WO2022254656A1 - 圧縮成形装置 - Google Patents

圧縮成形装置 Download PDF

Info

Publication number
WO2022254656A1
WO2022254656A1 PCT/JP2021/021205 JP2021021205W WO2022254656A1 WO 2022254656 A1 WO2022254656 A1 WO 2022254656A1 JP 2021021205 W JP2021021205 W JP 2021021205W WO 2022254656 A1 WO2022254656 A1 WO 2022254656A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
weight
work
compression molding
carrier
Prior art date
Application number
PCT/JP2021/021205
Other languages
English (en)
French (fr)
Inventor
誠 柳澤
秀作 田上
Original Assignee
アピックヤマダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アピックヤマダ株式会社 filed Critical アピックヤマダ株式会社
Priority to PCT/JP2021/021205 priority Critical patent/WO2022254656A1/ja
Priority to KR1020237026269A priority patent/KR20230125314A/ko
Priority to JP2023525670A priority patent/JPWO2022255021A1/ja
Priority to US18/276,881 priority patent/US20240116224A1/en
Priority to PCT/JP2022/019416 priority patent/WO2022255021A1/ja
Priority to CN202280012010.XA priority patent/CN116897415A/zh
Priority to DE112022002905.6T priority patent/DE112022002905T5/de
Priority to TW111119344A priority patent/TWI793018B/zh
Publication of WO2022254656A1 publication Critical patent/WO2022254656A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/06Feeding of the material to be moulded, e.g. into a mould cavity in measured doses, e.g. by weighting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • B29C2043/181Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles encapsulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • B29C2043/181Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles encapsulated
    • B29C2043/182Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles encapsulated completely
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5825Measuring, controlling or regulating dimensions or shape, e.g. size, thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5875Measuring, controlling or regulating the material feed to the moulds or mould parts, e.g. controlling feed flow, velocity, weight, doses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5891Measuring, controlling or regulating using imaging devices, e.g. cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof

Definitions

  • the present invention relates to a compression molding device.
  • a method of manufacturing a package in which parts such as semiconductor elements are sealed with resin a method is known in which a plurality of packages are formed at once by molding resin on a work in which a plurality of parts are mounted on a carrier.
  • resin sealing methods is a compression molding method.
  • Patent Document 1 discloses a resin molding apparatus that processes a workpiece into a molded product by resin-molding a workpiece using a molding die that includes an upper mold and a lower mold, wherein the thickness of the workpiece is measured to determine the volume of the electronic component.
  • a resin molding apparatus is disclosed that can control the molding thickness of a molded product with high accuracy by calculating the thickness and adjusting the supply amount of molding resin.
  • the "thickness measurement” includes whether or not electronic components are mounted on the base material, measurement of the mounting height of the electronic components, measurement of mounting positional deviation, measurement of the number of mounted This includes measurement and the like, and if an attempt is made to calculate the volume of an electronic component with high accuracy, a step of measuring the thickness of the entire workpiece is required, which may reduce production capacity.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a compression molding apparatus with improved production capacity.
  • a compression molding apparatus performs compression molding of a resin on a work in which a plurality of parts are mounted on a carrier to manufacture a plurality of packages in which at least one part is resin-sealed.
  • a molding apparatus comprising: a weighing unit for weighing a workpiece; a calculating unit for calculating a supply amount of resin based on the weight of the workpiece weighed by the weighing unit; A supply unit for supplying, and a molding die for compression-molding the resin supplied by the supply unit onto a work are provided.
  • the amount of resin supply can be adjusted simply and quickly according to the state of the parts on the carrier, and the package production capacity of the compression molding apparatus can be improved.
  • the calculation unit may calculate a correction resin amount for correcting the reference resin amount based on the difference between the reference work weight and the weight of the work weighed by the weighing unit.
  • the reference work weight is the weight of the reference work in which all the parts are mounted on the reference carrier
  • the reference resin amount is the resin required for compression molding the reference work to a desired thickness. It can be the amount.
  • the reference work weight is the weight of the reference work in which no parts are mounted on the reference carrier
  • the reference resin amount is the amount of resin necessary for compression molding the reference work to a desired thickness. It may be the amount of resin.
  • the corrected resin amount may be calculated by multiplying the difference by the specific gravity of the resin and dividing by the specific gravity of the part.
  • the above aspect further includes a measuring unit that measures the thickness of the carrier, and the calculating unit corrects based on the difference between the weight occupied by the reference carrier in the reference work weight and the weight of the carrier calculated from the thickness of the carrier. You may adjust the amount of resin.
  • the calculation unit sets the weight of the largest work with all parts mounted on the reference carrier as the maximum work weight, and the weight of the smallest work with no parts mounted on the reference carrier as the minimum work weight, and calculates the weight of the work from the minimum work weight.
  • the weight range up to the maximum work weight is divided into the same number of sub-ranges as the number of packages that can be manufactured from the maximum work, and the amount of resin supplied is based on which sub-range the weight of the work weighed in the weighing section belongs to. may be calculated.
  • the above aspect may further include a measurement unit that measures the thickness distribution of the work, and the calculation unit may calculate the resin supply position based on the thickness distribution of the work.
  • an imaging unit that captures an image of the work may be further provided, and the calculation unit may calculate the resin supply position based on the image of the work.
  • the mold may have an upper mold on which the workpiece is set and a lower mold on which the release film is set, and the supply unit may supply the resin to the release film.
  • the weighing unit may further include a reversing unit that measures the weight of the work with the mounting surface on which the multiple parts are mounted facing upward, and turns over the weighed work.
  • the mold may have a lower mold on which the work is set and an upper mold on which the release film is set, and the supply unit may supply resin to the work.
  • FIG. 4 is a plan view schematically showing the configuration of the workpiece before compressing the resin; 5 is a flow chart showing an example of a method for calculating the amount of resin to be supplied; 5 is a flow chart showing an example of a method for adjusting the amount of correction resin; 6 is a flow chart showing an example of a method for calculating a resin supply position; 8 is a flow chart showing another example of a method for calculating a resin supply position; 6 is a flow chart showing another example of a method for calculating the amount of resin to be supplied; It is a figure which shows roughly the structure of the resin sealing apparatus which concerns on a 1st modification. It is a figure which shows roughly the structure of the resin sealing apparatus which concerns on a 2nd modification.
  • FIG. 1 is a diagram schematically showing the configuration of a resin sealing device according to one embodiment.
  • FIG. 2 is a plan view schematically showing the configuration of the work before compressing the resin.
  • the compression molding apparatus 1 compresses and molds a resin R with respect to a work 10 having a plurality of components 12 mounted on a carrier 11, and produces a plurality of packages in which at least one component 12 is resin-sealed (molded). It is a manufacturing device.
  • the compression molding machine 1 also manufactures at least one package without the component 12 mounted thereon.
  • the compression molding apparatus 1 includes a resin supply device 100 that supplies resin R, and a molding die 190 that heats and compresses the resin R. As shown in FIG.
  • the carrier 11 is an interposer board
  • the component 12 is a semiconductor element (IC chip, diode, transistor, etc.) mounted on the carrier 11, and the resin R is granular.
  • the carrier 11, the component 12 and the resin R are not limited to the above.
  • the carrier 11 is a substrate made of resin, glass, metal, semiconductor, or the like, and may be a lead frame, a carrier plate with an adhesive sheet, or the like.
  • component 12 may be a MEMS device or an electronic device (capacitor, inductor, resistor, etc.).
  • the component 12 may be mounted on the carrier 11 by a wire bonding method or a flip chip method, or may be detachably fixed.
  • the component 12 may include, for example, two types of components 12a and 12b, or may include three or more types of components.
  • the resin R may be in the form of powder, tablet, liquid, or the like.
  • the resin R contains a thermosetting resin such as epoxy resin, and can be molded into any shape by hot compression.
  • a package molded by the compression molding device 1 may require high thickness accuracy. Since the supply amount of the resin R required to manufacture a package having a desired thickness varies according to the state of the work 10, the compression molding apparatus 1 is configured to be able to calculate the supply amount of the resin R with high accuracy. is desirable.
  • the workpiece 10 is provided with a plurality of package areas PA partitioned by a plurality of division lines LN1 and LN2.
  • the plurality of division lines LN1 and LN2 are imaginary lines for dividing the workpiece 10 in which the resin R is compression-molded into a plurality of packages.
  • a package area PA is an area that serves as a package, and a plurality of package areas PA are arranged in a matrix.
  • a first component 12a and a second component 12b are arranged in a first package area PA1 of the package areas PA.
  • the second package area PA2 and the third package area PA3 of the package areas PA at least one of the first component 12a and the second component 12b is partially or completely absent.
  • part or all of the component 12b may be missing due to a wiring defect inside the carrier 11 or the like.
  • the first component 12a and the second component 12b are originally not mounted in the portion that cannot be used due to wiring failure or the like of the carrier 11 in order to reduce component loss.
  • the resin supply device 100 calculates the supply amount of the resin R based on the state of the work 10 and supplies the resin R to the work 10 or the release film RF before being carried into the molding die 190 .
  • the resin supply device 100 supplies the resin R to the release film RF.
  • the resin supply device 100 includes a weighing section 110 , a calculation section 120 , a supply section 130 , a stage 140 , a measurement section 150 , an imaging section 160 and a reversing section 180 .
  • the weighing unit 110 measures the weight of the workpiece 10 and transmits the weighing result to the calculating unit 120 .
  • the weighing unit 110 is a top pan electronic balance that measures the weight of an object loaded on the upper surface of the work 10 with the mounting surface on which the component 12 is mounted facing upward (opposite to the weighing unit 110). is loaded on the upper surface, and the weight of the work 10 is measured.
  • the calculation unit 120 calculates the supply amount of the resin R based on the weight of the work 10 weighed by the weighing unit 110 .
  • the calculator 120 is composed of computer hardware and software. Data for calculating the supply amount of the resin R may be registered in advance in the calculator 120 .
  • the data may include, for example, the standard weight, minimum weight, maximum weight, standard thickness, minimum thickness, maximum thickness and specific gravity of the carrier 11 .
  • the data may include the standard weight, minimum weight and maximum weight of the work 10, the standard quantity, maximum quantity, minimum quantity, standard total weight, maximum total weight, and maximum weight of the parts 12 mounted on one work 10.
  • the supply amount of the resin R may be specified by volume or may be specified by weight. Also, the supply amount of the resin R may be specified by a control parameter of the supply unit 130 .
  • the "standard” such as the above standard weight is the average value or median value in terms of the fact that there is no defect as a product in each of the above items, or the number of defects is within the allowable range, and is treated as the standard in the manufacturing process. value.
