturing method described in any one of the above technical solutions.
  • the foot orthosis can achieve the correction effect while reducing the pain of the user, and the manufacturing process of the foot orthosis is simple and convenient, the manufacturing cost is low, and it is easy to be widely popularized and applied.
  • the possible beneficial effects may be any one or a combination of the above, or any other possible beneficial effects.
  • numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifiers "about”, “approximately” or “substantially” in some examples. grooming. Unless otherwise stated, “about”, “approximately” or “substantially” indicates that the stated figure allows for a variation of ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical parameters should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and parameters used in some embodiments of the present application to confirm the breadth of the scope are approximate values, in specific embodiments, such numerical values are set as precisely as practicable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physiology (AREA)
  • Nursing (AREA)
  • Vascular Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Abstract

一种足部矫正件的制造方法和足部矫正件,制造方法包括以下步骤:获取用户信息(210);用户信息包括用户的待矫正足部的足底信息;其中,足底信息包括足弓信息以及足长信息;基于用户信息,确定至少两个矫正周期(220);基于用户信息,确定至少一个矫正周期对应的矫正件模型(230)。

Description

足部矫正件的制造方法和足部矫正件
交叉引用
本申请要求于2021年06月09日提交的申请号为“202110642740.5”,名称为“足部矫正件的制造方法和足部矫正件”的中国申请的优先权,其全部内容通过引用结合于此。
技术领域
本申请涉及足部矫正领域,特别涉及足部矫正件的制造方法和足部矫正件。
背景技术
足部是人体运动系统的重要组成部分,正常情况下在运动过程中足与地面接触时,足部受力在不同运动阶段正常分布于足底各位置,为人体运动提供了动力,保障运动的顺利完成。但在缺乏锻炼、久坐、不良体态等常见因素的影响下,人体足部的足部结构异常越来越频发。
足部结构异常会导致足部受力不均,压力集中到足部某一区域产生疼痛现象,影响人体的活动能力,促使人体形成代偿机制来弥补由于足结构改变、足踝功能异常及缺失所导致的活动能力下降。例如,扁平足就是一种常见足部结构异常,其表征为足弓低平或消失。在站立、行走的时候,扁平足的足弓塌陷,会导致足部疼痛。
足部矫正件是足部结构异常的治疗器械,其能够调整足底负重点位置,转移足部受力集中点,对足受力异常部位提供受力补偿,合理分散足底压力,达到减小疼痛的效果,但是矫正过程中,用户会感觉非常不适。
因此,如何制造足部矫正件,以降低用户的不适感,是本领域亟待解决的技术问题。
发明内容
在一方面,本申请实施例之一提供一种足部矫正件的制造方法,所述制造方法包括以下步骤:获取用户信息;所述用户信息包括用户的待矫正足部的足底信息;其中,所述足底信息包括足弓信息以及足长信息;基于所述用户信息,确定至少两个矫正周期;基于所述用户信息,确定至少一个矫正周期对应的矫正件模型。
在另一方面,本申请实施例之一还提供一种足部矫正件,所述足部矫正件由上述任一技术方案所述的制造方法制造。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请一些实施例所示的足部矫正件的结构示意图;
图2是根据本申请一些实施例所示的足部矫正件的制造方法的流程图;
图3是根据本申请一些实施例所示的确定矫正周期的方法的流程图;
图4是根据本申请一些实施例所示的确定矫正模型的方法的流程图;
图5是根据本申请另一些实施例所示的确定矫正模型的方法的流程图;
图6A是根据本申请一些实施例所示的正常足部的足底轮廓示意图;
图6B是根据本申请一些实施例所示的扁平足的足底轮廓示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显 而易见或另做说明,图中相同标号代表相同结构或操作。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
足部矫正件是用于矫正足部结构异常的一种矫正治疗器械。图1是根据本申请一些实施例所示的足部矫正件的结构示意图。如图1所示,该足部矫正件是用于矫正扁平足的矫正鞋垫。矫正鞋垫可以包括由前至后依次设置的前掌部110、足弓支撑部120以及后跟部130。可以理解地,当用户使用该矫正鞋垫时,用户的足部的前掌可以对应地位于矫正鞋垫的前掌部110,用户的足部的足弓可以对应地位于矫正鞋垫的足弓支撑部120,用户的足部的后跟可以对应地位于矫正鞋垫的后跟部130。在一些实施例中,足部矫正件可以是用于矫正足部的鞋子,该鞋子所使用的鞋垫可以具有如图1所示的矫正鞋垫的类似结构。
在一些实施例中,足弓支撑部120的高度b(即足弓支撑部120最高点与矫正鞋垫的底面之间的垂直距离)可以高于前掌部110的高度a(即前掌部110最高点与矫正鞋垫的底面之间的垂直距离)和后跟部130的高度c(即后跟部130的最高点与矫正鞋垫的底面之间的垂直距离)。前掌部的高度a、足弓支撑部120的高度b以及后跟部130的高度c可以理解为矫正鞋垫未被压缩时(即未被穿着时)的高度。足弓支撑部130的形状以及高度可以基于用户的足部的矫正相关信息确定(如下文所述的足长信息、足弓信息等)。在矫正过程中,矫正鞋垫的足弓支撑部130可以与用户足部的足弓接触并为足弓提供支撑,用于改善足弓的受力情况及改变足弓形态。
在一些实施例中,足部矫正件可以进行预制。例如,可以按照常见足部畸形分类直接生产对应类型的足部矫正件。在一些实施例中,足部矫正件可以进行定制。例如,可以基于用户的足底信息(如足弓信息、足长信息)来制造与用户的足底畸形分类和足底信息相对应的足底矫正件。以足底畸形分类为扁平足的足部矫正件为例,可以基于用户的足弓高度与正常的足弓高度,设计和制造出一个能够补偿用户的足弓与正常的足弓的高度差的足部矫正件,该足部矫正件可以用于对足底的受力部位提供受力补偿。但是,通过上述方法设计和制造的该足部矫正件对足底受力部位提供的受力补偿一般非常生硬,用户在使用足部矫正件时疼痛感比较严重,很难坚持使用。
在一些实施例中,可以分阶段地实现足部结构异常的矫正。在每个矫正阶段可以对应地使用不同矫正量的足部矫正件,以使得每个阶段使用的足部矫正件可以保证较好的矫正效果,并减轻用户的痛苦。本申请一些实施例提供一种足部矫正件的制造方法和足部矫正件,该制造方法可以基于用户信息(如足弓信息)确定至少两个矫正周期,并基于用户信息(如足弓信息和足长信息)确定至少一个周期的矫正件模型。通过将矫正过程划分为多个矫正周期,并确定至少一个矫正周期的矫正件模型,基于该矫正件模型生成的足部矫正件可以阶段式地矫正足部,使得用户在每个矫正周期内的疼痛感都大幅减轻,提升用户体验,也使得用户更可能坚持地使用足部矫正件,保证矫正效果。
该分阶段的足部矫正件的制造方法可以用于制造扁平足、足外翻的足部矫正件,也可以用于制造拇足内外翻的足部矫正件。在一些实施例中,分阶段的矫正件的制造方法也可以用于其他部位的矫正件,例如,还可以制造分阶段的颈椎矫正件,以及制造分阶段的腰椎矫正件等矫正件。
图2是根据本说明书一些实施例所示的足部矫正件的制造方法的示例性流程图,如图2所示,流程200可以包括下述步骤:
步骤210,获取用户信息。其中,用户信息包括用户的待矫正足部的足底信息,足底信息包括足弓信息以及足长信息。
用户信息可以理解为与佩戴足部矫正件的用户的足部矫正相关的信息。在一些实施例中,用户信息可以包括用户的待矫正足部的足底信息。足底信息可以理解为能够反映足底(包括前掌、足弓、后跟等部位)的尺寸、轮廓、受力情况等至少一个的信息。
足底信息可以包括足弓信息和足长信息。足弓信息可以理解为能够反映足弓的形态的相关信息。足弓信息可以包括足弓的高度信息和足弓的形状信息等。在一些实施例中,足弓的高度信息可以包括待矫正足部的足弓的一个或多个位置的高度。在一些实施例中,足弓的高度信息可以包括待矫正足部的足弓的最高点的高度(也就是足弓的最大高度)。在一些实施例中,足弓的形状信息可以包括足弓的轮廓数据。足长信息可以理解为用户的足部的长度的相关信息。在一些实施例中,足长信息可以包括足部的长度,足部的长度可以是足部最前端(前脚趾的前端)到足部最后端(后脚跟的后端)的距离。在一些实施例中,足长信息也可以包括用户的足部对应的鞋码信息(如38码、42码等)。
在一些实施例中,足底信息还可以包括足底形状信息、足底压力信息、步态信息和足底损伤位置信息中的至少一个。足底形状信息可以反映足底的外部轮廓的信息。例如,图6A示出了正常足部的足底的外部轮廓,图6B示出了患有扁平足的待矫正足部的足底的外部轮廓。足底压力信息可以反映用户正常站立时足底各区域的压力值。步态信息可以反映用户行走时的双足的形态,例如,双足间的夹角信息,足部与地面的夹角信息。足底损伤位置信息可以反映待矫正足部的足底损伤区域的具体位置。
在一些实施例中,用户信息还可以包括待矫正足部的全足信息、用户需求信息以及用户体重信息中的至少一个。全足信息可以理解为反映全足的尺寸、轮廓、受力情况等的信息。例如,全足的尺寸可以包括足背高度尺寸、拇指高度尺寸、后跟宽度尺寸等。又例如,全足的轮廓可以包括全足的三维轮廓。全足的受力情况可以包括足部各个区域的行走和站立过程中的受力大小。用户需求信息可以理解为佩戴足部矫正件的用户在矫正过程中的个性化需求信息。例如,用户 需求信息可以包括用户期望的矫正时间、用户能够承受的矫正力度等信息。用户体重信息可以较大程度影响待矫正足部的足底各部分所承受的压力。在一些实施例中,用户信息还可以包括用户的性别、身高、年龄、疾病史等信息。
在一些实施例中,获取足底信息和/或全足信息的方法可以是人工测量,测量到的足底信息和/或全足信息相关数据可以人工输入处理设备(如进行矫正件模型构建的计算机)。人工测量可以是人工通过测量工具对用户的足部进行测量,其中,测量工具可以包括直尺、卷尺、游标卡尺等。在另一些实施例中,获取足底信息和全足信息的方法可以是通过测量设备进行机器测量,测量设备可以将测量的数据传输(如通过网络)给处理设备(如进行矫正件模型构建的计算机)。具体的,测量设备可以对用户的足部进行拍摄或扫描,以获取用户的足部的二维图像和/或三维图像,从而得到足底的轮廓和/或全足的三维轮廓。在一些实施例中,测量设备还可以基于用户的足部的二维图像和/或三维图像确定足底信息和全足信息,或者将二维图像和/或三维图像发送到相关的处理设备进行进一步处理,以获取用户的足长信息、足底形状信息、全足形状信息等。在一些实施例中,测量设备可以是拍摄设备或扫描设备等。拍摄设备可以包括数码摄像机、红外摄像机、低光摄像机、热成像摄像机或其他能够用于视觉记录的设备。扫描设备可以包括三维扫描仪(例如,激光扫描仪、三维照相式扫描仪等)、超声成像设备等。
在一些实施例中,获取用户需求信息的方法可以是基于用户的口述,操作者在处理设备(如进行矫正件模型构建的计算机)录入。在另一些实施例中,获取用户需求信息的方法也可以是用户自行在终端设备(如用户的手机或个人电脑等)录入后,终端设备再将用户需求信息传输(如通过有线或无线网络传输)到处理设备(如进行矫正件模型构建的计算机)。在一些实施例中,获取用户体重信息的方法可以是通过称重设备(如体重秤)进行测量,然后再由操作者在处理设备(如进行矫正件模型构建的计算机)录入,或者称重设备将用户体重信息传输(如通过有线或无线网络传输)到处理设备(如进行矫正件模型构建的计算 机)。
在步骤210中,用户信息可以是实时进行测量的。或者,用户信息可以是预先存储在存储设备中,获取用户信息可以指调用存储设备中的用户信息。
步骤220,基于用户信息,确定至少两个矫正周期。
确定至少两个矫正周期,可以是确定具体的矫正周期数,且该矫正周期数为至少两个。在一些实施例中,至少两个矫正周期可以是两个、三个、五个、七个等数量的矫正周期。用户可以在不同矫正周期可以使用不同的足部矫正件,不同的矫正周期可以对应不同矫正幅度的足部矫正件。
在一些实施例中,具体的矫正周期数可以至少基于足弓信息来进行确定。例如,在确定足弓的最大高度后,当待矫正足部的足弓的最大高度与该待矫正足部的足弓的正常最大高度的差值较大(例如,差值大于预设差值阈值),说明用户的足弓塌陷问题比较严重,则可以设置矫正周期数较多,如将矫正周期数设置为五个、七个等。又例如,当待矫正足部的足弓的最大高度与该待矫正足部的足弓的正常最大高度的差值较小(例如,差值小于或等于预设差值阈值),说明用户的足弓塌陷问题比较轻微,则可以设置矫正周期数较少,如将矫正周期数设置为两个、三个等。在一些实施例中,可以基于用户需求信息来调节矫正周期数。例如,如果用户能够承受的矫正力度较小(即用户的疼痛阈值较低),则增加矫正周期数。
在另一些实施例中,还可以通过图3所示的方法来基于足弓信息确定至少两个矫正周期,具体请参见的图3相关内容。
步骤230,基于用户信息,确定至少一个矫正周期对应的矫正件模型。
在一些实施例中,可以至少基于足弓信息以及足长信息,来确定至少一个矫正周期对应的矫正件模型。矫正件模型可以理解为矫正件的三维数字模型。不同的矫正周期可以对应不同的矫正件模型。在一些实施例中,可以基于足弓信息和足长信息确定矫正件模型的相关尺寸数据,然后再基于矫正模型的相关尺寸数据确定矫正件模型。以扁平足的矫正鞋垫为例,可以基于足长信息确定矫正鞋 垫的长度,以及基于足弓信息确定矫正鞋垫的足弓支撑部120的厚度。矫正鞋垫的其他数据(如前掌部110和后跟部130的厚度等)可以基于经验数据确定。在另一些实施例中,矫正件模型还可以基于图4所示的方法确定,具体请参见图4的相关说明。
矫正件模型可以是设计人员基于用户信息(如足弓信息以及足长信息)在建模软件中进行人工绘制而构建的,也可以是计算机基于用户信息通过计算机内存储的相关算法来自动生成的,还可以是在计算机自动生成初步模型后设计人员进一步调整后得到的。仅作为示例,在获取矫正件模型的相关尺寸数据后,设计人员可以根据矫正件模型的相关尺寸数据在建模软件中等比例绘制出与对应的矫正件模型。或者,在获取足部矫正件的初始模型(如正常的鞋垫的模型)后,设计人员可以根据矫正件模型的相关尺寸数据在初始模型上进行调整,以获得矫正件模型(如矫正鞋垫的模型)。在一些实施例中,建模软件可以包括Rhino、Solidworks、Catia或UG等。
在一些实施例中,可以在数据库中预先存储多个适配于不同用户信息(如足弓信息以及足长信息)的矫正件模型,当获取到待矫正足部的用户信息时,可以从多个矫正件模型中挑选与该待矫正足部适配的矫正件模型。
在一些实施例中,矫正件模型可以基于矫正件的三维轮廓模型来确定。在一些实施例中,可以基于用户信息先确定矫正件的三维轮廓模型,再在三维轮廓模型的基础上,构建镂空网格,从而获得矫正件模型。确定矫正件模型的方法请参见图5的相关内容。
在一些实施例中,确定至少一个矫正周期对应的矫正件模型可以包括确定一个矫正周期的矫正件模型。在另一些实施例,确定至少一个矫正周期对应的矫正件模型可以包括确定两个矫正周期的矫正件模型。在又一些实施例,确定至少一个矫正周期对应的矫正件模型包括确定至少三个矫正周期(如全部矫正周期)的矫正件模型。
在一些实施例中,可以先确定一个周期的矫正件模型,在用户佩戴后再确 定其余矫正周期对应的矫正件模型。
在一些实施例中,步骤230可以包括以下步骤:基于用户信息,确定一个矫正周期对应的矫正件模型;获取矫正结果信息;基于矫正结果信息,确定其余矫正周期对应的矫正件模型。
在一些实施例中,可以基于足弓信息以及足长信息,确定一个矫正周期对应的矫正件模型。在一些实施例中,可以基于足底形状信息、足底压力信息、步态信息、足底损伤位置信息、全足信息、用户需求信息以及用户体重信息中的一个或多个来调整上述一个矫正周期对应的矫正件模型。矫正结果信息用于反映待矫正足部在穿戴足部矫正件至少一个周期后的矫正成果。矫正结果信息可以包括用户穿戴足部矫正件至少一个矫正周期后的足弓信息。在一些实施例中,矫正结果信息还可以包括用户穿戴足底矫正件至少一个矫正周期后的其他足底信息。在一些实施例中,矫正结果信息可以包括用户穿戴足底矫正件至少一个矫正周期后的足长信息、足底形状信息、足底压力信息、步态信息和足底损伤位置信息等信息中的一个或多个。在一些实施例中,矫正结果信息还可以包括用户穿戴足底矫正件至少一个矫正周期后的全足信息。足长信息、足底形状信息、足底压力信息、步态信息、足底损伤位置信息、全足信息、用户体重信息等的相关说明,请参见步骤210中关于用户信息的相关内容。
在一些实施例中,矫正结果信息还可以包括用户体验反馈信息,即用户穿戴后反馈的主观感受信息。例如,如果用户穿戴矫正件后感觉足弓高度过高,使用时不适感严重。此时,可以基于该用户体验反馈信息调整矫正周期数以及其余矫正周期对应的单次矫正量(单次矫正量的相关说明请参见图4的相关内容)。又或者,如果用户穿戴矫正件后感觉矫正件硬度过大,使用时疼痛感较为严重,可以基于该用户体验反馈信息调整其余矫正周期对应的足部矫正件的软硬程度(足部矫正件的软硬度的相关说明请参见图5的相关内容)。
在一些实施例中,可以是基于矫正结果信息先确定下一个矫正周期(如第二个矫正周期)的矫正件模型,在用户再穿戴下一个矫正周期的足底矫正件后, 再次获取矫正结果信息(如用户穿戴足部矫正件第二个矫正周期后的足弓信息),并基于该矫正结果信息再确定其余一个或多个矫正周期的矫正件模型。在另一些实施例中,可以是基于矫正结果信息直接确定出其余多个矫正周期的矫正件模型。
在一些实施例中,矫正结果信息(包括足弓信息、足底形状信息、足底压力信息、步态信息、足底损伤位置信息、全足信息等)可以是基于用户穿戴足部矫正件一个矫正周期后的足弓尺寸的测量数据确定。也就是说,用户穿戴足部矫正件一个矫正周期后的足弓信息可以是对用户穿戴矫正件一个矫正周期后的足弓进行的测量后确定的。矫正结果信息中具体的相关信息的测量可以按照步骤210中的对应信息的测量方法进行测量。
在一些实施例中,矫正结果信息可以是基于用户穿戴足部矫正件一个矫正周期后的足弓尺寸的预测数据确定。也就是说,用户穿戴足部矫正件一个矫正周期后的足弓信息可以是在基于待矫正足部的足弓信息和上述一个周期的足部矫正件的相关尺寸(如足弓高度)等信息进行预测后确定的。在一些实施例中,预测数据可以基于待矫正足部的足弓信息和上述一个周期的足部矫正件的相关尺寸(如足弓高度)等信息,使用仿真软件进行确定。仅作为示例,可以基于待矫正足部的足弓信息(如足弓高度、足底压力数据等信息)和上述一个周期的足部矫正件的相关尺寸(如矫正鞋垫的足弓支撑部的高度、足弓支撑部的软硬度等)仿真预测出待矫正足部在使用足部矫正件(如矫正鞋垫)后的足底压力数据(如足底压力分布图),通过该仿真预测的足底压力数据可以确定矫正结果信息,从而确定该一个矫正周期的矫正效果。
在一些实施例中,可以基于足底信息的足底形状信息、足底压力信息、步态信息、足底损伤位置信息等来调整和修改矫正件模型。在一些实施例中,可以基于足底形状信息、足底压力信息以及步态信息中的一种或多种来调节足部矫正件(如矫正鞋垫)的前掌部、足弓支撑部和/或的高度和轮廓。在一些实施例中,可以基于足底损伤位置信息来调节足部矫正件(如矫正鞋垫)上各个区域的 软硬程度(如硬度值)。例如,在对应足底损伤位置的区域,可以降低足部矫正件的硬度值。在一些实施例中,当足部矫正件为鞋子时,可以基于全足信息进行整鞋的尺寸设计,例如,可以基于足背高度设计鞋面高度。又例如,可以基于前掌宽度设计鞋底宽度。在一些实施例中,可以基于用户需求信息调节足部矫正件的单次矫正量、软硬程度(如硬度值)等。在一些实施例中,可以基于用户体重信息设计足部矫正件的软硬程度(硬度值)。例如,用户体重越重,可以设计足部矫正件的硬度越硬。
步骤240,基于矫正件模型,使用3D打印方式,打印出至少一个矫正周期对应的足部矫正件。
在一些实施例中,可以将矫正件模型的相关尺寸数据传输给3D打印设备或其配套的处理软件,以实现3D打印。在另一些实施例中,可以将矫正件模型的图形数据传输给3D打印设备或其配套的处理软件,以实现3D打印。
3D打印方式可以包括光固化成型打印方式、熔融沉积成型打印方式或激光烧结打印方式等。3D打印材料可以是粉末状金属或树脂等可粘合材料。在一些实施例中,3D打印设备可以是光固化3D打印机、熔融沉积3D打印机或激光烧结3D打印机等。与3D打印设备配套的处理软件可以包括Cura、EasyPrint3D、Slic3r、NetfabbBasic等。
优选地,3D打印方式选择为光固化成型打印方式。采用光固化成型打印方式具有打印速度快、打印精度高等优点。光固化成像的打印材料可以选择为树脂。树脂材料具有柔性和弹性,使得平面产品易于弯折,并且也能满足鞋类产品的弹性要求。
仅作为示例,对于光固化成型打印方式打印足部矫正件,3D打印机配套的处理软件(例如,Cura、EasyPrint3D、Slic3r、NetfabbBasic等)可以将具有一定厚度的矫正件模型的矫正件模型沿厚度方向划分成至少两层固化层,光固化打印机可以按顺序对至少两层固化层进行曝光,至少两层固化层的厚度可以相同或不同。例如,矫正件模型可以被划分为第一固化层、第二固化层和第三固化 层,光固化打印机可以按顺序对第一固化层、第二固化层和第三固化层依次进行曝光,其中,第一固化层成型在打印机的成型台上,第二固化层在成型完毕的第一固化层上成型,而第三固化层则在成型完毕的第二固化层上成型。第一固化层、第二固化层和第三固化层的厚度可以相同、部分相同或不同。例如,第一固化层的厚度可以是1.5mm,第二固化层的厚度可以是1.0mm,第三固化层的厚度可以是0.5mm。在一些实施例中,第一固化层、第二固化层和第三固化层的厚度可以为0.005mm-2.0mm。在一些实施例中,第一固化层、第二固化层和第三固化层的厚度可以0.01mm-0.2mm。
通过使用3D打印方式来打印出足部矫正件,可以提高足部矫正件的尺寸精度。另外,对于一个待矫正足部,即使需要制造多个矫正周期对应的足部矫正件,也无需通过准备多个模具,可以方便快捷地进行制造,且制造成本较低。在一些实施例中,足部矫正件可以包括弹性树脂材料。在一些实施例中,弹性树脂材料可以为聚氨酯丙烯酸酯、聚氨酯(甲基)丙烯酸酯、聚酯丙烯酸酯、环氧丙烯酸酯、硫代聚氨酯中的一个或多个的组合。在一些实施例中,弹性树脂材料也可以是具有一重或多重组分并能够进行多重固化的弹性树脂材料。在一些实施例中,弹性树脂材料也可以是具有双重组分并能够进行双重固化的弹性树脂材料。
在一些实施例中,足部矫正件的弹性模量为1MPa-50MPa。例如,足部矫正件的弹性模量可以为1Mpa、10Mpa、35Mpa、50Mpa等。其中,弹性模量指足部矫正件在单向应力作用下,应力除以该方向的应变的值。足部矫正件的弹性模量可以衡量足部矫正件产生弹性变形的难易程度,弹性模量越大,使足部矫正件发生一定弹性变形的应力也越大。在一些实施例中,可以基于用户体重设计足部矫正件的弹性模量,例如,用户的体重越大,则可以设计足部矫正件的弹性模量越大。
在一些实施例中,足部矫正件的拉伸强度为5MPa-50MPa。例如,足部矫正件的拉伸强度可以为5MPa、205MPa、45MPa、50MPa等。其中,拉伸强度指 足部矫正件在静拉伸条件下的最大承载能力。在一些实施例中,可以基于足部矫正件具体的应用场景来设计足部矫正件的拉伸强度。
在一些实施例中,足部矫正件的断裂伸长率为50%-60%。例如,足部矫正件的断裂伸长率为50%、52%、57%、60%等。其中,断裂伸长率指足部矫正件受外力作用至拉断时,拉伸前后的伸长长度与拉伸前长度的比值。在一些实施例中,可以基于足部矫正件具体的应用场景来设计足部矫正件的断裂伸长率。
在一些实施例中,基于矫正件模型,可以使用热压成型、注塑成型等方式制造足部矫正件。
图3是根据本申请一些实施例所示的确定矫正周期的方法的流程图。如图3所示,流程300可以包括以下步骤:
步骤310,基于用户信息,确定待矫正足部对应的正常足部的信息。
在一些实施例中,可以至少基于足长信息,确定待矫正足部对应的正常足部的信息。在另一些实施例中,也可以基于足底形状信息和/或全足信息等确定待矫正足部对应的正常足部的信息。在一些实施例中,待矫正足部对应的正常足部可以是与矫正足部的足长相同的正常足部。例如,可以至少基于足长信息,确定与矫正足部的鞋码相同的正常足部。又例如,可以至少基于足长信息,确定与矫正足部的足部长度尺寸相同的正常足部。在一些实施例中,正常足部的信息至少包括正常足部的足弓信息。在一些实施例中,正常足部的足弓信息可以包括正常足部的足弓尺寸信息、足弓形状信息等。在一些实施例中,正常足部的信息还可以包括正常足部的足长信息、足底形状信息、足底压力信息以及步态信息。正常足部的足长信息、足底形状信息、足底压力信息以及步态信息与待矫正足部的上述信息类似,具体可参见待矫正足部的足长信息、足底形状信息、足底压力信息以及步态信息等的相关说明。
步骤320,基于正常足部的信息和足弓信息,确定待矫正足部的矫正总量。
矫正总量可以理解为待矫正足部在所有矫正周期后需要实现的矫正值。在一些实施例中,当足弓信息包括待矫正足部的足弓的最高点的高度时,矫正总 量可以包括待矫正足部的足弓的正常最大高度与该待矫正足部的足弓的实际最大高度之间的差值。在另一些实施例中,当足弓信息包括待矫正足部的足弓的多个位置的足弓高度时,矫正总量包括待矫正足部的足弓的多个位置的高度矫正值。高度校正值可以理解为待矫正足部的足弓在某个位置的正常足弓高度与该待矫正足部的足弓的该位置的足弓高度之间的差值。
在一些实施例中,多个位置中每个位置的高度矫正值均为对应位置的足弓高度的0.1-0.5倍。通过将每个位置的高度矫正值均为对应位置的足弓高度的0.1-0.5倍,可以有效矫正扁平足问题,并减轻矫正期间用户的痛苦。在一些实施例中,多个位置中每个位置的高度矫正值均为对应位置的足弓高度的0.25倍。
步骤330,基于矫正总量,确定矫正周期数,以确定至少两个矫正周期。
在一些实施例中,在确定矫正总量后,可以根据矫正总量与预设阈值的比较结果来确定矫正周期数。上述预设阈值可以基于用户的足长信息来确定,例如,足长越长,说明用户的足部的足弓越高,则预设阈值可以越大。以扁平足的矫正为例,通过矫正总量与预设阈值的比较结果,可以反映用户的足弓塌陷问题的严重程度,从而基于此确定矫正周期数。当待矫正总量大于上述预设阈值,说明用户的足弓塌陷问题比较严重,则可以设置矫正周期数较多,如将矫正周期数大于四个。又例如,当矫正总量小于或等于上述预设阈值,说明用户的足弓塌陷问题比较轻微,则可以设置矫正周期数较少,如将矫正周期数设置为小于或等于四个。
图4是根据本申请一些实施例所示的确定矫正模型的方法的流程图。如图4所示,流程400包括下述步骤:
步骤410,基于矫正总量和矫正周期数,确定至少一个矫正周期对应的单次矫正量。
在一些实施例中,可以利用矫正总量除以矫正周期数而得到单次矫正量,通过这样的方式获取单次矫正量,任意两个矫正周期对应的单次矫正量相等。
在一些实施例中,确定至少一个矫正周期对应的单次矫正量可以是确定一个矫正周期对应的单次矫正量。例如,可以是确定第一个矫正周期的单次矫正 量。在一些实施例中,确定至少一个矫正周期对应的单次矫正量可以是确定多个矫正周期中每个矫正周期对应的单次矫正量。例如,可以是确定所有矫正周期的每个矫正周期对应的单次矫正量,也可以是确定所有矫正周期中的其中几个矫正周期的每个矫正周期对应的单次矫正量。
在一些实施例中,矫正周期数可以为至少三个。在步骤410中,可以基于矫正总量和矫正周期数,确定至少三个矫正周期中每个矫正周期的单次矫正量。在一些实施例中,在先的矫正周期的单次矫正量可以小于在后的矫正周期的单次矫正量。通过这样的设置,在逐步矫正用户的足部畸形的同时,可以尽可能减轻用户的痛苦。在另一些实施例中,为了提高矫正效率,在先的矫正周期的单次矫正量也可以大于在后的矫正周期的单次矫正量。
在一些实施例中,任意两个相邻的矫正周期对应的单次矫正量之间的差值相等。也就是说,各个矫正周期对应的单次矫正量可以排列成等差数列。通过这样的设置,可以实现循序渐进地对待矫正足部进行矫正,且大幅简化各个矫正周期对应的矫正件模型设计流程。
在另一些实施例中,任意两个相邻的矫正周期对应的单次矫正量之间的比值相等。也就是说,各个矫正周期对应的单次矫正量可以排列成等比数列。
步骤420,基于至少一个矫正周期对应的单次矫正量以及正常足部的信息,确定至少一个矫正周期对应的矫正件模型。
在一些实施例中,可以基于至少一个矫正周期对应的单次矫正量以及正常足部的信息确定矫正件模型的相关尺寸数据,再基于矫正件模型的相关尺寸数据来进行建模,从而确定至少一个矫正周期对应的矫正件模型。例如,当足底矫正件为矫正鞋垫时,矫正件模型的相关尺寸参数可以包括矫正鞋垫的总长度、前掌部的高度、足弓支撑部的高度和后跟部的高度中的一个或多个。
在一些实施例中,可以先确定矫正件的初始模型,再对初始模型进行调整,以确定矫正件模型。在一些实施例中,初始模型可以是存储在数据库中模型,可以基于足长信息和足弓信息匹配数据库中对应的初始模型。
在另一些实施例中,确定至少一个矫正周期对应的矫正件模型的流程420可以包括以下步骤:基于正常足部的信息,确定矫正件的初始模型;基于初始模型和至少一个矫正周期对应的单次矫正量,确定所述至少一个矫正周期对应的矫正件模型。其中,矫正件的初始模型可以是基于正常足部的信息建模后确定的。
在一些实施例中,可以根据单次矫正量修正初始模型的对应轮廓,以得到矫正件模型。在一些实施例中,可以基于单次矫正量对初始模型中的足弓支撑部进行调整,例如,调整初始模型中的应足弓支撑部的轮廓,以改变足弓支撑部的各个位置高度。
在一些实施例中,确定矫正件模型的操作可以是可以先确定足部矫正件的三维轮廓模型,再基于三维轮廓模型确定矫正件模型。在一些实施例中,在确定足部矫正件的三维轮廓模型之后,可以进一步设计和调节足部矫正件的软硬程度(如硬度值),以最终确定矫正件模型。
在一些实施例中,足部矫正件的软硬程度的设计可以基于设计系统自动进行。在一些实施例中,可以基于用户信息,自动设计足部矫正件的软硬程度(如硬度值)。在一些实施例中,可以基于用户体重信息,自动设计足部矫正件的软硬程度(如硬度值)。
在一些实施例中,调节足部矫正件的软硬程度可以通过设置足部矫正件的材料来实现。例如,可以通过选择足部矫正件的材料或通过调节足部矫正件所包括的材料的配方,来调节足部矫正件的软硬程度。
在另一些实施例中,调节足部矫正件的软硬程度可以通过构建镂空网格并调节镂空网格的信息中的各项数据来实现,具体请参见图5的相关说明。
在一些实施例中,矫正件模型可以基于在矫正件的三维轮廓模型上构建镂空网格来确定。图5为本申请一些实施例所示的确定矫正件模型的流程的流程图,如图5所示,确定矫正件模型的流程可以包括以下步骤:
步骤510,基于用户信息,确定至少一个矫正周期对应的足部矫正件的三维轮廓模型。
确定三维轮廓模型的方法可以参照前述步骤230和流程400所述的确定矫正件模型的方法。在一些实施例中,至少一个矫正周期对应的足部矫正件的三维轮廓模型可以至少基于足弓信息以及足长信息来确定。在一些实施例中,三维轮廓模型可以基于足弓信息、足长信息、正常足部的信息、矫正总量、单次矫正量来进行建模,以生成三维轮廓模型。在一些实施例中,可以基于足底形状信息、足底压力信息、步态信息、足底损伤位置信息、全足信息、用户需求信息以及用户体重信息中的一个或多个来调整上述三维轮廓模型。在一些实施例中,也可以是基于正常足部的信息,确定足部矫正件的初始轮廓模型,再基于单次矫正量对初始轮廓模型进行调整,以获得足部矫正件的三维轮廓模型。
步骤520,在三维轮廓模型上构建镂空网格,以获得矫正件模型。
在一些实施例中,在三维轮廓模型上构建镂空网格,可以是先在三维轮廓模型的内部构建内腔,再在内腔中填充镂空网格。在另一些实施例中,在三维轮廓模型上构建镂空网格,可以是指使用镂空网格填充整个三维轮廓模型。在一些实施例中,在三维轮廓模型上构建镂空网格,可以是指使用镂空网格填充部分三维轮廓模型。
镂空网格包括多个相互连接的单元(每个网格可以理解为一个单元),每个单元可以包括多个支柱,相邻的单元可以通过共享支柱而实现相互连接。在一些实施例中,镂空网格所包含的多个单元可以为棱柱体、椎体、四面体、六面体、八面体、十六面体、二十面体等多面体形状。另一些实施例中,镂空网格所包含的多个单元也可以为不规则的形状。在一些实施例中,不同单元的形状和尺寸可以相同。在另一些实施例中,不同单元的形状和尺寸可以不同。通过设置镂空网格,可以改变足部矫正件的物理性能(如回弹力、减震性和软硬程度等),从而可以基于用户信息(如足底损伤位置信息、客户需求信息等)对足部矫正件的各个部位的物理性能进行调节。
在一些实施例中,三维轮廓模型上构建镂空网格的步骤可以包括以下子步骤:基于用户信息,确定镂空网格的信息;基于所述镂空网格的信息,在三维 轮廓模型上构建镂空网格。其中,镂空网格的信息可以包括镂空网格的形状数据、镂空网格的尺寸数据以及组成镂空网格的支柱的尺寸数据的一种或多种组合。
镂空网格的信息可以决定足部矫正件各位置的物理性能,例如,镂空网格的网格尺寸(如体积)越大,足部矫正件的越软。又例如,组成镂空网格的支柱的尺寸(如直径)越大,足部矫正件越硬。
在一些实施例中,基于用户信息,确定镂空网格的信息,可以是基于用户需求信息、足底损伤位置信息等来确定镂空网格的信息。例如,如果用户需求信息显示用户能够承受的矫正力度较弱,则可以通过设计镂空网格的信息,将足部矫正件设计得较软(增大镂空网格的尺寸和/或减小支柱的尺寸)。又例如,在确定足底损伤区域的具体位置后,可以将足部矫正件上足底损伤区域对应的位置设计得较软。
在一些实施例中,基于用户信息,确定镂空网格的信息,可以是基于用户体重信息来确定镂空网格的信息。在一些实施例中,可以预先设定用户的多个体重区间,以及每个区间所对应的足部矫正件的软硬程度(如硬度值)。基于用户的体重信息,可以确定足部矫正件的软硬程度,再基于该软硬程度来调节镂空网格的信息中的各项数据,以使得设置镂空网格后的足部矫正件可以达到该软硬程度。在一些实施例中,可以基于用户体重信息,自动地设计足部矫正件的镂空网格的信息,以调节足部矫正件的软硬程度(如硬度值)。
申请实施例可能带来的有益效果包括但不限于:(1)通过将矫正过程划分为多个矫正周期,并确定至少一个矫正周期的矫正件模型,基于该矫正件模型生成的足部矫正件可以阶段式地矫正足部,使得用户在每个矫正周期内的疼痛感都大幅减轻,提升用户体验,也使得用户更可能坚持地使用足部矫正件,保证矫正效果;(2)可以基于在前矫正周期的矫正结果信息来确定在后的一个或多个矫正周期的矫正件模型,以使得在后的矫正周期对应的足底矫正件能够根据用户的矫正情况进行调整,以保证较好的矫正效果;(3)通过在构建镂空网格而获得矫正件模型,可以便于调节足部矫正件的各项物理性能,以减小用户在穿 戴足部矫正件时的疼痛感受;(4)通过使用3D打印方式打印足部矫正件,避免采用多个模具来制造足部矫正件,可以简化足部矫正件的制作工艺,且降低制造成本。需要说明的是,不同的实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种组合,也可以是其他任何可能获得的有益效果。
本申请实施例还提供在一种足部矫正件,该足部矫正件由上述任一技术方案所述的制造方法制造。通过采用上述执照方法制造足部矫正件,使得足部矫正件能够达到矫正效果的同时,减轻用户的痛苦,且该足部矫正的制造过程简单方便,制造成本低,便于广泛地推广应用。
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理 解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于 本申请明确介绍和描述的实施例。

Claims (22)

  1. 一种足部矫正件的制造方法,其中,所述制造方法包括以下步骤:
    获取用户信息;所述用户信息包括用户的待矫正足部的足底信息;其中,所述足底信息包括足弓信息以及足长信息;
    基于所述用户信息,确定至少两个矫正周期;
    基于所述用户信息,确定至少一个矫正周期对应的矫正件模型。
  2. 根据权利要求1所述的制造方法,其中,所述足底信息还包括足底形状信息、足底压力信息、步态信息和/或足底损伤位置信息。
  3. 如权利要求1所述的制造方法,其中,所述用户信息还包括待矫正足部的全足信息、用户需求信息以及用户体重信息中的至少一个。
  4. 如权利要求1所述的制造方法,其中,所述基于所述用户信息,确定至少两个矫正周期包括:
    基于所述用户信息,确定待矫正足部对应的正常足部的信息;所述正常足部的信息至少包括所述正常足部的足弓尺寸;
    基于所述正常足部的信息和所述足弓信息,确定待矫正足部的矫正总量;
    基于所述矫正总量,确定矫正周期数,以确定至少两个矫正周期。
  5. 如权利要求4所述的制造方法,其中,所述足弓信息包括待矫正足部的足弓的多个位置的足弓高度,所述矫正总量包括待矫正足部的足弓的多个位置的高度矫正值;所述多个位置中每个位置的所述高度矫正值均为对应位置的所述足弓高度的0.1-0.5倍。
  6. 如权利要求4所述的制造方法,其中,所述基于所述用户信息,确定至少一个矫正周期对应的矫正件模型,包括:
    基于所述矫正总量和所述矫正周期数,确定至少一个矫正周期对应的单次 矫正量;
    基于所述至少一个矫正周期对应的单次矫正量以及所述正常足部的信息,确定所述至少一个矫正周期对应的矫正件模型。
  7. 如权利要求6所述的制造方法,其中,所述矫正周期数为至少三个,所述基于所述矫正总量和矫正周期数,确定至少一个矫正周期对应的单次矫正量,包括:
    基于所述矫正总量和矫正周期数,确定至少三个所述矫正周期中每个矫正周期的单次矫正量;其中,在先的矫正周期的单次矫正量小于在后的矫正周期的单次矫正量。
  8. 如权利要求7所述的制造方法,其中,任意两个相邻的矫正周期对应的单次矫正量之间的差值相等。
  9. 如权利要求7所述的制造方法,其中,任意两个矫正周期对应的单次矫正量相等。
  10. 如权利要求6所述的制造方法,其中,所述基于所述至少一个矫正周期对应的单次矫正量以及所述正常足部的信息,确定所述至少一个矫正周期对应的矫正件模型,包括:
    基于所述正常足部的信息,确定足部矫正件的初始模型;
    基于所述初始模型和所述至少一个矫正周期对应的单次矫正量,确定所述至少一个矫正周期对应的矫正件模型。
  11. 如权利要求3所述的制造方法,其中,基于所述用户信息,确定至少一个矫正周期对应的矫正件模型,包括:
    基于所述用户信息,确定至少一个矫正周期对应的矫正件的三维轮廓模型;
    在所述三维轮廓模型上构建镂空网格,以获得所述矫正件模型。
  12. 如权利要求11所述的制造方法,其中,在所述三维轮廓模型上构建镂空网格,包括:
    基于所述用户信息,确定所述镂空网格的信息;其中,所述镂空网格的信息包括所述镂空网格的形状数据、所述镂空网格的尺寸数据以及组成所述镂空网格的支柱的尺寸数据中的一种或多种;
    基于所述镂空网格的信息,在所述三维轮廓模型上构建镂空网格。
  13. 如权利要求12所述的制造方法,其中,所述基于所述用户信息,确定所述镂空网格的信息,包括:
    至少基于所述用户体重信息,确定所述镂空网格的信息。
  14. 根据权利要求1所述的制造方法,其中,基于所述用户信息,确定至少一个矫正周期的至少一个对应的矫正件模型,包括:
    基于用户信息,确定一个矫正周期对应的矫正件模型;
    获取矫正结果信息;所述矫正结果信息用于反映用户穿戴所述矫正件一个矫正周期后的足弓信息;
    基于所述矫正结果信息,确定其余矫正周期对应的矫正件模型。
  15. 如权利要求14所述的制造方法,其中,
    所述矫正结果信息基于用户穿戴所述矫正件一个矫正周期后的足弓信息的测量数据确定;和/或,
    所述矫正结果信息基于用户穿戴所述矫正件一个矫正周期后的足弓信息的预测数据确定。
  16. 根据权利要求14所述的制造方法,其中,所述矫正结果信息还包括用 户体验反馈信息。
  17. 根据权利要求1所述的制造方法,其中,还包括:
    基于所述矫正件模型,使用3D打印方式,打印出所述至少一个矫正周期对应的足部矫正件。
  18. 根据权利要求1所述的制造方法,其中,所述足部矫正件包括弹性树脂材料。
  19. 根据权利要求1所述的制造方法,其中,所述足部矫正件的弹性模量为1MPa-50MPa。
  20. 根据权利要求1所述的制造方法,其中,所述足部矫正件的拉伸强度为5MPa-50MPa。
  21. 根据权利要求1所述的制造方法,其中,所述足部矫正件的断裂伸长率为50%-600%。
  22. 一种足部矫正件,其中,所述足部矫正件由权利要求1-21中任一项所述的制造方法制造。
PCT/CN2022/089048 2021-06-09 2022-04-25 足部矫正件的制造方法和足部矫正件 WO2022257626A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110642740.5A CN115444649A (zh) 2021-06-09 2021-06-09 足部矫正件的制造方法和足部矫正件
CN202110642740.5 2021-06-09

Publications (1)

Publication Number Publication Date
WO2022257626A1 true WO2022257626A1 (zh) 2022-12-15

Family

ID=84295334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089048 WO2022257626A1 (zh) 2021-06-09 2022-04-25 足部矫正件的制造方法和足部矫正件

Country Status (3)

Country Link
CN (1) CN115444649A (zh)
TW (1) TW202247820A (zh)
WO (1) WO2022257626A1 (zh)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070163147A1 (en) * 2005-09-21 2007-07-19 Cavanagh Peter R Method for Design and Manufacture of Insoles
EP1969955A1 (en) * 2007-03-16 2008-09-17 Angelo Scantamburlo Sole or insole for shoes
US20090044424A1 (en) * 2005-12-19 2009-02-19 Peter Kohler Orthopedic insole
CN101808544A (zh) * 2007-09-18 2010-08-18 埃索莱斯有限责任公司 用于生产鞋垫的方法和设备
US20150165690A1 (en) * 2012-07-18 2015-06-18 Adam P. Tow Systems and methods for manufacturing of multi-property anatomically customized devices
TW201613503A (en) * 2014-10-08 2016-04-16 Hua-Mei Song A detection and evaluation method for making personalized orthotics insole
CN105533917A (zh) * 2015-12-24 2016-05-04 四川大学 基于后跟垫高的足部形态设计增高鞋垫的方法
KR20160080615A (ko) * 2014-12-30 2016-07-08 (주)비앤케이 스마트 디바이스 기반 맞춤형 인솔 3d 프린팅 방법
US20160235158A1 (en) * 2015-02-18 2016-08-18 Clemson University Variable Hardness Orthotic
US20160331071A1 (en) * 2015-05-14 2016-11-17 Foot Innovations, Llc Systems and methods for making custom orthotics
CN106344247A (zh) * 2016-10-14 2017-01-25 广州隆达医疗器械有限责任公司 足部形态分析及鞋垫定制系统
CN106455757A (zh) * 2014-05-09 2017-02-22 商用打印机公司 设计鞋类的方法和装置
CN107105816A (zh) * 2014-10-31 2017-08-29 商务打印机有限公司 鞋内底设计
CN107274478A (zh) * 2017-05-19 2017-10-20 重庆邮电大学 一种婴幼儿足生物力学异常智能检测与辅诊矫正系统
WO2017208256A1 (en) * 2016-06-03 2017-12-07 Shapecrunch Technology Private Limited Customized variable density 3d printed orthotic device
CN108937940A (zh) * 2018-07-27 2018-12-07 唐力 一种针对足形异常的智能矫正定制方法
CN109602124A (zh) * 2019-01-23 2019-04-12 呗的科技成都有限公司 一种用于儿童足底的矫正方法
CN109674144A (zh) * 2019-01-16 2019-04-26 西安交通大学 一种柔性矫形鞋垫及其制备方法
CN110505816A (zh) * 2017-02-14 2019-11-26 爱鞋仕国际有限公司 使用足部压力测量和材料硬度和/或结构减轻足部压力来通过3d打印生产足矫正鞋垫的方法
WO2020033997A1 (en) * 2018-08-14 2020-02-20 Travis Eadie Customized insole manufacturing system

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070163147A1 (en) * 2005-09-21 2007-07-19 Cavanagh Peter R Method for Design and Manufacture of Insoles
US20090044424A1 (en) * 2005-12-19 2009-02-19 Peter Kohler Orthopedic insole
EP1969955A1 (en) * 2007-03-16 2008-09-17 Angelo Scantamburlo Sole or insole for shoes
CN101808544A (zh) * 2007-09-18 2010-08-18 埃索莱斯有限责任公司 用于生产鞋垫的方法和设备
US20150165690A1 (en) * 2012-07-18 2015-06-18 Adam P. Tow Systems and methods for manufacturing of multi-property anatomically customized devices
CN106455757A (zh) * 2014-05-09 2017-02-22 商用打印机公司 设计鞋类的方法和装置
TW201613503A (en) * 2014-10-08 2016-04-16 Hua-Mei Song A detection and evaluation method for making personalized orthotics insole
CN107105816A (zh) * 2014-10-31 2017-08-29 商务打印机有限公司 鞋内底设计
KR20160080615A (ko) * 2014-12-30 2016-07-08 (주)비앤케이 스마트 디바이스 기반 맞춤형 인솔 3d 프린팅 방법
US20160235158A1 (en) * 2015-02-18 2016-08-18 Clemson University Variable Hardness Orthotic
US20160331071A1 (en) * 2015-05-14 2016-11-17 Foot Innovations, Llc Systems and methods for making custom orthotics
CN105533917A (zh) * 2015-12-24 2016-05-04 四川大学 基于后跟垫高的足部形态设计增高鞋垫的方法
WO2017208256A1 (en) * 2016-06-03 2017-12-07 Shapecrunch Technology Private Limited Customized variable density 3d printed orthotic device
CN106344247A (zh) * 2016-10-14 2017-01-25 广州隆达医疗器械有限责任公司 足部形态分析及鞋垫定制系统
CN110505816A (zh) * 2017-02-14 2019-11-26 爱鞋仕国际有限公司 使用足部压力测量和材料硬度和/或结构减轻足部压力来通过3d打印生产足矫正鞋垫的方法
CN107274478A (zh) * 2017-05-19 2017-10-20 重庆邮电大学 一种婴幼儿足生物力学异常智能检测与辅诊矫正系统
CN108937940A (zh) * 2018-07-27 2018-12-07 唐力 一种针对足形异常的智能矫正定制方法
WO2020033997A1 (en) * 2018-08-14 2020-02-20 Travis Eadie Customized insole manufacturing system
CN109674144A (zh) * 2019-01-16 2019-04-26 西安交通大学 一种柔性矫形鞋垫及其制备方法
CN109602124A (zh) * 2019-01-23 2019-04-12 呗的科技成都有限公司 一种用于儿童足底的矫正方法

Also Published As

Publication number Publication date
CN115444649A (zh) 2022-12-09
TW202247820A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
US20160331071A1 (en) Systems and methods for making custom orthotics
CN114983087A (zh) 生产足矫正鞋垫的方法、系统以及矫正鞋垫或鞋内底
CN109820281B (zh) 基于糖尿病患者足部组织层次力学特性的个性化鞋垫优化设计方法
KR20170015324A (ko) 신발류 설계 방법 및 그 장치
JP2020527422A (ja) カスタム矯正具、および個人向けの履物
CN112449576B (zh) 获得脚部分析数据的方法和系统
WO2008070537A2 (en) System and methods of making custom footwear
JP2009045244A (ja) 足計測装置
WO2021169804A1 (zh) 鞋中底、鞋类制品、三维数据处理方法、3d打印方法
JP2023076767A (ja) 身体情報測定用チルティング制御器
WO2017208256A1 (en) Customized variable density 3d printed orthotic device
CN213154354U (zh) 鞋中底及鞋类制品
JP2019171855A (ja) インソールの設計装置、インソールの設計システム、インソールの設計方法、インソールの製造方法、インソールの設計プログラム、構造体、および、インソール
WO2022257626A1 (zh) 足部矫正件的制造方法和足部矫正件
KR100697327B1 (ko) 발바닥의 압력분포에 의해 안창의 웨지 선정방법
KR20200000081A (ko) 맞춤형 교정인솔
KR100786120B1 (ko) 맞춤 신발창의 제조방법
JP5717894B2 (ja) インソールの製造方法
TWI543109B (zh) 物件立體影像數據取得系統
CN213307784U (zh) 鞋中底及鞋类制品
CN214072052U (zh) 鞋中底及鞋类制品
KR102176974B1 (ko) 위상최적설계 기법을 접목시킨 맞춤형 압력분산 깔창 제조 시스템
KR20150069998A (ko) 안창, 이를 구비한 신발 및 안창의 제조방법
Channasanon et al. 3D-printed medial arch supports of varying hardness versus a prefabricated arch support on plantar pressure: A 1-month randomized crossover study in healthy volunteers
Yarwindran et al. The feasibility study on fabrication customized orthotic insole using fused deposition modelling (FDM)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE