WO2022257374A1 - 空调器 - Google Patents

空调器 Download PDF

Info

Publication number
WO2022257374A1
WO2022257374A1 PCT/CN2021/134244 CN2021134244W WO2022257374A1 WO 2022257374 A1 WO2022257374 A1 WO 2022257374A1 CN 2021134244 W CN2021134244 W CN 2021134244W WO 2022257374 A1 WO2022257374 A1 WO 2022257374A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric control
control box
air
heat exchange
fan
Prior art date
Application number
PCT/CN2021/134244
Other languages
English (en)
French (fr)
Inventor
谷勇
阚昌利
周柏松
祝孟豪
李运志
奚洋
葛珊珊
吴淋
Original Assignee
广东美的暖通设备有限公司
合肥美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 合肥美的暖通设备有限公司 filed Critical 广东美的暖通设备有限公司
Priority to CA3216249A priority Critical patent/CA3216249A1/en
Priority to KR1020237038598A priority patent/KR20230169246A/ko
Priority to EP21944870.1A priority patent/EP4321810A1/en
Priority to AU2021450239A priority patent/AU2021450239A1/en
Priority to JP2023571201A priority patent/JP2024518116A/ja
Priority to BR112023023169A priority patent/BR112023023169A2/pt
Publication of WO2022257374A1 publication Critical patent/WO2022257374A1/zh
Priority to US18/386,566 priority patent/US20240064927A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/22Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present application relates to the technical field of air conditioning, in particular, to an air conditioner.
  • This application aims to solve at least one of the technical problems existing in the prior art.
  • the application provides an air conditioner.
  • the application provides an air conditioner, comprising: a casing, the casing includes a fan cavity and a heat exchange cavity connected; an electric control box, arranged on the casing, communicates with the heat exchange cavity and the fan cavity; Inside the electric control box; the fan assembly is arranged in the fan chamber, and the fan assembly can be used to supply air to the heat exchange chamber and dissipate heat to the electric control box.
  • the air conditioner proposed in this application includes a casing, an electric control box, an electric control and a fan assembly.
  • the casing includes a fan chamber and a heat exchanger which communicate with each other;
  • the electric control box is arranged on the casing and communicates with the heat exchange chamber and the fan chamber.
  • the electric control is arranged in the electric control and the electric control box, and can guarantee the controlled operation of the whole air conditioner.
  • the fan assembly is arranged in the fan chamber and can supply air to the heat exchange chamber during operation.
  • the fan assembly can supply air to the heat exchange chamber during operation, which increases the pressure in the heat exchange chamber and is higher than the pressure in the electric control box and the fan chamber. Therefore, during the operation of the air conditioner, due to a certain pressure difference between the heat exchange chamber and the electric control box, at least part of the gas in the heat exchange chamber enters the electric control box, and returns to the fan after flowing through the electric control box. cavity.
  • the electric control will generate heat, and the temperature inside the electric control box will rise. High temperature will easily cause damage to the electric control and affect the service life of the electric control.
  • the airflow flowing through the electric control box can effectively dissipate heat from the electric control box and the electric controls in the electric control box, thereby ensuring that the temperature in the electric control box is appropriate, and that the temperature of the electric controls is reduced, ensuring that the electric control box And the use of electric controls is safe.
  • the gas in the heat exchange chamber enters the electric control box, and the fan assembly can continuously supply air to the heat exchange chamber during operation, which makes the pressure in the heat exchange chamber It must be greater than the pressure in the electric control box and the fan cavity. Therefore, this application can significantly increase the amount of gas entering the electric control box, so as to improve the heat dissipation effect of the electric control box and the internal electric controls of the electric control box, especially compared with the related art that uses the air of the external environment to heat the electric control box.
  • the technical solution for cooling the box, the heat dissipation effect of the present application is more obvious.
  • the temperature of the airflow driven by the fan assembly is relatively low, which makes the airflow in the heat exchange chamber itself cool down the electric controls in the electric control box to a certain extent when it flows through the electric control box, further The temperature of the electric control is reduced, and the service life of the electric control is ensured.
  • the present application can form a circulating flow path inside the air conditioner, so that after the airflow in the fan chamber enters the heat exchange chamber, at least part of the airflow enters the electric control box, returns to the fan chamber through the electric control box, and then passes through the Part of the airflow realizes efficient heat dissipation of the electric control box, ensuring the service life of the electric control box and electric controls.
  • the electric control box is provided with a first cooling hole communicating with the heat exchange chamber and a second cooling hole communicating with the fan chamber; after the airflow in the fan chamber enters the heat exchange chamber, at least part of the airflow passes through the first cooling hole.
  • the cooling hole flows into the electric control box, and flows back to the fan chamber through the second cooling hole.
  • the air conditioner further includes a cooling air duct, and the cooling air duct is connected to the heat exchange chamber and the electric control box.
  • the air conditioner also includes a mounting beam disposed at the connection between the fan chamber and the heat exchange chamber, a support member disposed in the heat exchange chamber, and a cooling air duct located between the installation beam and the support member.
  • the electric control box is located on the side of the fan cavity; the cooling air duct is arranged transversely to the air supply direction of the fan assembly.
  • the support member is provided with a guide arc surface at the inlet end of the cooling air passage.
  • the air conditioner also includes: a heat exchanger, which is arranged in the heat exchange chamber, and the inlet end of the heat dissipation air duct is located on the side of the heat exchanger facing the fan assembly; the airflow in the fan chamber enters the heat exchange chamber Afterwards, at least part of the airflow flows into the cooling air duct, and at least part of the airflow exchanges heat with the heat exchanger.
  • the casing further includes a pipeline cavity, and the pipeline cavity is isolated from the heat exchange cavity by a support member; the heat dissipation air duct is located between the pipeline cavity and the electric control box.
  • the air conditioner further includes: an air guide cover, which is arranged in the fan chamber, and the air guide cover can be used to guide the flow to the heat exchange chamber.
  • the air guide cover includes an air supply port, and the air supply port is arranged toward the heat exchange chamber; the side wall of the air guide cover is formed with a diversion slope at the air supply port, and the guide slope extends toward the inlet end of the heat dissipation air duct .
  • the air guide cover includes an air inlet, and the air inlet is arranged toward the air return port of the fan chamber; the electric control box is located on the side of the air guide cover and communicated with the fan chamber.
  • the fan chamber includes an air return port
  • the heat exchange chamber includes an air outlet
  • an air duct is formed between the air return port and the air outlet; The air ducts are connected.
  • the fan assembly includes: a wind wheel arranged in the air duct; a driving part arranged between the wind wheel and the electric control box and connected with the driving part.
  • the air conditioner further includes: a filtering device arranged at the air return port of the fan chamber.
  • Fig. 1 is the bottom view (hidden bottom plate) of the air conditioner of an embodiment of the present application
  • Fig. 2 is the sectional view of the air conditioner of an embodiment of the present application
  • Fig. 3 is a schematic structural view of an air conditioner according to an embodiment of the present application.
  • Fig. 4 is a partial enlarged view of place A of the air conditioner shown in Fig. 3;
  • Fig. 5 is a partially enlarged view of part B of the air conditioner shown in Fig. 3 .
  • FIGS. 1 to 5 An air conditioner provided according to some embodiments of the present application will be described below with reference to FIGS. 1 to 5 .
  • the dotted arrows in Fig. 1 and Fig. 2 indicate the airflow direction.
  • the first embodiment of the present application proposes an air conditioner, including: a casing 102 , an electric control box 108 , an electric control 110 and a fan assembly 112 .
  • the housing 102 includes a connected fan chamber 104 and a heat exchanger 144; the electric control box 108 is arranged on the housing 102, and the electric control box 108 It communicates with the heat exchange chamber 106 .
  • the electric control 110 is arranged in the electric control and electric control box 108, and can ensure the control operation of the whole air conditioner.
  • the fan assembly 112 is disposed in the fan cavity 104 and can supply air to the heat exchange cavity 106 during operation.
  • the fan assembly 112 can supply air to the heat exchange chamber 106 during operation, which increases the pressure in the heat exchange chamber 106 to be higher than the pressure in the electric control box 108 . Therefore, during the operation of the air conditioner, due to a certain pressure difference between the heat exchange chamber 106 and the electric control box 108, at least part of the gas in the heat exchange chamber 106 enters the electric control box 108 and flows through the electric control box 108. Back in the fan chamber 104.
  • the electric control 110 will generate heat, and the internal temperature of the electric control box 108 will rise.
  • the high temperature will easily cause damage to the electric control 110 and affect the service life of the electric control 110 . Therefore, the airflow flowing through the electric control box 108 can effectively dissipate heat to the electric control box 108 and the electric control 110 in the electric control box 108, thereby ensuring that the temperature in the electric control box 108 is suitable, and ensuring that the temperature of the electric control 110 is reduced. , ensuring the safe use of the electric control box 108 and the electric control 110 .
  • the gas in the heat exchange chamber 106 enters the electric control box 108, and the fan assembly 112 can continuously supply air to the heat exchange chamber 106 during operation, which makes the heat exchange chamber 106
  • the pressure in the hot chamber 106 is greater than the pressure in the electric control box 108 and the fan chamber 104 . Therefore, this embodiment can significantly increase the amount of gas entering the electric control box 108, so as to improve the heat dissipation effect of the electric control box 108 and the electric control 110 inside the electric control box 108, especially compared with the external environment in the related art Air is used to cool the technical solution of the electric control box, and the heat dissipation effect of this application is more obvious.
  • the temperature of the airflow driven by the fan assembly 112 is relatively low, which makes the airflow in the heat exchange chamber 106 itself affect the electric control 110 in the electric control box 108 to a certain extent when it enters the electric control box 108.
  • the cooling further reduces the temperature of the electric control 110, ensuring the service life of the electric control 110.
  • the air conditioner proposed in this embodiment can form a circulating flow path inside the air conditioner, so that after the airflow in the fan chamber 104 enters the heat exchange chamber 106, at least part of the airflow enters the electric control box 108 and passes through the electric control box. 108 returns to the fan chamber 104, and then through this part of the air flow to ensure that the electric control box 108 is connected to the heat exchange chamber 106; during operation, the pressure in the heat exchange chamber 106 is higher than the pressure in the electric control box 108 and the fan chamber 104 , so that the airflow in the heat exchange chamber 106 continuously flows through the electric control box 108 , which can realize effective heat dissipation for the electric control box 108 and the electric control 110 .
  • the second embodiment of the present application proposes an air conditioner, on the basis of the first embodiment, further:
  • the electric control box 108 is provided with a first cooling hole 120 and a second cooling hole 124 .
  • the first heat dissipation hole 120 is connected with the heat exchange chamber 106 to ensure that the airflow in the heat exchange chamber 106 can enter the electric control box 108;
  • the second heat dissipation hole 124 is connected with the fan chamber 104 to ensure that the electric control box 108 The air flow can enter into the fan chamber 104.
  • a circulating flow path can be formed between the fan chamber 104, the heat exchange chamber 106 and the electric control chamber to continuously dissipate heat for the electric control box 108 and the electric control 110 in the electric control box 108 during the operation of the air conditioner.
  • the fan assembly 112 continuously sends air to the heat exchange chamber 106, and the heat exchange chamber 106 and its pressure are greater than the pressure in the electric control box 108;
  • a heat dissipation hole 120 enters into the electric control box 108; then, at least part of the airflow in the electric control box 108 continuously flows back into the fan chamber 104 through the second heat dissipation hole 124 to participate in air supply again.
  • the airflow flowing back into the fan chamber 104 through the second heat dissipation hole 124 can take away the heat in the electric control box 108 , thereby achieving effective heat dissipation for the electric control box 108 and the electric control 110 inside the electric control box 108 .
  • the air conditioner proposed in this embodiment has all the beneficial effects of the air conditioner proposed in Embodiment 1, and can ensure that the airflow in the heat exchange chamber 106 continuously enters the electric control box 108 during operation, and then the electric control box 108 and The electric control 110 performs efficient heat dissipation.
  • the third embodiment of the present application proposes an air conditioner, on the basis of the first embodiment, further:
  • the air conditioner further includes a heat dissipation air duct 114 through which the heat exchange chamber 106 and the electric control box 108 are communicated. That is, during the operation of the fan assembly, the air in the heat exchange chamber 106 can enter into the heat dissipation air duct 114 driven by the pressure difference, and enter the electric control box 108 through the heat dissipation air duct 114, so as to realize the electronic control. Efficient heat dissipation of the box 108 and the electric control box 108.
  • the communication between the heat exchange chamber 106 and the electric control box 108 can be greatly improved, and it can be ensured that the air conditioner enters the electric control box 108 per unit time during operation.
  • the amount of gas inside thereby ensuring the heat dissipation effect of the electric control box 108 and the electric control 110 in the electric control box 108 .
  • the inlet end of the heat dissipation air duct 114 is located at the connection between the fan chamber 104 and the heat exchange chamber 106, ensuring that the inlet end of the heat dissipation air duct 114 has a certain distance from the heat exchanger 144 in the heat exchange chamber 106, ensuring that The humidity of the air in the electric control box 108 is relatively low, which can avoid accumulation of moisture inside the electric control box 108 and ensure that the air inside the electric control box 108 is relatively dry, thereby ensuring the service life of the electric control box 108 and the electric control 110 .
  • the air conditioner further includes a mounting beam 116 and a support member 118 .
  • the installation beam 116 is arranged in the middle of the casing 102 and is located at the connection between the fan chamber 104 and the heat exchange chamber 106, and the installation beam 116 can be used as a beam.
  • the support member 118 is arranged in the heat exchange cavity 106 and can be abutted against the inside of the housing 102 to ensure the strength and hardness of the housing 102 itself, so as to prevent the housing 102 from colliding during the transportation and use of the air conditioner. Dimples appear.
  • this embodiment ensures that there is a certain space between the installation beam 116 and the support member 118 , and forms the cooling air duct 114 directly through the space between the installation beam 116 and the support member 118 .
  • it can ensure that the inlet end of the heat dissipation air duct 114 is connected to the connection between the fan chamber 104 and the heat exchange chamber 106; The structure of the entire air conditioner, while reducing the weight of the air conditioner.
  • the relative positions of the installation beam 116 and the support member 118 are ingeniously designed, and the heat dissipation air duct 114 can be formed directly through the space between the installation beam 116 and the support member 118, which is conducive to simplifying the structure of the air conditioner, and at the same time facilitates
  • the design, processing and assembly of the heat exchanger 144 are also beneficial to reduce the cost of the heat exchanger 144 .
  • the installation beam 116 is provided with a communication port, and the communication port communicates with the cooling air channel 114 and the heat exchange cavity 106 .
  • the support member 118 may use support foam, thereby reducing the weight of the air conditioner.
  • the installation beam 116 is provided with a communication port, and the communication port communicates with the cooling air channel 114 and the heat exchange cavity 106 .
  • the installation beam 116 may be provided with a plurality of folded edges, so that the position of the folded edges forms the aforementioned communication opening.
  • the number of communication ports can be one or more, and it is designed according to the air volume required by the actual electric control box 108 for heat dissipation.
  • the shape of the communication port can be designed according to the actual situation, and can be circular, elliptical, triangular, rectangular or other irregular figures. Moreover, the above content is understandable to those skilled in the art.
  • the air conditioner proposed in this embodiment has all the beneficial effects of the air conditioner proposed in Embodiment 1, and can ensure that the airflow in the heat exchange chamber 106 continuously enters the electric control box 108 during operation, and then the electric control box 108 and The electric control 110 performs efficient heat dissipation.
  • the fourth embodiment of the present application proposes an air conditioner, on the basis of the third embodiment, further:
  • the electric control box 108 is arranged on the side of the fan cavity 104 , and the cooling air duct 114 is arranged transversely to the air supply direction of the fan assembly 112 .
  • the present embodiment reasonably sets the relative position of the electric control box 108 and the fan chamber 104, ensures that the electric control box 108 will not affect the air supply of the fan assembly 112 in the fan chamber 104, and ensures the distance between the electric control box 108 and the fan chamber 104. There is no interference between.
  • the heat dissipation air duct 114 is arranged transversely to the air supply direction of the fan assembly 112, and extends toward the position where the electric control box 108 is located, so as to ensure that the airflow in the heat exchange chamber 106 can enter the electric control box 108 for electronic control.
  • the box 108 and the electric control 110 inside the electric control box 108 dissipate heat.
  • the structure of the support member 118 is optimized so that the installation beam 116 is provided with a guide arc surface 122 at the inlet end of the cooling air duct 114 .
  • the air in the heat exchange cavity 106 is in contact with the guide arc surface 122 at the inlet end of the heat dissipation air channel 114, and enters smoothly under the guide action of the guide arc surface 122.
  • the amount of gas entering the cooling air channel 114 per unit time is increased, thereby improving the heat dissipation effect of the electric control box 108 and realizing efficient heat dissipation for the electric control box 108 and the electric control 110 .
  • the air conditioner proposed in this embodiment has all the beneficial effects of the air conditioner proposed in Embodiment 1, and can ensure that the airflow in the heat exchange chamber 106 continuously enters the electric control box 108 during operation, and then the electric control box 108 and The electric control 110 performs efficient heat dissipation.
  • the fifth embodiment of the present application proposes an air conditioner, on the basis of the first embodiment, further:
  • the air conditioner also includes a heat exchanger 144 .
  • the heat exchanger 144 is arranged in the fan cavity 104, and can exchange heat with the airflow in the heat exchange cavity 106 during the operation of the air conditioner, so as to realize the cooling and heating capacity of the air conditioner.
  • connection between the electric control box 108 and the fan chamber 104 is located on the side of the heat exchanger 144 facing the fan chamber 104 . That is, it is ensured that the inlet end of the cooling air channel 114 is located on the side of the heat exchanger 144 facing the fan chamber 104 .
  • the air on the side of the heat exchanger 144 facing the fan chamber 104 has not been in contact with the heat exchanger 144 to exchange heat, so the water vapor content in this part of the air is relatively low.
  • this part of the airflow enters the electric control box 108, it can avoid the accumulation of moisture inside the electric control box 108, ensure that the air inside the electric control box 108 is relatively dry, and then ensure the service life of the electric control box 108 and the electric control 110 .
  • the heat exchanger 144 is arranged obliquely in the heat exchanger 144 , and ensures that the side of the heat exchanger 144 facing the fan chamber 104 is higher.
  • the heat exchanger 144 can guarantee to have enough distance between the inlet end of cooling air channel 114 and heat exchanger 144, namely guarantee to have enough distance between the inlet end of cooling air channel 114 and heat exchanger 144, have guaranteed to enter into electric
  • the humidity of the gas in the control box 108 is relatively low, and the electric control box 108 and the electric control 110 will not be damaged due to moisture due to corrosion.
  • the housing 102 further includes a pipeline cavity 152, the end of the refrigerant pipeline of the heat exchanger is located in the pipeline cavity 152, and can communicate with the external pipe in the refrigerant cavity, so as to Guarantee the input and output of refrigerant.
  • the pipeline chamber 152 is isolated from the heat exchange chamber 106 by the support 118 , and the seal of the pipeline chamber 152 is ensured by the support 118 .
  • the cooling air duct 114 is located between the pipeline chamber 152 and the electric control box 108 .
  • the pipeline cavity 152 and the heat exchange cavity 106 are isolated by the support member 118 to ensure the sealing of the pipeline cavity 152, thereby avoiding condensation in the pipeline cavity 152; Between it and the electric control box 108, it is ensured that the support 118 isolates the heat dissipation air duct 114 from the pipeline cavity 152, and at the same time, it prevents the airflow in the heat dissipation air duct 114 from entering the pipeline cavity 152, thereby avoiding that the pipeline cavity Condensation occurs within 152.
  • the air conditioner proposed in this embodiment has all the beneficial effects of the air conditioner proposed in Embodiment 1, and can ensure that the airflow in the heat exchange chamber 106 continuously enters the electric control box 108 during operation, and then the electric control box 108 and The electric control 110 performs efficient heat dissipation.
  • the sixth embodiment of the present application proposes an air conditioner, on the basis of the first embodiment, further:
  • the air conditioner further includes an air guide cover 126 .
  • the wind guide cover 126 is arranged in the fan cavity 104 and can play a good role of guiding the air during the operation of the fan assembly 112 to guide the airflow generated by the fan assembly 112 to the heat exchange chamber 106 .
  • the air guide cover 126 includes an air supply port 128 , and the air supply port 128 is designed to face the heat exchange cavity 106 .
  • the side wall 130 of the air guide cover 126 is formed with a guide slope 132 at the air supply port 128, so that the air supply port 128 presents a trumpet shape; at the same time, the flow guide slope 132 faces the communication between the heat exchange chamber 106 and the electric control box 108 extended.
  • the airflow generated by the fan assembly 112 can be diffused when it flows out of the air outlet 128, so that at least part of the airflow is directed towards the connection between the heat exchange chamber 106 and the electric control box 108. , that is, at least part of the airflow flows to the inlet end of the heat dissipation air duct 114, which is beneficial to increase the amount of gas entering the electric control box 108 per unit time, thereby improving the heat dissipation effect of the electric control box 108.
  • the fan assembly 112 can send air to the heat exchange chamber 106 when it is running. Enter the electric control box 108.
  • the present embodiment makes part of the airflow sent by the fan assembly 112 to flow directly to the connection between the heat exchange chamber 106 and the electric control box 108 through the setting of the guide slope 132, thereby further improving the heat dissipation effect of the electric control box 108 .
  • the air guide cover 126 includes an air inlet 134 .
  • the air inlet 134 is arranged opposite to the air outlet 128 , and the air inlet 134 is arranged toward the return air outlet 136 of the casing 102 and can suck air from the outside.
  • the electric control box 108 is located on the side of the air guide cover 126, and the cooling air duct 114 is arranged laterally. In this way, at least part of the airflow generated by the fan assembly 112 can be directly directed to the connection between the heat exchange chamber 106 and the electric control box 108 .
  • the air conditioner proposed in this embodiment has all the beneficial effects of the air conditioner proposed in Embodiment 1, and can ensure that the airflow in the heat exchange chamber 106 continuously enters the electric control box 108 during operation, and then the electric control box 108 and The electric control 110 performs efficient heat dissipation.
  • the seventh embodiment of the present application proposes an air conditioner, on the basis of the first embodiment, further:
  • the fan chamber 104 includes an air return port 136
  • the heat exchange chamber 106 includes an air outlet 138 .
  • the air return port 136 and the air outlet 138 is an air duct of the air conditioner (not shown in the figure).
  • the electric control box 108 is arranged on the side of the air duct, and the electric control box 108 communicates with a part of the air duct located inside the heat exchange cavity 106 . In this way, it can ensure that the air in the air duct enters the electric control box 108 driven by the pressure difference, so as to realize the cooling of the electric control box 108 .
  • the fan assembly 112 includes a connected fan wheel 140 and a driving member 142 .
  • both the wind wheel 140 and the fan assembly 112 are arranged in the fan cavity 104 , and ensure that the wind wheel 140 is arranged in the air duct, and the driving member 142 is arranged between the wind wheel 140 and the electric control box 108 .
  • the driving member 142 drives the wind wheel 140 to rotate in the air duct, so that the wind wheel 140 sends air to the heat exchange cavity 106 .
  • the pressure in the heat exchange chamber 106 is relatively high, while the pressure in the electric control box 108 is low, so that the airflow in the heat exchange chamber 106 enters the electric control box 108 driven by the pressure difference, realizing electric control. Efficient heat dissipation of the control box 108.
  • the driving member 142 is a motor
  • the electric control box 108 includes a motor driving module, which is electrically connected to the motor and can be used to control the operation of the motor.
  • the electric control box 108 communicates with the fan chamber 104, the electric control box 108 communicates with the position where the driver 142 is located, and is communicated to the outside of the air duct (because the inside of the air guide cover 126 is part of the air duct ), the pressure at the position where the driving member 142 is located is relatively low, thereby ensuring that the gas in the electric control box 108 can enter the fan cavity 104 .
  • the air conditioner proposed in this embodiment has all the beneficial effects of the air conditioner proposed in Embodiment 1, and can ensure that the airflow in the heat exchange chamber 106 continuously enters the electric control box 108 during operation, and then the electric control box 108 and The electric control 110 performs efficient heat dissipation.
  • the eighth embodiment of the present application proposes an air conditioner, on the basis of the first embodiment, further:
  • the air conditioner further includes a filtering device 146 .
  • the filter device 146 is arranged at the air return port 136 of the fan chamber 104 and connected with the casing 102 .
  • the filter device 146 has a good filtering effect on the impurities mixed in the air, thereby ensuring the cleanliness of the air entering the housing 102 and ensuring the air entering the electric control box 108 The cleanliness of the air inside.
  • the electric control 110 in the electric control box 108 is generally a precision component, and the price is relatively high.
  • a filter device 146 is provided at the air return port 136 of the air conditioner, which can greatly effectively reduce or prevent dust from entering the electric control box 108 and the electric control box 110. Inside the control box 108 , the cleanliness of the electric control box 108 is ensured, and the service life of the electric control 110 is guaranteed.
  • the filtering device 146 may adopt a filter net.
  • the filter device 146 is detachably installed at the air return port 136, which is convenient for users to replace, maintain and clean.
  • the electric control box 108 can also communicate with the fan chamber 104, or communicate with the external environment, or communicate with the fan chamber 104 at the same time. It is connected with the external environment; below, it is divided into three situations for discussion:
  • the electric control box 108 communicates with the fan cavity 104 and the heat exchange cavity 106 .
  • the fan assembly 112 can supply air to the heat exchange cavity 106 during operation, which increases the pressure in the heat exchange cavity 106 and is higher than the pressure in the electric control box 108 and the fan cavity 104 .
  • the gas in the heat exchange chamber 106 enters the electric control box 108, and then the gas in the electric control box 108 can enter the fan chamber 104, thereby forming a heat dissipation flow path.
  • the airflow entering the electric control box 108 can effectively dissipate heat to the electric control box 108 and the electric control 110 in the electric control box 108, and when the air in the electric control box 108 flows to the fan chamber 104, it can also The heat in the electric control box 108 is brought into the fan chamber 104 to further dissipate heat from the electric control box 108 and greatly improve the heat dissipation effect on the electric control box 108 .
  • the electric control box 108 when the electric control box 108 is connected with the fan chamber 104 and the heat exchange chamber 106, the electric control box 108 is provided with a first heat dissipation hole 120 and a second heat dissipation hole 124; wherein, the electric control box 108
  • the first cooling hole 120 communicates with the heat exchange cavity 106
  • the electric control box 108 communicates with the fan cavity 104 through the second cooling hole 124 .
  • the air entering the fan cavity 104 can be blown to the heat exchange cavity 106 again, and this part of the gas can be blown out after heat exchange, and can also cool down the electric control box 108 again.
  • the electric control box 108 communicates with the heat exchange chamber 106 and the external environment.
  • the fan assembly 112 can supply air to the heat exchange chamber 106 during operation, which increases the pressure in the heat exchange chamber 106 and is higher than the pressure of the electric control box 108 and the external environment.
  • the gas in the heat exchange chamber 106 enters the electric control box 108, and then the gas in the electric control box 108 can enter the external environment, thereby forming an air flow path.
  • the airflow entering the electric control box 108 can effectively dissipate heat from the electric control box 108 and the electric control 110 in the electric control box 108, and when the air in the electric control box 108 flows to the external environment, the electric The heat in the control box 108 is carried to the external environment, which realizes further heat dissipation of the electric control box 108 and greatly improves the heat dissipation effect of the electric control box 108 .
  • the electric control box 108 communicates with the heat exchange cavity 106 and the external environment
  • the electric control box 108 is provided with a first cooling hole 120 and a third cooling hole;
  • the thermal cavity 106 is connected, and the electric control box 108 is connected with the external environment through the third cooling hole.
  • this part of air will not participate in the heat dissipation of the electric control box 108 again.
  • the electric control box 108 communicates with the heat exchange chamber 106, the fan chamber 104 and the external environment.
  • the fan assembly 112 can supply air to the heat exchange chamber 106 during operation, which increases the pressure in the heat exchange chamber 106, which is higher than the pressure of the electric control box 108 and the fan chamber 104, and is also higher than the pressure of the external environment .
  • the gas in the heat exchange chamber 106 enters the electric control box 108, and then the gas in the electric control box 108 can enter the fan chamber 104 and the external environment, thus forming two branches.
  • the airflow entering the electric control box 108 can effectively dissipate heat to the electric control box 108 and the electric control 110 in the electric control box 108, and when the air in the electric control box 108 flows to the fan cavity 104 and the external environment,
  • the heat in the electric control box 108 can also be brought to the external environment, realizing further heat dissipation of the electric control box 108 and greatly improving the heat dissipation effect of the electric control box 108 .
  • the electric control box 108 is provided with a first heat dissipation hole 120, a second heat dissipation hole 124 and a third heat dissipation hole; wherein, the electric control box 108 communicates with the heat exchange chamber 106 through the first heat dissipation hole 120, and the electric control box 108 communicates with the heat exchange cavity 106 through the first heat dissipation hole 120, and the electric control box 108 passes through the second heat dissipation hole.
  • the second cooling hole 124 communicates with the fan chamber 104, and the electric control box 108 communicates with the external environment through the third cooling hole. Moreover, this part of air will not participate in the heat dissipation of the electric control box 108 again.