  • the “minimum” and “maximum” of the above weights, etc., are the lower and upper limits of manufacturing tolerances, respectively.
  • the data registered in the calculation unit 120 are the average value, median value, and mode of each of the weight and thickness of the carrier 11, the weight of the workpiece 10, the number and total weight of the parts 12, and the supply amount of the resin R. It may also include statistics such as values.
  • the data registered in the calculator 120 may be predicted values or measured values.
  • the standard weight carrier 11 corresponds to an example of the "reference carrier” of the present invention, and the standard weight of the carrier 11 corresponds to an example of the “reference carrier weight” of the present invention.
  • a “reference carrier” according to the present invention may be the carrier 11 with the lowest weight or the highest weight, or the carrier 11 with the mean, median or mode weight. That is, the "reference carrier weight” of the present invention may be the minimum value, maximum value, average value, median value, or mode value of the weight of the carrier 11 .
  • the standard quantity of the parts 12 corresponds to an example of the "reference parts quantity" of the present invention, and the standard total weight of the parts 12 corresponds to an example of the "reference total parts weight” of the present invention.
  • the “reference part quantity” of the present invention may be the maximum or minimum quantity of parts 12, and the “reference total part weight” of the present invention may be the maximum total weight or minimum total weight of the parts 12.
  • the standard weight work 10 corresponds to an example of the "reference work” of the present invention
  • the standard weight of the work 10 corresponds to an example of the "reference work weight” of the present invention
  • a “reference work” in the present invention is a work in which a reference carrier is mounted with a reference number of parts
  • a “reference work weight” in the present invention is the weight of the reference work.
  • the “reference work” of the present invention may be the work 10 having the minimum weight or the maximum weight
  • the “reference work weight” of the present invention may be the work 10 having the minimum weight or the maximum weight.
  • the maximum weight of the workpiece 10 is, for example, the weight of the workpiece 10 with all the parts 12 mounted on the reference carrier.
  • the minimum weight of the work 10 is, for example, the weight of the work 10 with no parts 12 mounted on the reference carrier (ie, the reference carrier weight).
  • the standard supply amount of resin R corresponds to an example of the "standard resin amount” of the present invention.
  • the “standard amount of resin” in the present invention is the amount of resin required for compression molding the resin R to a desired thickness with respect to the standard workpiece.
  • the “reference resin amount” of the present invention may be the maximum supply amount or the minimum supply amount of the resin R.
  • the minimum supply amount of the resin R is, for example, the amount of resin required for compression molding the resin R to a desired thickness with respect to the workpiece 10 having the maximum weight.
  • the maximum supply amount of the resin R is, for example, the amount of resin required for compression molding the resin R to a desired thickness with respect to the workpiece 10 having the minimum weight.
  • the supply unit 130 supplies the amount of resin R calculated by the calculation unit 120 .
  • the supply section 130 includes a hopper 131 , a control section 133 and a linear feeder 135 .
  • the hopper 131 accommodates the resin R.
  • the control unit 133 controls the supply amount, supply speed, supply timing, etc. of the resin R based on the calculation result input from the calculation unit 120 .
  • the linear feeder 135 feeds out the resin R and drops it from the tip. Note that the configuration of the supply unit 130 is not limited to the above.
  • the supply unit 130 may include a dispenser having a syringe that stores the resin R, a piston that pushes out the resin R, and a pinch valve that opens and closes the tip of the syringe.
  • a configuration of the supply unit 130 a configuration using a linear feeder 135 or a configuration other than a dispenser having a syringe can be adopted.
  • the stage 140 is a base that supports the release film RF to which the resin R is supplied.
  • the stage 140 is configured to be relatively movable with respect to the supply section 130 .
  • at least one of the supply unit 130 and the stage 140 is configured to be movable by moving means such as a servomotor.
  • the measurement unit 150 measures the thickness of the carrier 11, for example.
  • the measurement unit 150 is, for example, a non-contact type measuring device such as a reflectance spectroscopy method or an ellipsometer method, but is not limited to this, and may be a contact type measuring device such as a micrometer method.
  • the measurement unit 150 may measure the thickness using a laser displacement meter.
  • the measurement unit 150 may measure the thickness at a plurality of points or at a plurality of surfaces to measure the in-plane distribution of the thickness, and may measure the thickness while scanning in the in-plane direction to determine the in-plane distribution of the thickness. may be measured.
  • Information measured by the measurement unit 150 is transmitted to the calculation unit 120 and used to calculate the amount of resin R to be supplied.
  • the calculator 120 corrects the weight variation of the workpiece 10 weighed by the weigher 110 due to the thickness variation of the carrier 11 .
  • the measurement unit 150 may measure the thickness of the workpiece 10.
  • the thickness of the workpiece 10 as used herein includes information regarding the mounting status, such as the presence or absence of the component 12 mounted on the carrier 11, the height and position of the component 12, and the like. That is, the information about the mounting status includes the number, position, density, etc. of the second package area PA2 and the third package area PA3.
  • the measurement unit 150 measures the thickness using a non-contact measuring device or a laser displacement gauge, from the viewpoint of suppressing damage to the component 12 due to measurement.
  • Information about the mounting status measured by the measurement unit 150 is transmitted to the calculation unit 120 and used to calculate the supply amount and supply position of the resin R.
  • the supply position of the resin R here is not only information as to which position corresponding to which package area PA the resin R is to be supplied, but also the position corresponding to which package area PA to increase the supply amount of the resin R. It also includes information on whether to reduce
  • the measurement unit 150 may measure the thickness of the package.
  • the package thickness measured by the measuring unit 150 is transmitted to the calculating unit 120 .
  • the calculation unit 120 may compare the calculated supply amount of the resin R with the thickness of the package compression-molded with the resin R, and adjust the method for calculating the supply amount of the resin R.
  • the imaging unit 160 captures an image of the work 10.
  • the imaging unit 160 includes, for example, a camera (a monocular camera or a compound eye camera) and an image processing system that processes images captured by the camera. Thereby, the image capturing unit 160 captures an image of the component 12 on the carrier 11 and acquires information about the mounting state by image processing. Information about the mounting status acquired by the imaging unit 160 is transmitted to the calculation unit 120 and used to calculate the supply amount and supply position of the resin R.
  • the measurement unit 150 and the imaging unit 160 may be omitted from the compression molding apparatus 1. Also, the thickness of the carrier 11, the thickness of the workpiece 10, and the thickness of the package may be measured by separate measurement units.
  • the reversing unit 180 vertically inverts the workpiece 10 weighed by the weighing unit 110 while it is being transported into the mold 190 .
  • the reversing section 180 will cause the workpiece 10 to Flip up and down.
  • the reversing unit 180 reverses the vertical direction of the workpiece 10. Let If the orientation of the workpiece 10 when weighed by the weighing unit 110 is the same as the orientation of the workpiece 10 when set inside the molding die 190, the reversing unit 180 is omitted.
  • the molding die 190 is a pair of dies (lower die 191 and upper die 192) for sealing the workpiece 10 with resin using compression molding technology.
  • the mold having the cavity 199 is set with the release film RF
  • the work 10 is set with the other mold.
  • the resin R is supplied to the release film RF and the work 10 which are set on the lower mold 191 .
  • the mold 190 has a lower mold cavity structure having a cavity 199 in the lower mold 191 .
  • the molding die 190 includes a seal ring 193 (for example, an O-ring) that seals the inside of the molding die 190 (the space between the lower die 191 and the upper die 192).
  • the compression molding apparatus 1 includes a pressure control unit (for example, a vacuum pump) for adjusting the internal pressure of the mold 190 and a temperature control unit (for example, a heater) for adjusting the internal temperature (molding temperature). ing.
  • the lower die 191 includes a chase 19A, a cavity piece 19B fixed to the upper die 192 side of the chase 19A, a clamper 19C surrounding the cavity piece 19B, and a chamber block 19D surrounding the clamper 19C with a space therebetween.
  • the cavity piece 19B is fixed to the upper die 192 side of the chase 19A.
  • the clamper 19C protrudes toward the upper die 192 from the cavity piece 19B, and forms a cavity 199 together with the cavity piece 19B.
  • the clamper 19C is connected to the chase 19A via a spring and is slidable relative to the cavity piece 19B. When the molds are clamped, the outer edge portion (carrier 11) of the work 10 is sandwiched between the clamper 19C and the upper mold 192.
  • a plurality of air vents connecting the space on the chamber block 19D side and the cavity 199 are provided on the upper surface of the clamper 19C (the surface facing the upper die 192).
  • the plurality of air vents are radial grooves centered on the cavity 199 .
  • the plurality of air vents function as exhaust holes for discharging air remaining in the cavity 199 of the clamped molding die 190 and gas generated from the resin R.
  • the air vent is formed to a depth (for example, about several micrometers) that allows air or gas to be discharged but does not allow the resin R to flow out.
  • a seal ring 193 contacts the chamber block 19D.
  • FIG. 1 An example of a package manufacturing method using the compression molding apparatus 1 will be described with reference to FIGS. 3 to 7.
  • FIG. 3 is a diagrammatic representation of a package manufacturing method using the compression molding apparatus 1 .
  • FIG. 3 is a flow chart showing an example of a method (S110) for calculating the supply amount of the resin R.
  • the reference work weight and the reference resin amount are registered (S111).
  • the reference workpiece weight and the reference resin amount are input to the calculator 120 from an external terminal.
  • the reference work weight is the weight of the work 10 (hereinafter referred to as "reference work") in which all the parts 12 are mounted on the reference carrier.
  • the reference work weight is the weight of the work 10 whose entire package area PA is the first package area PA1.
  • a standard weight carrier 11 is used for the reference carrier.
  • the reference resin amount is the supply amount of the resin R required to obtain a package having a desired thickness by compression-molding the resin R on the reference workpiece on which all the parts 12 are mounted.
  • the carrier 11 with the minimum weight can also be used as the reference carrier.
  • the reference resin amount is the supply amount of resin R required to obtain a package having a desired thickness by compression-molding the resin R on a reference workpiece on which no component 12 is mounted.
  • the workpiece 10 may have a second packaging area PA2 in which the parts 12 are partially absent and a third packaging area PA3 in which the parts 12 are entirely absent.
  • the third package areas PA3 may be scattered due to defects in the internal wiring of the substrate, or half of the carrier 11 may be the third package areas PA3 because all the components 12 cannot be mounted.
  • non-existing components 12 the components 12 that were planned to be mounted in the second package area PA2 or the third package area PA3 but do not exist are collectively referred to as "non-existing components 12".
  • the weight of the work 10 weighed in step S112 becomes lighter than the reference work weight by the weight of the non-existing part 12 .
  • step S113 by subtracting the weight of the work 10 weighed in step S112 from the reference work weight, the weight of the non-existing part 12 is calculated as the weight difference of the work 10.
  • the corrected resin amount is calculated based on the weight difference of the workpiece 10 (S114), and the corrected resin amount is included in the reference resin amount (S115).
  • the corrected resin amount is calculated by the calculator 120 and is included in the reference resin amount by the calculator 120 .
  • the reference resin amount of resin R is compression-molded on the workpiece 10 having the second package area PA2 and the third package area PA3, the thickness of the package is reduced by the part 12 that does not exist. Therefore, in order to obtain a package with a desired thickness, in step S115, the corrected resin amount for the component 12 that does not exist is added to the reference resin amount.
  • the corrected resin amount is calculated as, for example, the weight of the resin R by multiplying the weight difference of the workpiece 10 by the specific gravity of the resin R and dividing by the specific gravity of the part 12.
  • the weight difference of the workpiece 10 may be used as the corrected resin amount.
  • the compression molding apparatus By calculating the supply amount of the resin R based on the weight of the workpiece 10 in this way, the supply amount of the resin R can be calculated easily and quickly. That is, compared to a compression molding apparatus configured to scan substantially the entire surface of a workpiece, measure the thickness, and carefully examine the mounting status of all parts, the compression molding apparatus according to the present embodiment and the compression molding method using the same: Improve package production capacity.
  • the reference work weight may be the weight of the work 10 in which no parts 12 are mounted on the reference carrier as described above.
  • the reference work weight may be the weight of the reference carrier.
  • the reference resin amount at this time is the supply amount of the resin R required to obtain a package having a desired thickness by compression-molding the resin R on the reference workpiece on which no parts are mounted.
  • the weight of the work 10 weighed in step S112 becomes heavier than the reference work weight by the weight of the mounted component 12 .
  • the weight of the mounted component 12 is calculated as the weight difference of the work 10.
  • the supply amount of the resin R is calculated by subtracting the correction resin amount for the component 12 mounted on the workpiece 10 from the reference resin amount.
  • FIG. 4 is a flow chart showing an example (S120) of a method for adjusting the correction resin amount.
  • the correction resin amount adjustment method S120 first, the thickness of the carrier 11 is measured (S121). The thickness of the carrier 11 is measured by the measuring section 150 . Next, the carrier weight is calculated from the thickness of the carrier 11 (S122), the weight difference of the carrier 11 is calculated (S123), and the correction resin amount is adjusted based on the weight difference of the carrier 11 (S124). The weight difference of the carrier 11 is calculated by the calculator 120 and the correction resin amount is adjusted by the calculator 120 .
  • the weight difference of the carrier 11 is the difference between the weight occupied by the reference carrier in the reference workpiece weight and the weight occupied by the carrier 11 in the weighed workpiece 10 .
  • the weight difference of the workpiece 10 calculated in step S113 includes not only the weight of the nonexistent part 12 but also the weight difference of the carrier 11 .
  • variations in the weight of the carrier 11 do not affect the amount of resin R supplied to compression mold a package of desired thickness. Therefore, by eliminating the influence of the weight difference of the carrier 11 from the corrected resin amount, the supply amount of the resin R can be calculated more accurately.
  • the correction resin amount is calculated from the weight difference of the workpiece 10 and then the correction resin amount is adjusted based on the weight difference of the carrier 11 .
  • the correction resin amount may be calculated after subtracting the weight difference of the carrier 11 from the weight difference of the workpiece 10 .
  • FIG. 5 is a flow chart showing an example of a method (S130) for calculating the supply position of the resin R.
  • the calculation method S130 of the supply position of the resin R first, the thickness of the workpiece 10 is measured (S131). The thickness of the work 10 is measured by the measuring section 150 . Next, the mounting status of the component 12 is calculated (S132), and the supply position of the resin R is calculated (S133). The mounting state of the component 12 is calculated by the calculation unit 120 based on the thickness of the work 10 , and the supply position of the resin R is calculated by the calculation unit 120 based on the mounting state of the component 12 . The supply position of the resin R is calculated based on the mounting status of the component 12 .
  • FIG. 6 is a flow chart showing another example (S140) of the method for calculating the supply position of the resin R.
  • the calculation method S140 of the supply position of the resin R first, an image of the workpiece 10 is captured (S141). An image of the work 10 is captured by the imaging unit 160 . Next, the mounting status of the component 12 is calculated (S142), and the supply position of the resin R is calculated (S143). The mounting state of the component 12 is calculated by the calculation unit 120 based on the image of the workpiece 10 , and the supply position of the resin R is calculated by the calculation unit 120 based on the mounting state of the component 12 . Note that the calculation method S130 and the calculation method S140 may be used together to calculate the supply position of the resin R.
  • FIG. 7 is a flow chart showing another example (S210) of the method for calculating the supply amount of the resin R.
  • the maximum work weight, the minimum work weight and the maximum number of packages are registered (S211).
  • the maximum workpiece weight, the minimum workpiece weight, and the maximum number of packages are input to the calculator 120 from an external terminal.
  • the maximum work weight is the weight of the work 10 (hereinafter referred to as "maximum work") in which all the parts 12 are mounted on the reference carrier.
  • the maximum work weight is the weight of the work 10 whose entire package area PA is the first package area PA1.
  • the minimum work weight is the weight of the work 10 (hereinafter referred to as "minimum work") in which no component 12 is mounted on the reference carrier.
  • the minimum work weight is the weight of the reference carrier.
  • the reference carrier is for example a standard weight carrier 11 .
  • the maximum number of packages is the number of packages that can be manufactured from the maximum workpiece, that is, the number of package areas PA.
  • the weight range is calculated and divided into multiple partial ranges (S212).
  • the weight range is calculated by calculator 120 and the weight range is divided into subranges by calculator 120 .
  • the weight range is a numerical range from the minimum work weight to the maximum work weight, and the multiple partial ranges are numerical ranges obtained by dividing the weight range by the maximum number of packages.
  • the weight of the work 10 is measured (S213), and the supply amount of the resin R is calculated based on the partial range to which the weight of the work 10 belongs (S214).
  • the workpiece 10 is weighed by the weighing unit 110 and the supply amount of the resin R is calculated by the calculating unit 120 .
  • the calculation unit 120 registers the supply amount of the resin R corresponding to each partial range, determines to which partial range the weight of the workpiece 10 belongs, and reads out the registered supply amount of the resin R. . According to this, highly accurate weighing and calculation are not required, and the calculation speed of the supply amount of the resin R is improved.
  • FIG. 8 is a diagram schematically showing the configuration of a resin sealing device according to a first modified example.
  • the weighing unit 110 measures the weight of the workpiece 10 with the component 12 facing downward (toward the weighing unit 110 side).
  • the workpiece 10 is supported by the carrier 11 on the outer edge, and the component 12 is not in contact with the weighing unit 110 or the like.
  • the workpiece 10 is conveyed in this orientation and set on the upper die 192 of the molding die 190 .
  • FIG. 8 is a diagram schematically showing the configuration of a resin sealing device according to a second modification.
  • the mold 190 has an upper mold cavity structure in which an upper mold 192 has a cavity 199 .
  • the work 10 weighed by the weighing unit 110 is conveyed to the stage 140 .
  • the workpiece 10 supplied with the resin R on the stage 140 is set on the lower mold 191 and the release film RF is set on the upper mold 192 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Robotics (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

