WO2022255442A1 - 内燃機関の失火検知装置、および、失火検知方法 - Google Patents

内燃機関の失火検知装置、および、失火検知方法 Download PDF

Info

Publication number
WO2022255442A1
WO2022255442A1 PCT/JP2022/022449 JP2022022449W WO2022255442A1 WO 2022255442 A1 WO2022255442 A1 WO 2022255442A1 JP 2022022449 W JP2022022449 W JP 2022022449W WO 2022255442 A1 WO2022255442 A1 WO 2022255442A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
misfire
parameter
cylinders
Prior art date
Application number
PCT/JP2022/022449
Other languages
English (en)
French (fr)
Inventor
遼 佐瀬
恒 高柳
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN202280032174.9A priority Critical patent/CN117377814A/zh
Priority to EP22816187.3A priority patent/EP4317669A4/en
Publication of WO2022255442A1 publication Critical patent/WO2022255442A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/11Testing internal-combustion engines by detecting misfire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/14Timing of measurement, e.g. synchronisation of measurements to the engine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines

Definitions

  • the present disclosure relates to a misfire detection device for an internal combustion engine and a misfire detection method.
  • This application claims priority based on Japanese Patent Application No. 2021-093407 filed with the Japan Patent Office on June 3, 2020, the content of which is incorporated herein.
  • misfire detection devices for detecting misfires in internal combustion engines are known.
  • the misfire detection device disclosed in Patent Document 1 frequency-analyzes the angular acceleration of the engine obtained based on the detection result of the crank angle sensor. Further, the misfire device determines whether the inter-cylinder component of the angular acceleration (the component corresponding to the period obtained by dividing the period of one combustion cycle of the internal combustion engine by the number of cylinders of the internal combustion engine) is smaller than the threshold based on the result of the frequency analysis. Whether or not it is determined individually for each cylinder. Thereby, it is determined whether or not a misfire has occurred in any one of the plurality of cylinders forming the internal combustion engine.
  • misfire detection device it is determined individually whether or not a misfire has occurred in each of the plurality of cylinders that make up the internal combustion engine, so it may take time to detect all cylinder misfires. As a result, there is concern that the amount of unburned gas that accompanies the occurrence of all-cylinder misfires will increase. For example, when the internal combustion engine is an engine for power generation, the number of cylinders increases, so there is concern that the detection of all-cylinder misfire may be delayed and a large amount of unburned gas may be generated.
  • An object of the present disclosure is to provide a misfire detection device and a misfire detection method for an internal combustion engine that can detect all-cylinder misfires more quickly.
  • a misfire detection device for an internal combustion engine includes: A misfire detection device for an internal combustion engine for detecting misfires in an internal combustion engine having a plurality of cylinders, A pulsation component for obtaining a pulsation component spectrum, which is a spectrum at the frequency of the pulsation of the internal combustion engine, by frequency-analyzing the operating parameter data indicating temporal changes in the operating parameter correlated with the overall operating conditions of the plurality of cylinders.
  • an acquisition unit for acquiring a difference parameter correlated with the degree of difference in operation of each of the plurality of cylinders; all-cylinder misfire in the internal combustion engine when the pulsation component spectrum obtained by the pulsation component obtaining unit is below a first threshold and the difference parameter obtained by the difference parameter obtaining unit is below a second threshold; an all-cylinder misfire determination unit for determining that a has occurred; Prepare.
  • a misfire detection device for an internal combustion engine includes: A misfire detection device for an internal combustion engine for detecting misfires in an internal combustion engine having a plurality of cylinders, A pulsation component for obtaining a pulsation component spectrum, which is a spectrum at the frequency of the pulsation of the internal combustion engine, by frequency-analyzing the operating parameter data indicating temporal changes in the operating parameter correlated with the overall operating conditions of the plurality of cylinders.
  • a rate-of-change parameter obtaining unit for obtaining a rate-of-change parameter, which is an absolute value indicating the degree of change in the operating parameter correlated with the overall operating status of the plurality of cylinders; the internal combustion an all-cylinder misfire determination unit for determining that an all-cylinder misfire has occurred in the engine; Prepare.
  • a misfire detection method for an internal combustion engine comprises: A misfire detection method for an internal combustion engine for detecting misfires in an internal combustion engine having a plurality of cylinders, comprising: A pulsation component for obtaining a pulsation component spectrum, which is a spectrum at the frequency of the pulsation of the internal combustion engine, by frequency-analyzing the operating parameter data indicating temporal changes in the operating parameter correlated with the overall operating conditions of the plurality of cylinders.
  • a difference parameter obtaining step for obtaining a difference parameter correlated with the degree of difference in operation of each of the plurality of cylinders; all-cylinder misfire in the internal combustion engine when the pulsation component spectrum obtained by the pulsation component obtaining step is below a first threshold and the difference parameter obtained by the difference parameter obtaining step is below a second threshold; an all-cylinder misfire determination step for determining that a has occurred; Prepare.
  • a misfire detection method for an internal combustion engine comprises: A misfire detection method for an internal combustion engine for detecting misfires in an internal combustion engine having a plurality of cylinders, comprising: A pulsation component for obtaining a pulsation component spectrum, which is a spectrum at the frequency of the pulsation of the internal combustion engine, by frequency-analyzing the operating parameter data indicating temporal changes in the operating parameter correlated with the overall operating conditions of the plurality of cylinders.
  • a rate-of-change parameter obtaining step for obtaining a rate-of-change parameter, which is an absolute value indicating a degree of change in an operating parameter correlated with the overall operating status of the plurality of cylinders; the internal combustion an all-cylinder misfire determination step for determining that an all-cylinder misfire has occurred in the engine; Prepare.
  • misfire detection device for an internal combustion engine and a misfire detection method that can detect all-cylinder misfires more quickly.
  • FIG. 1 is a conceptual diagram showing a schematic configuration of a misfire detection system according to an embodiment of the present disclosure
  • FIG. 1 is a conceptual diagram showing the configuration of a misfire detection device according to a first embodiment of the present disclosure
  • FIG. 5 is a graph conceptually illustrating operating parameter data according to an embodiment of the present disclosure
  • 4 is a graph conceptually showing a result of performing a short-time Fourier transform on operating parameter data according to an embodiment of the present disclosure
  • 5 is a matrix showing relationships between pulsation component spectra, difference parameters, full cylinder misfires, and partial misfires according to an embodiment of the present disclosure
  • 7 is a graph conceptually showing a result of short-time Fourier transform performed on target data according to an embodiment of the present disclosure
  • FIG. 1 is a conceptual diagram showing a schematic configuration of a misfire detection system according to an embodiment of the present disclosure
  • FIG. 1 is a conceptual diagram showing the configuration of a misfire detection device according to a first embodiment of the present disclosure
  • FIG. 4 is a diagram conceptually showing a relationship between sensor values of a plurality of cylinder sensors and a difference parameter according to an embodiment of the present disclosure
  • 3 is a flowchart showing a misfire detection method for an internal combustion engine according to the first embodiment of the present disclosure
  • 6 is a conceptual diagram showing the configuration of a misfire detection device according to a second embodiment of the present disclosure
  • 5 is a graph showing changes over time in an operating parameter and a rate of change parameter according to an embodiment of the present disclosure
  • 4 is a matrix showing the relationship between a pulsation component spectrum, rate of change parameter, full cylinder misfire, and partial misfire according to an embodiment of the present disclosure
  • 7 is a flow chart showing a misfire detection method for an internal combustion engine according to a second embodiment of the present disclosure
  • expressions that express shapes such as squares and cylinders do not only represent shapes such as squares and cylinders in a geometrically strict sense, but also include irregularities and chamfers to the extent that the same effect can be obtained.
  • the shape including the part etc. shall also be represented.
  • the expressions “comprising”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.
  • symbol may be attached
  • FIG. 1 is a conceptual diagram showing a schematic configuration of a misfire detection system according to one embodiment of the present disclosure.
  • the misfire detection system 100 includes an internal combustion engine 1 and an internal combustion engine misfire detection device 10 (hereinafter sometimes simply referred to as "misfire detection device 10"). Schematic configurations of the internal combustion engine 1 and the misfire detection device 10 are illustrated below.
  • the internal combustion engine 1 of this example is a power generation gas engine that drives a generator by burning combustible gas supplied to each cylinder 2 .
  • the internal combustion engine 1 has multiple cylinders 2 .
  • the number of cylinders 2 may be any number such as four, eight, or sixteen.
  • Each cylinder 2 communicates with an air supply pipe 5 via an air supply manifold 3 and with an exhaust pipe 6 via an exhaust manifold 4 .
  • the internal combustion engine 1 is also provided with a turbocharger 15 having a compressor 7 provided in the air supply pipe 5 and a turbine 24 provided in the exhaust pipe 6 .
  • Compressor 7 is configured to supply compressed gas to each cylinder 2 .
  • the turbine 24 is configured to rotate together with the compressor 7 by exhaust gas discharged from each of the plurality of cylinders 2 .
  • exhaust gas is a concept including combustion gas and unburned gas.
  • the combustible gas flowing through the air supply pipe 5 is ignited by the spark plug 17 and combusted after being supplied to the inside of each cylinder 2 .
  • Exhaust gas discharged from each cylinder 2 flows through an exhaust pipe 6 to a turbine 24 .
  • each cylinder 2 is controlled by the ECU 9. Specifically, the ECU 9 sends an ignition instruction signal to the ignition device 8 so that the ignition by the spark plug 17 is performed. If each of the plurality of cylinders 2 is normally ignited, the crankshaft rotates at a specified number of revolutions due to the power taken out in order by each cylinder 2 .
  • FIG. 1 which is a conceptual diagram, a plurality of spark plugs 17 may be provided inside each cylinder 2 .
  • the ECU 9 is composed of a computer and has a processor, memory, and an external communication interface.
  • a processor may be a CPU, GPU, MPU, DSP, or a combination thereof.
  • a processor may be implemented by an integrated circuit such as a PLD, ASIC, FPGA, or MCU.
  • the memory is configured to temporarily or non-temporarily store various data, and is implemented by, for example, RAM, ROM, flash memory, or a combination thereof.
  • Various control signals such as an ignition instruction signal to be sent to the ignition device 8 are generated by the processor processing the data according to the instructions of the program loaded in the memory.
  • the ECU 9 is electrically connected to each of a crank angle sensor 51, a turbo speed sensor 52, a turbine pressure sensor 53, and a plurality of exhaust gas temperature sensors 54.
  • FIG. 1 which is a conceptual diagram, only the crank angle sensor 51 among these sensors is illustrated as if it were connected to the ECU 9 for the convenience of making the drawing easier to see.
  • the crank angle sensor 51 is configured to acquire the rotation angle of the crankshaft of the internal combustion engine 1 . Therefore, the ECU 9 can acquire the engine speed of the internal combustion engine 1 based on the detection result of the crank angle sensor 51 .
  • the turbo rotation speed sensor 52 is configured to detect the turbo rotation speed, which is the rotation speed of the turbocharger 15 .
  • Turbine pressure sensor 53 is configured to sense the inlet exhaust gas pressure of turbine 24 (ie, the pressure of the exhaust gas entering turbine 24).
  • a plurality of exhaust gas temperature sensors 54 are provided corresponding to each of the plurality of cylinders 2 .
  • Each exhaust gas temperature sensor 54 is configured to detect the temperature of exhaust gas discharged from the corresponding cylinder 2 .
  • crank angle sensor 51 the turbo speed sensor 52, the turbine pressure sensor 53, or the exhaust gas temperature sensor 54 may not be provided.
  • the crank angle sensor 51 and the turbo speed sensor 52 may be provided, and none of the other sensors may be provided.
  • turbo speed sensor 52 and turbine pressure sensor 53 may be provided and none of the other sensors may be provided.
  • the ECU 9 includes a misfire detection device 10.
  • the misfire detection device 10 is configured to detect misfires in the internal combustion engine 1 .
  • the misfire detection device 10 detects a full cylinder misfire, which is a misfire in all of the plurality of cylinders 2, and a partial misfire, which is a misfire in only one of the plurality of cylinders 2.
  • configured to Partial misfire is a concept that includes misfires that occur only in any one of a plurality of cylinders 2 (single-cylinder misfires) and misfires that occur only in any of a plurality of cylinders 2 .
  • the misfire detection device 10 may not detect partial misfires.
  • misfire detection device 10A 10A according to the first embodiment
  • misfire detection device 10B 10B according to the second embodiment
  • FIG. 2 is a conceptual diagram showing the configuration of the misfire detection device according to the first embodiment of the present disclosure.
  • the misfire detection device 10A (10) includes a pulsation component acquisition section 11, a difference parameter acquisition section 12, and a misfire determination section 40A (40).
  • the pulsation component acquiring unit 11 performs frequency analysis on the operating parameter data 61 (see FIG. 3) indicating changes in operating parameters over time, and obtains a pulsation component spectrum Sp (see FIG. 4), which is the spectrum at the pulsation frequency of the internal combustion engine 1. is configured to obtain
  • the operating parameter is a parameter that correlates with the operating status of the plurality of cylinders 2 as a whole (a specific example will be described later). Therefore, the operating parameters change according to the presence or absence of pulsation in the internal combustion engine 1 and the degree of pulsation.
  • the frequency analysis performed on the operating parameter data 61 may be FFT, BPF or STFT (Short-Term Fourier Transform).
  • the operating parameter is, for example, the engine speed, the inlet exhaust gas pressure of the turbine 24, or the turbo speed.
  • the pulsation component acquisition unit 11 acquires the operating parameter data 61 by continuously acquiring detection results from the crank angle sensor 51 , the turbo rotation speed sensor 52 , or the turbine pressure sensor 53 .
  • FIG. 3 is a graph conceptually showing operating parameter data according to an embodiment of the present disclosure.
  • the operating parameter data 61A (61) indicates a case where all of the plurality of cylinders 2 operate normally without misfiring. At this time, the operating parameters repeat periodic changes.
  • the operating parameter data 61C (61) indicates the case where all-cylinder misfire has occurred in the internal combustion engine 1 . The operating parameters in this case hardly change periodically after the timing when all cylinders misfire (t ⁇ ta). Therefore, when either full-cylinder misfire or partial misfire occurs, the above-described pulsation component spectrum Sp drops significantly (see FIG. 4).