  • the air that enters the fan chamber 104 can be blown to the heat exchange chamber 106 again, and this part of the air can be blown out after heat exchange, and can also cool down the electric control box 108 again; The heat dissipation of the control box 108 is in progress.
  • the fan assembly 112 when the electric control box 108 communicates with the fan chamber 104, since the fan assembly 112 is arranged in the fan chamber 104, the fan assembly 112 can further reduce the pressure in the fan chamber 104 during operation, thereby making the fan chamber
  • the pressure in 104 is the pressure in the first electric control box 108 , which further promotes the air in the electric control box 108 to enter the fan cavity 104 , so as to further improve the heat dissipation efficiency of the electric control box 108 .
  • the electric control box 108 may be provided with a plurality of folded edges, so that the positions of the folded edges form the above-mentioned first cooling holes 120 .
  • the number of the first heat dissipation holes 120 can be one or more, and it is designed according to the air volume required by the actual electric control box 108 for heat dissipation. When the electric control box 108 needs more air volume for heat dissipation, more first heat dissipation holes 120 can be designed.
  • the shape of the first cooling hole 120 can be designed according to the actual situation, and can be circular, oval, triangular, rectangular or other irregular shapes. Moreover, the above content is understandable to those skilled in the art.
  • the electric control box 108 may be provided with a plurality of folded edges, so that the positions of the folded edges form the above-mentioned second heat dissipation holes 124 .
  • the number of the second heat dissipation holes 124 can be one or more, and it is designed according to the air volume required by the actual electric control box 108 for heat dissipation. When the electric control box 108 needs more air volume for heat dissipation, more second heat dissipation holes 124 can be designed.
  • the shape of the second cooling hole 124 can be designed according to the actual situation, and can be circular, elliptical, triangular, rectangular or other irregular shapes. Moreover, the above content is understandable to those skilled in the art.
  • the electric control box 108 may be provided with a plurality of folded edges, so that the position of the folded edges forms the above-mentioned third heat dissipation hole.
  • the number of the third cooling hole can be one or more, and it is designed according to the air volume required by the actual electric control box 108 for cooling. When the electric control box 108 needs more air volume for heat dissipation, more third cooling holes can be designed.
  • the shape of the third cooling hole can be designed according to the actual situation, and can be circular, elliptical, triangular, rectangular or other irregular figures. Moreover, the above content is understandable to those skilled in the art.
  • the electric control 110 includes a motor drive module, and can be used to drive the motor of the air conditioner to work.
  • the motor driving module will generate heat during the operation of driving the motor. If the motor driving module and the motor are designed together, the cost of the entire motor will be too high. Therefore, this application arranges the motor drive module in the electric control box 108, and dissipates heat through the airflow in the heat exchange chamber 106, while reducing the cost of the motor and air conditioner, it solves the problem of heat dissipation of the motor drive module and the electric control box 108. question.
  • the electric control box 108 includes a box body 148 and a cover 150 , the box body 148 can be integrated with the housing 102 , and the cover 150 is provided on the box body 148 .
  • the first specific embodiment of the present application proposes an air conditioner, including: a casing 102 , an electric control box 108 , an electric control 110 and a fan assembly 112 .
  • the fan assembly 112 can supply air to the heat exchange chamber 106 during operation, which increases the pressure in the heat exchange chamber 106 and is higher than the pressure in the electric control box 108 . Therefore, during the operation of the air conditioner, due to a certain pressure difference between the heat exchange chamber 106 and the electric control box 108, at least part of the gas in the heat exchange chamber 106 enters the electric control box 108 and flows through the electric control box 108. Back in the fan chamber 104.
  • the airflow flowing through the electric control box 108 can effectively dissipate heat to the electric control box 108 and the electric control 110 in the electric control box 108, thereby ensuring that the temperature in the electric control box 108 is suitable, and ensuring that the temperature of the electric control 110 is reduced, ensuring Ensure the use safety of the electric control box 108 and the electric control 110.
  • the electric control box 108 is provided with a first cooling hole 120 and a second cooling hole 124 .
  • the first cooling hole 120 communicates with the heat exchange cavity 106 to ensure that the airflow in the heat exchange cavity 106 can enter the electric control box 108;
  • the second cooling hole 124 communicates with the fan cavity 104 to ensure the air flow in the electric control box 108 It can enter into the fan chamber 104.
  • the air conditioner further includes a heat dissipation air duct 114 through which the heat exchange chamber 106 and the electric control box 108 are communicated.
  • the inlet end of the heat dissipation air channel 114 is located at the connection between the fan chamber 104 and the heat exchange chamber 106 , ensuring a certain distance between the inlet end of the heat dissipation air channel 114 and the heat exchanger 144 in the heat exchange chamber 106 .
  • the air conditioner also includes a mounting beam 116 and a support member 118.
  • the mounting beam 116 and the support member 118 there is a certain space between the mounting beam 116 and the support member 118, and the heat dissipation air duct 114 is formed directly through the space between the mounting beam 116 and the support member 118.
  • the electric control box 108 is arranged on the side of the fan cavity 104 , and the cooling air duct 114 is arranged transversely to the air supply direction of the fan assembly 112 .
  • the air conditioner further includes a heat exchanger 144, and the heat exchanger 144 is arranged in the fan chamber 104, and the connection between the electric control box 108 and the fan chamber 104 is located at the side of the heat exchanger 144 facing the fan chamber 104. side.
  • the air located on the side of the heat exchanger 144 facing the fan chamber 104 has not been in contact with the heat exchanger 144 to exchange heat.
  • the accumulation of moisture ensures that the air inside the electric control box 108 is relatively dry, thereby ensuring the service life of the electric control box 108 and the electric control 110 .
  • the shell 102 also includes a pipeline cavity 152, the end of the refrigerant pipeline of the heat exchanger is located in the pipeline cavity 152, and can communicate with the external pipe in the refrigerant cavity to ensure the input and output of the refrigerant, And the pipeline cavity 152 is isolated from the heat exchange cavity 106 by the support member 118 .
  • the air conditioner further includes an air guide cover 126, and the air guide cover 126 includes an air supply port 128, and the side wall 130 of the air guide cover 126 is formed with a guide slope 132 at the air supply port 128, so that the air supply The tuyere 128 is trumpet-shaped.
  • the air guide 126 includes an air inlet 134 . Wherein, the air inlet 134 is arranged opposite to the air outlet 128 , the air inlet 134 is arranged toward the air return outlet 136 of the housing 102 , the electric control box 108 is located on the side of the air guide cover 126 , and the cooling air duct 114 is arranged laterally.
  • the fan chamber 104 includes an air return port 136
  • the heat exchange chamber 106 includes an air outlet 138
  • the air duct between the air return port 136 and the air outlet 138 is the air duct of the air conditioner
  • the electric control box 108 is arranged on the side of the air duct.
  • the fan assembly 112 includes a fan wheel 140 and a drive member 142 connected thereto.
  • the air conditioner further includes a filtering device 146 .
  • the filter device 146 is arranged at the air return port 136 of the fan cavity 104 and connected with the casing 102 .
  • the filter device 146 has a good filtering effect on the impurities mixed in the air, thereby ensuring the cleanliness of the air entering the housing 102 and further ensuring the cleanliness of the air entering the electric control box 108 .
  • electric controls such as the motor drive module will generate heat during use.
  • heat dissipation parts such as aluminum are installed in the electric control box, but the heat dissipation efficiency is often not high, and the heat dissipation problem of the electric control box and the electric control box cannot be effectively solved, and the electric control box is easily damaged.
  • the air conditioner proposed in this application can effectively solve the heat dissipation problem of electric controls 110 such as motor drive modules, and can realize dustproof and moistureproof inside the electric control box 108.
  • the air conditioner proposed by the present application has a heat dissipation air duct 114 formed between the support member 118 and the installation beam 116, and the heat dissipation air duct 114 communicates with the heat exchange chamber 106 and the electric control box 108 .
  • the air pressure in the heat exchange chamber 106 is relatively high.
  • the air pressure is relatively low. Therefore, the air in the heat exchange chamber 106 will enter into the fan chamber 104 to improve the heat dissipation of the electric control box 108 and the electric control 110 .
  • a first heat dissipation hole 120 may be provided on the side of the electric control box 108 facing the heat exchange chamber 106 to ensure that the airflow in the heat exchange chamber 106 enters the electric control box through the first heat dissipation hole 120 108; the side of the electric control box 108 facing the fan chamber 104 is provided with a second heat dissipation hole 124 to ensure that the airflow in the electric control box 108 flows back to the fan chamber 104 through the second heat dissipation hole 124, and the electric control box 108 The internal heat is taken away, further improving the cooling effect on the electric control box 108 and the electric control 110 .
  • the electric control box 108 may also be provided with a third heat dissipation hole, so as to ensure that the airflow in the electric control box 108 enters the external environment through the third heat dissipation hole. At this time, the air in the electric control box 108 can also flow to the external environment, and take away the heat inside the electric control box 108 , further improving the cooling effect on the electric control box 108 and the electric control 110 .
  • a filter device 146 is provided at the air return port 136 of the fan chamber 104 .
  • the impurity content in the air entering the interior of the air conditioner is relatively low, which ensures the cleanliness of the air entering the housing 102 and further ensures the cleanliness of the air entering the electric control box 108 .
  • a heat exchanger 144 is provided in the fan chamber 104 , and the inlet end of the cooling air duct 114 is ensured to be located on the side of the heat exchanger 144 facing the fan chamber 104 .
  • the air that enters the cooling air duct 114 and the electric control box 108 does not exchange heat with the heat exchanger 144, and the water vapor content in this part of the air is low, which can avoid the accumulation of moisture inside the electric control box 108, ensuring The air inside the electric control box 108 is relatively dry, thereby ensuring the service life of the electric control box 108 and the electric control 110 .
  • connection refers to two or more than two.
  • connection can be fixed connection, detachable connection, or integral connection; it can be directly connected or through an intermediate The medium is indirectly connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

一种空调器,包括:壳体,壳体包括连通的风机腔和换热腔;电控盒,设置在壳体,与换热腔和风机腔相连通;电控件,设置在电控盒内;风机组件,设置在风机腔内,风机组件可用于向换热腔送风,并对电控盒散热。空调器的内部形成循环流路,使得风机腔内的气流进入换热腔后,至少部分气流进入到电控盒内,并经由电控盒回到风机腔,进而通过该部分气流实现电控盒的散热。

Description

空调器
本申请要求于2021年06月08日提交到中国国家知识产权局、申请号为“202110636362.X”、发明名称为“空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调技术领域,具体而言,涉及一种空调器。
背景技术
电机驱动模块等电控件在使用过程会产生热量。相关技术中,在电控盒内设置散热件,但散热件的散热效率不高,并不能有效解决电控件以及电控盒内部的散热问题,导致电控件极易损毁。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。
为此,本申请提供了一种空调器。
本申请提供了一种空调器,包括:壳体,壳体包括连通的风机腔和换热腔;电控盒,设置在壳体,与换热腔和风机腔相连通;电控件,设置在电控盒内;风机组件,设置在风机腔内,风机组件可用于向换热腔送风,并对电控盒散热。
本申请提出的空调器包括壳体、电控盒、电控件和风机组件。沿空调器的送风方向,壳体包括相连通的风机腔和换热器;电控盒设置在壳体,并且与换热腔和风机腔相连通。电控件设置在电控和电控盒内,并可保证整个空调器的控制运行。风机组件设置在风机腔内,并可在运行过程中向换热腔送风。
特别地,风机组件在运行时可向换热腔送风,这使得换热腔内的压强提升,并高于电控盒以及风机腔内的压强。因此,在空调器运行过程中,由于换热腔与电控盒之间存在一定压强差,使得换热腔内的至少部分气体 进入到电控盒,并在流经电控盒后回到风机腔内。在空调器使用过程中,电控件会产生热量,电控盒内部温度会升高,高温会容易导致电控件损坏,并且影响电控件的使用寿命。因此,流经电控盒的气流恰好可对电控盒以及电控盒内电控件进行有效的散热,进而保证电控盒内的温度适宜,并保证电控件的温度降低,保证了电控盒以及电控件的使用安全。
并且,本申请提出的空调器在运行过程中,是换热腔内的气体进入到电控盒内,而风机组件在运行时可不断向换热腔送风,这使得换热腔内的压强要大于电控盒以及风机腔内的压强。因此,本申请可明显提升进入到电控盒内的气体量,以提升电控盒和电控盒内部电控件的散热效果,特别是相较于相关技术中利用外部环境的空气来对电控盒进行降温的技术方案,本申请散热效果更加明显。并且,经过风机组件驱动的气流的温度本就相对较低,这使得换热腔内的气流在流经电控盒时,本身就对电控盒内的电控件进行一定程度上的降温,进一步降低了电控件的温度,保证了电控件的使用寿命。
因此,本申请可在空调器的内部形成循环流路,使得风机腔内的气流进入换热腔后,至少部分气流进入到电控盒内,并经由电控盒回到风机腔,进而通过该部分气流实现电控盒的高效散热,保证了电控盒以及电控件的使用寿命。
根据本申请上述技术方案的空调器,还可以具有以下附加技术特征:
在上述技术方案中,电控盒开设有与换热腔连通的第一散热孔、以及与风机腔连通的第二散热孔;风机腔内的气流进入换热腔之后,至少部分气流经过第一散热孔流入电控盒内,并经由第二散热孔流回风机腔。
在一些可能的技术方案中,空调器还包括散热风道,散热风道连通于换热腔和电控盒。
在一些可能的技术方案中,空调器还包括安装梁,设置在风机腔与换热腔的连通处,支撑件,设置在换热腔内,散热风道位于安装梁与支撑件之间。
在一些可能的技术方案中,电控盒位于风机腔的侧方;散热风道相较于风机组件的送风方向横向设置。
在一些可能的技术方案中,散热风道的进口端与风机腔的出口端之间具有间隔;支撑件在散热风道的进口端设置有导流弧面。
在一些可能的技术方案中,空调器还包括:换热器,设置在换热腔内,散热风道的进口端位于换热器朝向风机组件的一侧;风机腔内的气流进入换热腔之后,至少部分气流流入散热风道内,至少部分气流与换热器换热。
在一些可能的技术方案中,壳体还包括管路腔,管路腔与换热腔通过支撑件相隔离;散热风道位于管路腔和电控盒之间。
在上述任一技术方案中,空调器还包括:导风罩,设置在风机腔,导风罩可用于向换热腔导流。
在上述任一技术方案中,导风罩包括送风口,送风口朝向换热腔设置;导风罩的侧壁在送风口处形成有导流斜面,导流斜面朝向散热风道的进口端延伸。
在上述任一技术方案中,导风罩包括进风口,进风口朝向风机腔的回风口设置;电控盒位于导风罩的侧方,并连通于风机腔。
在上述任一技术方案中,风机腔包括回风口,换热腔包括出风口,回风口与出风口之间为风道;电控盒位于风道的侧方,并与换热腔内的部分风道相连通。
在上述任一技术方案中,风机组件包括:风轮,设置在风道内;驱动件,设置在风轮与电控盒之间,并与驱动件相连接。
在上述任一技术方案中,空调器还包括:过滤装置,设置在风机腔的回风口处。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请一个实施例的空调器的仰视图(隐藏底板);
图2是本申请一个实施例的空调器的剖视图;
图3是本申请一个实施例的空调器的结构示意图;
图4是图3所示空调器的A处局部放大图;
图5是图3所示空调器的B处局部放大图。
其中,图1至图5中附图标记与部件名称之间的对应关系为:
102壳体,104风机腔,106换热腔,108电控盒,110电控件,112风机组件,114散热风道,116安装梁,118支撑件,120第一散热孔,122导流弧面,124第二散热孔,126导风罩,128送风口,130侧壁,132导流斜面,134进风口,136回风口,138出风口,140风轮,142驱动件,144换热器,146过滤装置,148盒本体,150盖体,152管路腔。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图5来描述根据本申请一些实施例提供的空调器。图1和图2中虚线箭头表示气流方向。
如图1、图2和图3所示,本申请第一个实施例提出了一种空调器,包括:壳体102、电控盒108、电控件110和风机组件112。
其中,如图1和图2所示,沿空调器的送风方向,壳体102包括相连通的风机腔104和换热器144;电控盒108设置在壳体102,并且电控盒108与换热腔106相连通。电控件110设置在电控和电控盒108内,并可保证整个空调器的控制运行。风机组件112设置在风机腔104内,并可在运行过程中向换热腔106送风。
特别地,如图1和图2所示,风机组件112在运行时可向换热腔106送风,这使得换热腔106内的压强提升,并高于电控盒108内的压强。因此,在空调器运行过程中,由于换热腔106与电控盒108之间存在一定压强差,使得换热腔106内至少部分气体进入到电控盒108,并在流经电控盒108后回到风机腔104内。
在空调器使用过程中,电控件110会产生热量,电控盒108内部温度会升高,高温会容易导致电控件110损坏,并且影响电控件110的使用寿命。因此,流经电控盒108的气流恰好可对电控盒108以及电控盒108内电控件110进行有效的散热,进而保证电控盒108内的温度适宜,并保证电控件110的温度降低,保证了电控盒108以及电控件110的使用安全。
并且,本实施例提出的空调器在运行过程中,是换热腔106内的气体进入到电控盒108内,而风机组件112在运行时可不断向换热腔106送风,这使得换热腔106内的压强要大于电控盒108以及风机腔104的压强。因此,本实施例可明显提升进入到电控盒108内的气体量,以提升电控盒108和电控盒108内部电控件110的散热效果,特别是相较于相关技术中利用外部环境的空气来对电控盒进行降温的技术方案,本申请散热效果更加明显。
并且,经过风机组件112驱动的气流的温度本就相对较低,这使得换热腔106内的气流在进入到电控盒108时本身就对电控盒108内的电控件110进行一定程度上的降温,进一步降低了电控件110的温度,保证了电控件110的使用寿命。
因此,本实施例提出的空调器可在空调器的内部形成循环流路,使得风机腔104内的气流进入换热腔106后,至少部分气流进入到电控盒108内,并经由电控盒108回到风机腔104,进而通过该部分气流保证电控盒108与换热腔106相连通;在运行过程中,换热腔106内的压强高于电控盒108以及风机腔104内的压强,进而使得换热腔106内的气流不断流经电控盒108内,可实现对电控盒108以及电控件110的有效散热。
本申请第二个实施例提出了一种空调器,在实施例一的基础上,进一步地:
如图4和图5所示,电控盒108开设有第一散热孔120和第二散热孔124。其中,第一散热孔120与换热腔106相连通,保证换热腔106内的气流可进入到电控盒108内;第二散热孔124与风机腔104相连通,保证电控盒108内的气流可进入到风机腔104内。这样,可在风机腔104、换热腔106和电控腔之间形成循环流路,以在空调器运行过程中不断为电控盒108以及电控盒108内的电控件110散热。
具体地,在空调器运行过程中,风机组件112不断向换热腔106送风,换热腔106以及压强要大于电控盒108内的压强;此时,风机腔104内的气流不断通过第一散热孔120进入到电控盒108内;而后,电控盒108内的至少部分气流不断通过第二散热孔124流回到风机腔104内再次参与送风。其中,由第二散热孔124流回到风机腔104内的气流可带走电控盒108内的热量,进而实现对电控盒108以及电控盒108内部电控件110的有效散热。
此外,本实施例提出的空调器具有如实施例一提出的空调器的全部有益效果,可在运行时保证换热腔106内的气流不断进入到电控盒108内,进而对电控盒108以及电控件110进行高效散热。
本申请第三个实施例提出了一种空调器,在实施例一的基础上,进一步地:
如图2所示,空调器还包括散热风道114,换热腔106和电控盒108通过散热风道114实现连通。也即,在风机组件运行过程中,换热腔106内的空气可在压强差的驱动下进入到散热风道114内,并经过散热风道114进入到电控盒108内,实现对电控盒108和电控盒108的高效散热。
特别地,由于上述散热风道114的使用,可极大程度上提升换热腔106与电控盒108的连通情况,并且可保证空调器在运行过程中,单位时间内进入到电控盒108内的气体量,进而保证了电控盒108以及电控盒108内电控件110的散热效果。
并且,由于上述散热风道114的使用,降低了对换热腔106和电控盒108之间相对位置的要求,使得电控盒108的安装更加灵活,只要可以设置在散热风道114能够连通到的位置,都是可以实现的。
此外,散热风道114的进口端位于风机腔104和换热腔106的连通处,保证散热风道114的进口端与换热腔106内的换热器144具有一定的距离,保证了进入到电控盒108内的空气的湿度较低,可避免电控盒108内部堆积潮气,保证了电控盒108内部的空气较为干燥,进而保证了电控盒108与电控件110的使用寿命。
在该实施例中,进一步地,如图1和图2所示,空调器还包括安装梁116和支撑件118。其中,安装梁116设置在壳体102的中部,并位于风机腔104 与换热腔106的连通处,安装梁116可作为横梁使用。支撑件118设置在换热腔106内,并且可抵接到壳体102的内部,以保证壳体102自身的强度和硬度,避免在空调器在运输和使用过程中,壳体102因碰撞而出现凹陷。
特别地,如图2所示,本实施例保证安装梁116与支撑件118之间存在一定的空间,并直接通过安装梁116与支撑件118之间的空间形成散热风道114。这样,一方面可保证散热风道114的进口端连通于风机腔104和换热腔106的连通处,另一方面可避免额外设计散热风道114,可极大程度上简化散热风道114以及整个空调器的结构,同时减轻空调器的重量。
因此,本实施例巧妙设计安装梁116与支撑件118的相对位置,进而可直接通过安装梁116与支撑件118之间的空间来形成散热风道114,有利于简化空调器的结构,同时便于换热器144的设计、加工和装配,也有利于降低换热器144的成本。此外,安装梁116设置有连通口,并且连通口连通于散热风道114和换热腔106。
具体实施例中,支撑件118可采用支撑泡沫,进而降低空调器的重量。
此外,安装梁116设置有连通口,并且连通口连通于散热风道114和换热腔106。具体实施例中,如图4所示,安装梁116可设置有多个折边,以使得折边的位置形成上述连通口。此外,连通口的数量可以为一个或多个,并根据实际电控盒108散热所需要的风量进行设计。并且,连通口的形状可根据实际情况进行设计,可以是圆形、椭圆形、三角形、矩形或其他不规则图形。并且,上述内容是本领域技术人员可以理解的。
此外,本实施例提出的空调器具有如实施例一提出的空调器的全部有益效果,可在运行时保证换热腔106内的气流不断进入到电控盒108内,进而对电控盒108以及电控件110进行高效散热。
本申请第四个实施例提出了一种空调器,在实施例三的基础上,进一步地:
如图1和图2所示,沿空调器的送风方向,电控盒108设置在风机腔104的侧方,并且散热风道114相较于风机组件112的送风方向横向设置。这样,本实施例合理设置电控盒108与风机腔104的相对位置,保证电控盒108不会影响风机腔104内风机组件112的送风,并且保证了电控盒108与风机腔104 之间不存在干涉。
此外,散热风道114相较于风机组件112的送风方向横向设置,并朝向电控盒108所在的位置延伸,以保证换热腔106内的气流可进入到电控盒108内为电控盒108以及电控盒108内的电控件110散热。
在该技术方案中,散热风道114的进口端与风机腔104的出口端之间具有间隔,以保证散热风道114的进口端与风机腔104的出口端具有一定的缓冲空间。此外,本实施例对支撑件118的结构进行优化,使得安装梁116在散热风道114的进口端设置有导流弧面122。
特别地,如图1和图2所示,由于上述导流弧面122的设置,可避免支撑件118在散热风道114的进口端出形成有尖点,并可降低支撑件118在散热风道114的进口端的风阻,并使得导流弧面122在散热风道114的进口端起到良好的导流效果。也即,在空调器运行过程中,换热腔106内的空气在散热风道114的进口端与导流弧面122相接触,并在导流弧面122的导流作用下顺畅地进入到按热风道,提升了单位时间进入散热风道114的气体量,进而提升电控盒108的散热效果,实现对电控盒108以及电控件110的高效散热。
此外,本实施例提出的空调器具有如实施例一提出的空调器的全部有益效果,可在运行时保证换热腔106内的气流不断进入到电控盒108内,进而对电控盒108以及电控件110进行高效散热。
本申请第五个实施例提出了一种空调器,在实施例一的基础上,进一步地:
空调器还包括换热器144。其中,换热器144设置在风机腔104内,并可在空调器运行过程中与换热腔106内气流接触换热,以实现空调器的制冷和制热能力。
特别地,如图1和图2所示,电控盒108与风机腔104的连通处位于换热器144朝向风机腔104的一侧。也即,保证散热风道114的进口端位于换热器144朝向风机腔104的一侧。在空调器运行过程中,位于换热器144朝向风机腔104一侧的空气还未与换热器144接触换热,因此该部分空气内的水蒸气含量较低。因此,当该部分气流进入到电控盒108时,可避免电控盒108内部堆积潮气,保证了电控盒108内部的空气较为干燥,进而保证了电控盒108与电 控件110的使用寿命。
具体实施例中,如图1和图2所示,换热器144倾斜设置在换热器144内,并且保证换热器144朝向风机腔104的一侧较高。这样,可保证散热风道114的进口端与换热器144之间具有足够的距离,也即保证散热风道114的进口端与换热器144之间具有足够的距离,保证了进入到电控盒108内的气体的湿度较低,拨正电控盒108以及电控件110不会因潮气而出现腐蚀等损坏。
在该实施例中,进一步地,壳体102还包括管路腔152,换热器的冷媒管路的端部位于该管路腔152内,并且可在冷媒腔内与外部管相连通,以保证冷媒的输入和输出。此外,管路腔152与换热腔106通过支撑件118相隔离,并通过支撑件118保证管路腔152的密封性,散热风道114位于管路腔152和电控盒108之间。这样,通过支撑件118来隔离管路腔152和换热腔106以保证管路腔152的密封性,进而避免了管路腔152内产生凝露;并且,散热风道114位于管路腔152和电控盒108之间,保证了支撑件118将散热风道114与管路腔152相隔离,同时避免了散热风道114内的气流进入到管路腔152内,进而避免了管路腔152内产生凝露。
此外,本实施例提出的空调器具有如实施例一提出的空调器的全部有益效果,可在运行时保证换热腔106内的气流不断进入到电控盒108内,进而对电控盒108以及电控件110进行高效散热。
本申请第六个实施例提出了一种空调器,在实施例一的基础上,进一步地:
如图1和图2所示,空调器还包括导风罩126。其中,导风罩126设置在风机腔104内,并可在风机组件112运行过程中起到良好的导风作用,以将风机组件112产生的气流导流到换热腔106。
在该实施例中,进一步地,如图2所示,导风罩126包括送风口128,送风口128朝向换热腔106设计。并且,导风罩126的侧壁130在送风口128处形成有导流斜面132,以使得送风口128呈现出喇叭状;同时使得导流斜面132朝向换热腔106与电控盒108的连通处延伸。
这样,在空调器运行过程中,如图2所示,风机组件112产生的气流在流出送风口128时可呈现出扩散状,使得至少部分气流朝向换热腔106与电控 盒108的连通处,也即使得中至少部分气流流向散热风道114的进口端,有利于提升单位时间内进入电控盒108的气体量,进而提升电控盒108的散热效果。
此处需要特殊说明的是,风机组件112运行可送换热腔106送风,换热腔106内的气体堆积会导致换热腔106的压强较高,此时换热腔106内的气体可进入到电控盒108内。本实施例在此基础上通过导流斜面132的设置,使得风机组件112送出的部分气流可直接流向换热腔106与电控盒108的连通处,进而进一步提升了电控盒108的散热效果。
在该实施例中,进一步地,如图2所示,导风罩126包括进风口134。其中,进风口134与送风口128相对设置,进风口134朝向壳体102的回风口136设置,并可从外部吸气。此外,电控盒108位于导风罩126的侧方,散热风道114横向设置。这样,使得风机组件112产生的至少部分气流可直接导流到换热腔106与电控盒108的连通处。
此外,本实施例提出的空调器具有如实施例一提出的空调器的全部有益效果,可在运行时保证换热腔106内的气流不断进入到电控盒108内,进而对电控盒108以及电控件110进行高效散热。
本申请第七个实施例提出了一种空调器,在实施例一的基础上,进一步地:
如图1和图2所示,风机腔104包括回风口136,换热腔106包括出风口138。其中,回风口136与出风口138之间为空调器的风道(图中未示出)。在空调器运行过程中,外部空气可通过回风口136进入到风道内,气流在风机组件112的驱动下进入到换热腔106,并从出风口138排出。特别地,电控盒108设置在风道的侧方,并且电控盒108与位于换热腔106内部分风道相连通。这样,可保证风道内的空气在压强差的驱动下进入电控盒108,实现电控盒108的降温。
在该实施例中,进一步地,如图1和图2所示,风机组件112包括相连接的风轮140和驱动件142。其中,风轮140和风机组件112均设置在风机腔104内,并且保证风轮140设置在风道内,驱动件142设置在风轮140与电控盒108之间。这样,在风机组件112运行过程中,驱动件142驱动风轮140在风道内转动,使得风轮140向换热腔106送风。此时,换热腔106内的压强 较高,而电控盒108内的压强较低,进而使得换热腔106内的气流在压强差的驱动下进入到电控盒108内,实现对电控盒108的高效散热。
具体实施例中,驱动件142为电机,电控盒108包括电机驱动模块,电机驱动模块与电机电连接,并可用于控制电机工作。
此外,在电控盒108与风机腔104相连通的情况下,电控盒108连通于驱动件142所在的位置,并且是连通到风道的外部(因为导风罩126的内部为部分风道),此时驱动件142所在的位置的压强较低,进而保证了电控盒108内的气体可进入到风机腔104内。
此外,本实施例提出的空调器具有如实施例一提出的空调器的全部有益效果,可在运行时保证换热腔106内的气流不断进入到电控盒108内,进而对电控盒108以及电控件110进行高效散热。
本申请第八个实施例提出了一种空调器,在实施例一的基础上,进一步地:
如图2所示,空调器还包括过滤装置146。其中,过滤装置146设置在风机腔104的回风口136处,并且与壳体102相连接。这样,在空调器运行过程中,过滤装置146对混合在空气内的杂质起到良好的过滤效果,进而保证了进入到壳体102内的空气的洁净程度,更保证了进入到电控盒108内空气的洁净程度。
特别地,电控盒108内的电控件110一般为精密元件,并且价格较高。本实施例在利用换热腔106内气体对电控盒108和电控件110进行散热的基础上,在空调器的回风口136处设置过滤装置146,可极大有效降低或避免灰尘进入到电控盒108内,保证了电控盒108内的洁净程度,更保证了电控件110的使用寿命。
具体地,过滤装置146可采用过滤网。此外,过滤装置146可拆卸地安装在回风口136处,便于用户更换、维修和清洗。
在上述任一实施例中,在电控盒108与换热腔106相连通的基础上,电控盒108还可以与风机腔104相连通、或者与外部环境相连通、或者同时与风机腔104和外部环境相连通;下面,分为三种情况分别进行论述:
情况一:如图5所示,电控盒108与风机腔104和换热腔106相连通。 这样,风机组件112在运行时可向换热腔106送风,这使得换热腔106内的压强提升,并高于电控盒108和风机腔104内的压强。此时,在压强差的驱动下,换热腔106内的气体进入到电控盒108,而后电控盒108内的气体可进入到风机腔104内,进而构成了一个散热流路。这样,进入到电控盒108内的气流可对电控盒108以及电控盒108内电控件110进行有效的散热,并且当电控盒108内的空气流到风机腔104时,还可将电控盒108内的热量带到风机腔104内,实现了对电控盒108的进一步散热,极大程度上提升了对电控盒108散热效果。
并且,如图5所示,在电控盒108与风机腔104和换热腔106相连通时,电控盒108设置有第一散热孔120和第二散热孔124;其中,电控盒108通过第一散热孔120与换热腔106相连通,电控盒108通过第二散热孔124与风机腔104相连通。并且,进入到风机腔104可再次被吹向换热腔106,该部分气体可经过换热后吹出,也可再次对电控盒108降温。
情况二:电控盒108与换热腔106和外部环境相连通。这样,风机组件112在运行时可向换热腔106送风,这使得换热腔106内的压强提升,并高于电控盒108和外部环境的压强。此时,在压强差的驱动下,换热腔106内的气体进入到电控盒108,而后电控盒108内的气体可进入到外部环境,进而构成了一个空气流路。这样,进入到电控盒108内的气流可对电控盒108以及电控盒108内电控件110进行有效的散热,并且当电控盒108内的空气流到外部环境时,还可将电控盒108内的热量带到外部环境,实现了对电控盒108的进一步散热,极大程度上提升了对电控盒108散热效果。
并且,在电控盒108与换热腔106和外部环境相连通时,电控盒108设置有第一散热孔120和第三散热孔;其中,电控盒108通过第一散热孔120与换热腔106相连通,电控盒108通过第三散热孔与外部环境相连通。并且,该部分空气不会再次参与到电控盒108的散热中。
情况三:电控盒108与换热腔106、风机腔104和外部环境相连通。这样,风机组件112在运行时可向换热腔106送风,这使得换热腔106内的压强提升,并高于电控盒108和风机腔104的压强,也同样高于外部环境的压强。此时,在压强差的驱动下,换热腔106内的气体进入到电控盒108, 而后电控盒108内的气体可进入到风机腔104和外部环境,进而构成了两个分支。这样,进入到电控盒108内的气流可对电控盒108以及电控盒108内电控件110进行有效的散热,并且当电控盒108内的空气流到风机腔104和外部环境时,还可将电控盒108内的热量带到外部环境,实现了对电控盒108的进一步散热,极大程度上提升了对电控盒108散热效果。
并且,电控盒108设置有第一散热孔120、第二散热孔124第三散热孔;其中,电控盒108通过第一散热孔120与换热腔106相连通,电控盒108通过第二散热孔124与风机腔104相连通,电控盒108通过第三散热孔与外部环境相连通。并且,该部分空气不会再次参与到电控盒108的散热中。此外,进入到风机腔104可再次被吹向换热腔106,该部分气体可经过换热后吹出,也可再次对电控盒108降温;进到外部环境的部分空气不会再次参与到电控盒108的散热中。
具体实施例中,当电控盒108与风机腔104相连通时,由于风机组件112设置在风机腔104内,这风机组件112在运行时可进一步降低风机腔104内的压强,进而使得风机腔104内的压强第一电控盒108内的压强,进一步促使电控盒108内的空气进入到风机腔104内,以进一步提升电控盒108的散热效率。
具体实施例中,如图5所示,电控盒108可设置有多个折边,以使得折边的位置形成上述第一散热孔120。此外,第一散热孔120的数量可以为一个或多个,并根据实际电控盒108散热所需要的风量进行设计。当电控盒108散热所需的风量较多时,可设计更多的第一散热孔120。此外,第一散热孔120的形状可根据实际情况进行设计,可以是圆形、椭圆形、三角形、矩形或其他不规则图形。并且,上述内容是本领域技术人员可以理解的。
具体实施例中,电控盒108可设置有多个折边,以使得折边的位置形成上述第二散热孔124。此外,第二散热孔124的数量可以为一个或多个,并根据实际电控盒108散热所需要的风量进行设计。当电控盒108散热所需的风量较多时,可设计更多的第二散热孔124。此外,第二散热孔124的形状可根据实际情况进行设计,可以是圆形、椭圆形、三角形、矩形或其他不规则图形。并且,上述内容是本领域技术人员可以理解的。
具体实施例中,电控盒108可设置有多个折边,以使得折边的位置形成上 述第三散热孔。此外,第三散热孔的数量可以为一个或多个,并根据实际电控盒108散热所需要的风量进行设计。当电控盒108散热所需的风量较多时,可设计更多的第三散热孔。此外,第三散热孔的形状可根据实际情况进行设计,可以是圆形、椭圆形、三角形、矩形或其他不规则图形。并且,上述内容是本领域技术人员可以理解的。
在上述任一实施例中,电控件110包括电机驱动模块,并可用于驱动空调器的电机工作。特别地,电机驱动模块在驱动电机运行过程中会产生热量,若将电机驱动模块与电机设计在一起,会导致整个电机的成本过高。因此,本申请将电机驱动模块设置在电控盒108内,并通过换热腔106内的气流进行散热,在降低电机以及空调器成本的同时,解决了电机驱动模块以及电控盒108的散热问题。
在上述任一实施例中,如图3所示,电控盒108包括盒本体148和盖体150,盒本体148可以与壳体102为一体式结构,盖体150盖设于盒本体148。
本申请第一个具体实施例提出了一种空调器,包括:壳体102、电控盒108、电控件110和风机组件112。其中,风机组件112在运行时可向换热腔106送风,这使得换热腔106内的压强提升,并高于电控盒108内的压强。因此,在空调器运行过程中,由于换热腔106与电控盒108之间存在一定压强差,使得换热腔106内至少部分气体进入到电控盒108,并在流经电控盒108后回到风机腔104内。流经电控盒108的气流恰好可对电控盒108以及电控盒108内电控件110进行有效的散热,进而保证电控盒108内的温度适宜,并保证电控件110的温度降低,保证了电控盒108以及电控件110的使用安全。
在该实施例中,进一步地,电控盒108开设有第一散热孔120和第二散热孔124。第一散热孔120与换热腔106相连通,保证换热腔106内的气流可进入到电控盒108内;第二散热孔124与风机腔104相连通,保证电控盒108内的气流可进入到风机腔104内。
在该实施例中,进一步地,空调器还包括散热风道114,换热腔106和电控盒108通过散热风道114实现连通。具体地,散热风道114的进口端位于风机腔104和换热腔106的连通处,保证散热风道114的进口端与换热腔106内的换热器144具有一定的距离。此外,空调器还包括安装梁116和支撑件 118,安装梁116与支撑件118之间存在一定的空间,并直接通过安装梁116与支撑件118之间的空间形成散热风道114。此外,沿空调器的送风方向,电控盒108设置在风机腔104的侧方,并且散热风道114相较于风机组件112的送风方向横向设置。此外,散热风道114的进口端与风机腔104的出口端之间具有间隔,安装梁116在散热风道114的进口端设置有导流弧面122。
在该实施例中,进一步地,空调器还包括换热器144,换热器144设置在风机腔104内,电控盒108与风机腔104的连通处位于换热器144朝向风机腔104的一侧。在空调器运行过程中,位于换热器144朝向风机腔104一侧的空气还未与换热器144接触换热,当该部分气流进入到电控盒108时,可避免电控盒108内部堆积潮气,保证了电控盒108内部的空气较为干燥,进而保证了电控盒108与电控件110的使用寿命。此外,壳体102还包括管路腔152,换热器的冷媒管路的端部位于该管路腔152内,并且可在冷媒腔内与外部管相连通,以保证冷媒的输入和输出,并且管路腔152与换热腔106通过支撑件118相隔离。
在该实施例中,进一步地,空调器还包括导风罩126,导风罩126包括送风口128,导风罩126的侧壁130在送风口128处形成有导流斜面132,以使得送风口128呈现出喇叭状。此外,导风罩126包括进风口134。其中,进风口134与送风口128相对设置,进风口134朝向壳体102的回风口136设置,电控盒108位于导风罩126的侧方,散热风道114横向设置。此外,风机腔104包括回风口136,换热腔106包括出风口138,回风口136与出风口138之间为空调器的风道,电控盒108设置在风道的侧方。此外,风机组件112包括相连接的风轮140和驱动件142。
在该实施例中,进一步地,空调器还包括过滤装置146。过滤装置146设置在风机腔104的回风口136处,并且与壳体102相连接。过滤装置146对混合在空气内的杂质起到良好的过滤效果,进而保证了进入到壳体102内的空气的洁净程度,更保证了进入到电控盒108内空气的洁净程度。
具体实施例中,电机驱动模块等电控件在使用过程会产生热量。相关技术中,在电控盒内设置铝等散热件,但往往散热效率不高,并不能有效解决电控件以及电控盒的散热问题,电控件极易损毁。本申请提出的空调器,可有效解 决电机驱动模块等电控件110的散热问题,并且可实现电控盒108内部防尘和防潮。
本申请提出的空调器,如图1、图2和图3所示,在支撑件118与安装梁116之间形成有散热风道114,散热风道114连通换热腔106和电控盒108。在空调器运行过程中,由于风机组件112不断向换热腔106送风,使得换热腔106内的气压相对较高,风机组件112所在的风机腔104、电控盒108内部以及外部环境的气压相对较低。因此,换热腔106内的空气会进入到风机腔104内,以提升电控盒108以及电控件110的散热。
此外,如图5所示,可以在电控盒108朝向换热腔106的一侧设置有第一散热孔120,以保证换热腔106内的气流通过第一散热孔120进入到电控盒108内;在电控盒108朝向风机腔104的一侧设置有第二散热孔124,以保证电控盒108内的气流通过第二散热孔124流回风机腔104,并将电控盒108内部的热量带走,进一步提升对电控盒108以及电控件110的散热效果。
此外,还可以在电控盒108设置有第三散热孔,以保证电控盒108内的气流通过第三散热孔进入到外部环境。此时,电控盒108内的空气还可流到外部环境,并将电控盒108内部的热量带走,进一步提升对电控盒108以及电控件110的散热效果。
此外,如图2所示,在风机腔104的回风口136处设置有过滤装置146。这样,进入到空调器内部的空气中杂质含量较低,保证了进入到壳体102内的空气的洁净程度,更保证了进入到电控盒108内空气的洁净程度。
此外,如图1和图2所示,在风机腔104内设置有换热器144,并保证散热风道114的进口端位于换热器144朝向风机腔104的一侧。这样,进入到散热风道114以及电控盒108内的空气并未与换热器144进行换热,该部分空气内的水蒸气含量较低,可避免电控盒108内部堆积潮气,保证了电控盒108内部的空气较为干燥,进而保证了电控盒108与电控件110的使用寿命。
在本申请的描述中,术语“多个”则指两个或两个以上,除非另有明确的限定,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请 的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种空调器,其中,包括:
    壳体,所述壳体包括连通的风机腔和换热腔;
    电控盒,设置在所述壳体,并与所述换热腔和所述风机腔相连通;
    电控件,设置在所述电控盒内;
    风机组件,设置在所述风机腔内,所述风机组件可用于向所述换热腔送风,并对所述电控盒散热。
  2. 根据权利要求1所述的空调器,其中,
    所述电控盒开设有与所述换热腔连通的第一散热孔、以及与所述风机腔连通的第二散热孔;
    所述风机腔内的气流进入所述换热腔之后,至少部分气流经过所述第一散热孔流入所述电控盒内,并经由所述第二散热孔流回所述风机腔。
  3. 根据权利要求1所述的空调器,其中,
    所述空调器还包括散热风道,所述散热风道连通所述换热腔和所述电控盒。
  4. 根据权利要求3所述的空调器,其中,还包括:
    安装梁,设置在所述风机腔与所述换热腔的连通处;
    支撑件,设置在所述换热腔内,所述散热风道位于所述安装梁与所述支撑件之间。
  5. 根据权利要求3所述的空调器,其中,
    所述电控盒位于所述风机腔的侧方;
    所述散热风道相较于所述风机组件的送风方向横向设置。
  6. 根据权利要求4所述的空调器,其中,
    所述散热风道的进口端与所述风机腔的出口端之间具有间隔;
    所述支撑件在所述散热风道的进口端设置有导流弧面。
  7. 根据权利要求4所述的空调器,其中,还包括:
    换热器,设置在所述换热腔内,所述散热风道的进口端位于所述换热器朝向所述风机组件的一侧;
    所述风机腔内的气流进入所述换热腔之后,至少部分气流流入所述散热风道内,至少部分气流与所述换热器换热。
  8. 根据权利要求7所述的空调器,其中,还包括:
    所述壳体还包括管路腔,所述管路腔与所述换热腔通过所述支撑件相隔离;
    所述散热风道位于所述管路腔和所述电控盒之间。
  9. 根据权利要求3至8中任一项所述的空调器,其中,还包括:
    导风罩,设置在所述风机腔,所述导风罩可用于向所述换热腔导流。
  10. 根据权利要求9所述的空调器,其中,
    所述导风罩包括送风口,所述送风口朝向所述换热腔设置;
    所述导风罩的侧壁在所述送风口处形成有导流斜面,所述导流斜面朝向所述散热风道的进口端延伸。
  11. 根据权利要求9所述的空调器,其中,
    所述导风罩包括进风口,所述进风口朝向所述风机腔的回风口设置;
    所述电控盒位于所述导风罩的侧方。
  12. 根据权利要求1至8中任一项所述的空调器,其中,
    所述风机腔包括回风口,所述换热腔包括出风口,所述回风口与所述出风口之间为风道;
    所述电控盒位于所述风道的侧方,并与所述换热腔内的部分所述风道相连通。
  13. 根据权利要求12所述的空调器,其中,所述风机组件包括:
    风轮,设置在所述风道内;
    驱动件,设置在所述风轮与所述电控盒之间,并与所述驱动件相连接。
PCT/CN2021/134244 2021-06-08 2021-11-30 空调器 WO2022257374A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3216249A CA3216249A1 (en) 2021-06-08 2021-11-30 Air conditioner
KR1020237038598A KR20230169246A (ko) 2021-06-08 2021-11-30 에어컨
EP21944870.1A EP4321810A1 (en) 2021-06-08 2021-11-30 Air conditioner
AU2021450239A AU2021450239A1 (en) 2021-06-08 2021-11-30 Air conditioner
JP2023571201A JP2024518116A (ja) 2021-06-08 2021-11-30 エアコン
BR112023023169A BR112023023169A2 (pt) 2021-06-08 2021-11-30 Condicionador de ar
US18/386,566 US20240064927A1 (en) 2021-06-08 2023-11-02 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110636362.XA CN115451469A (zh) 2021-06-08 2021-06-08 空调器
CN202110636362.X 2021-06-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/386,566 Continuation US20240064927A1 (en) 2021-06-08 2023-11-02 Air conditioner

Publications (1)

Publication Number Publication Date
WO2022257374A1 true WO2022257374A1 (zh) 2022-12-15

Family

ID=84294748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134244 WO2022257374A1 (zh) 2021-06-08 2021-11-30 空调器

Country Status (9)

Country Link
US (1) US20240064927A1 (zh)
EP (1) EP4321810A1 (zh)
JP (1) JP2024518116A (zh)
KR (1) KR20230169246A (zh)
CN (1) CN115451469A (zh)
AU (1) AU2021450239A1 (zh)
BR (1) BR112023023169A2 (zh)
CA (1) CA3216249A1 (zh)
WO (1) WO2022257374A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022209A (ja) * 2000-07-05 2002-01-23 Fujitsu General Ltd 空気調和機の室外機
CN103363597A (zh) * 2013-07-26 2013-10-23 广东科龙空调器有限公司 一种空调器室外机
CN209558628U (zh) * 2019-03-05 2019-10-29 广东美的暖通设备有限公司 电控盒和空调器
CN212777670U (zh) * 2020-08-21 2021-03-23 四川长虹空调有限公司 电控盒散热结构及空调室外机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY114632A (en) * 1998-06-30 2002-11-30 Matsushita Electric Ind Co Ltd Air conditioner.
JP5827741B2 (ja) * 2012-02-28 2015-12-02 東芝キヤリア株式会社 空気調和機
CN202734156U (zh) * 2012-07-10 2013-02-13 广东美的电器股份有限公司 一种风管机电控组件及风管机
CN205980012U (zh) * 2016-05-20 2017-02-22 深圳麦克维尔空调有限公司 一种风机盘管及电控盒
CN209042573U (zh) * 2018-09-12 2019-06-28 美的集团股份有限公司 风管机和空调器
CN110848946A (zh) * 2019-12-03 2020-02-28 宁波奥克斯电气股份有限公司 电控盒组件及空调器
CN212005991U (zh) * 2020-04-30 2020-11-24 广东美的制冷设备有限公司 电控盒散热风道结构、空调室外机和空调器
CN212746712U (zh) * 2020-09-28 2021-03-19 广东美的制冷设备有限公司 空调室内机及空调器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022209A (ja) * 2000-07-05 2002-01-23 Fujitsu General Ltd 空気調和機の室外機
CN103363597A (zh) * 2013-07-26 2013-10-23 广东科龙空调器有限公司 一种空调器室外机
CN209558628U (zh) * 2019-03-05 2019-10-29 广东美的暖通设备有限公司 电控盒和空调器
CN212777670U (zh) * 2020-08-21 2021-03-23 四川长虹空调有限公司 电控盒散热结构及空调室外机

Also Published As

Publication number Publication date
EP4321810A1 (en) 2024-02-14
CN115451469A (zh) 2022-12-09
KR20230169246A (ko) 2023-12-15
AU2021450239A1 (en) 2023-11-23
BR112023023169A2 (pt) 2024-01-30
JP2024518116A (ja) 2024-04-24
CA3216249A1 (en) 2022-12-15
US20240064927A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
JP4923106B2 (ja) 空気調和機の室外機
WO2022257374A1 (zh) 空调器
CN210141650U (zh) 一种空调器室内机
WO2015032211A1 (zh) 屋顶式空调机
CN216253729U (zh) 一种工业扇直流驱动控制器的高效散热结构
WO2023016252A1 (zh) 电控盒、空调室外机和空调器
JP4203381B2 (ja) 防音型エンジン駆動作業機
CN102427700A (zh) 机柜散热装置
CN215637537U (zh) 空调室内机和空调器
CN212182829U (zh) 一种防尘配电柜
CN213872910U (zh) 一种新风模块及空调器
JP5521648B2 (ja) 消音ボックス付送風機
US11788738B2 (en) Outdoor unit and air conditioner
JP2016119286A (ja) 電池パック
US20210317999A1 (en) Outdoor unit and air conditioner
CN216346669U (zh) 空调器
CN217685175U (zh) 电磁灶
CN218215448U (zh) 电池冷却结构
WO2022141763A1 (zh) 一种泳池热泵机
WO2023226777A1 (zh) 鼓风机
CN220776324U (zh) 电气设备及其散热结构
CN218103719U (zh) 壳体结构、电控装置及空气调节器
WO2023092862A1 (zh) 电控盒、控制组件及空调室外机
CN220909806U (zh) 用于散热器的冷却模块、散热器总成以及车辆
CN110469499B (zh) 隔音箱、泵组件、流体系统及暖通设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944870

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3216249

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2021450239

Country of ref document: AU

Ref document number: AU2021450239

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20237038598

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237038598

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2021944870

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023023169

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2023571201

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021944870

Country of ref document: EP

Effective date: 20231110

ENP Entry into the national phase

Ref document number: 2021450239

Country of ref document: AU

Date of ref document: 20211130

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023023169

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231106