圧縮成形装置(1)は、キャリア(11)に複数の部品(12)が搭載されたワーク(10)に対して樹脂(R)を圧縮成形し、それぞれに少なくとも1つの部品(12)が樹脂封止された複数のパッケージを製造する圧縮成形装置(1)であって、ワーク(10)の重量を計量する計量部(110)と、計量部(110)で計量されたワーク(10)の重量に基づき、樹脂(R)の供給量を算出する算出部(120)と、算出部(120)によって算出された供給量の樹脂(R)を供給する供給部(130)と、供給部(130)によって供給された樹脂(R)をワーク(10)に対して圧縮成形するモールド金型(190)と、を備える。

Description

圧縮成形装置
 本発明は、圧縮成形装置に関する。
 半導体素子等の部品が樹脂封止されたパッケージを製造する方法として、キャリアに複数の部品が搭載されたワークに対して樹脂を成形し、複数のパッケージを一括形成する方法が知られている。そのような樹脂封止方式の一つに、圧縮成形方式がある。
 特許文献1には、上型と下型とを備えるモールド金型を用いてワークを樹脂モールドして成形品に加工する樹脂モールド装置であって、ワークの厚みを計測して電子部品の容積を算出し、モールド樹脂の供給量を調整することで成形品の成形厚みを高精度に制御できる樹脂モールド装置が開示されている。
特開2019-145548号公報
 しかしながら、特許文献1に記載された樹脂モールド装置において、「厚みの計測」には基材における電子部品の搭載の有無、電子部品の搭載高さの計測、搭載の位置ずれの計測、搭載数の計測等が含まれ、電子部品の容積を高精度で算出しようとするとワーク全体の厚みを測定する工程が必要になるため、生産能力が低下する場合がある。
 本発明はこのような事情に鑑みてなされたものであり、本発明の目的は、生産能力が向上した圧縮成形装置を提供することである。
 本発明の一態様に係る圧縮成形装置は、キャリアに複数の部品が搭載されたワークに対して樹脂を圧縮成形し、それぞれに少なくとも1つの部品が樹脂封止された複数のパッケージを製造する圧縮成形装置であって、ワークの重量を計量する計量部と、計量部で計量されたワークの重量に基づき、樹脂の供給量を算出する算出部と、算出部によって算出された供給量の樹脂を供給する供給部と、供給部によって供給された樹脂をワークに対して圧縮成形するモールド金型と、を備える。
 この態様によれば、キャリア上の部品の状況に応じて樹脂の供給量を簡易かつ迅速に調整することができ、圧縮成形装置によるパッケージの生産能力を向上させることができる。
 上記態様において、算出部は、基準ワーク重量と計量部で計量されたワークの重量との差分に基づき、基準樹脂量を補正する補正樹脂量を算出してもよい。
 上記態様において、基準ワーク重量は、基準キャリアに部品が全て搭載された基準ワークの重量であり、基準樹脂量は、基準ワークに対して、樹脂を所望の厚みに圧縮成形するために必要な樹脂量であってもよい。
 上記態様において、基準ワーク重量は、基準キャリアに部品が全く搭載されていない基準ワークの重量であり、基準樹脂量は、基準ワークに対して、樹脂を所望の厚みに圧縮成形するために必要な樹脂量であってもよい。
 上記態様において、補正樹脂量は、差分に樹脂の比重を乗算して部品の比重で除算して算出されてもよい。
 上記態様において、キャリアの厚みを計測する計測部をさらに備え、算出部は、基準ワーク重量のうち基準キャリアの占める重量と、キャリアの厚みから算出したキャリアの重量と、の差分に基づいて、補正樹脂量を調整してもよい。
 上記態様において、算出部は、基準キャリアに部品が全て搭載された最大ワークの重量を最大ワーク重量、基準キャリアに部品が全く搭載されていない最小ワークの重量を最小ワーク重量とし、最小ワーク重量から最大ワーク重量までの重量範囲を、最大ワークから製造可能なパッケージの数と同数の部分範囲に分割し、計量部で計量されたワークの重量がどの部分範囲に属するかに基づき、樹脂の供給量を算出してもよい。
 上記態様において、ワークの厚み分布を計測する計測部をさらに備え、算出部は、ワークの厚み分布に基づき、樹脂の供給位置を算出してもよい。
 上記態様において、ワークの画像を撮像する撮像部をさらに備え、算出部は、ワークの画像に基づき、樹脂の供給位置を算出してもよい。
 上記態様において、モールド金型は、ワークがセットされる上型と、リリースフィルムがセットされる下型と、を有し、供給部は、リリースフィルムに樹脂を供給してもよい。
 上記態様において、計量部は、複数の部品が搭載された搭載面を上に向けた状態のワークの重量を計量し、重量を計量したワークを反転させる反転部をさらに備えてもよい。
 上記態様において、モールド金型は、ワークがセットされる下型と、リリースフィルムがセットされる上型と、を有し、供給部は、ワークに樹脂を供給してもよい。
 本発明によれば、生産能力が向上した圧縮成形装置を提供することができる。
一実施形態に係る圧縮成形装置の構成を概略的に示す図である。 樹脂を圧縮する前のワークの構成を概略的に示す平面図である。 樹脂の供給量の算出方法の一例を示すフローチャートである。 補正樹脂量の調整方法の一例を示すフローチャートである。 樹脂の供給位置の算出方法の一例を示すフローチャートである。 樹脂の供給位置の算出方法の別の一例を示すフローチャートである。 樹脂の供給量の算出方法の別の一例を示すフローチャートである。 第1変形例に係る樹脂封止装置の構成を概略的に示す図である。 第2変形例に係る樹脂封止装置の構成を概略的に示す図である。
 以下、図面を参照しながら本発明の実施形態について説明する。本実施形態の図面は例示であり、各部の寸法や形状は模式的なものであり、本願発明の技術的範囲を当該実施形態に限定して解するべきではない。
 <圧縮成形装置>
 図1及び図2を参照しつつ、本発明の実施形態に係る圧縮成形装置1の構成について説明する。図1は、一実施形態に係る樹脂封止装置の構成を概略的に示す図である。図2は、樹脂を圧縮する前のワークの構成を概略的に示す平面図である。
 圧縮成形装置1は、キャリア11に複数の部品12が搭載されたワーク10に対して樹脂Rを圧縮成形し、それぞれに少なくとも1つの部品12が樹脂封止(モールド成形)された複数のパッケージを製造する装置である。圧縮成形装置1は、部品12が搭載れていない少なくとも1つのパッケージも併せて製造する。圧縮成形装置1は、樹脂Rを供給する樹脂供給装置100と、樹脂Rを加熱圧縮するモールド金型190とを備えている。
 一例として、キャリア11はインタポーザ基板であり、部品12はキャリア11に搭載された半導体素子(ICチップ、ダイオード、トランジスタ等)であり、樹脂Rは顆粒状である。但し、キャリア11、部品12及び樹脂Rは上記に限定されるものではない。例えば、キャリア11は、樹脂、ガラス、金属、半導体等を材料とする基板であり、リードフレーム、粘着シート付きキャリアプレートなどでもよい。例えば、部品12は、MEMSデバイスや電子デバイス(キャパシタ、インダクタ、レジスタ等)であってもよい。部品12は、キャリア11にワイヤボンディング方式やフリップチップ方式によって実装されていてもよく、着脱可能に固定されていてもよい。部品12は、例えば、2種類の部品12a及び部品12bを含んでもよく、3種類以上の部品を含んでもよい。樹脂Rは、粉末状、タブレット状、液状等であってもよい。樹脂Rは、例えばエポキシ樹脂のような熱硬化性樹脂を含んでおり、加熱圧縮によって任意の形状に成形され得る。
 例えば圧縮成形装置1によって成形されるパッケージには、高い厚み精度が求められる場合がある。所望の厚みのパッケージを製造するために必要な樹脂Rの供給量はワーク10の状態に応じて変化するため、圧縮成形装置1は樹脂Rの供給量を高精度で算出可能に構成されるのが望ましい。
 ここで、ワーク10の状態と樹脂Rの供給量との関係について、図2に示したワーク10の一例を参照しつつ説明する。ワーク10には、複数の分割ラインLN1,LN2によって区画された複数のパッケージエリアPAが設けられている。複数の分割ラインLN1,LN2は、樹脂Rが圧縮成形されたワーク10を複数のパッケージに分割するための仮想線であり、複数の分割ラインLN1と複数の分割ラインLN2とは互いに略直交している。パッケージエリアPAはパッケージとなる領域であり、複数のパッケージエリアPAはマトリクス状に並んでいる。パッケージエリアPAのうち第1のパッケージエリアPA1には、第1の部品12a及び第2の部品12bが配置されている。しかし、パッケージエリアPAのうち第2のパッケージエリアPA2及び第3のパッケージエリアPA3では、第1の部品12a及び第2の部品12bのうち少なくとも一方の一部又は全部が存在しない。例えば、第2のパッケージエリアPA2に示すように、キャリア11の内部の配線不良等によって、部品12bの一部又は全部が欠ける場合がある。また、例えば、第3のパッケージエリアPA3に示すように、キャリア11の配線不良等によって使用できない部分には、部品の損失を減らすために第1の部品12a及び第2の部品12bをもともと搭載しない場合がある。これらの場合にパッケージの薄肉化を抑制するためには、第2のパッケージエリアPA2及び第3のパッケージエリアPA3に搭載予定であったが存在しない第1の部品12a及び第2の部品12bの体積分だけ樹脂Rの供給量を増やして調整する必要がある。
 樹脂供給装置100は、ワーク10の状態に基づいて樹脂Rの供給量を算出し、モールド金型190に搬入される前のワーク10又はリリースフィルムRFに樹脂Rを供給する。図1に示した例では、樹脂供給装置100はリリースフィルムRFに樹脂Rを供給している。樹脂供給装置100は、計量部110と、算出部120と、供給部130と、ステージ140と、計測部150と、撮像部160と、反転部180とを備えている。
 計量部110は、ワーク10の重量を計量し、計量結果を算出部120に伝送する。例えば、計量部110は上面に積載された物の重量を計量する上皿電子天秤であり、部品12が搭載された搭載面を上(計量部110とは反対側)に向けた状態のワーク10を上面に積載し、ワーク10の重量を計量する。
 算出部120は、計量部110で計量されたワーク10の重量に基づき、樹脂Rの供給量を算出する。算出部120は、計算機のハードウェハ及びソフトウェハによって構成される。算出部120には、樹脂Rの供給量を算出するためのデータが事前に登録されていてもよい。当該データは、例えば、キャリア11の標準重量、最小重量、最大重量、標準厚み、最小厚み、最大厚み及び比重を含んでもよい。また、当該データは、ワーク10の標準重量、最小重量及び最大重量を含んでもよく、1つのワーク10に搭載される部品12の標準数量、最大数量、最小数量、標準総重量、最大総重量、最小総重量及び比重を含んでもよく、樹脂Rの標準供給量、最小供給量、最大供給量及び比重を含んでもよく、パッケージエリアPAの数、パッケージの所望の厚み、パッケージの厚みの許容範囲、等を含んでもよい。樹脂Rの供給量は、体積で特定されてもよく、重量で特定されてもよい。また、樹脂Rの供給量は、供給部130の制御パラメータによって特定されてもよい。ここで、上記標準重量等の「標準」は、上記の各項目における製品として欠陥がなかったり、欠陥の数が許容範囲であることで平均値又は中央値であって製造工程において標準として取り扱われる値である。上記重量等の「最小」及び「最大」は、それぞれ、製造における許容限界の下限値及び上限値である。なお、算出部120に登録されたデータは、キャリア11の重量及び厚み、ワーク10の重量、部品12の数量及び総重量、並びに樹脂Rの供給量のそれぞれの、平均値、中央値、最頻値などの統計量を含んでもよい。算出部120に登録されたデータは、予測値でもよく、実測値でもよい。
 標準重量のキャリア11が本発明の「基準キャリア」の一例に相当し、キャリア11の標準重量が本発明の「基準キャリア重量」の一例に相当する。本発明の「基準キャリア」は、最小重量又は最大重量のキャリア11でもよく、重量が平均値、中央値又は最頻値のキャリア11でもよい。すなわち、本発明の「基準キャリア重量」は、キャリア11の重量の最小値、最大値、平均値、中央値又は最頻値でもよい。部品12の標準数量が本発明の「基準部品数量」の一例に相当し、部品12の標準総重量が本発明の「基準部品総重量」の一例に相当する。本発明の「基準部品数量」は部品12の最大数量又は最小数量でもよく、本発明の「基準部品総重量」は部品12の最大総重量又は最小総重量でもよい。
 標準重量のワーク10が本発明の「基準ワーク」の一例に相当し、ワーク10の標準重量が本発明の「基準ワーク重量」の一例に相当する。本発明の「基準ワーク」は基準キャリアに基準部品数量の部品が搭載されたワークであり、本発明の「基準ワーク重量」は基準ワークの重量である。本発明の「基準ワーク」は最小重量又は最大重量のワーク10でもよく、本発明の「基準ワーク重量」はワーク10の最小重量又は最大重量でもよい。ワーク10の最大重量は、例えば基準キャリアに部品12が全て搭載されたワーク10の重量である。ワーク10の最小重量は、例えば基準キャリアに部品12が全く搭載されていないワーク10の重量(即ち、基準キャリア重量)である。
 樹脂Rの標準供給量が本発明の「基準樹脂量」の一例に相当する。本発明の「基準樹脂量」は、基準ワークに対して樹脂Rを所望の厚みに圧縮成形するために必要な樹脂量である。本発明の「基準樹脂量」は、樹脂Rの最大供給量又は最小供給量でもよい。樹脂Rの最小供給量は、例えば最大重量のワーク10に対して樹脂Rを所望の厚みに圧縮成形するために必要な樹脂量である。樹脂Rの最大供給量は、例えば最小重量のワーク10に対して樹脂Rを所望の厚みに圧縮成形するために必要な樹脂量である。
 供給部130は、算出部120によって算出された供給量の樹脂Rを供給する。図1に示した例では供給部130はリリースフィルムRFに樹脂Rを供給するように構成されているが、ワーク10に樹脂Rを供給するように構成されてもよい。供給部130は、ホッパ131と、制御部133と、リニアフィーダ135とを備えている。ホッパ131は、樹脂Rを収容する。制御部133は、算出部120からの入力される算出結果に基づき、樹脂Rの供給量、供給速度、供給タイミング等を制御する。リニアフィーダ135は、樹脂Rを送り出して先端から投下する。なお、供給部130の構成は上記に限定されるものではない。例えば樹脂Rの形状が液状であった場合、供給部130は、樹脂Rを貯留するシリンジと、樹脂Rを押し出すピストンと、シリンジの先端を開閉するピンチバルブとを有するディスペンサを備えてもよい。また、供給部130の構成として、リニアフィーダ135を用いた構成やシリンジを有するディスペンサ以外の構成を採用することもできる。
 ステージ140は、樹脂Rが供給されるリリースフィルムRFを支持する土台である。ステージ140は、供給部130に対して相対的に移動可能に構成されている。具体的には、供給部130及びステージ140の少なくとも一方が、サーボモータ等の移動手段によって移動可能に構成されている。
 計測部150は、例えばキャリア11の厚みを計測する。計測部150は、例えば反射率分光法方式やエリプソメータ方式等の非接触式測定器であるが、これに限定されるものではなくマイクロメータ方式等の接触式測定器であってもよい。計測部150は、レーザ変位計を用いて厚みを測定してもよい。計測部150は、例えば、複数の点又は複数の面の厚みを測定して厚みの面内分布を測定してもよく、面内方向を走査しつつ厚みを測定して厚みの面内分布を測定してもよい。計測部150が測定した情報は、算出部120に伝送され、樹脂Rの供給量の算出に利用される。例えば、算出部120は、計量部110で計量されたワーク10の重量における、キャリア11の厚み変動に起因した重量変動を補正する。
 計測部150は、ワーク10の厚みを計測してもよい。ここでいうワーク10の厚みは、例えばキャリア11に搭載される部品12の有無、部品12の高さや位置、等の搭載状況に関する情報が含まれる。すなわち、搭載状況に関する情報は、第2のパッケージエリアPA2及び第3のパッケージエリアPA3の数、位置、密度等を含んでいる。ワーク10の厚みを測定する場合、測定による部品12の損傷を抑制する観点から、計測部150は非接触式測定器やレーザ変位計によって厚みを計測するのが望ましい。計測部150が測定した搭載状況に関する情報は算出部120に伝送され、樹脂Rの供給量や供給位置の算出に利用される。なお、ここでいう樹脂Rの供給位置には、どのパッケージエリアPAに対応する位置に樹脂Rを供給するかという情報だけではなく、どのパッケージエリアPAに対応する位置で樹脂Rの供給量を増やすか又は減らすかという情報も含まれる。
 計測部150は、パッケージの厚みを計測してもよい。計測部150が計測したパッケージの厚みは算出部120に伝送される。例えば、算出部120は、算出した樹脂Rの供給量と、その樹脂Rによって圧縮成形されたパッケージの厚みを比較し、樹脂Rの供給量の算出方法を調整してもよい。
 撮像部160は、ワーク10の画像を撮像する。撮像部160は、例えば、カメラ(単眼カメラや複眼カメラ)と、カメラで撮像した画像を処理する画像処理システムとを備えている。これにより、撮像部160は、キャリア11上の部品12を撮像し、画像処理によって搭載状況に関する情報を取得する。撮像部160が取得した搭載状況に関する情報は算出部120に伝送され、樹脂Rの供給量や供給位置の算出に利用される。
 なお、計測部150及び撮像部160は、圧縮成形装置1から省略されてもよい。また、キャリア11の厚みと、ワーク10の厚みと、パッケージの厚みとは、別々の計測部によって測定されてもよい。
 反転部180は、計量部110で計量されたワーク10を、モールド金型190の内部へ搬送する途中で上下反転させる。図1に示すように、ワーク10が部品12を上に向けた状態で計量され且つ部品12を下に向けた状態で後述する上型192にセットされる場合に、反転部180はワーク10の上下方向を反転させる。また、ワーク10が部品12を下に向けた状態で計量され且つ部品12を上に向けた状態で後述する下型191にセットされる場合にも、反転部180はワーク10の上下方向を反転させる。なお、計量部110において計量されるときのワーク10の向きとモールド金型190の内部にセットされるときのワーク10の向きとが同じ場合、反転部180は省略される。
 モールド金型190は、圧縮成形技術を用いてワーク10を樹脂封止するための一対の金型(下型191及び上型192)である。下型191及び上型192のうち、キャビティ199を有する方の金型にリリースフィルムRFがセットされ、もう一方の金型にワーク10がセットされる。また、リリースフィルムRF及びワーク10のうち下型191にセットされる方に樹脂Rが供給される。本実施形態において、モールド金型190は、下型191にキャビティ199を有する下型キャビティ構造である。
 モールド金型190は、モールド金型190の内部(下型191と上型192との間の空間)をシールするシールリング193(例えばOリング)を備えている。なお、図示しないが、圧縮成形装置1は、モールド金型190の内部圧力を調節する圧力調節部(例えば真空ポンプ)や、内部温度(成形温度)を調節する温度調節部(例えばヒータ)を備えている。
 下型191は、チェイス19Aと、チェイス19Aの上型192側に固定されたキャビティ駒19Bと、キャビティ駒19Bを囲むクランパ19Cと、間隔を空けてクランパ19Cを囲むチャンバブロック19Dとを備えている。キャビティ駒19Bはチェイス19Aの上型192側に固定されている。クランパ19Cは、キャビティ駒19Bよりも上型192に向かって突出し、キャビティ駒19Bとともにキャビティ199を構成している。クランパ19Cは、スプリングを介してチェイス19Aに接続され、キャビティ駒19Bに対して摺動可能に構成されている。型締めしたとき、クランパ19Cと上型192との間に、ワーク10の外縁部(キャリア11)が挟まれる。クランパ19Cの上面(上型192に対向する面)には、チャンバブロック19D側の空間とキャビティ199とを繋ぐ複数のエアベントが設けられている。複数のエアベントは、キャビティ199を中心とした放射線状に設けられた溝である。複数のエアベントは、型締めされたモールド金型190のキャビティ199に残存するエアや樹脂Rから発生するガスを排出する排気孔として機能する。エアベントは、エアやガスは排出されるが樹脂Rは流出しないような深さ(例えば数μm程度)に形成されている。チャンバブロック19Dには、シールリング193が接触する。
 次に、図3乃至図7を参照しつつ、圧縮成形装置1を用いたパッケージの製造方法の一例について説明する。
 図3は、樹脂Rの供給量の算出方法の一例(S110)を示すフローチャートである。樹脂Rの供給量の算出方法S110においては、まず、基準ワーク重量及び基準樹脂量を登録する(S111)。例えば、基準ワーク重量及び基準樹脂量は、外部端末から算出部120に入力される。この算出方法S110において、基準ワーク重量は、基準キャリアに部品12が全て搭載されたワーク10(以下、「基準ワーク」とする。)の重量である。言い換えると、基準ワーク重量は、全てのパッケージエリアPAが第1のパッケージエリアPA1であるワーク10の重量である。基準キャリアには、例えば標準重量のキャリア11が用いられる。この場合、基準樹脂量は、部品12が全て搭載された基準ワークに対して樹脂Rを圧縮成形し、所望の厚みのパッケージを得るのに必要な樹脂Rの供給量である。なお、基準キャリアには、最小重量のキャリア11を用いることもできる。この場合、基準樹脂量は、部品12が全く搭載されていない基準ワークに対して樹脂Rを圧縮成形し、所望の厚みのパッケージを得るのに必要な樹脂Rの供給量である。
 次に、ワーク10の重量を計量し(S112)、ワーク10の重量差分を算出する(S113)。ワーク10の重量は計量部110によって計量され、ワーク10の重量差分は算出部120によって算出される。ワーク10の重量差分とは、基準ワーク重量と、計量したワーク10の重量との差分である。ワーク10は、部品12が一部存在しない第2のパッケージエリアPA2及び部品12が全部存在しない第3のパッケージエリアPA3を有することがある。例えば、基板の内部配線に不良があるために第3のパッケージエリアPA3が点在する場合や、部品12を全数搭載できないためにキャリア11の半分が第3のパッケージエリアPA3となる場合もありえる。このように、第2のパッケージエリアPA2や第3のパッケージエリアPA3に搭載予定であったが存在しない部品12を、まとめて「存在しない部品12」とする。工程S112で計量されるワーク10の重量は、存在しない部品12の重量分だけ基準ワーク重量よりも軽くなる。工程S113では、基準ワーク重量から、工程S112で計量したワーク10の重量を減算することで、存在しない部品12の重量をワーク10の重量差分として算出する。
 次に、ワーク10の重量差分に基づき補正樹脂量を算出し(S114)、基準樹脂量に補正樹脂量を算入する(S115)。補正樹脂量は算出部120によって算出され、算出部120によって基準樹脂量へ算入される。第2のパッケージエリアPA2及び第3のパッケージエリアPA3を有するワーク10に対して基準樹脂量の樹脂Rを圧縮成形すると、存在しない部品12の分だけパッケージの厚みが減少する。そこで、所望の厚みのパッケージを得るために、工程S115において、存在しない部品12の分の補正樹脂量を、基準樹脂量に加算する。工程S114において補正樹脂量は例えば樹脂Rの重量として算出され、ワーク10の重量差分に樹脂Rの比重を乗算して部品12の比重で除算して算出される。樹脂Rの比重と部品12の比重とが近い場合、ワーク10の重量差分を補正樹脂量として用いてもよい。
 このように、ワーク10の重量に基づいて樹脂Rの供給量を算出することで、簡易かつ迅速に樹脂Rの供給量を算出することができる。すなわち、ワークの略全面を走査して厚みを測定し全ての部品の搭載状況を精査する構成の圧縮成形装置に比べて、本実施形態に係る圧縮成形装置及びこれを用いた圧縮成形方法では、パッケージの生産能力が向上する。
 なお、樹脂Rの供給量の算出方法S110において、基準ワーク重量は、上記したように基準キャリアに部品12が全く搭載されていないワーク10の重量であってもよい。言い換えると、基準ワーク重量は、基準キャリアの重量であってもよい。このときの基準樹脂量は、部品が全く搭載されていない基準ワークに対して樹脂Rを圧縮成形し、所望の厚みのパッケージを得るのに必要な樹脂Rの供給量である。この場合、工程S112で計量されるワーク10の重量は、搭載された部品12の重量分だけ基準ワーク重量よりも重くなる。工程S112で計量したワーク10の重量から、基準ワーク重量を減算することで、搭載された部品12の重量をワーク10の重量差分として算出する。このとき、工程S115において、ワーク10に搭載された部品12の分の補正樹脂量を、基準樹脂量から減算することで、樹脂Rの供給量が算出される。
 図4は、補正樹脂量の調整方法の一例(S120)を示すフローチャートである。補正樹脂量の調整方法S120においては、まず、キャリア11の厚みを測定する(S121)。キャリア11の厚みは、計測部150によって計測される。次に、キャリア11の厚みからキャリア重量を算出し(S122)、キャリア11の重量差分を算出し(S123)、キャリア11の重量差分に基づき補正樹脂量を調整する(S124)。キャリア11の重量差分は算出部120によって算出され、補正樹脂量は算出部120によって調整される。キャリア11の重量差分は、基準ワーク重量のうち基準キャリアの占める重量と、計量されたワーク10のうちキャリア11の占める重量との差分である。キャリア11の重量は、キャリア11の厚みの変動に応じて変動する。このため、工程S113で算出されるワーク10の重量差分には、存在しない部品12の重量だけではなく、キャリア11の重量差分も含まれる。しかし、キャリア11の重量の変動は、所望の厚みのパッケージを圧縮成形するために必要な樹脂Rの供給量には影響しない。このため、補正樹脂量からキャリア11の重量差分の影響を排除することで、樹脂Rの供給量をより正確に算出できる。工程S124では、一例として、ワーク10の重量差分から補正樹脂量を算出してから、キャリア11の重量差分に基づき補正樹脂量を調整している。しかし、ワーク10の重量差分からキャリア11の重量差分を減算してから、補正樹脂量を算出してもよい。
 図5は、樹脂Rの供給位置の算出方法の一例(S130)を示すフローチャートである。樹脂Rの供給位置の算出方法S130においては、まず、ワーク10の厚みを計測する(S131)。ワーク10の厚みは、計測部150によって計測される。次に、部品12の搭載状況を算出し(S132)、樹脂Rの供給位置を算出する(S133)。部品12の搭載状況はワーク10の厚みに基づいて算出部120によって算出され、樹脂Rの供給位置は、部品12の搭載状況に基づいて算出部120によって算出される。樹脂Rの供給位置は、部品12の搭載状況に基づいて算出される。第1のパッケージエリアPA1に対応する位置への樹脂Rの供給量よりも、第2のパッケージエリアPA2及び第3のパッケージエリアPA3に対応する位置への樹脂Rの供給量を多くすることで、モールド金型190の内部での樹脂Rの充填に要する時間を短縮し、樹脂Rの成形不良を抑制することができる。
 図6は、樹脂Rの供給位置の算出方法の別の一例(S140)を示すフローチャートである。樹脂Rの供給位置の算出方法S140においては、まず、ワーク10の画像を撮像する(S141)。ワーク10の画像は、撮像部160によって撮像される。次に、部品12の搭載状況を算出(S142)、樹脂Rの供給位置を算出する(S143)。部品12の搭載状況は、ワーク10の画像に基づいて算出部120によって算出され、樹脂Rの供給位置は部品12の搭載状況に基づいて算出部120によって算出される。なお、樹脂Rの供給位置の算出には、算出方法S130と算出方法S140とを併用してもよい。
 図7は、樹脂Rの供給量の算出方法の別の一例(S210)を示すフローチャートである。樹脂Rの供給量の算出方法S210においては、まず、最大ワーク重量、最小ワーク重量及び最大パッケージ数を登録する(S211)。例えば、最大ワーク重量、最小ワーク重量及び最大パッケージ数は、外部端末から算出部120に入力される。この算出方法S210において、最大ワーク重量は、基準キャリアに部品12が全て搭載されたワーク10(以下、「最大ワーク」とする。)の重量である。言い換えると、最大ワーク重量は、全てのパッケージエリアPAが第1のパッケージエリアPA1であるワーク10の重量である。また、最小ワーク重量は、基準キャリアに部品12が全く搭載されていないワーク10(以下、「最小ワーク」とする。)の重量である。言い換えると、最小ワーク重量は、基準キャリアの重量である。基準キャリアは、例えば標準重量のキャリア11である。最大パッケージ数は、最大ワークから製造可能なパッケージの数、すなわちパッケージエリアPAの数である。
 次に、重量範囲を算出し、複数の部分範囲に分割する(S212)。重量範囲は算出部120によって算出され、重量範囲は算出部120によって部分範囲に分割される。重量範囲は、最小ワーク重量から最大ワーク重量までの数値範囲であり、複数の部分範囲は、重量範囲を最大パッケージ数で分割したそれぞれの数値範囲である。
 次に、ワーク10の重量を計量し(S213)、ワーク10の重量の属する部分範囲に基づき樹脂Rの供給量を算出する(S214)。ワーク10は計量部110によって計量され、樹脂Rの供給量は算出部120によって算出される。例えば、算出部120は、部分範囲のそれぞれに対応する樹脂Rの供給量が登録されており、ワーク10の重量がどの部分範囲に属するかを判定し、登録された樹脂Rの供給量を読み出す。これによれば、高精度な計量及び算出が不要であり、樹脂Rの供給量の算出速度が向上する。
 以下に、圧縮成形装置の変形例について説明する。なお、上記実施形態と共通の事柄については以下の各変形例においても同様に適用できるものとしその記述を省略し、異なる点についてのみ説明する。特に、同様の構成には同様の符号を付し、同様の構成とそれによる同様の作用効果については逐次言及しない。
 図8を参照しつつ、一変形例に係る圧縮成形装置2の構成について説明する。図8は、第1変形例に係る樹脂封止装置の構成を概略的に示す図である。本変形例において、計量部110は、部品12を下(計量部110の側)に向けた状態のワーク10の重量を計量する。ワーク10は外縁部のキャリア11が支持され、部品12は計量部110等に接触していない。ワーク10はこの向きのまま搬送され、モールド金型190の上型192にセットされる。
 図9を参照しつつ、一変形例に係る圧縮成形装置3の構成について説明する。図8は、第2変形例に係る樹脂封止装置の構成を概略的に示す図である。本変形例において、モールド金型190は、上型192にキャビティ199を有する上型キャビティ構造である。計量部110で計量されたワーク10はステージ140に搬送される。ステージ140上で樹脂Rが供給されたワーク10は下型191にセットされ、リリースフィルムRFは上型192にセットされる。
 以上説明したように、本発明の一態様によれば、生産能力が向上した圧縮成形装置を提供することができる。
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
 1…圧縮成形装置、10…ワーク、11…キャリア、12…部品、100…樹脂供給装置、110…計量部、120…算出部、130…供給部、140…ステージ、150…計測部、160…撮像部、180…反転部、190…モールド金型、191…下型、192…上型、199…キャビティ。

Claims (12)

  1.  キャリアに複数の部品が搭載されたワークに対して樹脂を圧縮成形し、それぞれに少なくとも1つの部品が樹脂封止された複数のパッケージを製造する圧縮成形装置であって、
     前記ワークの重量を計量する計量部と、
     前記計量部で計量された前記ワークの重量に基づき、樹脂の供給量を算出する算出部と、
     前記算出部によって算出された供給量の樹脂を供給する供給部と、
     前記供給部によって供給された樹脂を前記ワークに対して圧縮成形するモールド金型と、を備える、
     圧縮成形装置。
  2.  前記算出部は、基準ワーク重量と前記計量部で計量された前記ワークの重量との差分に基づき、基準樹脂量を補正する補正樹脂量を算出する、
     請求項1に記載の圧縮成形装置。
  3.  前記基準ワーク重量は、基準キャリアに部品が全て搭載された基準ワークの重量であり、
     前記基準樹脂量は、前記基準ワークに対して、樹脂を所望の厚みに圧縮成形するために必要な樹脂量である、
     請求項2に記載の圧縮成形装置。
  4.  前記基準ワーク重量は、基準キャリアに部品が全く搭載されていない基準ワークの重量であり、
     前記基準樹脂量は、前記基準ワークに対して、樹脂を所望の厚みに圧縮成形するために必要な樹脂量である、
     請求項2に記載の圧縮成形装置。
  5.  前記補正樹脂量は、前記差分に樹脂の比重を乗算して部品の比重で除算して算出される、
     請求項2に記載の圧縮成形装置。
  6.  前記キャリアの厚みを計測する計測部をさらに備え、
     前記算出部は、前記基準ワーク重量のうち基準キャリアの占める重量と、前記キャリアの厚みから算出した前記キャリアの重量と、の差分に基づいて、前記補正樹脂量を調整する、
     請求項2に記載の圧縮成形装置。
  7.  前記算出部は、
     基準キャリアに部品が全て搭載された最大ワークの重量を最大ワーク重量、基準キャリアに部品が全く搭載されていない最小ワークの重量を最小ワーク重量とし、
     前記最小ワーク重量から前記最大ワーク重量までの重量範囲を、前記最大ワークから製造可能なパッケージの数と同数の部分範囲に分割し、
     前記計量部で計量された前記ワークの重量がどの部分範囲に属するかに基づき、樹脂の供給量を算出する、
     請求項1に記載の圧縮成形装置。
  8.  前記ワークの厚みを計測する計測部をさらに備え、
     前記算出部は、前記ワークの厚みに基づき、樹脂の供給位置を算出する、
     請求項1に記載の圧縮成形装置。
  9.  前記ワークの画像を撮像する撮像部をさらに備え、
     前記算出部は、前記ワークの画像に基づき、樹脂の供給位置を算出する、
     請求項1に記載の圧縮成形装置。
  10.  前記モールド金型は、前記ワークがセットされる上型と、リリースフィルムがセットされる下型と、を有し、
     前記供給部は、前記リリースフィルムに樹脂を供給する、
     請求項1に記載の圧縮成形装置。
  11.  前記計量部は、前記複数の部品が搭載された搭載面を上に向けた状態の前記ワークの重量を計量し、
     重量を計量した前記ワークを反転させる反転部をさらに備える、
     請求項10に記載の圧縮成形装置。
  12.  前記モールド金型は、前記ワークがセットされる下型と、リリースフィルムがセットされる上型と、を有し、
     前記供給部は、前記ワークに樹脂を供給する、
     請求項1に記載の圧縮成形装置。
PCT/JP2021/021205 2021-06-03 2021-06-03 圧縮成形装置 WO2022254656A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2021/021205 WO2022254656A1 (ja) 2021-06-03 2021-06-03 圧縮成形装置
KR1020237026269A KR20230125314A (ko) 2021-06-03 2022-04-28 압축 성형 장치
JP2023525670A JPWO2022255021A1 (ja) 2021-06-03 2022-04-28
US18/276,881 US20240116224A1 (en) 2021-06-03 2022-04-28 Compression molding device
PCT/JP2022/019416 WO2022255021A1 (ja) 2021-06-03 2022-04-28 圧縮成形装置
CN202280012010.XA CN116897415A (zh) 2021-06-03 2022-04-28 压缩成形装置
DE112022002905.6T DE112022002905T5 (de) 2021-06-03 2022-04-28 Formpressvorrichtung
TW111119344A TWI793018B (zh) 2021-06-03 2022-05-24 壓縮成形裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/021205 WO2022254656A1 (ja) 2021-06-03 2021-06-03 圧縮成形装置

Publications (1)

Publication Number Publication Date
WO2022254656A1 true WO2022254656A1 (ja) 2022-12-08

Family

ID=84324027

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/021205 WO2022254656A1 (ja) 2021-06-03 2021-06-03 圧縮成形装置
PCT/JP2022/019416 WO2022255021A1 (ja) 2021-06-03 2022-04-28 圧縮成形装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019416 WO2022255021A1 (ja) 2021-06-03 2022-04-28 圧縮成形装置

Country Status (7)

Country Link
US (1) US20240116224A1 (ja)
JP (1) JPWO2022255021A1 (ja)
KR (1) KR20230125314A (ja)
CN (1) CN116897415A (ja)
DE (1) DE112022002905T5 (ja)
TW (1) TWI793018B (ja)
WO (2) WO2022254656A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165133A (ja) * 2001-11-30 2003-06-10 Apic Yamada Corp 液材吐出装置及び樹脂封止装置
JP2010040939A (ja) * 2008-08-07 2010-02-18 Sumitomo Heavy Ind Ltd 予備成形金型、予備成形装置、予備成形方法および予備成形樹脂

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3986052B2 (ja) * 2001-12-04 2007-10-03 住友重機械工業株式会社 樹脂封止装置及びその方法
JP3573135B2 (ja) * 2002-03-01 2004-10-06 日本電気株式会社 マルチチップモジュールの組立方法
JP5273430B2 (ja) * 2007-10-02 2013-08-28 住友重機械工業株式会社 樹脂封止方法および樹脂封止装置
JP6218891B1 (ja) * 2016-06-24 2017-10-25 Towa株式会社 樹脂成形装置、樹脂成形品の製造方法及び製品の製造方法
JP7088687B2 (ja) * 2018-02-16 2022-06-21 アピックヤマダ株式会社 樹脂モールド装置及び樹脂モールド方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165133A (ja) * 2001-11-30 2003-06-10 Apic Yamada Corp 液材吐出装置及び樹脂封止装置
JP2010040939A (ja) * 2008-08-07 2010-02-18 Sumitomo Heavy Ind Ltd 予備成形金型、予備成形装置、予備成形方法および予備成形樹脂

Also Published As

Publication number Publication date
WO2022255021A1 (ja) 2022-12-08
KR20230125314A (ko) 2023-08-29
TWI793018B (zh) 2023-02-11
CN116897415A (zh) 2023-10-17
DE112022002905T5 (de) 2024-03-14
US20240116224A1 (en) 2024-04-11
TW202247983A (zh) 2022-12-16
JPWO2022255021A1 (ja) 2022-12-08

Similar Documents

Publication Publication Date Title
JP6923503B2 (ja) 樹脂成形装置、及び樹脂成形品の製造方法
CN109716503B (zh) 保持装置、检查装置、检查方法、树脂封装装置、树脂封装方法及树脂封装品的制造方法
WO2022254656A1 (ja) 圧縮成形装置
JP5250536B2 (ja) 体積感知型ディスペンサー制御方法
JP6549531B2 (ja) 樹脂成形装置及び樹脂成形品の製造方法
JP2006134917A (ja) 樹脂封止方法
US20130011941A1 (en) Bond line thickness control for die attachment
JP7493806B2 (ja) 圧縮成形装置及び圧縮成形方法
US11910534B2 (en) Mounting apparatus
KR101441981B1 (ko) 평탄도 보정이 가능한 전자부품의 수지성형장치 및 방법
TWI773331B (zh) 樹脂成形裝置及樹脂成形品的製造方法
JP2023003073A (ja) 圧縮成形装置及び圧縮成形方法
JP7084247B2 (ja) 樹脂成形装置、成形型、及び樹脂成形品の製造方法
JP7482824B2 (ja) 樹脂成形装置、及び、樹脂成形品の製造方法
JP7084226B2 (ja) 樹脂成形装置および樹脂成形品の製造方法
US20230211531A1 (en) Method and Mould for Encapsulating Electronic Components Mounted on a Carrier
CN117038470A (zh) 一种基板上包含不同芯片贴装厚度的塑封结构的塑封方法
JP2008302611A (ja) 樹脂封止装置および樹脂封止方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944157

Country of ref document: EP

Kind code of ref document: A1