  • FIG. 4 is a graph conceptually showing the result of short-time Fourier transform performed on the operating parameter data according to one embodiment of the present disclosure. More specifically, FIG. 4 exemplifies the result of applying a short-time Fourier transform to the operating parameter data 61C when an all-cylinder misfire occurs.
  • f cyl indicates the pulsation frequency of the internal combustion engine 1.
  • f cyl deviates from the ideal value specified by the formula, and the frequency at which a strong spectrum appears in the frequency analysis may be regarded as the pulsation frequency. This is because the actual measured value may deviate from the ideal value due to some factor at the time of measurement.
  • the pulsation component spectrum Sp disappears or almost disappears. Although detailed illustration is omitted, the pulsation component spectrum Sp is significantly lowered even when a partial misfire occurs. Therefore, it is possible to determine whether full-cylinder misfire or partial misfire has occurred in the internal combustion engine 1 based on the pulsation component spectrum Sp.
  • standard of this determination is called 1st threshold.
  • the first threshold may be specified by experiment, may be specified by simulation or analysis, or may be specified by a combination thereof (second threshold, third threshold, fourth threshold, and The same applies to the fifth threshold).
  • the difference parameter acquisition unit 12 is configured to acquire a difference parameter that correlates with the degree of difference (variation) in operation of each of the plurality of cylinders 2 .
  • a specific example of the difference parameter will be described later.
  • the difference parameter at this time is larger than when all-cylinder misfire occurs and when normal operation does not occur, and is greater than or equal to a specified threshold (hereinafter referred to as the third threshold).
  • the third threshold is greater than or equal to the second threshold, and embodiments in which the third and second thresholds are the same value are not excluded.
  • FIG. 5 is a matrix showing the relationship between the pulsation component spectrum, difference parameter, full-cylinder misfire, and partial misfire according to one embodiment of the present disclosure.
  • the pulsation component spectrum Sp acquired by the pulsation component acquiring section 11 is equal to or greater than the first threshold, it can be determined that all-cylinder misfire and partial misfire have not occurred. Then, when the difference parameter at this time is below the second threshold, it can be determined that all of the plurality of cylinders 2 are operating normally. On the other hand, if the pulsation component spectrum Sp is less than the first threshold, it can be determined that all-cylinder misfire or partial misfire has occurred.
  • the difference parameter acquired by the difference parameter acquisition unit 12 is below the second threshold, it can be determined that all-cylinder misfire has occurred, and if the difference parameter is greater than or equal to the third threshold, partial misfire has occurred. It can be determined that
  • the misfire determination unit 40A (40) shown in FIG. 2 includes an all-cylinder misfire determination unit 41A (41).
  • the all-cylinder misfire determination unit 41A is configured to determine the occurrence of all-cylinder misfire in the internal combustion engine 1 according to the criteria described above with reference to FIG. That is, when the spectrum acquired by the pulsation component acquisition unit 11 is below the first threshold and the difference parameter acquired by the difference parameter acquisition unit 12 is below the second threshold, the all-cylinder misfire determination unit 41 determines that the internal combustion It is configured to occur when an all-cylinder misfire occurs in the engine 1 .
  • the all-cylinder misfire determination section 41A determines that an all-cylinder misfire has occurred. Since it is not necessary to individually determine whether or not a misfire has occurred in each of the plurality of cylinders 2, the misfire detection device 10A can quickly detect the occurrence of all-cylinder misfires. For example, when the internal combustion engine 1 is applied to a power generation engine having 16 or more cylinders 2, the number of cylinders 2 increases compared to when the internal combustion engine 1 is applied as a vehicle engine. A large amount of unburned gas may be generated when all-cylinder misfire occurs. In this respect, the all-cylinder misfire determination unit 41A quickly determines the occurrence of all-cylinder misfire as in the present disclosure, so that appropriate measures can be taken before a large amount of unburned gas is generated.
  • the all-cylinder misfire determination unit 41A determines that the spectrum acquired by the pulsation component acquisition unit 11 is equal to or greater than the first threshold, and the difference parameter acquired by the difference parameter acquisition unit 12 is the second threshold. It may be determined that the internal combustion engine 1 is operating normally when it is below the threshold.
  • the misfire determination section 40A includes a partial misfire determination section 42A (42).
  • the partial misfire determination unit 42A is configured to determine the occurrence of a partial misfire in the internal combustion engine 1 according to the criteria described above with reference to FIG. Specifically, the partial misfire determination unit 42A determines that the pulsation component spectrum Sp acquired by the pulsation component acquisition unit 11 is below the first threshold and the difference parameter acquired by the difference parameter acquisition unit 12 is equal to or greater than the third threshold. , it is determined that a partial misfire has occurred in the internal combustion engine 1 .
  • the misfire detection device 10A includes the partial misfire determination section 42A and the full cylinder misfire determination section 41A, so that it can be determined with high accuracy whether the misfire occurring in the internal combustion engine 1 is a partial misfire or a full cylinder misfire. Identifiable.
  • FIG. 6A is a graph conceptually showing a result of short-time Fourier transform performed on target data according to an embodiment of the present disclosure.
  • the difference parameter acquisition unit 12 is configured to frequency-analyze target data indicating changes over time in sensor values detected by a single sensor.
  • the single sensor is, for example, the crank angle sensor 51, the turbo speed sensor 52, or the turbine pressure sensor 53. Therefore, the sensor value in this case is the engine speed, the turbo speed, or the inlet exhaust gas pressure of the turbine 24 . Therefore, the sensor value acquired by the difference parameter acquisition unit 12 may be the same as the operation parameter acquired by the pulsation component acquisition unit 11 described above.
  • Each of these sensor values correlates with the degree of difference in operation of each of the plurality of cylinders 2 . This correlation becomes clearer by frequency analysis of target data that indicates changes in sensor values over time.
  • the difference parameter acquisition unit 12 is configured to perform frequency analysis on the target data and acquire the cycle component spectrum Sc (see FIG. 6B), which is the spectrum at the frequency for one cycle of the internal combustion engine 1, as a difference parameter. For example, one cycle of the internal combustion engine 1 functioning as a four-cycle engine is completed each time the internal combustion engine 1 makes two revolutions. to complete.
  • the graph exemplified in FIG. 6A shows the spectrum when all-cylinder misfire occurs, as in FIG. Also, f Ne on the vertical axis of the graph of FIG. 6A is a frequency corresponding to one cycle of the internal combustion engine 1 . Like f cyl , f Ne may deviate from the ideal value obtained by calculation.
  • the sensor value partially changes periodically, so the cycle component spectrum Sc becomes equal to or greater than the third threshold.
  • the all-cylinder misfire determining section 41A can determine that all-cylinder misfire has occurred when the pulsation component spectrum Sp is below the first threshold and the cycle component spectrum Sc is below the second threshold. Further, the partial misfire determination unit 42A can determine that a partial misfire has occurred when the pulsation component spectrum Sp is below the first threshold and the cycle component spectrum Sc is above the third threshold.
  • the all-cylinder misfire determining section 41A can determine whether or not all-cylinder misfire has occurred based on the cycle component spectrum Sc. Moreover, since the cycle component spectrum Sc as difference data is acquired based on the sensor values detected by a single sensor, the cycle component spectrum Sc can be detected with a simpler configuration. Therefore, the configuration for detecting the occurrence of all-cylinder misfire can be simplified. Also, for the same reason, the configuration for detecting the occurrence of partial misfire can be made simpler.
  • the sensor values described above are the same as the operating parameters, and the target data indicating changes in the sensor values over time are the same as the operating parameter data 61 (see FIG. 3).
  • the operating parameter data 61 is subjected to frequency analysis by both the pulsation component acquisition section 11 and the difference parameter acquisition section 12 .
  • the graph shown in FIG. 6A can be superimposed on the graph shown in FIG.
  • both the pulsation component spectrum Sp and the cycle component spectrum Sc are obtained by frequency-analyzing data based on sensor values detected by a single sensor. Therefore, the configuration for detecting the occurrence of all-cylinder misfire can be simplified. Also, for the same reason, the configuration for detecting the occurrence of partial misfire can be made simpler.
  • the operating parameter according to one embodiment of the present disclosure is the turbo speed sensor 52 or the turbine pressure sensor 53. That is, the sensor value mentioned above is the turbine speed or the inlet exhaust gas pressure of the turbine 24 .
  • These two sensor values respond quickly to all-cylinder misfires that occur in the internal combustion engine 1 . That is, when full-cylinder misfire occurs in the internal combustion engine 1, the pulsation component spectrum Sp based on either of these two sensor values responds (decreases) relatively quickly. Therefore, according to the above configuration, the misfire detection device 10A can more quickly detect the occurrence of all-cylinder misfire. Also, in embodiments where the above sensor values are the same as the operating parameters, the misfire detection system 10 may detect partial misfires earlier.
  • FIG. 6B is a diagram conceptually showing the relationship between the detection results of the multiple cylinder sensors 18 and the difference parameter according to the embodiment of the present disclosure.
  • the difference parameter acquisition unit 12 is configured to analyze sensor values detected by each of the plurality of cylinder sensors 18 and acquire difference parameters.
  • the multiple cylinder sensors 18 are each configured to detect the operating state of each of the multiple cylinders 2 .
  • the cylinder sensor 18 is an exhaust gas temperature sensor 54 and the sensor value is the exhaust gas temperature in cylinder 2 . That is, the difference parameter acquisition unit 12 of this example is configured to analyze the temperature of the exhaust gas detected by each of the plurality of exhaust gas temperature sensors 54 .
  • the all-cylinder misfire determination unit 41A determines that all-cylinder misfire occurs when the pulsation component spectrum Sp is below the first threshold and the difference parameter based on the detection result of each of the plurality of cylinder sensors 18 is below the second threshold. It can be determined that Further, the partial misfire determination unit 42A can determine that a partial misfire has occurred when the pulsation component spectrum Sp is below the first threshold and the difference parameter is above the third threshold.
  • the difference parameter acquired based on the detection result of each of the plurality of cylinder sensors 18 is strongly correlated with the degree of difference in operation of each of the plurality of cylinders 2 . Therefore, the difference parameter changes greatly depending on whether full-cylinder misfire or partial misfire occurs. Therefore, the all-cylinder misfire determination section 41A can detect all-cylinder misfires in the internal combustion engine 1 with higher accuracy. Further, based on the detection result of the cylinder sensor 18, which is the exhaust gas temperature sensor 54, the all-cylinder misfire determination unit 41A determines whether or not all-cylinder misfire has been determined in the internal combustion engine 1. The detection result of the exhaust gas temperature sensor 54 tends to reflect the difference in operation of the plurality of cylinders 2 . Therefore, the misfire determination unit 40A can accurately detect the occurrence of all-cylinder misfire. It is also possible to accurately identify whether the misfire that has occurred is a full cylinder misfire or a partial misfire.
  • the plurality of cylinder sensors 18 may be configured to detect the exhaust gas pressure or exhaust gas flow rate of the corresponding cylinders 2 . Even in this case, the difference parameter obtained based on the detection result of each of the plurality of cylinder sensors 18 is strongly correlated with the degree of difference in operation of each of the plurality of cylinders 2. Cylinder misfire can be detected with high accuracy. It is also possible to accurately identify whether the misfire that has occurred is a full cylinder misfire or a partial misfire.
  • the number shown on the horizontal axis of the graph in FIG. 6B corresponds to one of the plurality of cylinders 2, and N shown in the graph is the same value as the number of cylinders 2. Also, the vertical axis of the graph in FIG.
  • the difference parameter acquisition unit 12 obtains a value ( equivalent to the length L value) as the difference parameter. According to the above configuration, it is possible to easily specify the difference parameter indicating the difference in operation of each of the plurality of cylinders 2 .
  • FIG. 7 is a flow chart showing a misfire detection method for an internal combustion engine according to the first embodiment of the present disclosure. This flowchart is executed by, for example, the misfire detection device 10A (see FIG. 2). When the detection method is started, the internal combustion engine 1 is running. In the following description, step may be abbreviated as "S".
  • the pulsation component spectrum Sp is acquired by the pulsation component acquisition unit 11 described above (S11), and then the difference parameter is acquired by the difference parameter acquisition unit 12 described above (S13). Further, it is determined by the above-described all-cylinder misfire determination section 41A whether or not an all-cylinder misfire has occurred (S15). If it is determined that an all-cylinder misfire has occurred (S15: YES), this detection method ends. At this time, some notification process may be executed.
  • the partial misfire determining section 42A determines whether or not a partial misfire has occurred (S17). If it is determined that a partial misfire has occurred (S17: YES), this detection method ends. On the other hand, if it is determined that a partial misfire has not occurred (S17: NO), the step returns to S11. S11 to S17 are repeatedly executed while the internal combustion engine 1 operates normally without misfiring. Note that in other embodiments, S17 may not be executed. Also, S17 may be executed before S15 is executed.
  • FIG. 8 is a conceptual diagram showing the configuration of a misfire detection device according to a second embodiment of the present disclosure.
  • the same components as those of the misfire detection device 10A according to the first embodiment are denoted by the same reference numerals in the drawings, and part of the description or Omit all.
  • the misfire detection device 10B (10) of this example is configured to detect full cylinder misfires and partial misfires, but may not detect partial misfires.
  • the misfire detection device 10B includes a rate-of-change parameter acquisition section 13 instead of the difference parameter acquisition section 12 (see FIG. 2) described above.
  • the rate-of-change parameter acquisition unit 13 is configured to acquire a rate-of-change parameter indicating the degree of change (speed of change) of the operating parameter.
  • the operating parameter is a parameter that correlates with the overall operating conditions of the plurality of cylinders 2 .
  • the operating parameters are, for example, the engine speed, the turbo speed, or the inlet exhaust gas pressure of the turbine 24 .
  • the operating parameters may be parameters different from the operating parameters, or may be the same parameters as the operating parameters.
  • FIG. 9 is a graph showing changes over time in operating parameters and rate-of-change parameters according to an embodiment of the present disclosure.
  • the operating parameter illustrated in FIG. 9 is engine speed.
  • the operating parameter greatly changes (decrease in the example of FIG. 9)
  • the change rate parameter also greatly changes (decrease in the example of FIG. 9). Therefore, the absolute value of the change rate parameter becomes large.
  • detailed illustration is omitted, when a partial misfire occurs, some cylinders 2 operate normally, so the operating parameter and the change rate parameter change slightly, but not as much as when a full cylinder misfire occurs.
  • the amount of change in the rate-of-change parameter is smaller than when a partial misfire occurs.
  • the fourth threshold when the pulsation component spectrum Sp is below the first threshold and the absolute value of the change rate parameter exceeds a specified threshold (hereinafter referred to as the fourth threshold), it can be determined that an all-cylinder misfire has occurred. Further, when the pulsation component spectrum Sp is below the first threshold and the absolute value of the change rate parameter is equal to or less than the fifth threshold, it can be determined that a partial misfire has occurred.
  • the fifth threshold is less than or equal to the fourth threshold, and embodiments in which the fifth and fourth thresholds are the same value are not excluded.
  • the internal combustion engine 1 can be determined to be operating normally.
  • FIG. 10 is a matrix showing the relationship between the frequency spectrum, change rate parameter, full cylinder misfire, and partial misfire according to one embodiment of the present disclosure.
  • the pulsation component spectrum Sp acquired by the pulsation component acquiring section 11 is equal to or greater than the first threshold, it can be determined that all-cylinder misfire and partial misfire have not occurred.
  • the absolute value of the change rate parameter at this time is equal to or less than the fifth threshold (or equal to or less than a specified value smaller than the fifth threshold)
  • the pulsation component spectrum Sp is less than the first threshold, it can be determined that all-cylinder misfire or partial misfire has occurred.
  • the misfire determination unit 40B which is a component of the misfire detection device 10B (10), includes an all-cylinder misfire determination unit 41B (41).
  • the all-cylinder misfire determination unit 41B determines that the pulsation component spectrum Sp acquired by the pulsation component acquisition unit 11 is below the first threshold and the absolute value of the change rate parameter acquired by the change rate parameter acquisition unit 13 is the fourth threshold. is exceeded, it is determined that an all-cylinder misfire has occurred in the internal combustion engine 1 .
  • the rate of change parameter is a negative value
  • the all-cylinder misfire determining section 41B determines that all-cylinder misfire has occurred. . Since it is not determined individually whether or not a misfire has occurred in each of the plurality of cylinders 2, the misfire detection device 10B can quickly detect the occurrence of all-cylinder misfires.
  • the all-cylinder misfire determination unit 41B determines that the pulsation component spectrum Sp acquired by the pulsation component acquisition unit 11 is equal to or greater than the first threshold, and that the change rate parameter acquisition unit 13 acquires It may be determined that the internal combustion engine 1 is operating normally when the absolute value of the rate parameter is equal to or less than the fifth threshold (or equal to or less than a specified value smaller than the fifth threshold).
  • the misfire determination section 40B includes a partial misfire determination section 42B (42).
  • the partial misfire determination section 42B is configured to determine the occurrence of a partial misfire in the internal combustion engine 1 . That is, the partial misfire determination unit 42B determines that the pulsation component spectrum Sp acquired by the pulsation component acquisition unit 11 is below the first threshold and the absolute value of the change rate parameter acquired by the change rate parameter acquisition unit 13 is the fifth threshold. It is configured to determine that a partial misfire has occurred in the internal combustion engine 1 when it is equal to or less than the threshold.
  • the misfire detection device 10B includes the partial misfire determination section 42B and the full cylinder misfire determination section 41B, so that it can be determined with high accuracy whether the misfire occurring in the internal combustion engine 1 is a partial misfire or a full cylinder misfire. Identifiable.
  • the operational parameter is the same parameter as the operational parameter. That is, the rate-of-change parameter acquisition unit 13 according to an embodiment of the present disclosure is configured to acquire operating parameters as operating parameters. According to the above configuration, since the operating parameter and the parameter are the same, the configuration for determining whether all-cylinder misfire has occurred can be simplified. Also, for the same reason, the configuration for detecting whether a partial misfire has occurred can be made simpler.
  • An operating parameter according to an embodiment of the present disclosure is the turbine speed or inlet exhaust gas pressure of the turbine 24 .
  • the turbine speed or the inlet exhaust gas pressure of the turbine 24 responds quickly to all-cylinder misfire that occurs in the internal combustion engine 1 .
  • the misfire detection device 10B for the internal combustion engine 1 can more quickly detect the occurrence of all-cylinder misfire.
  • the misfire detection system 10 may detect partial misfires earlier.
  • FIG. 11 is a flow chart showing a misfire detection method for an internal combustion engine according to the second embodiment of the present disclosure. This flowchart is executed by, for example, the misfire detection device 10B (see FIG. 8). When the detection method is started, the internal combustion engine 1 is running.
  • the pulsation component spectrum Sp is acquired by the pulsation component acquisition unit 11 described above (S31), and then the change rate parameter is acquired by the change rate parameter acquisition unit 13 described above (S33). Further, it is determined by the above-described all-cylinder misfire determination section 41B whether or not an all-cylinder misfire has occurred (S35). If it is determined that an all-cylinder misfire has occurred (S35: YES), this detection method ends. At this time, some notification process may be executed.
  • the partial misfire determination unit 42B described above determines whether or not a partial misfire has occurred (S37). If it is determined that a partial misfire has occurred (S37: YES), this detection method ends. On the other hand, if it is determined that a partial misfire has not occurred (S37: NO), the step returns to S31. S31 to S37 are repeatedly executed while the internal combustion engine 1 operates normally without misfiring.
  • a misfire detection device (10) for an internal combustion engine for detecting a misfire in an internal combustion engine (1) having a plurality of cylinders (2), frequency analysis of operating parameter data (61) indicating temporal changes in operating parameters correlated with overall operating conditions of the plurality of cylinders (2); a pulsation component acquisition unit (11) for acquiring a component spectrum (Sp); a difference parameter acquisition unit (12) for acquiring a difference parameter correlated with the degree of difference in operation of each of the plurality of cylinders (2); When the pulsation component spectrum (Sp) acquired by the pulsation component acquisition unit (11) is below a first threshold and the difference parameter acquired by the difference parameter acquisition unit (12) is below a second threshold an all-cylinder misfire determination unit (41) for determining that an all-cylinder misfire has occurred in the internal combustion engine (1); Prepare.
  • the pulsation component spectrum (Sp) drops.
  • the difference in operation among the plurality of cylinders (2) is large.
  • the difference parameter at this time is small.
  • the all-cylinder misfire determination section (41) determines that all-cylinder misfire has occurred. . Since it is not determined individually whether or not a misfire has occurred in each of the plurality of cylinders (2), the misfire detection device (10) for an internal combustion engine can quickly detect the occurrence of all cylinder misfires.
  • the misfire detection device (10) for an internal combustion engine according to 1) above,
  • the pulsation component spectrum (Sp) acquired by the pulsation component acquisition unit (11) is below the first threshold, and the difference parameter acquired by the difference parameter acquisition unit (12) is equal to or greater than the second threshold.
  • a partial misfire determination unit (42) is further provided for determining that a partial misfire has occurred in the internal combustion engine (1) when the value is equal to or greater than a third threshold value.
  • the misfire detection device (10) for an internal combustion engine includes a partial misfire determination unit (42) and an all-cylinder misfire determination unit (41). It is possible to discriminate with high accuracy whether is a partial misfire or a full cylinder misfire.
  • the misfire detection device (10) for an internal combustion engine according to 1) or 2) above,
  • the difference parameter acquisition unit (12) frequency-analyzes target data that is a sensor value detected by a single sensor and indicates a change over time in the sensor value that is correlated with the degree of difference, and performs a frequency analysis on the internal combustion engine. It is configured to acquire a cycle component spectrum (Sc), which is a spectrum at the frequency for one cycle of (1), as the difference parameter.
  • Sc cycle component spectrum
  • the cycle component spectrum Sc obtained by frequency-analyzing the target data correlates with the degree of difference in operation of the plurality of cylinders 2 . That is, when a partial misfire occurs in internal combustion engine (1), the cycle component spectrum (Sc) is large, and when a full cylinder misfire occurs in internal combustion engine (1), the cycle component spectrum (Sc) is small. According to the above configuration 3), the all-cylinder misfire determination section (41) can determine whether or not all-cylinder misfire has occurred based on the cycle component spectrum (Sc). Moreover, since the difference data is acquired based on the sensor value detected by a single sensor, the cycle component spectrum (Sc) as the difference parameter can be detected with a simpler configuration. Therefore, the configuration for detecting the occurrence of all-cylinder misfire in the internal combustion engine (1) can be simplified.
  • the difference parameter acquisition unit (12) is configured to frequency-analyze the operation parameter data (61) as the target data.
  • both the pulsation component spectrum (Sp) and the cycle component spectrum (Sc) are obtained by frequency-analyzing the sensor value detected by a single sensor. Therefore, the configuration for detecting the occurrence of all-cylinder misfire can be simplified.
  • the misfire detection device (10) for an internal combustion engine according to 3) or 4) above,
  • the operating parameter is the number of revolutions of a turbine (24) rotated by the exhaust gas discharged from each of the plurality of cylinders (2), or the inlet exhaust gas pressure of the turbine (24).
  • the misfire detection device (10) for an internal combustion engine can more quickly detect the occurrence of an all-cylinder misfire.
  • the misfire detection device (10) for an internal combustion engine according to 1) or 2) above,
  • the difference parameter acquisition unit (12) analyzes sensor values detected by each of a plurality of cylinder sensors (18) for detecting operating states of each of the plurality of cylinders (2), and obtains the difference parameter. configured to obtain
  • the all-cylinder misfire determination section (41) can detect all-cylinder misfire in the internal combustion engine (1) with higher accuracy.
  • the difference parameter acquisition unit (12) is configured to analyze the temperature of the exhaust gas detected by each of the plurality of cylinder sensors (18).
  • the all-cylinder misfire determining section (41) determines whether or not all-cylinder misfire has occurred in the internal combustion engine (1). can judge.
  • the difference parameter acquisition unit (12) is configured to acquire, as the difference parameter, a value obtained by subtracting a minimum value of the plurality of sensor values from an average value of the plurality of sensor values.
  • a misfire detection device (10) for an internal combustion engine for detecting a misfire in an internal combustion engine (1) having a plurality of cylinders (2), frequency analysis of operating parameter data (61) indicating temporal changes in operating parameters correlated with overall operating conditions of the plurality of cylinders (2); a pulsation component acquisition unit (11) for acquiring a component spectrum (Sp); a rate-of-change parameter acquisition unit (13) for acquiring a rate-of-change parameter indicating a degree of change in an operating parameter correlated with the overall operating status of the plurality of cylinders (2);
  • the pulsation component spectrum (Sp) acquired by the pulsation component acquisition unit (11) is below a first threshold, and the absolute value of the change rate parameter acquired by the change rate parameter acquisition unit (13) is the first an all-cylinder misfire determination unit (41) for determining that an all-cylinder misfire has occurred in the internal combustion engine (1) when the value exceeds the 4 threshold.
  • the misfire detection device (10) for an internal combustion engine can quickly detect the occurrence of all cylinder misfires.
  • the misfire detection device (10) for an internal combustion engine according to 9) above The pulsation component spectrum (Sp) acquired by the pulsation component acquisition unit (11) is below the first threshold, and the absolute value of the change rate parameter acquired by the change rate parameter acquisition unit (13). is equal to or less than a fifth threshold, which is a value equal to or less than the fourth threshold, a partial misfire determination section (42) for determining that a partial misfire has occurred in the internal combustion engine (1).
  • the misfire detection device (10) for an internal combustion engine includes a partial misfire determination unit (42) and an all-cylinder misfire determination unit (41). It is possible to discriminate with high accuracy whether is a partial misfire or a full cylinder misfire.
  • the change rate parameter acquisition unit (13) is configured to acquire the operating parameter as the operating parameter.
  • the misfire detection device (10) for an internal combustion engine according to any one of 9) to 11) above,
  • the operating parameter is the number of revolutions of a turbine (24) rotated by the exhaust gas discharged from each of the plurality of cylinders (2), or the inlet exhaust gas pressure of the turbine (24).
  • the misfire detection device (10) for an internal combustion engine can more quickly detect the occurrence of all-cylinder misfire.
  • a misfire detection method for an internal combustion engine (1) comprising: A misfire detection method for an internal combustion engine (1) for detecting misfires in an internal combustion engine (1) having a plurality of cylinders (2), comprising: frequency analysis of operating parameter data (61) indicating temporal changes in operating parameters correlated with overall operating conditions of the plurality of cylinders (2); a pulsation component acquisition step (S11) for acquiring a component spectrum (Sp); a difference parameter acquisition step (S13) for acquiring a difference parameter correlated with the degree of difference in operation of each of the plurality of cylinders (2); the internal combustion engine ( and an all-cylinder misfire determination step (15) for determining that an all-cylinder misfire has occurred in 1).
  • a misfire detection method for an internal combustion engine (1) comprising: A misfire detection method for an internal combustion engine (1) for detecting misfires in an internal combustion engine (1) having a plurality of cylinders (2), comprising: frequency analysis of operating parameter data (61) indicating temporal changes in operating parameters correlated with overall operating conditions of the plurality of cylinders (2); a pulsation component acquisition step (S31) for acquiring a component spectrum (Sp); a rate-of-change parameter obtaining step (S33) for obtaining a rate-of-change parameter indicating a degree of change in an operating parameter correlated with the overall operating status of the plurality of cylinders (2);
  • the pulsation component spectrum (Sp) obtained by the pulsation component obtaining step is below a first threshold and the absolute value of the change rate parameter obtained by the change rate parameter obtaining step is above a fourth threshold and an all-cylinder misfire determination step (S35) for determining that an all-cylinder misfire has occurred in the internal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

複数の気筒を有する内燃機関の失火を検知するための内燃機関の失火検知装置は、複数の気筒の全体の動作状況と相関する動作パラメータの経時的な変化を示す動作パラメータデータを周波数分析し、内燃機関の脈動の周波数におけるスペクトルである脈動成分スペクトルを取得するための脈動成分取得部と、複数の気筒における各々の動作の差異の度合いと相関する差異パラメータを取得するための差異パラメータ取得部と、脈動成分取得部によって取得された脈動成分スペクトルが第1閾値を下回り、且つ、差異パラメータ取得部12によって取得された差異パラメータが第2閾値を下回る場合に、内燃機関において全筒失火が発生したと判定するための全筒失火判定部とを備える。

Description

内燃機関の失火検知装置、および、失火検知方法
 本開示は、内燃機関の失火検知装置、および、失火検知方法に関する。
 本願は、2020年6月3日に日本国特許庁に出願された特願2021-093407号に基づき優先権を主張し、その内容をここに援用する。
 従来、内燃機関の失火を検知するための失火検知装置が知られている。例えば、特許文献1に開示される失火検知装置は、クランク角センサの検知結果に基づき取得したエンジンの角加速度を周波数解析する。さらに、失火装置は、周波数解析の結果に基づき、角加速度の気筒間成分(内燃機関の1燃焼サイクル分の周期を内燃機関の気筒の数で割った周期に相当する成分)が閾値より小さいか否かを各気筒のそれぞれについて個別に判定する。これにより、内燃機関を構成する複数の気筒のいずれか1つにおいて失火が発生したか否かを判定する。
特開2017-106417号公報
 上記失火検知装置では、内燃機関を構成する複数の気筒の各々について失火が発生したかを個別に判定するので、全筒失火を検知するのに時間を要するおそれがある。結果として、全筒失火の発生に伴う未燃ガスが増えることが懸念される。例えば内燃機関が発電用エンジンである場合には、気筒の本数が多くなるため、全筒失火の検知が遅れて未燃ガスが大量に生じてしまうことが懸念される。
 本開示の目的は、全筒失火をより早く検知できる内燃機関の失火検知装置、及び失火検知方法を提供することである。
 本開示の少なくとも一実施形態に係る内燃機関の失火検知装置は、
 複数の気筒を有する内燃機関の失火を検知するための内燃機関の失火検知装置であって、
 前記複数の気筒の全体の動作状況と相関する動作パラメータの経時的な変化を示す動作パラメータデータを周波数分析し、前記内燃機関の脈動の周波数におけるスペクトルである脈動成分スペクトルを取得するための脈動成分取得部と、
 前記複数の気筒における各々の動作の差異の度合いと相関する差異パラメータを取得するための差異パラメータ取得部と、
 前記脈動成分取得部によって取得された前記脈動成分スペクトルが第1閾値を下回り、且つ、前記差異パラメータ取得部によって取得された前記差異パラメータが第2閾値を下回る場合に、前記内燃機関において全筒失火が発生したと判定するための全筒失火判定部と、
を備える。
 本開示の少なくとも一実施形態に係る内燃機関の失火検知装置は、
 複数の気筒を有する内燃機関の失火を検知するための内燃機関の失火検知装置であって、
 前記複数の気筒の全体の動作状況と相関する動作パラメータの経時的な変化を示す動作パラメータデータを周波数分析し、前記内燃機関の脈動の周波数におけるスペクトルである脈動成分スペクトルを取得するための脈動成分取得部と、
 前記複数の気筒の全体の動作状況と相関する稼働パラメータの変化の度合いを示す絶対値である変化率パラメータを取得するための変化率パラメータ取得部と、
 前記脈動成分取得部によって取得された前記脈動成分スペクトルが第1閾値を下回り、且つ、前記変化率パラメータ取得部によって取得された前記変化率パラメータの絶対値が第4閾値を上回る場合に、前記内燃機関において全筒失火が発生したと判定するための全筒失火判定部と、
を備える。
 本開示の少なくとも一実施形態に係る内燃機関の失火検知方法は、
 複数の気筒を有する内燃機関の失火を検知するための内燃機関の失火検知方法であって、
 前記複数の気筒の全体の動作状況と相関する動作パラメータの経時的な変化を示す動作パラメータデータを周波数分析し、前記内燃機関の脈動の周波数におけるスペクトルである脈動成分スペクトルを取得するための脈動成分取得ステップと、
 前記複数の気筒における各々の動作の差異の度合いと相関する差異パラメータを取得するための差異パラメータ取得ステップと、
 前記脈動成分取得ステップによって取得された前記脈動成分スペクトルが第1閾値を下回り、且つ、前記差異パラメータ取得ステップによって取得された前記差異パラメータが第2閾値を下回る場合に、前記内燃機関において全筒失火が発生したと判定するための全筒失火判定ステップと、
を備える。
 本開示の少なくとも一実施形態に係る内燃機関の失火検知方法は、
 複数の気筒を有する内燃機関の失火を検知するための内燃機関の失火検知方法であって、
 前記複数の気筒の全体の動作状況と相関する動作パラメータの経時的な変化を示す動作パラメータデータを周波数分析し、前記内燃機関の脈動の周波数におけるスペクトルである脈動成分スペクトルを取得するための脈動成分取得ステップと、
 前記複数の気筒の全体の動作状況と相関する稼働パラメータの変化の度合いを示す絶対値である変化率パラメータを取得するための変化率パラメータ取得ステップと、
 前記脈動成分取得ステップによって取得された前記脈動成分スペクトルが第1閾値を下回り、且つ、前記変化率パラメータ取得ステップによって取得された前記変化率パラメータの絶対値が第4閾値を上回る場合に、前記内燃機関において全筒失火が発生したと判定するための全筒失火判定ステップと、
を備える。
 本開示によれば、全筒失火をより早く検知できる内燃機関の失火検知装置、及び失火検知方法を提供できる。
本開示の一実施形態に係る失火検知システムの概略構成を示す概念図である。 本開示の第1の実施形態に係る失火検知装置の構成を示す概念図である。 本開示の一実施形態に係る動作パラメータデータを概念的に示すグラフである。 本開示の一実施形態に係る動作パラメータデータに対して短時間フーリエ変換が施された結果を概念的に示すグラフである。 本開示の一実施形態に係る脈動成分スペクトル、差異パラメータ、全筒失火、および部分失火の関係を示すマトリクスである。 本開示の一実施形態に係る対象データに対して短時間フーリエ変換が施された結果を概念的に示すグラフである。 本開示の一実施形態に係る複数の気筒センサのセンサ値と差異パラメータとの関係を概念的に示す図である。 本開示の第1の実施形態に係る内燃機関の失火検知方法を示すフローチャートである。 本開示の第2の実施形態に係る失火検知装置の構成を示す概念図である。 本開示の一実施形態に係る稼働パラメータと変化率パラメータの経時的変化を示すグラフである。 本開示の一実施形態に係る脈動成分スペクトル、変化率パラメータ、全筒失火、および部分失火の関係を示すマトリクスである。 本開示の第2の実施形態に係る内燃機関の失火検知方法を示すフローチャートである。
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 なお、同様の構成については同じ符号を付し説明を省略することがある。
<失火検知システム100の概略構成の例示>
 図1は、本開示の一実施形態に係る失火検知システムの概略構成を示す概念図である。幾つかの実施形態では、失火検知システム100は、内燃機関1と、内燃機関の失火検知装置10(以下、単に「失火検知装置10」という場合がある)とを備える。以下、内燃機関1と失火検知装置10の概略構成を例示する。
 本例の内燃機関1は、各気筒2に供給される可燃性ガスを燃焼させることで発電機を駆動する発電用ガスエンジンである。内燃機関1は複数の気筒2を有する。気筒2の本数は、4本、8本、または16本など何本であってもよい。各々の気筒2は、給気マニホールド3を介し給気管5と連通するとともに、排気マニホールド4を介して排気管6と連通する。また、内燃機関1には、給気管5に設けられたコンプレッサー7と、排気管6に設けられたタービン24とを有するターボチャージャ15が設けられる。コンプレッサー7は、各々の気筒2に圧縮ガスを供給するように構成される。タービン24は、複数の気筒2の各々から排出される排ガスによってコンプレッサー7と共に回転するように構成される。
 なお、本明細書では、排ガスは、燃焼ガスと未燃ガスとを含む概念である。
 給気管5を流れる可燃性のガスは、各々の気筒2の内部に供給された後、点火プラグ17による着火で燃焼する。燃焼ガスの発生に伴い、動力が取り出され、クランクシャフト(図示外)は回転する。各々の気筒2から排出される排ガスは排気管6を経由してタービン24に流れる。
 また、各々の気筒2における着火はECU9によって制御される。具体的には、ECU9が点火装置8に着火指示信号を送ることで、点火プラグ17による着火は実行される。複数の気筒2の各々において正常に着火が実行されれば、各気筒2で順に取り出された動力により、クランクシャフトは規定の回転数で回転する。なお、概念図である図1では、1つの点火プラグ17が図示されているが、複数の点火プラグ17がそれぞれ、各々の気筒2の内部に設けられてもよい。
 ECU9はコンピュータで構成されており、プロセッサ、メモリ、および外部通信インタフェースを備える。プロセッサは、CPU、GPU、MPU、DSP、又はこれらの組み合わせなどである。プロセッサは、PLD、ASIC、FPGA、またはMCU等の集積回路により実現されてもよい。メモリは、各種データを一時的または非一時的に記憶するように構成され、例えば、RAM、ROM、フラッシュメモリ、またはこれらの組み合わせによって実現される。メモリにロードされたプログラムの命令に従ってプロセッサがデータを処理することで、例えば点火装置8に送るための着火指示信号など、各種の制御信号が生成される。
 図示される実施形態において、ECU9は、クランク角センサ51、ターボ回転数センサ52、タービン圧力センサ53、および複数の排ガス温度センサ54の各々と電気的に接続される。但し、概念図である図1では図面を見易くする都合、これらセンサのうちクランク角センサ51のみが、ECU9と接続されたように図示される。クランク角センサ51は、内燃機関1のクランク軸の回転角を取得するように構成される。従って、ECU9は、クランク角センサ51の検知結果に基づき内燃機関1のエンジン回転数を取得できる。ターボ回転数センサ52は、ターボチャージャ15の回転数であるターボ回転数を検知するように構成される。タービン圧力センサ53は、タービン24の入口排ガス圧力(即ち、タービン24に流入する排ガスの圧力)を検知するように構成される。複数の排ガス温度センサ54は、複数の気筒2の各々に対応して設けられる。各々の排ガス温度センサ54は、対応する気筒2から排出される排ガスの温度を検知するように構成される。
 他の実施形態では、クランク角センサ51、ターボ回転数センサ52、タービン圧力センサ53、または排ガス温度センサ54のうち、いずれかのセンサは設けられなくてもよい。例えば、クランク角センサ51とターボ回転数センサ52が設けられ、他のセンサはいずれも設けられなくてもよい。あるいは、ターボ回転数センサ52とタービン圧力センサ53が設けられ、他のセンサはいずれも設けられなくてもよい。
 本開示の一実施形態に係るECU9は、失火検知装置10を含む。失火検知装置10は、内燃機関1における失火を検知するように構成される。より具体的な一例として失火検知装置10は、複数の気筒2の全てにおける失火である全筒失火と、複数の気筒2のいずれかの気筒2においてのみの失火である部分失火とを検知するように構成される。なお、部分失火は、複数の気筒2のいずれか1本においてのみ発生する失火(1気筒失火)、および、いずれか複数の気筒2においてのみの失火を含む概念である。他の実施形態では、失火検知装置10は部分失火を検知しなくてもよい。
 以上、内燃機関1と失火検知装置10の概要について説明した。以下では、本開示の幾つかの実施形態の一例として、第1の実施形態に係る失火検知装置10A(10)と、第2の実施形態に係る失火検知装置10B(10)とを順に詳説する。
<第1の実施形態に係る失火検知装置10A(10)の詳説>
 図2は、本開示の第1の実施形態に係る失火検知装置の構成を示す概念図である。失火検知装置10A(10)は、脈動成分取得部11、差異パラメータ取得部12、および失火判定部40A(40)を備える。
 脈動成分取得部11は、動作パラメータの経時的な変化を示す動作パラメータデータ61(図3参照)を周波数分析し、内燃機関1の脈動の周波数におけるスペクトルである脈動成分スペクトルSp(図4参照)を取得するように構成される。動作パラメータは、複数の気筒2の全体としての動作状況と相関するパラメータである(具体例は後述する)。このため、動作パラメータは内燃機関1の脈動の有無および脈動の程度に応じて変化する。動作パラメータデータ61に対して実行される周波数分析は、FFT、BPF、またはSTFT(短時間フーリエ変換:Short-Term Fourier Transform)などである。
 動作パラメータは、一例として、エンジン回転数、タービン24の入口排ガス圧力、またはターボ回転数などである。脈動成分取得部11は、クランク角センサ51、ターボ回転数センサ52、またはタービン圧力センサ53の検知結果を継続的に取得することで、動作パラメータデータ61を取得する。
 図3は、本開示の一実施形態に係る動作パラメータデータを概念的に示すグラフである。動作パラメータデータ61A(61)は、複数の気筒2がいずれも失火することなく正常に動作する場合を示す。このときの動作パラメータは周期的な変化を繰り返す。動作パラメータデータ61B(61)は、内燃機関1で部分失火が発生した場合を示す(図3では1気筒失火を例示する)。この場合の動作パラメータは、失火した気筒2で燃焼が起こるはずのタイミング(t=ta)で、動作パラメータの理想的な変化が起きない。動作パラメータデータ61C(61)は、内燃機関1で全筒失火が発生した場合を示す。この場合の動作パラメータは、全筒失火したタイミング以降(t≧ta)、動作パラメータの周期的な変化が殆ど起きない。従って、全筒失火と部分失火のいずれかが発生すると、上述した脈動成分スペクトルSpは著しく下がる(図4参照)。
 図4は、本開示の一実施形態に係る動作パラメータデータに対して短時間フーリエ変換が施された結果を概念的に示すグラフである。より具体的には、図4では、全筒失火が発生するときの動作パラメータデータ61Cに対して短時間フーリエ変換が施された結果を例示する。
 図4で示されるグラフの縦軸において、fcylは内燃機関1の脈動の周波数を示す。fcylは計算式によって特定される理想的な値からずれても問題ではなく、周波数分析によって強いスペクトルが現れた周波数を、脈動の周波数とみなしてもよい。実際の計測値は、計測時における何等かの要因によって理想的な値からずれることもあるからである。
 図4から判る通り、規定のタイミング(t=ta)で全筒失火が起きた場合、脈動成分スペクトルSpは消失又は殆ど消失する。詳細な図示は省略するが、部分失火が起きた場合も、脈動成分スペクトルSpは著しく低下する。従って、脈動成分スペクトルSpに基づき、内燃機関1で全筒失火または部分失火が起きたことを判定することが可能である。以下では、この判定の基準となる閾値を第1閾値という。第1閾値は、実験によって特定されてもよいし、シミュレーションまたは解析により特定されてもよいし、これらの組み合わせによって特定されてもよい(後述の第2閾値、第3閾値、第4閾値、および第5閾値も同様である)。
 図2に戻り、差異パラメータ取得部12は、複数の気筒2における各々の動作の差異(バラつき)の度合いと相関する差異パラメータを取得するように構成される。差異パラメータの具体例は後述する。全筒失火が発生すると、複数の気筒2のいずれも正常に動作しないので、差異パラメータは小さくなる。結果、このときの差異パラメータは規定の閾値(以下、第2閾値という)を下回る。なお、複数の気筒2がいずれも正常に動作する場合においても、同様に、差異パラメータは小さく第2閾値を下回る。一方で、部分失火が発生すると、複数の気筒2のいずれかは正常に動作し、残る気筒2は正常に動作しない。従って、このときの差異パラメータは、全筒失火の発生時および失火が発生しない正常動作時と比べて大きく、規定の閾値(以下、第3閾値という)以上となる。第3閾値は第2閾値以上の値であり、第3閾値と第2閾値が互いに同一の値となる実施形態は除外されない。
 図5は、本開示の一実施形態に係る脈動成分スペクトル、差異パラメータ、全筒失火、および部分失火の関係を示すマトリクスである。上述したように、脈動成分取得部11によって取得される脈動成分スペクトルSpが第1閾値以上であれば、全筒失火および部分失火は発生していないと判定できる。そして、このときの差異パラメータが第2閾値を下回る場合には、複数の気筒2はいずれも正常に動作していると判定できる。一方で、脈動成分スペクトルSpが第1閾値を下回る場合、全筒失火または部分失火が発生していると判定できる。この場合にさらに、差異パラメータ取得部12によって取得される差異パラメータが第2閾値を下回ると全筒失火が発生していると判定でき、差異パラメータが第3閾値以上であると部分失火が発生していると判定できる。
 図2に示される失火判定部40A(40)は、全筒失火判定部41A(41)を含む。全筒失火判定部41Aは、図5を用いて上述した基準に則り、内燃機関1における全筒失火の発生を判定するように構成される。即ち、全筒失火判定部41は、脈動成分取得部11によって取得されたスペクトルが第1閾値を下回り、且つ、差異パラメータ取得部12によって取得された差異パラメータが第2閾値を下回る場合に、内燃機関1において全筒失火が発生したと発生するように構成される。
 上記構成によれば、脈動成分スペクトルSpが第1閾値を下回り、且つ、差異パラメータが第2閾値を下回る場合に、全筒失火判定部41Aは全筒失火が発生したと判定する。複数の気筒2の各々について失火が発生したかを個別に判定する必要がないので、失火検知装置10Aは、全筒失火の発生をより早く検知できる。例えば、気筒2の本数が16本以上となる発電用エンジンに内燃機関1が適用される場合、内燃機関1が車両用のエンジンとして適用される場合などに比べて、気筒2の本数が多くなる傾向にあり、全筒失火の発生時に大量の未燃ガスが発生し得る。この点、本開示のように全筒失火判定部41Aが全筒失火の発生を早く判定することで、未燃ガスが大量に発生する前に適切な処置を施すことが可能となる。
 なお、他の実施形態では、全筒失火判定部41Aは、脈動成分取得部11によって取得されたスペクトルが第1閾値以上であり、且つ、差異パラメータ取得部12によって取得された差異パラメータが第2閾値を下回る場合に、内燃機関1は正常に動作していると判定してもよい。
 図2で例示される実施形態において、失火判定部40A(40)は、部分失火判定部42A(42)を含む。部分失火判定部42Aは、図5を用いて上述した基準に則り、内燃機関1における部分失火の発生を判定するように構成される。具体的には、部分失火判定部42Aは、脈動成分取得部11によって取得された脈動成分スペクトルSpが第1閾値を下回り、且つ、差異パラメータ取得部12によって取得された差異パラメータが第3閾値以上となる場合に、内燃機関1において部分失火が発生したと判定するように構成される。
 上記構成によれば、失火検知装置10Aは、部分失火判定部42Aと全筒失火判定部41Aを備えることで、内燃機関1で発生した失火が部分失火なのか全筒失火なのかを高精度に識別できる。
 <差異パラメータ取得部12の詳細の第1の例示>
 図2、図6Aを参照し、差異パラメータ取得部12の詳細の第1の例を説明する。図6Aは、本開示の一実施形態に係る対象データに対して短時間フーリエ変換が施された結果を概念的に示すグラフである。
 差異パラメータ取得部12は、単一のセンサによって検知されるセンサ値の経時的な変化を示す対象データを周波数分析するように構成される。単一のセンサは、一例として、クランク角センサ51、ターボ回転数センサ52、またはタービン圧力センサ53である。従って、この場合のセンサ値は、エンジン回転数、ターボ回転数、またはタービン24の入口排ガス圧力である。従って、差異パラメータ取得部12によって取得されるセンサ値は、上述した脈動成分取得部11によって取得される動作パラメータと同じであってもよい。これらセンサ値はいずれも、複数の気筒2の各々の動作の差異の度合いと相関する。この相関は、センサ値の経時的な変化を示す対象データが周波数分析されることでより明確になる。そこで、差異パラメータ取得部12は対象データを周波数分析し、内燃機関1の1サイクル分の周波数におけるスペクトルであるサイクル成分スペクトルSc(図6B参照)を、差異パラメータとして取得するように構成される。例えば4サイクルエンジンとして機能する内燃機関1の1サイクルは、内燃機関1が2回転するたびに完了し、例えば2サイクルエンジンとして機能する内燃機関1の1サイクルは、内燃機関1が1回転するたびに完了する。
 図6Aで例示されるグラフは、図4と同様に全筒失火発生時のスペクトルを示す。また、図6Aのグラフの縦軸におけるfNeは、内燃機関1の1サイクル分の周期に対応する周波数である。fNeは、fcylと同様、計算によって求まる理想的な値からずれてもよい。全筒失火が発生すると(t=ta)、センサ値は周期的な変化を殆どしなくなり(図示外)、サイクル成分スペクトルScは消失または殆ど消失する(第2閾値を下回る)。詳細な図示は省略するが、部分失火が発生すると、センサ値は周期的な変化を部分的には行うため、サイクル成分スペクトルScは第3閾値以上となる。
 従って、第1の例示において、全筒失火判定部41Aは、脈動成分スペクトルSpが第1閾値を下回り、且つサイクル成分スペクトルScが第2閾値を下回る場合に、全筒失火が発生したと判定できる。また、部分失火判定部42Aは、脈動成分スペクトルSpが第1閾値を下回り、且つサイクル成分スペクトルScが第3閾値以上となる場合に、部分失火が発生したと判定できる。
 上記構成によれば、サイクル成分スペクトルScに基づいて全筒失火が発生したかを全筒失火判定部41Aは判定できる。また、差異データとしてのサイクル成分スペクトルScが単一のセンサによって検知されるセンサ値に基づき取得されるので、より簡易な構成でサイクル成分スペクトルScが検知される。よって、全筒失火の発生を検知するための構成をより簡易にできる。また、同様の理由によって、部分失火の発生を検知するための構成をより簡易にできる。
 本開示の一実施形態では、上述のセンサ値は動作パラメータと同一であり、センサ値の経時的な変化を示す対象データは、動作パラメータデータ61(図3参照)と同一である。つまり、動作パラメータデータ61は、脈動成分取得部11と差異パラメータ取得部12の双方によって周波数分析される。この場合、図6Aで示すグラフは、図4で示すグラフに重畳的に反映することが可能である。上記構成によれば、単一のセンサによって検知されるセンサ値に基づくデータが周波数分析されることで、脈動成分スペクトルSpとサイクル成分スペクトルScの双方が取得される。よって、全筒失火の発生を検知するための構成をより簡易にできる。また、同様の理由によって、部分失火の発生を検知するための構成をより簡易にできる。
 本開示の一実施形態に係る動作パラメータは、ターボ回転数センサ52またはタービン圧力センサ53である。つまり、上述のセンサ値は、タービン回転数またはタービン24の入口排ガス圧力である。これら2つのセンサ値は、内燃機関1で生じる全筒失火に対して応答が早い。即ち、内燃機関1で全筒失火が発生すると、これら2つのセンサ値のいずれかに基づく脈動成分スペクトルSpは比較的早く応答(低下)する。よって、上記構成によれば、失火検知装置10Aは、全筒失火の発生をより早く検知できる。また、上述のセンサ値が動作パラメータと同一である実施形態においては、失火検知装置10は部分失火をより早く検知することもできる。
<差異パラメータ取得部12の詳細の第2の例示>
 図1、図2、図6Bを参照し、差異パラメータ取得部12の詳細の第2の例を説明する。図6Bは、本開示の一実施形態に係る複数の気筒センサ18の検知結果と差異パラメータとの関係を概念的に示す図である。
 第2の例示では、第1の例示のような単一のセンサが用いられる代わりに、複数のセンサが用いられる。具体的な一例として、差異パラメータ取得部12は、複数の気筒センサ18のそれぞれによって検知されたセンサ値を分析し、差異パラメータを取得するように構成される。複数の気筒センサ18は、それぞれ、複数の気筒2の各々の動作状態を検知するように構成される。図1で例示される実施形態では、気筒センサ18は排ガス温度センサ54であり、センサ値は気筒2における排ガスの温度である。つまり、本例の差異パラメータ取得部12は、複数の排ガス温度センサ54のそれぞれによって検知された排ガスの温度を分析するように構成される。
 従って、全筒失火判定部41Aは、脈動成分スペクトルSpが第1閾値を下回り、且つ複数の気筒センサ18のそれぞれの検知結果に基づく差異パラメータが第2閾値を下回る場合に、全筒失火が発生したと判定できる。また、部分失火判定部42Aは、脈動成分スペクトルSpが第1閾値を下回り、且つ上記差異パラメータが第3閾値以上となる場合に、部分失火が発生したと判定できる。
 上記構成によれば、複数の気筒センサ18の各々の検知結果に基づいて取得された差異パラメータは、複数の気筒2の各々の動作の差異の度合いと強く相関する。従って、全筒失火または部分失火のいずれかが発生するかに応じて、差異パラメータは大きく変化する。よって、全筒失火判定部41Aは、内燃機関1における全筒失火をより高精度に検知できる。また、排ガス温度センサ54である気筒センサ18の検知結果に基づき、全筒失火判定部41Aは内燃機関1において全筒失火が判定したかを判定する。排ガス温度センサ54の検知結果は、複数の気筒2の動作の差異が反映され易い。よって、失火判定部40Aは全筒失火の発生を精度良く検知できる。また、発生した失火が全筒失火か部分失火かを精度良く識別することもできる。
 なお、他の実施形態では、複数の気筒センサ18は、対応する気筒2の排ガス圧力または排ガス流量を検知するように構成されてもよい。この場合であっても、複数の気筒センサ18の各々の検知結果に基づいて取得された差異パラメータは、複数の気筒2の各々の動作の差異の度合いと強く相関するので、内燃機関1における全筒失火を高精度に検知することができる。また、発生した失火が全筒失火か部分失火かを精度良く識別することもできる。
 図6Bのグラフの横軸で示される番号は、複数の気筒2のいずれかに該当し、グラフで示されるNは気筒2の本数と同じ値である。また、同図のグラフの縦軸は気筒センサ18の検知結果であるセンサ値を示す。
 本開示の一実施形態に係る差異パラメータ取得部12は、複数の気筒センサ18の各々のセンサ値の平均値Aaveから複数のセンサ値の最小値Aminを差し引いた値(長さLに相当する値)を差異パラメータとして取得するように構成される。上記構成によれば、複数の気筒2の各々の動作の差異を示す差異パラメータを簡単に特定することができる。
<第1の実施形態に係る失火検知方法>
 図7は、本開示の第1の実施形態に係る内燃機関の失火検知方法を示すフローチャートである。本フローチャートは、例えば失火検知装置10A(図2参照)によって実行される。本検知方法が開始されるとき、内燃機関1は駆動している。以下の説明では、ステップを「S」と略記する場合がある。
 はじめに、脈動成分スペクトルSpが上述した脈動成分取得部11によって取得され(S11)、その後、差異パラメータが上述した差異パラメータ取得部12によって取得される(S13)。さらに、全筒失火が発生したかが上述した全筒失火判定部41Aによって判定される(S15)。全筒失火が発生したと判定された場合(S15:YES)、本検知方法は終了する。このとき、何らかの報知処理が実行されてもよい。
 全灯失火が発生していないと判定された場合(S15:NO)、部分失火が発生したかが上述した部分失火判定部42Aによって判定される(S17)。部分失火が発生したと判定された場合(S17:YES)、本検知方法は終了する。一方、部分失火が発生していないと判定された場合(S17:NO)、ステップはS11に戻る。内燃機関1が失火を起こすことなく正常に動作する間、S11~S17が繰り返し実行される。
 なお、他の実施形態では、S17が実行されなくてもよい。また、S15が実行される前に、S17が実行されてもよい。
<第2の実施形態に係る失火検知装置10B(10)の詳説>
 図8は、本開示の第2の実施形態に係る失火検知装置の構成を示す概念図である。以下、第2の実施形態に係る失火検知装置10Bの説明において、第1の実施形態に係る失火検知装置10Aと同様の構成については、図中で同一符号を付与し、その説明の一部または全部を省略する。本例の失火検知装置10B(10)は、全筒失火と部分失火とを検知するように構成されるが、部分失火を検知しなくてもよい。
 失火検知装置10Bは、上述した差異パラメータ取得部12(図2参照)に代えて、変化率パラメータ取得部13を含む。変化率パラメータ取得部13は、稼働パラメータの変化の度合い(変化速度)を示す変化率パラメータを取得するように構成される。稼働パラメータは、複数の気筒2の全体の動作状況と相関するパラメータである。稼働パラメータは、一例として、エンジン回転数、ターボ回転数、またはタービン24の入口排ガス圧力などである。稼働パラメータは、動作パラメータと異なるパラメータであってもよいし、動作パラメータと同一のパラメータであってもよい。
 図9は、本開示の一実施形態に係る稼働パラメータと変化率パラメータの経時的変化を示すグラフである。図9で例示される稼働パラメータはエンジン回転数である。同図のグラフでは、t=taのタイミングで全筒失火が発生する。グラフから判るように、全筒失火が発生すると、稼働パラメータは大きく変化し(図9の例では減少し)、変化率パラメータも大きく変化(図9の例では減少)する。従って、変化率パラメータの絶対値は大きくなる。詳細な図示は省略するが、部分失火の発生時には、一部の気筒2が正常に動作するため、稼働パラメータおよび変化率パラメータは多少変化するものの、全筒失火の発生時ほど大きくは変化しない。また、複数の気筒2がいずれも正常に動作する場合、部分失火の発生時よりもさらに変化率パラメータの変化量は小さい。部分失火の発生時と内燃機関1の正常動作時における変化率パラメータのこれらの傾向は、稼働パラメータがエンジン回転数以外のパラメータである場合も同様である。
 従って、脈動成分スペクトルSpが第1閾値を下回った場合において、変化率パラメータの絶対値が規定の閾値(以下、第4閾値という)を上回るとき、全筒失火が発生していると判定できる。また、脈動成分スペクトルSpが第1閾値を下回った場合において、変化率パラメータの絶対値が第5閾値以下となる場合には、部分失火が発生したと判定できる。第5閾値は第4閾値以下の値であり、第5閾値と第4閾値が互いに同一の値となる実施形態は除外されない。さらに、脈動成分スペクトルSpが第1閾値以上になった場合において、変化率パラメータの絶対値が第5閾値以下(あるいは、第5閾値よりも小さい規定値以下)となる場合には、内燃機関1は正常に動作していると判定できる。
 図10は、本開示の一実施形態に係る周波数スペクトル、変化率パラメータ、全筒失火、および部分失火の関係を示すマトリクスである。図5を用いて上述したように、脈動成分取得部11によって取得される脈動成分スペクトルSpが第1閾値以上であれば、全筒失火および部分失火は発生していないと判定できる。そして、このときの変化率パラメータの絶対値が第5閾値以下(あるいは、第5閾値よりも小さい規定値以下)となる場合には、内燃機関1は正常に動作していると判定できる。一方で、脈動成分スペクトルSpが第1閾値を下回る場合、全筒失火または部分失火が発生していると判定できる。この場合さらに、変化率パラメータ取得部13によって取得される変化率パラメータの絶対値が第4閾値を上回ると全筒失火が発生していると判定でき、変化率パラメータの絶対値が第5閾値以下であると部分失火が発生していると判定できる。
 図8に戻り、失火検知装置10B(10)の構成要素である失火判定部40B(40)は、全筒失火判定部41B(41)を含む。全筒失火判定部41Bは、脈動成分取得部11によって取得された脈動成分スペクトルSpが第1閾値を下回り、且つ、変化率パラメータ取得部13によって取得された変化率パラメータの絶対値が第4閾値を上回る場合に、内燃機関1において全筒失火が発生したと判定するように構成される。なお、変化率パラメータが負の値となる実施形態においては、変化率パラメータが、正の値である第4閾値に対して-1を乗じた値を下回るかを判定してもよい。この判定方法であっても、変化率パラメータの絶対値が第4閾値を上回るか判定できる。
 上記構成によれば、脈動成分スペクトルSpが第1閾値を下回り、且つ、変化率パラメータの絶対値が第4閾値を上回る場合に、全筒失火判定部41Bは全筒失火が発生したと判定する。複数の気筒2各々について失火が発生したかを個別に判定しないので、失火検知装置10Bは、全筒失火の発生をより早く検知できる。
 なお、他の実施形態では、全筒失火判定部41Bは、脈動成分取得部11によって取得された脈動成分スペクトルSpが第1閾値以上であり、且つ、変化率パラメータ取得部13によって取得された変化率パラメータの絶対値が第5閾値以下(もしくは第5閾値よりも小さい規定値以下)である場合に、内燃機関1は正常に動作していると判定してもよい。
 一実施形態では、失火判定部40B(40)は、部分失火判定部42B(42)を含む。部分失火判定部42Bは、内燃機関1における部分失火の発生を判定するように構成される。即ち、部分失火判定部42Bは、脈動成分取得部11によって取得された脈動成分スペクトルSpが第1閾値を下回り、且つ、変化率パラメータ取得部13によって取得された変化率パラメータの絶対値が第5閾値以下となる場合に、内燃機関1において部分失火が発生したと判定するように構成される。
 上記構成によれば、失火検知装置10Bは、部分失火判定部42Bと全筒失火判定部41Bを備えることで、内燃機関1で発生した失火が部分失火なのか全筒失火なのかを高精度に識別できる。
 幾つかの実施形態では、稼働パラメータは動作パラメータと同一のパラメータである。即ち、本開示の一実施形態に係る変化率パラメータ取得部13は、動作パラメータを稼働パラメータとして取得するように構成される。上記構成によれば、動作パラメータとパラメータが同一であることで、全筒失火が発生したかを判定するための構成をより簡易にできる。また、同様の理由によって、部分失火が発生したかを検知するための構成をより簡易にできる。
 本開示の一実施形態に係る動作パラメータは、タービン回転数、または、タービン24の入口排ガス圧力である。タービン回転数、または、タービン24の入口排ガス圧力は、内燃機関1で生じる全筒失火に対する応答が早い。上記構成によれば、内燃機関1の失火検知装置10Bは、全筒失火の発生をより早く検知することができる。また、上述の稼働パラメータが動作パラメータと同一である実施形態においては、失火検知装置10は部分失火をより早く検知することもできる。
<第2の実施形態に係る失火検知方法>
 図11は、本開示の第2の実施形態に係る内燃機関の失火検知方法を示すフローチャートである。本フローチャートは、例えば失火検知装置10B(図8参照)によって実行される。本検知方法が開始されるとき、内燃機関1は駆動している。
 はじめに、脈動成分スペクトルSpが上述した脈動成分取得部11によって取得され(S31)、その後、変化率パラメータが上述した変化率パラメータ取得部13によって取得される(S33)。さらに、全筒失火が発生したかが上述した全筒失火判定部41Bによって判定される(S35)。全筒失火が発生したと判定された場合(S35:YES)、本検知方法は終了する。このとき、何らかの報知処理が実行されてもよい。
 全灯失火が発生していないと判定された場合(S35:NO)、部分失火が発生したかが上述した部分失火判定部42Bによって判定される(S37)。部分失火が発生したと判定された場合(S37:YES)、本検知方法は終了する。一方、部分失火が発生していないと判定された場合(S37:NO)、ステップはS31に戻る。内燃機関1が失火を起こすことなく正常に動作する間、S31~S37が繰り返し実行される。
<まとめ>
 上述した幾つかの実施形態に記載の内容は、例えば以下のように把握されるものである。
1)本開示の少なくとも一実施形態に係る内燃機関の失火検知装置(10)は、
 複数の気筒(2)を有する内燃機関(1)の失火を検知するための内燃機関の失火検知装置(10)であって、
 前記複数の気筒(2)の全体の動作状況と相関する動作パラメータの経時的な変化を示す動作パラメータデータ(61)を周波数分析し、前記内燃機関(1)の脈動の周波数におけるスペクトルである脈動成分スペクトル(Sp)を取得するための脈動成分取得部(11)と、
 前記複数の気筒(2)における各々の動作の差異の度合いと相関する差異パラメータを取得するための差異パラメータ取得部(12)と、
 前記脈動成分取得部(11)によって取得された前記脈動成分スペクトル(Sp)が第1閾値を下回り、且つ、前記差異パラメータ取得部(12)によって取得された前記差異パラメータが第2閾値を下回る場合に、前記内燃機関(1)において全筒失火が発生したと判定するための全筒失火判定部(41)と、
を備える。
 内燃機関(1)の部分失火または全筒失火が発生すると、失火発生前の動作パラメータの周期的な変化の一部または全部が消失するため、脈動成分スペクトル(Sp)は低下する。また、内燃機関(1)の部分失火が発生すると、複数の気筒(2)における動作の差異が大きい。一方、内燃機関(1)の全筒失火が発生すると、複数の気筒(2)における動作の差異は小さく、このときの差異パラメータは小さい。上記1)の構成によれば、脈動成分スペクトが第1閾値を下回り、且つ、差異パラメータが第2閾値を下回る場合に、全筒失火判定部(41)は全筒失火が発生したと判定する。複数の気筒(2)の各々について失火が発生したかを個別に判定しないので、内燃機関の失火検知装置(10)は、全筒失火の発生をより早く検知できる。
2)幾つかの実施形態では、上記1)に記載の内燃機関の失火検知装置(10)であって、
 前記脈動成分取得部(11)によって取得された前記脈動成分スペクトル(Sp)が前記第1閾値を下回り、且つ、前記差異パラメータ取得部(12)によって取得された前記差異パラメータが前記第2閾値以上の値である第3閾値以上となる場合に、前記内燃機関(1)において部分失火が発生したと判定するための部分失火判定部(42)をさらに備える。
 上記2)の構成によれば、内燃機関の失火検知装置(10)は、部分失火判定部(42)と全筒失火判定部(41)を備えることで、内燃機関(1)で発生した失火が部分失火なのか全筒失火なのかを高精度に識別することができる。
3)幾つかの実施形態では、上記1)または2)に記載の内燃機関の失火検知装置(10)であって、
 前記差異パラメータ取得部(12)は、単一のセンサによって検知されるセンサ値であって、前記差異の度合いと相関するセンサ値の経時的な変化を示す対象データを周波数分析し、前記内燃機関(1)の1サイクル分の周波数におけるスペクトルであるサイクル成分スペクトル(Sc)を前記差異パラメータとして取得するように構成される。
 対象データを周波数分析して取得されるサイクル成分スペクトルScは、複数の気筒2の動作の差異の度合と相関する。つまり、内燃機関(1)で部分失火が発生すると、サイクル成分スペクトル(Sc)は大きく、内燃機関(1)で全筒失火が発生すると、サイクル成分スペクトル(Sc)は小さい。上記3)の構成によれば、サイクル成分スペクトル(Sc)に基づいて全筒失火が発生したかを全筒失火判定部(41)は判定できる。また、差異データが単一のセンサによって検知されるセンサ値に基づき取得されるので、より簡易な構成で差異パラメータとしてのサイクル成分スペクトル(Sc)が検知される。よって、内燃機関(1)の全筒失火の発生を検知するための構成をより簡易にできる。
4)幾つかの実施形態では、上記3)に記載の内燃機関の失火検知装置(10)であって、
 前記差異パラメータ取得部(12)は、前記動作パラメータデータ(61)を前記対象データとして周波数分析するように構成される。
 上記4)の構成によれば、単一のセンサによって検知されるセンサ値が周波数分析されることで、脈動成分スペクトル(Sp)とサイクル成分スペクトル(Sc)との双方が取得される。よって、全筒失火の発生を検知するための構成をより簡易にできる。
5)幾つかの実施形態では、上記3)または4)に記載の内燃機関の失火検知装置(10)であって、
 前記動作パラメータは、前記複数の気筒(2)の各々から排出される排ガスによって回転するタービン(24)の回転数、または、前記タービン(24)の入口排ガス圧力である。
 タービン(24)の回転数およびタービン(24)の入口排ガス圧力は、内燃機関(1)で生じる全筒失火に対しての応答が早い。上記5)の構成によれば、内燃機関の失火検知装置(10)は、全筒失火の発生をより早く検知することができる。
6)幾つかの実施形態では、上記1)または2)に記載の内燃機関の失火検知装置(10)であって、
 前記差異パラメータ取得部(12)は、前記複数の気筒(2)の各々の動作状態を検知するための複数の気筒センサ(18)のそれぞれによって検知されたセンサ値を分析し、前記差異パラメータを取得するように構成される。
 上記6)の構成によれば、複数の気筒センサ(18)の各々に基づいて取得され差異パラメータは、複数の気筒(2)の各々の動作の差異の度合いと強く相関する。従って、全筒失火判定部(41)は、内燃機関(1)における全筒失火をより高精度に検知することができる。
7)幾つかの実施形態では、上記6)に記載の内燃機関の失火検知装置(10)であって、
 前記差異パラメータ取得部(12)は、前記複数の気筒センサ(18)のそれぞれによって検知された排ガスの温度を分析するように構成される。
 上記7)の構成によれば、排温センサとして機能する気筒センサ(18)の検知結果に基づき、全筒失火判定部(41)は、内燃機関(1)において全筒失火が発生したかを判定することができる。
8)幾つかの実施形態では、上記6)または7)に記載の内燃機関の失火検知装置(10)であって、
 前記差異パラメータ取得部(12)は、複数の前記センサ値の平均値から、前記複数のセンサ値の最小値を差し引いた値を前記差異パラメータとして取得するように構成される。
 上記8)の構成によれば、複数の気筒(2)の各々の動作の差異を示す差異パラメータを簡単に特定することができる。
9)本開示の少なくとも一実施形態に係る内燃機関の失火検知装置(10)は、
 複数の気筒(2)を有する内燃機関(1)の失火を検知するための内燃機関の失火検知装置(10)であって、
 前記複数の気筒(2)の全体の動作状況と相関する動作パラメータの経時的な変化を示す動作パラメータデータ(61)を周波数分析し、前記内燃機関(1)の脈動の周波数におけるスペクトルである脈動成分スペクトル(Sp)を取得するための脈動成分取得部(11)と、
 前記複数の気筒(2)の全体の動作状況と相関する稼働パラメータの変化の度合いを示す変化率パラメータを取得するための変化率パラメータ取得部(13)と、
 前記脈動成分取得部(11)によって取得された前記脈動成分スペクトル(Sp)が第1閾値を下回り、且つ、前記変化率パラメータ取得部(13)によって取得された前記変化率パラメータの絶対値が第4閾値を上回る場合に、前記内燃機関(1)において全筒失火が発生したと判定するための全筒失火判定部(41)とを備える。
 内燃機関(1)の部分失火または全筒失火が発生すると、失火発生前の動作パラメータの周期的な変化の一部または全部が消失するため、脈動成分スペクトル(Sp)は低下する。また、内燃機関(1)の部分失火が発生すると、一部の気筒2は正常に動作するため、稼働パラメータの変化率パラメータが小さい。一方、内燃機関(1)の全筒失火が発生すると、全ての気筒2が正常に動作しないため、変化率パラメータの絶対値は大きい。上記9)の構成によれば、脈動成分スペクトが第1閾値を下回り、且つ、変化率パラメータの絶対値が第4閾値を上回る場合に、全筒失火判定部(41)は全筒失火が発生したと判定する。複数の気筒(2)の各々について失火が発生したかを個別に判定しないので、内燃機関の失火検知装置(10)は、全筒失火の発生をより早く検知できる。
10)幾つかの実施形態では、上記9)に記載の内燃機関の失火検知装置(10)であって、
 前記脈動成分取得部(11)によって取得された前記脈動成分スペクトル(Sp)が前記第1閾値を下回り、且つ、前記変化率パラメータ取得部(13)によって取得された前記変化率パラメータの前記絶対値が前記第4閾値以下の値である第5閾値以下となる場合に、前記内燃機関(1)において部分失火が発生したと判定するための部分失火判定部(42)をさらに備える。
 上記10)の構成によれば、内燃機関の失火検知装置(10)は、部分失火判定部(42)と全筒失火判定部(41)を備えることで、内燃機関(1)で発生した失火が部分失火なのか全筒失火なのかを高精度に識別することができる。
11)幾つかの実施形態では、上記9)または10)に記載の内燃機関の失火検知装置(10)であって、
 前記変化率パラメータ取得部(13)は、前記動作パラメータを前記稼働パラメータとして取得するように構成される。
 上記11)の構成によれば、動作パラメータと稼働パラメータが同一であることで、全筒失火が発生したかを判定するための構成をより簡易にできる。
12)幾つかの実施形態では、上記9)から11)のいずれかに記載の内燃機関の失火検知装置(10)であって、
 前記動作パラメータは、前記複数の気筒(2)の各々から排出される排ガスによって回転するタービン(24)の回転数、または、前記タービン(24)の入口排ガス圧力である。
 タービン(24)の回転数およびタービン(24)の入口排ガス圧力は、内燃機関(1)で生じる全筒失火に対しての応答が早い。上記12)の構成によれば、内燃機関の失火検知装置(10)は、全筒失火の発生をより早く検知することができる。
13)本開示の少なくとも一実施形態に係る内燃機関(1)の失火検知方法は、
 複数の気筒(2)を有する内燃機関(1)の失火を検知するための内燃機関(1)の失火検知方法であって、
 前記複数の気筒(2)の全体の動作状況と相関する動作パラメータの経時的な変化を示す動作パラメータデータ(61)を周波数分析し、前記内燃機関(1)の脈動の周波数におけるスペクトルである脈動成分スペクトル(Sp)を取得するための脈動成分取得ステップ(S11)と、
 前記複数の気筒(2)における各々の動作の差異の度合いと相関する差異パラメータを取得するための差異パラメータ取得ステップ(S13)と、
 前記脈動成分取得ステップによって取得された前記脈動成分スペクトル(Sp)が第1閾値を下回り、且つ、前記差異パラメータ取得ステップによって取得された前記差異パラメータが第2閾値を下回る場合に、前記内燃機関(1)において全筒失火が発生したと判定するための全筒失火判定ステップ(15)とを備える。
 上記13)の構成によれば、上記1)と同様の理由によって、全筒失火の派生をより早く検知できる内燃機関(1)の検知方法が実現する。
14)本開示の少なくとも一実施形態に係る内燃機関(1)の失火検知方法は、
 複数の気筒(2)を有する内燃機関(1)の失火を検知するための内燃機関(1)の失火検知方法であって、
 前記複数の気筒(2)の全体の動作状況と相関する動作パラメータの経時的な変化を示す動作パラメータデータ(61)を周波数分析し、前記内燃機関(1)の脈動の周波数におけるスペクトルである脈動成分スペクトル(Sp)を取得するための脈動成分取得ステップ(S31)と、
 前記複数の気筒(2)の全体の動作状況と相関する稼働パラメータの変化の度合いを示す変化率パラメータを取得するための変化率パラメータ取得ステップ(S33)と、
 前記脈動成分取得ステップによって取得された前記脈動成分スペクトル(Sp)が第1閾値を下回り、且つ、前記変化率パラメータ取得ステップによって取得された前記変化率パラメータの絶対値が第4閾値を上回る場合に、前記内燃機関(1)において全筒失火が発生したと判定するための全筒失火判定ステップ(S35)とを備える。
 上記14)の構成によれば、上記9)と同様の理由によって、全筒失火の発生をより早く検知できる内燃機関(1)の検知方法が実現する。
1    :内燃機関
2    :気筒
10   :失火検知装置
10A  :失火検知装置
10B  :失火検知装置
11   :脈動成分取得部
12   :差異パラメータ取得部
13   :変化率パラメータ取得部
18   :気筒センサ
24   :タービン
40   :失火判定部
41   :全筒失火判定部
42   :部分失火判定部
61   :動作パラメータデータ
Aave :平均値
Amin :最小値
Sc   :サイクル成分スペクトル
Sp   :脈動成分スペクトル

 

Claims (14)

  1.  複数の気筒を有する内燃機関の失火を検知するための内燃機関の失火検知装置であって、
     前記複数の気筒の全体の動作状況と相関する動作パラメータの経時的な変化を示す動作パラメータデータを周波数分析し、前記内燃機関の脈動の周波数におけるスペクトルである脈動成分スペクトルを取得するための脈動成分取得部と、
     前記複数の気筒における各々の動作の差異の度合いと相関する差異パラメータを取得するための差異パラメータ取得部と、
     前記脈動成分取得部によって取得された前記脈動成分スペクトルが第1閾値を下回り、且つ、前記差異パラメータ取得部によって取得された前記差異パラメータが第2閾値を下回る場合に、前記内燃機関において全筒失火が発生したと判定するための全筒失火判定部と、
    を備える内燃機関の失火検知装置。
  2.  前記脈動成分取得部によって取得された前記脈動成分スペクトルが前記第1閾値を下回り、且つ、前記差異パラメータ取得部によって取得された前記差異パラメータが前記第2閾値以上の値である第3閾値以上となる場合に、前記内燃機関において部分失火が発生したと判定するための部分失火判定部をさらに備える、
    請求項1に記載の内燃機関の失火検知装置。
  3.  前記差異パラメータ取得部は、単一のセンサによって検知されるセンサ値であって、前記差異の度合いと相関するセンサ値の経時的な変化を示す対象データを周波数分析し、前記内燃機関の1サイクル分の周波数におけるスペクトルであるサイクル成分スペクトルを前記差異パラメータとして取得するように構成される、
    請求項1または2に記載の内燃機関の失火検知装置。
  4.  前記差異パラメータ取得部は、前記動作パラメータデータを前記対象データとして周波数分析するように構成される、
    請求項3に記載の内燃機関の失火検知装置。
  5.  前記動作パラメータは、前記複数の気筒の各々から排出される排ガスによって回転するタービンの回転数、または、前記タービンの入口排ガス圧力である、
    請求項3に記載の内燃機関の失火検知装置。
  6.  前記差異パラメータ取得部は、前記複数の気筒の各々の動作状態を検知するための複数の気筒センサのそれぞれによって検知されたセンサ値を分析し、前記差異パラメータを取得するように構成される、
    請求項1または2に記載の内燃機関の失火検知装置。
  7.  前記差異パラメータ取得部は、前記複数の気筒センサのそれぞれによって検知された排ガスの温度を分析するように構成される、
    請求項6に記載の内燃機関の失火検知装置。
  8.  前記差異パラメータ取得部は、複数の前記センサ値の平均値から、前記複数のセンサ値の最小値を差し引いた値を前記差異パラメータとして取得するように構成される、
    請求項6に記載の内燃機関の失火検知装置。
  9.  複数の気筒を有する内燃機関の失火を検知するための内燃機関の失火検知装置であって、
     前記複数の気筒の全体の動作状況と相関する動作パラメータの経時的な変化を示す動作パラメータデータを周波数分析し、前記内燃機関の脈動の周波数におけるスペクトルである脈動成分スペクトルを取得するための脈動成分取得部と、
     前記複数の気筒の全体の動作状況と相関する稼働パラメータの変化の度合いを示す変化率パラメータを取得するための変化率パラメータ取得部と、
     前記脈動成分取得部によって取得された前記脈動成分スペクトルが第1閾値を下回り、且つ、前記変化率パラメータ取得部によって取得された前記変化率パラメータの絶対値が第4閾値を上回る場合に、前記内燃機関において全筒失火が発生したと判定するための全筒失火判定部と、
    を備える内燃機関の失火検知装置。
  10.  前記脈動成分取得部によって取得された前記脈動成分スペクトルが前記第1閾値を下回り、且つ、前記変化率パラメータ取得部によって取得された前記変化率パラメータの前記絶対値が前記第4閾値以下の値である第5閾値以下となる場合に、前記内燃機関において部分失火が発生したと判定するための部分失火判定部をさらに備える、
    請求項9に記載の内燃機関の失火検知装置。
  11.  前記変化率パラメータ取得部は、前記動作パラメータを前記稼働パラメータとして取得するように構成される、
    請求項9または10に記載の内燃機関の失火検知装置。
  12.  前記動作パラメータは、前記複数の気筒の各々から排出される排ガスによって回転するタービンの回転数、または、前記タービンの入口排ガス圧力である、
    請求項9に記載の内燃機関の失火検知装置。
  13.  複数の気筒を有する内燃機関の失火を検知するための内燃機関の失火検知方法であって、
     前記複数の気筒の全体の動作状況と相関する動作パラメータの経時的な変化を示す動作パラメータデータを周波数分析し、前記内燃機関の脈動の周波数におけるスペクトルである脈動成分スペクトルを取得するための脈動成分取得ステップと、
     前記複数の気筒における各々の動作の差異の度合いと相関する差異パラメータを取得するための差異パラメータ取得ステップと、
     前記脈動成分取得ステップによって取得された前記脈動成分スペクトルが第1閾値を下回り、且つ、前記差異パラメータ取得ステップによって取得された前記差異パラメータが第2閾値を下回る場合に、前記内燃機関において全筒失火が発生したと判定するための全筒失火判定ステップと、
    を備える内燃機関の失火検知方法。
  14.  複数の気筒を有する内燃機関の失火を検知するための内燃機関の失火検知方法であって、
     前記複数の気筒の全体の動作状況と相関する動作パラメータの経時的な変化を示す動作パラメータデータを周波数分析し、前記内燃機関の脈動の周波数におけるスペクトルである脈動成分スペクトルを取得するための脈動成分取得ステップと、
     前記複数の気筒の全体の動作状況と相関する稼働パラメータの変化の度合いを示す変化率パラメータを取得するための変化率パラメータ取得ステップと、
     前記脈動成分取得ステップによって取得された前記脈動成分スペクトルが第1閾値を下回り、且つ、前記変化率パラメータ取得ステップによって取得された前記変化率パラメータの絶対値が第4閾値を上回る場合に、前記内燃機関において全筒失火が発生したと判定するための全筒失火判定ステップと、
    を備える内燃機関の失火検知方法。

     
PCT/JP2022/022449 2021-06-03 2022-06-02 内燃機関の失火検知装置、および、失火検知方法 WO2022255442A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280032174.9A CN117377814A (zh) 2021-06-03 2022-06-02 内燃机的失火检测装置及失火检测方法
EP22816187.3A EP4317669A4 (en) 2021-06-03 2022-06-02 DEVICE FOR DETECTING MISFIRES IN AN INTERNAL COMBUSTION ENGINE AND METHOD FOR DETECTING MISFIRES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021093407A JP2022185653A (ja) 2021-06-03 2021-06-03 内燃機関の失火検知装置、および、失火検知方法
JP2021-093407 2021-06-03

Publications (1)

Publication Number Publication Date
WO2022255442A1 true WO2022255442A1 (ja) 2022-12-08

Family

ID=84324227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022449 WO2022255442A1 (ja) 2021-06-03 2022-06-02 内燃機関の失火検知装置、および、失火検知方法

Country Status (4)

Country Link
EP (1) EP4317669A4 (ja)
JP (1) JP2022185653A (ja)
CN (1) CN117377814A (ja)
WO (1) WO2022255442A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571408A (ja) * 1991-09-06 1993-03-23 Niigata Eng Co Ltd 内燃機関の失火検出装置
JPH05149182A (ja) * 1991-11-26 1993-06-15 Yanmar Diesel Engine Co Ltd 火花点火式内燃機関の失火判定装置
JP2894847B2 (ja) * 1991-01-19 1999-05-24 株式会社神戸製鋼所 ガスエンジンの制御装置
JP2001041098A (ja) * 1999-07-21 2001-02-13 Hyundai Motor Co Ltd 周波数分析を用いたエンジン失火検出システムおよび検出方法
JP2002505418A (ja) * 1998-02-24 2002-02-19 オートモビリ ランボルギーニ ソチエタ ペル アツイオニ 内燃機関の失火検出方法及び該方法を実施するための装置
JP2005240658A (ja) * 2004-02-26 2005-09-08 Nikki Co Ltd エンジンの失火検出方法および装置
JP2017106417A (ja) 2015-12-11 2017-06-15 株式会社デンソー 失火検出装置
JP2020133527A (ja) * 2019-02-21 2020-08-31 三菱重工エンジン&ターボチャージャ株式会社 内燃機関の失火検知装置および失火検知方法
JP2021093407A (ja) 2019-12-06 2021-06-17 公益財団法人鉄道総合技術研究所 電圧監視方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2894847B2 (ja) * 1991-01-19 1999-05-24 株式会社神戸製鋼所 ガスエンジンの制御装置
JPH0571408A (ja) * 1991-09-06 1993-03-23 Niigata Eng Co Ltd 内燃機関の失火検出装置
JPH05149182A (ja) * 1991-11-26 1993-06-15 Yanmar Diesel Engine Co Ltd 火花点火式内燃機関の失火判定装置
JP2002505418A (ja) * 1998-02-24 2002-02-19 オートモビリ ランボルギーニ ソチエタ ペル アツイオニ 内燃機関の失火検出方法及び該方法を実施するための装置
JP2001041098A (ja) * 1999-07-21 2001-02-13 Hyundai Motor Co Ltd 周波数分析を用いたエンジン失火検出システムおよび検出方法
JP2005240658A (ja) * 2004-02-26 2005-09-08 Nikki Co Ltd エンジンの失火検出方法および装置
JP2017106417A (ja) 2015-12-11 2017-06-15 株式会社デンソー 失火検出装置
JP2020133527A (ja) * 2019-02-21 2020-08-31 三菱重工エンジン&ターボチャージャ株式会社 内燃機関の失火検知装置および失火検知方法
JP2021093407A (ja) 2019-12-06 2021-06-17 公益財団法人鉄道総合技術研究所 電圧監視方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4317669A4

Also Published As

Publication number Publication date
EP4317669A4 (en) 2024-10-09
JP2022185653A (ja) 2022-12-15
CN117377814A (zh) 2024-01-09
EP4317669A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
JP2003328851A (ja) 内燃機関を診断、較正するシステムおよび方法
US8429955B2 (en) Method and device for detecting peak values of pressure in a cylinder of an internal combustion engine
US8984933B2 (en) Method and system for control of an internal combustion engine based on engine crank angle
CZ297026B6 (cs) Zpusob detekce selhání ve spalovacím motoru, zarízení k provádení tohoto zpusobu a vozidlo obsahující toto zarízení
JPH04365958A (ja) 内燃機関用失火検出装置
JP2009052556A (ja) 部分エンジン運転における内燃機関シリンダ内燃焼ミスファイヤの検出方法および制御装置
JP6531222B1 (ja) エンジン異常検出装置
JP2002047996A (ja) 内燃機関用失火検出装置
JP2019190464A (ja) 大型低速エンジンの燃焼分析装置及びこれを利用したエンジンの燃焼状態判断方法
JP2009541629A (ja) ミスファイアを検出する方法および相応する装置
JP2807737B2 (ja) 内燃エンジンの燃焼状態検出装置
JP4827022B2 (ja) 内燃機関の失火検出装置
WO2022255442A1 (ja) 内燃機関の失火検知装置、および、失火検知方法
KR102408522B1 (ko) 비틀림진동 신호를 이용한 왕복동 내연기관의 착화실패 실린더 검출 방법 및 그 장치
Jafari et al. Detection of misfire in a six-cylinder diesel engine using acoustic emission signals
JP4316914B2 (ja) 失火検出装置
JP2011111906A (ja) 筒内圧センサの診断装置
JPH08144837A (ja) 失火検出装置
JP4126243B2 (ja) 内燃機関の燃焼状態検出装置
JP2000064901A (ja) 内燃機関の失火検出装置
US11732668B1 (en) Systems and methods for cylinder misfire detection
US11614044B2 (en) Method for computer-assisted determination of multiple rotational irregularities in an internal combustion engine
JP2004176563A (ja) 多気筒内燃機関の失火検出装置
JPH0533717A (ja) 多気筒内燃機関の失火検出装置
JPH06336948A (ja) 内燃機関用失火検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816187

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18287338

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022816187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280032174.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022816187

Country of ref document: EP

Effective date: 20231030

NENP Non-entry into the national phase

Ref country code: DE