WO2022257010A1 - 基于crispr增加smn蛋白表达的方法及其应用 - Google Patents

基于crispr增加smn蛋白表达的方法及其应用 Download PDF

Info

Publication number
WO2022257010A1
WO2022257010A1 PCT/CN2021/098907 CN2021098907W WO2022257010A1 WO 2022257010 A1 WO2022257010 A1 WO 2022257010A1 CN 2021098907 W CN2021098907 W CN 2021098907W WO 2022257010 A1 WO2022257010 A1 WO 2022257010A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
tsl2
site
sgrna
plasmid
Prior art date
Application number
PCT/CN2021/098907
Other languages
English (en)
French (fr)
Other versions
WO2022257010A9 (zh
Inventor
梁德生
周妙金
胡志青
邬玲仟
Original Assignee
上海苹谱医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海苹谱医疗科技有限公司 filed Critical 上海苹谱医疗科技有限公司
Priority to PCT/CN2021/098907 priority Critical patent/WO2022257010A1/zh
Publication of WO2022257010A1 publication Critical patent/WO2022257010A1/zh
Publication of WO2022257010A9 publication Critical patent/WO2022257010A9/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the invention belongs to the field of genetic engineering, and the invention relates to a method for improving SMN protein level and its application by using CRISPR/Cas9 to precisely delete regulatory elements at the gene level.
  • SMA is a neuromuscular disease with symmetrical muscle weakness and muscle atrophy caused by the degeneration of motor neurons in the anterior horn of the spinal cord. It is one of the most common autosomal recessive genetic diseases in infancy, mainly manifested in the proximal limbs. Muscle weakness, with the aggravation of the disease, the decline or loss of body motor function, swallowing and spontaneous breathing difficulties, and eventually death due to respiratory muscle paralysis. The incidence of SMA in the population is about 1/6000-1/10000. The carrier rate is 1/40-1/50 [1] , and the carrier rate in our country is about 1/43 [2] .
  • SMA is usually divided into 5 subtypes according to the severity of the disease and the age of onset, of which SMA-I accounts for about 50%. Patients with onset at birth or within 6 months of birth have severe muscle weakness all over the body and cannot sit alone. Infants are unable to lift their heads normally and often die before 20 months due to respiratory muscle paralysis [3] . SMA is a genetic disease that causes serious death and disability, and it brings a huge burden to the patient's family and society.
  • the causative gene of SMA is the SMN1 gene encoding Survival Motor Neuron (SMN).
  • the human SMN gene is located at 5q11.2-5q13.3 [4] and has two highly homologous copies.
  • the one near the telomere is called SMN1/SMNt, while the one near the centromere is called SMN2/SMNc.
  • the two have only one base difference in the coding sequence and encode the same protein, located at position 6 of exon 7 of the SMN1 gene
  • the base is C
  • SMN2 is T. Due to the difference in this base, SMN2 has undergone alternative splicing, and only about 10% of active SMN protein is produced [5] .
  • SMN2 When aminoglycoside drugs (G418 ) treatment, SMN2 can read through the first stop codon, and the "C-terminus" of SMN2 can be encoded by exon 8 for 9 amino acids.
  • G418 aminoglycoside drugs
  • Christopher et al. found that treatment of fibroblasts from SMA type I patients with G418 significantly increased the level of SMN protein, and the activity of G418-treated SMA mice was significantly improved [8] . Construct read-through SMA model mice, and the survival time of the mice is greatly prolonged [9] .
  • These studies further illustrate that the "C-terminal" amino acid sequence of SMN protein is not specific but needs to have a certain length.
  • RNA secondary structure (terminalstem loop 2, TSL2) at the end of exon 7.
  • TSL2 inhibits the splicing activity of the 5' splicing site by hindering the binding of U1snRNP in the RNA splicing complex [10] .
  • this report is based on the study of plasmids constructed from exogenous sources, and does not conduct related research on the TSL2 site of the SMN2 gene in the genome that exists in the body itself, and currently there is no suitable tool for the TSL2 site in the genome. mutation.
  • Preferred SMN mRNA the small molecule homocarbonyltopsentin (PK4C9) can block the formation of TSL2 or change the conformation of TSL2 by binding to the GAGTAAG sequence (the sequence is partially repeated with TSL2), which can make the level of full-length SMN mRNA (FL-SMN mRNA)
  • the researchers treated the SMA patient fibroblast cell line GM03813C with a final concentration of 40 ⁇ M PK4C9 for 48 hours, and found that the SMN protein level in GM03813C increased by 1.5 times [11] .
  • the small molecule must reach a certain drug concentration to function; at the same time, the target of the small molecule is only 7 bases, and the risk of off-target is high; and to maintain the increase in SMN protein levels, the small molecule must be administered repeatedly throughout life medicine.
  • the purpose of the present invention is to provide a gene editing TSL2 site to increase the expression of functional SMN protein, thereby alleviating or treating spinal muscular atrophy.
  • a method for increasing SMN protein expression comprising: constructing a CRISPR gene editing system for specifically editing the TSL2 site, the system including sgRNA and Cas9 protein targeting the TSL2 site, or expressing a specific sgRNA targeting the TSL2 site and Cas9 protein plasmid or virus vector; then introduce the system into cells or mice, and edit the TSL2 site on exon 7 of the SMN2 gene, making it random insertion or deletion or insertion and deletion, so that TSL2 Structural disruption or instability increases mRNA and protein expression of full-length SMN.
  • the ways to introduce the system into cells or mice include electroporation, liposome transfection, virus transduction, nanomaterial transfection, etc., and any method that can realize the introduction into cells or mice is acceptable.
  • the method for increasing the expression of functional SMN protein is a non-therapeutic and non-diagnostic method.
  • a sgRNA whose sequence is shown in SEQ ID NO.1, SEQ ID NO.2, SEQ ID NO.3 or SEQ ID NO.4.
  • a plasmid that can express sgRNA targeting the TSL2 site and then introduce the plasmid into cells or mice to edit the TSL2 site on exon 7 of the SMN2 gene.
  • the plasmid can express a sgRNA comprising a CRISPR/Cas9 PAM sequence within 100 bp upstream and downstream of the TSL2 site, that is, a sgRNA comprising a 5'-NGG-3' or 5'-NNGRRT-3' sequence.
  • the plasmid can express sgRNA as shown in SEQ ID NO.1, SEQ ID NO.2, SEQ ID NO.3 or SEQ ID NO.4.
  • sequence numbers of the plasmids are shown in SEQ ID NO.28, SEQ ID NO.29, SEQ ID NO.30, and SEQ ID NO.31.
  • insertion, deletion, insertion and deletion occur at the stem portion "ATTCCTT" or "AAGGAGT” of the stem-loop structure of TSL2 of the edited iPSC.
  • the sequence of the iPSCs is: GGTGCTCACATTAAGGAGTAAGTCTGC (SEQ ID NO.26) or GGTGCTCACATTCCTTAAGGAGTAAGTCTGC (SEQ ID NO.27).
  • the method for constructing the edited iPSC includes: constructing a CRISPR gene editing system that specifically edits the TSL2 site, the system includes sgRNA and Cas9 protein targeting the TSL2 site, or expresses a specific sgRNA targeting the TSL2 site and Cas9 protein plasmid or virus vector; then the system is introduced into iPSC, and the TSL2 site on exon 7 of the SMN2 gene is edited to cause insertion, deletion or insertion and deletion, thereby destroying or destabilizing the structure of TSL2.
  • the iPSCs are derived from cells isolated from the urine of SMA patients and reprogrammed.
  • the iPSCs can also be neuroepithelial progenitor cells (iNEP), motor neuron progenitor cells (iMNP) or motor neurons (iMNs) derived therefrom.
  • iNEP neuroepithelial progenitor cells
  • iMNP motor neuron progenitor cells
  • iMNs motor neurons
  • a directionally differentiated cell is NEP, MNP or iMNs, and the directedly differentiated cell is obtained from the above-mentioned edited iPSCs directedly differentiated.
  • the sgRNA targeting the TSL2 site can be expressed, it can be used as one of the options for this application.
  • SpsgRNA1 as shown in SEQ ID NO.1, SpsgRNA2 as shown in SEQ ID NO.2, SasgRNA3 as shown in SEQ ID NO.3, SasgRNA2 as shown in SEQ ID NO.4 or as shown in SEQ ID NO.28 -Application of the plasmid represented by 31 in the preparation of a reagent for alleviating or treating spinal muscular atrophy.
  • a reagent for alleviating or treating spinal muscular atrophy comprising SpsgRNA1 as shown in SEQ ID NO.1, SpsgRNA2 as shown in SEQ ID NO.2, SasgRNA3 as shown in SEQ ID NO.3, as shown in SasgRNA2 shown in SEQ ID NO.4 or the plasmid shown in SEQ ID NO.28-31.
  • An expression construct which can express sgRNA, said sgRNA is SpsgRNA1 as shown in SEQ ID NO.1, SpsgRNA2 as shown in SEQ ID NO.2, SasgRNA1 as shown in SEQ ID NO.3 or as shown in SasgRNA2 shown in SEQ ID NO.4.
  • the expression construct is a viral vector.
  • the viral vector is an AAV vector.
  • the viral vector is an AAV9 vector.
  • a test kit contains the sgRNA or expression construct that produces insertion, deletion or insertion and deletion to the TSL2 structure; preferably, the sgRNA that produces insertion, deletion or insertion and deletion to the TSL2 structure is as SEQ ID NO.
  • SpsgRNA1 as shown in 1
  • SpsgRNA2 as shown in SEQ ID NO.2
  • SasgRNA1 as shown in SEQ ID NO.3
  • SasgRNA2 as shown in SEQ ID NO.4, as shown in SEQ ID NO.28-31
