WO2021169804A1 - 鞋中底、鞋类制品、三维数据处理方法、3d打印方法 - Google Patents

鞋中底、鞋类制品、三维数据处理方法、3d打印方法 Download PDF

Info

Publication number
WO2021169804A1
WO2021169804A1 PCT/CN2021/076251 CN2021076251W WO2021169804A1 WO 2021169804 A1 WO2021169804 A1 WO 2021169804A1 CN 2021076251 W CN2021076251 W CN 2021076251W WO 2021169804 A1 WO2021169804 A1 WO 2021169804A1
Authority
WO
WIPO (PCT)
Prior art keywords
foot pressure
midsole
foot
data
shoe
Prior art date
Application number
PCT/CN2021/076251
Other languages
English (en)
French (fr)
Inventor
邹波
吴金生
潘海文
赵小龙
刘松松
Original Assignee
初石智能科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010119325.7A external-priority patent/CN113303549A/zh
Priority claimed from CN202010345394.XA external-priority patent/CN113633064A/zh
Priority claimed from CN202022119798.5U external-priority patent/CN214072052U/zh
Application filed by 初石智能科技(上海)有限公司 filed Critical 初石智能科技(上海)有限公司
Publication of WO2021169804A1 publication Critical patent/WO2021169804A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/12Soles with several layers of different materials
    • A43B13/125Soles with several layers of different materials characterised by the midsole or middle layer
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/181Resiliency achieved by the structure of the sole
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/181Resiliency achieved by the structure of the sole
    • A43B13/186Differential cushioning region, e.g. cushioning located under the ball of the foot
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/14Footwear with health or hygienic arrangements with foot-supporting parts
    • A43B7/1405Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form
    • A43B7/1455Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form with special properties
    • A43B7/147Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form with special properties for sick or disabled persons, e.g. persons having osteoarthritis or diabetes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/10Additive manufacturing, e.g. 3D printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • This application relates to the technical field of footwear production, in particular to a shoe midsole for footwear products, footwear products, three-dimensional data processing methods, 3D printing methods, computer equipment and computer-readable storage media.
  • footwear products provide protection for the feet of the human body.
  • the structure of the footwear products that directly contact the feet affects the shock absorption and cushioning function of the feet, as well as the comfort of the human body and foot care.
  • the structure of footwear products can also be used to achieve foot correction. For example, objects that need to reduce foot pain or disability, footwear products for foot correction require specific design, manufacturing, assembly and modification.
  • the insole placed in the shoe is used as a means of decompression.
  • the adjustment effect is not good for the user's specific personal physical condition and needs. It is aimed at the general population.
  • the sole adjustment method for decompression is also based on empirical judgment and has low utility.
  • the purpose of this application is to provide a shoe midsole, a shoe product, a three-dimensional data processing method for a shoe midsole, a 3D printing method, a computer device, and a computer readable
  • the storage medium is used to solve the problem in the prior art that it is difficult to adjust the foot pressure of the target user through footwear products.
  • the present application provides a shoe midsole for footwear products in the first aspect.
  • the shoe midsole is composed of a 3D printed topological structure or a plurality of lattice structures, including: The heel part corresponding to the heel of the target user, the sole part of the forefoot corresponding to the target user, and the waist part located between the heel part and the sole of the foot and corresponding to the arch of the target user; wherein, the shoe midsole
  • the heel portion and/or the sole of the foot is provided with at least one first foot pressure intervention area, which is located outside the first foot pressure intervention area and the topological structure or lattice structure faces the at least one first foot pressure intervention area.
  • the extended topological structure or lattice structure presents a gradual transition, so that the force strength of the topological structure or lattice structure in the at least one first foot pressure intervention area is smaller than that outside the at least one first foot pressure intervention area The strength of the topological structure or lattice structure.
  • a footwear article including the midsole as described in any one of the embodiments of the first aspect of the present application, combined with the top periphery of the midsole for wrapping the instep of the target user The shoe upper, and the shoe outsole for contacting the ground combined with the bottom of the shoe midsole.
  • the present application also provides a three-dimensional data processing method for shoe midsoles of footwear products.
  • the three-dimensional data processing method includes the following steps: modeling the shoe midsole of the target user to form a A contoured three-dimensional shoe midsole model; the three-dimensional shoe midsole model includes: a heel corresponding to the heel of the target user, a sole corresponding to the forefoot of the target user, and a corresponding between the heel and the sole of the foot The waist part of the arch of the target user's foot; the three-dimensional midsole model is processed by using the obtained foot pressure data and the foot profile data of the target user to determine the heel and/or the heel part of the three-dimensional midsole model Or the sole of the foot determines at least one first foot pressure intervention area; weaken the force strength of the topological structure or lattice structure in the at least one first foot pressure intervention area to make it smaller than the at least one first foot pressure intervention area The force strength of the topological structure or the lattice structure outside the area; the force strength of the topological structure
  • the fourth aspect of the present application also provides a 3D printing method applied to a 3D printing device.
  • the 3D printing device includes: an energy radiating device for radiating energy to the printing surface, and an energy radiating device for carrying energy radiation curing.
  • a component platform of a three-dimensional object, and the 3D printing method includes: reading the three-dimensional data of the midsole obtained by processing the three-dimensional data processing method for the midsole of the footwear product according to any one of the embodiments of the third aspect of the present application.
  • Slice data adjust the distance between the component platform and the printing surface to fill the material to be solidified on the printing surface; wherein the thickness of the material to be solidified filled corresponds to the slice layer of the three-dimensional slice data of the shoe midsole High; radiate energy to the filled material to be cured based on the three-dimensional slice data of the shoe midsole to obtain the corresponding patterned cured layer; repeat the above steps to accumulate the patterned cured layer on the component platform to form the three-dimensional shoe The midsole model corresponding to the midsole used for footwear products.
  • the fifth aspect of the present application also provides a computer device, which is characterized by comprising: a storage device for storing at least one program and a three-dimensional shoe midsole model; a processing device, connected to the storage device, for executing all The at least one program is used to call the at least one program in the storage device to execute and implement the three-dimensional data processing method for the midsole of the footwear product according to any one of the embodiments of the third aspect of the present application.
  • the sixth aspect of the present application also provides a computer-readable storage medium, characterized in that it stores at least one program, and when the at least one program is executed by a processor, the implementation is as described in any one of the implementation manners of the third aspect of the present application.
  • the shoe midsole, the shoe product, the three-dimensional data processing method for the shoe midsole, the 3D printing method, the computer equipment, and the computer-readable storage medium provided by the present application, in one embodiment It has the following beneficial effects: by adopting the topological structure or the lattice structure as the supporting structure (main structure) of the midsole, the model design of the midsole can be based on various physical functions, medical data, and feet of the target user.
  • the thickness is designed to realize that the shoe midsole distributes the plantar pressure of the target user according to the preset pressure adjustment mode, and can realize the distribution and adjustment of the plantar pressure of the target user based on the specific needs of the target user.
  • Fig. 1 shows a schematic diagram of the structure of a shoe midsole in an embodiment of the present application.
  • FIG. 2a shows a schematic diagram of the three-dimensional structure of the lattice structure of the shoe midsole of this application in an embodiment.
  • Fig. 2b shows a schematic plan view of the lattice structure of the shoe midsole of the present application in an embodiment.
  • FIG. 2c shows a schematic diagram of the three-dimensional structure of the lattice structure of the shoe midsole of the present application in an embodiment.
  • Fig. 2d shows a schematic plan view of the lattice structure of the shoe midsole of the present application in an embodiment.
  • Fig. 2e shows a schematic plan view of a partial area in an embodiment of the topological structure of the shoe midsole of the present application.
  • Fig. 3a shows a top view of the shoe midsole of this application in an embodiment.
  • Fig. 3b shows a top view of the shoe midsole of this application in an embodiment.
  • FIG. 4a shows a schematic diagram of the three-dimensional structure of the lattice structure of the shoe midsole of the present application in an embodiment.
  • Fig. 4b shows a schematic plan view of the lattice structure of the shoe midsole of this application in an embodiment.
  • Fig. 4c shows a schematic plan view of the topological structure of the shoe midsole of this application in an embodiment.
  • Figure 5 shows the measured distribution of plantar pressure in an embodiment of the shoe midsole of this application.
  • Fig. 6 shows the expected distribution of plantar pressure in an embodiment of the shoe midsole of the present application.
  • Fig. 7 shows a side view of the shoe midsole of this application in an embodiment.
  • FIG. 8 shows a schematic diagram of the structure of the shoe midsole in an embodiment of the present application.
  • Fig. 9 shows a cross-sectional view of a part of the structure of the shoe midsole in an embodiment of the present application.
  • Fig. 10a shows a cross-sectional view of the shoe midsole of this application in an embodiment.
  • Fig. 10b shows a schematic diagram of the shoe midsole of Fig. 10a in contact with the target user's foot.
  • FIG. 11 shows the actual measured foot pressure distribution diagram of the target user corresponding to an embodiment of the shoe midsole of this application.
  • FIG. 12 shows a data diagram of foot pressure distribution after intervention of a target user in an embodiment of the shoe midsole of the present application.
  • FIG. 13 shows a schematic diagram of the buffer layer and the shoe midsole in an embodiment of the shoe midsole of this application.
  • FIG. 14 shows a schematic diagram of an exploded structure of the footwear article of this application in an embodiment.
  • FIG. 15 shows a simplified schematic diagram of the footwear article of this application in an embodiment.
  • FIG. 16 shows a schematic flowchart of an embodiment of a method for processing three-dimensional data of a shoe midsole according to this application.
  • FIG. 17 shows a schematic flow diagram of a 3D printing method of a shoe midsole according to an embodiment of the present application.
  • FIG. 18 shows a simplified schematic diagram of a computer device in an embodiment of this application.
  • first, second, etc. are used herein to describe various elements or parameters in some examples, these elements or parameters should not be limited by these terms. These terms are only used to distinguish one element or parameter from another element or parameter.
  • first foot pressure intervention area may be referred to as the second foot pressure intervention area, and similarly, the second foot pressure intervention area may be referred to as the first foot pressure intervention area without departing from the various described embodiments Range.
  • the first foot pressure intervention area and the second foot pressure intervention area are both describing a foot pressure intervention area, but unless the context clearly indicates otherwise, they are not the same foot pressure intervention area.
  • A, B or C or "A, B and/or C” means "any of the following: A; B; C; A and B; A and C; B and C; A, B and C” .
  • An exception to this definition will only occur when the combination of elements, functions, steps or operations is inherently mutually exclusive in some way.
  • the height of the sole is usually adjusted appropriately based on the needs of users, such as the consideration of comfort.
  • walking it is usually followed by the walking method of first landing.
  • a material with good elasticity such as EVA
  • EVA is selected to realize the shock absorption of the sole in the manufacture of the sole.
  • the contact area of the sole during exercise can be changed. Increase is to achieve partial pressure and so on.
  • the distribution of the plantar pressure of the human body is often related to the individual's physiological state and gait habits.
  • the suitable plantar pressure distribution of different individuals in the static state and the exercise state is different, and the uniformly manufactured footwear products are difficult to satisfy the individual user.
  • the appropriate foot pressure adjustment method also requires data analysis as a scientific basis. For example, according to the specific information of such user groups: plantar contours, weight, medical data, etc. to determine the appropriate user expectations
  • the pressure state makes the pressure distribution conducive to the correction of the human foot shape and the comfort of wearing.
  • Figure 1 shows a schematic structural diagram of a shoe midsole for footwear products provided in the first aspect of this application in an embodiment, including: a heel portion 13 corresponding to the heel of the target user, and a portion corresponding to the forefoot of the target user
  • the sole portion 11, which connects the heel portion and the sole portion, corresponds to the waist portion 12 of the target user.
  • the heel portion 13 corresponds to the stepping position of the target user's back heel
  • the sole portion 11 corresponds to the sole of the target user Of trampling sites.
  • the target user may be a user of the shoe product.
  • manufacturing information for the midsole of the shoe is formed based on the specific information of the target user, such as material information, shoe midsole Structure information, manufacturing process information, etc.
  • the specific information of the target user is obtained by collecting the personal physical state and needs of the target user, and analyzing the collected information, and is used to indicate the personalized information of the shoe midsole structure design. Or, for a certain type of target user group, the specific information of the target user is obtained by big data for this type of group.
  • target user group is suitable for shoe midsole manufacturing information, for example: for target users with diabetes, they are usually prone to diabetic feet, that is, plantar ulcers and calluses caused by diabetes; based on medically corresponding diabetic foot patients’ Plantar analysis and statistics, for the target user group for diabetic patients, and for diabetic patients with no obvious pathological changes such as the plantar calluses, the protective area of the plantar can be determined in advance based on medical statistical analysis.
  • At least one first foot pressure intervention area is provided in the area corresponding to the sole portion and the heel portion, and the topological structure or lattice structure in the first foot pressure intervention area has a smaller force strength than the first foot pressure intervention area The strength of the topological structure or lattice structure outside the region.
  • the first foot pressure intervention area is provided in the sole of the foot or the heel, or both in the sole of the foot and the heel. As shown in FIG. 1, the sole portion 11 of the shoe midsole is provided with a first foot pressure intervention area 111 and another first foot pressure intervention area 112, and the heel portion is provided with a first foot pressure intervention area 131.
  • the first foot pressure intervention area may be determined according to the specific needs of the target user.
  • the first foot pressure intervention is, for example, a designated protection site of the foot, a foot ulcer site, etc.
  • the specific location of the area where the pressure needs to be dispersed and transferred, or other areas where the pressure is adjusted and dispersed based on the comfort or protection of the sole, can be further determined based on the foot contour and specific needs of the target user.
  • the form of the basic unit of the lattice structure in the first foot pressure intervention area is different from that of the basic unit of the lattice structure outside the first foot pressure intervention area. The pressure is distributed naturally with preset effects.
  • the topological structure or the lattice structure located outside the first foot pressure intervention area has a gradual transition toward the topological structure or the lattice structure extending within the at least one first foot pressure intervention area, and Therefore, the force strength of the topological structure or the lattice structure in the at least one first foot pressure intervention area is smaller than the force strength of the topological structure or the lattice structure outside the at least one first foot pressure intervention area.
  • the gradual transition includes a gradual change in the lattice structure, such as a gradual change in the size of a basic unit of a lattice structure, a gradual change in the density of a basic unit, a gradual change in the thickness of a lattice wall surface, a gradual change in the length of the lattice rod diameter, and a thickness of the lattice rod.
  • a gradual change in the lattice structure such as a gradual change in the size of a basic unit of a lattice structure, a gradual change in the density of a basic unit, a gradual change in the thickness of a lattice wall surface, a gradual change in the length of the lattice rod diameter, and a thickness of the lattice rod.
  • the continuous gradation of the geometric structure of the basic unit of the lattice structure (such as the geometric structure type), and the performance gradation including the formation of the lattice structure by post-processing or printing processes, such as the density gradient of the lattice structure after forming, the lattice structure Material gradual change; or, the gradual transition is the structural body gradual change of the topological structure, such as the thick gradual change of the rod diameter of the connecting rod body in the topological structure, the gradual change of the thickness of the topological structure wall surface, the gradual change of the volume of the connection between the topological structure rod diameters or manufacturing The topological structure material density gradient formed by the process and post-processing process, etc.
  • the at least one first foot pressure intervention area is predetermined, where, for example, the position and contour of the at least one first foot pressure intervention area on the midsole of the shoe are determined, and the first foot pressure intervention area is The topological structure or the lattice structure outside the region, which extends toward the at least one first foot pressure intervention region, determines the boundary area, and the topological structure in the boundary area is set to a gradual transition, or the lattice structure
  • the basic unit of the structure is set in a transitional and gradual form.
  • boundary area and the first foot pressure intervention area may intersect or be adjacent to each other, that is, the basic unit of the topological structure or the lattice structure with a gradual transition may extend into the first foot pressure intervention area, or extend to the first foot pressure intervention area.
  • boundary (or contour) of the determined first foot pressure intervention area At the boundary (or contour) of the determined first foot pressure intervention area.
  • the lattice structure in the boundary area is designed in the form of a gradual change in the size of the basic unit of the lattice structure; or, the geometric structure type of the basic unit of the lattice structure in the boundary area changes, for example, from The basic unit of the lattice structure outside the first foot pressure intervention area is a cone, which is gradually deformed in accordance with the extending direction, until the basic unit of the at least one first foot pressure intervention area is formed as a spherical body; for another example, the printing process is set After positioning, the lattice structure in the boundary area extends from outside the first foot pressure intervention area toward the first foot pressure intervention area, and the corresponding basic unit of the lattice structure presents a form of gradual material density.
  • the topological structure in the junction area is changed based on the connection mode, so that the force strength of the junction area changes gradually.
  • the connection form of the topological structure can be set arbitrarily.
  • the topological structure of the junction area can be divided into different sub-areas, and each sub-area can be determined
  • the volume density of the topological structure is used to characterize the strength of the topological structure in the corresponding sub-region.
  • the topological structure may be in conformity with the extension direction.
  • the number of public connections at the connecting rod nodes in the sub-region or the average number of public connections of all nodes in the region decreases, or, conforming to the extension direction, the diameter of the topological structure in the sub-region gradually decreases.
  • the shoe midsole In the state of being worn, the pressure assumed varies continuously between different areas. For example, when the position and contour of the at least one first foot pressure intervention area are determined at the midsole of the shoe, the inside and outside of the contour The plantar pressure is continuously changing. For example, draw a pressure cloud map based on the contour area of the shoe midsole, and each unit area corresponds to an average pressure value. The pressure change value in the adjacent unit area of the pressure cloud map obtained here is within the preset value, and the plantar pressure can be considered as Continuously changing.
  • the foot pressure pressure is adjusted to The overall continuous state.
  • the midsole of the shoe has a good cushioning capacity, and the pressure transmission and sharing between different areas can be effectively realized; at the same time, it can alleviate the uncomfortable feeling of excessive local pressure under the human body wearing state.
  • the unit area and the preset value of the pressure change can be manually set, or determined based on the target user's medical intervention data, for example, the pressure peak suitable for plantar care is determined, and after the first foot pressure intervention area is determined, The topological structure or the lattice structure located outside the first foot pressure intervention area is gradually transitioned toward the topological structure or the lattice structure extending inside the at least one first foot pressure intervention area to reduce the first foot pressure intervention.
  • the threshold can be set based on medical data or the performance of the shoe product, such as when the foot pressure is too high.
  • the threshold of foot pressure sudden change can be determined based on medical analysis to reduce or eliminate the discomfort, and if there are excessive sudden changes in the pressure on different areas of the shoe midsole, the buffer function It may be weakened, where the sudden change in pressure in the boundary area can be reduced to achieve a gradual transition; in addition, it can also be determined by the manufacturing process (standard) of the footwear product, for example, the pressure change state suitable for the cushioning of the sole can be determined to enhance The cushioning function of the shoe midsole or the impact resistance and abrasion resistance of the shoe midsole.
  • the lattice structure is the form of the unit structure constituting the shoe midsole, and the shape and position relationship between the basic units of the lattice structure are similar to the lattice structure in chemical molecules on a macroscopic scale.
  • the basic unit structure composing the midsole of the shoe is a spatial connecting rod of a certain shape, and the positional relationship between the connecting rods can be represented by the positional relationship of the connecting bonds between the atoms of the unit cell unit in the crystal. form.
  • the basic unit form of the crystal lattice structure of the shoe midsole is not limited by the connection form of the actual unit cell, but a structural form with spatially oriented connection bonds between the unit cell atoms.
  • the shoe midsole composed of the lattice structure is a hollow structure.
  • the lattice structure adopts the form of crystal connection shared bonds between chemical molecules, corresponding to different connection forms, the properties of the lattice structure are different.
  • valences can be used to indicate the degree of interconnection between the basic units of the lattice structure. The lower the number, the smaller the number of connecting rods shared between the corresponding basic units.
  • the lattice structure is configured to be composed of a planar hollow structure
  • the basic unit of the lattice structure is a hollow polyhedron with a certain wall thickness, such as a tetrahedron, a hexahedron, etc., and the basic unit of the lattice structure The units are connected in the form of a common surface to form a preset shoe midsole profile.
  • each basic unit structure in the lattice structure has the same or approximately the same geometry.
  • the structure that is, the basic units in the lattice structure have a certain periodicity between them, and the lattice structure is also a stretched, twisted or compressed deformed structure at different positions.
  • the lattice structure can be divided into a plurality of basic units with similar connection forms on the basis of connecting keys or common planes with spatial orientation, and the overall structure appears to be formed by stacking basic geometric units.
  • the 3D structure of the shoe midsole composed of the lattice structure presents a certain deformation treatment in the basic unit structure of different parts.
  • the basic unit constituting the outer contour of the shoe midsole conforms to the contour design and presents in different positions
  • Different deformation treatments such as stretching, twisting, or compressing the deformation structure, are the adjustment of the connection form of the basic unit structure under no external pressure to conform to the shape design of the shoe midsole.
  • the deformation processing of the basic unit may be a transformation or torsion processing in the length, width, height or two or more directions of the basic unit of the crystal lattice, based on the overall contour design of the shoe midsole lattice structure and different directions. Strength design decision.
  • the geometric structure includes a polyhedron, for example, a combination of one or more of a cone, a rhombus, a star, and a spheroid.
  • the solid structure of the shoe midsole corresponds to the edge of the basic geometric unit; for the lattice structure with the basic unit being a hollow polyhedron, the geometric structure is a planar body
  • the solid structure of the shoe midsole corresponds to the wall surface of the basic geometric unit, wherein the wall surface includes a flat surface, an arc surface or a curved surface, and the basic geometric unit includes, for example, one of a cone, a rhombus, and a star.
  • the shoe midsole can adopt a simple geometric structure as the basic unit of the lattice structure, or a combination of multiple geometric structures can be selected to form the basic unit of the lattice structure, and it can also be set to different basic geometries in different locations and regions.
  • a rhombus structure is used as the basic unit in the waist part
  • a polyhedron is used as the basic unit in the heel or sole.
  • the lattice structure is configured to adopt a planar lattice structure, such as an extremely small curved surface structure, and the lattice structure of the extremely small curved surface structure can provide a reduction for sports shoes.
  • Shock cushioning performance a structure composed of multiple curved surfaces filled and/or spliced and/or arrays are spliced into a unit body, and a very small curved surface structure composed of multiple unit bodies filled and/or spliced and/or arrays forms a good staggered structure Strong pillars, which can make the midsole of the shoe more supportive.
  • the lattice structure of the extremely small curved structure is, for example, the extremely small curved structure described in Patent Publication No. CN110652069A.
  • the topological structure is a hollow connecting body formed by connecting different rod bodies based on a common node, wherein the entity of the topological structure of the shoe midsole is the rod body therein.
  • the connection mode of the topological structure can be set based on human needs. For example, the end point of each pole in the topology structure shares an end point with at least one pole, and each end point corresponds to a common connection number.
  • the common connection number can be preset. Set to different values such as 2, 3, 4, 5, 6, etc., the total number of rods connected at the shared connection digital node; furthermore, the connection direction of the rods in the topology can be set arbitrarily.
  • the topological structure may also be optimized, so that the overall order of the topological structure is increased, for example, the number of shared connections at each node in the topological structure is the same.
  • the topological structure may be designed as a bionic structure such as a tree-shaped branch extension structure as required.
  • the rod diameter connection form in the topological structure is set to imitate the rod diameter and connection nodes when the branch is extended.
  • the number conforms to the change in the direction of the treetop; another example is to set the rod diameter connection form in the topological structure to a microscopic cell shape; another example is to set the rod diameter connection form in the topological structure to the vein shape in the leaf, as an example
  • the topological structure can be shown as being composed of a first basic unit (similar to the main vein and lateral veins in the leaf) and a second basic unit (similar to the thin veins in the leaf).
  • the diameter and length are all larger than the second basic unit, and the first basic unit is filled by the second basic unit to form the midsole topological structure.
  • the first basic unit can be used to ensure the strength of the midsole.
  • the basic unit can be used to increase the elastic deformation ability of the shoe midsole; here, the specific form of the basic unit in the first basic unit and the second basic unit can be set arbitrarily, that is, the forms of different basic units are not based on periodicity. limit.
  • the topological structure may also be a planar body.
  • the planar body of the topological structure includes multiple pores.
  • the wall surface of a single planar body in the topological structure is a solid body.
  • the wall surface includes a flat surface, a curved surface or a curved surface.
  • the form of a single facet in the topological structure includes a cone, a polyhedron, a sphere, etc., and the form of each single facet in the topological structure of the shoe midsole can be set arbitrarily, in some examples
  • the topological structure can also be optimized to increase the periodicity of the planar body.
  • the topological structure or the lattice structure under the state of being subjected to external pressure, the topological structure or the lattice structure has the tensile, torque, and shear stiffness or elastic deformation capabilities corresponding to different force modes, that is, it has a certain strength.
  • the strength of the topological structure or the lattice structure in the first foot pressure intervention area is less than the strength of the topological structure or the lattice structure outside the first foot pressure intervention area, so that the midsole of the shoe can hold the first foot pressure during load-bearing.
  • the effect of spreading the pressure in the foot pressure intervention area to other areas.
  • the test may be a topological test.
  • the strength of the topological structure and the lattice structure can be characterized by tensile strength, compressive strength, shear strength, bending stiffness, torsional stiffness and toughness such as elastic deformation ability and other strength performance indicators.
  • the crystal The lattice structure strength is mainly used to ensure that the midsole of the shoe is in an elastic deformation state and the corresponding deformation amount is within a preset range under the wearing state (including natural standing, walking, running, and other wearing states).
  • the force strength of the lattice structure is determined by at least one of the volume density of each lattice structure, the structure of the crystal lattice, the printing material, the printing process, and the post-processing process;
  • the stress strength of the topological structure is determined by determining at least one of the bulk density of the topological structure, printing material, printing process, and post-processing process.
  • the bulk density of the lattice structure is related to the rod diameter, the thickness of the lattice wall, the size of the lattice, and the density of the lattice rod after forming;
  • the bulk density of the topological structure is related to the rod diameter of the topological structure.
  • the density of the topological structure rod body is related after forming.
  • the physical structure of the lattice structure is in the form of connecting rods or wall surfaces, and the volume density of the lattice structure is related to the length, diameter, connection density, etc. of the connecting rods of the basic unit. Filled with materials with uniform density, its bulk density can be used to characterize the amount of material in a unit volume. Generally speaking, when the connection form of the basic unit of the lattice structure is determined, the force strength of the lattice structure is positively correlated with its volume density.
  • the lattice structure unit corresponding to the different connection modes for the two lattice structures with different valences at the connecting rod node and the rod node in the basic unit used, generally speaking, the corresponding volume density respectively And the structural strength is different.
  • the volume density of the lattice structure is related to the thickness of the wall surface of the basic cell, that is, the wall thickness, the size of the basic cell, and the geometric structure of the basic cell.
  • the wall thickness of the basic unit is positively related to the bulk density. For example, when the wall thickness of the basic unit is increased, the bulk density of the lattice structure increases, and at the same time the strength of the lattice structure increases; for another example, when the wall thickness of the basic unit Determined with the geometric structure, when the size of the basic unit is reduced in proportion but the wall thickness remains the same, a lattice structure with increased volume density is obtained, and at the same time it has greater strength.
  • the basic unit may also have different structural strengths.
  • the basic unit is a tetrahedron and a spherical lattice structure, the tensile strength, compression strength, and shear strength of the shoe midsole. Different strength properties such as strength.
  • the force strength of the lattice structure is also related to the connection mode of the connecting rods, such as the connecting direction of the connecting rods in the basic unit cell structure.
  • the connection modes of the basic unit cell are the two connection modes in which the cone geometry is the basic geometry unit and the regular hexahedron is the basic geometry unit
  • the corresponding lattice structure strengths are different. Since the lattice structure of the shoe midsole adopts the rod connection form, when the rods have different directions, the corresponding force transmission direction between the rods under compression is different, and the ability of the lattice structure to resist deformation is also different.
  • the crystal lattice structure is selected as different unit cell structure or basic unit geometric structure and bulk density in different regions of the shoe midsole, but the volume density of the shoe midsole crystal lattice structure changes in the shoe. The bottom area is continuously changed to realize that the midsole of the shoe provides sufficient cushioning force for the foot.
  • the volume density of the topological structure is defined by the volume of the topological structure entity in the unit area, that is, the volume of the rod, or by the material density and the volume of the rod.
  • the thickness determines the volume density distribution of the topological structure, so that different areas of the topological structure of the shoe midsole bear pressure according to the preset pressure distribution law. For example, when the material density of the rod in the topological structure is uniform, the topological structure in the unit area The rod diameter of the rod increases, so that the volume of the rod in the unit area increases, and the volume density of the topological structure in the unit area increases accordingly.
  • the strength performance of the formed shoe midsole is related to the printing material.
  • entities with different structural strengths can be formed based on the setting of the printing material.
  • the determination of the force strength of the lattice structure or the topological structure is based on a predetermined printing material.
  • the force strength of the topological structure or the lattice structure is related to the material density of the connecting rod or the wall surface.
  • the material density may be determined based on the printing material or printing process. For example, when the topological structure or the lattice structure is produced by a 3D printing sintering method, during the sintering and curing process, when the energy density of the radiation is different, the density of the solidified part corresponding to the sintered part is different.
  • the strength of the sintered part first increases and then decreases, that is, different materials have the energy value to obtain the best density during sintering; in specific printing, according to the material characteristics selected, Setting the energy density of the radiation to the energy value corresponding to the optimal density, the lattice structure formed by sintering will have greater strength; another example, when the powder particle size of the sintered material is different, the sintering performance may be different.
  • a specific material When appropriate powder states such as powder size and powder geometry are set, sintering is performed to obtain a sintered part with a dense microstructure, the material of the connecting rod is denser and has greater strength.
  • the stress strength of the topological structure or the lattice structure is also related to the post-processing process of printing. For example, after the midsole is obtained by 3D printing, a certain area such as the first foot pressure intervention area The outer topological structure or the basic unit of the crystal lattice is subjected to structural strengthening treatment or chemical treatment to strengthen the corresponding topological structure strength or the lattice structure strength of the region.
  • the gradual transition of the lattice structure outside the first foot pressure intervention area toward the lattice structure extending into the at least one first foot pressure intervention area is determined by determining the bulk density of the lattice structure , A lattice structure, a printing material, a printing process, and a post-processing process; or, the topological structure outside the first foot pressure intervention area faces one of the at least one first foot pressure intervention area
  • the gradual transition of the internally extending topological structure is achieved by determining at least one of the bulk density of the topological structure, printing material, printing process, and post-processing process.
  • Figures 2a and 2b show a schematic diagram of a partial area of the shoe midsole in an embodiment of the present application
  • Figure 2b shows the shoe midsole part Side view of the lattice structure of the region.
  • the lattice structure located outside the first foot pressure intervention area is a lattice structure extending toward the first foot pressure intervention area
  • the rod diameter of the basic unit gradually decreases (in the X direction that conforms to the arrow in Figure 2a and Figure 2b).
  • the volume density of the lattice structure goes from outside the first foot pressure intervention area to the first foot pressure intervention area As a result, the strength of the lattice structure located outside the first foot pressure intervention area gradually decreases toward the strength of the lattice structure extending toward the first foot pressure intervention area.
  • the rod diameter of the basic unit of the lattice structure extending toward the first foot pressure intervention area from the lattice structure located outside the first foot pressure intervention area gradually decreases, there is no shape change of the overall lattice structure.
  • Figure 2c and Figure 2d respectively show a three-dimensional schematic diagram and a plane schematic diagram of a lattice structure in which the basic unit adopts another geometric structure.
  • the basic unit in the shoe midsole is a hexagon-like hole-like body.
  • the lattice structure entity corresponds to the connecting rod as the side length of the hexagon, and the volume density of the lattice structure located outside the first foot pressure intervention area toward the first foot pressure intervention area gradually decreases;
  • the rod diameter of the basic unit of the lattice structure gradually decreases in accordance with the direction extending toward the first foot pressure intervention area (in the X direction following the arrows in Fig. 2c and Fig. 2d).
  • the gradual transition of the lattice structure outside the first foot pressure intervention area toward the lattice structure extending into the at least one first foot pressure intervention area can also be achieved by setting the size of the basic unit, for example, the first foot pressure intervention area
  • the rod diameter length of the basic unit of the outer lattice structure toward the first foot pressure intervention area gradually increases, the volume density of the corresponding basic unit of the lattice structure gradually decreases, and the force strength gradually decreases.
  • a gradual transition can be achieved by changing the wall thickness of the basic unit of the lattice structure, which includes but is not limited to being located outside the first foot pressure intervention area
  • the thickness of the wall surface of the basic unit of the lattice structure extending toward the first foot pressure intervention area is set to gradually decrease in accordance with the extending direction, for example, a continuous linear decrease.
  • the gradual transition of the lattice structure located outside the first foot pressure intervention area toward the lattice structure extending from the first foot pressure intervention area may be determined based on the specific type of the adopted lattice structure, for example, when the lattice structure
  • the structure is a planar body, in which there are pores between different basic units.
  • the size of the pores can be gradually increased by conforming to the direction of the first foot pressure intervention area, and the volume density of the corresponding basic unit of the lattice structure can be gradually reduced.
  • the optional form of the lattice structure and the manner of achieving a gradual transition are not limited to the illustrated embodiment.
  • the gradual transition can also be achieved through the gradual change of the lattice structure, such as the gradual change in the size of the basic unit of the lattice structure, the gradual change in the density of the basic unit, the gradual change in the thickness of the lattice wall surface, and the length of the lattice rod diameter. Gradation, gradation of the diameter of the lattice rod, continuous gradation of the geometric structure of the basic unit of the lattice structure (such as the type of geometric structure), etc.
  • FIG. 2e shows a schematic structural diagram of a part of the topological structure of the midsole of the shoe in an embodiment.
  • the topological structure shown in Figure 2e has a first foot pressure intervention area, where the rod diameter in the first foot pressure intervention area in the topology is smaller than the rod diameter outside the first foot pressure intervention area.
  • the rod diameter changes in a gradual form; as shown in the figure, in the direction toward the first foot pressure intervention area, the rod diameter in the topological structure gradually decreases, so that from the first foot pressure intervention area
  • the volume density of the topological structure extending toward the first foot pressure intervention area gradually decreases.
  • the gradual transition can also be achieved by changes in printing materials, for example, by using printing materials with different hardnesses, so that the topological or lattice structures printed by printing materials with different hardnesses have different strengths. Therefore, the gradual transition of the topological structure or the lattice structure located outside the first foot pressure intervention area toward the topological structure or the lattice structure extending from the first foot pressure intervention area is realized by the gradual change of the hardness of the printing material.
  • the gradual transition can also be achieved by a printing process.
  • the midsole of the shoe is made by a 3D printing process, and the topological structure outside the first foot pressure intervention area is made during the radiation molding process.
  • the lattice structure extends toward the at least one first foot pressure intervention area, or the lattice structure corresponding to the received radiation energy density gradually changes, for example, the energy density gradually decreases in accordance with the extension direction, so that the solidified topological structure or The strength of the lattice structure gradually decreases.
  • the gradual transition can also be achieved by a post-processing process, for example, by removing part of the rods of the lattice structure to change the strength of the lattice structure, or by removing part of the rods in the topological structure to reduce the nodes
  • the number of connections is used to change the strength of the topological structure; another example is the midsole based on the 3D printing process. After the printed midsole passes through the 3D printing post-curing step, the topological structure or structure outside the first foot pressure intervention area The topological structure or the lattice structure extending into the at least one first foot pressure intervention area of the lattice structure is irradiated with light sources of different intensities.
  • the topological structure or the lattice structure outside the first foot pressure intervention area toward the topological structure or the lattice structure extending into the at least one first foot pressure intervention area presents a gradual transition. That is, the strength of the topological structure or the lattice structure corresponding to the boundary area or the gradual transition of the corresponding pressure distribution is based on the method for determining the force strength of the topological structure or the lattice structure of the shoe midsole provided by this application.
  • Setting at least one influencing factor of force intensity in manufacturing can realize that the topological structure or the lattice structure outside the first foot pressure intervention area is oriented into the at least one first foot pressure intervention area
  • the extended topological structure or lattice structure presents a gradual transition, thereby increasing the comfort of the user.
  • FIG. 3a shows a schematic diagram of the structure of the shoe midsole in an embodiment of the present application.
  • the lattice structure of the shoe midsole adopts different connection forms or different volumes in different regions. density.
  • a first foot pressure intervention area is respectively provided in the forefoot and heel area of the shoe midsole, and the first foot pressure intervention area corresponds to the area where the crystal lattice density is reduced in the embodiment shown in FIG. 3a, such as The volume density of the first foot pressure intervention area 111 of the sole 11 and the first foot pressure intervention area 112 of the heel portion 13 is reduced.
  • the shoe midsole may also adopt a topological structure, and set a plurality of first foot pressure intervention areas in it, which is determined by determining The table variables of the structural strength of the topological structure, such as printing process, bulk density, etc., weaken the strength of the topological structure corresponding to the first foot pressure intervention area in the design or production of the midsole of the shoe.
  • the midsole of the shoe is trampled The pressure received is naturally dispersed to the area corresponding to the greater structural strength outside the first foot pressure intervention area to achieve a balance of support and pressure to the human body.
  • the strength of the lattice structure of the first foot pressure intervention area is related to the calculated expected foot pressure data, wherein the expected foot pressure data is smaller than the corresponding at least one first foot pressure intervention Measured foot pressure data for the area.
  • FIG. 3b shows a schematic diagram of the structure of the shoe midsole in an embodiment of the present application.
  • the shoe midsole is provided with at least one second foot pressure intervention area.
  • the shoe midsole may adopt a lattice structure (as shown in FIG. 3b) or a topological structure (not shown). (Illustration), at least one second foot pressure intervention area is provided in the midsole of the shoe, such as the second foot pressure intervention area 113 shown in FIG.
  • topological structure or the lattice structure located outside the second foot pressure intervention area is in the form of a topological structure or lattice structure extending into the at least one second foot pressure intervention area Gradually transition, so that the force strength of the topological structure or lattice structure in the at least one second foot pressure intervention area 113 is greater than that of the topological structure or lattice structure outside the at least one second foot pressure intervention area 113 Strength of force.
  • the force strength is determined by at least one of the volume density of each lattice structure, the structure of the crystal lattice, the printing material, the printing process, and the post-processing process; or, the volume of the topological structure At least one of density, printing material, printing process, and post-processing process determines the structural strength of different regions of the topological structure of the shoe midsole.
  • the topological structure or the lattice structure corresponding to the second foot pressure intervention area has a force strength greater than the volume density of the topological structure or the lattice structure outside the second foot pressure intervention area, so as to correspondingly obtain a stronger physical structure.
  • the first foot pressure intervention area of the shoe midsole adopts a weakened strength design.
  • the second foot pressure intervention area with increased structural strength is provided to balance the pressure. Distribution, based on the structural design with increased strength adopted by the second foot pressure intervention area, the midsole of the shoe can naturally distribute pressure to the second foot pressure intervention area when the shoe midsole is stepped on during wearing.
  • the topological structure or the lattice structure located outside the second foot pressure intervention area is transitional and gradual toward the topological structure or lattice structure within the at least one second foot pressure intervention area.
  • It is achieved by setting at least one of the topological structure or the determinant of the force strength of the lattice structure, such as the bulk density of the lattice structure, the lattice structure, the bulk density of the topological structure, the printing material, the printing process, and the post-processing process.
  • FIG. 4a and FIG. 4b show schematic diagrams of the lattice structure of the shoe midsole of this application in an embodiment.
  • the basic unit of the lattice structure adopts a rod diameter connection form, wherein the basic unit follows the X direction of the arrow direction as shown in the figure, and the rod diameter gradually increases or becomes thicker.
  • the X direction corresponds to the midsole of the shoe.
  • the second foot pressure intervention area extends to the second foot pressure intervention area.
  • the lattice structure located outside the second foot pressure intervention area faces the at least one second foot pressure intervention area. The force intensity of the lattice structure within the foot pressure intervention area gradually increases, and the corresponding plantar pressure gradually increases.
  • Figure 4c shows a schematic structural diagram of a partial area of the topological structure of the shoe midsole in an embodiment.
  • the rod diameter of the connecting rod body in the topological structure gradually increases.
  • the X direction corresponds to the direction extending from the second foot pressure intervention area of the shoe midsole to the second foot pressure intervention area.
  • the topological structure located outside the second foot pressure intervention area faces the at least one second foot pressure intervention area.
  • the force intensity of the topological structure within the foot pressure intervention area gradually increases, and the corresponding plantar pressure gradually increases.
  • the topology may be set such that the number of node connections in a unit area gradually increases (not shown) to form an orientation
  • the volume density of the second foot pressure intervention area gradually increases, and the force strength to the topological structure gradually increases.
  • the topological structure or lattice structure of the second foot pressure intervention area corresponding to the first foot pressure intervention area is similar to the influence factors of the force intensity of the lattice structure.
  • the design in different areas is to achieve the expected distribution of pressure when the midsole is worn.
  • both the first foot pressure intervention area and the second foot pressure intervention area can determine the area distributed in the midsole of the shoe based on the desired foot pressure data of the target user.
  • the topological structure or the strength of the lattice structure of the second foot pressure intervention area is related to the calculated expected foot pressure data, wherein the expected foot pressure data is greater than the corresponding at least one second foot pressure data. Measured foot pressure data of the foot pressure intervention area.
  • the expected foot pressure data is the expected human foot pressure data corresponding to the shoe midsole of the present application in the worn state, that is, the foot pressure data after the shoe midsole is adjusted.
  • the overall structure of the shoe midsole is based on the physical factors of the target user, such as foot contour data, gait data, body data, weight data, measured foot pressure data, and medical intervention data, etc.
  • the data is designed, and it can be considered that the pressure of the entire area of the shoe midsole is determined by the expected foot pressure data.
  • the desired foot pressure data and the measured foot pressure data are used to determine the area that requires plantar decompression, that is, the first foot pressure intervention area. Based on the range of the first foot pressure intervention area and the pressure range corresponding to the area, the strength of the topological structure or the lattice structure is adjusted to determine that the remaining pressure is dispersed outside the first foot pressure intervention area.
  • the desired foot pressure data is used to determine the foot pressure adjustment method for the target user, and based on the pressure distribution needs, the area that can be used for pressure bearing, that is, the second foot pressure intervention area, is determined.
  • the design strength of the topological structure or lattice structure corresponding to the second foot pressure intervention area is increased, so as to increase the pressure of the second foot pressure intervention area under the wearing state of the shoe midsole, and the plantar pressure outside the second foot pressure intervention area Naturally reduced.
  • the plantar pressure borne by the part outside the first foot pressure intervention area is naturally increased; or, after the second foot pressure intervention area is determined
  • the design is designed so that the plantar pressure borne by the part outside the second foot pressure intervention area is naturally reduced. That is, by determining the first foot pressure intervention area or the second foot pressure intervention area for design, the effect of pressure adjustment can be achieved.
  • the foot pressure data is the pressure distribution data of different areas of the shoe midsole in the state of being worn, including the static pressure distribution and the dynamic pressure distribution during the movement of the target user, and is used to indicate that the shoe midsole is affected by The distribution of force.
  • the pressure distribution of the foot pressure data is a pressure vector with a direction. For example, using a common three-dimensional rectangular coordinate system, the pressure value of the shoe midsole can be decomposed in different directions.
  • the area range of the foot pressure data distribution is the three-dimensional space area of the shoe midsole, that is, the foot pressure data includes the spatial position of the pressure distribution and the pressure vector. Based on the relativity of force, it can be known that the foot pressure data can represent the force on the contact surface between the foot and the shoe of the target user during wearing.
  • the foot pressure data can be acquired according to a pressure plate or a pressure detector.
  • a pressure plate For example, by indicating the standing state of the target user, the sole of the target user touches the pressure plate in a barefoot state, and the corresponding plantar pressure map is received from the pressure plate, and the pressure map can be used to represent the pressure distribution data of the sole of the foot .
  • a pressure sensor is provided on the pressure plate, and the pressure plate is connected to a digital pressure analysis system. The pressure sensor can identify the touch area and the touch time of the human body, and then collect the pressure within a preset time length, and the corresponding sole of the foot can be displayed through the digital pressure analysis system to which the sensor signal is transmitted Pressure distribution graph.
  • the contour of the pressure distribution diagram is displayed as the contour of the contact surface between the sole of the foot and the pressure plate, and the pressure values in different areas of the pressure distribution diagram correspond to the corresponding foot pressure values of the area in the pressure collection.
  • the pressure distribution map can be expressed in different forms. For example, according to the collected data, the pressure distribution map can be displayed as a contact surface composed of different unit blocks, and the value in each unit block represents the value of the unit area. Average pressure; at the same time, the values in the pressure distribution graph can be displayed as different values based on manual selection or the pressure analysis system automatically selects the unit. For example, if you choose to display in units of different orders of magnitude, you can obtain pressure distribution graphs with different displayed values. , Or according to the set pressure level as the display unit: for example, every 10Pa is displayed as a value of 1, and you can choose to use comparison rules such as rounding to round the pressure value of each unit area.
  • the foot pressure data is obtained through statistics. For example, for a certain number of target user groups, based on big data analysis, determine the pressure distribution law of the human body in the natural state, such as the arch of the foot corresponding to the relatively low pressure area, and obtain the relationship between weight, body mass index BMI and other parameters and the pressure value. First classify the corresponding group category according to the characteristics of the target user, such as the weight characteristics.
  • the target user group divided into the weight order of 60-70kg, determine the regular plantar pressure distribution based on this group category; another example, the big data analysis Including the statistical analysis of medical data, for a certain type or certain types of diseases such as diabetes, polio and other diseased groups that are prone to cause foot diseases, based on medical statistical analysis to determine the common plantar pressure distribution of this type of patients, thus Determine the corresponding group category based on the characteristics of the target user, such as the disease state, such as diabetic patients, and obtain the foot pressure data of the target user group.
  • the big data analysis Including the statistical analysis of medical data, for a certain type or certain types of diseases such as diabetes, polio and other diseased groups that are prone to cause foot diseases, based on medical statistical analysis to determine the common plantar pressure distribution of this type of patients, thus Determine the corresponding group category based on the characteristics of the target user, such as the disease state, such as diabetic patients, and obtain the foot pressure data of the target user group.
  • the actual measured foot pressure data is a human plantar pressure measured without external adjustment, such as a human plantar pressure of a natural standing barefoot.
  • the actual foot pressure data under the same body posture can be determined (the foot pressure data is unadjusted foot pressure data) and the corresponding expected foot pressure data can be set, such as in a natural standing state without lean Measure the foot pressure data of the target user's feet on a plane, set the expected foot pressure data in the natural standing state based on this foot pressure data, and set the expected foot pressure data value of the first foot pressure intervention area to be smaller than the corresponding foot area The measured value.
  • the first foot pressure intervention area may be an area where the foot is heavily compressed in a natural standing state, which is adapted to the needs of comfort and foot protection, and the expected foot pressure data value in this area Obtained after the pressure dispersion adjustment is performed on the corresponding area in the actual measured data, the expected foot pressure data in the foot pressure intervention area is reduced.
  • Figures 5 and 6 respectively show a simulation diagram of the plantar pressure distribution under an embodiment.
  • Figure 5 is a simulation diagram of the measured human test pressure distribution
  • Figure 6 is the adjusted expected foot pressure data.
  • the value in each cell is expressed as the average pressure in the area, and the corresponding plantar pressure distribution can be obtained from the values displayed in different areas of the sole. This value is determined by the actual foot pressure value or the expected foot pressure The value and the selected pressure unit are determined. For the same foot pressure distribution simulation chart, the larger the value, the greater the average pressure in the corresponding unit area.
  • the size of each cell can be set based on selection and is not limited by the density of the actual measured foot pressure data.
  • each The value displayed in a cell can be the pressure value measured by 1 pressure sensor, or the average value of the measurement values of 4 pressure sensors arranged in a square, which can be set artificially based on the display of foot pressure distribution.
  • different values can be displayed based on different pressure units.
  • the values of different cells are expressed in the same pressure unit, that is, in the same pressure distribution simulation diagram, the values in the cells in different areas can be used to indicate the relative pressure in different areas.
  • the relatively high pressure area and the low pressure area within the sole of the target user are determined.
  • the arch area of the human body in the unadjusted state, usually corresponds to a smaller pressure value.
  • the arch area does not contact the pressure plate, that is, the pressure in this area is 0, and the relatively high pressure area is usually in the sole and heel (for example, the area where the numbers 70 or 76 are distributed in the embodiment shown in FIG. 5).
  • the arch area of the human body in a natural state with no external action, usually has little or no pressure on the sole.
  • Pressure adjustment needs to reduce the pressure peak in the high-pressure area and transfer the pressure in this area to the arch area to achieve the effect of pressure dispersion, that is, the pressure distribution state shown in Figure 6; or, based on the determined In the area corresponding to the peak pressure of the foot, in order to reduce the peak pressure, the pressure is adjusted to the forefoot area, the heel area and the arch area outside the pressure peak.
  • the expected foot pressure data is calculated based on the measured foot pressure data of the target user obtained by measurement and corresponding medical intervention data.
  • the measured foot pressure data of the target user and the medical intervention data jointly determine the expected foot pressure data to ensure that the shoe midsole structure adjusts the user's foot pressure distribution with the expected target and has the expected strength and reliability.
  • the measured foot pressure data determines the pressure distribution state of the target user's foot, and the medical intervention data determines the pressure distribution adjustment that needs to be performed.
  • the medical intervention data is the foot pressure distribution data that is required or expected to be corrected for the physical state of the target user. Obtained through physiological tests such as tendon reflex and pathological reflex, muscle strength and muscle tension, joint mobility, sensation (touch/pain/proprioception), tenderness, swelling, skin condition (ulcer/color), etc.
  • the determination of the medical intervention data is related to a number of physiological health indicators, and is used to reduce the disease of a specific target user or reduce the risk of disease of the target user, or, based on the analysis of medical data, determine that the stress state beneficial to foot care is transformed into Pre-defined medical intervention data. In one implementation, the area and value of the medical intervention data are determined based on the foot shape data measured by the foot scanner and the treatment plan.
  • the corresponding ulcer area has the expected pressure value range.
  • the target user with abnormal local pressure is to treat the state of uneven plantar force.
  • the medical intervention data of the corresponding local pressure abnormal area is to reduce or eliminate the pressure distribution data corresponding to the uneven plantar force.
  • the measured foot pressure data With medical intervention data, determine the pressure transfer area and transfer value of the foot pressure intervention area, and calculate and obtain the corresponding expected foot pressure data.
  • the expected foot pressure data is obtained according to the medical stage of the target user represented by the medical intervention data and the measured foot pressure data.
  • the medical intervention data includes the stage of the target user in a certain disease obtained by analyzing the physiological detection data of the target user.
  • the target users who do not show obvious pathological characteristics of the feet such as non-invasive feet and no obvious foot deformation but have the risk of plantar disease reflected by medical data, that is, for the target users who are in a preventive state or
  • the foot pressure distribution state required by the target user at this stage is determined according to medical statistical analysis.
  • the medical intervention data thus determined is the pressure value range of the relative high pressure area in the actual measured plantar pressure that can prevent or reduce the foot deterioration caused by the plantar pressure after medical adjustment, combined with the actual measured foot pressure distribution of the target user to determine the process Adjusted plantar expected pressure data; another example, for users who are prone to foot diseases such as diabetes or polio, but have no obvious foot disease, can be based on medical analysis of the target user’s stage of disease. Determine the subsequent area of the sole of the foot that may be damaged by disease, and the corresponding pressure value range of the area required to prevent or reduce disease damage, and the determined medical intervention data will be linked to the measured foot pressure data to set the target user’s desired foot pressure data .
  • the target user who can clinically detect obvious plantar disease such as plantar ulcer, corpus callosum, and foot bone deformity, it can be determined that it is suitable for the treatment of the foot based on the evaluation of the disease severity of the plantar disease.
  • Plantar disease or the pressure distribution state that inhibits plantar deterioration. For example, for an area where plantar ulcers already exist, the pressure value of the area needs to be relieved as much as possible to suppress the deterioration of the disease.
  • the setting of the expected foot pressure data can use the pressure unit of the pressure distribution graph to determine the unit quantity for adjustment.
  • the unit quantity is the basic unit for adjusting the pressure distribution value to increase or decrease in the actual distribution state, such as the distribution
  • the value 1 of the pressure unit used in the figure is to use 1 times the unit pressure as the basic unit of adjustment.
  • the expected pressure value is The measured pressure value is reduced by an integer multiple of 1.
  • the peak plantar pressure is a unit area of 70 in the selected pressure unit, which is determined based on the medical intervention data If the pressure peak value needs to fall below 50, set the adjusted expected foot pressure value to a natural number of 50 or 49 or less; another example is for the target user with a plantar wound, the expected foot pressure value in the plantar trauma area is Below 25, adjust the adjusted regional pressure value to a natural number of 25 or less.
  • the force strength of the lattice structure in the at least one first foot pressure intervention area or/and the second foot pressure intervention area and the calculated desired foot pressure data and the measured foot profile Data related.
  • the foot contour is a three-dimensional contour of the target user's foot, and different contour shapes correspond to different distributions of pressure on the sole of the foot, that is, the force point and the magnitude of the force on the foot are different.
  • the method of acquiring the foot contour data of the target user includes scanning by a 3D foot scanner, or processing based on visible light images and depth maps taken by a binocular camera.
  • the foot contour data parameters include: foot length, Foot width, toe height, foot arch width, foot arch circumference, inner ankle height, outer ankle height, heel width and heel height, etc.
  • the target user's foot contour data is obtained based on big data statistical analysis, such as the collection of human foot contours based on big data to determine common foot contour forms and some specific foot shapes Contour forms, such as foot contours corresponding to the body without foot diseases, and different foot contours corresponding to the classification of congenital foot deformities.
  • big data statistical analysis can also associate the foot contour data of the target user with physical characteristics, such as foot contour data corresponding to different genders and foot lengths. In this way, the corresponding foot contour data is determined according to the classification of the target user group.
  • the foot contour of the target user determines the pressure distribution area
  • the desired foot pressure data is used to adjust the pressure distribution according to the foot contour of the target user to determine that the pressure distribution is consistent with the expected effect on the foot of the corresponding target user .
  • the distribution of foot pressure data is to reduce the pressure value of the metatarsal and heel of the target user and distribute the pressure to the arch of the foot; considering the foot profile, while distributing the pressure to the arch of the foot, it is necessary to ensure that the pressure value is at a level that does not cause arch damage.
  • Numerical range based on the foot profile of the target user to determine the range of foot pressure adjustment and the limit of the adjustment value, and combine the expected foot pressure data to design the lattice structure strength to achieve the expected adjustment function.
  • the force strength of the lattice structure in the at least one first foot pressure intervention area or/and the second foot pressure intervention area is calculated from the expected foot pressure data and the measured foot profile. Data and gait data are related.
  • the gait data includes the whole body posture and gait of the target user during walking, including walking rhythm, stability, fluency, symmetry, center of gravity deviation, arm swing, postures and angles of various joints, and expression and expression of the target user , The role of auxiliary devices (orthotics, walking aids), etc.
  • the law of the gait data affects the pressure distribution of the shoe midsole in a long-term wearing state.
  • the natural standing state and the walking state usually correspond to different foot pressure distributions.
  • the pressure distribution changes caused by walking are related to the walking habits of the target user and have individual specificity.
  • the pressure distribution during the walking of the target user reflected by the gait data, and the desired foot pressure data and foot profile data set for the target user determine the topological structure or lattice structure strength of different regions of the midsole during manufacturing.
  • the gait data may reflect the possible pressure asymmetry of the left and right feet, based on the topological structure or crystal structure of the two midsoles corresponding to this pair of shoes.
  • the grid strength adopts different strength designs.
  • the gait data is related to the physical function of the target user.
  • the elderly usually have a lower walking speed and a smaller stride length, and the time to stand on the bottom surface supported by both feet becomes longer during walking.
  • the strength of the topological structure or the lattice structure is related to the sense of touch of the human body during wearing, and the strength includes stiffness or hardness.
  • the topological The structural strength or lattice structural strength is set to have higher toughness and lower hardness.
  • medical intervention data is determined based on the analysis of the gait data. Comparing the clinical examination data of medical measurement and the experimental analysis of gait data, comprehensively evaluate the disease of the target user, and determine the medical intervention data set for the target user based on quantitative and standardized inference.
  • the expected foot pressure data, gait data, and foot profile data provide conditions and restrictions on the pressure distribution method, and compare different pressure distribution schemes to obtain the most optimal method for lattice strength design.
  • this application provides an embodiment in which the pressure of the shoe midsole is adjusted through the first foot pressure intervention area and the second foot pressure intervention area.
  • this application also provides the following ways to adjust foot pressure distribution:
  • the waist portion of the shoe midsole of the present application is provided with a raised portion of a preset height to support the arch of the target user.
  • FIG. 7 is shown as a side view of the applied shoe midsole in an embodiment.
  • the waist part 12 corresponds to the arch of the foot of the target user, and the preset height of the raised portion 121 of the waist part matches the height of the arch of the target user.
  • the raised portion 121 of the waist portion has a predetermined height to support the arch of the target user.
  • the pressure on the sole of the human body is mainly distributed on the sole and heel.
  • the pressure needs to be transferred to non-foot pressure intervention areas such as the arch area.
  • the height of the waist protruding portion 121 is determined based on the foot contour of the target user.
  • the contour curve of the waist part is basically the same as the contour curve of the target user’s arch. fit.
  • the force strength of the protruding portion 121 of the waist part is related to the desired foot pressure data and the foot profile data of the target user.
  • the expected foot pressure data may be calculated based on the actual measured foot pressure data of the target user and the corresponding medical intervention data.
  • a desired distribution map of the plantar pressure is designed, and combined with the foot profile of the target user, the adjusted plantar pressure is distributed in an expected manner.
  • the contour design of the waist part and the strength design of the lattice structure are used to realize the adopted pressure distribution scheme, and ensure that the waist part of the shoe midsole bears the pressure with the expected effect and has reliable strength when the shoe midsole is worn.
  • the expected strength of the topological structure or the lattice structure is calculated based on the known pressure distribution.
  • the height of the raised portion 121 of the waist part and the strength of the force applied thereto are related to the calculated foot pressure data, foot profile data and gait data of the target user.
  • the contour curve of the waist part and the arch contour curve are in a state of incomplete fit, for example, when the target user’s arch area has damage such as In the case of plantar fascia tears and other injuries, when increasing the plantar contact surface to reduce the pressure peak of the plantar high pressure area, the contour design of the waist part is adjusted to incompletely fit based on the target user’s arch contour curve State so that the pressure in the arch area close to the fascia injury site is reduced.
  • the function of the shoe midsole is shock absorption and cushioning, such as absorbing cushioning and shape rebound during exercise.
  • the thickness of the shoe midsole is related to the shock absorption function, and it also determines the target user’s wearing performance. Tactility such as hardness and so on.
  • the midsole of the shoe presents an uneven thickness, which is used to meet the needs of matching the pressure of the target user's foot. At the same time, the thickness value is determined with reference to the physical state of the target user. As shown in Figure 7, the midsole of the shoe presents an uneven thickness, and the contour arc on the upper surface is in a certain fit with the contour of the bottom surface of the foot of the human body, such as the waist part 12 in the middle of the midsole. The bulge corresponds to the arch of the human foot.
  • the number of basic unit layers of the shoe midsole lattice structure can be determined based on the preset three-dimensional contour of the shoe midsole and the basic unit geometric structure.
  • the number of bottom layers in the shoe can be 0.5 layer, 1 layer, 5 layers, etc., This application is not restricted.
  • the basic unit of the shoe midsole lattice structure has different layers in different regions, for example, 1 layer in the first foot pressure intervention area, and 3 layers in the second foot pressure intervention area. Floor.
  • the basic unit structure of the lattice structure has a certain deformation treatment. For example, the thickness of the shoe midsole at the front end of the shoe is reduced, and the basic unit of the lattice structure in this area is reduced to increase. Bulk density is used to ensure the structural strength of the weak area in the midsole of the shoe.
  • the preset thickness of the shoe midsole and at least one of the body data, weight data, foot contour data, gait data, or foot pressure data of the target user obtained by measurement Related.
  • the thickness of the shoe midsole affects its overall elastic deformation trend and the target user’s plantar pressure distribution when being worn.
  • the setting of the preset thickness can change the force state of the target user. Therefore, the preset thickness and the target The various mechanical parameters of the user's force are related to the corresponding tactile sensation of the target user.
  • the weight data value of the target user when the weight data value of the target user is larger, the corresponding shoe midsole bears greater pressure. Considering the user’s comfort requirements, usually a thicker shoe midsole has a softer touch.
  • the weight data of the target user and the thickness of the shoe midsole are set to a positive correlation; for another example, the thickness of the shoe midsole is designed by the gait data of the target user to satisfy the protection of the sole during walking.
  • the thickness of the shoe midsole is related to the joint posture angle and stability during walking. Based on the correlation analysis of the shoe midsole thickness and gait data, the prediction of the shoe midsole is determined according to the walking posture of the target user. Set the thickness.
  • the foot pressure data is related to the weight data, foot profile data, and gait data of the target user.
  • the preset thickness of the shoe midsole is determined based on the foot pressure data of the target user.
  • the dynamic bottom sole pressure distribution state of static and walking respectively is characterized, and the corresponding preset thickness of the shoe midsole is determined.
  • the body data includes physical measurement data of the target user, such as the evaluation of the body parts such as knee joints and ankle joints of the target user, and is used to determine the sports mode that is beneficial to the health and maintenance of the target user, so as to determine the corresponding preset shoe midsole thickness.
  • the preset thickness of the shoe midsole is related to multiple factors such as foot pressure data, body data, and foot profile data of the target user.
  • the preset thickness of the shoe midsole may be It has the opposite effect on different needs. For example, when the preset thickness of the shoe midsole is too large, it is not conducive to the target user's perception and stability of the bottom surface, and the elasticity is increased accordingly.
  • one implementation method is to use software modeling and simulation, After constructing the shoe midsole model, apply static pressure and walking dynamic pressure corresponding to the target user to it, and set performance analysis indicators corresponding to the different needs of the target user, and calculate the total after weighting the different analysis indicators, and output the highest total performance The best solution corresponds to the thickness of the shoe midsole.
  • the weights of the different analysis indicators may be determined based on the target user's demand bias and health status.
  • the above example provides an implementation method for adjusting the pressure distribution or performance of the midsole by determining the height of the waist or the thickness of the midsole.
  • the application also provides another method based on determining the thickness of the midsole or three-dimensional Contour to adjust the way foot pressure is achieved.
  • the shoe midsole includes a heel portion corresponding to the heel of the target user, a sole portion corresponding to the forefoot of the target user, and a sole located between the heel portion and the sole of the foot and corresponding to the target user's foot.
  • the reference thickness of the sole, the cross-sectional thickness of the at least one intervention area is greater than the reference thickness of the sole of the shoe midsole.
  • the effect to be achieved by the target area and the manner of determining the location of the area can refer to the first foot pressure intervention area described in the foregoing examples, that is, the area where the foot pressure is expected to be reduced.
  • the effect to be achieved by the intervention area and the determination of the location of the area can refer to the second foot pressure intervention area described in the foregoing examples, that is, the area where the foot pressure is expected to be increased.
  • this application provides an implementation method based on one or more of the adjustment area's force strength such as bulk density, crystal lattice structure, printing material, printing process, and post-processing process.
  • the target area and the intervention area can also be adjusted by determining the thickness of the section to adjust the strength of the force, so as to achieve foot pressure adjustment.
  • FIG. 8 shows a schematic structural diagram of a shoe midsole for footwear products of this application in an embodiment.
  • the midsole of a footwear product as shown in FIG. 8 includes: a heel portion 13 corresponding to the heel of the target user, a sole portion 11 corresponding to the forefoot of the target user, and located between the heel portion 13 and the sole portion 11 And corresponding to the waist portion 12 of the arch of the target user’s foot, wherein the sole portion 11 is provided with at least one target area 151 and at least one intervention area 152 adjacent to the at least one target area 151, the at least one The cross-sectional thickness of the target area 151 is less than the reference thickness of the sole portion 11 of the shoe midsole, and the cross-sectional thickness of the at least one intervention area 152 is greater than the reference thickness of the sole portion 11 of the shoe midsole, thereby the target area
  • the respective intensity distributions of 151 and intervention area 152 are adjusted, so that the sole pressure of the target user can be adjusted based on the specific conditions of the target user or the situation of a specific group of users.
  • the area of the shoe midsole corresponds to the area of the sole of the target user.
  • the area of the shoe midsole can be determined based on the foot contour of the target user, for example, the size or size of the shoe midsole.
  • the contour of the midsole can be determined by further considering the wearing comfort and the requirement of foot protection, for example, the toe tip and the toe cap Set a certain distance, such as the range of about 0.95cm to 1.27cm.
  • the sole portion 11 is provided with at least one target area 151 and at least one intervention area 152 adjacent to the at least one target area 151.
  • the target area 151 is the area where the foot pressure is expected to be reduced.
  • the target area 151 can be determined according to the specific needs of the target user, such as a designated protective part of the foot or a foot ulcer. For areas where the pressure needs to be dispersed and transferred, or for other areas where the pressure is adjusted and dispersed based on the comfort or protection of the sole, the specific location can be further determined based on the target user's foot contour and specific needs.
  • the intervention area 152 is an area where foot pressure is expected to increase, and the intervention area 152 can be used to achieve pressure sharing on the target area 151. It should be understood that for the same target user, the overall pressure on the midsole of the shoe before and after the foot pressure adjustment is unchanged. For example, the target user’s weight, body shape, standing posture, gait and other natural conditions and habits lead to the midsole of the shoe. The distribution of pressure under normal conditions remains unchanged. When the local pressure of the sole needs to be reduced, other areas need to share the pressure correspondingly, and the intervention area 152 can be used as an area for pressure sharing of the target area 151.
  • the intervention area 152 is adjacent to the target area 151.
  • the adjacent may be that the boundary (also called contour) of the intervention area 152 and the boundary of the target area 151 are tangent or connected, and Or separate. It should be understood that, based on the expected reduction in foot pressure in the target area 151 and the expected increase in foot pressure through the intervention area 152 to achieve pressure sharing, it is sufficient that the intervention area 152 and the target area 151 do not overlap.
  • the target area 151 may be predetermined in the sole sole portion 11 of the shoe, so that the intervention area 152 is selected in the area outside the target area 151 in the sole portion 11.
  • the stated increase in foot pressure is for illustration, for a specific area (that is, the intervention area described in this application), compared to the unintervened foot pressure, such as barefoot
  • the foot pressure when standing, when wearing the footwear article formed by the shoe midsole of the present application the pressure in the specific area increases; similarly, the foot pressure is reduced as compared with the foot pressure without intervention.
  • the pressure in the target area is reduced.
  • the foot pressure (also called foot pressure data) described in this application is the pressure distribution data of the sole of the target user, and in some embodiments, it is the pressure distribution of the different areas of the midsole of the footwear in the state of being worn.
  • the data includes static pressure distribution data and dynamic pressure distribution data of the target user during exercise.
  • the target area is set at one or more of the first metatarsophalangeal joint and the first thumb of the target user; and, the intervention area is set corresponding to the target user Between the second metatarsophalangeal joint and the fifth metatarsophalangeal joint.
  • the first metatarsophalangeal joint of the forefoot is an area of high pressure in different states in the plantar pressure distribution corresponding to the static state (for example, when standing) and the dynamic state of the human body.
  • the pressure between the second metatarsophalangeal joint to the fifth metatarsophalangeal joint in the sole of the foot is smaller than the pressure at the first metatarsophalangeal joint.
  • the tendency of their feet to press on the first metatarsophalangeal joint is particularly high.
  • metatarsals and heels are usually areas of high incidence of corpus calluses. Medically, it is generally believed that the maximum plantar pressure has a high correlation with foot pathology. The maximum plantar pressure of diabetic patients may be Where foot ulcers occur.
  • the first metatarsophalangeal joint can also be used as a proposed protection area. For example, for diabetic patients without obvious plantar disease wounds, the high-risk areas such as calluses and ulcers that can be obtained by medical statistical analysis can be used as protection areas. area.
  • the target area is set at the first metatarsophalangeal joint, that is, this area is determined as the area where foot pressure needs to be reduced.
  • the large target user or the first metatarsophalangeal joint is the target user in the diseased area, and the footwear product formed based on the shoe midsole of the present application has the effect of plantar protection or disease treatment.
  • the treatment includes preventive (ie preventive), blocking, curative or palliative treatments that can lead to the expected physiological effects.
  • treatment herein refers to the occurrence of one or more symptoms based on a specific disease, abnormality and/or medical condition that can be partially or completely reduced, delayed onset, inhibited progress, reduced severity, and/or reduced The purpose of probability.
  • the intervention area adjacent to the target area is set between the second metatarsophalangeal joint to the fifth metatarsophalangeal joint of the corresponding target user, so that the first metatarsophalangeal joint can be shared between the second metatarsophalangeal joint to the fifth metatarsophalangeal joint Pressure on the joints.
  • the total pressure of the forefoot of the target user remains unchanged, but the pressure of the target area is shared by the intervention area, and the foot pressure of the target area is reduced.
  • the pressure on the sole of the foot can appear as an average of the pressure distribution (for example, the pressure of the first metatarsophalangeal joint decreases and the pressure between the second metatarsophalangeal joint to the fifth metatarsophalangeal joint increases) or the high-pressure zone transfer (for example, the high pressure area moves from the first metatarsophalangeal joint to the second metatarsophalangeal joint to the fifth metatarsophalangeal joint).
  • the heel portion is further provided with at least one target area. That is, the heel portion may also be provided with an area where the foot pressure is expected to be reduced. It should be understood that the high pressure area of human foot pressure is usually located on the heel of the forefoot. In some scenarios, when the peak of the target user’s heel is too large or the target user’s heel has a diseased area, the shoe The heel part of the midsole sets the target area.
  • the cross-sectional thickness of the at least one target area is smaller than the reference thickness of the sole of the shoe midsole, and the cross-sectional thickness of the at least one intervention area is greater than the reference thickness of the sole of the shoe midsole.
  • the reference thickness is the conventional thickness distribution of each part of the midsole without intervention.
  • the reference thickness of the forefoot part of the midsole is usually Less than the reference thickness of the heel part, it should be understood that the reference thickness of the midsole is different at different positions of the midsole.
  • the midsole before intervention is not limited by the uniform distribution of thickness in different areas.
  • the shoe midsole before intervention is a shoe midsole that has not been structurally adjusted based on the target area or the goal of foot pressure increase or foot pressure reduction in the intervention area.
  • the three-dimensional contour of the shoe midsole can be determined.
  • the thickness distribution corresponding to the three-dimensional contour of the bottom is the reference thickness.
  • the cross-sectional thickness of the target area and the intervention area is related to the reference thickness.
  • the reference thickness is related to at least one of the measured body data, weight data, foot contour data, gait data, and foot pressure data of the target user.
  • the reference thickness of the shoe midsole affects its overall elastic deformation trend and the target user’s plantar pressure distribution when being worn.
  • the setting of the reference thickness can change the force state of the target user. Therefore, the reference thickness and the target user’s force
  • Various mechanical parameters are related to the tactile sensation of the corresponding target user.
  • the data represented by the body data, weight data, foot contour data, gait data, and foot pressure data can be referred to the foregoing embodiment, which will not be repeated here.
  • the “Intervention” consists in distributing the pressure in different areas of the midsole and by changing the structure, thickness or material of the local area of the midsole.
  • the cross-sectional thickness of the target area is smaller than the reference thickness of the sole of the shoe midsole.
  • the target area is area A, which corresponds to the plantar area A'of the target user, and the area A" of the shoe midsole before intervention also corresponds to the plantar area A'of the target user.
  • the cross-sectional thickness of the midsole area A is smaller than the cross-sectional thickness of the midsole area A" before intervention.
  • the cross-sectional thickness is also described, and the target area has a preset thickness greater than zero.
  • the cross-sectional thickness of the target area of the heel portion can be made smaller than the reference thickness of the heel portion.
  • the structural strength of the target area is reduced compared to the strength before the intervention.
  • the force strength of the target area is reduced, thereby It can realize the distribution of plantar pressure.
  • the cross-sectional thickness of the intervention area is greater than the reference thickness of the sole of the shoe midsole.
  • the intervention area is area B, which corresponds to the sole area B′ of the target user.
  • the shoe before the intervention The area B" of the midsole also corresponds to the sole area B'of the target user, and the cross-sectional thickness of the midsole area B of the present application is greater than the cross-sectional thickness of the midsole area B" before intervention.
  • the upper surface of the target area is concave relative to the contour of the target user's foot; the upper surface of the intervention area is convex relative to the contour of the target user's foot.
  • FIG. 9 shows a cross-sectional view of a partial area in an embodiment of the shoe midsole of this application.
  • the lower surface of the shoe midsole is unchanged before and after the foot pressure intervention, and the height of the upper surface of the target area 151 is reduced so that the cross-sectional thickness of the target area 151 is smaller than the reference of the corresponding area of the shoe midsole before the intervention. Thickness, the upper surface of the target area 151 appears to be concave relative to the contour of the target user’s foot; at the same time, the height of the upper surface of the intervention area 152 is increased so that the cross-sectional thickness of the intervention area 152 is greater than that of the non-intervention front shoe The bottom corresponds to the reference thickness of the area, and the upper surface of the intervention area 152 appears to be convex relative to the contour of the target user's foot.
  • Figure 10a shows a cross-sectional view of the shoe midsole of this application in an embodiment
  • Figure 10b shows the shoe midsole shown in Figure 10a contacting the shoe last or the target user Sectional view.
  • the midsole of the shoe includes a sole portion 11, a waist portion 12 and a heel portion 13.
  • the target area 151 is concave relative to the foot contour of the target user.
  • the sole of the target user can contact the intervention area in advance (Fig.
  • the intervention area can achieve the pressure sharing effect, and the plantar area corresponding to the target area 151, such as the diseased area, provides reduced support for the target user; in one case, the diseased area and the shoe The midsole is not in contact, so the pressure in this area is reduced to 0; in another case, the sole of the target user's feet contact and step on other areas outside the target area 151, such as the intervention area, and other areas are in The diseased area corresponding to the target area 151 only touches the midsole after being stepped on and deformed. During this deformation process, other areas always bear part of the plantar pressure, and the foot pressure that the diseased area needs to share becomes smaller. It should be noted that the embodiment shown in Figs.
  • FIG. 10a and 10b is only used to illustrate the contact state of the target area with respect to the foot contour of the target user, and is not used to limit the specific position of the target area of the present application; at the same time, Figs. 10a and 10b Figure 10b shows a cross-sectional view of the shoe midsole, which cannot be used to limit the contact state of the entire shoe midsole with the target user's foot.
  • the target area has a gradual transition from the upper surface to the area outside the target area, so that the target area is concave relative to the contour of the target user's foot; or, the intervention area faces the outside of the intervention area
  • the area presents a gradual transition in the height of the upper surface, so that the intervention area is convex relative to the contour of the target user's foot.
  • the intensity change of the target area toward the outside of the target area presents a gradual transition, and the sudden pressure change at the boundary of the target area can be reduced to make it below a preset threshold.
  • the preset threshold can be set based on medical data or the performance of footwear products. For example, when the foot pressure has an excessive mutation, it is easy to cause plantar tingling.
  • the threshold for the foot pressure mutation can be determined based on medical analysis. Reduce or eliminate discomfort, and if there are too large sudden changes in the pressure value of different areas of the shoe midsole, the cushioning function may be weakened.
  • the pressure sudden change in the boundary area can be reduced to achieve a gradual transition;
  • the determination is made through the manufacturing process (standard) of the footwear product, for example, the pressure change state suitable for the cushioning of the shoe sole is determined to enhance the cushioning function of the shoe midsole or the impact and abrasion resistance of the shoe midsole.
  • the intensity change of the intervention area toward the outside of the intervention area is gradually transitioned, so that the pressure mutation at the boundary of the intervention area can be reduced.
  • the intervention area can correspond to the foot pressure assumed by the intervention area.
  • the midsole of the shoe has a good cushioning ability, and the pressure transmission and sharing between different areas can be effectively realized; at the same time, it reduces the uncomfortable feeling of excessive local pressure when the human body is wearing it.
  • the boundary area of the target area or the intervention area may be set to extend toward the target area or the intervention area with a certain slope, such as 30°, 45°, 60°, etc.; of course, the The boundary area of the target area or the intervention area may also be curved or curved to extend out of the area.
  • the cross-sectional thickness of the target area is related to the force intensity of the target area and the intervention area determined based on the target user's expected foot pressure data; the cross-sectional thickness of the intervention area is related to the target user-based It is expected that the force intensity of the target area and the intervention area determined by the foot pressure data are related.
  • the expected foot pressure data is expected foot pressure distribution data for the target user.
  • the target user's foot pressure distribution can be the expected foot pressure distribution data while wearing the shoe midsole of the present application.
  • the expected foot pressure distribution data is the intervened foot pressure data.
  • the expected foot pressure data is the expected foot pressure distribution of the entire area of the shoe midsole. Therefore, after the expected foot pressure data is obtained, the structural strength distribution of the entire area of the shoe midsole can be calculated, based on the expected foot pressure.
  • the structural strength corresponding to the target area and the intervention area obtained by the data can be designed for the cross-sectional thickness of the target area and the intervention area in the shoe midsole.
  • the expected foot pressure data may be determined based on the actual measured foot pressure data of the target user, and the implementation method may refer to the foregoing embodiments.
  • the expected foot pressure data is related to the actual measured foot pressure data and medical intervention data of the target user; wherein the expected foot pressure data of the target area is smaller than the actual measured foot pressure area of the target area, so The expected foot pressure data of the intervention area is greater than the actual measured foot pressure data of the intervention area.
  • the expected foot pressure data is obtained according to the medical stage of the target user represented by the medical intervention data and the measured foot pressure data.
  • the medical stage may refer to the stage of a certain disease obtained by analyzing the physiological detection data of the target user included in the medical intervention data in the foregoing embodiment, that is, the disease sign or severity of the target user.
  • the desired foot pressure data may also be determined based on the target user's foot contour data.
  • the method for determining the foot contour will not be repeated here. It should be understood that the foot contour of the target user determines the pressure distribution area, and the desired foot pressure data is used to adjust the pressure distribution according to the foot contour of the target user to determine the pressure distribution and the expected effect on the corresponding target user’s foot Unanimous.
  • the cross-sectional thickness of the target area is related to the force intensity of the target area and the intervention area determined based on the desired foot pressure data of the target user; the cross-sectional thickness of the intervention area is related to the force strength determined based on the desired foot pressure data of the target user.
  • the force intensity of the target area and the intervention area are related. It should be understood that the structural strength of different areas of the shoe midsole is related to the expected foot pressure in the area. For example, when the structural strength of the intervention area is relatively large, the pressure of the shoe midsole is easily distributed to Intervention area.
  • the cross-sectional thickness of a region is positively related to the structural strength of the region. Based on the corresponding relationship between the cross-sectional thickness and the structural strength, and the corresponding relationship between the structural strength and the force strength (ie foot pressure), in this way, based on the target user's expected foot pressure data, the structure corresponding to the target area and the intervention area can be determined Strength, so as to calculate the cross-sectional thickness corresponding to the target area and the intervention area.
  • the cross-sectional thickness of the target area can be determined by the expected impact of the target area.
  • the force intensity is determined, and the cross-sectional thickness of the intervention area can be determined by the expected force intensity of the intervention area.
  • Figure 11 shows a simulation diagram of the human foot pressure distribution test in a natural state
  • Figure 12 through the application of the target area and the intervention area to adjust the foot pressure after the intervention of the midsole of the human foot
  • a simulation diagram of the pressure distribution test where the pressure values of the pressure distribution simulation diagrams corresponding to Fig. 11 and Fig. 12 are displayed in the same pressure unit.
  • the measured foot pressure data of the target user in a natural state determines the relative high pressure area and low pressure area within the target user's sole.
  • the arch area of the human body in the state of no intervention, usually corresponds to a smaller pressure value, which is an area where the pressure value is displayed as 0 as shown in Figure 11.
  • the arch part of the foot The area does not contact the pressure plate, that is, the pressure in this area is 0, and the relatively high pressure area is usually in the sole and heel (for example, in the embodiment shown in Figure 11, the pressure value of the digital sole is 60 or the pressure value of the heel For the area of 62).
  • the foot pressure distribution map after intervention, in the target area and intervention area set on the sole of the foot the foot pressure corresponding to the target area is reduced compared to the foot pressure in the corresponding area in Figure 11, and at the same time, the foot pressure corresponding to the intervention area The pressure is increased relative to the foot pressure in the corresponding area of FIG. 11.
  • the preset range may be determined based on the specific needs of the target user. For example, when the shoe midsole of the present application is used to correct abnormal foot pressure caused by gait or foot shape, the preset range may be a normal foot pressure range, For another example, when the shoe midsole is provided to a target user with foot ulcers, the preset range may be determined based on the treatment needs of the target user.
  • the cross-sectional thickness of the target area and the intervention area is related to the reference thickness.
  • the reference thickness is related to at least one of the measured body data, weight data, foot contour data, gait data, and foot pressure data of the target user.
  • the reference thickness of the shoe midsole affects its overall elastic deformation trend and the target user’s plantar pressure distribution when being worn.
  • the setting of the reference thickness can change the force state of the target user. Therefore, the reference thickness and the target user’s force
  • Various mechanical parameters are related to the tactile sensation of the corresponding target user.
  • the content represented by the body data, weight data, foot contour data, gait data, and foot pressure data and the determination method can be referred to the foregoing embodiments, which will not be repeated here.
  • the implementation of adjusting foot pressure by the cross-sectional thickness of the target area and intervention area is the same as the aforementioned implementation of adjusting foot pressure through the first foot pressure intervention area and the second foot pressure intervention area.
  • Way, or the first foot pressure intervention area or/and the second foot pressure intervention area are set as an embodiment in which the foot pressure in the area is gradually transitioned from the outside of the area to the area, or the waist part is provided with a preset
  • the embodiments of the bulge height are all adjusting the foot pressure distribution of the shoe midsole; more importantly, the foregoing embodiments are not mutually exclusive. Therefore, those skilled in the art can independently learn about the embodiments disclosed in this application. Choose to use one or a combination of several methods to achieve foot pressure adjustment on the midsole of the shoe.
  • the waist portion of the shoe midsole of the present application has a raised portion with a preset height to support the foot of the target user.
  • the raised height of the waist part can be determined by, for example, the foot contour of the target user; in another implementation, based on the sole state of the target user, the contour of the waist part The curve and the arch contour curve are in a state of incomplete fit.
  • the target user when the target user’s arch area has injuries such as plantar fascia tears, the use of increased plantar contact surface to reduce plantar high pressure
  • the contour design of the waist fossa is adjusted to an incomplete fit state based on the arch contour curve of the target user, so that the pressure in the arch area close to the fascia injury site is reduced; in another realization
  • the height of the protruding part of the waist part and the force strength thereof are related to the calculated desired foot pressure data, foot profile data, and gait data of the target user.
  • the shoe midsole is composed of a 3D printed topological structure or multiple lattice structures.
  • the force strength of the lattice structure of the shoe midsole and the volume density of the lattice structure, the lattice structure, the lattice material, the printing material, the printing process, and the post-processing process is related to at least one of the bulk density of the topological structure, the printing material, the printing process, and the post-processing process.
  • the strength performance of the formed shoe midsole is related to the printing material.
  • entities with different structural strengths can be formed based on the selection of the printing material.
  • the printing material can be determined in advance when determining the force strength of the lattice structure or the topological structure. How the bulk density, printing material, printing process, and post-processing process affect the stress intensity of the topological structure, or bulk density, lattice structure, lattice material, printing material, printing process, and post-processing process For the manner of influencing the force strength of the lattice structure, reference may also be made to the foregoing embodiments, which will not be repeated here.
  • the bulk density of the lattice structure is related to the diameter of the lattice rods, the thickness of the lattice wall, the size of the lattice, and the density of the lattice rods after forming;
  • the bulk density of the topological structure is related to the rods of the topological structure. Diameter thickness, wall thickness, and topological structure rod or face density after forming are related.
  • the topological structure or lattice structure is obtained by 3D printing, and the 3D printing method includes wire melt extrusion, material droplet injection, powder flat melting, adhesive Jet, or laminated curing printing of photosensitive resin.
  • the structural model and performance parameters such as intensity corresponding to the topological structure or lattice structure of the shoe midsole are input to the control device of the 3D printing device, and the energy radiation device of the 3D printing device is in the control device.
  • the image corresponding to the topological structure or the lattice structure is projected and the radiation energy density corresponding to the structure intensity is projected, and the material to be cured is printed as the entity of the shoe midsole with a preset three-dimensional structure and intensity.
  • the material of the topological structure or the lattice structure includes a light-curable resin material, a thermoplastic rubber (TPR), a thermoplastic elastomer; wherein the thermoplastic elastomer includes a polyurethane elastomer (TPU), nylon elastic Body (TPAE), polyester elastomer (TPEE), EVA elastomer and silicone elastomer.
  • the lattice structure material may be any one of the above-mentioned materials, or a mixture of two or more materials.
  • thermoplastic elastomer is a type of elastomer that has the elasticity of rubber at room temperature, and can be plasticized and molded at high temperature. It is a copolymer or a physical mixture of polymers (usually plastic and rubber). Characteristic material composition. Generally, thermoplastics are relatively easy to use in manufacturing, for example by injection molding.
  • the material of the topological structure or lattice structure can also be polypropylene, acrylonitrile butadiene styrene (ABS), polycarbonate (PC), PC-ABS, PLA, polystyrene , Lignin, polyamide, polyamide foam, polyamide with additives such as glass or metal particles, methyl methacrylate-acrylonitrile-butadiene-styrene copolymer, such as polymer-ceramic composite materials Absorbable materials, and other similar materials suitable for the production of shoe midsoles, the materials used in the topological structure or lattice structure are not limited to the above examples.
  • the midsole further includes a cushion layer integrally formed on the top surface of the midsole by 3D printing.
  • FIG. 13 shows a schematic diagram of the buffer layer and the shoe midsole in an embodiment of the shoe midsole of this application.
  • the buffer layer 14 is arranged on the surface of the lattice structure of the shoe midsole to provide the user with sufficient buffering force during wearing.
  • the buffer layer 14 is composed of a plurality of 3D printed lattice structures.
  • the rod diameter or wall thickness of the lattice structure in the buffer layer 14 is smaller than the rod diameter or wall thickness of the lattice structure in the shoe midsole, and the lattice volume of the lattice structure in the buffer layer 14 is smaller than that of the shoe.
  • the cushion layer 14 and the shoe midsole are integrally formed by 3D printing, and the shoe midsole is distinguished from the cushion layer 14 based on different designs of the lattice structure and corresponding different functions.
  • the diameter of the connecting rod or the wall thickness of the common surface of the basic unit of the lattice structure is related to the strength of the lattice structure.
  • the buffer layer 14 adopts a small rod diameter or thin-walled structure and is designed as a small-volume basic lattice unit. Composition, while ensuring the strength of the buffer layer 14, the hardness of the buffer layer 14 is reduced by the basic unit connection of small rod diameter or thin wall, forming a layer on the surface of the shoe midsole with low hardness, good elasticity and having The soft-touch cushioning structure further weakens the pressure impact of the contact between the sole of the foot and the midsole of the shoe.
  • the buffer layer 14 is composed of a 3D printed topological structure, and the rod diameter of the topological structure in the buffer layer 14 is smaller than the rod diameter in the topological structure of the shoe midsole; or, the buffer layer 14
  • the number of node connections in the topological structure of layer 14 is less than the number of node connections in the topological structure of the shoe midsole, so as to reduce the hardness of the buffer layer, make it easy to be elastically deformed, and realize the buffer function.
  • the contour of the buffer layer 14 can conform to the contour of the upper surface of the midsole, and the upper surface of the midsole is printed to form an integrated structure during actual printing.
  • the buffer layer 14 can be designed to have a uniform thickness or an uneven thickness. Generally speaking, the thickness of the buffer layer 14 is much smaller than the thickness of the midsole, which conforms to the contour design of the midsole.
  • the outer contour of the buffer layer 14 can be obtained based on the contour of the midsole. For example, the outer contour of the lower surface of the buffer layer 14 is designed to be the same as the outer contour of the upper surface of the midsole to form a natural connection on the midsole without abrupt changes.
  • the contour design and topological structure or lattice structure design of the buffer layer 14 are also related to the desired foot pressure data, gait data, foot contours, etc. of the target user, such as the buffer layer 14.
  • the upper surface contour can be designed to conform to the target user's foot contour. In actual walking, the shoe midsole deforms following the cushion layer 14 and absorbs the impact of the sole of the foot through the cushion layer 14, and then the shoe midsole provides the supporting force to the sole of the foot, that is, distributes the adjusted pressure.
  • Fig. 14 shows a schematic diagram of the exploded structure of the footwear product of this application in an embodiment
  • Fig. 15 shows a schematic diagram of the structure of the footwear product of this application in an embodiment.
  • the midsole 10 further includes a top surface of the midsole 10 integrally formed by 3D printing for combining with the upper fitting surface of the upper 20.
  • the upper fitting surface can be used to bond the shoe upper 20, the upper fitting surface provides a stickable contact surface for the connection of the shoe upper 20 and the sole, and the shoe upper 20 is used to form the shoe midsole 10 Cover the coverage of the target user’s feet.
  • the upper fitting surface may be designed as a ring-shaped structure for providing a ring-shaped contact surface for bonding the upper 20 and the midsole of the shoe, and its outer contour conforms to the contour of the midsole 10 get.
  • the upper and lower surfaces of the upper bonding surface are respectively bonded to the upper 20 and the midsole 10, and the bonding agent includes neoprene adhesive, polyurethane adhesive, SBS adhesive and the like.
  • the midsole 10 includes a buffer layer integrally formed between the midsole 10 and the upper fitting surface by 3D printing. That is, the buffer layer is attached to the contour of the shoe midsole 10 for continuous printing, the upper attachment surface is arranged on the buffer layer, and the upper surface is used to connect the shoe upper 20.
  • the midsole 10 further includes a lower fitting surface formed on the bottom surface of the midsole 10 by 3D printing, which is used to combine with the outsole 30.
  • the shoe outsole 30 is the sole component under the shoe midsole 10 that is used to directly contact the ground.
  • the lower surface contour of the shoe outsole 30 is designed to increase friction, and wear-resistant materials such as natural It is made of rubber, artificial rubber, elastomer, thermoplastic elastomer (TPE), foamed plastic, gelatinous plastic and combinations thereof.
  • the lower bonding surface is used to provide a contact surface for bonding between the midsole 10 and the outsole 30, and the adhesive used to achieve bonding includes neoprene adhesive, polyurethane adhesive, SBS adhesive, and the like.
  • the lower fitting surface has an annular structure along the bottom contour of the midsole 10.
  • the outer contour of the lower fitting surface conforms to the outer contour of the lower surface of the shoe midsole 10, and the ring structure is adopted to reduce the weight of the sole. Bonding.
  • the target users Based on the midsole for footwear products provided by this application, for different target users, according to the target users' own personalized needs and characteristics, such as walking deformity or walking habits, foot contours, physiological conditions such as plantar health, Quantify lower limb joints, body stability, original foot pressure distribution, etc., analyze and evaluate the data obtained from actual measurements and associate it with the structural design of the midsole, and select the preset thickness of the midsole based on the different needs of target users
  • the three-dimensional outline of the topological structure or the lattice structure of the shoe midsole and the structural strength of the different regions of the shoe midsole are used to adjust the sole pressure of the target user based on the specific conditions of the target user;
  • the transitional and gradual design of the pressure between the different pressure areas of the foot pressure can make the midsole of the shoe have a good cushioning performance.
  • a footwear product which includes: a shoe outsole for contacting the ground; a shoe midsole according to any one of the foregoing embodiments, and a shoe midsole combined with the shoe The top periphery of the midsole is used to wrap the upper of the foot of the target user.
  • the footwear product includes a midsole 10, an upper 20 and an outsole 30.
  • a midsole 10 For the respective structure and material of the shoe outsole and the shoe upper, and the way of combining with the shoe midsole, reference may also be made to the foregoing embodiments.
  • the size or sag of the shoe upper 20 is related to the foot profile data of the target user obtained by the measurement. For example, based on the foot profile data of the target user, the size and slackness of the upper 20 are designed to fit the contour of the target user's foot; or the upper 20 is designed as a shoe upper There is a preset gap between the inner contour of 20 and the foot surface of the target user. Based on the width and height of the instep of the target user, the size and slack of the upper 20 are selected and designed.
  • the size is the size of the three-dimensional contour of the shoe upper 20, and the slack is the adjustability or elasticity of the shoe upper 20, which can be used to evaluate the longitudinal and lateral ductility and bending characteristics of the shoe upper 20.
  • the size or sag of the shoe upper 20 is related to the gait data of the target user obtained by measurement. Based on the gait data of the target user, determine the foot surface state of the target user in the exercise state and the change of the foot surface contour such as bending degree, thereby determining the size or slackness of the shoe upper 20, for example , choose highly ductile materials in the soles of the feet that are prone to bends to increase the degree of slack in the bending area.
  • the size or sag of the shoe upper 20 is related to the measured foot profile data and gait data of the target user. Based on the influence of the target user's foot contour and exercise habits on the upper 20 in the static state and the motion state, a suitable upper material and upper structure design are selected.
  • the design of the shoe upper 20 also refers to the foot health of the target user.
  • the shoe upper 20 can be made of a flexible and light-weight breathable material, and the shoe upper 20 has sufficient slack.
  • the article of footwear is an orthopedic shoe.
  • the orthopedic shoes are footwear products with corrective functions suitable for user groups who need foot correction, that is, footwear products that help maintain abnormal feet or basically maintain normal gait.
  • Products Specifically, based on the pressure distribution collection and medical status analysis of the different foot states of the target user, combined with the foot profile, the design of the midsole, upper, and outsole of the footwear provided in this application Method to determine the structure and materials of corresponding footwear products.
  • the orthopedic shoes are collectively referred to as footwear whose structural design has the function of correcting the foot, and of course it also includes footwear products such as orthopedic boots or orthopedic shoes.
  • the correction function is mainly the adjustment of plantar disease or abnormality, and the correction effect of plantar disease or abnormality can be embodied in treatment, prevention or relief.
  • the orthopedic shoes are diabetic foot shoes, or can also be referred to as sugar foot shoes for short.
  • the sugar-footed shoes correspond to footwear products made specifically for the feet of target users with diabetic feet due to the possibility of foot diseases or pathological changes caused by diabetes, and have suitable corrective or orthopedic functions for the user group of diabetic patients.
  • metatarsals and heels are usually high-incidence areas of the corpus calluses. Medically, it is generally believed that the maximum plantar pressure has a high correlation with foot pathology. In diabetic patients, the maximum plantar pressure may be the foot. Where the ulcer occurs.
  • the footwear product of the present application is aimed at the target user with diabetic foot disease.
  • the footwear product reduces the peak pressure of the target user's plantar, increases the plantar contact area, and can selectively target the target user's plantar lesion area Or the proposed protection area design sole structure to relieve regional pressure and realize the function of sugar foot shoes.
  • the proposed protection area is for diabetic patients without obvious plantar disease wounds, and for medical statistical analysis and the areas with high incidence of diseases such as calluses and ulcers obtained from the actual measured foot pressure data and gait data of the target user.
  • the footwear products provided by this application are aimed at different target users, and can combine the target users' own personalized needs and characteristics, such as walking deformity or walking habits, foot contours, and physiological conditions such as plantar health, lower limb joints, Body stability, the original foot pressure distribution state, etc.
  • the cross-sectional thickness of the intervention area is set to be greater than the reference thickness, such as based on the first intervention area and the second foot pressure intervention area, or based on determining the height of the waist part, so as to realize the midsole of the shoe.
  • the intensity adjustment of different areas is adjusted based on the specific conditions of the target user's sole pressure, and the upper structure can be determined based on the target user's needs.
  • the present application also provides a three-dimensional data processing method for shoe midsoles of footwear products.
  • the three-dimensional data processing method can be used to form three-dimensional data slices of a 3D printing device.
  • FIG. 16 shows a schematic flowchart of an embodiment of the three-dimensional data processing method of this application.
  • the three-dimensional data processing method includes the following steps:
  • step S100 the shoe midsole of the target user is modeled to form a three-dimensional shoe midsole model with a preset contour.
  • the initial three-dimensional contour of the midsole is established based on the shoe last or based on the foot contour data of the target user to obtain a model contour that fits the foot shape of a specific target user or conforms to the foot shape law of the target user group.
  • the target user’s shoe midsole is modeled based on the target user’s foot pressure data and foot contour data, wherein the foot pressure data includes the target user’s measured foot pressure data and expected foot pressure data .
  • the foot pressure data includes the target user’s measured foot pressure data and expected foot pressure data .
  • a three-dimensional contour that fits the target user’s foot is obtained in advance based on the target user’s foot contour data.
  • the size of the shoe midsole contour is determined based on the target user’s foot pressure.
  • the three-dimensional contour of the shoe midsole is further adjusted.
  • the foot pressure data is used to determine the area where the target user’s foot pressure is abnormal, such as high foot pressure. The foot pressure shared by this area decreases while wearing.
  • S100 also includes the step of setting the basic unit of the lattice structure in the shoe midsole model area or setting the topological structure in the three-dimensional contour of the shoe midsole model.
  • the topological structure may be a lattice structure.
  • the structure and properties of multiple basic units are related to the strength of the expected topological structure or lattice structure of the shoe midsole.
  • the strength design of the topological structure or lattice structure is determined according to the expected strength of the midsole model of the shoe to determine the topological structure.
  • a plurality of preset basic units with a lattice structure can be used to model the shoe midsole of the target user to form a shoe midsole model with a lattice structure; or, to predetermine a three-dimensional shoe midsole model.
  • the contour of the midsole model is filled in the midsole model based on the selected basic unit of the lattice structure; or, the topological structure can be used to model the midsole of the target user to form a preset midsole model contour; Then or after determining the contour of the shoe midsole model, it is filled with a topological structure.
  • the three-dimensional data processing method provided in this application can be used to process the three-dimensional model of the shoe midsole according to any of the implementations provided in the first aspect of this application.
  • the lattice structure and the topological structure The geometric structure, connection method, and the way that different printing parameters such as geometric structure parameters, lattice structure or topological structure volume density, printing materials, energy radiation density, etc. affect the strength of the solid structure corresponding to the model area in the 3D model can be referred to The embodiment provided in the first aspect of this application.
  • a lattice structure is set in the determined shoe midsole model contour to match the shoe midsole.
  • the midsole contour area is filled to form a midsole model.
  • the lattice structure is present in different positions of the three-dimensional midsole model. Stretch, twist, or compress the deformed structure. In this way, the lattice structure of the shoe midsole model in step S100 may be a stretched, twisted, or compressed deformed structure at different positions of the three-dimensional shoe midsole model.
  • the structure of each basic unit in the lattice structure is the same or approximately the same
  • the entity of the lattice structure is in the form of connecting rods, wherein the geometric structure of the lattice structure includes a polyhedron and a spheroid, and the polyhedron includes a cone, a rhombus, and a star. Or a combination of one or more of them; or, the entity of the lattice structure is in the form of a wall surface, wherein the geometric structure of the lattice structure includes a polyhedron and a spheroid, and the polyhedron includes a cone, a rhombus, And a combination of one or more of the stellar bodies.
  • the three-dimensional shoe midsole model includes: a heel corresponding to the heel of the target user, a sole corresponding to the forefoot of the target user, and located between the heel and sole and corresponding to the target user The waist of the arch of the foot.
  • the waist portion has a raised portion with a preset height for anastomosing the arch of the target user's foot.
  • the raised height of the waist part is related to the force strength of the solid structure of the three-dimensional shoe midsole model, that is, it is related to the foot pressure distribution of the shoe midsole.
  • the raised height of the waist part please refer to the foregoing embodiment. .
  • step S110 the three-dimensional shoe midsole model is processed by using the obtained foot pressure data and foot profile data of the target user to determine at least one of the heel and/or sole of the three-dimensional shoe midsole model.
  • the first foot pressure intervention area is a predefined area.
  • S110 further includes using the acquired foot pressure data and foot profile data of the target user to process the three-dimensional midsole model to determine at least one second in the three-dimensional midsole model. Foot pressure intervention area steps.
  • the foot pressure data and foot contour data of the target user are obtained through measurement or statistics.
  • the method for determining the foot pressure data and the foot profile data of the target user can also refer to the embodiment provided in the first aspect of the present application.
  • the force strength of the topological structure or the lattice structure in the at least one first foot pressure intervention area or/and the second foot pressure intervention area is related to the calculated expected foot pressure data.
  • the expected foot pressure data is less than the actual foot pressure data corresponding to the at least one first foot pressure intervention area; the expected foot pressure data is greater than the actual foot pressure data corresponding to the at least one second foot pressure intervention area.
  • the first foot pressure intervention area is an area where foot pressure is expected to be reduced
  • the second foot pressure intervention area is an area where foot pressure is expected to be increased
  • the expected foot pressure data is calculated based on the measured foot pressure data of the target user obtained by measurement and corresponding medical intervention data.
  • the measured foot pressure data of the target user and the medical intervention data jointly determine the expected foot pressure data to ensure that the shoe midsole structure adjusts the user's foot pressure distribution with the expected target and has the expected strength and reliability.
  • the measured foot pressure data determines the pressure distribution state of the target user's foot, and the medical intervention data determines the pressure distribution adjustment that needs to be performed.
  • the expected foot pressure data is obtained based on the medical stage of the target user represented by the medical intervention data and the measured foot pressure data.
  • the medical intervention data may also include the stage of the target user in a certain disease obtained by analyzing the physiological detection data of the target user.
  • the medical intervention data for the definition of the expected foot pressure data, the medical intervention data, and the manner of its association with the first foot pressure intervention area or the second foot pressure intervention area, reference may also be made to the embodiment provided in the first aspect of the present application.
  • step S120 Based on the determined position of the first foot pressure intervention area or/and the second foot pressure intervention area, in step S120, the force strength of the topological structure or the lattice structure in the at least one first foot pressure intervention area is weakened, So as to be smaller than the force strength of the topological structure or the lattice structure outside the at least one first foot pressure intervention area.
  • the method for processing three-dimensional data of the shoe midsole further includes strengthening the force strength of the topological structure or the lattice structure in the at least one second foot pressure intervention area to make it greater than the force strength of the lattice structure. At least one second step of foot pressure intervention on the topological structure or the force strength of the lattice structure outside the region.
  • the step of weakening the force strength of the topological structure or the lattice structure in the at least one first foot pressure intervention area or strengthening the topological structure in the at least one second foot pressure intervention area Or in the step of the force strength of the lattice structure, the force strength of the topological structure or the lattice structure in the at least one first foot pressure intervention area or/and the second foot pressure intervention area is calculated as expected
  • the foot pressure data is related to the measured foot contour data.
  • the weakening of the force strength of the topological structure or the lattice structure in the at least one first foot pressure intervention area or the strengthening of the topological structure or the crystal structure in the at least one second foot pressure intervention area In the step of the force strength of the lattice structure, the force strength of the topological structure or the lattice structure in the at least one first foot pressure intervention area or/and the second foot pressure intervention area and the calculated expected foot pressure
  • the data is related to the foot contour data obtained by the measurement and the gait data.
  • the second foot pressure intervention area For the definition and determination method of the first foot pressure intervention area, the second foot pressure intervention area, foot pressure data, foot contour data, expected foot pressure data, and gait data, refer to the implementation provided in the first aspect of this application example.
  • the force strength of the topological structure or the lattice structure of the at least one first foot pressure intervention area or the force strength of the topological structure or the lattice structure in the at least one second foot pressure intervention area it may be based on the The strength of the force determines the printing parameters in the three-dimensional model of the midsole of the shoe.
  • the force strength of the lattice structure corresponding to the first foot pressure intervention area and the second foot pressure intervention area can be determined by the volume density of the lattice structure, the structure of the lattice body, the printing material, the printing process, And at least one of the post-processing processes, or, the force strength of the topological structure of the first foot pressure intervention area and the second foot pressure intervention area is determined by determining the volume density of the topological structure, the printing material, and the printing process , And at least one of the post-treatment processes is determined.
  • the force strength of the lattice structure is determined by at least one of the volume density of each lattice structure, the structure of the crystal lattice, the printing material, the printing process, and the post-processing process;
  • the stress strength of the topological structure is determined by determining at least one of the bulk density of the topological structure, printing material, printing process, and post-processing process.
  • the bulk density of the lattice structure is related to the rod diameter, the thickness of the lattice wall, the size of the lattice, and the density of the lattice rod after forming; or the bulk density of the topological structure is related to the rod diameter of the topological structure.
  • the thickness is related to the density of the topological structure rod after forming.
  • the corresponding first can be selected and adjusted according to the expected foot pressure distribution of the target user.
  • the force intensity of the foot pressure intervention area or the second foot pressure intervention area such as adjusting the topological structure or the volume density of the lattice structure, such as the diameter and length of the connecting rod, and the connection form such as valence and other structural parameters.
  • the weakening of the first foot pressure intervention area can be achieved by reducing the volume density of the lattice structure, which can be achieved by increasing the length of the basic unit connecting rod or reducing the diameter of the basic unit connecting rod or reducing the wall thickness.
  • connection form of the basic unit so that the degree of connection between the basic unit nodes is reduced, that is, the sparse connection corresponding to the low valence is adopted, so that the volume density of the lattice structure in the first foot pressure intervention area is reduced; or By reducing the number of node connections or the rod diameter of the topological structure in the first foot pressure intervention area, the volume density of the topological structure in the first foot pressure intervention area is reduced.
  • the adjustment of the force intensity of the first foot pressure intervention area in the step S120 further includes setting the attributes of the topological structure in the first foot pressure intervention area in different areas or setting the basic lattice structure.
  • the attribute setting of the unit, the attribute is used to indicate at least one of the radiation intensity, radiation duration, or frequency corresponding to the radiation control of the energy radiation device by the 3D printing device control device, so that the first foot pressure intervention area in the model
  • the topological structure or lattice structure corresponding to the received radiation energy value decreases during printing.
  • the first foot pressure intervention area is marked in the shoe midsole three-dimensional model, so that when the subsequently formed three-dimensional data slice data of the shoe midsole is used for printing by a 3D printing device, the attributes of the first foot pressure intervention area
  • the setting is read by the control device of the 3D printing device, and the corresponding control device controls the energy radiation device of the printing device to print the foot pressure intervention area with lower energy, and the first foot pressure intervention in the print of the shoe midsole obtained therefrom
  • the material density of the topological structure or the lattice structure in the region is low, and its force strength is less than that of the topological structure or the lattice structure outside the foot pressure intervention area.
  • step S130 the force strength of the topological structure or lattice structure within the at least one first foot pressure intervention area and the force strength of the topological structure or lattice structure outside the first foot pressure intervention area are performed. Processing, so that the force strength of the topological structure or the lattice structure located outside the first foot pressure intervention area is toward the force strength of the topological structure or the lattice structure extending within the at least one first foot pressure intervention area The change is a gradual transition.
  • step S130 further includes: determining the force intensity of the topological structure or the lattice structure within the at least one second foot pressure intervention area and the topological structure or the topological structure outside the second foot pressure intervention area.
  • the force strength of the lattice structure is processed, so that the topological structure or the force strength of the lattice structure located outside the second foot pressure intervention area is directed toward the topological structure or the force strength extending within the at least one second foot pressure intervention area
  • the change of the force intensity of the lattice structure shows a gradual transition.
  • the gradual transition includes a gradual change in the lattice structure, such as a gradual change in the size of a basic unit of a lattice structure, a gradual change in the density of a basic unit, a gradual change in the thickness of a lattice wall surface, a gradual change in the length of the lattice rod diameter, and a thickness of the lattice rod.
  • a gradual change in the lattice structure such as a gradual change in the size of a basic unit of a lattice structure, a gradual change in the density of a basic unit, a gradual change in the thickness of a lattice wall surface, a gradual change in the length of the lattice rod diameter, and a thickness of the lattice rod.
  • the continuous gradation of the geometric structure of the basic unit of the lattice structure (such as the geometric structure type), and the performance gradation including the formation of the lattice structure by post-processing or printing processes, such as the density gradient of the lattice structure after forming, the lattice structure Material gradual change; or, the gradual transition is a structural gradual change of a topological structure, such as a rough gradual change of the rod diameter of the connecting rod body in the topological structure, a volume gradual change formed by the gradual change of the connection between the rod diameters of the topological structure, or a manufacturing process or a post-processing process.
  • the topological structure of the material density gradient and so on.
  • the topological structure or lattice structure of the shoe midsole model can be processed in the three-dimensional data processing to form a gradual change in the strength of the lattice structure or a gradual change in the strength of the topological structure; or, the first foot pressure intervention area can be determined (Second foot pressure intervention area), for the topological structure or lattice structure located outside the first foot pressure intervention area (second foot pressure intervention area) toward the at least one first foot pressure intervention area (second foot pressure intervention area)
  • the topological structure or the lattice structure area extending within the intervention area is to be attributed to indicate the printing parameters of the area during production, such as printing.
  • the print energy radiation density of the corresponding area from the first foot pressure intervention area extending toward the first foot pressure intervention area is gradually increased or decreased, thereby forming a gradual change in the strength of the force. Transition; or, through the determined first foot pressure intervention area, the topological structure or lattice structure located outside the first foot pressure intervention area extends toward the at least one first foot pressure intervention area Or the lattice structure area is marked to indicate the post-processing process.
  • the topological structure or the lattice structure located outside the first foot pressure intervention area is facing inside the at least one first foot pressure intervention area (second foot pressure intervention area)
  • the extended topological structure or lattice structure area can be attributed to form a gradual transition by referring to the embodiment provided in the first aspect of the present application. For example, it is determined that the first foot pressure intervention area or the second foot pressure intervention area is in the shoe.
  • the position and contour of the bottom, as well as the determination of the boundary area, the topological structure in the boundary area is set as a gradual transition, or the basic unit of the lattice structure is set in the form of a transitional gradation.
  • the lattice structure in the boundary region is designed in a form in which the size of the basic unit of the lattice structure is gradually changed; for another example, the basic unit geometry of the lattice structure in the boundary region changes from the first foot pressure intervention area
  • the outer cone gradually deforms and extends to the basic unit structure formed as a spheroid in the at least one first foot pressure intervention area; for another example, based on the printing process settings, the lattice structure in the boundary area changes from the first foot
  • the pressure intervention area extends toward the first foot pressure intervention area, and the corresponding basic unit of the lattice structure presents a form of gradual material density.
  • the topological structure connection mode in the junction area is changed so that the force strength of the junction area is gradually transitioned.
  • the extension direction can be adapted to make the number of common connections at the connecting rod nodes in the sub-area of the topology structure change gradually. Or, the average number of common connections of all nodes in the area decreases, or, in accordance with the extension direction, the diameter of the topological structure in the sub-region of the topological structure gradually decreases.
  • the lattice structure outside the first foot pressure intervention area is directed toward the first foot pressure intervention area.
  • the internally extending lattice structure presents a gradual transition, or the realization of a gradual transition of the lattice structure outside the second foot pressure intervention area toward the inside of the second foot pressure intervention area may also refer to this application.
  • the embodiments provided in the first aspect will not be repeated here.
  • step S130 after the processing in step S130 is completed, it is determined that the force strength of the lattice structure outside the first foot pressure intervention area is toward the topology extending within the at least one first foot pressure intervention area.
  • the change in the force intensity of the structure or the lattice structure presents a gradual transition, or it is determined that the topological structure or the force intensity of the lattice structure outside the second foot pressure intervention area is directed toward the at least one second foot pressure intervention area
  • the change of the force strength of the internally extending topological structure or the lattice structure presents a gradual transition
  • the three-dimensional data processing method further includes a step of generating the topological structure or the lattice structure to fill the contour of the three-dimensional shoe midsole model.
  • the topological structure or lattice structure may be based on the set parameters such as the position of the first foot pressure intervention area, the second foot pressure intervention area, the preset topological structure or lattice structure structure shape, and rod diameter in different areas.
  • the size, the length of the rod, the form of gradual transition, the distortion and deformation of the lattice structure in different regions, etc. are generated by preset parameters.
  • a step of generating a topological structure or a lattice structure filling the midsole model is further included. That is, in an actual scene, the step of filling the topological structure or lattice structure into the contour of the three-dimensional shoe midsole model can be performed in any of the steps S100, S110, S120, and S130, that is, in generating slice data Form the topological structure or lattice structure corresponding to the desired foot pressure distribution to form the midsole model of the shoe.
  • the topological structure or lattice structure and the three-dimensional contour of the shoe midsole jointly determine the expected foot pressure data of the shoe midsole entity obtained from the shoe midsole model.
  • the stress strength of the topological structure or the lattice structure is determined by at least one of the material, the bulk density, the printing process, and the post-processing process.
  • the force strength can be changed by changing the topological structure or the volume density of the lattice structure to obtain the desired foot pressure distribution.
  • the strength or strength of the first foot pressure intervention area is weakened or /Strengthen the strength of the second foot pressure intervention area to determine the force strength of different areas in the shoe midsole model, and generate a topological structure or a lattice structure based on the functional relationship between the volume density and the strength of the topological structure or the lattice structure To fill the midsole model.
  • a preset topology or lattice structure is used to model the midsole, and then in S110, S120, S130, based on the adjustment of the midsole contour and different regions Set the strength of, and adjust the topological structure or lattice structure accordingly.
  • the three-dimensional data processing method further includes the step of determining the height of the raised portion of the waist portion and the strength of the force; wherein, the height of the raised portion of the waist portion and the strength of the force are the same as The calculated desired foot pressure data and foot contour data and gait data of the target user are related.
  • the height of the protruding part of the waist part and the force intensity thereof are related to the calculated foot pressure data, foot contour data and gait data of the target user.
  • the steps of determining the height of the waist and the strength of the force can be performed at different times to achieve. For example, after determining the model contour area of the three-dimensional shoe midsole in step S100, it is based on the target The user’s foot pressure data and foot contour data determine at least one first foot pressure intervention area or/and second foot pressure intervention area, and then determine the raised height of the waist part to match the foot contour of the target user, or , The raised height of the waist fossa of the target user may be determined first, and then at least one first foot pressure intervention area or/and second foot pressure intervention area may be determined; or, the at least one first foot pressure intervention area may be The stress intensity of the topological structure or lattice structure inside and the stress intensity of the topological structure or lattice structure outside the first foot pressure intervention area are processed, so that the topological structure or the force intensity outside the first foot pressure intervention area After the force strength of the lattice structure extends toward the topological structure extending within the at least one first foot
  • the three-dimensional data processing method further includes adjusting at least one of the body data, weight data, foot contour data, gait data, or foot pressure data of the target user obtained by measurement.
  • the method for determining the thickness of the shoe midsole, as well as the definition of body data, weight data, foot contour data, gait data, and foot pressure data (acquisition method) can also refer to the embodiment provided in the first aspect of the application .
  • the three-dimensional data processing method further includes a step of constructing a cushion layer model on the top surface of the three-dimensional shoe midsole model.
  • the buffer layer model is constructed using a topological structure or using multiple basic units that are a lattice structure.
  • the buffer layer model is composed of a lattice structure readable by a 3D printing device, for example, the buffer layer model is composed of basic units in the form of a preset lattice structure of a shoe midsole.
  • the rod diameter or wall thickness of the crystal lattice structure in the buffer layer model is smaller than the rod diameter or wall thickness of the crystal lattice structure in the three-dimensional shoe midsole model, and the crystal lattice volume of the crystal lattice structure in the buffer layer model is smaller than all
  • the lattice volume of the lattice structure in the three-dimensional shoe midsole model is described.
  • the buffer layer model is composed of a topological structure readable by a 3D printing device, and the rod diameter of the topological structure in the buffer layer is smaller than the rod diameter of the topological structure of the shoe midsole; or, The number of node connections in the topological structure of the buffer layer model is less than the number of node connections in the topological structure of the shoe midsole, so as to reduce the hardness of the buffer layer, make it easy to be elastically deformed, and realize the buffer function.
  • the contour design, topological structure, or lattice structure design of the buffer layer model is also related to the desired foot pressure data, gait data, foot profile, etc. of the target user, as in the buffer layer
  • the upper surface contour can conform to the target user's foot contour design.
  • the three-dimensional data processing method further includes the step of constructing a fitting surface model on the top surface of the three-dimensional shoe midsole model.
  • the upper fitting surface corresponding to the upper fitting surface model is used for bonding the shoe upper to provide a stickable contact surface for the connection between the shoe upper and the sole, and the shoe upper is used to form an enveloping target user with the shoe midsole Foot coverage.
  • the upper fitting surface may be designed as a ring-shaped structure for providing a ring-shaped contact surface for adhering the shoe upper and the shoe midsole, and its outer contour conforms to the contour of the shoe midsole, for example.
  • the upper bonding surface model is a non-hollowed filling structure with continuous upper and lower surfaces to achieve a better adhesion effect of the corresponding entities.
  • the upper and lower surfaces of the obtained upper bonding surface are respectively bonded to the shoe upper and the shoe midsole, and the bonded adhesive includes neoprene adhesive, polyurethane adhesive, SBS adhesive, and the like.
  • the three-dimensional data processing method further includes using a plurality of preset basic units of a lattice structure or using a topological structure to construct a buffer between the three-dimensional shoe midsole model and the upper fitting surface model Steps of the layer model. That is, the buffer layer model adopting the lattice structure is set on the three-dimensional shoe midsole model, and the upper fitting surface model is constructed on the buffer layer model. Regarding the buffer layer model, reference may be made to the foregoing embodiment.
  • the three-dimensional data processing method further includes the step of constructing a lower fitting surface model on the bottom surface of the three-dimensional shoe midsole model, and the lower fitting surface is used to combine with the shoe outsole.
  • the lower bonding surface model is a non-hollowed filling structure with continuous upper and lower surfaces to achieve a better adhesion effect of the corresponding entities.
  • the lower bonding surface model is a non-hollowed filling structure with continuous upper and lower surfaces to achieve a better adhesion effect of the corresponding entities.
  • the lower fitting surface model has an annular structure along the bottom contour of the three-dimensional shoe midsole model.
  • the data processing process performed in steps S110, S120, and S130 in the three-dimensional data processing method provided by this application is not limited to the embodiment shown in FIG. Go to the remaining steps for adjustment, that is, S110, S120, and S130 can be repeated before forming the three-dimensional data slice to ensure that the corresponding pressure distribution of the formed shoe midsole entity in the wearing state is close to the expected pressure data, and cyclically adjust
  • the process of is not limited to the sequence shown. For example, the step of determining the foot pressure intervention area in S110 and S120 and strengthening or weakening the topological structure or the strength of the lattice structure can be performed first, and then the step of adjusting the height of the waist bulge is performed.
  • Fig. 16 shows an embodiment that can realize the three-dimensional data processing method of shoe midsole provided by this application. Based on this, in some alternative implementations, the functions marked in the boxes can also be different from Occurs in the order noted in the figures. For example, two blocks shown in succession may actually be executed substantially in parallel, and they may sometimes be executed in the reverse order.
  • step S140 three-dimensional slice data of the shoe midsole readable by the 3D printing device is formed.
  • the 3D printing equipment includes 3D printing equipment that adopts filament melt extrusion, material droplet injection, powder flat melting, adhesive injection, or photosensitive resin laminate curing, such as: SLS equipment, EBM equipment, MJF equipment , CLIP equipment, SLA equipment, or DLP equipment.
  • the 3D printing device is based on the read three-dimensional slice data, and the energy radiation device, under the control of the control device, projects the image corresponding to the topological structure or the lattice structure, and the radiation energy density distribution of the image determined by the structure intensity,
  • the material to be cured is printed as an entity of the shoe midsole with a preset three-dimensional structure and strength.
  • the layered processing method of the shoe midsole is as follows: The height of each layer configuration and the layered (sliced) graphics of each layer.
  • the layered (sliced) graphics are obtained by cross-sectional division along the Z-axis direction (that is, along the height direction) based on the three-dimensional midsole model in advance.
  • a slice figure outlined by the contour of the three-dimensional shoe midsole model is formed on the cross-sectional layer formed by each adjacent cross-sectional division, and if the cross-sectional layer is sufficiently thin, the cross-sectional layer can be considered
  • the contour lines of the upper cross-sectional surface and the lower cross-sectional surface are the same.
  • each sliced figure needs to describe the layered image.
  • each slice pattern is described by coordinate data on the scanning path.
  • the three-dimensional slice data further includes the attributes of each slice, such as a slice of the foot pressure intervention area, the three-dimensional slice data includes a slice attribute for indicating a printing process, and the attribute is used for The indication corresponds to at least one of the radiation intensity, radiation duration, or frequency of the radiation control of the energy radiation device by the 3D printing device control device, so that the foot pressure intervention area in the model corresponding to the received radiation energy value during printing is reduced, and the result is Corresponds to the foot pressure intervention area with lower material density.
  • the material of the topological structure or the lattice structure includes a light-curable resin material, a thermoplastic rubber (TPR), a thermoplastic elastomer; wherein the thermoplastic elastomer includes a polyurethane elastomer (TPU), nylon elastic Body (TPAE), polyester elastomer (TPEE), EVA elastomer and silicone elastomer.
  • the topological structure or lattice structure material may be any one of the above-mentioned materials, or a mixture of two or more materials.
  • the topological structure or lattice material can also be polypropylene, acrylonitrile butadiene styrene (ABS), polycarbonate (PC), PC-ABS, PLA, polystyrene, wood Polyamide, polyamide, polyamide foam, polyamide with additives such as glass or metal particles, methyl methacrylate-acrylonitrile-butadiene-styrene copolymer, absorbable materials such as polymer-ceramic composites Materials, and other similar materials suitable for the production of shoe midsoles, the materials used in the topological structure or the lattice structure are not limited by the above examples.
  • the present application also discloses a 3D printing method applied to a 3D printing device.
  • the 3D printing device includes: an energy radiation device for radiating energy to the printing surface, and an energy radiating device for carrying energy radiation curing Component platform for three-dimensional objects.
  • the 3D printing equipment includes 3D printing equipment that adopts filament melt extrusion, material droplet injection, powder flat melting, adhesive injection, or photosensitive resin laminate curing, such as: SLS equipment, EBM equipment, MJF equipment , CLIP equipment, SLA equipment, or DLP equipment.
  • DLP equipment DLP equipment
  • SLA equipment SLA equipment
  • SLS equipment SLS equipment
  • the energy radiation device is an energy radiation device based on surface projection or an energy radiation device based on scanning radiation.
  • the energy radiation device is a projection device based on surface projection, including a DMD chip, a controller, and a storage module.
  • the storage module stores layered images that layer 3D object models.
  • the DMD chip irradiates the light source corresponding to each pixel on the layered image to the bottom surface of the container after receiving the control signal of the controller.
  • the DMD chip appears to be just a small piece of mirror, which is encapsulated in a confined space composed of metal and glass.
  • this mirror is composed of hundreds of thousands or even millions of micromirrors, and each micromirror Represents a pixel, and the projected image is composed of these pixels.
  • the DMD chip can be simply described as a semiconductor light switch and a micro lens corresponding to the pixel point.
  • the controller controls each light switch in the DMD chip to allow/disable each micro chip to reflect light, thereby passing the corresponding layered image through the container.
  • the transparent bottom is irradiated on the photocurable material, so that the photocurable material corresponding to the image shape is cured to obtain a patterned cured layer.
  • the energy radiation device is an energy radiation device based on scanning radiation, including a laser emitter, The lens group on the light path of the laser transmitter, the galvanometer group on the light-emitting side of the lens group, and the motor that controls the galvanometer, etc., wherein the laser transmitter is controlled to adjust the energy of the output laser beam, for example, The laser transmitter is controlled to emit a laser beam with a preset power and stops emitting the laser beam. For another example, the laser transmitter is controlled to increase the power of the laser beam and reduce the power of the laser beam.
  • the lens group is used to adjust the focus position of the laser beam
  • the galvanometer group is used to scan the laser beam in a two-dimensional space on the bottom or top surface of the container in a controlled manner
  • the photocurable material scanned by the beam It is cured into a corresponding patterned cured layer
  • the swing amplitude of the galvanometer lens of the galvanometer group determines the scan size of the SLA device.
  • the component platform is suspended on the upper part of the printing reference surface
  • the top exposure equipment such as DLP or SLA equipment
  • the component platform is suspended on The lower part of the printing reference surface (usually referring to the liquid surface of the resin tank) is used to attach and accumulate the patterned cured layer cured by irradiation.
  • the material of the component platform is different from the photocurable material.
  • the component platform is driven by the Z-axis driving mechanism in the 3D printing device, and moves along the Z axis (vertical) direction so that the material to be cured is filled between the component platform and the printing reference surface, so that the energy radiation system in the 3D printing device can pass
  • the energy radiation irradiates the material to be cured, so that the irradiated material is cured and accumulated on the component platform.
  • the component platform and the attached part of the manufactured 3D object need to be moved to the minimum distance between the printed reference surface and the thickness of the cured layer to be cured Position, and the Z-axis drive mechanism drives the component platform to rise to separate the solidified layer from the bottom of the container.
  • its energy radiation device is composed of a laser transmitter, a flat field focusing lens and a galvanometer system, and the laser transmitter and the galvanometer system are controlled to adjust the output laser
  • the energy of the beam for example, the laser transmitter controlled to emit a laser beam with a preset power and stops emitting the laser beam, another example, the laser transmitter controlled to increase the power of the laser beam and reduce the power of the laser beam .
  • the flat-field focusing lens is used to adjust the focus position of the laser beam
  • the galvanometer system is used to controlly scan the laser beam in the two-dimensional space of the printing datum surface in the container, and the light scanned by the beam
  • the cured material is cured into a corresponding patterned cured layer.
  • the component platform of the SLS device is set in a powder bed or a sintering molding chamber containing the material to be solidified, and is used to attach and accumulate a patterned solidified layer cured by irradiation.
  • the powder material to be solidified is heated to a temperature just below the sintering point of the powder by the constant temperature facility in the printing equipment, and the three-dimensional model of the printed component is sliced by the laser of the energy radiation device, and the slice is The corresponding image is copied on the powder bed, so that the powder material is heated to above the melting point under laser irradiation to achieve sintering, and solidification is achieved at the height of the slice corresponding to the layer.
  • the powder bed will drop, and the existing solidified layer Start to construct the corresponding next slice figure, repeat the above process until the printing is completed.
  • FIG. 17 shows a schematic flowchart of an embodiment of the 3D printing method of this application.
  • step S200 the three-dimensional slice data of the shoe midsole is read, and the three-dimensional data slice is the shoe midsole for footwear products obtained by any one of the embodiments provided in the third aspect of the present application
  • the obtained three-dimensional slice data of the shoe midsole is processed.
  • the three-dimensional slice data further includes the attributes of each slice, such as a slice of the foot pressure intervention area, the three-dimensional slice data includes a slice attribute for indicating a printing process, and the attribute is used for Indicate at least one of the radiation intensity, radiation duration, or frequency corresponding to the control device of the 3D printing equipment to perform radiation control of the energy radiation device, so that the foot pressure intervention area in the model corresponds to a reduction in the received radiation energy value during printing, Obtain a foot pressure intervention area corresponding to a lower material density.
  • step S210 the distance between the component platform and the printing surface is adjusted to fill the material to be cured on the printing surface; wherein the thickness of the filled material to be cured corresponds to the slice of the three-dimensional slice data of the shoe midsole Storey height.
  • the photocurable material is added to the gap to fill the material to be cured on the printing surface, and the spacing is the thickness of the layer to be printed, which is set corresponding to the thickness of the slice in the slice.
  • the printing surface is the contact surface of the corresponding energy radiation system that conforms to the projection direction so that the radiated energy and the resin, for example, in a DLP device where the bottom surface is exposed, is the inner bottom surface of the container containing the material to be photocured.
  • step S220 energy is radiated to the filled material to be cured based on the three-dimensional slice data of the shoe midsole to obtain a corresponding patterned cured layer.
  • the control device controls the Z-axis driving mechanism and the energy radiation system to cure the photocurable layer layer by layer.
  • the control device sends the layered images to the energy radiation system one by one according to a preset printing sequence, and the energy radiation system irradiates the image to the transparent bottom or top of the container, and the irradiated energy reduces the energy on the bottom of the container.
  • the photocurable material is cured into a corresponding patterned cured layer.
  • the energy radiation device is a projection device. Based on the initial corresponding relationship between the initial light radiation intensity of the projection device and the controlled parameter and the corresponding relationship between the detected light radiation intensity and the controlled parameter after attenuation, the compensated controlled parameter is determined, and according to the determined The controlled parameter controls the projection device.
  • the controlled parameter refers to a parameter that can change the light radiation and/or irradiation duration output by the projection device, which includes, but is not limited to: power supply current, power supply voltage, power supply duration, and control for adjusting gray scale
  • the duty ratio of the signal or the electric field current is determined based on the relationship between the layered image and the controlled parameter, and the slice data is converted into the controlled parameter and solidified to obtain the corresponding patterned solidified layer pattern.
  • the step of controlling the energy radiation device to perform over-curing includes: controlling at least one of the radiation duration, light intensity, and the number of exposures of the energy radiation device, and preset the layer thickness and the exposure image according to the type of the energy device. Correspondence between energy or gray. For example, if the energy radiation device includes a laser transmitter, the output power of the laser transmitter is controlled according to the corresponding relationship between the layer thickness and the energy. For another example, the energy radiation device includes a light source array and a DMD chip, and the gray level of each light source that illuminates the image in the light source array is controlled according to the corresponding relationship between the layer thickness and the gray level.
  • the corresponding relationship between the layer thickness and the irradiation time, or the corresponding relationship between the layer thickness and the energy and the irradiation time, the corresponding relationship between the layer thickness and the gray scale and the irradiation time can also be preset, and according to the layer of the current layer Thickness controls the image irradiated by the energy radiation device.
  • the correspondence relationship includes, but is not limited to, correspondence with a comparison table, or a pre-built adjustment function.
  • step S230 a patterned solidified layer is accumulated on the component platform to form a midsole for footwear products corresponding to the three-dimensional midsole model.
  • the printing reference surface is set at the bottom of the container, and the pattern cured layer obtained by curing in step S220 is respectively attached between the bottom surface of the container and the component platform or the upper cured layer.
  • the control device After controlling the exposure device to irradiate, the control device sends a control instruction of the rising direction and speed to the Z-axis drive mechanism of the printing device, and the Z-axis drive mechanism rises to a preset height from the bottom of the container based on the control instruction, When the Z-axis driving mechanism drives the component platform to rise, the patterned solidified layer is separated from the bottom of the container.
  • the printing reference surface is set on the upper surface of the material to be cured, that is, the contact surface with the air.
  • the cured layer attached to the component platform is lowered under the drive of the Z-axis drive mechanism, and the preset height formed between the descending distance of the component platform and the surface of the material to be cured is corresponding to the next layered image Thickness, the space between the upper surface of the cured layer and the printing surface is filled to form a new layer to be printed.
  • step S240 it is judged whether the three-dimensional shoe midsole model has been printed, if not, S210, S220, and S230 are executed successively; if yes, it ends.
  • the fifth aspect of the present application also provides a computer device.
  • FIG. 18, shows a simplified schematic diagram of the computer device in an embodiment of the present application.
  • the computer equipment includes a storage device 30 and a processing device 31.
  • the storage device 30 is used to store at least one program and a three-dimensional shoe midsole model.
  • the storage device 30 includes a non-volatile memory and a system bus.
  • the non-volatile memory is, for example, a solid state hard disk or a U disk.
  • the system bus is used to connect the non-volatile memory and the CPU together, where the CPU can be integrated in the storage device 30 or packaged separately from the storage device 30 and connected to the non-volatile memory through the system bus.
  • the processing device 31 is connected to the storage device 30, and is configured to execute at least one program to coordinate the storage device 30 to execute the three-dimensional shoe midsole model provided in the present application as in the embodiment provided in the third aspect of the present application A three-dimensional data processing method in any embodiment.
  • the sixth aspect of the present application also provides a computer-readable storage medium for storing at least one program that executes and implements the method described in any one of the above-mentioned three-dimensional data processing methods of the present application when the at least one program is called. , Such as the three-dimensional data processing method described in the embodiment of FIG. 11.
  • the present application also provides a computer-readable storage medium for storing at least one program that executes and implements the application described in any one of the embodiments provided in the fourth aspect of the present application when the at least one program is called 3D printing method for 3D printing equipment.
  • the 3D data processing method or 3D printing method provided in this application is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the computer readable and writable storage medium may include read-only memory, random access memory, EEPROM, CD-ROM or other optical disk storage devices, magnetic disk storage devices or other magnetic storage devices, flash memory, U disk, mobile hard disk, or any other medium that can be used to store desired program codes in the form of instructions or data structures and that can be accessed by a computer.
  • any connection is properly termed a computer-readable medium.
  • the instruction is sent from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technology such as infrared, radio, and microwave
  • coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave
  • computer readable and writable storage media and data storage media do not include connections, carrier waves, signals, or other transient media, but are intended for non-transitory, tangible storage media.
  • the magnetic disks and optical disks used in the application include compact disks (CD), laser disks, optical disks, digital versatile disks (DVD), floppy disks and Blu-ray disks.
  • CD compact disks
  • laser disks optical disks
  • DVD digital versatile disks
  • floppy disks floppy disks
  • Blu-ray disks disks usually copy data magnetically
  • optical disks use lasers for optical Copy data locally.
  • the functions described in the computer program of the three-dimensional data processing method and the printing method of the 3D printing device described in this application can be implemented by hardware, software, firmware, or any combination thereof. When implemented in software, these functions can be stored or transferred to a computer-readable medium as one or more instructions or codes.
  • the steps of the method or algorithm disclosed in the present application may be embodied by a processor-executable software module, where the processor-executable software module may be located on a tangible, non-transitory computer readable and writable storage medium. Tangible, non-transitory computer readable and writable storage media can be any available media that can be accessed by a computer.
  • this application provides the following embodiments in the seventh aspect.
  • the respective embodiments are represented by serial numbers, for example, the numbers 1, 2, 3, and 4 may respectively represent Embodiment 1. 2.
  • this application also provides a three-dimensional data processing method for shoe midsoles, footwear products, and shoe midsoles, 3D printing methods applied to 3D printing equipment, and computer equipment, computer readable
  • the storage mechanism includes the following embodiments:
  • a shoe midsole for footwear products characterized in that the shoe midsole is composed of a plurality of 3D printed lattice structures, including: a heel corresponding to the heel of a target user, corresponding to the front of the target user The sole of the sole of the foot, and the waist part located between the heel part and the sole of the foot and corresponding to the arch of the target user's foot, the waist part has a raised portion with a preset height to support the arch of the target user
  • the heel portion and/or the sole portion of the shoe midsole is provided with at least one first foot pressure intervention area, and the force strength of the lattice structure in the at least one first foot pressure intervention area is less than that of the At least one force strength of the lattice structure outside the first foot pressure intervention area; and the height of the raised portion of the waist part and the force strength thereof and the calculated desired foot pressure data and feet of the target user Shape profile data is related.
  • the midsole for footwear products according to embodiment 1 or 2 characterized in that the lattice structure in the at least one first foot pressure intervention area or the second foot pressure intervention area
  • the force intensity is related to the calculated expected foot pressure data, wherein the expected foot pressure data is less than the actual foot pressure data corresponding to the at least one first foot pressure intervention zone; the expected foot pressure data is greater than the corresponding at least one foot pressure data. Measured foot pressure data for a second foot pressure intervention zone.
  • the midsole for footwear products according to embodiment 1 or 2 characterized in that the crystal lattice in the at least one first foot pressure intervention area or/and the second foot pressure intervention area
  • the strength of the structure is related to the calculated expected foot pressure data and the measured foot profile data.
  • the midsole for footwear products according to embodiment 1 or 2 characterized in that the lattice in the at least one first foot pressure intervention area or/and the second foot pressure intervention area
  • the strength of the structure is related to the calculated expected foot pressure data, the measured foot contour data, and the gait data.
  • the data is related to foot contour data and gait data.
  • the material of the lattice structure includes light-curable resin material, thermoplastic rubber (TPR), and thermoplastic elastomer; wherein, the Thermoplastic elastomers include polyurethane elastomers (TPU), nylon elastomers (TPAE), polyester elastomers (TPEE), EVA elastomers and silicone elastomers.
  • TPU polyurethane elastomers
  • TPAE nylon elastomers
  • TPEE polyester elastomers
  • EVA elastomers and silicone elastomers.
  • the buffer layer is composed of a plurality of 3D printed lattice structures, and the rods of the lattice structure in the buffer layer The diameter is smaller than the rod diameter of the lattice structure in the shoe midsole.
  • each of the 3D printed multiple lattice structures has substantially the same geometric structure, and the lattice structure In different positions, the structure is stretched, twisted, or compressed.
  • a footwear product characterized by comprising the midsole as described in any one of embodiments 1-21, an upper that is combined with the top periphery of the midsole and used to wrap the instep of a target user, and combined At the bottom of the shoe midsole, the shoe outsole is used to contact the ground.
  • a three-dimensional data processing method for shoe midsoles of footwear products characterized in that the three-dimensional data processing method includes the following steps:
  • the midsole of the target user to form a three-dimensional midsole model with a preset contour
  • the three-dimensional midsole model includes: a heel corresponding to the heel of the target user, and a sole corresponding to the forefoot of the target user , And the waist part located between the heel part and the sole part and corresponding to the arch of the target user's foot;
  • the three-dimensional shoe midsole model is processed using the obtained foot pressure data and foot profile data of the target user to determine at least one first foot pressure intervention in the heel and/or sole of the three-dimensional shoe midsole model area;
  • Processing the three-dimensional shoe midsole model by using the obtained foot pressure data and foot profile data of the target user to determine at least one second foot pressure intervention area in the three-dimensional shoe midsole model;
  • the three-dimensional data processing method for shoe midsoles of footwear products according to embodiment 35 characterized in that it further comprises using a plurality of preset basic units that are a lattice structure in the three-dimensional shoe midsole.
  • the lattice structure is a stretched, twisted, or compressed deformed structure at different positions of the three-dimensional shoe midsole model.
  • a 3D printing method applied to a 3D printing device comprising: an energy radiation device for radiating energy to a printing surface, and a component platform for carrying a three-dimensional object cured by energy radiation, It is characterized in that the 3D printing method includes:
  • a computer device characterized in that it comprises:
  • the storage device is used to store at least one program and a three-dimensional shoe midsole model
  • the processing device is connected to the storage device, and is used to execute the at least one program to coordinate the storage device to execute and implement the shoe midsole for footwear products according to any one of the embodiments 26-40.
  • Three-dimensional data processing method is used to calculate the at least one program to coordinate the storage device to execute and implement the shoe midsole for footwear products according to any one of the embodiments 26-40.
  • a computer-readable storage medium characterized in that it stores at least one program, and when called, the at least one program implements the use of footwear products as described in any one of the embodiments 26-40. Three-dimensional data processing method of shoe midsole.
  • the present application provides the following embodiments in the eighth aspect.
  • the serial numbers represent the embodiments.
  • the numbers 1, 2, 3, and 4 can represent embodiment 1, respectively. 2.
  • the numbering groups provided in the embodiments provided in different aspects are independent of each other.
  • the embodiment 1 provided in the seventh aspect of this application is not the same as the embodiment 1 provided in the eighth aspect.
  • the present application provides the following embodiments in the eighth aspect.
  • the various embodiments are represented by serial numbers, for example, the numbers 1, 2, 3, 4... may represent embodiment 1, respectively. 2. Example 3, Example 4...
  • the present application also provides a midsole for footwear products and footwear products, including the following embodiments:
  • a shoe midsole for footwear comprising: a heel corresponding to the heel of a target user, a sole corresponding to the forefoot of the target user, and located between the heel and the sole And corresponding to the waist part of the arch of the target user, wherein the sole of the foot is provided with at least one target area and at least one intervention area adjacent to the at least one target area, and the cross-sectional thickness of the at least one target area It is smaller than the reference thickness of the sole of the shoe midsole, and the cross-sectional thickness of the at least one intervention area is greater than the reference thickness of the sole of the shoe midsole.
  • the shoe midsole according to embodiment 2 characterized in that the target area has a gradual transition of the upper surface to the area outside the target area, so that the target area is concave relative to the contour of the target user's foot; or ,
  • the intervention area presents a gradual transition of the upper surface height toward the area outside the intervention area, so that the intervention area is convex relative to the contour of the target user's foot.
  • cross-sectional thickness of the target area is related to the force strength of the target area and the intervention area determined based on the target user's desired foot pressure data;
  • the cross-sectional thickness of the intervention area is related to the force intensity of the target area and the intervention area determined based on the desired foot pressure data of the target user.
  • the expected foot pressure data is related to the measured foot pressure data and medical intervention data of the target user; wherein the expected foot pressure data in the target area is less than all In the actual measured foot pressure area of the target area, the expected foot pressure data of the intervention area is greater than the actual measured foot pressure data of the intervention area.
  • volume density of the lattice structure is related to the diameter of the lattice rod, the thickness of the lattice wall, the size of the lattice, and the density of the lattice rod after forming;
  • volume density of the topological structure is related to the rod diameter, wall thickness, and density of the topological structure rod or face after forming.
  • the geometric structure of the 3D printed multiple lattice structures has periodicity, wherein the geometric structure includes a polyhedron, a facet, a cone, A combination of one or more of rhombus, star, and spheroid.
  • the topological structure shape includes a three-dimensional Tyson polygon and a bionic structure, wherein the bionic structure includes a cell type, a leaf vein type, and a branch Dry type.
  • shoe midsole according to embodiment 7, wherein the shoe midsole further comprises an upper fitting surface integrally formed by 3D printing on the top surface of the shoe midsole for combining with footwear products Vamp.
  • shoe midsole according to embodiment 17, wherein the shoe midsole further comprises a buffer layer integrally formed between the shoe midsole and the upper fitting surface by 3D printing.
  • shoe midsole according to embodiment 7, wherein the shoe midsole further comprises a buffer layer integrally formed on the top surface of the shoe midsole by 3D printing.
  • the shoe midsole according to embodiment 18 or 19, wherein the buffer layer is composed of a 3D printed topological structure or a plurality of lattice structures, and the rod diameter of the topological structure in the buffer layer is smaller than that of the The rod diameter of the topological structure in the shoe midsole; or, the rod diameter of the lattice structure in the buffer layer is smaller than the rod diameter of the lattice structure in the shoe midsole.
  • thermoplastic rubber TPR
  • thermoplastic elastomer includes polyurethane Elastomers (TPU), nylon elastomers (TPAE), polyester elastomers (TPEE), EVA elastomers and silicone elastomers.
  • a footwear product characterized in that it comprises:
  • the shoe upper is combined with the top peripheral edge of the shoe midsole to wrap the target user's instep.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Rheumatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Diabetes (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

本申请公开一种用于鞋类制品的鞋中底、鞋类制品、三维数据处理方法、3D打印方法、计算机设备以及计算机可读存储介质,通过采用拓扑结构或晶格结构作为鞋中底的支撑结构,在鞋中底的模型设计中,基于对目标用户的各项身体机能、医疗数据以及足部轮廓数据的分析,确定适宜于目标用户的鞋中底的压力分布状态,由此确定鞋中底对应的拓扑结构或晶格结构强度进行结构设计与鞋中底的三维轮廓设计,以实现所述鞋中底按照预设的压力调整方式对目标用户足底压力进行分配,即可基于目标用户的特定需求实现对其足底压力的分配调整。

Description

鞋中底、鞋类制品、三维数据处理方法、3D打印方法 技术领域
本申请涉及鞋类用品制作技术领域,尤其涉及一种用于鞋类制品的鞋中底、鞋类制品、三维数据处理方法、3D打印方法,计算机设备以及计算机可读存储介质。
背景技术
人的足部可经受与耗散冲击力,在前脚与后跟处的脂肪填充,以及连接前脚与后跟的柔韧的足弓,均有助于足部减震。日常生活中,鞋类制品为人体足部提供保护,与足部直接接触的鞋制品构造影响着足部减震缓冲功能以及人体舒适度、足部护理。在一些特定的情形中,鞋制品的构造还可用于实现足矫正,如需要减轻足部疼痛或残疾状况的对象,用于足矫正的鞋制品需要特定的设计、制造、组装和改造。
常规的鞋类制造中,采用置于鞋内的鞋垫作为减压手段,通过去除鞋垫的选定部分以缓冲足底,对用户特定的个人身体状态与需求其调整效果不佳,针对普通群体,其针对减压进行的鞋底调整方式也存在由经验判断进行而效用较低的情况。
发明内容
鉴于以上所述相关技术的缺点,本申请的目的在于提供一种鞋类制品的鞋中底、鞋类制品、用于鞋中底的三维数据处理方法、3D打印方法、计算机设备以及计算机可读存储介质,用于解决现有技术中存在的难以通过鞋类制品实现对目标用户足压调整的问题。
为实现上述目的及其他相关目的,本申请在第一方面提供了一种用于鞋类制品的鞋中底,所述鞋中底由3D打印的拓扑结构或多个晶格结构组成,包括:对应目标用户脚后跟的后跟部,对应所述目标用户前脚掌的脚掌部,以及位于所述后跟部与脚掌部之间且对应所述目标用户足弓的腰窝部;其中,所述鞋中底中的后跟部和/或脚掌部分设有至少一个第一足压干预区域,位于所述第一足压干预区域之外拓扑结构或晶格结构朝向所述至少一个第一足压干预区域之内延伸的拓扑结构或晶格结构呈渐变过渡,以使所述至少一个第一足压干预区域内的拓扑结构或晶格结构的受力强度小于所述至少一个第一足压干预区域之外的拓扑结构或晶格结构的受力强度。
本申请在第二方面还提供了一种鞋类制品,包括如本申请第一方面的任一实施方式中所述的鞋中底,结合于所述鞋中底顶部周缘用于包裹目标用户脚面的鞋面,以及结合于所述鞋 中底的底部的用于接触地面的鞋大底。
本申请在第三方面还提供了一种用于鞋类制品的鞋中底的三维数据处理方法,所述三维数据处理方法包括以下步骤:对目标用户的鞋中底进行建模以形成具有预设轮廓的三维鞋中底模型;所述三维鞋中底模型包括:对应目标用户脚后跟的后跟部,对应所述目标用户前脚掌的脚掌部,以及位于所述后跟部与脚掌部之间且对应所述目标用户足弓的腰窝部;利用获得的目标用户的足压数据及脚形轮廓数据对所述三维鞋中底模型进行处理以在所述三维鞋中底模型中的后跟部和/或脚掌部分确定至少一个第一足压干预区域;弱化所述至少一个第一足压干预区域中的拓扑结构或晶格结构的受力强度,以使其小于所述至少一个第一足压干预区域之外的拓扑结构或晶格结构的受力强度;对所述至少一个第一足压干预区域之内的拓扑结构或晶格结构的受力强度与第一足压干预区域之外的拓扑结构或晶格结构的受力强度进行处理,使位于所述第一足压干预区域之外拓扑结构或晶格结构的受力强度朝向所述至少一个第一足压干预区域之内延伸的拓扑结构或晶格结构的受力强度的变化呈渐变过渡;形成用于3D打印设备可读的鞋中底三维切片数据。
本申请第四方面还提供了一种应用于3D打印设备的3D打印方法,所述3D打印设备包括:用于向打印面辐射能量的能量辐射装置、以及用于承载经能量辐射固化而得的三维物体的构件平台,所述3D打印方法包括:读取如本申请第三方面任一实施方式所述的用于鞋类制品的鞋中底的三维数据处理方法中处理获得的鞋中底三维切片数据;调整所述构件平台与打印面之间的间距,以在所述打印面填充待固化材料;其中,所填充的待固化材料的厚度对应于所述鞋中底三维切片数据的切片层高;基于所述鞋中底三维切片数据向所填充的待固化材料辐射能量,以获得相应的图案固化层;重复上述各步骤以在所述构件平台上累积图案固化层以形成所述三维鞋中底模型所对应的用于鞋类制品的鞋中底。
本申请第五方面还提供了一种计算机设备,其特征在于,包括:存储装置,用于存储至少一个程序,以及三维鞋中底模型;处理装置,与所述存储装置相连,用于执行所述至少一个程序,以调用所述存储装置中所述至少一个程序执行并实现如本申请第三方面任一实施方式所述的用于鞋类制品的鞋中底的三维数据处理方法。
本申请第六方面还提供了一种计算机可读存储介质,其特征在于,存储至少一种程序,所述至少一种程序被处理器执行时实现如本申请第三方面任一实施方式所述的用于鞋类制品的鞋中底的三维数据处理方法。
综上所述,本申请提供的鞋类制品的鞋中底、鞋类制品、用于鞋中底的三维数据处理方 法、3D打印方法、计算机设备以及计算机可读存储介质,在一实施例中具有如下有益效果:通过采用拓扑结构或晶格结构作为鞋中底的支撑结构(主体结构),在鞋中底的模型设计中,可基于对目标用户的各项身体机能、医疗数据以及足部轮廓数据的分析,确定适宜于目标用户的鞋中底的压力分布状态,由此确定鞋中底对应的拓扑结构或晶格结构的强度进行结构设计、制作工艺设计、以及鞋中底的预设厚度设计,以实现所述鞋中底按照预设的压力调整方式对目标用户足底压力进行分配,即可基于目标用户的特定需求实现对其足底压力的分配调整。
附图说明
本申请所涉及的发明的具体特征如所附权利要求书所显示。通过参考下文中详细描述的示例性实施方式和附图能够更好地理解本申请所涉及发明的特点和优势。对附图简要说明书如下:
图1显示为本申请的鞋中底在一实施例中的结构示意图。
图2a显示为本申请的鞋中底的晶格结构在一实施例中的立体结构示意图。
图2b显示为本申请的鞋中底的晶格结构在一实施例中的平面示意图。
图2c显示为本申请的鞋中底的晶格结构在一实施例中的立体结构示意图。
图2d显示为本申请的鞋中底的晶格结构在一实施例中的平面示意图。
图2e显示为本申请的鞋中底的拓扑结构在一实施例中部分区域的平面示意图。
图3a显示为本申请的鞋中底在一实施例中的俯视图。
图3b显示为本申请的鞋中底在一实施例中的俯视图。
图4a显示为本申请的鞋中底的晶格结构在一实施例中的立体结构示意图。
图4b显示为本申请的鞋中底的晶格结构在一实施例中的平面示意图。
图4c显示为本申请的鞋中底的拓扑结构在一实施例中的平面示意图。
图5显示为本申请的鞋中底在一实施例中的足底压力实测分布图。
图6显示为本申请的鞋中底在一实施例中的足底压力期望分布图。
图7显示为本申请的鞋中底在一实施例中的侧视图。
图8显示为本申请的鞋中底在一实施例中的结构示意图。
图9显示为本申请的鞋中底在一实施例中的部分结构的截面图。
图10a显示为本申请的鞋中底在一实施例中的截面图。
图10b显示为图10a的鞋中底与目标用户的足部接触的示意图。
图11显示为本申请的鞋中底在一实施例中对应的目标用户的实测足压分布图。
图12显示为本申请的鞋中底在一实施例中对目标用户干预后的足压分布数据图。
图13显示为本申请的鞋中底在一实施例中的缓冲层及鞋中底示意图。
图14显示为本申请的鞋类制品在一实施例中的分解结构示意图。
图15显示为本申请的鞋类制品在一实施例中的简化结构示意图。
图16显示为本申请的鞋中底的三维数据处理方法在一实施例中的流程示意图。
图17显示为本申请的鞋中底的3D打印方法在一实施例中的流程示意图。
图18显示为本申请的计算机设备在一实施例中的简化结构示意图。
具体实施方式
以下由特定的具体实施例说明本申请的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本申请的其他优点及功效。
在下述描述中,参考附图,附图描述了本申请的若干实施例。应当理解,还可使用其他实施例,并且可以在不背离本公开的精神和范围的情况下进行机械组成、结构、电气以及操作上的改变。下面的详细描述不应该被认为是限制性的,并且本申请的实施例的范围仅由公布的专利的权利要求书所限定。这里使用的术语仅是为了描述特定实施例,而并非旨在限制本申请。空间相关的术语,例如“上”、“下”、“左”、“右”、“下面”、“下方”、“下部”、“上方”、“上部”等,可在文中使用以便于说明图中所示的一个元件或特征与另一元件或特征的关系。
虽然在一些实例中术语第一、第二等在本文中用来描述各种元件或参数,但是这些元件或参数不应当被这些术语限制。这些术语仅用来将一个元件或参数与另一个元件或参数进行区分。例如,第一足压干预区域可以被称作第二足压干预区域,并且类似地,第二足压干预区域可以被称作第一足压干预区域,而不脱离各种所描述的实施例的范围。第一足压干预区域和第二足压干预区域均是在描述一个足压干预区域,但是除非上下文以其他方式明确指出,否则它们不是同一个足压干预区域。
再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。应当进一步理解,术语“包含”、“包括”表明存在所述的特征、步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加。此处使用的术语“或”和“和/或”被解释为包括性的,或意味着任一个或任何组合。因此,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A、B和C”。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
在现有的鞋类制品制造中,通常基于用户的需求例如对舒适度的考虑,将鞋底的高度适度调整,例如将鞋底设置为鞋底后跟部略高出鞋底的前掌部,以适应于人在步行中通常后跟先着地的行走发力方式。又或,在某些场景中,为实现鞋类对足部的保护,在鞋底制造中选择采用弹性佳的材料如EVA实现鞋底减震,基于材料的弹性变形,运动中足底的接触面积可增大即实现分压等。
但人体的足底压力分布往往与个人的生理状态以及步态习惯等有关,同时,不同个体在静止状态与运动态下的适宜的足底压力分布不同,统一制作的鞋类制品难以满足用户个体的特定需求。针对于一定数量的同类目标用户群体,其适宜的足压调整方式也需要数据分析作为科学基础,例如根据此类用户群体的特定信息:足底轮廓、体重、医疗数据等确定适宜用户的预期的压力状态,使得压力分布有利于人体足形矫正与穿着的舒适度。
请参阅图1,显示为本申请在第一方面提供的用于鞋类制品的鞋中底在一实施例中的结构示意图,包括:对应目标用户脚后跟的后跟部13,对应目标用户前脚掌的脚掌部11,连接所述后跟部与脚掌部的对应于目标用户的腰窝部12,所述后跟部13即对应于目标用户后脚跟的踩踏部位,所述脚掌部11即对应于目标用户脚掌的踩踏部位。
其中,所述目标用户可以为所述类鞋制品的使用者,在本申请提供的实施例中,基于所述目标用户的特定信息形成用于鞋中底的制造信息例如材料信息、鞋中底结构信息、制作工艺信息等。
所述目标用户的特定信息是由对目标用户个人身体状态与需求进行采集,并对采集信息分析获得的,用于指示鞋中底结构设计的个性化信息。又或,对于某一类型的目标用户群体,所述目标用户的特定信息是由针对该类群体的大数据获取的,在此,对大数据的特征进行分析,由数据所表现的普遍规律确定该类目标用户群体适用的鞋中底制造信息,例如:对于患有糖尿病的目标用户,通常容易患有糖尿病足即由糖尿病引发的足底溃烂、胼胝;基于医学上的对应的糖尿病足患者的足底分析及统计,对于为糖尿病患者的目标用户群体,对于足底未发生胼胝等明显病变的糖尿病患者,可基于医学统计分析预先确定足底的保护区域。
所述脚掌部和所述后跟部对应的区域中设有至少一个第一足压干预区域,所述第一足压干预区域内的拓扑结构或晶格结构的受力强度小于第一足压干预区域之外的拓扑结构或晶格结构的受力强度。在某些实施方式中,所述第一足压干预区域设置在所述脚掌部或后跟部,又或同时设置在脚掌部与后跟部中。如图1所示,所述鞋中底的脚掌部11设置有一第一足压干预区域111及另一第一足压干预区域112,后跟部设置有第一足压干预区域131。
所述第一足压干预区域可根据所述目标用户的特定需求确定,在本申请提供的各实施例中,所述第一足压干预例如为足部的指定保护部位、足部溃疡部位等需要将压力进行分散转移的区域,又或别的基于足底的舒适度或保护等需求进行压力调整分散的区域,其具体位置可进一步基于目标用户的脚型轮廓与特定需求确定。在一些示例中,所述第一足压干预区域内的晶格结构与第一足压干预区域之外的晶格结构基本单元的形式不同,以满足在人体踩压承重时,鞋中底的压力以预设效果自然分配。
在某些实施方式中,位于所述第一足压干预区域之外的拓扑结构或晶格结构朝向所述至少一个第一足压干预区域之内延伸的拓扑结构或晶格结构呈渐变过渡,以使所述至少一个第一足压干预区域内的拓扑结构或晶格结构的受力强度小于所述至少一个第一足压干预区域之外的拓扑结构或晶格结构的受力强度。
在某些实施例中,所述渐变过渡包括晶格体结构渐变例如晶格结构基本单元大小渐变、基本单元疏密渐变、晶格壁面厚度渐变、晶格杆径长度渐变、晶格杆径粗细渐变、晶格结构基本单元的几何结构(如几何结构类型)的连续渐变,以及包括由后处理工艺或打印工艺等形成晶格结构的性能渐变如成型后的晶格结构密度渐变、晶格结构材料渐变;又或,所述渐变过渡为拓扑结构的结构体渐变例如拓扑结构中连接杆体的杆径粗渐变、拓扑结构壁面厚度渐变、拓扑结构的杆径间连接方式渐变形成的体积渐变或制造工艺、后处理工艺形成的拓扑结构材料密度渐变等。
在一种示例中,预先确定所述至少一个第一足压干预区域,在此,例如确定至少一个第一足压干预区域在鞋中底的位置和轮廓,对位于所述第一足压干预区域之外拓扑结构或晶格结构朝向所述至少一个第一足压干预区域之内延伸的拓扑结构或晶格结构确定交界区域,将交界区域内的拓扑结构设置为渐变过渡,或将晶格结构基本单元设置为呈过渡渐变的形式。在此,所述交界区域与第一足压干预区域可以相交或毗邻,也即,呈渐变过渡的拓扑结构或晶格结构基本单元可以延伸至第一足压干预区域内,又或延伸至所确定的第一足压干预区域边界(或轮廓)处。
在一些具体示例中,所述交界区域内的晶格结构设计为晶格结构的基本单元大小渐变的形式;又或,在所述交界区域的晶格结构的基本单元几何结构类型渐变,例如从第一足压干预区域外的晶格结构基本单元为锥形体,顺应延伸方向逐渐形变,至所述至少一个第一足压干预区域内形成为球状体的基本单元;再如,对打印工艺设进行置,在所述交界区域的晶格结构从第一足压干预区域之外朝向第一足压干预区域延伸,对应的晶格结构基本单元呈现出 材料密度渐变的形式。
在另一些具体示例中,所述交界区域内的拓扑结构基于连接方式改变使得交界区域的受力强度呈渐变过渡。应当理解,通常的拓扑结构不具有周期性,在此,拓扑结构的连接形式可任意设定,在一些实现方式中,可将交界区域的拓扑结构划分为不同子区域,确定每一子区域内的拓扑结构体积密度以表征对应子区域内的拓扑结构强度。在此,为实现所述位于所述第一足压干预区域之外的拓扑结构朝向所述至少一个第一足压干预区域之内延伸的拓扑结构呈渐变过渡,可顺应延伸方向令拓扑结构中子区域内的连接杆节点处的公用连接数或区域内所有节点的平均公用连接数减小,又或,顺应延伸方向令拓扑结构中子区域中拓扑结构的杆径粗细逐渐减小。
在此,基于所述第一足压干预区域之外拓扑结构或晶格结构朝向所述至少一个第一足压干预区域之内延伸的拓扑结构或晶格结构的渐变过渡,所述鞋中底在被穿着的状态下,所承担的压力在不同区域间呈连续变化,例如,在确定的所述至少一个第一足压干预区域在鞋中底的位置及轮廓处,该轮廓内与轮廓外的足底压力是连续变化的。例如基于鞋中底轮廓区域绘制压力云图,每一单位区域对应一平均压力数值,在此获得的压力云图中相邻单位区域内的压力变化值在预设值以内,即可认为足底压力为连续变化的。在此,基于对拓扑结构或晶格结构的渐变过渡设置,例如材料密度渐变,又或结构渐变如晶格体基本单元杆径渐变或不同区域的拓扑结构杆径渐变,令足压压力调整为整体连续的状态。在此连续变化的压力状态下,鞋中底具有较好的缓冲能力,不同区域间可有效实现压力传递与分担;同时,减缓人体穿着态下局部压强过大的不适触感。
所述单位区域以及压力变化的预设值可人为设定,又或,基于目标用户的医疗干预数据进行确定,例如确定适宜于足底养护的压力峰值,在确定第一足压干预区域之后,令位于所述第一足压干预区域之外拓扑结构或晶格结构朝向所述至少一个第一足压干预区域之内延伸的拓扑结构或晶格结构呈渐变过渡以减小第一足压干预区域之外的压力峰值,又或,确定鞋中底不同区域的压力变化值的压力突变的阈值,在此,所述阈值可基于医学数据或鞋制品性能设定,如当足压存在过大的突变时容易产生足底刺痛,在此,可基于医学分析确定足压突变的阈值以减轻或消除不适感,又如当鞋中底不同区域承受的压力值存在过大突变,则缓冲功能可能被削弱,在此可减小交界区域的压力突变以实现渐变过渡;再者,还可通过鞋类制品的制造工艺(标准)进行确定,例如,确定适合鞋底缓冲的压力变化状态,以增强鞋中底的缓冲功能或鞋中底的耐冲击、磨损等性能。
所述晶格结构即构成所述鞋中底的单元结构形式,在宏观上晶格结构的基本单元之间的形状与位置关系类似于化学分子中的晶格结构。
在某些实施方式中,组成鞋中底的基本单元结构为一定形状的空间连接杆,各连接杆之间的位置关系可呈现为晶体中晶胞单元的各个原子之间连接键的位置关系的形式。当然,所述鞋中底的晶格结构的基本单元形式不以实际存在的晶胞的连接形式为限制,而在于采用晶胞原子间具有空间方位的连接键的结构形式。由所述晶格结构组成的鞋中底为镂空结构。所述晶格结构采用了化学分子间的晶体连接共用键的形式,对应于不同的连接形式,该晶格结构的性能不同。例如,对应于每一晶格基本单元上的节点,当选用不同的连接方式则可能对应不同的价数,所述价数可用于指示晶格结构的基本单元之间的互相连接的程度,价数越低,则对应的基本单元之间共用的连接杆数量少。
在某些实施方式中,所述晶格结构设置为由面状的镂空结构组成,所述晶格结构的基本单元为具有一定壁厚的空心多面体如四面体、六面体等,晶格结构的基本单元通过共用面的形式连接,以形成预设的鞋中底轮廓。
在某些实施方式中,对于采用连接杆形成基本单元的晶格结构或采用面状体为基本单元的晶格结构,所述晶格结构中的每一个基本单元结构为相同或近似相同的几何结构,也即,所述晶格结构中的基本单元之间具有一定周期性,所述晶格结构亦在不同的位置呈拉伸、扭曲或压缩变形结构。所述晶格结构在采用具有空间方位的连接键或共用面的基础上,可划分为多个连接形式相似的基本单元,整体结构呈现为由基本几何单元堆积形成。所述晶格结构组成的鞋中底的3D结构在不同部位的基本单元结构呈一定的变形处理,例如,在构成鞋中底外部轮廓处的基本单元,顺应于轮廓设计,在不同位置呈现出不同的变形处理如拉伸、扭曲或压缩等变形结构,所述变形处理为无外部压力状态下对基本单元结构的连接形式的调整以顺应鞋中底形态设计。所述对基本单元的变形处理可以是在晶格基本单元的长度、宽度、高度或其中两者以上方向的伸缩变换或扭转处理,基于对鞋中底晶格结构的整体轮廓设计与不同方向的强度设计决定。
在某些实施方式中,所述几何结构包括多面体,例如包括锥形体、菱形体、星状体中的一种或多种的组合,以及球状体等。其中,对于以连接杆组成基本单元的晶格结构,所述鞋中底的实体结构对应基本几何单元体的棱边;对于基本单元为中空多面体的晶格结构,所述几何结构为面状体,所述鞋中底的实体结构对应于基本几何单元的壁面,其中,所述壁面包括平面、弧面或曲面,所述基本几何单元例如为包括锥形体、菱形体、星状体中的一种或多 种的组合,以及球状体等。所述鞋中底可采用一种简单几何结构作为晶格结构的基本单元,也可选用多种几何结构的组合形成晶格结构的基本单元,亦可在不同的位置区域设置为不同的基本几何单元结构,例如在腰窝部采用菱形体结构为基本单元,在后跟部或脚掌部以多面体为基本单元。
在某些实施方式中,所述晶格结构设置为采用面状体的晶格结构,所述面状体比如极小曲面结构,所述极小曲面结构的晶格结构能够为运动鞋提供减震缓冲性能,多个曲面填充和/或拼接和/或阵列构成的结构,拼接成单元主体,由多个单元主体填充和/或拼接和/或阵列构成的极小曲面结构形成良好的交错成坚固支柱,这些支柱能使鞋中底支撑性更强,在一种实施例中,所述极小曲面结构的晶格结构例如为专利公开号CN110652069A中描述的极小曲面结构。
所述拓扑结构为基于共用节点连接不同杆体以形成的镂空连接体,其中,所述鞋中底拓扑结构的实体即为其中的杆体。所述拓扑结构的连接方式可基于人为需要设置,例如,拓扑结构中每一杆体的端点与至少一杆体共用端点,每一端点对应具有一共用连接数,在此,所述共用连接数可预设为不同数值例如2、3、4、5、6等,所述共用连接数位节点处连接的杆体总数;再者,所述拓扑结构中杆体的连接方向可以任意设置,在某些示例中,还可对所述拓扑结构进行优化,以使得所述拓扑结构整体有序性增加例如令拓扑结构中每一节点处的共用连接数相同。
在某些示例中,所述拓扑结构可根据需要设计为仿生结构例如树型的枝干延伸的结构,例如将拓扑结构中的杆径连接形式设置为仿照枝干延伸时杆径粗细、连接节点数顺应树梢方向改变的形式;又如,将拓扑结构中的杆径连接形式设置为微观的细胞形态;再如,将拓扑结构中的杆径连接形式设置为叶片中脉络形态,在一示例中,拓扑结构可显示为由第一基本单元(类似于叶片中主脉和侧脉)和第二基本单元(类似于叶片中细脉)组成,其中,第一基本单元的杆径粗细与杆径长度均大于第二基本单元,由第二基本单元在第一基本单元中填充以形成鞋中底拓扑结构,所述第一基本单元即可用于确保鞋中底的强度,其中填充的第二基本单元即可用于增加鞋中底的弹性形变能力;在此,所述第一基本单元、第二基本单元中基本单元具体形式均可任意设置,也即不同基本单元的形式不以周期性为限制。
在某些示例中,所述拓扑结构也可为面状体,在此,所述拓扑结构的面状体中包括有多个孔隙,例如,拓扑结构中单个面状体的壁面为实体,所述壁面包括平面、弧面或曲面。在此,所述拓扑结构中单个面状体的形式包括椎体、多面体、球状体等,且鞋中底的拓扑结构 中每一单个面状体的形式均可任意设定,在某些示例中,也可对拓扑结构进行优化,以增加面状体的周期性。
同时,在承受外部压力的状态下,所述拓扑结构或晶格结构具有对应不同受力方式的抗拉伸、抗扭矩、抗剪切的刚度或弹性形变能力,即具有一定的强度。例如,所述第一足压干预区域内的拓扑结构或晶格结构的强度小于第一足压干预区域之外的拓扑结构或晶格结构的强度,以实现承重时鞋中底可将第一足压干预区域的压力分散转移至其他区域的效果。在具体实施方式上,所述拓扑结构或晶格结构的强度与所承受的压力、剪力等的对应关系可基于对拓扑结构或晶格结构的强度性能测试获得,所述测试可为对拓扑结构实体或晶格结构实体的检测,又或采用应力应变关系结合材料本身的性能进行模拟计算,或将模拟计算与设计检测结果对照以将晶体结构强度与晶格结构关联或将拓扑结构形式与拓扑结构的强度关联。
所述拓扑结构、晶格结构的强度可由拉伸强度、压缩强度、剪切强度、弯曲刚度、扭转刚度及韧性如弹性形变能力等强度性能指标表征,在所述鞋中底中,所述晶格结构强度主要用于确保在穿着状态(包括自然站立、步行运动、跑步运动等穿着状态)下鞋中底处于弹性形变状态且对应的形变量处于预设范围之内。
在某些实施方式中,所述晶格结构的受力强度是通过每一晶格结构的体积密度、晶格体结构、打印材料、打印工艺、以及后处理工艺中的至少一种确定的;或,所述拓扑结构的受力强度是通过确定拓扑结构的体积密度、打印材料、打印工艺、以及后处理工艺中的至少一种确定的。
在一些实例中,所述晶格结构的体积密度与杆径粗细、晶格壁面厚度、晶格大小、成型后晶格杆体的密度相关;所述拓扑结构的体积密度与拓扑结构的杆径粗细、成型后拓扑结构杆体密度相关。
所述晶格结构的实体结构为连接杆或壁面形式,所述晶格结构的体积密度则与基本单元的连接杆的长度、直径、连接疏密等相关,当所述鞋中底由所采用密度均匀的材料填充,则其体积密度可表征在单位体积内的材料用量。一般来说,当晶格结构的基本单元的连接形式确定时,晶格结构的受力强度与其体积密度正相关,当所述晶格结构的基本单元越小即连接杆长度越小,对应的体积密度越大,则鞋中底的晶格结构具有更大的强度;又或,当连接杆的杆径直径越大,对应的体积密度越大,则鞋中底的晶格结构具有更大的强度;再如,对应于不同连接方式的晶格结构单元,对与所采用基本单元中连接杆节点杆节点处的价数不同的两种晶格结构,一般来说所分别对应的体积密度以及结构强度不同。
在某些实施方式中,对于以共用面连接的晶格结构,所述晶格结构的体积密度与基本单元壁面的厚度也即壁厚、基本单元大小以及基本单元的几何结构有关。一般的,所述基本单元的壁厚与体积密度正相关,例如,当增加基本单元的壁厚,晶格结构的体积密度增加,同时晶格结构的强度增加;又如,当基本单元壁厚与几何结构确定,当基本单元大小等比例缩小但壁厚不变,获得体积密度增加的晶格结构,同时具有更大的强度。对于基本单元为不同几何结构的鞋中底,也可能具有不同的结构强度,如基本单元分别为四面体与球状体的两种晶格结构,鞋中底的拉伸强度、压缩强度、剪切强度等强度性能不同。
在某些实施方式中,所述晶格结构的受力强度还与连接杆的连接方式如基本晶胞结构中连接杆的连接方向相关。例如,当基本晶胞单元的连接形式分别为锥形几何体为基本几何单元与正六面体为基本几何单元的两种连接方式,对应的晶格结构强度不同。由于鞋中底的晶格结构采用杆件连接形式,当杆件方向不同,在受压状态下对应的杆件间力的传递方向不同,晶格结构抵抗变形的能力也不同。
在某些实施方式中,所述晶格结构在鞋中底的不同区域选择为不同的晶胞结构或基本单元几何结构与体积密度,但鞋中底晶格结构的体积密度的变化在鞋中底区域内是连续变化的,以实现所述鞋中底的为足部提供充足的缓冲力。
将所述拓扑结构的体积密度定义由单位区域内拓扑结构实体即杆体的体积确定,或由材料密度及杆体体积确定,在一示例中,通过设置每一单位区域内的拓扑结构的杆体杆径粗细确定拓扑结构体积密度分布,以实现鞋中底拓扑结构的不同区域依预设压力分布规律承担压力,例如,当所述拓扑结构中的杆体的材料密度均匀,将单位区域内的拓扑结构中的杆体杆径增加,使得该单位区域内的杆体体积增加,相应的该单位区域内的拓扑结构体积密度增加。
当所述鞋中底为采用3D打印工艺制造,通常成型后的鞋中底强度性能与打印材料相关,在此,可基于对打印材料的设置形成结构强度不同的实体,在某些示例中,确定所述晶格结构或拓扑结构的受力强度时以预先确定打印材料为基础。
在某些实施方式中,所述拓扑结构或晶格结构的受力强度与连接杆或壁面的材料密度相关。在此,所述材料密度可基于打印材料或打印工艺确定。例如,当所述拓扑结构或晶格结构采用3D打印的烧结方式制作,在进行烧结固化的过程中,当辐射的能量密度不同,烧结件对应的固化部分密度不同。如对于陶瓷粉末通常随激光能量密度增加,烧结件的强度呈先增大后减少的趋势,即不同材料在烧结中对应有获得最佳密度的能量值;在具体打印中根据选用的材料特性,将辐射的能量密度设置为最佳密度对应能量值,则烧结形成的晶格结构具有 更大的强度;又如,当烧结材料的粉末颗粒度不同,则烧结性能可能不同,对于特定的材料,当设置适宜的粉末态如粉末大小与粉末几何形态,进行烧结获得微观组织致密的烧结件,则连接杆的材料密度更大,具有更大的强度。
在某些实施方式中,所述拓扑结构或晶格结构的受力强度还与打印的后处理工艺有关,例如通过3D打印获得所述鞋中底后,对一定区域如第一足压干预区域外的拓扑结构或晶格基本单元进行结构加强处理或化学处理以强化该区域对应的拓扑结构强度或晶格结构强度。
在某些实施方式中,所述第一足压干预区域之外晶格结构朝向所述至少一个第一足压干预区域之内延伸的晶格结构呈渐变过渡是通过确定晶格结构的体积密度、晶格体结构、打印材料、打印工艺、以及后处理工艺中的至少一种实现的;或,所述第一足压干预区域之外拓扑结构朝向所述至少一个第一足压干预区域之内延伸的拓扑结构呈渐变过渡是通过确定拓扑结构的体积密度、打印材料、打印工艺、以及后处理工艺中的至少一种实现的。
在一种具体实施方式中,请参阅图2a、图2b,其中,图2a显示为本申请的鞋中底在一实施例中的部分区域的晶格结构示意图,图2b显示为鞋中底部分区域的晶格结构的侧视图。如图2a、图2b所示,在确定了鞋中底的至少一个第一足压干预区域后,位于第一足压干预区域外的晶格结构朝向第一足压干预区域延伸的晶格结构基本单元的杆径逐渐减小(呈如图2a、图2b中的顺应箭头的X方向),对应的,晶格结构的体积密度从第一足压干预区域之外至第一足压干预区域内逐渐减小,由此,位于第一足压干预区域之外的晶格结构所具有的强度朝向第一足压干预区域延的晶格结构所具有的强度呈逐渐减小。在此,由于位于第一足压干预区域外的晶格结构朝向第一足压干预区域延伸的晶格结构基本单元的杆径逐渐减小,使晶格结构整体无形状突变。
请参阅图2c、图2d,分别显示为基本单元采用另一几何结构的晶格结构立体示意图与平面示意图,如图所示,所述鞋中底中基本单元为类六边形的孔状体,晶格结构实体对应于作为六边形边长的连接杆,位于第一足压干预区域外的晶格结构朝向第一足压干预区域延伸的晶格结构的体积密度逐渐降低;在一实现方式中,例如图示实施例中,顺应朝向第一足压干预区域延伸的方向(呈如图2c、图2d中顺应箭头的X方向),晶格结构基本单元的杆径逐渐减小。令第一足压干预区域之外晶格结构朝向所述至少一个第一足压干预区域之内延伸的晶格结构呈渐变过渡也可通过设置基本单元大小实现,例如,第一足压干预区域之外晶格结构朝向第一足压干预区域的晶格结构基本单元的杆径长度逐渐增加,对应的晶格结构基本单元体积密度逐渐降低,受力强度逐渐减小。
在另一些实现方式中,当所述晶格结构基本单元为面状体形式,可通过改变晶格结构基本单元的壁面厚度实现渐变过渡,其包括但不限于将位于第一足压干预区域外的晶格结构朝向第一足压干预区域延伸的晶格结构基本单元的壁面厚度设置为顺应延伸方向逐渐减小,例如,为连续的线性减小。
在此,所述位于第一足压干预区域外的晶格结构朝向第一足压干预区域延伸的晶格结构的渐变过渡可基于采用的晶格结构具体类型确定,例如,当所述晶格结构为面状体,其中不同基本单元之间存在孔隙,可通过顺应朝向第一足压干预区域的方向,逐渐增加孔隙大小,对应的晶格结构基本单元的体积密度逐渐降低,也可获得实现所述晶格结构的渐变过渡。晶格结构可选形式与实现渐变过渡的方式不以图示实施例为限制。
在另一种具体实施方式中,所述渐变过渡也可通过晶格体结构的渐变实现,例如晶格结构基本单元大小渐变、基本单元疏密渐变、晶格壁面厚度渐变、晶格杆径长度渐变、晶格杆径粗细渐变、晶格结构基本单元的几何结构(如几何结构类型)的连续渐变等。
请参阅图2e,显示为一实施例中所述鞋中底的拓扑结构中的部分区域的结构示意图。如图2e视图显示的拓扑结构中具有一第一足压干预区域,其中,拓扑结构中第一足压干预区域内的杆体杆径小于第一足压干预区域之外的杆体杆径,在此,所述杆径变化为渐变形式;如图所示,在朝向所述第一足压干预区域的方向上,拓扑结构中的杆体杆径逐渐减小,以使得从第一足压干预区域之外的拓扑结构朝向第一足压干预区域延伸的拓扑结构的体积密度逐渐降低。
在又一些具体实施方式中,所述渐变过渡也可通过打印材料的变化实现,例如通过使用不同硬度的打印材料,使不同硬度的打印材料所打印出的拓扑结构或晶格结构具有不同的强度,从而借由打印材料硬度的渐变而实现位于第一足压干预区域外的拓扑结构或晶格结构朝向第一足压干预区域延伸的拓扑结构或晶格结构的渐变过渡。
在再一种具体实施方式中,所述渐变过渡也可通过打印工艺实现,例如所述鞋中底采用3D打印工艺制成,在辐射成型过程中令第一足压干预区域之外的拓扑结构或晶格结构朝向所述至少一个第一足压干预区域之内延伸的拓扑结构或晶格结构对应接收的辐射能量密度逐渐变化,例如顺应延伸方向能量密度逐渐降低,使得固化成型的拓扑结构或晶格结构强度逐渐降低。
在还有一种具体实施方式中,所述渐变过渡也可通过后处理工艺实现,例如通过去除晶格结构的部分杆体以改变晶格结构的强度,又如通过去除拓扑结构中部分杆体减小节点连接 数以改变拓扑结构的强度;又如在基于3D打印工艺制程的鞋中底中,在打印完的鞋中底通过3D打印的后固化步骤,对第一足压干预区域之外拓扑结构或晶格结构朝向所述至少一个第一足压干预区域之内延伸的拓扑结构或晶格结构采用不同强度的光源照射等。
在本申请的一实施方式中,所述第一足压干预区域之外拓扑结构或晶格结构朝向所述至少一个第一足压干预区域之内延伸的拓扑结构或晶格结构呈渐变过渡也即所述交界区域对应的拓扑结构或晶格结构强度或对应的压力分布的渐变过渡,基于本申请提供的确定鞋中底拓扑结构或晶格结构的受力强度的方法,通过对鞋中底制造(包括后处理工艺)中受力强度的至少一种影响因素进行设置,即可实现第一足压干预区域之外拓扑结构或晶格结构朝向所述至少一个第一足压干预区域之内延伸的拓扑结构或晶格结构呈渐变过渡,由此增加了用户使用时的舒适度。
请参阅图3a,显示为本申请的鞋中底在一实施例中的结构示意图,如图3a所示,所述鞋中底的晶格结构在不同区域采用了不同的连接形式或不同的体积密度。在所述鞋中底的前掌与后跟区域中分别设置有第一足压干预区域,所述第一足压干预区域即对应于图3a所示实施例中晶格疏密度降低的区域,如脚掌部11的第一足压干预区域111、第一足压干预区域112后跟部13的第一足压干预区域131,其对应的晶格结构的体积密度降低。基于对第一足压干预区域的晶格结构强度削弱的设计;在某些实例中,所述鞋中底也可采用拓扑结构,并在其中设置多个第一足压干预区域,通过确定决定拓扑结构结构强度的表变量如打印工艺、体积密度等,在鞋中底设计或制作中削弱第一足压干预区域对应的拓扑结构的强度,在此,鞋中底在被踩踏的状态下,所承受的压力自然分散至第一足压干预区域之外的对应有较大结构强度的区域以实现对人体的支持力与压力的平衡。
在某些实施方式中,所述第一足压干预区域的晶格结构的强度与计算获得的期望足压数据相关,其中,所述期望足压数据小于对应所述至少一个第一足压干预区域的实测足压数据。
请参阅图3b,显示为本申请的鞋中底在一实施例中的结构示意图。在某些实施方式中,所述鞋中底中设有至少一个第二足压干预区域,在此,所述鞋中底可采用晶格结构(如图3b所示)或拓扑结构(未予以图示),鞋中底中设置有至少一个第二足压干预区域,如图3b所示的第二足压干预区域113,所述第二足压干预区域113位于鞋中底的后跟部、脚掌部、或腰窝部;其中,位于所述第二足压干预区域之外的拓扑结构或晶格结构朝向所述至少一个第二足压干预区域之内延伸的拓扑结构或晶格结构呈渐变过渡,以使所述至少一个第二足压干预区域113内的拓扑结构或晶格结构的受力强度大于所述至少一个第二足压干预区域113之外 的拓扑结构或晶格结构的受力强度。
在此,所述受力强度是通过每一晶格结构的体积密度、晶格体结构、打印材料、打印工艺、以及后处理工艺中的至少一种确定的;又或,通过拓扑结构的体积密度、打印材料、打印工艺、以及后处理工艺中的至少一种确定鞋中底拓扑结构不同区域的结构强度。
所述第二足压干预区域对应的拓扑结构或晶格结构的受力强度大于第二足压干预区域外的拓扑结构或晶格结构体积密度,以对应获得强度更大的实体结构。在某些实施方式中,所述鞋中底第一足压干预区域采用弱化的强度设计,为实现对足底压力分配的调整,设置结构强度增加的所述第二足压干预区域以平衡压力分配,基于所述第二足压干预区域采用的强度增加的结构设计,所述鞋中底在穿着中的被踩踏状态下可将压力自然分配至第二足压干预区域。
在此,位于所述第二足压干预区域之外拓扑结构或晶格结构朝向所述至少一个第二足压干预区域之内的拓扑结构或晶格结构为过渡渐变,在某些示例中,是通过设置拓扑结构或晶格结构受力强度的决定因素如晶格结构的体积密度、晶格体结构、拓扑结构体积密度、打印材料、打印工艺、以及后处理工艺中至少一种实现的。
请参阅图4a、图4b,显示为本申请的鞋中底的晶格结构在一实施例中的示意图。如图所示,所述晶格结构的基本单元采用杆径连接形式,其中,基本单元顺应图示箭头方向的X方向杆径逐渐增加即变粗,在此,X方向对应于鞋中底的第二足压干预区域之外向第二足压干预区域延伸的方向,基于此对晶格结构基本单元的设置,位于所述第二足压干预区域之外晶格结构朝向所述至少一个第二足压干预区域之内的晶格结构的受力强度逐渐增加,对应承担的足底压力逐渐增大。
请参阅图4c,显示为一实施例中所述鞋中底的拓扑结构部分区域的结构示意图,如图所示,顺应图示X方向,拓扑结构中连接杆体的杆径逐渐增加,在此,X方向对应于鞋中底的第二足压干预区域之外向第二足压干预区域延伸的方向,基于此设置,位于所述第二足压干预区域之外拓扑结构朝向所述至少一个第二足压干预区域之内的拓扑结构的受力强度逐渐增加,对应承担的足底压力逐渐增大。
在某些示例中,顺应第二足压干预区域之外向第二足压干预区域延伸的方向,所述拓扑结构可设置为单位区域的节点连接数逐渐增加(未予以图示),以形成朝向所述第二足压干预区域的体积密度渐变式增大,对于拓扑结构的受力强度逐渐增加。
在此,应当理解,所述第二足压干预区域与第一足压干预区域对应的拓扑结构或晶格结 构受力强度影响因素类似,对不同区域晶格结构基本单元的设置或对拓扑结构在不同区域的设计,在于实现鞋中底在被穿着时压力分布为预期的分布状态。令位于所述第二足压干预区域之外拓扑结构或晶格结构朝向所述至少一个第二足压干预区域之内的拓扑结构或晶格结构为过渡渐变的方式,也可通过打印工艺、后处理工艺、打印材料等实现,相比令位于所述第一足压干预区域之外拓扑结构或晶格结构朝向所述至少一个第一足压干预区域之内的拓扑结构或晶格结构为过渡渐变的方式,其具体实施方式类似,在此不再赘述;相应的,从第一足压干预区域之外延伸至第一足压干预区域,和从第二足压干预区域之外延伸至第二足压干预区域,由于过渡渐变分别为逐渐减小和逐渐增加,顺应延伸方向对晶格体基本单元或拓扑结构的调整通常相反。特别的,所述第一足压干预区域与第二足压干预区域均可基于目标用户的期望足压数据确定在鞋中底中分布的区域。
在某些实施方式中,所述第二足压干预区域的拓扑结构或晶格结构的强度与计算获得的期望足压数据相关,其中,所述期望足压数据大于对应所述至少一个第二足压干预区域的实测足压数据。
所述期望足压数据即预期的本申请的鞋中底在被穿着状态下对应的人体足压数据,即经过所述鞋中底调整后的足压数据。
在对鞋中底的实际制作中,所述鞋中底的整体结构均基于目标用户的身体因素如脚形轮廓数据、步态数据、形体数据、体重数据、实测足压数据以及医疗干预数据等数据进行设计,可认为所述鞋中底整体区域的压力均由期望足压数据确定。
在某些实施方式中,基于对目标用户的足底保护的需要,由所述期望足压数据与实测足压数据确定需要进足底减压的区域也即所述第一足压干预区域,基于第一足压干预区域的范围以及该区域对应的压力范围,对拓扑结构或晶格结构的强度进行调整以确定将其余压力分散至第一足压干预区域之外。
在某些实施方式中,由所述期望足压数据确定对目标用户的足压调整方式,基于压力分配的需要,确定可用于进行压力承担的区域也即所述第二足压干预区域,将第二足压干预区域对应的拓扑结构或晶格结构设计强度增加,以实现鞋中底在穿着状态下第二足压干预区域承担的压力增加,第二足压干预区域之外的足底压力自然减少。
特别的,对于同一目标用户,在确定第一足压干预区域后进行设计,第一足压干预区域之外的部分承担的足底压力自然增加;又或,在确定第二足压干预区域后进行设计,第二足压干预区域之外的部分承担的足底压力自然减轻。也即,通过确定第一足压干预区域或第二 足压干预区域进行设计,即可实现压力调整的效果。当然,也可基于期望足压数据与实测足压数据,同时确定第一足压干预区域与第二足压干预区域,以在确定需进行压力分散的区域的同时限定用于承担分散后的压力的区域,如图3b所示实施例。
所述足压数据为即为鞋制品处于被穿着的状态下的鞋中底的不同区域的压力分布数据,包括静态压力分布与目标用户运动过程中的动态压力分布,用于指示鞋中底受力的分布情况。所述足压数据的压力分布为具有方向的压力矢量,例如,采用常见的三维直角坐标系,所述鞋中底的压力值可分别分解在不同的方向上。所述足压数据分布的区域范围即为鞋中底的三维空间区域,即所述足压数据包括压力分布的空间位置与压力矢量。基于力的相对性可知,所述足压数据即可表征目标用户在穿着中足部与鞋接触面的受力情况。
在某些实施方式中,所述足压数据可根据压力板或压力检测器采集获得。例如,通过指示所述目标用户的站立状态,令目标用户在赤足状态下足底接触压力板,从压力板接收对应的足底压力图,所述压力图即可用于表示足底的压力分布数据。具体的,在一种实施方式中,所述压力板上设置有压力传感器,且压力板连接至数字式压力分析系统。所述压力传感器可识别人体的触碰区域与触碰时间,即可采集在预设的时间长度内的压力,通过将传感器信号传输至的数字式压力分析系统,即可显示出对应的足底的压力分布图。所述压力分布图轮廓即显示为足底与压力板的接触面轮廓,压力分布图不同区域的压力数值即对应于在压力采集中该区域对应的足压压力值。所述压力分布图可表现为不同的形式,例如,根据采集的数据,所述压力分布图可显示为不同单元图块组成的接触面,每一单元图块内的数值即代表该单元区域的平均压力;同时,所述压力分布图中的数值可基于人为选择或压力分析系统自动选择单位而显示为不同的数值,例如选择以不同数量级的单位显示则可获得所显示数值不同的压力分布图,又或根据设定的压力级别作为显示单位:如每10Pa显示为数值1,并可选择采用比较规则如四舍五入的方式对每一单位区域的压力数值取整数。
在某些实施方式中,所述足压数据是通过统计获取的。例如,针对一定数量的目标用户群体,基于大数据分析确定人体自然状态下的压力分布规律,如足弓对应相对低压区,并获取体重、体重指数BMI等参数与压力数值的关系,由此可先根据目标用户的特征如体重特征划分其对应的群体类别,如对划分为体重数量级60~70kg的目标用户群体,基于此群体类别确定常规的足底压力分布;又如,所述大数据分析包括医疗数据统计分析,针对某一类或某些类别的病症如糖尿病、小儿麻痹等容易引发足部疾病的患病群体,基于医学统计分析确定该类患者常见的足底压力分布状态,由此基于目标用户的特征如疾病状态如糖尿病患者确定 其对应的群体类别,并获得该类目标用户群体的足压数据。
所述实测足压数据为不经由外界调整的状态下测量的人体足底压力,如赤脚自然站立的人体足底压力。在一种实现方式上,可确定相同的人体姿态下的实测足压数据(该足压数据为未经过调整的足压数据)设置对应的期望足压数据,如在无倚靠的自然站立状态下测量目标用户足部处于平面上的足压数据,基于此足压数据设置自然站立状态下的期望足压数据,并将第一足压干预区域的期望足压数据值设置为小于相应足部区域的实测值。在一种应用场景中,所述第一足压干预区域可以为自然站立状态下足部受压较大的区域,适应于舒适度与足部保护的需求,该区域内的期望足压数据值由对实测数据中对应区域进行压力分散调整后获得,则足压干预区域的期望足压数据减小。
请参阅图5及图6,分别显示为一实施例下足底压力分布的模拟图,其中图5为基于测量的人体测试压力分布的模拟图,图6即为经过调整后的期望足压数据对应的足底压力分布的模拟图。其中,每一单元格内的数值即表示为在该区域内的平均压力,由足底不同区域显示的数值即可获得对应的足底压力分布状态,该数值由实际足压值或期望足压值、以及选择的压力单位确定,对于同一足压分布模拟图,数值越大,即对应的单元区域内的平均压力越大。在所述压力分布图中,每一单元格的大小可基于选择设定,并不以实际测量的足压数据密度为限制,例如,图5显示的实测足底压力分布的模拟图中,每一单元格内显示的数值可以为1个压力传感器测量获得的压力值,也可以为排列为正方形的4个压力传感器的测量值的平均值,可基于显示足压分布规律而人为设定每一显示单元格的范围;同时,足压分布图中的数值基于对足压单位的选择而不同,对同一足压数据,可基于不同的压力单位设置显示为不同的数值,当然,在同一足压分布图中,不同单元格的数值均采用同一压力单位表示,也即在同一压力分布模拟图中,不同区域的单元格内的数值可用于表示不同区域的相对压力大小。
基于图5中对目标用户在自然状态下的足压数据,确定目标用户的足底范围内的相对高压区与低压区。如图5所示,在无调整的状态下,通常人体的足弓区域对应较小的压力值,如图5所示实施例中压力值显示为0的区域,在某些实际场景中,足弓部分区域与压力板不发生接触,即该区域的压力为0,相对高压区通常在脚掌部与后跟部(例如图5所示的实施例中数字70或76分布的区域)。对比如图6所示的期望足压分布图,可见相同的足底区域在调整前后对应为不同的压力数值,可选择将处于相对高压区的部分区域的压力分散至低压区域,改变在自然状态下的足底压力分布。
如图5所示,在无外部作用的自然状态下,人体的足弓区域通常对鞋底具有较小的压力或无压力,在某些实施方式中,基于对足部后跟区域或前掌区域的压力调整需要如减小高压区的压力峰值,将该区域的压力部分转移至足弓区域,以实现压力分散的效果,即呈现为如图6所示的压力分布状态;又或,基于确定的足压峰值对应的区域,为减小该压力峰值,将压力调整至压力峰值之外的前掌区域、后跟区域以及足弓区域。
在某些实施方式中,所述期望足压数据是基于测量获得的目标用户的实测足压数据及对应的医疗干预数据计算获得的。由目标用户的实测足压数据与医疗干预数据共同确定期望足压数据,确保鞋中底结构在以预期目标调整用户足部压力分布并具有预期的强度和可靠性。所述实测足压数据确定目标用户足部压力分布状态,由医疗干预数据确定所需进行的压力分布调整。
所述医疗干预数据即针对目标用户的身体状态所需要的或所预期矫正的足压分布数据。通过生理检测如腱反射和病理反射、肌力和肌张力、关节活动度、感觉(触觉/痛觉/本体感觉)、压痛、肿胀、皮肤状况(溃疡/颜色)等获得。所述医疗干预数据的确定与多项生理健康指标相关,用于减轻特定目标用户病症或降低目标用户的患病风险,又或,基于医疗数据分析,确定有益于足部养护的压力状态转化为预设的医疗干预数据。在一种实现方式中,根据足型扫描仪测量的足型数据与治疗方案确定医疗干预数据的区域及数值,例如针对足底具有溃疡区的目标用户,基于足部保护与病症疗养的需求,相应的溃疡区具有预期的压力数值范围,参考实测足压数据与医疗干预数据设计鞋中底的拓扑结构或晶格结构,实现预期的压力分布与目标用户穿着的触感;又如针对足部存在局部压力异常的目标用户,为治疗足底受力不均的状态,相应的局部压力异常区域的医疗干预数据即为减轻或消除足底受力不均对应的压力分布数据,参考实测足压数据与医疗干预数据,确定足压干预区域的压力转移区域与转移值,计算获取相应的期望足压数据。
在某些实施方式中,所述期望足压数据根据医疗干预数据所表征的目标用户所处的医疗阶段与实测足压数据获得。具体的,所述医疗干预数据包括目标用户的生理检测数据分析所得的目标用户在某一疾病上所处的阶段。
在一种实施方式中,对于足部未表现出明显的病变特征如足部无创口、无明显足部变形但由医疗数据体现出具有足底患病风险的目标用户,即针对处于预防状态或病变不明显的目标用户的足底养护或足底矫正,根据医疗统计分析确定处于该阶段的目标用户所需要的足压分布状态。例如,目标用户的足压峰值偏高但无明显的足部异常或疾病,将目标用户的足底 的相对高压区的足压峰值降低至正常的足压峰值即可避免足底病变发生,则由此确定的医疗干预数据即为实测足底压力中的相对高压区在医疗调整后的可防止或减轻足底压力引起足部恶化的压力数值范围,结合目标用户的实测足压分布,确定经过调整后的足底期望压力数据;又如,针对患有糖尿病或小儿麻痹等容易引发足部疾病但未发生明显足部病变的用户,可基于对目标用户在病症上所处阶段的医疗分析,确定后续的足底可能因疾病损伤的区域,以及防止或减小疾病损伤所需的区域对应的压力数值范围,由此确定的医疗干预数据联系实测足压数据设定目标用户的期望足压数据。
在一种实施方式中,对于足底发生如足底溃烂、胼胝、足骨畸形等可临床检测出明显足底病变的目标用户,可基于其足底疾病的疾病严重度评价确定适宜于治疗足底疾病或抑制足底恶化的压力分布状态,例如对于已存在足底溃烂的区域,需要尽量缓解该区域的压力值以抑制病态恶化,对照目标用户在无调整状态下的足压数据,即可确定需进行足压调整的区域与调节的压力值,即确定预期的适宜于该病症阶段的期望足压数据。
所述期望足压数据的设定可采用压力分布图的压力单位确定调整的单位量,所述单位量即将压力分布值在实际分布状态上进行增加或减小的调整的基本单位,如将分布图采用的压力单位的数值1即以1倍的单位压力大小作为调整的基本单位,基于实际测量的压力分布图上的数值,对于确定需要减小压力的压力干预区域,其期望压力数值为在实测压力数值减小1的整数倍,例如,对于处于足部疾病前期或预防阶段的目标用户,其足底压力峰值为在选定的压力单位下为70的单元区域,基于其医疗干预数据确定该压力峰值需降至50以下,则将调整后的期望足压数值设置为50或49或更小的自然数;又如对于存在足底创口目标用户,其足底外伤区域的期望足压数值为25以下,则将调整后的区域压力数值调整为25或更小的自然数。
在某些实施方式中,所述至少一个第一足压干预区域或/及第二足压干预区域中的晶格结构的受力强度与计算获得的期望足压数据及测量获得的脚型轮廓数据相关。
所述脚型轮廓为目标用户足部的三维轮廓,不同的轮廓形态对应压力在足底不同的分布,即足部受力点与受力大小不同。所述目标用户的脚型轮廓数据的获取方式包括由3D足部扫描仪扫描获得,又或基于双目摄像机拍摄的可见光图与深度图处理获得,所述脚型轮廓数据参数包括:足长、足宽、足趾高、足弓宽、足弓围、内踝高、外踝高、足跟宽及足后跟高等。
在某些实施方式中,所述目标用户的脚型轮廓数据是根据大数据统计分析获得的,如根据大数据对人体足部轮廓的采集,确定常见的脚型轮廓形式与部分特定的脚型轮廓形式,如 无足部疾病的躯体对应的脚型轮廓、先天性足部畸形分类对应的不同脚形轮廓。所述对大数据的统计分析还可将目标用户的脚形轮廓数据与身体特征相关联,如不同性别、脚长对应的脚形轮廓数据。以此,根据对目标用户群体的类别划分确定对应的脚型轮廓数据。
所述目标用户的脚型轮廓决定了压力分布的区域,由期望足压数据实现压力分布调整时顺应目标用户的脚型轮廓进行,以确定压力分布与在对应目标用户的足部的预期效果一致。例如,期望足压数据分布为减轻目标用户跖骨与后跟部压力值,将压力分散至足弓;考虑脚型轮廓,在将压力分散至足弓的同时需要确定压力值处于不引起足弓损伤的数值范围,基于目标用户的脚型轮廓确定对足压调整的范围及调整值的限制,并结合期望足压数据,设计晶格结构强度以实现预期调整功能。
在某些实施方式中,所述至少一个第一足压干预区域或/及第二足压干预区域中的晶格结构的受力强度与计算获得的期望足压数据、测量获得的脚型轮廓数据、以及步态数据相关。
所述步态数据包括目标用户在行走过程中的全身姿势和步态,包括步行节律、稳定性、流畅性、对称性、重心偏移、手臂摆动、诸关节姿态与角度、目标用户神态与表情、辅助装置(矫形器、助行器)的作用等。
所述步态数据的规律影响鞋中底在长期穿着状态下的压力分布。自然站立状态与行走状态通常对应不同的足部压力分布,再者,行走所引起的压力分布变化与目标用户的行走习惯相关,具有个体特异性。由所述步态数据反映的目标用户行走中的压力分配,与对目标用户设置的期望足压数据与脚型轮廓数据,确定在制造中鞋中底不同区域的拓扑结构或晶格结构强度。又或,基于不同目标用户的步行习惯,其步态数据中可反映出左脚和右脚可能具有的压力不对称的情况,基于此对一双鞋对应的两只鞋中底的拓扑结构或晶格强度采用不同的强度设计。
同时,所述步态数据与所述目标用户的身体机能相关,例如,年长者通常具有较低的步行速度与较小步幅,在行走中由双足支撑底面站立的时间变长。所述拓扑结构或晶格结构的强度与穿着中的人体触感相关,所述强度包括刚度或硬度,在对步态数据分析中,针对双足支撑期长度较大的目标用户,可将其拓扑结构强度或晶格结构强度设置为具有较高的韧度与较低硬度。
在某些实施方式中,基于对所述步态数据的分析,确定医疗干预数据。对比医疗测量的临床检查数据与步态数据的实验分析,对目标用户的病症进行综合评定,基于定量化、标准化的推断,确定对目标用户设置的医疗干预数据。所述期望足压数据、步态数据与脚型轮廓 数据对压力分配方式提供条件与限制,综合不同压力分配方案对比获取最优选方式,以进行晶格强度设计。
本申请在前述示例中提供了通过第一足压干预区域以及第二足压干预区域以调整鞋中底压力的实施例,对于以晶格结构或拓扑节结构为基本单元的鞋中底,本申请还提供了以下调整足压分布的实现方式:
在某些实施方式中,本申请的鞋中底的腰窝部设置有预设高度的隆起部分以支撑所述目标用户的足弓。请参阅图7,显示为申请的鞋中底在一实施例中的侧视图。所述腰窝部12对应于目标用户的足弓,腰窝部隆起部分121的预设高度与目标用户的足弓高度相匹配。
在某些实施方式中,所述腰窝部的隆起部分121具有预设高度以支撑所述目标用户的足弓。在自然的站立状态或步行状态下,人体足底受力的压力主要分布于脚掌部与后跟部。在进行足压压力分配的过程中,压力需转移至非足压干预区域如足弓区域。通过设置腰窝部隆起的预设高度与强度,对足弓部提供承受分散压力的接触面。
在一种实施方式中,所述腰窝部隆起部分121的高度是基于目标用户的脚型轮廓确定的,根据目标用户的足弓形态,使得腰窝部轮廓曲线与目标用户足弓轮廓曲线基本贴合。具体的,所述腰窝部的隆起部分121的受力强度与目标用户的期望足压数据及脚型轮廓数据相关。所述期望足压数据可以为基于测量目标用户的实测足压数据及对应的医疗干预数据计算获得。根据对目标用户的足底压力分配调整的优选方式,设计足底压力的期望分布图,并结合目标用户的脚型轮廓使得调整后的足底压力以预期的方式分布。所述腰窝部的轮廓设计与晶格结构的强度设计用以实现所采用的压力分配方案,确保鞋中底在被穿着状态下腰窝部以预期效果承担压力并具有可靠的强度。基于拓扑结构或晶格结构强度与受力关系的分析,将已知的压力分布为基础,计算获得拓扑结构或晶格结构的预期强度。
在某些实施方式中,所述腰窝部的隆起部分121的高度及其受力强度与计算获得的所述目标用户的足压数据及脚型轮廓数据及步态数据相关。由所述步态数据表征的目标用户的行走习惯偏好与身体状态,结合计算获得的期望压力数据与脚型轮廓,确定可由足弓部分实际承受的压力进行腰窝部拓扑结构或晶格结构强度设计。
在某些实施方式中,基于目标用户的足底状态,所述腰窝部的轮廓曲线与足弓轮廓曲线呈现不完全贴合的状态,例如,当所述目标用户的足弓区域存在损伤如足底筋膜撕裂等损伤时,在采用增大足底接触面减小足底高压区域的压力峰值时,所述腰窝部的轮廓设计基于目标用户的足弓轮廓曲线调整为不完全贴合状态,以使得贴紧筋膜损伤部位的足弓区域压力减 小。
通常来说,鞋中底在鞋制品中所承担的功能为减震缓冲,如在运动中吸收缓震与形状反弹,鞋中底的厚度与减震功能相关,亦决定目标用户在穿着中的触感如硬度等。所述鞋中底呈现为不均匀的厚度,用于适应对目标用户足部压力匹配的需要,同时,厚度值参考目标用户的身体状态决定。如图7所示,所述鞋中底的呈现为不均匀的厚度,在上表面的轮廓弧度与人体的足部的底面轮廓有一定的贴合,如鞋中底中部的腰窝部12对应的隆起与人体的足弓相对应。
所述鞋中底晶格结构的基本单元层数可基于鞋中底的预设三维轮廓与基本单元几何结构确定,例如,所述鞋中底层数可以为0.5层、1层、5层等,本申请不做限制。在某些实施例中,所述鞋中底晶格结构的基本单元在不同区域内为不同层数,例如,在第一足压干预区域内为1层,在第二足压干预区域为3层。
在所述鞋中底的不同区域,晶格结构的基本单元结构存在一定的变形处理,如在鞋前端区域处鞋中底厚度减小,将该区域晶格结构的基本单元减小以增大体积密度,用于确保鞋中底中薄弱区域的结构强度。
在某些实施方式中,所述鞋中底的预设厚度与测量获得的所述目标用户的形体数据、体重数据、脚形轮廓数据、步态数据、或足压数据中的至少一种数据相关。具体的,鞋中底的厚度影响其整体的弹性变形趋势与被穿着时目标用户的足底压力分布,对预设厚度的设置可改变目标用户的受力状态,因此,该预设厚度与目标用户受力的各项力学参数与对应的目标用户的触感相关。
例如,当所述目标用户的体重数据值较大,对应的鞋中底承受压力较大,在考虑用户穿着的舒适度的需求下,通常较厚的鞋中底具有更柔软的触感,则可相应的将目标用户的体重数据与鞋中底厚度设置为正相关的对应关系;又如,由所述目标用户的步态数据进行所述鞋中底的厚度设计,以满足步行中足底保护与步行安全,所述鞋中底厚度与步行中的关节姿态角度、稳定性相关,基于对鞋中底厚度与步态数据的关联分析,根据目标用户的步行姿态确定所述鞋中底的预设厚度。
所述足压数据与目标用户的体重数据、脚型轮廓数据以及步态数据相关,在一种实现方式中,所述鞋中底的预设厚度基于目标用户的足压数据确定。由足压数据表征的分别于静态与步行的动态下足底压力分布状态,确定对应的鞋中底的预设厚度。
所述形体数据包括目标用户的体格测量数据,例如对目标用户膝关节、踝关节等身体部 位的评定,用于确定有益于目标用户健康养护的运动模式,以确定对应的鞋中底的预设厚度。
在某些实施例中,所述鞋中底的预设厚度与目标用户的足压数据、形体数据、脚型轮廓数据等多项因素相关,特别的,所述鞋中底的预设厚度可能对不同的需求为相反的作用效果。例如,当鞋中底预设厚度过大,则不利于目标用户对底面的感知与稳定性,而弹性相应提升。在联系所述目标用户的形体数据、体重数据、脚形轮廓数据、步态数据、或足压数据等多项数据进行鞋中底厚度设计时,一种实施方式为,采用软件建模仿真,在构造所述鞋中底模型后对其施加目标用户对应的静态压力与步行的动态压力,并设置对应目标用户不同需求的性能分析指标,对不同的分析指标加权后计算总和,输出性能总和最佳的方案对应的鞋中底厚度。在某些实施方式中,所述不同分析指标的权重可基于目标用户的需求偏向与健康状态确定。
上述示例提供了通过确定腰窝部隆起高度或鞋中底厚度以调整鞋中底压力分布或性能的实现方式,在此,本申请还提供了另一基于确定鞋中底厚度或鞋中底三维轮廓以调整足压的实现方式。
在某些实施方式中,所述鞋中底包括对应目标用户脚后跟的后跟部,对应所述目标用户前脚掌的脚掌部,以及位于所述后跟部与脚掌部之间且对应所述目标用户足弓的腰窝部,其中,所述脚掌部设有至少一目标区域及与所述至少一目标区域相邻的至少一干预区域,所述至少一目标区域的截面厚度小于所述鞋中底的脚掌部的基准厚度,所述至少一干预区域的截面厚度大于所述鞋中底的脚掌部的基准厚度。
所述的目标区域所需实现的效果以及确定区域位置的方式可参照前述各示例所述的第一足压干预区域,即预期减小足压的区域。所述干预区域所需实现的效果以及确定区域位置可参照前述各示例所述的第二足压干预区域,即为预期将足压增大的区域。
在前述示例中,本申请提供了基于如体积密度、晶格体结构、打印材料、打印工艺、以及后处理工艺中的一种或多种调整区域的受力强度的实现方式,在此,所述目标区域与干预区域还可为通过确定截面厚度以调整受力强度,从而实现足压调整。
请参阅图8,显示为本申请的用于鞋类制品的鞋中底在一实施例中的结构示意图。
如图8所示的鞋类制品的鞋中底,包括:对应目标用户脚后跟的后跟部13,对应所述目标用户前脚掌的脚掌部11,以及位于所述后跟部13与脚掌部11之间且对应所述目标用户足弓的腰窝部12,其中,所述脚掌部11设有至少一目标区域151及与所述至少一目标区域151相邻的至少一干预区域152,所述至少一目标区域151的截面厚度小于所述鞋中底的脚掌部 11的基准厚度,所述至少一干预区域152的截面厚度大于所述鞋中底的脚掌部11的基准厚度,由此所述目标区域151及干预区域152分别对应的强度分布被调整,进而可实现基于目标用户个人的特定条件或特定群体用户的情况对其足底压力进行调整。
应当理解,所述鞋中底的区域与目标用户足底区域相对应,在此即可基于目标用户的足型轮廓确定鞋中底的区域,例如的鞋中底的大小或尺寸。在某些实施方式中,在已获取目标用户足底外轮廓的基础上,可进一步考虑穿着的舒适度及足部保护的需求确定所述鞋中底的轮廓,例如令足趾尖与鞋头设置一定距离,如大约0.95cm~1.27cm的范围。
所述脚掌部11设有至少一目标区域151及与所述至少一目标区域151相邻的至少一干预区域152。其中,所述目标区域151即为预期减小足压的区域,举例来说,所述目标区域151可根据所述目标用户的特定需求确定,例如为足部的指定保护部位、足部溃疡部位等需要将压力进行分散转移的区域,又或别的基于足底的舒适度或保护等需求进行压力调整分散的区域,其具体位置还可进一步基于目标用户的脚型轮廓与特定需求确定。
所述干预区域152即为预期将足压增大的区域,所述干预区域152可用以实现对目标区域151压力分担。应当理解,对同一目标用户,在足压调整前后鞋中底整体需承担的压力为不变,例如因目标用户的体重、体型、站姿、步态等自身固然条件与习惯导致其鞋中底的压力分布常态下的分布保持不变。当需要实现足底局部压力减小,则对应的需要其他区域分担压力,所述干预区域152即可作为对目标区域151进行压力分担的区域。
所述干预区域152与所述目标区域151相邻,在此,所述相邻可以为干预区域152的边界(也可称轮廓)与所述目标区域151的边界为相切或相接,又或为相离。应当理解,基于对目标区域151预期减小足压以及通过干预区域152预期增加足压以实现压力分担的特点,令干预区域152与目标区域151间不发生重叠即可。在一个实施场景中,例如,可在鞋中底脚掌部11预先确定目标区域151,由此在脚掌部11内的目标区域151之外区域中选定干预区域152。
在申请提供的各实施例中,所述的将足压增大均是在说明,针对某一特定区域(即本申请所述的干预区域),相对比于未经干预的足压,例如赤脚站立时的足压,在穿着本申请的鞋中底形成的鞋类制品时,该特定区域的压力增大;类似的,所述的将足压减小为相比于未经干预的足压,目标用户在穿着本申请的鞋中底形成的鞋类制品时,该目标区域的压力减小。
本申请所述的足压(也称足压数据)即目标用户足底的压力分布数据,在一些实施例中也即鞋类制品处于被穿着的状态下的鞋中底的不同区域的压力分布数据,包括静态压力分布 数据与目标用户运动过程中的动态压力分布数据。
在本申请的某些实施方式中,所述目标区域设于对应目标用户第一跖趾关节处、以及第一拇指处中的一处或多处;以及,所述干预区域设于对应目标用户第二跖趾关节至第五跖趾关节之间。
通常来说,人体在静态(例如站立时)与运动中的动态所对应的足底压力分布中,前脚掌的第一跖趾关节处在不同状态中均为一高压区域。脚掌中第二跖趾关节至第五跖趾关节之间的压力相对于第一跖趾关节处的压力较小。
在某些情形中,对于特定的目标用户例如糖尿病足的患病群体,其足压在第一跖趾关节处的高压倾向尤为明显。针对于糖尿病足患者或糖尿病患者,通常其跖骨以及足跟部为胼胝高发区域,而医学上通常认为足底最大压强与足病变具有较高的相关性,糖尿病患者足底最大压强处即可能为足部溃疡发生处。第一跖趾关节处还可作为一拟定的保护区域,例如针对无明显足底疾病伤口的糖尿病患者,针对医学统计分析可获取的胼胝、溃疡等疾病高发区域,该疾病高发区域即可作为保护区域。
因此,在一些实施方式中,将所述目标区域设于第一跖趾关节处,即将此区域确定为需要减小足压的区域,对第一跖趾关节处足压异常如足压峰值过大目标用户或第一跖趾关节处为患病区的目标用户,基于本申请的鞋中底形成的鞋类制品即具有足底保护或疾病治疗的功效。
在本申请提供的各实施例中,所述治疗包括可导致预期的生理效果的防止性(即预防性)、阻断性、治愈性或缓和性处置。此外,“治疗”一词在此是指基于可部分或完全减轻、延迟发生、抑制进程、减轻严重性、和/或减少一种特定疾病、异常和/或医疗状况之一或多个病征出现机率的目的。
将与所述目标区域相邻的干预区域设于对应目标用户第二跖趾关节至第五跖趾关节之间,由此第二跖趾关节至第五跖趾关节间可分担第一跖趾关节处的压力。例如,在调整前后目标用户前脚掌的压力总值不变,但通过所述干预区域对目标区域的压力分担,目标区域的足压减小。在此设置下,脚掌部压力可呈现为压力分布的平均化(例如第一跖趾关节的压力减小且第二跖趾关节至第五跖趾关节之间压力增大)或高压区转移(例如高压区从第一跖趾关节处移动至第二跖趾关节至第五跖趾关节之间)。
在本申请的提供的一些实施例中,所述后跟部还设有至少一所述目标区域。即,所述后跟部也可设置预期将足压减小的区域。应当理解,通常人体足压的高压区域位于前脚掌的足 后跟,在一些场景中,当目标用户足后跟的足压峰值过大又或目标用户足后跟具有患病区域,即可在所述鞋中底的后跟部设置目标区域。
所述至少一目标区域的截面厚度小于所述鞋中底的脚掌部的基准厚度,所述至少一干预区域的截面厚度大于所述鞋中底的脚掌部的基准厚度。
在此,所述基准厚度为未经干预前鞋中底的各部分的常规厚度分布,举例而言,由于鞋中底的天然设计属性,所述鞋中底前脚掌部分的基准厚度通常情况下小于后跟部的基准厚度,应理解的,所述鞋中底的基准厚度在鞋中底不同位置的不同的。
在一些示例中可以为传统鞋中的鞋中底常规厚度分布。所述的传统鞋例如为脚掌部上表面大致呈平面,后跟部设置为略高出脚掌部的鞋。应理解的,整个鞋中底区域对应的所述基准厚度并不需要为同一定值,即,未经干预前的鞋中底不以厚度在不同区域均匀分布为限制。所述的未经干预前的鞋中底即为未基于目标区域或干预区域的足压增大或足压减小的目标进行结构调整的鞋中底。
举例来说,实际场景中,在确定目标用户的足型轮廓后,又或明确目标用户的足部大小以确定鞋中底尺寸后,即可确定鞋中底的三维轮廓,此时的鞋中底的三维轮廓对应的厚度分布即为基准厚度。
所述目标区域与干预区域的截面厚度与基准厚度相关。在某些实施方式中,所述基准厚度与测量获得的所述目标用户的形体数据、体重数据、脚形轮廓数据、步态数据及足压数据中的至少一种数据相关。鞋中底的基准厚度影响其整体的弹性变形趋势与被穿着时目标用户的足底压力分布,对基准厚度的设置可改变目标用户的受力状态,因此,该基准厚度与目标用户受力的各项力学参数与对应的目标用户的触感相关。在此,所述形体数据、体重数据、脚形轮廓数据、步态数据及足压数据所表征的数据,可参照前述实施例,此处不再赘述。
应当说明的是,例如上述实施例中考虑目标用户的脚型轮廓数据、步态数据等以确定基准厚度并非本申请所述的“干预”,在本申请提供的各示例中,所述的“干预”在于对鞋中底中不同区域进行压力分配,并藉由改变鞋中底局部区域的结构、厚度或材料等手段实现。
所述目标区域的截面厚度小于鞋中底的脚掌部的基准厚度。例如,所述目标区域为区域A,区域A对应于目标用户的足底区域A′,未经干预前的鞋中底的区域A″也对应于目标用户的足底区域A′,本申请的鞋中底中区域A的截面厚度小于未经干预前的鞋中底的区域A″的截面厚度。所述的截面厚度也在说明,所述目标区域具有一大于0的预设厚度。
在所述鞋中底的后跟部设置有目标区域的实施例中,同理,可令后跟部的目标区域的截 面厚度小于后跟部的基准厚度。
在此设置下,所述目标区域的结构强度相较于未经干预前强度降低,在鞋中底对应的鞋中底被穿着以承重的状态下,目标区域的受力强度减小,由此可实现足底压力分配。
类似的,所述干预区域的截面厚度大于鞋中底的脚掌部的基准厚度,例如,所述干预区域为区域B,区域B对应于目标用户的足底区域B′,未经干预前的鞋中底的区域B″也对应于目标用户的足底区域B′,本申请的鞋中底中区域B的截面厚度大于未经干预前的鞋中底的区域B″的截面厚度。如此,所述干预区域的结构强度增加,在承重状态下相应的可实现压力分担,受力强度增大。
在某些实施方式中,所述目标区域上表面相对目标用户足型轮廓呈下凹状态;所述干预区域上表面相对目标用户足型轮廓呈上凸状态。
请参阅图9,显示为本申请的鞋中底在一实施例中的部分区域的截面图。
在一实现方式中,令鞋中底下表面在足压干预前后不变,令所述目标区域151的上表面高度降低以使得目标区域151的截面厚度小于未经干预前鞋中底对应区域的基准厚度,所述目标区域151的上表面呈现为相对目标用户足型轮廓呈下凹状态;同时,令所述干预区域152上表面高度增加以使得干预区域152的截面厚度大于未经干预前鞋中底对应区域的基准厚度,所述干预区域152的上表面呈现为相对目标用户足型轮廓呈上凸状态。
请结合参阅图10a及图10b,其中,图10a显示为本申请的鞋中底在一实施例中的截面图,图10b显示为图10a所示的鞋中底与鞋楦或目标用户接触的截面图。
如图所示,鞋中底包括脚掌部11、腰窝部12及后跟部13。所述目标区域151相对目标用户足型轮廓呈下凹状态,在此设置下,当目标用户穿着由此鞋中底形成的鞋类制品时,目标用户足底可预先接触所述干预区域(图中未予以显示),干预区域即可实现压力分担效果,所述目标区域151对应的足底区域例如患病区域对目标用户提供的支持力减小;在一种情形中,患病区域与鞋中底不发生接触,由此该区域的压力降低为0;在另一中情形中,目标用户的足底预先接触并踩踏至目标区域151之外的其他区域例如所述干预区域,其他区域在被踩踏变形后目标区域151对应的患病区域才接触鞋中底,在此变形过程总中其他区域承担了部分足底压力,患病区域需分担的足压变小。应当说明的是,图10a及图10b所示实施例仅用于说明所述目标区域相对目标用户足型轮廓的接触状态,而不用于限制本申请的目标区域的具体位置;同时,图10a及图10b显示为所述鞋中底的一个截面图,不能用于限制鞋中底整体与目标用户足部的接触状态。
在某些实施方式中,所述目标区域朝向目标区域之外区域呈上表面高度渐变过渡,以令目标区域相对目标用户足型轮廓呈下凹状态;或,所述干预区域朝向干预区域之外区域呈上表面高度渐变过渡,以令干预区域相对目标用户足型轮廓呈上凸状态。
在此设置下,所述目标区域朝向目标区域之外的强度变化呈渐变过渡,即可减小目标区域边界处的压力突变以使其在一预设阈值之下。在此,所述预设阈值可基于医学数据或鞋制品性能设定,如当足压存在过大的突变时容易产生足底刺痛,在此,可基于医学分析确定足压突变的阈值以减轻或消除不适感,又如当鞋中底不同区域承受的压力值存在过大突变,则缓冲功能可能被削弱,在此可减小边界区域的压力突变以实现渐变过渡;再者,还可通过鞋类制品的制造工艺(标准)进行确定,例如,确定适合鞋底缓冲的压力变化状态,以增强鞋中底的缓冲功能或鞋中底的耐冲击、磨损等性能。
同理,所述干预区域朝向干预区域之外的强度变化呈渐变过渡,如此可减小干预区域边界处的压力突变,在鞋中底被穿着的状态下,可令干预区域对应承担的足压为逐渐变化。通常的,在此连续变化的压力状态下,鞋中底具有较好的缓冲能力,不同区域间可有效实现压力传递与分担;同时,减缓人体穿着态下局部压强过大的不适触感。
举例来说,在一实际场景中,在所述目标区域或干预区域的边界区域可设置为以一定坡度例如30°、45°、60°等朝向目标区域或干预区域外延伸;当然,所述目标区域或干预区域的边界区域还可以弧面或曲面朝向区域外延伸。
在某些实施方式中,所述目标区域的截面厚度与基于目标用户的期望足压数据确定的所述目标区域、干预区域的受力强度相关;所述干预区域的截面厚度与基于目标用户的期望足压数据确定的所述目标区域、干预区域的受力强度相关。
所述期望足压数据为对目标用户预期的足压分布数据。通过设置所述目标区域与干预区域对应的截面厚度,可令目标用户在穿着本申请的鞋中底的状态下其足压分布为预期的足压分布数据,在一些实施例中,所述期望足压数据即经过干预的足压数据。
通常的,所述期望足压数据为鞋中底整体区域的预期足压分布,因此在获得所述期望足压数据后可计算获得鞋中底整体区域的结构强度分布,基于所述期望足压数据获得的目标区域与干预区域对应的结构强度,可进行所述鞋中底中目标区域与干预区域的截面厚度设计。
在一些实施方式中,所述期望足压数据可基于目标用户的实测足压数据确定,其实现方式可参照前述实施例。在另一些实施方式中,所述期望足压数据与目标用户的实测足压数据及医疗干预数据相关;其中,所述目标区域的期望足压数据小于所述目标区域的实测足压区 域,所述干预区域的期望足压数据大于所述干预区域的实测足压数据。
在一实现方式中,所述期望足压数据根据医疗干预数据所表征的目标用户所处的医疗阶段与实测足压数据获得。所述医疗阶段例如可参照前述实施例中由医疗干预数据包括的目标用户的生理检测数据分析所得的在某一疾病上所处的阶段,即目标用户的疾病体征或严重程度。
同时,所述期望足压数据还可基于目标用户足型轮廓数据确定。对所述脚形轮廓的确定方式,此处不再赘述。应当理解,目标用户的脚型轮廓决定了压力分布的区域,由期望足压数据实现压力分布调整时顺应目标用户的脚型轮廓进行,以确定压力分布与在对应目标用户的足部的预期效果一致。
所述目标区域的截面厚度与基于目标用户的期望足压数据确定的所述目标区域、干预区域的受力强度相关;所述干预区域的截面厚度与基于目标用户的期望足压数据确定的所述目标区域、干预区域的受力强度相关。应当理解,鞋中底不同区域的结构强度与该区域预期承担的足压相关,举例来说,当干预区域的结构强度较大,鞋中底在穿着中的被踩踏状态下压力易于自然分配至干预区域。
通常来说,区域的截面厚度与该区域的结构强度呈正相关。基于截面厚度与结构强度的对应关系、以及结构强度与受力强度(即足压)的对应关系,如此,以目标用户的期望足压数据为基础,即可确定目标区域与干预区域对应的结构强度,从而计算获得目标区域与干预区域分别对应的截面厚度。在一示例中,鞋中底的截面厚度与结构强度的对应关系、以及结构强度与受力强度(即足压)的对应关系确定后,对所述目标区域的截面厚度可由目标区域的预期受力强度确定,所述干预区域的截面厚度可由干预区域的预期受力强度确定。
为说明所述鞋中底实现的足压分配效果,本申请还提供了以下实施例:
请参阅图11及图12,其中,图11显示为自然状态下人体足压分布测试的模拟图,图12经本申请的通过目标区域与干预区域调整足压的鞋中底干预后的人体足压分布测试的模拟图,其中,图11与图12对应的压力分布模拟图的压力数值以同一压力单位显示。
如图11所示目标用户在自然状态下(如赤脚站立)的实测足压数据,确定目标用户的足底范围内的相对高压区与低压区。如图11所示,在无干预的状态下,通常人体的足弓区域对应较小的压力值,呈如图11所示压力值显示为0的区域,在某些实际场景中,足弓部分区域与压力板不发生接触,即该区域的压力为0,相对高压区通常在脚掌部与后跟部(例如图11所示的实施例中数字脚掌部的压力值为60或后跟部的压力值为62的区域)。如图12所示的 干预后足压分布图,在设置于脚掌部的目标区域与干预区域中,目标区域对应的足压相对图11的对应区域足压减小,同时,干预区域对应的足压相对图11的对应区域足压增大。
如此,在自然状态下的目标用户脚掌部的高压区压力被分散,可令目标区域的压力峰值减小以达到预设范围内。所述预设范围可基于目标用户的具体需求确定,例如,当本申请的鞋中底用于对步态或足型引起的异常足压矫正,所述预设范围可以为正常足压范围,又如,当所述鞋中底提供于具有足部溃疡的目标用户,所述预设范围可基于目标用户的治疗需求确定。
所述目标区域与干预区域的截面厚度与基准厚度相关。在某些实施方式中,所述基准厚度与测量获得的所述目标用户的形体数据、体重数据、脚形轮廓数据、步态数据及足压数据中的至少一种数据相关。鞋中底的基准厚度影响其整体的弹性变形趋势与被穿着时目标用户的足底压力分布,对基准厚度的设置可改变目标用户的受力状态,因此,该基准厚度与目标用户受力的各项力学参数与对应的目标用户的触感相关。所述形体数据、体重数据、脚形轮廓数据、步态数据及足压数据所表征的内容以及确定方式可参照前述实施例,此处不再赘述。
应理解的,本申请在此提供的由所述目标区域与干预区域的截面厚度调整足压的实施方式与前述的藉由第一足压干预区域与第二足压干预区域调整足压的实施方式,又或将第一足压干预区域或/及第二足压干预区域设置为由区域外朝向区域内的足压呈现为渐变过渡的实施方式,又或将腰窝部设置有具有预设隆起高度的实施方式,其均是在调整鞋中底的足压分布;更重要的是,前述实施方式并不相互排斥,因此,本领域技术人员在获悉本申请公开的实施例后,可自行选择采用其中的一种或几种方式的组合以实现对鞋中底的足压调整。
例如,对于设计通过目标区域与干预区域调整压力分布的鞋中底,在某些实施方式中,本申请的鞋中底的所述腰窝部具有预设高度的隆起部分以支撑目标用户的足弓;在一种实现方式中,所述腰窝部的隆起高度例如可通过目标用户的足型轮廓确定;在又一实现方式中,基于目标用户的足底状态,所述腰窝部的轮廓曲线与足弓轮廓曲线呈现不完全贴合的状态,例如,当所述目标用户的足弓区域存在损伤如足底筋膜撕裂等损伤时,在采用增大足底接触面减小足底高压区域的压力峰值时,所述腰窝部的轮廓设计基于目标用户的足弓轮廓曲线调整为不完全贴合状态,以使得贴紧筋膜损伤部位的足弓区域压力减小;在又一实现方式中,所述腰窝部的隆起部分的高度及其受力强度与计算获得的所述目标用户的期望足压数据、脚型轮廓数据、及步态数据相关。
同时,在一些实施例中,所述鞋中底由3D打印的拓扑结构或多个晶格结构组成。对于晶 格结构或拓扑结构的受力强度的确定方式,还可参照前述实施例。例如,在某些实施方式中,所述鞋中底的晶格结构的受力强度与晶格结构的体积密度、晶格体结构、晶格体材料、打印材料、打印工艺以及后处理工艺中的至少一种相关;或,所述鞋中底的拓扑结构的受力强度与拓扑结构的体积密度、打印材料、打印工艺、以及后处理工艺中的至少一种相关。
例如,当所述鞋中底为采用3D打印工艺制造,通常成型后的鞋中底强度性能与打印材料相关,在此,可基于对打印材料的选择可形成结构强度不同的实体,在某些示例中,确定所述晶格结构或拓扑结构的受力强度时可预先确定打印材料。对于所述体积密度、打印材料、打印工艺、以及后处理工艺对拓扑结构的受力强度的影响方式,或体积密度、晶格体结构、晶格体材料、打印材料、打印工艺以及后处理工艺对晶格结构的受力强度的影响方式,还可参照前述实施例,此处不再赘述。
在一些示例中,所述晶格结构的体积密度与晶格杆径粗细、晶格壁面厚度、晶格大小、以及成型后晶格杆体密度相关;所述拓扑结构的体积密度与拓扑结构的杆径粗细、壁面厚度、成型后拓扑结构杆体或面体密度相关。
在某些实施方式中,所述拓扑结构或晶格结构是通过3D打印的方式获得的,所述3D打印方式包括丝材熔融挤出、材料微滴喷射、粉材平铺熔化、粘合剂喷射、或光敏树脂叠层固化打印。具体的,将所述鞋中底的拓扑结构或晶格结构对应的结构模型与性能参数如强度等输入至所述3D打印设备的控制装置,所述3D打印设备的能量辐射装置在控制装置的控制下,投射所述拓扑结构或晶格结构对应的图像与结构强度对应的辐射能量密度,将待固化材料以预设的三维结构与强度打印为所述鞋中底的实体。
在某些实施方式中,所述拓扑结构或晶格结构的材料包括光固化树脂材料、热塑性橡胶(TPR)、热塑性弹性体;其中,所述热塑性弹性体包括聚氨酯弹性体(TPU)、尼龙弹性体(TPAE)、聚酯弹性体(TPEE)、EVA弹性体及有机硅弹性体。所述晶格结构材料可以为上述任意一种,又或为两种以上材料的混合物。
其中,所述热塑性弹性体是常温下具有橡胶的弹性,高温下具有可塑化成型的一类弹性体,为共聚物或聚合物的物理混合物(通常是塑料和橡胶),由具有热塑性和弹性体特性的材料组成。通常,热塑性塑料在制造中相对容易使用,例如通过注塑成型。
在某些实施方式中,所述拓扑结构或晶格结构的材料还可以为聚丙烯、丙烯腈丁二烯苯乙烯(ABS)、聚碳酸酯(PC)、PC-ABS、PLA、聚苯乙烯、木质素、聚酰胺、聚酰胺泡沫、具有诸如玻璃或金属颗粒的添加物的聚酰胺、甲基丙烯酸甲酯-丙烯腈-丁二烯-苯乙烯共聚物、诸 如聚合物-陶瓷复合材料的可吸收材料、以及其他类似的适宜于鞋中底制作的材料,所述拓扑结构或晶格结构采用的材料不以上述例举为限制。
某些实施方式中,所述鞋中底还包括由3D打印一体成型于所述鞋中底顶部表面的缓冲层。请参阅图13,显示为本申请的鞋中底在一实施例中的缓冲层及鞋中底示意图。如图13所示,所述缓冲层14设置在鞋中底晶格结构的表面,用于在穿着过程中为用户提供足够的缓冲力。
在某些实施方式中,所述缓冲层14由3D打印的多个晶格结构组成。所述缓冲层14中晶格结构的杆径或壁厚小于所述鞋中底中晶格结构的杆径或壁厚,且所述缓冲层14中晶格结构的晶格体积小于所述鞋中底中晶格结构的晶格体积。所述缓冲层14与所述鞋中底通过3D打印一体成型,基于晶格结构的不同设计与对应的不同功能将鞋中底与缓冲层14区分开。所述晶格结构的基本单元连接杆直径或共用面壁厚与所述晶格结构的强度有关,所述缓冲层14采用小杆径或薄壁的结构,并设计为小体积的晶格基本单元组成,则在保证所述缓冲层14的强度的同时,通过小杆径或薄壁的基本单元连接减小缓冲层14的硬度,在鞋中底表面形成一层硬度低、弹性性能佳并具有柔软触感的缓冲结构,进一步削弱足底与鞋中底接触的压力冲击。
在某些实施方式中,所述缓冲层14由3D打印的拓扑结构组成,所述缓冲层14中拓扑结构的杆体杆径小于鞋中底拓扑结构中的杆体杆径;又或,所述缓冲层14中拓扑结构的节点连接数小于所述鞋中底拓扑结构中的节点连接数,以减小缓冲层硬度,使其易于发生弹性变形,实现缓冲功能。
所述缓冲层14的轮廓可顺应所述鞋中底上表面的轮廓,在实际打印中贴合所述鞋中底上表面打印形成一体的结构。所述缓冲层14可设计为均匀厚度或不均匀厚度,通常来说,所述缓冲层14厚度远小于鞋中底厚度,顺应所述鞋中底的轮廓设计。所述缓冲层14的外围轮廓可基于鞋中底的轮廓获得,例如将缓冲层14下表面外轮廓设计为与鞋中底上表面外轮廓相同,形成在鞋中底上无突变的自然连接。
在某些实施方式中,所述缓冲层14的轮廓设计与拓扑结构或晶格结构设计还与所述目标用户的期望足压数据、步态数据、脚型轮廓等相关,如所述缓冲层14上表面轮廓可顺应目标用户脚型轮廓设计。在实际行走中,所述鞋中底跟随缓冲层14变形,经由缓冲层14对脚底冲击吸收,而后由所述鞋中底提供对足底的支持力即分配调整后的压力。
结合请参阅图14与图15,其中,图14显示为本申请的鞋类制品在一实施例中的分解结 构示意图,图15显示为本申请的鞋类制品在一实施例中的结构示意图。在某些实施方式中,所述鞋中底10还包括由3D打印一体成型于所述鞋中底10的顶部表面,用于结合鞋面20的上贴合面。
所述上贴合面可用于粘接鞋面20,所述上贴合面对鞋面20与鞋底的连接提供可粘粘的接触面,所述鞋面20即用于与鞋中底10形成包围目标用户足部的覆盖面。在一种实现方式中,所述上贴合面可设计为环状结构,用于提供鞋面20与鞋中底粘接的环状接触面,其外轮廓顺应所述鞋中底10的轮廓获得。所述上贴合面的上、下表面分别粘接所述鞋面20、鞋中底10,粘接的黏合剂包括氯丁胶粘剂、聚氨酯胶粘剂、SBS胶粘剂等。
在某些实施方式中,所述鞋中底10包括由3D打印一体成型于所述鞋中底10与所述上贴合面之间的缓冲层。即所述缓冲层贴合于所述鞋中底10轮廓接续打印,所述上贴合面设置在缓冲层上,上表面用于连接所述鞋面20。
在某些实施方式中,所述鞋中底10还包括由3D打印成型于所述鞋中底10的底部表面的下贴合面,用于结合鞋大底30。所述鞋大底30即鞋中底10之下的用于直接接触地面的鞋底组成部分,通常所述鞋大底30的下表面轮廓设计为增加摩擦,并采用具有耐磨性的材料如天然橡胶、人工橡胶、弹性体,热塑性弹性体(TPE),泡沫状塑料,凝胶状塑料及其组合等制成。所述下贴合面用于提供所述鞋中底10与鞋大底30之间粘接的接触面,用于实现粘接的黏合剂包括氯丁胶粘剂、聚氨酯胶粘剂、SBS胶粘剂等。
在某些实施方式中,所述下贴合面沿着所述鞋中底10的底部轮廓呈环形结构。所述下贴合面的外轮廓顺应所述鞋中底10下表面外轮廓,并采用环形结构减轻鞋底重量,在环形结构的上、下接触面上进行鞋中底10与鞋大底30的粘接。
基于本申请提供的用于鞋类制品的鞋中底,针对不同的目标用户,根据目标用户自身的个性化需求与特点如步行畸形状态或步行习惯、脚形轮廓、生理状态如足底健康、下肢关节、身体稳定性、原始的足压分布状态等进行量化,将实际测量获得的数据进行分析评价并与鞋中底的结构设计关联,基于目标用户的不同需求选择鞋中底的预设厚度与鞋中底拓扑结构或晶格结构的三维轮廓及鞋中底不同区域的结构强度,以实现基于目标用户个人的特定条件对其足底压力进行调整;再者,本申请的鞋中底中对承压不同的足压区域压之间设计为过渡渐变形式,可使鞋中底具有良好的缓冲性能。
本申请在第二方面还公开了一种鞋类制品,其包括:鞋大底,用于接触地面;如上述各实施例中任一实现方式所述的鞋中底,以及结合于所述鞋中底顶部周沿以包裹目标用户脚面 的鞋面。
请继续参阅图15,如图15所示,所述鞋类制品包括鞋中底10、鞋面20以及鞋大底30。针对所述鞋大底与鞋面分别的结构、材质以及与鞋中底的结合方式还可参照前述实施例。
在某些实施方式中,所述鞋面20的尺寸或张弛度与测量获得的目标用户的脚型轮廓数据相关。例如,基于所述目标用户的脚型轮廓数据,将所述鞋面20的尺寸与张弛度设计为贴合于所述目标用户的足面轮廓;又或将所述鞋面20设计为鞋面20内轮廓与目标用户的足面之间为预设的间隙。基于目标用户的脚面宽度与高度,选择设计所述鞋面20的尺寸与张弛度。
所述尺寸即鞋面20三维轮廓的大小,所述张弛度即所述鞋面20的可调整性或弹性,可用于评价所述鞋面20的纵向、横向的可延展性及折弯特性。
在某些实施方式中,所述鞋面20的尺寸或张弛度与测量获得的目标用户的步态数据相关。基于所述目标用户的步态数据,确定目标用户在运动状态下的足面状态以及弯折度等足面轮廓的变化,由此确定所述鞋类制品鞋面20的尺寸或张弛度,例如,在容易产生弯折的脚掌部选择高延展性的材料以增加弯折区域的张弛度。
在某些实施方式中,所述鞋面20的尺寸或张弛度与测量获得的目标用户的脚型轮廓数据与步态数据相关。由目标用户在静止状态与运动状态的足面轮廓与运动习惯对鞋面20的影响,选择相适应的鞋面材料与鞋面结构设计。
在某些实施方式中,所述鞋面20的设计还参考所述目标用户的足部健康状态。例如,对于足面具有创伤的目标用户,基于医疗养护的目的,可选择为柔性且质地轻盈的透气性材料制作鞋面20,并确保鞋面20具有足够的张弛度。
在某些实施方式中,所述鞋类制品为矫形鞋。所述矫形鞋即为对应于需要进行足部矫正的用户群体适用的具有矫正功能的鞋类制品,也即,有助于使不正常足部保持或基本保持正常步态的鞋类制品。例如对于因先天足部畸变,后天足部疾病如小儿麻痹引起的足踝病变,足部老化,以及步态习惯不佳引发的足部变形等因素使得足部异常的用户所特别制作的鞋类制品。具体的,基于对目标用户的不同的足部状态的压力分布采集与医疗状态分析,并结合其脚型轮廓,依照本申请提供的鞋类制品的鞋中底及鞋面、鞋大底的设计方法确定对应的鞋类制品结构与材料。
应理解的,所述矫形鞋为其结构设计具有对足部矫正功能的鞋类统称,当然也包括矫正靴或矫形鞋等鞋类制品。其中,所述矫正功能主要为对足底病变或异常的调整,对足底疾病或异常的矫正效果可体现为治疗、预防或舒缓等。
在某些实施方式中,所述矫形鞋为糖尿病足鞋,也可简称为糖足鞋。所述糖足鞋即对应于具有糖尿病足的目标用户足部特有的因糖尿病引起的足部疾病或病变可能而制作的鞋类制品,对糖尿病患者的用户群体具有适用的矫正或矫形功能。针对于糖足病患者,通常其跖骨以及足跟部为胼胝高发区域,而医学上通常认为足底最大压强与足病变具有较高的相关性,糖尿病患者足底最大压强处即可能为足部溃疡发生处。由本申请的鞋类制品,针对于具有糖足病的目标用户,所述鞋类制品减小目标用户足底压力峰值,增加足底接触面积,并且可选择性的针对目标用户的足底病变区域或拟定的保护区域设计鞋底结构以缓解区域压力,实现糖足鞋的功能。所述拟定的保护区域即针对无明显足底疾病伤口的糖尿病患者,针对医学统计分析以及由目标用户的实测足压数据、步态数据获取的胼胝、溃疡等疾病高发区域。
在此,本申请提供的鞋类制品,针对不同的目标用户,可将目标用户自身的个性化需求与特点如步行畸形状态或步行习惯、脚形轮廓、生理状态如足底健康、下肢关节、身体稳定性、原始的足压分布状态等关联至鞋中底的结构,由此确定对目标用户足压调整方式,例如基于目标区域及干预区域,并在鞋中底的目标区域将截面厚度设置为小于基准厚度,将干预区域的截面厚度设置为大于基准厚度,又如基于第一干预区域与第二足压干预区域,又或基于确定腰窝部隆起高度等,由此可实现鞋中底不同区域的强度调整,基于目标用户个人的特定条件对其足底压力进行调整,并可基于目标用户需求确定鞋面结构。
本申请在第三方面还提供了一种用于鞋类制品的鞋中底的三维数据处理方法,所述三维数据的处理方法可用于形成3D打印设备的三维数据切片。
请参阅图16,显示为本申请的三维数据处理方法在一实施例中的流程示意图,所述三维数据处理方法包括以下步骤:
在步骤S100中,对目标用户的鞋中底进行建模,以形成具有预设轮廓的三维鞋中底模型。
在某些实施方式中,基于鞋楦或基于目标用户的脚型轮廓数据建立鞋中底初始的三维轮廓,以得到贴合特定目标用户的足型或顺应目标用户群体足型规律的模型轮廓。
在某些实施方式中,基于目标用户的足压数据及脚形轮廓数据对目标用户的鞋中底进行建模,其中,所述足压数据包括目标用户的实测足压数据与期望足压数据。具体的,在确定鞋中底三维模型轮廓的过程中,预先基于目标用户的脚型轮廓数据获得贴合目标用户足型的三维轮廓,例如确定鞋中底轮廓的大小,基于目标用户的足压数据,对鞋中底的三维轮廓进一步调整,例如,通过足压数据确定目标用户足压异常如足压偏高的区域,将该区域对应的 鞋底厚度降低,以使得获得的鞋中底实体在穿着状态下该区域分担的足压减小。
在某些实施方式中,S100中还包括在鞋中底模型区域内设置晶格结构的基本单元或在鞋中底模型三维轮廓内设置拓扑结构的步骤,所述拓扑结构或为晶格结构的多个基本单元的结构以及属性与预期的鞋中底拓扑结构或晶格结构的强度有关,根据预期的鞋中底模型对应实体强度确定拓扑结构或晶格结构的强度设计,以确定拓扑结构在不同区域的结构特性,或确定晶格结构在鞋中底中不同区域的基本单元形式并进行建模。在具体实现方式上,可利用预置的为晶格结构的多个基本单元对目标用户的鞋中底进行建模,以形成为晶格结构的鞋中底模型;又或,预先确定三维鞋中底模型轮廓,基于选用的晶格结构基本单元在鞋中底模型中进行填充;再或,可利用拓扑结构对目标用户的鞋中底进行建模以形成预设的鞋中底模型轮廓;又再或在确定鞋中底模型轮廓后以拓扑结构进行填充。
应连接的,本申请提供的三维数据处理方法可用于实现对本申请第一方面提供的任一实施方式所述的鞋中底的三维模型进行处理,相应的,所述晶格结构以及拓扑结构的几何结构、连接方式、由不同打印参数如几何结构参数晶格结构或拓扑结构的体积密度、又或打印材料、能量辐射密等影响三维模型中模型区域对应的实体结构受力强度的方式可参照本申请第一方面提供的实施例。
在某些示例中,所述对目标用户的鞋中底进行建模以形成具有预设轮廓的三维鞋中底模型的步骤中,在确定的鞋中底模型轮廓中设置晶格结构以对鞋中底轮廓区域进行填充形成鞋中底模型,在一些实例中,所述对目标用户的鞋中底进行建模的步骤中,所述晶格结构在所述三维鞋中底模型的不同位置呈拉伸、扭曲、或压缩变形结构。如此,步骤S100中所述鞋中底模型的晶格结构在所述三维鞋中底模型的不同位置可能呈拉伸、扭曲、或压缩变形结构。
在某些实施方式中,对于采用连接杆形成基本单元的晶格结构或采用面状体为基本单元的晶格结构模型,所述晶格结构中的每一个基本单元结构为相同或近似相同的几何结构,也即,所述晶格结构中的基本单元之间具有一定周期性,所述晶格结构亦在不同的位置呈拉伸、扭曲或压缩变形结构。
在某些实施方式中,所述晶格结构的实体呈连接杆形式,其中,所述晶格结构的几何结构包括多面体、以及球状体,所述多面体包括锥形体、菱形体、以及星状体中的一种或多种的组合;或,所述晶格结构的实体呈壁面形式,其中,所述晶格结构的几何结构包括多面体、以及球状体,所述多面体包括锥形体、菱形体、以及星状体中的一种或多种的组合。
在步骤S100中,所述三维鞋中底模型包括:对应目标用户脚后跟的后跟部,对应所述目 标用户前脚掌的脚掌部,以及位于所述后跟部与脚掌部之间且对应所述目标用户足弓的腰窝部。
在某些实施方式中,所述腰窝部具有预设高度的隆起部分用于吻合所述目标用户的足弓。所述腰窝部的隆起高度与三维鞋中底模型的实体结构的受力强度相关,即关联于鞋中底的足压分布,具体确定腰窝部的隆起高度的方式还可参照前述实施例。
在步骤S110中,利用获得的目标用户的足压数据及脚形轮廓数据对所述三维鞋中底模型进行处理以在所述三维鞋中底模型中的后跟部和/或脚掌部分确定至少一个第一足压干预区域。
在某些实施方式中,S110中还包括利用获得的目标用户的足压数据及脚形轮廓数据对所述三维鞋中底模型进行处理以在所述三维鞋中底模型中确定至少一个第二足压干预区域的步骤。
在某些实施方式中,所述目标用户的足压数据及脚形轮廓数据是通过测量或统计获取的。具体的,所述目标用户的足压数据及脚形轮廓数据的确定方式,还可参照本申请第一方面提供的实施例。
在某些实施方式中,所述至少一个第一足压干预区域或/及第二足压干预区域中的拓扑结构或晶格结构的受力强度与计算获得的期望足压数据相关,所述期望足压数据小于对应所述至少一个第一足压干预区域的实测足压数据;所述期望足压数据大于对应所述至少一个第二足压干预区域的实测足压数据。
即如本申请第一方面提供的实施例所述,所述第一足压干预区域为预期减小足压的区域,所述第二足压干预区域为预期增大足压的区域。
基于所述第一足压干预区域内拓扑结构或晶格结构受力强度的弱化值,或基于第二足压干预区域内拓扑结构或晶格结构受力强度的强化值,确定对应的区域内体积密度或打印材料等参数的调整。
在某些实施方式中,所述期望足压数据是基于测量获得的目标用户的实测足压数据及对应的医疗干预数据计算获得的。由目标用户的实测足压数据与医疗干预数据共同确定期望足压数据,确保鞋中底结构在以预期目标调整用户足部压力分布并具有预期的强度和可靠性。所述实测足压数据确定目标用户足部压力分布状态,由医疗干预数据确定所需进行的压力分布调整。
在某些实施方式中,所述期望足压数据根据医疗干预数据所表征的目标用户所处的医疗 阶段与实测足压数据获得。所述医疗干预数据还可包括目标用户的生理检测数据分析所得的目标用户在某一疾病上所处的阶段。
在此,对所述期望足压数据、医疗干预数据的定义以及其与第一足压干预区域或第二足压干预区域的关联方式,还可参照本申请第一方面提供的实施例。
基于确定的第一足压干预区域或/及第二足压干预区域的位置,在步骤S120中,弱化所述至少一个第一足压干预区域中的拓扑结构或晶格结构的受力强度,以使其小于所述至少一个第一足压干预区域之外的拓扑结构或晶格结构的受力强度。
在某些实施方式中,所述鞋中底的三维数据处理方法中还包括强化所述至少一个第二足压干预区域中的拓扑结构或晶格结构的受力强度,以使其大于所述至少一个第二足压干预区域之外的拓扑结构或晶格结构的受力强度的步骤。
在某些实施例中,所述弱化所述至少一个第一足压干预区域中的拓扑结构或晶格结构的受力强度的步骤或强化所述至少一个第二足压干预区域中的拓扑结构或晶格结构的受力强度的步骤中,所述至少一个第一足压干预区域或/及第二足压干预区域中的所述拓扑结构或晶格结构的受力强度与计算获得的期望足压数据及测量获得的脚形轮廓数据相关。
在某些实施例中,所述弱化所述至少一个第一足压干预区域中的拓扑结构或晶格结构的受力强度或强化所述至少一个第二足压干预区域中的拓扑结构或晶格结构的受力强度的步骤中,所述至少一个第一足压干预区域或/及第二足压干预区域中的所述拓扑结构或晶格结构的受力强度与计算获得的期望足压数据及测量获得的脚形轮廓数据、以及步态数据相关。
对所述第一足压干预区域、第二足压干预区域、足压数据、脚形轮廓数据、期望足压数据以及步态数据的定义以及确定方式,可参照本申请第一方面提供的实施例。
在确定所述至少一个第一足压干预区域的拓扑结构或晶格结构的受力强度或至少一个第二足压干预区域中的拓扑结构或晶格结构的受力强度后,可基于所述受力强度确定鞋中底三维模型中的打印参数。
在某些实施方式中,所述第一足压干预区域、第二足压干预区域对应的晶格结构的受力强度可由晶格结构的体积密度、晶格体结构、打印材料、打印工艺、以及后处理工艺中的至少一种确定的,或,所述第一足压干预区域、第二足压干预区域的拓扑结构的受力强度是通过确定拓扑结构的体积密度、打印材料、打印工艺、以及后处理工艺中的至少一种确定的。
在某些实施方式中,所述晶格结构的受力强度是通过每一晶格结构的体积密度、晶格体结构、打印材料、打印工艺、以及后处理工艺中的至少一种确定的;或,所述拓扑结构的受 力强度是通过确定拓扑结构的体积密度、打印材料、打印工艺、以及后处理工艺中的至少一种确定的。
在一些实例中,所述晶格结构的体积密度与杆径粗细、晶格壁面厚度、晶格大小、成型后晶格杆体的密度相关;或所述拓扑结构的体积密度与拓扑结构的杆径粗细、成型后拓扑结构杆体密度相关。
对通过确定晶格体结构、体积密度、打印材料、打印工艺、以及后处理工艺以影响晶格结构或拓扑结构的受力强度的实现方式,还可参照本申请在第一方面提供的实施例。
根据所述拓扑结构或晶格结构的体积密度、打印材料、打印工艺等强度的影响因素与其结构强度的对应关系,即可根据对目标用户预期的足压压力分布的设置选择调整对应的第一足压干预区域或第二足压干预区域的受力强度,例如调整拓扑结构或晶格结构的体积密度如连接杆的直径、长度、连接形式如价数等结构参数。具体的,对所述第一足压干预区域的弱化可通过减小晶格结构的体积密度实现,可通过增加基本单元连接杆长度或减小基本单元连接杆直径或减小壁厚实现体积密度降低,或改变基本单元的连接形式,使得基本单元节点之间连接程度降低即采用稀疏的对应于低价数的连接方式,使得第一足压干预区域内晶格结构的体积密度降低;又或,通过减小第一足压干预区域内的拓扑结构的节点连接数或杆体杆径,使得第一足压干预区域内的拓扑结构体积密度降低。
在某些实施方式中,所述步骤S120中对第一足压干预区域的受力强度的调整还包括对第一足压干预区域内的拓扑结构在不同区域的属性设置或对晶格结构基本单元的属性设置,所述属性用于指示对应于3D打印设备控制装置对能量辐射装置进行辐射控制的辐射光强、辐射时长或频率中的至少一种,使得模型中的第一足压干预区域的拓扑结构或晶格结构在打印中对应接受的辐射能量值降低。具体的,将第一足压干预区域在所述鞋中底三维模型中进行标记,使得后续形成的鞋中底三维数据切片数据用于3D打印设备打印时,该第一足压干预区域的属性设置由3D打印设备的控制装置读取,对应的控制装置控制打印设备的能量辐射装置以较低的能量进行足压干预区域的打印,由此获得的鞋中底打印件中第一足压干预区域内的拓扑结构或晶格结构的材料密度较低,其受力强度小于足压干预区域之外的拓扑结构或晶格结构的受力强度。
在步骤S130中,对所述至少一个第一足压干预区域之内的拓扑结构或晶格结构的受力强度与第一足压干预区域之外的拓扑结构或晶格结构的受力强度进行处理,使位于所述第一足压干预区域之外拓扑结构或晶格结构的受力强度朝向所述至少一个第一足压干预区域之内延 伸的拓扑结构或晶格结构的受力强度的变化呈渐变过渡。
在某些实施例中,步骤S130中还包括,对所述至少一个第二足压干预区域之内的拓扑结构或晶格结构的受力强度与第二足压干预区域之外的拓扑结构或晶格结构的受力强度进行处理,使位于所述第二足压干预区域之外拓扑结构或晶格结构的受力强度朝向所述至少一个第二足压干预区域之内延伸的拓扑结构或晶格结构的受力强度的变化呈渐变过渡。
在某些实施例中,所述渐变过渡包括晶格体结构渐变例如晶格结构基本单元大小渐变、基本单元疏密渐变、晶格壁面厚度渐变、晶格杆径长度渐变、晶格杆径粗细渐变、晶格结构基本单元的几何结构(如几何结构类型)的连续渐变,以及包括由后处理工艺或打印工艺等形成晶格结构的性能渐变如成型后的晶格结构密度渐变、晶格结构材料渐变;又或,所述渐变过渡为拓扑结构的结构体渐变例如拓扑结构中连接杆体的杆径粗渐变、拓扑结构的杆径间连接方式渐变形成的体积渐变或制造工艺、后处理工艺形成的拓扑结构材料密度渐变等。
在此,可在三维数据处理中对鞋中底模型的拓扑结构或晶格结构进行处理以形成晶格体结构强度渐变或拓扑结构强度渐变;又或,可通过确定的第一足压干预区域(第二足压干预区域),对位于所述第一足压干预区域(第二足压干预区域)之外拓扑结构或晶格结构朝向所述至少一个第一足压干预区域(第二足压干预区域)之内延伸的拓扑结构或晶格结构区域进行属性设置,以指示该区域在制作中如打印中的打印参数。例如,在一实施场景中,将第一足压干预区域之外朝向所述第一足压干预区域延伸的方向对应区域的打印能量辐射密度逐渐增加或逐渐减小,从而形成受力强度的渐变过渡;再或,通过确定的第一足压干预区域,对位于所述第一足压干预区域之外拓扑结构或晶格结构朝向所述至少一个第一足压干预区域之内延伸的拓扑结构或晶格结构区域进行标记,以指示后处理工艺。
在此,对位于所述第一足压干预区域(第二足压干预区域)之外拓扑结构或晶格结构朝向所述至少一个第一足压干预区域(第二足压干预区域)之内延伸的拓扑结构或晶格结构区域进行属性设置以形成渐变过渡的方式还可参照本申请第一方面提供的实施例,例如,确定第一足压干预区域或第二足压干预区域在鞋中底中的位置和轮廓,以及确定交界区域,将交界区域内的拓扑结构设置为渐变过渡,或将晶格结构基本单元设置为呈过渡渐变的形式。
又如,将所述交界区域内的晶格结构设计为晶格结构的基本单元大小渐变的形式;再如,在所述交界区域的晶格结构的基本单元几何结构从第一足压干预区域外的锥形体逐渐形变,延伸至所述至少一个第一足压干预区域内形成为球状体的基本单元结构;再如,基于打印工艺设置,在所述交界区域的晶格结构从第一足压干预区域之外朝向第一足压干预区域延伸, 对应的晶格结构基本单元呈现出材料密度渐变的形式。
在一些示例中,通过令所述交界区域内的拓扑结构连接方式改变使得交界区域的受力强度呈渐变过渡,例如可顺应延伸方向令拓扑结构中子区域内的连接杆节点处的公用连接数或区域内所有节点的平均公用连接数减小,又或,顺应延伸方向令拓扑结构中子区域中拓扑结构的杆径粗细逐渐减小。
在此,对于所述交界区域的定义与确定方式,可参照本申请第一方面提供的实施例;同时,令第一足压干预区域之外晶格结构朝向所述第一足压干预区域之内延伸的晶格结构呈渐变过渡,或令第二足压干预区域之外晶格结构朝向所述第二足压干预区域之内延伸的晶格结构呈渐变过渡的实现方式也可参照本申请第一方面提供的实施例,此处不再赘述。
在某些实施方式中,在步骤S130中完成处理后,确定所述第一足压干预区域之外的晶格结构的受力强度朝向所述至少一个第一足压干预区域之内延伸的拓扑结构或晶格结构的受力强度的变化呈渐变过渡,或确定所述第二足压干预区域之外的拓扑结构或晶格结构的受力强度朝向所述至少一个第二足压干预区域之内延伸的拓扑结构或晶格结构的受力强度的变化呈渐变过渡,所述三维数据处理方法中还包括生成拓扑结构或晶格结构的步骤,以填充所述三维鞋中底模型的轮廓。在此,所述拓扑结构或晶格结构可基于设置完成的参数如第一足压干预区域、第二足压干预区域的位置,不同区域预设的拓扑结构或晶格结构结构形态、杆径大小、杆体长度、呈渐变过渡的形式、不同区域晶格结构的扭曲变形等预置完成的参数生成。
在某些实施方式中,在步骤S120中弱化第一足压干预区域或强化第二足压干预区域后还包括生成填充鞋中底模型的拓扑结构或晶格结构的步骤。也即,在实际场景中,将所述拓扑结构或晶格结构填充至三维鞋中底模型轮廓的步骤可以在S100、S110、S120、S130的任一步骤中进行,也即,在生成切片数据前形成以期望足压分布对应的由拓扑结构或晶格结构形成鞋中底模型即可。
容易理解,所述拓扑结构或晶格结构与鞋中底的三维轮廓共同决定由鞋中底模型获得的鞋中底实体的期望足压数据。通常,所述拓扑结构或晶格结构的受力强度由材料、体积密度、打印工艺、及后处理工艺中的至少一种确定,在采用拓扑结构或晶格结构填充鞋中底轮廓的过程中,可通过改变拓扑结构或晶格结构的体积密度改变受力强度,以获得期望足压分布。
在一种实现方式中,在确定鞋中底模型的三维轮廓、腰窝部的隆起高度以及第一足压干预区域或/与第二足压干预区域后,弱化第一足压干预区域强度或/与强化第二足压干预区域强度,以确定鞋中底模型中不同区域的受力强度,基于所述拓扑结构或晶格结构的体积密度与 强度的函数关系,生成拓扑结构或晶格结构以填充鞋中底模型。
又或,在某些实施方式中,在S100中采用预置的拓扑结构或晶格结构对鞋中底进行建模,而后在S110、S120、S130中基于对鞋中底轮廓的调整以及不同区域的强度设定,相应的对拓扑结构或晶格结构进行调整。
在一些实例中,所述三维数据处理方法还包括确定所述腰窝部的隆起部分的高度及其受力强度的步骤;其中,所述腰窝部的隆起部分的高度及其受力强度与计算获得的所述目标用户的期望足压数据及脚形轮廓数据及步态数据相关。
在某些实施方式中,所述腰窝部的隆起部分的高度及其受力强度与计算获得的所述目标用户的足压数据及脚形轮廓数据及步态数据相关。
在此,确定所述腰窝部的隆起部分的高度及其受力强度的实施方式,还可参照本申请第一方面提供的实施例。
特别的,在具体实现方式上,所述确定腰窝部隆起高度及受力强度的步骤可在不同时刻执行以实现,例如,步骤S100中确定三维鞋中底的模型轮廓区域之后,先基于目标用户的足压数据及脚形轮廓数据确定至少一个第一足压干预区域或/及第二足压干预区域,而后确定所述腰窝部的隆起高度以匹配目标用户的脚型轮廓,又或,可先确定目标用户的腰窝部隆起高度,而后确定至少一个第一足压干预区域或/及第二足压干预区域;再或,可在对所述至少一个第一足压干预区域之内的拓扑结构或晶格结构的受力强度与第一足压干预区域之外的拓扑结构或晶格结构的受力强度进行处理,使位于所述第一足压干预区域之外拓扑结构或晶格结构的受力强度朝向所述至少一个第一足压干预区域之内延伸的拓扑结构或晶格结构的受力强度的变化呈渐变过渡后,确定腰窝部的隆起高度及受力强度。
在某些实施方式中,所述三维数据处理方法还包括依据测量获得的所述目标用户的形体数据、体重数据、脚形轮廓数据、步态数据、或足压数据中的至少一种数据调整所述三维鞋中底模型预设厚度的步骤。所述鞋中底的厚度的确定方式、以及形体数据、体重数据、脚形轮廓数据、步态数据、足压数据的定义(获取方式)所述还可参照本申请第一方面提供的实施例。
在某些实施方式中,所述三维数据处理方法还包括在所述三维鞋中底模型的顶部表面构建缓冲层模型的步骤。在一种示例中,所述缓冲层模型采用拓扑结构或采用为晶格结构的多个基本单元进行构建。
在某些实施方式中,所述缓冲层模型由3D打印设备可读取的晶格结构组成,如所述缓 冲层模型由预置的鞋中底的晶格结构形式的基本单元组成。所述缓冲层模型中晶格结构的杆径或壁厚小于所述三维鞋中底模型中晶格结构的杆径或壁厚,且所述缓冲层模型中晶格结构的晶格体积小于所述三维鞋中底模型中晶格结构的晶格体积。
在某些实施方式中,所述缓冲层模型由3D打印设备可读取的拓扑结构组成,所述缓冲层中拓扑结构的杆体杆径小于鞋中底拓扑结构中的杆体杆径;又或,所述缓冲层模型中拓扑结构的节点连接数小于所述鞋中底拓扑结构中的节点连接数,以减小缓冲层硬度,使其易于发生弹性变形,实现缓冲功能。
在某些实施方式中,所述缓冲层模型的轮廓设计、拓扑结构或晶格结构设计还与所述目标用户的期望足压数据、步态数据、脚型轮廓等相关,如所述缓冲层上表面轮廓可顺应目标用户脚型轮廓设计。
在此,对所述缓冲层的功能及结构或打印参数的设计方式,还可参照申请第一方面提供的实施例。
在某些实施方式中,所述三维数据处理方法还包括在所述三维鞋中底模型的顶部表面构建上贴合面模型的步骤。所述上贴合面模型对应的上贴合面用于粘接鞋面,对鞋面与鞋底的连接提供可粘粘的接触面,所述鞋面即用于与鞋中底形成包围目标用户足部的覆盖面。在一种实现方式中,所述上贴合面可设计为环状结构,用于提供鞋面与鞋中底粘接的环状接触面,其外轮廓例如顺应所述鞋中底的轮廓。
在某些实施方式中,所述上贴合面模型为非镂空的填充结构,具有连续的上、下表面,以实现对应实体更好的黏着效果。对应获得的上贴合面的上、下表面分别粘接所述鞋面、鞋中底,粘接的黏合剂包括氯丁胶粘剂、聚氨酯胶粘剂、SBS胶粘剂等。
在一些实例中,所述三维数据处理方法还包括利用预置的为晶格结构的多个基本单元或利用拓扑结构在所述三维鞋中底模型与所述上贴合面模型之间构建缓冲层模型的步骤。也即,将采用晶格结构的缓冲层模型设置在三维鞋中底模型之上,并在缓冲层模型上构建上贴合面模型。关于所述缓冲层模型,可参照前述实施例。
在某些实施方式中,所述三维数据处理方法还包括在所述三维鞋中底模型的底部表面构建下贴合面模型的步骤,所述下贴合面用于结合鞋大底。在某些实施方式中,所述下贴合面模型为非镂空的填充结构,具有连续的上、下表面,以实现对应实体更好的黏着效果。
在某些实施方式中,所述下贴合面模型为非镂空的填充结构,具有连续的上、下表面,以实现对应实体更好的黏着效果。
在某些实施方式中,所述下贴合面模型沿着所述三维鞋中底模型的底部轮廓呈环形结构。
应当认为,由于所述鞋中底模型中腰窝部的隆起高度,确定的第一足压干预区域及第二足压干预区域位置及结构强度均影响最终的鞋中底实体在被穿着状态下的压力分布,本申请所提供的三维数据处理方法中步骤S110、S120、S130执行的数据处理过程并不以图16所示实施例为限制,在其中任一步骤中进行的调整后,均可跳转至其余步骤进行调整,也即,S110、S120、S130在形成三维数据切片之前可重复进行以确保形成的鞋中底实体在穿着状态下对应的压力分布与期望压力数据趋近,并且循环调整的过程不以图示顺序为限制,例如,还可先进行S110、S120中确定足压干预区域并强化或弱化拓扑结构或晶格结构强度,后又执行调整腰窝部隆起高度的步骤。
图16显示为一种可实现本申请提供的鞋中底三维数据数据处理方法的实施例,以此为基础,在有些可替换的实施方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行。
在步骤S140中,形成用于3D打印设备可读的鞋中底三维切片数据。
所述3D打印设备包括采用丝材熔融挤出、材料微滴喷射、粉材平铺熔化、粘合剂喷射、或光敏树脂叠层固化的3D打印设备,例如:SLS设备、EBM设备、MJF设备、CLIP设备、SLA设备、或DLP设备。所述3D打印设备基于读取的三维切片数据,能量辐射装置在控制装置的控制下,投射所述拓扑结构或晶格结构对应的图像,以及由结构强度确定的图像的辐射能量密度分布,将待固化材料以预设的三维结构与强度打印为所述鞋中底的实体。
3D打印设备执行打印过程前,前处理中需要生成打印目标物的分层数据,所述三维数据切片包括完整的经过步骤S110~S130处理后的打印目标物即鞋中底的分层处理方法如每一层配置的层高与每一层的分层(切片)图形。所述分层(切片)图形是预先基于三维鞋中底模型沿Z轴方向(即沿高度方向)进行横截划分而得到的。其中,在每相邻横截划分所形成的横截面层上形成由三维鞋中底模型的轮廓所勾勒的切片图形,在所述横截面层足够薄的情况下,可认定所述横截面层上横截表面和下横截表面的轮廓线一致。对基于面投影的3D打印设备,各切片图形需描述成分层图像。对基于扫描照射的3D打印设备,各切片图形用扫描路径上的坐标数据描述。
在某些实施方式中,所述三维切片数据中还包括各切片的属性,如对于足压干预区域的切片,所述三维切片数据中包括用于指示打印过程的切片属性,所述属性用于指示对应于3D 打印设备控制装置对能量辐射装置进行辐射控制的辐射光强、辐射时长或频率中的至少一种,使得模型中的足压干预区域在打印中对应接受的辐射能量值降低,获得对应具有较低的材料密度的足压干预区域。
在某些实施方式中,所述拓扑结构或晶格结构的材料包括光固化树脂材料、热塑性橡胶(TPR)、热塑性弹性体;其中,所述热塑性弹性体包括聚氨酯弹性体(TPU)、尼龙弹性体(TPAE)、聚酯弹性体(TPEE)、EVA弹性体及有机硅弹性体。所述拓扑结构或晶格结构材料可以为上述任意一种,又或为两种以上材料的混合物。
在某些实施方式中,所述拓扑结构或晶格材料还可以为聚丙烯、丙烯腈丁二烯苯乙烯(ABS)、聚碳酸酯(PC)、PC-ABS、PLA、聚苯乙烯、木质素、聚酰胺、聚酰胺泡沫、具有诸如玻璃或金属颗粒的添加物的聚酰胺、甲基丙烯酸甲酯-丙烯腈-丁二烯-苯乙烯共聚物、诸如聚合物-陶瓷复合材料的可吸收材料、以及其他类似的适宜于鞋中底制作的材料,所述拓扑结构或晶格结构采用的材料不以上述例举为限制。
本申请在第四方面还公开了一种应用于3D打印设备的3D打印方法,所述3D打印设备包括:用于向打印面辐射能量的能量辐射装置、以及用于承载经能量辐射固化而得的三维物体的构件平台。
所述3D打印设备包括采用丝材熔融挤出、材料微滴喷射、粉材平铺熔化、粘合剂喷射、或光敏树脂叠层固化的3D打印设备,例如:SLS设备、EBM设备、MJF设备、CLIP设备、SLA设备、或DLP设备。
为便于阐述和说明,在本申请的实施例中,以DLP设备、SLA设备及SLS设备为例对所述3D打印方法进行说明,但所述3D打印方法在不同的3D打印设备中的应用不以此为限制。
所述能量辐射装置为基于面投影的能量辐射装置或基于扫描辐射的能量辐射装置。常见的3D打印设备如基于底面曝光的DLP(Digital Light Procession,数字光处理,简称DLP)设备中,其能量辐射装置为基于面投影的投影装置,包括DMD芯片、控制器和存储模块等。其中,所述存储模块中存储将3D物件模型分层的分层图像。所述DMD芯片在接受到控制器的控制信号后将对应分层图像上各像素的光源照射到容器底面。其中,DMD芯片外观看起来只是一小片镜子,被封装在金属与玻璃组成的密闭空间内,事实上,这面镜子是由数十万乃至上百万个微镜所组成的,每一个微镜代表一个像素,所投影的图像就由这些像素所构成。DMD芯片可被简单描述成为对应像素点的半导体光开关和微镜片,所述控制器通过控制 DMD芯片中各光开关来允许/禁止各微晶片反射光,由此将相应分层图像经过容器的透明底部照射到光固化材料上,使得对应图像形状的光固化材料被固化,以得到图案化的固化层。
又或常见的SLA(Stereo lithography Apparatus,立体光固化成型)设备,对于底面曝光或顶面曝光的SLA设备来说,其能量辐射装置为基于扫描辐射的能量辐射装置,包括激光发射器、位于所述激光发射器射出光路上的透镜组和位于所述透镜组出光侧的振镜组、以及控制振镜的电机等,其中,所述激光发射器受控的调整输出激光束的能量,例如,所述激光发射器受控的发射预设功率的激光束以及停止发射该激光束,又如,所述激光发射器受控的提高激光束的功率以及降低激光束的功率。所述透镜组用以调整激光束的聚焦位置,所述振镜组用以受控的将激光束在所述容器底面或顶面的二维空间内扫描,经所述光束扫描的光固化材料被固化成对应的图案固化层,所述振镜组振镜的摆幅决定SLA设备的扫描尺寸。
常见的,在底曝光的设备(例如DLP或LCD设备)中所述构件平台悬设于打印基准面的上部,在顶曝光的设备(例如DLP或SLA设备)中,所述构件平台悬设于打印基准面(通常指树脂槽的液面)的下部,用于附着并积累经照射固化的图案固化层。通常,所述构件平台的材料与光固化材料不同。构件平台受3D打印设备中Z轴驱动机构的带动,沿Z轴(竖直)方向移动以便于待固化材料填充到构件平台与打印基准面之间,使得3D打印设备中的能量辐射系统可通过能量辐射照射待固化材料,使得经照射的材料固化并累积的附着在所述构件平台上。为了精准的对每层固化层的照射能量进行控制,构件平台及所附着的已制造的3D物体部分需移动至与所述打印基准面之间间距最小值为待固化的固化层的层厚的位置,以及由所述Z轴驱动机构带动所述构件平台上升以使所述固化层与所述容器的底部分离。
对于SLS(Selective Laser Sintering,选择性激光烧结)设备来说,其能量辐射装置由激光发射器、平场聚焦透镜与振镜系统组成,所述激光发射器与振镜系统受控的调整输出激光束的能量,例如,所述激光发射器受控的发射预设功率的激光束以及停止发射该激光束,又如,所述激光发射器受控的提高激光束的功率以及降低激光束的功率。所述平场聚焦透镜用以调整激光束的聚焦位置,所述振镜系统用以受控的将激光束在所述容器内打印基准面的二维空间内扫描,经所述光束扫描的光固化材料被固化成对应的图案固化层。
所述SLS设备的构件平台设置于盛放待固化材料的粉末床或烧结成型室之中,用于附着并积累经照射固化的图案固化层。在完成粉末床铺粉后,通过打印设备里的恒温设施将待固化粉末材料加热至恰好低于该粉末烧结点的某一温度,由能量辐射装置的激光跟踪打印构件的三维模型切片,将切片以对应图像复制于粉末床上,使粉末材料在激光照射下升温至熔点 之上实现烧结,并以切片对应层高实现固化,在构建完成一层后粉末床随之下降,并在现有的固化层之上开始构建对应的下一切片图形,重复上述过程至打印完成。
请参阅图17,显示为本申请的3D打印方法在一实施例中的流程示意图。
在步骤S200中,读取鞋中底三维切片数据,所述三维数据切片即如本申请第三方面提供的实施例中的任一实施方式获得的所述的用于鞋类制品的鞋中底的三维数据处理方法中处理获得的鞋中底三维切片数据。
在某些实施方式中,所述三维切片数据中还包括各切片的属性,如对于足压干预区域的切片,所述三维切片数据中包括用于指示打印过程的切片属性,所述属性用于指示对应于3D打印设备的控制装置对能量辐射装置进行辐射控制的辐射光强、辐射时长或频率中的至少一种,使得模型中的足压干预区域在打印中对应接受的辐射能量值降低,获得对应具有较低的材料密度的足压干预区域。
在步骤S210中调整所述构件平台与打印面之间的间距,以在所述打印面填充待固化材料;其中,所填充的待固化材料的厚度对应于所述鞋中底三维切片数据的切片层高。
基于三维切片数据中三维鞋中底模型切片层高,调整所述构件平台与打印面之间的间距,使得容器内的待固化材料流动的填充到所述间距内的缝隙中,或者由填料装置将光固化材料添加到所述缝隙中,以在打印面填充待固化材料,所述间距即形成待打印层的层厚,与切片中的切片层厚相对应设置。所述打印面即对应能量辐射系统顺应投射方向使得所辐射的能量与树脂的接触面,例如在底面曝光的DLP设备中为盛放待光固化材料的容器内底面。
在步骤S220中,基于所述鞋中底三维切片数据向所填充的待固化材料辐射能量,以获得相应的图案固化层。
根据所述分层图像的掩模图形,在打印期间,所述控制装置控制Z轴驱动机构和能量辐射系统对光固化层进行逐层固化。所述控制装置依据预设的打印顺序逐个的将分层图像发送给能量辐射系统,由所述能量辐射系统将所述图像照射到容器的透明底部或容器顶部,所照射的能量将容器底部的光固化材料固化成对应的图案固化层。
在基于面曝光的3D打印设备中,所述能量辐射装置为投影装置。基于投影装置初始时的光辐射强度与受控参数之间的初始对应关系以及衰减后所检测的光辐射强度与受控参数之间的对应关系,确定补偿后的受控参数,并根据所确定受控参数控制所述投影装置。其中,所述受控参数是指能够改变所述投影装置所输出的光辐射和/或照射时长的参数,其包括但不限于:供电电流、供电电压、供电时长、用于调整灰度的控制信号的占空比或电场电流等, 基于确定分层图像与受控参数的关系,将切片数据转化为受控参数并进行固化,以获得相应的图案固化层图样。
具体的,控制所述能量辐射装置进行过固化的步骤包括:控制所述能量辐射装置的辐射时长、光强、照射次数中的至少一种,根据能量装置的类型预设层厚与照射图像的能量或灰度之间的对应关系。例如,所述能量辐射装置包含激光发射器,则根据层厚与能量的对应关系控制激光发射器的输出功率。又如,所述能量辐射装置包含光源阵列和DMD芯片,则根据层厚与灰度的对应关系控制光源阵列中照射图像的各光源灰度。在具体实现方式上,还可以预设有层厚与照射时长的对应关系、或者层厚与能量和照射时长的对应关系、层厚与灰度和照射时长的对应关系,并根据当前层的层厚对能量辐射装置照射图像进行控制。在此,所述对应关系包括但不限于:对照表式对应,或预先构建调整函数等。
在步骤S230中,在所述构件平台上累积图案固化层以形成所述三维鞋中底模型所对应的用于鞋类制品的鞋中底。
在基于底面曝光的3D打印设备中,打印基准面设置在容器底部,由步骤S220固化所得的图案固化层分别附着在所述容器底面和构件平台或上一固化层之间,在具体实现上,所述控制装置在控制曝光装置照射完成后,向打印设备的Z轴驱动机构发送上升方向和转速的控制指令,所述Z轴驱动机构基于所述控制指令上升至相距容器底的预设高度,当所述Z轴驱动机构带动构件平台上升时,将图案固化层自容器底部分离。
在基于顶面曝光的3D打印设备中,打印基准面设置于待固化材料的上表面即与空气的接触面。在完成一层的固化后,附着在构件平台上的固化层在Z轴驱动机构的带动下下降,构件平台下降距离与待固化材料表面之间形成的预设高度为下一分层图像对应的厚度,该固化层上表面与打印面之间被填充后形成新的待打印层。
在步骤S240中,判断三维鞋中底模型是否打印完毕,若否,则相继执行S210、S220、S230;若是,则结束。通过执行上述步骤,经过多次填充、照射和分离操作,将各固化层累积在构件平台上以得到三维鞋中底模型对应的实体结构。
本申请在第五方面还提供一种计算机设备,请参阅图18,显示为本申请的计算机设备在一实施例中的简化结构示意图。如图18所示,所述计算机设备包括存储装置30与处理装置31。
所述存储装置30,用于存储至少一个程序,以及三维鞋中底模型。所述存储装置30包含非易失性存储器和系统总线。其中,所述非易失性存储器举例为固态硬盘或U盘等。所述系 统总线用于将非易失性存储器与CPU连接在一起,其中,CPU可集成在存储装置30中,或与存储装置30分开封装并通过系统总线与非易失性存储器连接。
所述处理装置31与所述存储装置30相连,用于执行至少一个程序,以协调所述存储装置30对三维鞋中底模型执行本申请提供的如本申请第三方面提供的实施例中的任一实施方式中的三维数据处理方法。
本申请第六方面还提供一种计算机可读存储介质,用于存储至少一程序,所述至少一程序在被调用时执行并实现如本申请上述三维数据处理方法任何一个实施例所述的方法,比如图11实施例中所述的三维数据处理方法。
本申请还提供一种计算机可读存储介质,用于存储至少一程序,所述至少一程序在被调用时执行并实现如本申请第四方面提供的实施例中任一实施方式所述的应用于3D打印设备的3D打印方法。
本申请提供的三维数据处理方法或3D打印方法,该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
于本申请提供的实施例中,所述计算机可读写存储介质可以包括只读存储器、随机存取存储器、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁存储设备、闪存、U盘、移动硬盘、或者能够用于存储具有指令或数据结构形式的期望的程序代码并能够由计算机进行存取的任何其它介质。另外,任何连接都可以适当地称为计算机可读介质。例如,如果指令是使用同轴电缆、光纤光缆、双绞线、数字订户线(DSL)或者诸如红外线、无线电和微波之类的无线技术,从网站、服务器或其它远程源发送的,则所述同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线电和微波之类的无线技术包括在所述介质的定义中。然而,应当理解的是,计算机可读写存储介质和数据存储介质不包括连接、载波、信号或者其它暂时性介质,而是旨在针对于非暂时性、有形的存储介质。如申请中所使用的磁盘和光盘包括压缩光盘(CD)、激光光盘、光盘、数字多功能光盘(DVD)、软盘和蓝光光盘,其中,磁盘通常磁性地复制数据,而光盘则用激光来光学地复制数据。
在一个或多个示例性方面,本申请所述的三维数据处理方法及3D打印设备的打印方法 的计算机程序所描述的功能可以用硬件、软件、固件或者其任意组合的方式来实现。当用软件实现时,可以将这些功能作为一个或多个指令或代码存储或传送到计算机可读介质上。本申请所公开的方法或算法的步骤可以用处理器可执行软件模块来体现,其中处理器可执行软件模块可以位于有形、非临时性计算机可读写存储介质上。有形、非临时性计算机可读写存储介质可以是计算机能够存取的任何可用介质。
上述实施例仅例示性说明本申请的原理及其功效,而非用于限制本申请。任何熟悉此技术的人士皆可在不违背本申请的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本申请所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本申请的权利要求所涵盖。
基于上述各示例,本申请在第七方面提供了以下各实施例,在以下说明中,通过序号代表所述各实施例,例如数字1,2,3,4可分别代表实施例1,实施例2,实施例3,实施例4。本申请在第七方面还提供了一种用于鞋类制品的鞋中底、鞋类制品、鞋中底的三维数据处理方法、应用于3D打印设备的3D打印方法以及计算机设备、计算机可读存储机制,包括以下实施例:
1.一种用于鞋类制品的鞋中底,其特征在于,所述鞋中底由3D打印的多个晶格结构组成,包括:对应目标用户脚后跟的后跟部,对应所述目标用户前脚掌的脚掌部,以及位于所述后跟部与脚掌部之间且对应所述目标用户足弓的腰窝部,所述腰窝部具有预设高度的隆起部分以支撑所述目标用户的足弓;其中,所述鞋中底中的后跟部和/或脚掌部分设有至少一个第一足压干预区域,所述至少一个第一足压干预区域内的晶格结构的受力强度小于所述至少一个第一足压干预区域之外的晶格结构的受力强度;以及所述腰窝部的隆起部分的高度及其受力强度与计算获得的所述目标用户的期望足压数据及脚形轮廓数据相关。
2.根据实施例1所述的用于鞋类制品的鞋中底,其特征在于,所述鞋中底中设有至少一个第二足压干预区域,所述第二足压干预区域位于鞋中底的后跟部、脚掌部、或腰窝部;其中,所述至少一个第二足压干预区域内的晶格结构的受力强度大于所述至少一个第二足压干预区域之外的晶格结构的受力强度。
3.根据实施例1所述的用于鞋类制品的鞋中底,其特征在于,所述鞋中底保持的预设厚度与测量获得的所述目标用户的形体数据、体重数据、脚形轮廓数据、步态数据、或足压数据中的至少一种数据相关。
4.根据实施例1或2所述的用于鞋类制品的鞋中底,其特征在于,所述至少一个第一足压 干预区域或第二足压干预区域中的所述晶格结构的受力强度与计算获得的期望足压数据相关,其中,所述期望足压数据小于对应所述至少一个第一足压干预区域的实测足压数据;所述期望足压数据大于对应所述至少一个第二足压干预区域的实测足压数据。
5.根据实施例4所述的用于鞋类制品的鞋中底,其特征在于,所述期望足压数据是基于测量获得的目标用户的实测足压数据及对应的医疗干预数据计算获得的。
6.根据实施例1或2所述的用于鞋类制品的鞋中底,其特征在于,所述至少一个第一足压干预区域或/及第二足压干预区域中的所述晶格结构的受力强度与计算获得的期望足压数据及测量获得的脚形轮廓数据相关。
7.根据实施例1或2所述的用于鞋类制品的鞋中底,其特征在于,所述至少一个第一足压干预区域或/及第二足压干预区域中的所述晶格结构的受力强度与计算获得的期望足压数据、测量获得的脚形轮廓数据、以及步态数据相关。
8.根据实施例1所述的用于鞋类制品的鞋中底,其特征在于,所述腰窝部的隆起部分的高度及其受力强度与计算获得的所述目标用户的期望足压数据及脚形轮廓数据及步态数据相关。
9.根据实施例1所述的用于鞋类制品的鞋中底,其特征在于,所述晶格结构是通过丝材熔融挤出、材料微滴喷射、粉材平铺熔化、粘合剂喷射、或光敏树脂叠层固化中的一种3D打印方式获得的。
10.根据实施例1所述的用于鞋类制品的鞋中底,其特征在于,所述晶格结构的材料包括光固化树脂材料、热塑性橡胶(TPR)、热塑性弹性体;其中,所述热塑性弹性体包括聚氨酯弹性体(TPU)、尼龙弹性体(TPAE)、聚酯弹性体(TPEE)、EVA弹性体及有机硅弹性体。
11.根据实施例1所述的用于鞋类制品的鞋中底,其特征在于,所述晶格结构的受力强度是通过每一晶格结构的体积密度、晶格体结构、打印材料、打印工艺、以及后处理工艺中的至少一种确定的。
12.根据实施例11所述的用于鞋类制品的鞋中底,其特征在于,所述体积密度是与杆径粗细、晶格壁面厚度、晶格大小、成型后晶格杆体的密度相关的。
13.根据实施例1所述的用于鞋类制品的鞋中底,其特征在于,所述鞋中底还包括由3D打印一体成型于所述鞋中底的顶部表面用于结合鞋面的上贴合面。
14.根据实施例13所述的用于鞋类制品的鞋中底,其特征在于,所述鞋中底还包括由3D打 印一体成型于所述鞋中底与所述上贴合面之间的缓冲层。
15.根据实施例1所述的用于鞋类制品的鞋中底,其特征在于,所述鞋中底还包括由3D打印一体成型于所述鞋中底顶部表面的缓冲层。
16.根据实施例14或15所述的用于鞋类制品的鞋中底,其特征在于,所述缓冲层由3D打印的多个晶格结构组成,所述缓冲层中晶格结构的杆径小于所述鞋中底中晶格结构的杆径。
17.根据实施例14或15所述的用于鞋类制品的鞋中底,其特征在于,所述缓冲层由3D打印的多个晶格结构组成,所述缓冲层中晶格结构的杆径小于所述鞋中底中晶格结构的杆径,且所述缓冲层中晶格结构的晶格体积小于所述鞋中底中晶格结构的晶格体积。
18.根据实施例1所述的用于鞋类制品的鞋中底,其特征在于,还包括由3D打印成型于所述鞋中底的底部,用于结合鞋大底的下贴合面。
19.根据实施例1所述的用于鞋类制品的鞋中底,其特征在于,所述下贴合面沿着所述鞋中底的底部轮廓呈环形结构。
20.根据实施例1所述的用于鞋类制品的鞋中底,其特征在于,所述由3D打印的多个晶格结构中的每一个具有基本相同的几何结构,所述晶格结构在不同的位置呈拉伸、扭曲、或压缩变形结构。
21.根据实施例20所述的用于鞋类制品的鞋中底,其特征在于,所述几何结构包括多面体、面状体、锥形体、菱形体、星状体、球状体中的一种或多种的组合。
22.一种鞋类制品,其特征在于,包括如实施例1-21任一项所述的鞋中底,结合于所述鞋中底顶部周缘用于包裹目标用户脚面的鞋面,以及结合于所述鞋中底的底部,用于接触地面的鞋大底。
23.根据实施例22所述的鞋类制品,其特征在于,所述鞋面的尺寸或张弛度是与测量获得的目标用户的脚形轮廓数据和/或目标用户的步态数据相关的。
24.根据实施例22所述的鞋类制品,其特征在于,所述鞋类制品为矫形鞋。
25.根据实施例24所述的鞋类制品,其特征在于,所述矫形鞋为糖尿病足鞋。
26.一种用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述三维数据处理方法包括以下步骤:
对目标用户的鞋中底进行建模以形成具有预设轮廓的三维鞋中底模型;所述三维鞋中底模型包括:对应目标用户脚后跟的后跟部,对应所述目标用户前脚掌的脚掌部,以及位 于所述后跟部与脚掌部之间且对应所述目标用户足弓的腰窝部;
确定所述腰窝部的隆起部分的高度及其受力强度,以使其与计算获得的所述目标用户的期望足压数据及脚形轮廓数据相关;
利用获得的目标用户的足压数据及脚形轮廓数据对所述三维鞋中底模型进行处理以在所述三维鞋中底模型中的后跟部和/或脚掌部分确定至少一个第一足压干预区域;
弱化所述至少一个第一足压干预区域中的晶格结构的受力强度,以使其小于所述至少一个第一足压干预区域之外的晶格结构的受力强度;
形成用于3D打印设备可读的鞋中底三维切片数据。
27.根据实施例26所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,还包括以下步骤:
利用获得的目标用户的足压数据及脚形轮廓数据对所述三维鞋中底模型进行处理以在所述三维鞋中底模型中确定至少一个第二足压干预区域;
强化所述至少一个第二足压干预区域中的晶格结构的受力强度,以使其大于所述至少一个第二足压干预区域之外的晶格结构的受力强度。
28.根据实施例26所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,还包括依据测量获得的所述目标用户的形体数据、体重数据、脚形轮廓数据、步态数据、或足压数据中的至少一种数据调整所述三维鞋中底模型预设厚度的步骤。
29.根据实施例26或27所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述目标用户的足压数据及脚形轮廓数据是通过测量或统计获取的。
30.根据实施例26或27所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述至少一个第一足压干预区域或/及第二足压干预区域中的晶格结构的受力强度与计算获得的期望足压数据相关,所述期望足压数据小于对应所述至少一个第一足压干预区域的实测足压数据;所述期望足压数据大于对应所述至少一个第二足压干预区域的实测足压数据。
31.根据实施例26所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述期望足压数据是基于测量获得的目标用户的实测足压数据及对应的医疗干预数据计算获得的。
32.根据实施例26或27所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述弱化所述至少一个第一足压干预区域中的晶格结构的受力强度的步骤或强化所述至 少一个第二足压干预区域中的晶格结构的受力强度的步骤中,所述至少一个第一足压干预区域或/及第二足压干预区域中的所述晶格结构的受力强度与计算获得的期望足压数据及测量获得的脚形轮廓数据相关。
33.根据实施例26或27所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述弱化所述至少一个第一足压干预区域中的晶格结构的受力强度或强化所述至少一个第二足压干预区域中的晶格结构的受力强度的步骤中,所述至少一个第一足压干预区域或/及第二足压干预区域中的所述晶格结构的受力强度与计算获得的期望足压数据及测量获得的脚形轮廓数据、以及步态数据相关。
34.根据实施例26所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述强化所述腰窝部的隆起部分的高度及其受力强度的步骤中,所述腰窝部的隆起部分的高度及其受力强度与计算获得的所述目标用户的期望足压数据及脚形轮廓数据及步态数据相关。
35.根据实施例26所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,还包括在所述三维鞋中底模型的顶部表面构建上贴合面模型的步骤。
36.根据实施例35所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,还包括利用预置的为晶格结构的多个基本单元在所述三维鞋中底模型与所述上贴合面模型之间构建缓冲层模型的步骤。
37.根据实施例26所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,还包括利用预置的为晶格结构的多个基本单元在所述三维鞋中底模型的顶部表面构建缓冲层模型的步骤。
38.根据实施例26所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,还包括在所述三维鞋中底模型的底部表面构建下贴合面模型的步骤。
39.根据实施例26所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述利用预置的为晶格结构的多个基本单元对目标用户的鞋中底进行建模的步骤中,所述晶格结构在所述三维鞋中底模型的不同位置呈拉伸、扭曲、或压缩变形结构。
40.根据实施例26所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述几何结构包括多面体、面状体、锥形体、菱形体、锥形体、星状体,球状体中的一种或多种的组合。
41.一种应用于3D打印设备的3D打印方法,所述3D打印设备包括:用于向打印面辐射能 量的能量辐射装置、以及用于承载经能量辐射固化而得的三维物体的构件平台,其特征在于,所述3D打印方法包括:
读取如实施例26-40任一项所述的用于鞋类制品的鞋中底的三维数据处理方法中处理获得的鞋中底三维切片数据;
调整所述构件平台与打印面之间的间距,以在所述打印面填充待固化材料;其中,所填充的待固化材料的厚度对应于所述鞋中底三维切片数据的切片层高;
基于所述鞋中底三维切片数据向所填充的待固化材料辐射能量,以获得相应的图案固化层;
重复上述各步骤以在所述构件平台上累积图案固化层以形成所述三维鞋中底模型所对应的用于鞋类制品的鞋中底。
42.一种计算机设备,其特征在于,包括:
存储装置,用于存储至少一个程序,以及三维鞋中底模型;
处理装置,与所述存储装置相连,用于执行所述至少一个程序,以协调所述存储装置执行并实现如实施例26-40任一项所述的用于鞋类制品的鞋中底的三维数据处理方法。
43.一种计算机可读存储介质,其特征在于,存储至少一种程序,所述至少一种程序在被调用时并实现如实施例26-40任一项所述的用于鞋类制品的鞋中底的三维数据处理方法。
基于上述各示例,本申请在第八方面提供了以下各实施例,在以下说明中,通过序号代表所述各实施例,例如数字1,2,3,4可分别代表实施例1,实施例2,实施例3,实施例4。特别的,在本申请提供的实施例中,不同方面所提供的实施例采的编号组相互独立,例如,本申请第七方面提供的实施例1与第八方面提供的实施例1不是同一实施例,在此,本申请在第八方面提供了以下实施例,在以下说明中,通过序号代表所述各实施例,例如数字1,2,3,4…可分别代表实施例1,实施例2,实施例3,实施例4….。
本申请在第八方面还提供了一种用于鞋类制品的鞋中底以及鞋类制品,包括以下实施例:
1.一种用于鞋类制品的鞋中底,其特征在于,包括:对应目标用户脚后跟的后跟部,对应所述目标用户前脚掌的脚掌部,以及位于所述后跟部与脚掌部之间且对应所述目标用户足弓的腰窝部,其中,所述脚掌部设有至少一目标区域及与所述至少一目标区域相邻的至少一干预区域,所述至少一目标区域的截面厚度小于所述鞋中底的脚掌部的基准厚度,所述至少一干预区域的截面厚度大于所述鞋中底的脚掌部的基准厚度。
2.根据实施例1所述的鞋中底,其特征在于,所述目标区域上表面相对目标用户足型轮廓呈 下凹状态;所述干预区域上表面相对目标用户足型轮廓呈上凸状态。
3.根据实施例2所述的鞋中底,其特征在于,所述目标区域朝向目标区域之外区域呈上表面高度渐变过渡,以令目标区域相对目标用户足型轮廓呈下凹状态;或,所述干预区域朝向干预区域之外区域呈上表面高度渐变过渡,以令干预区域相对目标用户足型轮廓呈上凸状态。
4.根据实施例1所述的鞋中底,其特征在于,所述目标区域设于对应目标用户第一跖趾关节处、以及第一拇指处中的一处或多处;以及,所述干预区域设于对应目标用户第二跖趾关节至第五跖趾关节之间。
5.根据实施例1所述的鞋中底,其特征在于,所述后跟部还设有至少一所述目标区域。
6.根据实施例1所述的鞋中底,其特征在于,所述腰窝部具有预设高度的隆起部分以支撑目标用户的足弓。
7.根据实施例1所述的鞋中底,其特征在于,由3D打印的拓扑结构或多个晶格结构组成。
8.根据实施例7所述的鞋中底,其特征在于,所述目标区域与干预区域的截面厚度基于晶格体结构、晶格层数以及晶格大小确定。
9.根据实施例1或7所述的鞋中底,其特征在于,所述目标区域的截面厚度与基于目标用户的期望足压数据确定的所述目标区域及干预区域的受力强度相关;所述干预区域的截面厚度与基于目标用户的期望足压数据确定的所述目标区域及干预区域的受力强度相关。
10.根据实施例9所述的鞋中底,其特征在于,所述期望足压数据与目标用户的实测足压数据及医疗干预数据相关;其中,所述目标区域的期望足压数据小于所述目标区域的实测足压区域,所述干预区域的期望足压数据大于所述干预区域的实测足压数据。
11.根据实施例7所述的鞋中底,其特征在于,所述鞋中底的晶格结构受力强度与晶格结构的体积密度、晶格体结构、打印材料、打印工艺以及后处理工艺中的至少一种相关;或,所述鞋中底的拓扑结构的受力强度与拓扑结构的体积密度、打印材料、打印工艺、以及后处理工艺中的至少一种相关。
12.根据实施例11所述的鞋中底,其特征在于,所述晶格结构的体积密度与晶格杆径粗细、晶格壁面厚度、晶格大小、以及成型后晶格杆体密度相关;所述拓扑结构的体积密度与拓扑结构的杆径粗细、壁面厚度、成型后拓扑结构杆体或面体密度相关。
13.根据实施例7所述的鞋中底,其特征在于,所述3D打印的多个晶格结构的几何结构具有周期性,其中,所述几何结构包括多面体、面状体、锥形体、菱形体、星状体、以及球状 体中的一种或多种的组合。
14.根据实施例13所述的鞋中底,其特征在于,所述3D打印的多个晶格结构在对应于目标用户足底的不同区域呈拉伸、压缩、或扭曲形变结构。
15.根据实施例7所述的鞋中底,其特征在于,所述拓扑结构形状包括为立体泰森多边形、及仿生型结构,其中,所述仿生型结构包括细胞型、叶脉型、以及枝干型。
16.根据实施例7所述的鞋中底,其特征在于,所述晶格结构或拓扑结构对应的3D打印方式包括:丝材熔融挤出、材料微滴喷射粉、材料平铺熔化、粘合剂喷射、以及光敏树脂叠层固化。
17.根据实施例7所述的鞋中底,其特征在于,所述鞋中底还包括由3D打印一体成型于所述鞋中底的顶部表面的上贴合面,用于结合鞋类制品的鞋面。
18.根据实施例17所述的鞋中底,其特征在于,所述鞋中底还包括由3D打印一体成型于所述鞋中底与所述上贴合面之间的缓冲层。
19.根据实施例7所述的鞋中底,其特征在于,所述鞋中底还包括由3D打印一体成型于所述鞋中底顶部表面的缓冲层。
20.根据实施例18或19所述的鞋中底,其特征在于,所述缓冲层由3D打印的拓扑结构或多个晶格结构组成,所述缓冲层中拓扑结构的杆径小于所述鞋中底中的拓扑结构的杆径;或,所述缓冲层中晶格结构的杆径小于所述鞋中底中晶格结构的杆径。
21.根据实施例18或19所述的鞋中底,其特征在于,所述缓冲层由3D打印的多个晶格结构组成,所述缓冲层中晶格结构的杆径小于所述鞋中底中晶格结构的杆径,且所述缓冲层中晶格结构的晶格体积小于所述鞋中底中晶格结构的晶格体积。
22.根据实施例7所述的鞋中底,其特征在于,还包括由3D打印成型于所述鞋中底的底部的下贴合面,用于结合鞋类制品的鞋大底。
23.根据实施例22所述的鞋中底,其特征在于,所述下贴合面沿着所述鞋中底的底部轮廓呈环形结构。
24.根据实施例1所述的鞋中底,其特征在于,所述基准厚度与测量获得的所述目标用户的形体数据、体重数据、脚形轮廓数据、步态数据及足压数据中的至少一种数据相关。
25.根据实施例1所述的鞋中底,其特征在于,所述鞋中底的材料包括光固化树脂材料、热塑性橡胶(TPR)、及热塑性弹性体;其中,所述热塑性弹性体包括聚氨酯弹性体(TPU)、尼龙弹性体(TPAE)、聚酯弹性体(TPEE)、EVA弹性体及有机硅弹性体。
26.一种鞋类制品,其特征在于,包括:
鞋大底,用于接触地面;
如实施例1-25任一项所述的鞋中底,结合于所述鞋大底顶部;
鞋面,结合于所述鞋中底顶部周沿以包裹目标用户脚面。
27.根据实施例26所述的鞋类制品,其特征在于,所述鞋类制品为预防鞋或矫形鞋。
28.根据实施例27所述的鞋类制品,其特征在于,所述鞋类制品为糖尿病足鞋。
上述实施例仅例示性说明本申请的原理及其功效,而非用于限制本申请。任何熟悉此技术的人士皆可在不违背本申请的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本申请所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本申请的权利要求所涵盖。

Claims (45)

  1. 一种用于鞋类制品的鞋中底,其特征在于,所述鞋中底由3D打印的拓扑结构或多个晶格结构组成,包括:对应目标用户脚后跟的后跟部,对应所述目标用户前脚掌的脚掌部,以及位于所述后跟部与脚掌部之间且对应所述目标用户足弓的腰窝部;其中,所述鞋中底中的后跟部和/或脚掌部分设有至少一个第一足压干预区域,位于所述第一足压干预区域之外拓扑结构或晶格结构朝向所述至少一个第一足压干预区域之内延伸的拓扑结构或晶格结构呈渐变过渡,以使所述至少一个第一足压干预区域内的拓扑结构或晶格结构的受力强度小于所述至少一个第一足压干预区域之外的拓扑结构或晶格结构的受力强度。
  2. 根据权利要求1所述的用于鞋类制品的鞋中底,其特征在于,所述鞋中底中设有至少一个第二足压干预区域,所述第二足压干预区域位于鞋中底的后跟部、脚掌部、或腰窝部;其中,位于所述第二足压干预区域之外拓扑结构或晶格结构朝向所述至少一个第二足压干预区域之内延伸的拓扑结构或晶格结构呈渐变过渡,以使所述至少一个第二足压干预区域内的拓扑结构或晶格结构的受力强度大于所述至少一个第二足压干预区域之外的拓扑结构或晶格结构的受力强度。
  3. 根据权利要求1所述的用于鞋类制品的鞋中底,其特征在于,所述鞋中底保持预设厚度,所述预设厚度与测量获得的所述目标用户的形体数据、体重数据、脚形轮廓数据、步态数据、及足压数据中的至少一种数据相关。
  4. 根据权利要求1或2所述的用于鞋类制品的鞋中底,其特征在于,所述至少一个第一足压干预区域或/及第二足压干预区域中的所述拓扑结构或晶格结构的受力强度与计算获得的期望足压数据相关,其中,所述期望足压数据小于对应所述至少一个第一足压干预区域的实测足压数据;所述期望足压数据大于对应所述至少一个第二足压干预区域的实测足压数据。
  5. 根据权利要求4所述的用于鞋类制品的鞋中底,其特征在于,所述期望足压数据是基于测量获得的目标用户的实测足压数据及对应的医疗干预数据计算获得的。
  6. 根据权利要求1或2所述的用于鞋类制品的鞋中底,其特征在于,所述至少一个第一足压干预区域或/及第二足压干预区域中的所述拓扑结构或晶格结构的受力强度与计算获得的期望足压数据及测量获得的脚形轮廓数据相关。
  7. 根据权利要求1或2所述的用于鞋类制品的鞋中底,其特征在于,所述至少一个第一足压干预区域或/及第二足压干预区域中的所述拓扑结构或晶格结构的受力强度与计算获得的期望足压数据、测量获得的脚形轮廓数据、以及步态数据相关。
  8. 根据权利要求1所述的用于鞋类制品的鞋中底,其特征在于,所述腰窝部具有预设高度的隆起部分以支撑目标用户的足弓,所述隆起部分的高度及其受力强度与计算获得的所述目标用户的期望足压数据及脚形轮廓数据及步态数据相关。
  9. 根据权利要求1所述的用于鞋类制品的鞋中底,其特征在于,所述拓扑结构或晶格结构是通过丝材熔融挤出、材料微滴喷射、粉材平铺熔化、粘合剂喷射、或光敏树脂叠层固化中的一种3D打印方式获得的。
  10. 根据权利要求1所述的用于鞋类制品的鞋中底,其特征在于,所述拓扑结构或晶格结构的材料包括光固化树脂材料、热塑性橡胶(TPR)、热塑性弹性体;其中,所述热塑性弹性体包括聚氨酯弹性体(TPU)、尼龙弹性体(TPAE)、聚酯弹性体(TPEE)、EVA弹性体及有机硅弹性体。
  11. 根据权利要求1或2所述的用于鞋类制品的鞋中底,其特征在于,所述晶格结构的受力强度是通过每一晶格结构的体积密度、晶格体结构、打印材料、打印工艺、以及后处理工艺中的至少一种确定的;或,所述拓扑结构的受力强度是通过拓扑结构的体积密度、打印材料、打印工艺、以及后处理工艺中的至少一种确定的。
  12. 根据权利要求11所述的用于鞋类制品的鞋中底,其特征在于,所述晶格结构的体积密度是与杆径粗细、晶格壁面厚度、晶格大小、及成型后晶格杆体的密度相关的;以及,所述拓扑结构的体积密度是与拓扑结构的杆径粗细、壁面厚度、及成型后拓扑结构杆体或面体密度相关的。
  13. 根据权利要求1或2所述的用于鞋类制品的鞋中底,其特征在于,所述渐变过渡是通过确定第一足压干预区域之外晶格结构朝向所述至少一个第一足压干预区域之内的晶格结构的体积密度、晶格体结构、打印材料、打印工艺、以及后处理工艺中的至少一种和/或第二足压干预区域之外晶格结构朝向所述至少一个第二足压干预区域之内的晶格结构的体积密度、晶格体结构、打印材料、打印工艺、以及后处理工艺中的至少一种形成的。
  14. 根据权利要求1或2所述的用于鞋类制品的鞋中底,其特征在于,所述渐变过渡是通过确定第一足压干预区域之外拓扑结构朝向所述至少一个第一足压干预区域之内的拓扑结构的体积密度、打印材料、打印工艺、以及后处理工艺中的至少一种和/或第二足压干预区域之外拓扑结构朝向所述至少一个第二足压干预区域之内的拓扑结构的体积密度、打印材料、打印工艺、以及后处理工艺中的至少一种形成的。
  15. 根据权利要求1所述的用于鞋类制品的鞋中底,其特征在于,所述鞋中底还包括由3D打 印一体成型于所述鞋中底的顶部表面的用于结合鞋面的上贴合面。
  16. 根据权利要求15所述的用于鞋类制品的鞋中底,其特征在于,所述鞋中底还包括由3D打印一体成型于所述鞋中底与所述上贴合面之间的缓冲层。
  17. 根据权利要求1所述的用于鞋类制品的鞋中底,其特征在于,所述鞋中底还包括由3D打印一体成型于所述鞋中底顶部表面的缓冲层。
  18. 根据权利要求16或17所述的用于鞋类制品的鞋中底,其特征在于,所述缓冲层由3D打印的拓扑结构或多个晶格结构组成,所述缓冲层中拓扑结构的杆径小于所述鞋中底中的拓扑结构的杆径;或,所述缓冲层中晶格结构的杆径小于所述鞋中底中晶格结构的杆径。
  19. 根据权利要求16或17所述的用于鞋类制品的鞋中底,其特征在于,所述缓冲层由3D打印的多个晶格结构组成,所述缓冲层中晶格结构的杆径小于所述鞋中底中晶格结构的杆径,且所述缓冲层中晶格结构的晶格体积小于所述鞋中底中晶格结构的晶格体积。
  20. 根据权利要求1所述的用于鞋类制品的鞋中底,其特征在于,还包括由3D打印成型于所述鞋中底的底部,用于结合鞋大底的下贴合面。
  21. 根据权利要求20所述的用于鞋类制品的鞋中底,其特征在于,所述下贴合面沿着所述鞋中底的底部轮廓呈环形结构。
  22. 根据权利要求1所述的用于鞋类制品的鞋中底,其特征在于,所述由3D打印的多个晶格结构的几何结构具有周期性,所述晶格结构在不同的位置呈拉伸、扭曲、或压缩变形结构。
  23. 根据权利要求22所述的用于鞋类制品的鞋中底,其特征在于,所述晶格结构的实体呈连接杆形式,其中,所述晶格结构的几何结构包括多面体、以及球状体,所述多面体包括锥形体、菱形体、以及星状体中的一种或多种的组合;或,所述晶格结构的实体呈壁面形式,其中,所述晶格结构的几何结构包括多面体、以及球状体,所述多面体包括锥形体、菱形体、以及星状体中的一种或多种的组合。
  24. 一种鞋类制品,其特征在于,包括如权利要求1-23任一项所述的鞋中底,结合于所述鞋中底顶部周缘用于包裹目标用户脚面的鞋面,以及结合于所述鞋中底的底部的用于接触地面的鞋大底。
  25. 根据权利要求24所述的鞋类制品,其特征在于,所述鞋面的尺寸或张弛度是与测量获得的目标用户的脚形轮廓数据和/或目标用户的步态数据相关的。
  26. 根据权利要求24所述的鞋类制品,其特征在于,所述鞋类制品为矫形鞋。
  27. 根据权利要求26所述的鞋类制品,其特征在于,所述矫形鞋为糖尿病足鞋。
  28. 一种用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述三维数据处理方法包括以下步骤:
    对目标用户的鞋中底进行建模以形成具有预设轮廓的三维鞋中底模型;所述三维鞋中底模型包括:对应目标用户脚后跟的后跟部,对应所述目标用户前脚掌的脚掌部,以及位于所述后跟部与脚掌部之间且对应所述目标用户足弓的腰窝部;
    利用获得的目标用户的足压数据及脚形轮廓数据对所述三维鞋中底模型进行处理以在所述三维鞋中底模型中的后跟部和/或脚掌部分确定至少一个第一足压干预区域;
    弱化所述至少一个第一足压干预区域中的拓扑结构或晶格结构的受力强度,以使其小于所述至少一个第一足压干预区域之外的拓扑结构或晶格结构的受力强度;
    对所述至少一个第一足压干预区域之内的拓扑结构或晶格结构的受力强度与第一足压干预区域之外的拓扑结构或晶格结构的受力强度进行处理,使位于所述第一足压干预区域之外拓扑结构或晶格结构的受力强度朝向所述至少一个第一足压干预区域之内延伸的拓扑结构或晶格结构的受力强度的变化呈渐变过渡;
    形成用于3D打印设备可读的鞋中底三维切片数据。
  29. 根据权利要求28所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,还包括以下步骤:
    利用获得的目标用户的足压数据及脚形轮廓数据对所述三维鞋中底模型进行处理以在所述三维鞋中底模型中确定至少一个第二足压干预区域;
    强化所述至少一个第二足压干预区域中的拓扑结构或晶格结构的受力强度,以使其大于所述至少一个第二足压干预区域之外的拓扑结构或晶格结构的受力强度;
    对所述至少一个第二足压干预区域之内的拓扑结构或晶格结构的受力强度与第二足压干预区域之外的拓扑结构或晶格结构的受力强度进行处理,使位于所述第二足压干预区域之外拓扑结构或晶格结构的受力强度朝向所述至少一个第二足压干预区域之内延伸的拓扑结构或晶格结构的受力强度的变化呈渐变过渡。
  30. 根据权利要求28或29所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,还包括依据测量获得的所述目标用户的形体数据、体重数据、脚形轮廓数据、步态数据、及足压数据中的至少一种数据调整所述三维鞋中底模型预设厚度的步骤。
  31. 根据权利要求28或29所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述目标用户的足压数据及脚形轮廓数据是通过测量或统计获取的。
  32. 根据权利要求28或29所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述至少一个第一足压干预区域或/及第二足压干预区域中的拓扑结构或晶格结构的受力强度与计算获得的期望足压数据相关,所述期望足压数据小于对应所述至少一个第一足压干预区域的实测足压数据;所述期望足压数据大于对应所述至少一个第二足压干预区域的实测足压数据。
  33. 根据权利要求32所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述期望足压数据是基于测量获得的目标用户的实测足压数据及对应的医疗干预数据计算获得的。
  34. 根据权利要求28或29所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述弱化所述至少一个第一足压干预区域中的拓扑结构或晶格结构的受力强度的步骤或强化所述至少一个第二足压干预区域中的拓扑结构或晶格结构的受力强度的步骤中,所述至少一个第一足压干预区域或/及第二足压干预区域中的所述拓扑结构或晶格结构的受力强度与计算获得的期望足压数据及测量获得的脚形轮廓数据相关。
  35. 根据权利要求28或29所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述弱化所述至少一个第一足压干预区域中的拓扑结构或晶格结构的受力强度或强化所述至少一个第二足压干预区域中的拓扑结构或晶格结构的受力强度的步骤中,所述至少一个第一足压干预区域或/及第二足压干预区域中的所述拓扑结构或晶格结构的受力强度与计算获得的期望足压数据及测量获得的脚形轮廓数据、以及步态数据相关。
  36. 根据权利要求28所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,还包括确定所述腰窝部的隆起部分的高度及其受力强度的步骤;其中,所述腰窝部的隆起部分的高度及其受力强度与计算获得的所述目标用户的期望足压数据及脚形轮廓数据及步态数据相关。
  37. 根据权利要求28所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,还包括在所述三维鞋中底模型的顶部表面构建上贴合面模型的步骤。
  38. 根据权利要求37所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,还包括利用预置的为晶格结构的多个基本单元或利用拓扑结构在所述三维鞋中底模型与所述上贴合面模型之间构建缓冲层模型的步骤。
  39. 根据权利要求28所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,还包括在所述三维鞋中底模型的顶部表面构建缓冲层模型的步骤。
  40. 根据权利要求28所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,还包括在所述三维鞋中底模型的底部表面构建下贴合面模型的步骤。
  41. 根据权利要求28所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述对目标用户的鞋中底进行建模的步骤中,所述晶格结构在所述三维鞋中底模型的不同位置呈拉伸、扭曲、或压缩变形结构。
  42. 根据权利要求28所述的用于鞋类制品的鞋中底的三维数据处理方法,其特征在于,所述晶格结构的几何结构包括多面体、面状体、锥形体、菱形体、星状体、及球状体中的一种或多种的组合。
  43. 一种应用于3D打印设备的3D打印方法,所述3D打印设备包括:用于向打印面辐射能量的能量辐射装置、以及用于承载经能量辐射固化而得的三维物体的构件平台,其特征在于,所述3D打印方法包括:
    读取如权利要求28-42任一项所述的用于鞋类制品的鞋中底的三维数据处理方法中处理获得的鞋中底三维切片数据;
    调整所述构件平台与打印面之间的间距,以在所述打印面填充待固化材料;其中,所填充的待固化材料的厚度对应于所述鞋中底三维切片数据的切片层高;
    基于所述鞋中底三维切片数据向所填充的待固化材料辐射能量,以获得相应的图案固化层;
    重复上述各步骤以在所述构件平台上累积图案固化层以形成所述三维鞋中底模型所对应的用于鞋类制品的鞋中底。
  44. 一种计算机设备,其特征在于,包括:
    存储装置,用于存储至少一个程序,以及三维鞋中底模型;
    处理装置,与所述存储装置相连,用于执行所述至少一个程序,以调用所述存储装置中所述至少一个程序执行并实现如权利要求28-42任一项所述的用于鞋类制品的鞋中底的三维数据处理方法。
  45. 一种计算机可读存储介质,其特征在于,存储至少一种程序,所述至少一种程序被处理器执行时实现如权利要求28-42任一项所述的用于鞋类制品的鞋中底的三维数据处理方法。
PCT/CN2021/076251 2020-02-26 2021-02-09 鞋中底、鞋类制品、三维数据处理方法、3d打印方法 WO2021169804A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010119325.7A CN113303549A (zh) 2020-02-26 2020-02-26 鞋中底、鞋类制品、三维数据处理方法、3d打印方法
CN202010119325.7 2020-02-26
CN202010345394.X 2020-04-27
CN202010345394.XA CN113633064A (zh) 2020-04-27 2020-04-27 鞋中底、鞋类制品、三维数据处理方法、3d打印方法
CN202022119798.5 2020-09-24
CN202022119798.5U CN214072052U (zh) 2020-09-24 2020-09-24 鞋中底及鞋类制品

Publications (1)

Publication Number Publication Date
WO2021169804A1 true WO2021169804A1 (zh) 2021-09-02

Family

ID=77490666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076251 WO2021169804A1 (zh) 2020-02-26 2021-02-09 鞋中底、鞋类制品、三维数据处理方法、3d打印方法

Country Status (1)

Country Link
WO (1) WO2021169804A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114643713A (zh) * 2022-03-25 2022-06-21 罗棋时尚服饰(深圳)有限公司 三角星蜂窝系统参数化3d打印足底压力分布鞋底
US11589647B2 (en) 2020-10-13 2023-02-28 Adidas Ag Footwear midsole with anisotropic mesh and methods of making the same
CN116661663A (zh) * 2023-08-02 2023-08-29 北京华益精点生物技术有限公司 足型显示方法及相关设备
US11786008B2 (en) 2020-10-07 2023-10-17 Adidas Ag Footwear with 3-D printed midsole
US11992084B2 (en) 2020-10-13 2024-05-28 Adidas Ag Footwear midsole with 3-D printed mesh having an anisotropic structure and methods of making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535553A (en) * 1983-09-12 1985-08-20 Nike, Inc. Shock absorbing sole layer
CN204104950U (zh) * 2013-03-14 2015-01-21 安德阿默有限公司 三维区域压缩鞋
CN104918507A (zh) * 2012-11-21 2015-09-16 戴卡特隆有限公司 鞋的鞋底

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535553A (en) * 1983-09-12 1985-08-20 Nike, Inc. Shock absorbing sole layer
CN104918507A (zh) * 2012-11-21 2015-09-16 戴卡特隆有限公司 鞋的鞋底
CN204104950U (zh) * 2013-03-14 2015-01-21 安德阿默有限公司 三维区域压缩鞋

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11786008B2 (en) 2020-10-07 2023-10-17 Adidas Ag Footwear with 3-D printed midsole
US11589647B2 (en) 2020-10-13 2023-02-28 Adidas Ag Footwear midsole with anisotropic mesh and methods of making the same
US11992084B2 (en) 2020-10-13 2024-05-28 Adidas Ag Footwear midsole with 3-D printed mesh having an anisotropic structure and methods of making the same
CN114643713A (zh) * 2022-03-25 2022-06-21 罗棋时尚服饰(深圳)有限公司 三角星蜂窝系统参数化3d打印足底压力分布鞋底
CN116661663A (zh) * 2023-08-02 2023-08-29 北京华益精点生物技术有限公司 足型显示方法及相关设备
CN116661663B (zh) * 2023-08-02 2023-12-05 北京华益精点生物技术有限公司 足型显示方法及相关设备

Similar Documents

Publication Publication Date Title
WO2021169804A1 (zh) 鞋中底、鞋类制品、三维数据处理方法、3d打印方法
US11547177B2 (en) Shoe with lattice structure
US10482214B2 (en) Methods and apparatuses for designing footwear
CN106455757B (zh) 设计鞋类的方法和装置
Tang et al. Functional gradient structural design of customized diabetic insoles
JP6511150B2 (ja) インソールの設計
Praet et al. The influence of shoe design on plantar pressures in neuropathic feet
CN109820281B (zh) 基于糖尿病患者足部组织层次力学特性的个性化鞋垫优化设计方法
US10786039B2 (en) Article of footwear comprising a sole member with apertures
US7458173B2 (en) Orthotic insert and method of manufacture thereof
US20200329815A1 (en) Footwear and apparatus and method for making same
CN213154354U (zh) 鞋中底及鞋类制品
CN113170943B (zh) 包括具有区域图案的鞋底构件的鞋类物品
CN107580463A (zh) 包括具有孔图案的鞋底构件的鞋类物品
Tang et al. Data-driven design of customized porous lattice sole fabricated by additive manufacturing
WO2017208256A1 (en) Customized variable density 3d printed orthotic device
CN111134417A (zh) 一种基于足底压力分布和透气性的3d打印糖尿病足鞋垫及其制备方法
CN106420144A (zh) 一种3d打印鞋垫的制作方法
Hudak et al. A novel workflow to fabricate a patient-specific 3D printed accommodative foot orthosis with personalized latticed metamaterial
CN113303549A (zh) 鞋中底、鞋类制品、三维数据处理方法、3d打印方法
CN213307784U (zh) 鞋中底及鞋类制品
KR101913104B1 (ko) 인체 감응형 압력 분산 인솔 및 그의 제조방법
CN214072052U (zh) 鞋中底及鞋类制品
CN212814735U (zh) 一种基于足底压力分布和透气性的3d打印糖尿病足鞋垫
CN113633064A (zh) 鞋中底、鞋类制品、三维数据处理方法、3d打印方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761379

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 05.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21761379

Country of ref document: EP

Kind code of ref document: A1