  • a pharmaceutical composition for alleviating or treating spinal muscular atrophy comprising the above-mentioned edited iPSCs, or qualitatively differentiated cells obtained from directed differentiation of the edited iPSCs.
  • Another study used the small molecule drug PK4C9 to block the formation of TSL2 by binding to the 7-base sequence of GAGTAAG in exon 7 of the SMN2 gene (this sequence is partially repeated with TSL2), because the target of the small molecule is only It is 7 bases, and its possibility of non-specific effect on other sites in the genome is high.
  • the researchers treated the SMA patient fibroblast cell line GM03813C with a final concentration of 40 ⁇ M PK4C9 for 48 hours to increase the SMN protein level in GM03813C by 1.5 times, which means that the small molecule must reach a certain drug concentration to function; and To maintain the SMN protein level, the small molecule drug must be administered repeatedly throughout life.
  • the present invention deletes or inserts the TSL2 site of the SMN2 gene existing in the body itself, in order to achieve long-term stable increase of full-length SMN transcripts, increase the expression of functional SMN protein, and finally realize the gene therapy of SMA.
  • the present invention uses CRISPR/Cas9 to specifically edit the TSL2 site to make it randomly generate insertions or deletions or insertions and deletions, thereby destroying or destabilizing the structure of TSL2. Although insertions or deletions or insertions and deletions are randomly generated, but in our More than 91% of the edited clones obtained in the study showed a significant increase in the expression level of functional SMN protein, and no off-target was detected. And animal experiments showed that using AAV to carry SaCas9 to edit the TSL2 site significantly increased the exercise capacity and survival time of mice. Therefore, the present invention establishes an effective, safe and efficient in situ gene therapy technology for SMA.
  • the strategy of using gene editing technology to precisely edit the TSL2 site of the SMN2 gene, thereby destroying the structure of TSL2 or destabilizing it has the following advantages: (1) Using CRISPR/Cas9 to edit TSL2 (ATTCCTTAAATTAAGGAGT) at the gene level (especially the produced The mutation occurs in the sequence "ATTCCTT” or "AAGGAGT”), and the edited cells can continue to transcribe and translate functional SMN protein, avoiding long-term repeated administration; (2) positive clones with increased FL-SMN mRNA and SMN protein in this study The rate was 44%, which is an effective and efficient method; (3) The sgRNA used in this study did not detect off-target in the obtained positive clones, which is a safe editing method.
  • the present invention is an effective, safe and efficient treatment method.
  • Fig. 1 is annealing reaction flowchart
  • Figure 2 is the result of sgRNA sequencing identification
  • Figure 3 shows the cutting efficiency of sgRNA to the target site detected by T7EI
  • M is Marker (Takara 20bp DNA Ladder); Control is the untransfected sgRNA group;
  • Figure 4 is the identification of positive clones after SpsgRNA1 editing and the detection of SMN protein expression
  • RT- qPCR detects FL-SMN mRNA in all edited single cell clones, ** is P ⁇ 0.01, *** is P ⁇ 0.001, **** is P ⁇ 0.0001, ns is no significant;
  • D.Western blot detects all The expression level of edited single-cell clone SMN, hiPSCs are normal human iPSCs as positive control, SMA-iPSCs are SMA patient-specific iPSCs as negative control, and ⁇ -actin is an internal reference protein;
  • Figure 5 is the sequencing detection of potential off-target sites of positive clones
  • Figure 6 is a schematic diagram of the directed differentiation of iPSCs into iMNs
  • Figure 7 shows the cell morphology and marker detection of iPSCs directed differentiation into iMNs
  • neuroepithelial progenitor cells positive for OTX2 and SOX1 on the 6th day of differentiation OLIG-2 positive motor neuron progenitor cells on the 12th day of differentiation, SMI32 and ISL1-positive early motor neurons on the 18th day, and ChAT on the 28th day Positive mature motor neurons.
  • Figure 8 is the transcription and protein levels of full-length SMN detected at the stage of iMNs
  • Figure 9 is TUNEL detection of motor neuron apoptosis after Camptothecin treatment
  • Immunofluorescence was used to detect the apoptosis of motor neurons treated with Camptothecin/DMSO on day 24 of differentiation, and DMSO was used as a solvent for Camptothecin as a negative control.
  • Red fluorescence means TUNEL is positive, and DAPI stains the nucleus;
  • Figure 10 is an analysis of the results of in vivo editing of the TSL2 site
  • Body weight changes of SMA mice injected with AAV9-SasgRNA1 in myelin sheath the abscissa is the days after birth, and the ordinate is the mouse weight, the detection time is 18 days, HET is heterozygous SMA mice, tSMA is injection SMA mice of AAV9-SasgRNA1, SMA is SMA mice injected with AAV9-SasgRNA-scramble;
  • the annealing reaction system is:
  • Cas9 plasmids are different. The purpose is to express Cas9 protein, but the size of different Cas9 plasmids is different. The size of the plasmid loaded by AAV virus is There are limitations, Sacas9 will be smaller than Spcas9, so SaCas9 is used when AAV packaging is directly used for in vivo experiments.
  • SpsgRNA1 (SEQ ID NO.1) was constructed, and its sequencing results are shown in Figure 2A, including the sgRNA1 sequence and the skeleton sequence SpsgRNA Scaffold; the sequencing results of SpsgRNA2 (SEQ ID NO.2) are shown in ( Figure 2B), including the sgRNA2 sequence and Skeleton sequence SpsgRNA Scaffold; SasgRNA1 (SEQ ID NO.3) sequencing results are shown in Figure 2C, including sgRNA1 sequence and skeleton sequence SasgRNA Scaffold; and SasgRNA2 (SEQ ID NO.4) sequencing results are shown in Figure 2D, including sgRNA2 sequence and skeleton sequence SasgRNA Scaffold.
  • Nanodrop 1000 to measure the plasmid concentration, mark it on the tube wall, and store it at -20°C for subsequent experiments.
  • HEK-293T was digested with 0.05% Trypsin-EDTA, counted, inoculated into a 6-well cell culture plate, inoculated 7 ⁇ 105 HEK293T cells in each well, and inoculated 6 wells in total, cross-shaking Mix well and culture in a 37°C cell culture incubator.
  • T7EI T7 endonuclease I
  • T7EI is a structure-specific enzyme that can recognize and cleave imperfectly paired DNA.
  • the purified PCR product is annealed, the annealing system is as follows:
  • SMA-iPSCs SMA patient-specific iPSCs
  • SMA-iPSCs were derived from cells isolated from the urine of SMA patients and obtained by reprogramming. Methods for reprogramming are available, similar to those reported in ref.
  • iPSCs were cultured via neuroepithelialization using MN-inducing differentiation medium (50% DMEM/F12, 50% Neurobasal Medium, 0.5 ⁇ N2, 0.5 ⁇ B27, 0.1mM ascorbic acid).
  • MN-inducing differentiation medium 50% DMEM/F12, 50% Neurobasal Medium, 0.5 ⁇ N2, 0.5 ⁇ B27, 0.1mM ascorbic acid.
  • Progenitor cells NEP
  • MNP motor neuron progenitor cells
  • cell expression markers were detected by immunofluorescence [12] .
  • the steps of directed differentiation process are as follows:
  • the cells in the 12-well plate were digested with dispase (1mg/mL) for 3-5min, and the cells were gently blown down with a large tip to absorb DMEM/F12, and transferred to a 15mL centrifuge tube, ⁇ 175g (in this experiment Centrifuge at room temperature for 5 min at 150 g, and perform immunofluorescence detection of the cell surface marker OLIG-2 on Day 12 of the cells inoculated on the slide;
  • SMA-iPSCs normal human iPSCs (hiPSCs) and edited clones C4, C5 and C20 were directedly differentiated into SMA-iMNs, hiMNs, C4-iMNs, C5-iMNs and C20-iMNs, respectively, as shown in Figure 6 for the differentiation process
  • NEP neuronal epithelial cells
  • MNPs motor neuron progenitor cells
  • SMI32- and ISL1-positive early motor neurons and ChAT-positive cells Mature motor neurons, indicating successful differentiation into motor neuron cells.
  • motor neurons are mainly induced by endoplasmic reticulum stress, so on the 24th day of iMNs differentiation, we treated mature motor neurons with a concentration of 10 ⁇ M Camptothecin for 21 hours to induce endoplasmic reticulum stress. After plasma reticulum stress, TUNEL was used to detect the apoptosis of motoneurons by immunofluorescence [13] . The results are shown in Figure 9.
  • the SMA model mice treated by the present invention were introduced from Jackson Lab (Stock No.007952). On the day of the birth of the offspring mice, a little mouse tail was cut for genotype identification, and each young mouse was marked , which is recorded as P0 days at this time;
  • mice After the first generation of mice is born, use F1/R1 amplification sequencing to detect whether editing occurs, and each edited mouse is separately established.
  • the fertilized eggs were microinjected with SpsgRNA1, and the F0 generation mice were amplified by PCR with F1/R1, followed by Sanger sequencing.
  • the results showed that microinjection of SpsgRNA1 could also effectively edit TSL2 and produce indels (Fig. 10C).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Neurology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Neurosurgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

提供了一种基于CRISPR增加SMN蛋白表达的方法,包括:构建特异性编辑TSL2位点的CRISPR基因编辑系统,该系统包括靶向TSL2位点的sgRNA和Cas9蛋白,或者是表达出靶向TSL2位点的特定sgRNA和Cas9蛋白的质粒或病毒载体;后将系统导入细胞内或小鼠体内,对SMN2基因7号外显子上的TSL2位点进行编辑,使其随机产生插入或缺失或插入和缺失,从而使TSL2结构破坏或不稳定,进而增加全长SMN的mRNA与蛋白表达。

Description

基于CRISPR增加SMN蛋白表达的方法及其应用 技术领域
本发明属于基因工程领域,本发明涉及一种利用CRISPR/Cas9在基因水平精确缺失调控元件,从而提高SMN蛋白水平的方法及其应用。
背景技术
SMA是一类由于脊髓前角运动神经元变性导致的对称性肌无力和肌萎缩的神经肌肉疾病,是一种婴儿期最常见的常染色体隐性遗传性疾病之一,主要表现为肢体近端肌无力,随病情加重,躯体运动功能下降或丧失,出现吞咽和自主呼吸困难,最终因呼吸肌麻痹而死亡。SMA在人群中的发病率约为1/6000-1/10000。携带率为1/40~1/50 [1],在我国人群携带率约为1/43 [2]。通常根据疾病严重程度及发病年龄主要将SMA分为5个亚型,其中SMA-I型约占50%,患者在出生时或在出生6个月内发病,全身严重肌无力,不能独坐,婴儿无法正常抬头,常在20个月之前由于呼吸肌麻痹导致死亡 [3]。SMA属于严重致死、致残的遗传性疾病,给患者家庭及社会都带来了巨大的负担。
SMA的致病基因是编码运动神经元存活蛋白(Survival Motor Neuron,SMN)的SMN1基因,人的SMN基因定位于5q11.2-5q13.3 [4],且有两个高度同源的拷贝,靠近端粒端的称为SMN1/SMNt,而靠近着丝粒的称为SMN2/SMNc,二者在编码序列上仅相差1个碱基且编码相同的蛋白,在SMN1基因7号外显子第6位碱基为C,而SMN2为T,由于该碱基的不同,导致SMN2产生了选择性剪接,仅产生约10%左右的有活性的SMN蛋白 [5]。SMN2基因的缺失虽然不会致病,但临床统计表明SMN2拷贝数与疾病的严重程度成反比 [6],而且几乎所有的SMA病人中都含有至少一个拷贝的SMN2基因,因而SMN2是SMA的理想治疗靶点。2005年Elizabeth发现,SMN蛋白“C端”氨基酸序列的特异性不重要,但必需具备一定的长度 [7]。SMN1基因的“C端”由7号外显子编码16个氨基酸,SMN2由于发生外显子跳跃,其“C端”则由8号外显子编码4个氨基酸,当用氨基糖甙类药物(G418)处理后,可使SMN2通读第1个终止密码子,SMN2的“C端”则可由8号外显子编码9个氨基酸。Christopher等发现用G418处理SMA I型患者的成纤维细胞可使SMN蛋白水平显著增加,且G418处理的SMA小鼠活动能力得到显著改善 [8]。构建通读的SMA模型小鼠,小鼠的存活时间大大延长 [9]。这些研究进一步说明SMN蛋白“C端”氨基酸序列并非特异但需具备一定的长度。
由于人SMN2基因7号外显子两侧存在较弱的5’剪接位点,导致7号外显子在剪接的时候被跳跃,使得90%的转录产物缺失7号外显子,产生截短的不稳定的SMN蛋白,在7号外显子末端存在一个RNA的二级结构(terminalstem loop 2,TSL2),TSL2通过阻碍RNA剪接复合体中U1snRNP的结合,进而抑制5’剪接位点的剪接活性 [10]。构建包含SMN2基因6号外显子至8号外显子基因组序列和TSL2不同位点突变的miniSMN质粒转染HeLa细胞,研究人员发现使TSL2更稳定的点突变会导致包含7号外显子的 miniSMN-mRNA(该miniSMA-mRNA仅包含SMN2基因6号至8号外显子的外显子序列)转录水平显著减少,而破坏TSL2结构的点突变可使包含7号外显子的miniSMN-mRNA转录水平增加 [10,11],虽然点突变可以使miniSMN-mRNA转录水平增加,但这种miniSMN-mRNA不能有效翻译成功能性SMN蛋白,且由于SMA受累的运动神经元是终末细胞,在这些终末细胞中不能发生同源重组,无法实现精确碱基诱变,难以开展SMA治疗。更重要的是,本报道是针对外源构建的质粒进行研究的,并没有针对机体本身存在的基因组内SMN2基因TSL2位点进行相关研究,且目前针对基因组TSL2位点没有合适的工具能实现点突变。
另外有研究发现小分子homocarbonyltopsentin(PK4C9)通过结合GAGTAAG序列(该序列与TSL2有部分重复),从而阻碍了TSL2的形成或改变TSL2的构象,可以使全长SMN mRNA(FL-SMN mRNA)的水平增加,研究人员用终浓度为40μM的PK4C9对SMA病人成纤维细胞系GM03813C进行处理48小时,发现GM03813C中SMN蛋白水平提高了1.5倍 [11]。这意味着该小分子必须达到一定的药物浓度才能发挥功能;同时该小分子的靶点仅为7个碱基,脱靶的风险较高;并且要维持SMN蛋白水平增加该小分子必须终身反复给药。
因此,亟需研发安全有效、经济实用的且能持续增加SMN蛋白表达的方法,并探究其在SMA治疗中的应用。
参考文献:
[1]J.Pearn,Classification of spinal muscular atrophies[J].Lancet,1980,1:919-922.
[2]X.Wei,T.Hu,Y.Pu,et al.,Notable Carrier Risks for Individuals Having Two Copies of SMN1 in Spinal Muscular Atrophy Families with 2-copy Alleles:Estimation Based on Chinese Meta-analysis Data[J].Journal of Genetic Counseling,2017,1-7
[3]E.Mercuri,E.Bertini,S.T.Iannaccone,Childhood spinal muscular atrophy:controversies and challenges[J].The Lancet.Neurology,2012,11:443-452.
[4]S.Lefebvre,L.Burglen,S.Reboullet,et al.,Identification and characterization of a spinal muscular atrophy-determining gene[J].Cell,1995,80:155-165.
[5]B.Wirth,An update of the mutation spectrum of the survival motor neuron gene(SMN1)in autosomal recessive spinal muscular atrophy(SMA)[J].Human mutation,2000,15:228-237.
[6]E.Tizzano,Spinal muscular atrophy during human development:where are the early pathogenic findings?[J].Advances in experimental medicine and biology,2009,652:225-235.
[7]M.A.Passini,J.Bu,A.M.Richards,et al.,Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy[J].Science translational medicine,2011,3:72ra18.
[8]C.R.Heier,C.J.DiDonato,Translational readthrough by the aminoglycoside geneticin(G418)modulates SMN  stability in vitro and improves motor function in SMA mice in vivo[J].Hum Mol Genet,2009,18:1310-1322.
[9]M.S.Cobb,F.F.Rose,H.Rindt,et al.,Development and characterization of an SMN2-based intermediate mouse model of Spinal Muscular Atrophy[J].Hum Mol Genet,2013,22:1843-1855.
[10]N.N.Singh,R.N.Singh,E.J.Androphy,Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes[J].Nucleic Acids Res,2007,35:371-389.
[11]A.Garcia-Lopez,F.Tessaro,H.R.A.Jonker,et al.,Targeting RNA structure in SMN2 reverses spinal muscular atrophy molecular phenotypes[J].Nat Commun,2018,9:2032.
[12]Miaojin Zhou,Zhiqing Hu,LiyanQiu,et al.Seamless genetic conversion of SMN2 to SMN1 via CRISPR/Cpf1 and single-stranded oligodeoxynucleotides in spinal muscular atrophy patient-specific iPSCs.Human Gene Therapy,2018,29(11):1252-1263
[13]Jin-Jing L,Xiang L,Cheng T,et al.Disruption of splicing-regulatory elements using CRISPR/Cas9 to rescue spinal muscular atrophy in human iPSCs and mice.National Science Review.2020;7(1):92-101.
发明内容
本发明的目的是提供一种基因编辑TSL2位点来增加功能性SMN蛋白的表达,从而缓解或治疗脊髓性肌萎缩症。
为了解决上述技术问题,本发明的技术方案如下:
一种增加SMN蛋白表达的方法,包括:构建特异性编辑TSL2位点的CRISPR基因编辑系统,该系统包括靶向TSL2位点的sgRNA和Cas9蛋白,或者是表达出靶向TSL2位点的特定sgRNA和Cas9蛋白的质粒或病毒载体;后将系统导入细胞内或小鼠体内,对SMN2基因7号外显子上的TSL2位点进行编辑,使其随机产生插入或缺失或插入和缺失,从而使TSL2结构破坏或不稳定,进而增加全长SMN的mRNA与蛋白表达。
优选的,将系统导入细胞内或小鼠体内的方式有电穿孔、脂质体转染、病毒转导、纳米材料转染等,能够实现导入细胞或小鼠体内的方式都可以。
优选的,所述的增加功能性SMN蛋白表达的方法为非治疗性、非诊断性的方法。
一种sgRNA,其序列如SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3或SEQ ID NO.4所示。
一种质粒,所述质粒能表达出靶向TSL2位点的sgRNA;后将质粒导入细胞内或小鼠体内,能对SMN2基因7号外显子上的TSL2位点进行编辑。
优选的,所述质粒能表达出在TSL2位点上下游100bp内包含CRISPR/Cas9 PAM序列的sgRNA,即包含5’-NGG-3’或5’-NNGRRT-3’序列的sgRNA。
优选的,所述质粒能表达出如SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3或SEQ ID NO.4所示sgRNA。
优选的,所述质粒的序列号如SEQ ID NO.28、SEQ ID NO.29、SEQ ID NO.30、SEQ ID NO.31所示。
一种编辑的iPSC,其TSL2结构产生插入、缺失或插入和缺失。
优选的,所述编辑的iPSC的TSL2的茎环结构的茎部“ATTCCTT”或“AAGGAGT”处发生插入、缺失、插入和缺失。
优选的,所述iPSCs其序列为:GGTGCTCACATTAAGGAGTAAGTCTGC(SEQ ID NO.26)或GGTGCTCACATTCCTTAAGGAGTAAGTCTGC(SEQ ID NO.27)。
所述编辑的iPSC的构建方法,包括:构建特异性编辑TSL2位点的CRISPR基因编辑系统,该系统包括靶向TSL2位点的sgRNA和Cas9蛋白,或者是表达出靶向TSL2位点的特定sgRNA和Cas9蛋白的质粒或病毒载体;后将系统导入iPSC,对SMN2基因7号外显子上的TSL2位点进行编辑,使其产生插入、缺失或插入和缺失,从而使TSL2结构破坏或不稳定。
所述iPSC来源于SMA病人的尿液中分离的细胞,重编程而成。
优选的,所述iPSC还可以是其衍生的神经上皮祖细胞(iNEP)、运动神经元祖细胞(iMNP)或运动神经元(iMNs)。
一种定向分化细胞,所述定向分化细胞为NEP、MNP或iMNs,所述定向分化细胞由上述编辑的iPSCs定向分化得到。
在本发明中,只要能够表达出靶向TSL2位点的sgRNA都可以作为本申请的方案选择之一。
如SEQ ID NO.1所示的SpsgRNA1、如SEQ ID NO.2所示的SpsgRNA2、如SEQ ID NO.3所示的SasgRNA3、如SEQ ID NO.4所示的SasgRNA2或如SEQ ID NO.28-31所示的质粒在制备缓解或治疗脊髓性肌萎缩症的试剂中的应用。
一种用于缓解或治疗脊髓性肌萎缩症的试剂,含有如SEQ ID NO.1所示的SpsgRNA1、如SEQ ID NO.2所示的SpsgRNA2、如SEQ ID NO.3所示的SasgRNA3、如SEQ ID NO.4所示的SasgRNA2或如SEQ ID NO.28-31所示的质粒。
一种表达构建物,其能表达出sgRNA,所述sgRNA为如SEQ ID NO.1所示的SpsgRNA1、如SEQ ID NO.2所示的SpsgRNA2、如SEQ ID NO.3所示的SasgRNA1或如SEQ ID NO.4所示的SasgRNA2。
优选的,所述表达构建物为病毒载体。
进一步优选的,所述病毒载体为AAV载体。
进一步优选的,所述病毒载体为AAV9载体。
一种试剂盒,所述试剂盒含有对TSL2结构产生插入、缺失或插入和缺失的sgRNA或表达构建物;优选的,对TSL2结构产生插入、缺失或插入和缺失的sgRNA为如SEQ ID NO.1所示的SpsgRNA1、如SEQ ID NO.2所示的SpsgRNA2、如SEQ ID NO.3所示的SasgRNA1、如SEQ ID NO.4所示的SasgRNA2、如 SEQ ID NO.28-31所示的质粒或如权利要求13所述的表达构建物。
如上述试剂盒在制备缓解或治疗脊髓性肌萎缩症的试剂中的应用。
一种用于缓解或治疗脊髓性肌萎缩症的药物组合物,包含上述编辑的iPSC,或由编辑的iPSCs定向分化得到定性分化细胞。
下面对本发明做进一步的解释:
目前国际上尚无通过编辑TSL2位点来增加功能性SMN蛋白水平的研究报道。有研究在构建的miniSMN基因TSL2位点上引入点突变,发现使TSL更稳定的点突变会导致包含7号外显子的miniSMN-mRNA转录水平显著减少,而破坏TSL2结构的点突变可使包含7号外显子的miniSMN-mRNA转录水平增加,但这种miniSMN-mRNA不能有效翻译成功能性SMN蛋白,同时由于SMA受累的运动神经元是终末细胞,在终末细胞中不能发生同源重组,无法实现点诱变。但本发明人发现其可以发生缺失或插入。而另一研究采用小分子药物PK4C9通过结合SMN2基因7号外显子的GAGTAAG这7个碱基序列(该序列与TSL2有部分重复),从而阻碍了TSL2的形成,由于该小分子的靶点仅为7个碱基,其非特异性作用于基因组其他位点的可能性高。研究人员用终浓度为40μM的PK4C9对SMA病人成纤维细胞系GM03813C进行处理48小时可使GM03813C中SMN蛋白水平提高了1.5倍,这意味着该小分子必须达到一定的药物浓度才能发挥功能;并且要维持SMN蛋白水平必须终身反复给予该小分子药物。
因此本发明针对机体本身存在的SMN2基因TSL2位点进行缺失或插入,以期实现长期稳定增加全长SMN的转录本,提高功能性SMN蛋白的表达,最终实现SMA的基因治疗。
本发明通过利用CRISPR/Cas9特异性编辑TSL2位点,使其随机产生插入或缺失或插入和缺失,从而使TSL2结构破坏或不稳定,虽然插入或缺失或插入和缺失为随机产生,但在我们的研究中所获得的编辑克隆中有91%以上的克隆功能性SMN蛋白的表达水平均显著增加,且未检测到脱靶。且动物实验显示,使用AAV携带SaCas9编辑TSL2位点,显著增加小鼠的运动能力与存活时间。因而本发明建立了一种有效、安全且高效的SMA原位基因治疗技术。
本发明的有益效果为:
利用基因编辑技术精确编辑SMN2基因TSL2位点,从而破坏TSL2结构或使其不稳定的策略,具有以下优势:(1)利用CRISPR/Cas9在基因水平对TSL2(ATTCCTTAAATTAAGGAGT)进行编辑(尤其是产生的突变发生在序列“ATTCCTT”或“AAGGAGT”),编辑后的细胞能持续转录、翻译功能性SMN蛋白,避免了长期反复给药;(2)本研究FL-SMN mRNA与SMN蛋白增加的阳性克隆率达44%,是一种有效且高效的方法;(3)本研究中所使用的sgRNA在所获得的阳性克隆中并未检测到脱靶,是一种安全的编辑方法。综上,本发明是一种有效、安全、高效的治疗方法。
附图说明
图1为退火反应流程图;
图2为sgRNA测序鉴定结果;
其中,A.SpsgRNA1测序结果;B.SpsgRNA2测序结果;C.SasgRNA1测序结果;D.SasgRNA2测序结果;图中sgRNA1与sgRNA2为特异性识别序列,SpsgRNA Scaffold为SpCas9的sgRNA骨架序列,SasgRNA Scaffold为SaCas9的sgRNA骨架序列;
图3为T7EI检测sgRNA对靶位点的切割效率
M为Marker(Takara 20bp DNA Ladder);Control为未转染sgRNA组;
图4为SpsgRNA1编辑后阳性克隆鉴定及其SMN蛋白表达检测;
A.核转后单细胞克隆分析结果;B.随机挑选3个单细胞克隆进行T-A克隆后Sanger测序,WT:野生型SMN2,Δ表示缺失,×表示T-A克隆测序的reads数;C.RT-qPCR对所有发生编辑的单细胞克隆检测FL-SMN mRNA,**为P<0.01,***为P<0.001,****为P<0.0001,ns为no significant;D.Western blot检测所有发生编辑的单细胞克隆SMN的表达水平,hiPSCs为正常人iPSCs作为阳性对照,SMA-iPSCs为SMA病人特异性iPSCs作为阴性对照,β-actin为内参蛋白;
图5为阳性克隆潜在脱靶位点测序检测
PCR扩增随机挑选的3个阳性克隆C4、C5、C20与SMA-iPSCs的5个潜在脱靶位点后Sanger测序结果。
图6为iPSCs定向分化iMNs示意图;
图7为iPSCs定向分化iMNs的细胞形态与标志物检测;
其中分化第6天为OTX2与SOX1阳性的神经上皮祖细胞,分化第12天为OLIG-2阳性的运动神经元祖细胞,第18天为SMI32与ISL1阳性的早期运动神经元,第28天为ChAT阳性的成熟运动神经元。
图8为iMNs阶段检测全长SMN的转录与蛋白水平
A.RT-qPCR检测FL-SMN mRNA水平,****为P<0.0001;B.RT-qPCR检测缺失7号外显子的SMN转录本(Δ7-SMN mRNA)水平,**为P<0.01,****为P<0.0001;C.WB检测iMNs阶段SMN蛋白的水平,hiMNs为正常人iPSCs分化而来的iMNs,作为阳性对照。
图9为TUNEL检测Camptothecin处理后运动神经元凋亡情况;
免疫荧光检测Camptothecin/DMSO处理分化第24天运动神经元的凋亡情况,其中DMSO为Camptothecin溶剂,作为阴性对照。红色荧光表示TUNEL阳性,DAPI染核;
图10为在体编辑TSL2位点结果分析;
A.髓鞘注射AAV9-SasgRNA1显著改善SMA小鼠的运动能力与疾病表型,HET为杂合SMA小鼠,tSMA为注射AAV9-SasgRNA1的SMA小鼠,SMA为注射AAV9-SasgRNA-scramble的SMA小鼠;B.髓 鞘注射AAV9-SasgRNA1的SMA小鼠体重变化,横坐标为出生后的天数,纵坐标为小鼠体重,检测时间为18天,HET为杂合SMA小鼠,tSMA为注射AAV9-SasgRNA1的SMA小鼠,SMA为注射AAV9-SasgRNA-scramble的SMA小鼠;C.显微注射SpsgRNA1至SMA模型小鼠受精卵,F0代小鼠Sanger测序显示在TSL位点发生了编辑。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件如J.萨姆布鲁克等编著,分子克隆实验指南,第三版,科学出版社,2002中所述的条件,或按照制造厂商所建议的条件。
实施例1
(1)sgRNA构建
1.1设计靶向TSL2位点sgRNA,并合成sgRNA1-F/R与sgRNA2-F/R进行退火,具体序列如表1所示:
表1需用到的引物序列
Figure PCTCN2021098907-appb-000001
Figure PCTCN2021098907-appb-000002
退火的反应体系为:
Figure PCTCN2021098907-appb-000003
退火条件流程见图1。
1.2从Addgene购买SpCas9质粒(编号:42230)与SaCas9质粒(编号:61591),Cas9质粒有不同的,目的都是表达出Cas9蛋白,但不同Cas9质粒的大小有差别,AAV病毒装载的质粒大小是有限制的,Sacas9相对于Spcas9会小一些,所以直接做体内实验用AAV包装的时候就选用SaCas9。
利用BbsI酶切42230,酶切体系如下:
Figure PCTCN2021098907-appb-000004
37℃孵育2-3小时。
用BsaI酶切61519质粒,酶切体系如下:
Figure PCTCN2021098907-appb-000005
37℃孵育2-3小时。
1.3将退火产物连入酶切的42230或61591载体,反应体系下:
Figure PCTCN2021098907-appb-000006
22℃孵育2小时。
Figure PCTCN2021098907-appb-000007
22℃孵育2小时。
转化的具体步骤为:
1.3.1从-80℃取出DH5α感受态,置于冰上解冻5min;
1.3.2将上述10μL连接产物与50μL DH5α感受态轻柔混合,冰上静置30min;
1.3.3同时打开水浴箱,温度设置为42℃;
1.3.4将混合物置于水浴箱中热激90s,然后冰上静置2min;
1.3.5在超净台内加入100μL不含抗生素的LB溶液,置于37℃摇床上,180rpm培养45min;
1.3.6在超净台内将液体全部涂布在含氨苄抗性的固体LB平板上,37℃恒温培养过夜;
1.3.7第二天挑取五个白色单个菌落于含氨苄的液体LB培养基中,做好标记,置于37℃摇床上,220rpm培养7h;
1.3.8将菌液送生物公司测序,测序结果如图2所示;
1.3.9构建出SpsgRNA1(SEQ ID NO.1),其测序结果见图2A,包含sgRNA1序列和骨架序列SpsgRNA Scaffold;SpsgRNA2(SEQ ID NO.2)测序结果见(图2B),包含sgRNA2序列和骨架序列SpsgRNA Scaffold;SasgRNA1(SEQ ID NO.3)测序结果见图2C,包含sgRNA1序列和骨架序列SasgRNA Scaffold;和SasgRNA2(SEQ ID NO.4)测序结果见图2D,包含sgRNA2序列和骨架序列SasgRNA Scaffold。
(2)SpsgRNA1、SpsgRNA2和SasgRNA1、SasgRNA2质粒的中量抽提
2.1取50mL离心管,在超净台中将菌液吸至离心管中,加入30mL含氨苄的液体LB,置于37℃摇床上,220rpm培养12h。
2.2使用OMEGA公司的E.Z.N.A Plasmid Midi Kit,按照说明书抽提质粒,做好标记。
2.3用Nanodrop 1000测定质粒浓度,标记于管壁,-20℃保存用于后续实验。
(3)最优sgRNA筛选
3.1转染前一天,将HEK-293T用0.05%Trypsin-EDTA消化、计数后,接种入6孔细胞培养板中,每个孔接种7×10 5个HEK293T细胞,共接种6个孔,十字摇匀,放入37℃细胞培养箱中培养。
3.2待细胞长至汇合度为70%时,弃去旧培养基。每孔加入2mL新的培养基;
3.3换液2h后,取出jetPRIME试剂盒(内含buffer和jetPRIME试剂)室温平衡;
3.4第1个EP管加入200μL buffer、2μg GFP质粒;第2-5个EP管加入200μL buffer、2μg前述构建的4个质粒(SpsgRNA1、SpsgRNA2和SasgRNA1、SasgRNA2),混匀后,每管分别加入8μL jetPRIME试剂,再次混匀后室温静置10min;
3.5将EP管中的液体轻轻加入细胞培养液中,摇匀,做好标记。放入细胞培养箱37℃培养;
3.6 12-16h后更换新鲜培养基;
3.7转染72h后收集细胞于抽屉gDNA,使用F2/R1扩增后,随后用T7核酸内切酶I(T7EI)检测每条sgRNA的切割活性;T7EI,是一种结构特异性酶,可以识别并切割不完全配对DNA。当形成异源双链DNA时,DNA分子的两条链被切割形成较小的两个片段。而同源DNA双链则不被T7EI切割,通过片段灰度值可以计算出CRISPR/Cas9切割效率,计算公式为:切割效率(%)=100×(1-(1-fraction cleaved)1/2);
3.8在PCR产物中加入2倍体积预冷的无水乙醇,于-20℃静置30分钟;
3.9颠倒混匀,以17000g,4℃离心10分钟,弃上清,加30μL预冷的75%乙醇;
3.10反复颠倒10次,以17000g,4℃离心5分钟,吸弃上清;
3.11置超净工作台内风干,加入15μL ddH 2O溶解;
3.12纯化后的PCR产物进行退火,退火体系如下:
Figure PCTCN2021098907-appb-000008
Figure PCTCN2021098907-appb-000009
退火反应条件如图1所示;
3.13退火完成后,往PCR管中加入0.5μL T7EI进行酶切,37℃酶切40分钟;
3.14配置浓度为10%的聚丙烯酰胺凝胶,在150V恒压条件电泳70分钟,分子成像仪扫胶,灰度分析,可分析出CRISPR/Cas9切割效率,结果见图3。
可见,所构建的sgRNAs均能对TSL2位点进行编辑,但编辑效率不同,其中SpsgRNA1与SasgRNA1效率较高,分别为30.14%和26.29%,而SpsgRNA2与SasgRNA2的效率分别为20.66%和20.61%。
(4)sgRNA核转SMA病人特异性iPSCs(SMA-iPSCs)
SMA-iPSCs来源于SMA病人的尿液中分离的细胞,重编程获得。重编程的方法是现有的,类似参考文献12中报道的方法。
4.1核转前一天,用稀释的Matrigel包被12孔板的4个孔;
4.2SMA-iPSCs培养至汇合率达70%-80%时(通常为在Matrigel包被的12孔板或6孔板上培养第3天或第4天),更换新鲜的mTeSR Plus培养基,并添加终浓度为10nM的Y27632。将细胞放入培养箱中继续培养2h;
4.3 2h后,取出核转试剂盒Amaxa Human Stem Cell Nucleofector Starter Kit,取一个灭菌EP管,加入18μL Supplement 1和82μL Solution 2,轻轻混匀,静置15min;
4.4静置的同时,将待打靶的SMA-iPSCs培养基吸弃,用1×DPBS洗4-5次,加入适量的TrypLE Select,37℃消化5min,每隔2min轻轻晃动培养皿;
4.5在倒置显微镜下观察到大部分细胞变圆时,将TrypLE Select消化液吸弃,加入3mL mTeSRplus培养基终止消化;
4.6取一15mL离心管,将细胞悬液转移至离心管中;
4.7用红细胞血球计数板计数,细胞总数需大于10 6个;
4.8 175g离心5min;
4.9离心的同时,将核转的质粒8μg SpsgRNA1加入到4.3的核转溶液中,轻轻混匀,室温静置5min;
4.10离心后,吸弃15mL离心管中的上清液体,并点离去除管壁上残留的液体,用EP管中的核转液重悬离心管内的细胞沉淀,用中tip吸取加了质粒的核转溶液将细胞重悬,将细胞转移至专用的核转电击杯中,重悬和转移细胞是要避免起泡的产生,若产生气泡,可以将核转杯底部轻轻敲击桌子,以使细胞破裂;
4.11打开核转仪,选择程序B016,将核转杯放至核转仪中,开始核转;
4.12核转完成后立即向核转杯内加入500μL mTeSR Plus培养基,静置5min;
4.13吸弃包被孔板用的Matrigel;
4.14接种细胞悬液;加入10μM的Y27632;
4.15摇匀,放入细胞培养箱内静置,核转12-16h后换液(使用含10μM Y27632的mTeSR Plus培养基);
4.16核转24h后使用普通mTeSR Plus培养基换液。
(5)单细胞克隆获得
5.1单细胞接种前一天,用Matrigel铺1个6cm细胞培养皿;
5.2取出核转后的细胞,用1×DPBS润洗细胞一次,加TrypLE Select至没过细胞,37℃消化不超过5min;
5.3吸弃TrypLE Select,用1mL mTeSR Plus培养基轻轻吹打细胞2-3次,使细胞完全脱落。计数,将细胞用Clone R培基重悬300-500个细胞接种至6cm细胞培养皿中。
5.4培养月10-14天,待6cm细胞培养皿中的细胞长至半个显微镜视野时,Matrigel包被48孔细胞培养板过夜。
5.5吸弃孔板中的Matrigel,每孔加入适量mTeSR Plus培养基至没过板底。
5.6在显微镜下选择6cm细胞培养皿中生长状态较好的单细胞克隆,用小Tip将其挑至48孔细胞培养板内,做好标记,每孔接种一个克隆;放入细胞培养箱中培养。每两天换液。
(6)克隆鉴定与SMN表达检测
6.1抽提所提取的单细胞克隆,用引物F1/R1扩增进行PCR扩增,送生物公司进行Sanger测序检测单细胞克隆的是否发生编辑,结果见图4A所示,在所挑取的25个单克隆中,有12个单细胞克隆发生了编辑,在细胞内发生非同源末端连接(Non-Homologous End Joining,NHEJ);对于发生编辑的克隆,随机挑取了3个阳性单细胞克隆(C4、C5和C20)的PCR产物进行T连转化后,挑不少于20个单菌落进行测序以分析每个单细胞克隆中3个SMN2基因TSL位点发生编辑的具体情况,结果见图4B,单细胞克隆C4有9个单菌落存在9个碱基缺失,有15个单菌落为未编辑的序列(wildtype,WT),表明单细胞克隆C4含有1个拷贝9个碱基缺失的TSL2和2个为未编辑的拷贝;在单细胞克隆C5测序结果中有8个单菌落存在5个碱基缺失,有15个单菌落为未编辑的序列(WT),意味着单细胞克隆C5含有1个拷贝5个碱基缺失的TSL2和2个为未编辑的拷贝;在单细胞克隆C20的测序结果中有10个单菌落存在9个碱基缺失,有16个单菌落为5个碱基缺失,意味着单细胞克隆C20中TSL2为1个拷贝9碱基缺失和2个拷贝5碱基缺失。
6.2通过RT-qPCR检测全长SMN的mRNA(FL-SMN mRNA)、缺失7号外显子的SMN mRNA(Δ7-SMN mRNA)水平,结果图4C,显示在所获得的12个编辑克隆中,有11个单细胞克隆全长SMN mRNA水平显著高于对照组SMA-iPSCs中全长SMN mRNA的水平。
6.3通过Western blot检测全长SMN蛋白水平,结果见图4D。与全长SMN mRNA检测结果对应,所获 得的12个编辑克隆中除了C22克隆外,其余的11个单细胞克隆全长SMN蛋白水平都明显高于SMA-iPSCs中全长SMN蛋白的水平。表明SMN2基因TSL2位点发生插入、缺失或插入和缺失后可以显著提高全长SMN mRNA水平和SMN蛋白水平。且修正效率达44%。
(7)CRISPR潜在脱靶位点检测
利用CRISPR RGEN Tools(http://www.rgenome.net/cas-offinder/)预测SpsgRNA1潜在脱靶位点,发现在人类基因组中,SpsgRNA1不存在小于3个碱基错配的靶点,3个碱基错配的靶点仅有5个,因而,针对这5个靶点分别设置引物OT-1F/1R、OT2F/2R、OT3F/3R、OT4F/4R、OT5F/5R,对随机挑取的3个阳性克隆(C4、C5和C22)与未进行编辑的SMA-iPSCs分别进行扩增后送Sanger测序,测序结果图5所示。
结果显示,在这5个潜在脱靶位点上,随机挑取的3个阳性克隆(C4、C5和C22)与未编辑的SMA-iPSCs序列一样,表明在预测的脱靶位点处未发生脱靶。
(8)iPSCs定向分化为iMNs
如图6所示,通过添加不同的化学小分子,使用MN诱导分化培养基(50%DMEM/F12,50%Neurobasal Medium,0.5×N2,0.5×B27,0.1mM ascorbic acid)将iPSCs经神经上皮祖细胞(NEP),运动神经元祖细胞(MNP),最终分化出成熟的iMNs。再分化的每个阶段,通过免疫荧光检测细胞表明标志物 [12]。定向分化过程其步骤如下:
8.1用Matrigel包被12孔细胞培养板,将iPSCs用Accutase或dispase(1mg/mL)消化后,以1:6的比例接种于包被好的孔中,用mTeSR plus培养1-2天;
8.2将培养基换成MN诱导培养基,同时添加终浓度为3μM CHIR99021,2μM DMH1,2μM SB421542,此时标记为Day0;
8.3隔天换液,培养过程中可以发现,细胞克隆团慢慢变得较为松散不如iPSCs致密,到Day5时候预铺Matrigel室温包被过夜,同时包被放有24孔板爬片的孔板;
8.4分化Day6时,用dispase(1mg/mL)消化细胞3-5min,用大tip吸取DMEM/F12轻轻将细胞吹下,转移到15mL离心管中,150g室温离心5min;
8.5小心的弃去上清,用MN诱导培养基重悬细胞,以1:4-1:6比例将细胞接种于Matrigel包被过夜的12孔板和放有爬片的24孔板中,同时添加终浓度为1μM CHIR99021,2μM DMH1,2μM SB431542,0.1μM RA,0.5μMPur;
8.6隔天换液,到Day11时候预铺Matrigel室温包被过夜,同时包被放有24孔板爬片的孔板;
8.7 Day12时,12孔板中的细胞用dispase(1mg/mL)消化细胞3-5min,用大tip吸取DMEM/F12轻轻将细胞吹下,转移到15mL离心管中,<175g(本实验中为150g)室温离心5min,接种在爬片上的细胞进行免疫荧光检测Day12时的细胞表面标志物OLIG-2;
8.8小心的弃去上清,用MN诱导培养基重悬细胞,以1:4-1:6比例将细胞接种于Matrigel包被过夜的孔板中,同时添加终浓度为0.5μM RA,0.1μMPur;
8.9隔天换液,到Day17时候预铺Matrigel室温包被过夜,同时包被放有24孔板爬片的孔板;
8.10 Day18天时,12孔板中的用Accutase消化细胞3-5min,用大tip吸取DMEM/F12轻轻将细胞吹下,转移到15mL离心管中,175g室温离心5min,接种在爬片上的细胞进行免疫荧光检测Day18时的细胞表面标志物MNX1;
8.11小心的弃去上清,用MN诱导培养基重悬细胞,以1:2-1:3比例将细胞接种于Matrigel包被过夜的12孔板和放有爬片的24孔板中,同时添加终浓度为0.5μM RA,0.1μMPur,0.1μM DAPT;
8.12隔天换液,到Day24-28天时可获得大量的ChAT+的运动神经元细胞,接种在爬片上的细胞进行免疫荧光检测Day24时的细胞表面标志物。
将SMA-iPSCs、正常人iPSCs(hiPSCs)和编辑克隆C4、C5和C20分别定向分化为SMA-iMNs、hiMNs、C4-iMNs、C5-iMNs和C20-iMNs,如图6所示为分化过程中细胞形态与标志物检测结果,显示分化过程表达OTX2与SOX1的神经元上皮细胞(NEP)、OLIG-2阳性的运动神经元祖细胞(MNPs)、SMI32与ISL1阳性的早期运动神经元和ChAT阳性的成熟运动神经元,表明成功分化出运动神经元细胞。
(9)在iMNs阶段检测SMN表达情况
9.1通过RT-qPCR检测全长SMN的mRNA(FL-SMNmRNA)、缺失7号外显子的SMN mRNA(Δ7-SMN mRNA)水平。结果显示编辑克隆分化来的运动神经元C4-iMNs、C5-iMNs与C20-iMNs中FL-SMN mRNA的转录水平显著高于SMA-iPSCs分化来的运动神经元(SMN-iMNs)(图8A),而Δ7-SMN mRNA则低于SMA-iMNs(图8B)。
9.2通过Western blot检测全长SMN蛋白水平。结果如果8C所示,C4-iMNs与C20-iMNs中的全长SMN蛋白水平显著高于SMA-iMNs。以上结果表明SMN2基因TSL2位点发生插入、缺失或插入和缺失后可以显著提高运动神经元中全长SMN mRNA水平和SMN蛋白水平。
(10)iMNs功能改善情况检测检测
在SMA患者中,运动神经元主要因内质网应激而导致凋亡,因而在iMNs分化第24天,我们通过添加浓度为10μM喜树碱(Camptothecin)处理成熟运动神经元21小时来诱导内质网应激,随后用TUNEL对运动神经元进行免疫荧光检测细胞凋亡情况 [13]。结果如图9所示,当只添加DMSO溶剂时,未编辑的SMA-iMNs与编辑克隆分化来的运动神经元(C4-iMNs与C20-iMNs)中TUNEL阳性的细胞都很少,表明凋亡水平较低,当喜树碱处理之后,SMA-iMNs的TUNEL阳性细胞显著增加,且远多于C4-iMNs与C20-iMNs中TUNEL阳性细胞,表明喜树碱诱导内质网应激之后,运动神经元的凋亡增加,且编辑克隆分化来的iMNs能有效抵抗喜树碱引起的内质网应激。该结果表明SMN2基因TSL2位点发生插入、缺失或插入和缺失后 可以显著提高运动神经元对内质网应激的抵抗能力。
(11)AAV携带SaCas9进行体内基因治疗研究
11.1将SasgRNA中效率较高的SasgRNA1包装携带SasgRNA1的AAV9病毒;
11.2将病毒分装后保存于-80℃;
11.3本发明所治疗的SMA模型小鼠为从Jackson Lab引进(Stock No.007952),在子代小鼠出生当天,剪取一点鼠尾,进行基因型鉴定,并对每只幼鼠做好标记,此时记为P0天;
11.4在P1天,通过腰椎L5-L6对SMA模型小鼠进行髓鞘注射AAV9-SasgRNA1,注射的体积为5μL,注射病毒滴度为1×10 10vg,对照组SMA小鼠注射等体积等滴度的AAV9-sgRNA-scramble,记录实验组与对照组的存活时间。
结果显示:在注射后的第10天,AAV9-SasgRNA1组小鼠的体重显著高于AAV9-sgRNA-scramble组(图A、B),同时运动能力也得到改善,AAV9-SasgRNA-scramble小鼠在出生后第11天死亡,而实验组小鼠存活与携带者在实验观察期18天内均存活(图10B)。
(12)显微注射SpCas9编辑TSL2
12.1取出生3~6周的雌性小鼠,腹腔注射促性腺激素PMSG,48小时后注射hCG后,立即与雄鼠合笼;
12.2第二天清晨,检查有阴道栓的雌鼠用于回收胚胎;
12.3在显微注射仪下将质粒注射入原核;
12.4将注射后的胚胎转移至假孕鼠子宫中;
112.5待子一代小鼠出生后,用F1/R1扩增后测序检测是否发生编辑,每只编辑的小鼠单独建系。
通过受精卵显微注射SpsgRNA1,F0代小鼠用F1/R1进行PCR扩增后进行Sanger测序,结果显示显微注射SpsgRNA1也能有效编辑TSL2,产生了indels(图10C)。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (16)

  1. 一种基于CRISPR增加SMN蛋白表达的方法,其特征在于,包括:构建特异性编辑TSL2位点的CRISPR基因编辑系统,该系统包括靶向TSL2位点的sgRNA和Cas9蛋白,或者是表达出靶向TSL2位点的特定sgRNA和Cas9蛋白的质粒或病毒载体;后将系统导入细胞内或小鼠体内,对SMN2基因7号外显子上的TSL2位点进行编辑,使其随机产生插入或缺失或插入和缺失,从而使TSL2结构破坏或不稳定,进而增加全长SMN的mRNA与蛋白表达。
  2. 一种sgRNA,其特征在于,其序列如SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3或SEQ ID NO.4所示。
  3. 一种质粒,其特征在于,所述质粒能表达出靶向TSL2位点的sgRNA;后将质粒导入细胞内或小鼠体内,能对SMN2基因7号外显子上的TSL2位点进行编辑;优选的,所述质粒能表达出在TSL2位点上下游100bp内包含CRISPR/Cas9 PAM序列的sgRNA,即包含5’-NGG-3’或5’-NNGRRT-3’序列的sgRNA。
  4. 根据权利要求3所述的质粒,其特征在于,所述质粒能表达出如SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3或SEQ ID NO.4所示sgRNA。
  5. 根据权利要求3所述的质粒,其特征在于,所述质粒选自序列如SEQ ID NO.28、SEQ ID NO.29、SEQ ID NO.30或SEQ ID NO.31所示的质粒。
  6. 一种编辑的iPSC,其特征在于,其TSL2结构产生插入、缺失或插入和缺失。
  7. 根据权利要求6所述的编辑的iPSC,其特征在于,其在TSL2的茎环结构的茎部“ATTCCTT”或“AAGGAGT”发生插入、缺失、插入和缺失。
  8. 根据权利要求7所述的编辑的iPSC,其特征在于,所述iPSCs其序列为:GGTGCTCACATTAAGGAGTAAGTCTGC(SEQ ID NO.26)或GGTGCTCACATTCCTTAAGGAGTAAGTCTGC(SEQ ID NO.27)。
  9. 构建如权利要求6-8任一项所述的编辑的iPSC的方法,其特征在于,包括:构建特异性编辑TSL2位点的CRISPR基因编辑系统,该系统包括靶向TSL2位点的sgRNA和Cas9蛋白,或者是表达出靶向TSL2位点的特定sgRNA和Cas9蛋白的质粒或病毒载体;后将系统导入iPSC,对SMN2基因7号外显子上的TSL2位点进行编辑,使其产生插入、缺失或插入和缺失,从而使TSL2结构破坏或不稳定,得到编辑的iPSC。
  10. 根据权利要求9所述的方法,其特征在于,所述iPSC还可以是其衍生的神经上皮祖 细胞、运动神经元祖细胞或运动神经元。
  11. 一种定向分化细胞,其特征在于,所述定向分化细胞为NEP、MNP或iMNs,所述定向分化细胞由如权利要求6-8任一项所述的编辑的iPSC定向分化得到。
  12. 如SEQ ID NO.1所示的SpsgRNA1、如SEQ ID NO.2所示的SpsgRNA2、如SEQ ID NO.3所示的SasgRNA3、如SEQ ID NO.4所示的SasgRNA2或如SEQ ID NO.28-31所示的质粒在制备缓解或治疗脊髓性肌萎缩症的试剂中的应用。
  13. 一种表达构建物,其特征在于,其能表达出sgRNA,所述sgRNA为如SEQ ID NO.1所示的SpsgRNA1、如SEQ ID NO.2所示的SpsgRNA2、如SEQ ID NO.3所示的SasgRNA1或如SEQ ID NO.4所示的SasgRNA2;优选的,所述表达构建物为病毒载体;进一步优选的,所述病毒载体为AAV载体。
  14. 一种试剂盒,其特征在于,所述试剂盒含有对TSL2结构产生插入、缺失或插入和缺失的sgRNA或表达构建物;优选的,对TSL2结构产生插入、缺失或插入和缺失的sgRNA为如SEQ ID NO.1所示的SpsgRNA1、如SEQ ID NO.2所示的SpsgRNA2、如SEQ ID NO.3所示的SasgRNA1、如SEQ ID NO.4所示的SasgRNA2、如SEQ ID NO.28-31所示的质粒或如权利要求13所述的表达构建物。
  15. 如权利要求14所述的试剂盒在制备缓解或治疗脊髓性肌萎缩症的试剂中的应用。
  16. 一种用于缓解或治疗脊髓性肌萎缩症的药物组合物,其特征在于,所述药物组合物包含如权利要求6-8任一项所述的编辑的iPSC,或如权利要求11所述的定向分化细胞。
PCT/CN2021/098907 2021-06-08 2021-06-08 基于crispr增加smn蛋白表达的方法及其应用 WO2022257010A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/098907 WO2022257010A1 (zh) 2021-06-08 2021-06-08 基于crispr增加smn蛋白表达的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/098907 WO2022257010A1 (zh) 2021-06-08 2021-06-08 基于crispr增加smn蛋白表达的方法及其应用

Publications (2)

Publication Number Publication Date
WO2022257010A1 true WO2022257010A1 (zh) 2022-12-15
WO2022257010A9 WO2022257010A9 (zh) 2023-02-02

Family

ID=84424735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098907 WO2022257010A1 (zh) 2021-06-08 2021-06-08 基于crispr增加smn蛋白表达的方法及其应用

Country Status (1)

Country Link
WO (1) WO2022257010A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103911346A (zh) * 2014-03-27 2014-07-09 江苏雄鸣医药科技有限公司 一种脊髓性肌萎缩症smn基因的敲除方法及细胞模型
WO2014113540A1 (en) * 2013-01-16 2014-07-24 Iowa State University Research Foundation, Inc. A deep intronic target for splicing correction on spinal muscular atrophy gene
CN109576268A (zh) * 2009-04-10 2019-04-05 肌肉学研究协会 用于治疗疾病的三环dna反义寡核苷酸、组合物和方法
CN110628814A (zh) * 2018-06-22 2019-12-31 福建医科大学附属第一医院 基于基因编辑技术增加smn蛋白表达的方法及其在sma治疗中的应用
CN112334157A (zh) * 2018-04-17 2021-02-05 应用干细胞有限公司 治疗脊髓肌萎缩症的组合物和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109576268A (zh) * 2009-04-10 2019-04-05 肌肉学研究协会 用于治疗疾病的三环dna反义寡核苷酸、组合物和方法
WO2014113540A1 (en) * 2013-01-16 2014-07-24 Iowa State University Research Foundation, Inc. A deep intronic target for splicing correction on spinal muscular atrophy gene
CN103911346A (zh) * 2014-03-27 2014-07-09 江苏雄鸣医药科技有限公司 一种脊髓性肌萎缩症smn基因的敲除方法及细胞模型
CN112334157A (zh) * 2018-04-17 2021-02-05 应用干细胞有限公司 治疗脊髓肌萎缩症的组合物和方法
CN110628814A (zh) * 2018-06-22 2019-12-31 福建医科大学附属第一医院 基于基因编辑技术增加smn蛋白表达的方法及其在sma治疗中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NATALIA N. SINGH, RAVINDRA N. SINGH, ELLIOT J. ANDROPHY: "Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes", NUCLEIC ACIDS RESEARCH, vol. 35, no. 2, 1 January 2007 (2007-01-01), GB , pages 371 - 389, XP002637921, ISSN: 0305-1048, DOI: 10.1093/nar/gkl1050 *
WU SHUANG: "Identification of Pathogenic Point Mutations in Spinal Muscular Atrophy and Embryonic Therapy in SMA Mouse Using CRISPR/Cas9 ", MASTER THESIS, 1 May 2019 (2019-05-01), CN , pages 1 - 60, XP093012345, ISSN: 1674-0246, DOI: 10.27020/d.cnki.gfjyu.2019.000338 *

Also Published As

Publication number Publication date
WO2022257010A9 (zh) 2023-02-02

Similar Documents

Publication Publication Date Title
CN108660161B (zh) 基于CRISPR/Cas9技术的制备无嵌合基因敲除动物的方法
CN107880132B (zh) 一种融合蛋白及使用其进行同源重组的方法
KR20220032050A (ko) 조작된 casx 시스템
KR20220119129A (ko) Leaper 기술에 기반한 mps ih 치료 방법 및 조성물
CA2055435A1 (en) Stably transformed eucaryotic cells comprising a foreign transcribable dna under the control of a pol iii promoter
US20230242916A1 (en) Method and drug for treating hurler syndrome
US8420377B2 (en) Transgenomic mitochondria, transmitochondrial cells and organisms, and methods of making and using
CN117413063A (zh) 冠状病毒治疗性干扰颗粒
CN114058619B (zh) Riplet敲除细胞系的构建及作为小核糖核酸病毒科病毒疫苗生产细胞系的应用
JP2006517101A (ja) 治療用産物を送達するための、増殖性の幹細胞および前駆細胞における候補分子の持続的発現
WO2022257010A1 (zh) 基于crispr增加smn蛋白表达的方法及其应用
US20220364122A1 (en) Bacterial platform for delivery of gene-editing systems to eukaryotic cells
CN110862988B (zh) 一种sgRNA及其构建的CREBRF点突变型巴马香猪和应用
CN112094866B (zh) 一种利用SpRY-Cas9系统制备CD163基因编辑猪的方法
JP2024518100A (ja) ゲノム組込みのための方法および組成物
CN117642506A (zh) 无义密码子的特定寡核苷酸编程的通读
CN113122580A (zh) 一种基于leaper技术治疗mps ih的方法和组合物
CN110714008A (zh) 核苷酸序列构建的crispr重组质粒靶向编辑iss序列的方法
CN109943514A (zh) 复制系统及其在基因表达中的应用
WO2021190226A1 (zh) 单碱基编辑介导的剪接修复在制备治疗脊髓性肌萎缩症中的应用
WO2020241748A1 (ja) 標的遺伝子を編集する蛋白質を細胞特異的に制御する方法
CN114292875B (zh) 一种牛cfl2基因腺病毒干扰载体及其构建和鉴定方法
CN117603977A (zh) 与鸽毛滴虫抗性相关的miRNA及其靶基因的应用
WO2023206088A1 (en) Rna base editor for treating dmd-associated diseases
Swartjes et al. Towards sequential conjugation-assisted laboratory evolution (SCALE) of Cas nucleases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE