WO2022253121A1 - 阀组集成模块、车辆热管理系统以及车辆 - Google Patents

阀组集成模块、车辆热管理系统以及车辆 Download PDF

Info

Publication number
WO2022253121A1
WO2022253121A1 PCT/CN2022/095513 CN2022095513W WO2022253121A1 WO 2022253121 A1 WO2022253121 A1 WO 2022253121A1 CN 2022095513 W CN2022095513 W CN 2022095513W WO 2022253121 A1 WO2022253121 A1 WO 2022253121A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
outlet
flow channel
inlet
heat exchanger
Prior art date
Application number
PCT/CN2022/095513
Other languages
English (en)
French (fr)
Inventor
金玮
许敏
李石柏
叶梅娇
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to AU2022284987A priority Critical patent/AU2022284987A1/en
Priority to BR112023021778A priority patent/BR112023021778A2/pt
Priority to EP22815167.6A priority patent/EP4299345A1/en
Priority to IL307285A priority patent/IL307285A/en
Priority to JP2023560226A priority patent/JP2024514784A/ja
Publication of WO2022253121A1 publication Critical patent/WO2022253121A1/zh
Priority to US18/373,959 priority patent/US20240017587A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the disclosure belongs to the technical field of vehicles, and in particular relates to a valve group integrated module, a vehicle thermal management system and a vehicle.
  • the vehicle thermal management system is an important part of the vehicle. It can change the temperature environment in the passenger compartment and other functions to improve the driving experience of the driver and passengers.
  • multiple valve components may need to be connected to the same device, which requires the use of multiple pipes and joints, resulting in an increase in the number of pipes and joints, plus the scattered distribution of valve components on the pipeline, This leads to complex and messy pipeline layout, which is not conducive to installation and later maintenance.
  • the purpose of the present disclosure is to provide a valve group integrated module, a vehicle thermal management system and a vehicle.
  • the valve group integrated module can reduce the complexity of pipeline arrangement in the vehicle thermal management system and reduce the space occupancy rate.
  • the present disclosure provides a valve group integrated module, including a base body and a valve group disposed on the base body, the valve group includes a first on-off valve, a second on-off valve and first expansion valve;
  • the base body is formed with an outlet interface of the indoor condenser for connecting with the outlet of the indoor condenser outside the base body, an outlet interface of the outdoor heat exchanger for connecting with the outlet of the outdoor heat exchanger outside the base body, and The inlet port of the battery pack heat exchanger connected to the refrigerant inlet of the battery pack heat exchanger outside the base body;
  • a first flow channel is formed in the base, the inlet of the first switch valve communicates with the outlet port of the indoor condenser, the outlet of the first switch valve communicates with the first flow channel, and the first expansion valve
  • the inlet of the first expansion valve is connected with the first flow channel
  • the outlet of the first expansion valve is connected with the inlet port of the battery pack heat exchanger
  • the outlet port of the outdoor heat exchanger is connected with the inlet of the second switching valve.
  • the outlet of the second on-off valve communicates with the first flow channel.
  • the valve group further includes a second expansion valve, and an indoor evaporator inlet interface for connecting with the inlet of the indoor evaporator outside the base is formed on the base, and the inlet of the second expansion valve It communicates with the first flow channel, and the outlet of the second expansion valve communicates with the inlet port of the indoor evaporator.
  • the valve group further includes a third on-off valve, an inlet port of the outdoor heat exchanger connected to the inlet of the outdoor heat exchanger is formed on the base, and a second flow channel is also formed in the base. channel, the outlet port of the indoor condenser communicates with the second channel, the inlet of the first switch valve communicates with the second channel, the inlet of the third switch valve communicates with the second channel The outlet of the third on-off valve communicates with the inlet port of the outdoor heat exchanger.
  • a third on-off valve an inlet port of the outdoor heat exchanger connected to the inlet of the outdoor heat exchanger is formed on the base, and a second flow channel is also formed in the base. channel, the outlet port of the indoor condenser communicates with the second channel, the inlet of the first switch valve communicates with the second channel, the inlet of the third switch valve communicates with the second channel The outlet of the third on-off valve communicates with the inlet port of the outdoor heat exchanger.
  • the refrigerant flowing into the second channel from the outlet interface of the indoor condenser can pass through the The first on-off valve flows into the first flow channel, or flows out from the inlet port of the outdoor heat exchanger through the third on-off valve.
  • valve group further includes a third expansion valve, a third flow channel is formed in the base, the inlet port of the outdoor heat exchanger communicates with the third flow channel, and the third switch valve
  • the outlet of the third expansion valve communicates with the third passage, the inlet of the third expansion valve communicates with the second passage, and the outlet of the third expansion valve communicates with the third passage.
  • the conduction or cutoff of the third switch valve and the throttling or cutoff of the third expansion valve can make the refrigerant flowing into the second channel from the outlet interface of the indoor condenser pass through the
  • the third on-off valve flows into the third flow channel, or flows into the third flow channel through the third expansion valve.
  • the base body includes a first split body and a second split body, the first split body includes a first connecting surface, the second split body includes a second connecting surface, and the first connecting surface and the The second connection surface is sealed and connected, the first connection surface is recessed inward and forms a first groove, a second groove and a third groove, and the second connection surface and the first groove jointly define the The first flow channel, the second connection surface and the second groove jointly define the second flow channel, the second connection surface and the third groove jointly define the third flow channel ;
  • first on-off valve, the second on-off valve, the third on-off valve, the first expansion valve and the third expansion valve are all arranged on the first split body, or the second on-off valve
  • An on-off valve, the second on-off valve, the third on-off valve, the first expansion valve, and the third expansion valve are all arranged on the second split body.
  • At least one of the first groove, the second groove and the third groove is a curved groove.
  • the valve group further includes a fourth on-off valve
  • the base body is also formed with a return inlet port for connecting to the inlet of the compressor outside the base body or the inlet of the gas-liquid separator connected to the compressor
  • a fourth flow channel is also formed in the base body
  • the outlet port of the outdoor heat exchanger communicates with the fourth flow channel
  • the inlet of the second switching valve communicates with the fourth flow channel
  • the first The inlets of the four switching valves communicate with the fourth flow channel
  • the outlets of the fourth switching valves communicate with the return inlet interface.
  • a fifth flow channel is also formed in the base, the outlet of the fourth switching valve communicates with the fifth flow channel, the return inlet port communicates with the fifth flow channel, and the base body
  • a battery pack heat exchanger outlet interface for connecting with the refrigerant outlet of the battery pack heat exchanger is also formed on the top, and the battery pack heat exchanger outlet interface communicates with the fifth flow channel.
  • a fifth flow channel is also formed in the base, the outlet of the fourth switching valve communicates with the fifth flow channel, the return inlet port communicates with the fifth flow channel, and the base body
  • An indoor evaporator outlet interface for connecting with the outlet of the indoor evaporator is also formed on the top, and the indoor evaporator outlet interface communicates with the fifth flow channel.
  • the valve group integration module further includes a temperature sensor, a first through hole, a second through hole and a third through hole are formed on the fifth channel, and the second through hole is located in the first through hole.
  • the first through hole communicates with the outlet port of the indoor evaporator
  • the third through hole communicates with the return inlet port
  • the temperature sensor is arranged on the substrate and the detection end of the temperature sensor passes through the second through hole and is located in the fifth channel.
  • the base body includes a first split body and a second split body, the first split body includes a first connecting surface, the second split body includes a second connecting surface, and the first connecting surface and the The second connection surface is sealed and connected, the first connection surface is recessed inward and forms a fourth groove and a fifth groove, and the second connection surface and the fourth groove jointly define the fourth flow channel , the second connection surface and the fifth groove jointly define the fifth flow channel;
  • the fourth switching valve is arranged on the first split body or the second split body.
  • At least one of the fourth groove and the fifth groove is a curved groove.
  • a vehicle thermal management system including the above valve group integration module.
  • a vehicle including the above-mentioned vehicle thermal management system
  • the inlet of the first expansion valve does not need to pass through multiple different pipes They are respectively connected to the outlet of the first on-off valve and the outlet of the second on-off valve. That is to say, in the present disclosure, the first flow channel formed in the base body can replace the inlet of the first expansion valve for connecting the outlet of the first on-off valve.
  • the multiple external pipes at the outlet and the outlet of the second on-off valve reduce the number of pipes and joints between the first on-off valve and the second on-off valve and the first expansion valve, and reduce the complexity of pipe arrangement.
  • the first switch valve arranged on the base body communicates between the outlet port of the indoor condenser and the first flow channel.
  • the second switching valve is connected between the outlet port of the outdoor heat exchanger and the first flow channel
  • the first expansion valve is connected between the first flow channel and the inlet port of the battery pack heat exchanger.
  • the outlet of the condenser is connected with the outlet interface of the indoor condenser through the pipeline
  • the outlet of the outdoor heat exchanger is connected with the outlet interface of the outdoor heat exchanger through the pipeline
  • the refrigerant inlet of the battery pack heat exchanger is connected with the inlet of the battery pack heat exchanger through the pipeline
  • first expansion valve, the first on-off valve, and the second on-off valve are all arranged on the base body, and form a module with the base body, which can solve the problems caused by the scattered distribution of the first expansion valve, the first on-off valve, and the second on-off valve in the vehicle. Problems such as high space occupation rate, inconvenient assembly and maintenance caused by the inside.
  • Fig. 1 is a perspective view of a valve group integrated module provided in an exemplary embodiment of the present disclosure
  • Fig. 2 is an exploded view of a valve group integrated module provided in an exemplary embodiment of the present disclosure
  • Fig. 3 is a perspective view of the first split body of the base body of the valve group integrated module provided in an exemplary embodiment of the present disclosure
  • Fig. 4 is a perspective view of the first split body of the base body of the valve group integrated module provided by an exemplary embodiment of the present disclosure (different viewing angle from Fig. 3 );
  • Fig. 5 is a front view of the first split body of the base body of the valve group integrated module provided in an exemplary embodiment of the present disclosure
  • Fig. 6 is a flow schematic diagram of a vehicle thermal management system provided in an exemplary embodiment of the present disclosure
  • Fig. 7 is a schematic flow diagram of a vehicle thermal management system provided in an exemplary embodiment of the present disclosure, wherein the valves integrated on the valve group integration module and the interfaces on the valve group integration module are also shown.
  • the terms “first”, “second”, and the like are used only for distinguishing descriptions, and should not be understood as indicating or implying relative importance unless stated to the contrary.
  • the terms “setting”, “connecting”, “connecting” and “installing” should be understood in a broad sense, for example, can be It can be fixed connection, detachable connection or integral connection, direct connection or indirect connection; “communication” can be direct connection or indirect connection between two elements, and for those of ordinary skill in the art, it can be The specific meanings of the above terms in the present disclosure should be understood in detail.
  • a battery pack 97 is mounted on the hybrid vehicle or a pure electric vehicle.
  • the battery pack 97 needs to be adjusted. 97 for cooling.
  • a battery pack heat exchanger 96 connected in series with the battery pack 97 is provided in the vehicle thermal management system provided by the present disclosure, and the battery pack 97 is independently cooled.
  • the high-temperature and high-pressure refrigerant flowing out of the outlet of the compressor 91 releases heat to the outside atmosphere in the outdoor heat exchanger 93, and then flows into the battery pack heat exchanger 96 after being throttled and depressurized by the first expansion valve 21.
  • the low-temperature and low-pressure refrigerant absorbs the heat of the high-temperature coolant, so that the coolant outlet of the battery pack heat exchanger 96 flows out of the low-temperature coolant, and the low-temperature cooling can absorb the heat of the battery pack 97 when flowing through the battery pack 97, Realize the cooling and cooling of the battery pack 97.
  • the high-temperature and high-pressure refrigerant flowing out from the outlet of the compressor 91 releases heat to the passenger compartment in the indoor condenser 92 to increase the temperature of the passenger compartment.
  • the indoor condenser 92 The exothermic refrigerant flowing out of the outlet returns to the compressor 91 after absorbing the heat of the outside atmosphere in the outdoor heat exchanger 93 .
  • the amount of heat absorbed by the refrigerant in the outdoor heat exchanger 93 is limited, which will affect the heating capacity of the passenger compartment.
  • the vehicle thermal management system provided in the present disclosure also has a passenger compartment heating mode utilizing the heat of the battery pack 97 .
  • the refrigerant flowing out of the outlet of the indoor condenser 92 does not flow into the outdoor heat exchanger 93 , but flows into the battery pack heat exchanger 96 after being throttled and depressurized by the first expansion valve 21 .
  • the pack heat exchanger 96 absorbs the heat of the high-temperature coolant, thereby transporting the heat generated by the battery pack 97 to the air conditioning system for heating the passenger compartment.
  • the inlet of the first expansion valve 21 Due to the different working modes of the vehicle thermal management system, it is necessary to control the inlet of the first expansion valve 21 to conduct with different devices. For example, in the independent cooling mode of the battery pack 97, the inlet of the first expansion valve 21 needs to be exchanged The outlet of the heater 93 is connected, and in the passenger compartment heating mode using the heat of the battery pack 97, the inlet of the first expansion valve 21 needs to be connected with the outlet of the indoor condenser 92.
  • the outlet of the indoor condenser 92 and the second A first on-off valve 11 needs to be set between the inlet of the expansion valve 21, and a second on-off valve 12 needs to be set between the outlet of the outdoor heat exchanger 93 and the inlet of the first expansion valve 21, but this will make the vehicle thermal management
  • the increase in the number of pipes and joints in the system makes the pipe layout very complicated, and these valves are scattered on the pipes, which is not conducive to installation.
  • the valve group on the base body 60 includes a first on-off valve 11 , a second on-off valve 12 and a first expansion valve 21 .
  • the base body 60 is formed with an indoor condenser outlet interface 67 for connecting with the outlet of the indoor condenser 92 outside the base body 60 , and an outlet interface 67 for connecting with the outdoor heat exchanger 93 outside the base body 60 .
  • the outlet is connected to the outlet port 64 of the outdoor heat exchanger, and the inlet port 68 of the battery pack heat exchanger is used to connect with the refrigerant inlet of the battery pack heat exchanger 96 outside the base body 60 .
  • a first flow channel 101 is formed in the base body 60, the inlet of the first on-off valve 11 communicates with the outlet port 67 of the indoor condenser, the outlet of the first on-off valve 11 communicates with the first flow channel 101, and the first on-off valve 11 communicates with the first flow channel 101.
  • the inlet of an expansion valve 21 communicates with the first flow channel 101
  • the outlet of the first expansion valve 21 communicates with the inlet port 68 of the battery pack heat exchanger
  • the outlet port 64 of the outdoor heat exchanger communicates with the inlet of the second switching valve 12
  • the second The outlet of the switching valve 12 communicates with the first flow channel 101 .
  • the second on-off valve 12 When the vehicle thermal management system is in the battery pack 97 independent cooling mode, the second on-off valve 12 is in a state of being open and capable of conducting refrigerant, the first on-off valve 11 is in a state of being closed and not allowing refrigerant to pass through, and the first expansion valve 21 is in the state of opening and allowing the refrigerant to pass through and throttling, the high-temperature and high-pressure refrigerant flowing out of the outlet of the compressor 91 releases heat in the outdoor heat exchanger 93, and the refrigerant flowing out of the outlet of the outdoor heat exchanger 93 passes through the outdoor heat exchange
  • the outlet port 64 of the device flows into the second switch valve 12, and flows into the first flow channel 101 from the outlet of the second switch valve 12.
  • the refrigerant in the first flow channel 101 is throttled and depressurized by the first expansion valve 21, and then replaced from the battery pack.
  • the heat inlet port 68 flows out, and then flows into the battery pack heat exchanger 96 to cool the battery pack 97 .
  • the first switch valve 11 communicating with the first flow channel 101 is in a closed state, the refrigerant in the first flow channel 101 cannot flow to the indoor condenser outlet port 67 through the first switch valve 11, therefore, the first switch The valve 11 can prevent the refrigerant in the first flow passage 101 from flowing back into the indoor condenser 92 .
  • the first on-off valve 11 When the vehicle thermal management system is in the passenger compartment heating mode using the heat from the battery pack 97, the first on-off valve 11 is in a state of being open and capable of conducting refrigerant, and the second on-off valve 12 is in a state of being closed and not allowing refrigerant to pass through,
  • the first expansion valve 21 is in the state of opening and allowing the refrigerant to pass through and throttling.
  • the high-temperature and high-pressure refrigerant flowing out of the outlet of the compressor 91 first flows into the indoor condenser 92, and releases heat to the passenger compartment in the indoor condenser 92.
  • the refrigerant flowing out of the outlet of the indoor condenser 92 flows into the first on-off valve 11 through the outlet interface 67 of the indoor condenser, and flows out from the outlet of the first on-off valve 11 into the first flow channel 101, the first flow
  • the refrigerant in the channel 101 flows out from the inlet port 68 of the battery pack heat exchanger through the first expansion valve 21 and then flows into the battery pack heat exchanger 96 to absorb the heat of the battery pack 97 and finally returns to the In the compressor 91.
  • the second switch valve 12 communicating with the first flow channel 101 since the second switch valve 12 communicating with the first flow channel 101 is in a closed state, the refrigerant in the first flow channel 101 cannot flow to the outlet port 64 of the outdoor heat exchanger through the second switch valve 12, therefore, the second The switch valve 12 can prevent the refrigerant in the first flow channel 101 from flowing back into the outdoor heat exchanger 93 .
  • the first on-off valve 11, the second on-off valve 12 and the first expansion valve 21 are all integrated on the base body 60 and communicate with the first flow channel 101 formed in the base body 60, the inlet of the first expansion valve 21 There is no need to connect the outlet of the first on-off valve 11 and the outlet of the second on-off valve 12 through different pipes, that is to say, in the present disclosure, the first flow channel 101 formed in the base body 60 can replace the first expansion channel 101
  • the inlet of the valve 21 is used to connect the outlet of the first on-off valve 11 and the outlet of the second on-off valve 12 to multiple external pipes, which reduces the pressure between the first on-off valve 11 and the second on-off valve 12 and the first expansion valve 21.
  • the number of pipes and joints reduces the complexity of piping arrangements.
  • the first switch valve 11 provided on the base body 60 communicates with the outlet port of the indoor condenser.
  • the second switch valve 12 is connected between the outlet port 64 of the outdoor heat exchanger and the first flow channel 101, and the first expansion valve 21 is connected between the first flow channel 101 and the inlet of the battery pack heat exchanger.
  • first expansion valve 21, the first on-off valve 11 and the second on-off valve 12 are all arranged on the base body 60, and form a module with the base body 60, which can solve the problems caused by the first expansion valve 21, the first on-off valve 11, the second on-off valve
  • the on-off valves 12 are scattered in the vehicle, resulting in high space occupancy, inconvenient assembly and maintenance, and the like.
  • the vehicle thermal management system may have a cooling mode for the passenger compartment.
  • the second expansion valve 22 throttles and lowers the pressure and then flows into the indoor evaporator 94 , where the heat of the passenger compartment is absorbed in the indoor evaporator 94 to realize cooling of the passenger compartment. Since the inlet of the second expansion valve 22 is also connected to the outlet of the outdoor heat exchanger 93, the second expansion valve 22 can be integrated in order to improve the integration degree of the valve group integration module provided in the present disclosure.
  • the valve group can also include a second expansion valve 22 , and as shown in FIG.
  • a chamber for connecting with the inlet of the indoor evaporator 94 outside the base 60 is formed on the base 60 .
  • the evaporator inlet port 65 , the inlet of the second expansion valve 22 communicates with the first flow channel 101 , and the outlet of the second expansion valve 22 communicates with the indoor evaporator inlet port 65 .
  • the first flow channel 101 can not only replace the inlet of the first expansion valve 21 for connecting the outlet of the first on-off valve 11 and the outlet of the second on-off valve 12, but also replace the inlet of the second expansion valve 22
  • the plurality of external pipes used to connect the outlet of the first on-off valve 11 and the outlet of the second on-off valve 12 make the integrated valve group module provided by the present disclosure more highly integrated.
  • the second on-off valve 12 When the passenger compartment is refrigerated, the second on-off valve 12 is in the open state, the second expansion valve 22 is in the open state, the first on-off valve 11 is in the closed state, and the refrigerant flowing out of the outlet of the outdoor heat exchanger 93 passes through the outlet port of the outdoor heat exchanger. 64 flows into the second on-off valve 12, and flows from the outlet of the second on-off valve 12 into the first flow channel 101. The refrigerant in the first flow channel 101 is throttled and depressurized by the second expansion valve 22, and then flows from the inlet port 65 of the indoor evaporator. out, and into the indoor evaporator 94.
  • the refrigerant in the first flow channel 101 will not flow back into the indoor condenser 92 through the first on-off valve 11 .
  • the first expansion valve 21 can also be opened, so that the refrigerant in the first flow channel 101 can be divided into two streams, and one stream passes through the first expansion valve 21 One stream flows to the battery pack heat exchanger 96, and the other stream flows to the indoor evaporator 94 through the second expansion valve 22.
  • the refrigerant flowing out of the outlet of the compressor 91 first flows into the indoor condenser 92.
  • the refrigerant The indoor condenser 92 does not release heat to the passenger compartment, that is, the indoor condenser 92 is used as a flow channel, and the refrigerant flowing out of the outlet of the indoor condenser 92 needs to enter the outdoor heat exchanger 93 to release heat. Therefore, the outlet of the indoor condenser 92 may be connected with the inlet of the outdoor heat exchanger 93 via the third switching valve 13 .
  • the valve group also includes a third on-off valve 13, as shown in Figure 4 and Figure 5, and an outdoor heat exchanger inlet port connected to the inlet of the outdoor heat exchanger 93 is also formed on the base body 60 66.
  • a second flow channel 102 is also formed in the base body 60, the outlet port 67 of the indoor condenser communicates with the second flow channel 102, the inlet of the first switch valve 11 communicates with the second flow channel 102, and the inlet of the third switch valve 13 It communicates with the second flow channel 102 , and the outlet of the third switching valve 13 communicates with the inlet port 66 of the outdoor heat exchanger.
  • the refrigerant flowing into the second channel 102 from the outlet port 67 of the indoor condenser can flow into the second channel 102 through the first on-off valve 11 .
  • the first channel 101 flows out from the inlet port 66 of the outdoor heat exchanger, or through the third switch valve 13 .
  • the refrigerant flowing out of the outlet of the indoor condenser 92 can enter the second flow passage 102 through the outlet interface 67 of the indoor condenser.
  • the refrigerant in the second flow channel 102 can flow out from the inlet port 66 of the outdoor heat exchanger through the third switch valve 13 , and then can further flow into the outdoor heat exchanger 93 .
  • the second flow passage 102 is also connected with the indoor chamber for connecting with the outlet of the indoor condenser 92.
  • Condenser outlet interface 67 communicates, therefore, the second flow channel 102 in the base body 60 is equivalent to replacing the outlet between the outlet of the indoor condenser 92 and the inlet of the first switching valve 11 and the inlet of the third switching valve 13
  • the root pipes and joints further improve the integration of the valve group integrated module and simplify the complexity of the piping layout of the vehicle thermal management system.
  • the refrigerant released in the indoor condenser 92 needs to be throttled and depressurized by the third expansion valve 23, and then enter the outdoor heat exchanger 93 to absorb the external air.
  • the heat of the atmosphere, the third expansion valve 23 and the third on-off valve 13 are connected in parallel between the indoor condenser 92 and the outdoor heat exchanger 93 .
  • the valve group further includes a third expansion valve 23, as shown in Fig. 4 and Fig.
  • the inlet interface 66 communicates with the third flow channel 103
  • the outlet of the third on-off valve 13 communicates with the third flow channel 103, thereby communicates with the inlet interface 66 of the outdoor heat exchanger through the third flow channel 103
  • the inlet of the third expansion valve 23 It communicates with the second flow channel 102
  • the outlet of the third expansion valve 23 communicates with the third flow channel 103 , so as to communicate with the inlet port 66 of the outdoor heat exchanger through the third flow channel 103 .
  • the refrigerant flowing into the second channel 102 from the outlet port 67 of the indoor condenser can flow into the second channel 102 through the third on-off valve 13 through the on-off or off-off of the third on-off valve 13 and the throttling or off-off of the third expansion valve 23 .
  • the first expansion valve 21, the second expansion valve 22, and the third expansion valve 23 are valves capable of throttling and reducing pressure. Therefore, in the present disclosure, the throttling or blocking of the expansion valves can be understood
  • the opening or closing of the expansion valve when the expansion valve is open, the refrigerant can flow through the expansion valve and be throttled and depressurized by the expansion valve, but when the expansion valve is closed, the refrigerant cannot flow through the expansion valve.
  • the second flow passage 102 communicates with the outlet port 67 of the indoor condenser, the inlet of the first on-off valve 11, the inlet of the third expansion valve 23, and the inlet of the third on-off valve 13 are all connected with the second flow passage 102, and the second flow The channel 102 is equivalent to replacing the multiple pipes and joints connected between the outlet of the indoor condenser 92 and the inlet of the first on-off valve 11, the inlet of the third on-off valve 13, and the inlet of the third expansion valve 23, further reducing the The number of pipes in the vehicle's thermal management system.
  • the third flow passage 103 communicates with the inlet port 66 of the outdoor heat exchanger, the outlet of the third switch valve 13 and the outlet of the third expansion valve 23 communicate with the third flow passage 103, and the third flow passage 103 is equivalent to replacing the connection.
  • a plurality of pipes are provided between the outlet of the third on-off valve 13 and the outlet of the third expansion valve 23 and the inlet of the outdoor heat exchanger 93, so as to achieve the purpose of reducing the number of pipes in the vehicle thermal management system.
  • the refrigerant flowing out of the outlet of the outdoor heat exchanger 93 directly flows into the inlet of the compressor 91 or flows into the inlet of the compressor 91 after passing through the gas-liquid separator 95.
  • a third on-off valve 13 is provided between the outlet of 93 and the inlet of the compressor 91 or the inlet of the gas-liquid separator 95 connected to the compressor 91 . Since the inlet of the third on-off valve 13 and the inlet of the first on-off valve 11 are both connected to the outlet of the outdoor heat exchanger 93, in order to integrate the third on-off valve 13, optionally, the valve group also includes a fourth on-off valve 14. As shown in FIG.
  • the base body 60 is also formed with a return inlet port 62 for connecting to the inlet of the compressor 91 outside the base body 60 or the inlet of the gas-liquid separator 95 connected to the compressor 91 , and the inside of the base body 60 is also A fourth flow channel 104 is formed, the outlet port 64 of the outdoor heat exchanger communicates with the fourth flow channel 104, the inlet of the second switch valve 12 communicates with the fourth flow channel 104, the inlet of the fourth switch valve 14 communicates with the fourth flow channel 104 is connected, and the outlet of the fourth on-off valve 14 is connected with the return inlet port 62 .
  • the fourth flow passage 104 communicates with the outlet port 64 of the outdoor heat exchanger, the inlet of the second on-off valve 12 and the inlet of the fourth on-off valve 14 are both in communication with the fourth flow passage 104, the fourth flow passage 104 in the base body 60 provides The multiple pipes connecting the outlet of the outdoor heat exchanger 93 with the inlet of the second on-off valve 12 and the inlet of the fourth on-off valve 14 further reduce the number of pipes in the vehicle thermal management system.
  • the refrigerant flowing out of the refrigerant outlet of the battery pack heat exchanger 96 also needs to flow into the inlet of the compressor 91 or first pass through the gas-liquid separator 95 and then flow into the inlet of the compressor 91, in order to reduce the heat exchange of the battery pack
  • a fifth flow channel 105 is also formed in the base body 60, the outlet of the fourth switch valve 14 communicates with the fifth flow channel 105, and the return inlet port 62 communicates with the fifth flow channel 105.
  • the refrigerant outlet of the battery pack heat exchanger 96 is connected to the outlet interface 61 of the battery pack heat exchanger, and the outlet interface 61 of the battery pack heat exchanger communicates with the fifth flow channel 105 .
  • both the refrigerant flowing out of the refrigerant outlet of the battery pack heat exchanger 96 and the refrigerant flowing out of the outlet of the fourth switching valve 14 can flow into the fifth flow channel 105 and then flow into the compressor 91 through the return inlet port 62 Or in the gas-liquid separator 95 connected with the compressor 91.
  • the refrigerant flowing out of the outlet of the indoor evaporator 94 also needs to flow into the inlet of the compressor 91 or first pass through the gas-liquid separator 95 and then flow into the inlet of the compressor 91.
  • the base An indoor evaporator outlet interface 63 for connecting with the outlet of the indoor evaporator 94 may also be formed on the 60 , and the indoor evaporator outlet interface 63 communicates with the fifth flow channel 105 .
  • the refrigerant flowing out of the outlet of the indoor evaporator 94 can also flow into the compressor 91 or the gas-liquid separator 95 connected to the compressor 91 through the fifth flow channel 105 and the return inlet port 62 communicating with the fifth flow channel 105 .
  • the temperature sensor 30 can also be integrated in the valve group integration module.
  • the valve group integrated module further includes a temperature sensor 30, and a first through hole 813 and a second through hole 814 are formed on the fifth flow channel 105
  • the third through hole 815, the second through hole 814 is located between the first through hole 813 and the third through hole 815, the first through hole 813 communicates with the outlet port 63 of the indoor evaporator, and the third through hole 815 communicates with the return inlet port 62
  • the temperature sensor 30 is disposed on the substrate 60 and the detection end of the temperature sensor 30 passes through the second through hole 814 and is located in the fourth sub-channel.
  • the refrigerant flowing out of the outlet of the indoor evaporator 94 flows into the fifth flow passage 105 through the outlet interface 63 of the indoor evaporator and the first through hole 813, and flows toward the third through hole 815 in the fifth flow passage 105 to pass through
  • the reflux inlet port 62 communicated with the third through hole 815 flows into the inlet of the compressor 91 or the inlet of the gas-liquid separator 95, since the detection end of the temperature sensor 30 is located between the first through hole 813 and the second through hole 814, from
  • the refrigerant flowing out of the outlet of the indoor evaporator 94 passes through the detection end of the temperature sensor 30 when flowing in the fifth flow channel 105 , so that the temperature sensor 30 can detect the temperature of the refrigerant in the fifth flow channel 105 .
  • the fifth channel 105 may be formed with a fourth through hole 816 , and the fourth through hole 816 is used to communicate with the outlet interface 61 of the battery pack heat exchanger.
  • a first switch valve outlet port 808 , a second switch valve outlet port 807 , a first expansion valve inlet port 819 and a second expansion valve inlet port 818 may be formed on the first channel 101 .
  • the outlet interface 808 of the first on-off valve can be indirectly connected to the outlet of the first on-off valve 11 through the first transition flow passage, or directly connected to the outlet of the first on-off valve 11 without passing through the transition flow passage.
  • the second on-off valve outlet interface 807 may be indirectly connected to the outlet of the second on-off valve 12 through the second transition flow channel, or directly connected to the outlet of the second on-off valve 12 without passing through the transition flow channel.
  • the inlet port 819 of the first expansion valve can be connected indirectly with the outlet of the first expansion valve 21 through the third transition channel, or directly connected to the inlet of the first expansion valve 21 without passing through the transition channel, and the outlet of the first expansion valve 21 can be It is indirectly connected to the battery pack heat exchanger inlet port 68 through the fourth transition channel, or directly connected to the battery pack heat exchanger inlet port 68 without passing through the transition channel.
  • the inlet port 818 of the second expansion valve can be connected indirectly with the outlet of the second expansion valve 22 through the fifth transition channel, or directly connected to the inlet of the second expansion valve 22 without passing through the transition channel, and the outlet of the second expansion valve 22 can be Indirectly communicate with the inlet port 65 of the indoor evaporator through the sixth transition channel, or directly connect with the inlet port 65 of the indoor evaporator without passing through the transition channel.
  • a first switch valve inlet port 803 , a third switch valve inlet port 801 , a third expansion valve inlet port 817 and a second flow channel inlet 802 may be formed on the second flow channel 102 .
  • the inlet port 803 of the first on-off valve can be indirectly communicated with the inlet of the first on-off valve 11 through the seventh transition channel, or directly connected to the inlet of the first on-off valve 11 without passing through the transition channel.
  • the inlet port 801 of the third on-off valve can be indirectly connected to the inlet of the third on-off valve 13 through the eighth transitional channel, or directly connected to the inlet of the third on-off valve 13 without passing through the transitional channel.
  • the inlet port 817 of the third expansion valve may indirectly communicate with the inlet of the third expansion valve 23 through the ninth transition flow channel, or directly connect with the inlet of the third expansion valve 23 without passing through the transition flow channel.
  • the inlet 802 of the second flow channel may communicate indirectly with the outlet interface 67 of the indoor condenser through the tenth transition flow channel.
  • a third switch valve outlet interface 806 , a third expansion valve outlet interface 805 and a third flow channel outlet 804 may be formed on the third flow channel 103 .
  • the outlet port 806 of the third on-off valve can be indirectly connected to the outlet of the third on-off valve 13 through the eleventh transition channel, or directly connected to the outlet of the third on-off valve 13 without passing through the transition channel.
  • the outlet port 805 of the third expansion valve may be indirectly connected to the outlet of the third expansion valve 23 through the twelfth transition flow channel, or directly connected to the outlet of the third expansion valve 23 without passing through the transition flow channel.
  • the inlet port 66 of the outdoor heat exchanger may communicate indirectly with the outlet 804 of the third flow channel through the thirteenth transition flow channel.
  • a second switch valve inlet port 809 , a fourth switch valve inlet port 811 and a fourth flow channel inlet 810 may be formed on the fourth flow channel 104 .
  • the inlet port 809 of the second on-off valve can be indirectly communicated with the inlet of the second on-off valve 12 through the fourteenth transition channel, or directly connected to the inlet of the second on-off valve 12 without passing through the transition channel.
  • the inlet port 811 of the fourth on-off valve can be indirectly connected to the inlet of the fourth on-off valve 14 through the fifteenth transition channel, or directly connected to the inlet of the fourth on-off valve 14 without passing through the transition channel.
  • the outlet interface 64 of the outdoor heat exchanger may communicate with the inlet 810 of the fourth flow channel through the sixteenth transition flow channel.
  • a fourth switch valve outlet port 812 may be formed on the fifth channel 105, and the fourth switch valve outlet port 812 may pass through the seventeenth transition channel and the outlet of the fourth switch valve 14. communicate indirectly, or directly connect with the outlet of the fourth on-off valve 14 without passing through the transition channel.
  • the first flow channel 101, the second flow channel 102, the third flow channel 103, the fourth flow channel 104 and the fifth flow channel 105 are formed in the base body 60, and the base body 60 may have any appropriate structure and shape, and manufacture and form the first flow channel 101 , the second flow channel 102 , the third flow channel 103 , the fourth flow channel 104 and the fifth flow channel 105 in any suitable manner.
  • the base body 60 can be integrally molded using a molding die, such as by pouring, to form the first flow channel 101, the second flow channel 102, the third flow channel 103, and the fourth flow channel during the molding process. 104 and the fifth channel 105.
  • the base body 60 can be a split structure, as shown in Figure 2 and Figure 4, the base body 60 includes a first split body 40 and a second split body 50, and the first split body 40 includes a first connection surface 401 , the second split body 50 includes a second connection surface 501, the first connection surface 401 is in sealing connection with the second connection surface 501, the first connection surface 401 is inwardly recessed and forms a first groove 701, a second groove 702, a second groove 701, and a second groove 702. Three grooves 703 , fourth grooves 704 and fifth grooves 705 .
  • the second connection surface 501 and the first groove 701 jointly define the first flow channel 101
  • the second connection surface 501 and the second groove 702 jointly define the second flow channel 102
  • the second connection surface 501 and the third groove 703 The third flow channel 103 is defined together
  • the second connection surface 501 and the fourth groove 704 jointly define the fourth flow channel 104
  • the second connection surface 501 and the fifth groove 705 jointly define the fifth flow channel 105 .
  • the first switch valve 11 , the second switch valve 12 , the third switch valve 13 , the fourth switch valve 14 , the first expansion valve 21 , the second expansion valve 22 and the third expansion valve 23 are all arranged on the first split body 40 , or the first on-off valve 11, the second on-off valve 12, the third on-off valve 13, the fourth on-off valve 14, the first expansion valve 21, the second expansion valve 22, and the third expansion valve 23 are all arranged in the second split body 50 on.
  • the first on-off valve 11, the second on-off valve 12, the third on-off valve 13, the first expansion valve 21, the second expansion valve 22 and the third expansion valve 23 can be connected with the first groove 701, the second groove
  • the groove 702, the third groove 703, the fourth groove 704, and the fourth groove 704 are located on the same split body, or may be located on different split bodies, which is not limited in the present disclosure.
  • the base body 60 is set to include a first split body 40 and a second split body 50 that cooperate with each other, and a first groove 701, a second groove 702, a third groove 703, and a first groove 701 are provided on the surface of the first split body 40
  • the fourth groove 704 and the fifth groove 705 form the first flow channel 101, the second flow channel 102, the third flow channel 103, and the fourth flow channel through the cooperation of the first split body 40 and the second split body 50.
  • the channel 104 and the fifth flow channel 105 have the advantage that: since the first groove 701, the second groove 702, the third groove 703, the fourth groove 704 and the fifth groove are set on the surface of the first split body 4040
  • the manufacturing process of the groove 705 is simpler, which facilitates the formation and manufacture of the flow channel, especially the curved flow channel.
  • At least one of the first groove 701, the second groove 702 and the third groove 703 is a curved groove
  • at least one of the fourth groove 704 and the fifth groove 705 is a curve type groove.
  • the curved groove may be greater than or equal to 90°, so as to reduce the flow resistance of the refrigerant flowing in the curved flow channel.
  • a first groove 701, a second groove 702, a third groove 703, a fourth groove 704, and a fifth groove 705 are provided on the first sub-body 40 to facilitate communication with interfaces located on the surface its corresponding sub-runner.
  • the fourth flow channel 104 and the outdoor heat exchanger outlet interface 64 communicating with the fourth flow channel 104 after opening the fourth groove 704 on the first split body 40, from the third groove
  • the groove wall of the groove 703 starts to form a through linear cavity until the outer surface of the first split body 40, thereby forming the fourth flow channel inlet 810, the outdoor heat exchanger outlet interface 64 and the connection between the fourth flow channel inlet 810
  • the transition channel between the outlet interface 64 and the outdoor heat exchanger is similar to the above-mentioned communication manner between the outlet interface 64 of the outdoor heat exchanger and the fourth flow channel 104 , and will not be repeated here.
  • first on-off valve 11 and second on-off valve 12 may be installed at any appropriate position on the base body 60 .
  • the axis of the spool of the first on-off valve 11 may be perpendicular to the plane where the first flow channel 101 is located and the plane where the second flow channel 102 is located, and the second on-off valve
  • the axis of the spool of 12 is perpendicular to the plane where the first flow channel 101 is located and the plane where the fourth flow channel 104 is located.
  • the planes where 103 are located are all perpendicular to each other, and the axis of the spool of the fourth switch valve 14 is perpendicular to the plane where the fourth flow channel 104 is located and the plane where the fifth flow channel 105 is located, so as to prevent the first switch valve 11, the second flow channel Impurities are deposited in the second on-off valve 12 , the third on-off valve 13 and the fourth on-off valve 14 .
  • the plane where the flow channel is located refers to the plane defined by the length direction and the width direction of the base body 60 shown in FIG. 5 .
  • the first groove 701, the second groove 702, the third groove 703, the first groove 701 The four grooves 704 and the fifth groove 705 can be formed on one large surface, and the first on-off valve 11, the second on-off valve 12, the third on-off valve 13 and the fourth on-off valve 14 can be installed on another large surface,
  • the axis of the spool of the first on-off valve 11 can be perpendicular to the plane where the first flow channel 101 is located and the plane where the second flow channel 102 is located, and the axis of the spool of the second on-off valve 12 is perpendicular to the plane where the first flow channel 101 is located.
  • the plane where the plane and the fourth flow passage 104 are located are all perpendicular to each other, the axis of the spool of the third on-off valve 13 is all perpendicular to the plane where the first flow passage 101 is located and the plane where the third flow passage 103 is located, and the fourth on-off valve 14 The axis of the spool is perpendicular to the plane where the fourth flow channel 104 and the plane where the fifth flow channel 105 is located.
  • the first expansion valve 21, the second expansion valve 22 and the third expansion valve 23 can be installed on the narrow surface, so that the first expansion valve 21, the second expansion valve 22 and the third expansion valve 23 and their corresponding flow paths and interface connection.
  • the first expansion valve 21 , the second expansion valve 22 and the third expansion valve 23 may be installed on different narrow surfaces.
  • the first switch valve 11, the second switch valve 12, the third switch valve 13, the fourth switch valve 14, the first expansion valve 21, the second expansion valve 22, the third expansion valve 23, and the temperature sensor 30 can be any suitable
  • the installation method is installed on the base body 60 .
  • a first expansion valve installation hole 211 , a second expansion valve installation hole 221 , and a third expansion valve installation hole may be formed on the base 60 . 231.
  • the first switch valve installation hole 111, the second switch valve installation hole 121, the third switch valve installation hole 131, the fourth switch valve installation hole 141, and the temperature sensor installation hole wherein the first expansion valve installation hole 211, The second expansion valve installation hole 221, the third expansion valve installation hole 231, the first on-off valve installation hole 111, the second on-off valve installation hole 121, the third on-off valve installation hole 131, the fourth on-off valve installation hole 141 and the temperature sensor Internal threads can be formed on the walls of the mounting holes, so that the first on-off valve 11, the second on-off valve 12, the third on-off valve 13, the fourth on-off valve 14, the first expansion valve 21, and the second expansion valve 22 , the third expansion valve 23, and the temperature sensor 30 are respectively connected with the first on-off valve installation hole 111, the second on-off valve installation hole 121, the third on-off valve installation hole 131, the fourth on-off valve installation hole 141, the first expansion valve installation hole 211, the second expansion valve installation hole 221, the third expansion valve installation hole
  • a fastening hole 212 for the first expansion valve may be formed on the base 60 , the second expansion valve fastening hole 222 and the third expansion valve fastening hole 232, the first bolt can pass through the mounting plate on the first expansion valve 21 and be threadedly connected with the first expansion valve fastening hole 212, the second bolt Can pass through the mounting plate on the second expansion valve 22 and be threaded with the second expansion valve fastening hole 222 , the third bolt can pass through the mounting plate on the third expansion valve 23 and be connected with the third expansion valve fastening hole 232 threaded connection.
  • the valve positioning hole 112 the second switching valve positioning hole 122, the third switching valve positioning hole 132, the fourth switching valve positioning hole 142, and the first switching valve positioning hole 112 are used to cooperate with the positioning plate on the first switching valve 11
  • the second switch valve positioning hole 122 is used to cooperate with the positioning plate on the second switch valve 12
  • the third switch valve positioning hole 132 is used to cooperate with the positioning plate on the third switch valve 13
  • the fourth switch valve positioning The hole 142 is used to cooperate with the positioning plate on the fourth on-off valve 14 .
  • Mode 1 Crew compartment cooling mode.
  • the main flow path of the refrigerant is: compressor 91 ⁇ indoor condenser 92 ⁇ third on-off valve 13 ⁇ outdoor heat exchanger 93 ⁇ second on-off valve 12 ⁇ first Second expansion valve 22 ⁇ indoor evaporator 94 ⁇ gas-liquid separator 95 ⁇ compressor 91.
  • the indoor evaporator 94 contains low-temperature and low-pressure refrigerant, and the refrigerant absorbs the heat of the passenger compartment in the indoor evaporator 94 to realize cooling of the passenger compartment.
  • the refrigerant flowing out of the outlet of the compressor 91 flows through the indoor condenser 92, it can blow to the indoor condenser 92 without using a fan or blower, so that the high temperature and high pressure flowing into the indoor condenser 92
  • the refrigerant does not dissipate heat and condense in the indoor condenser 92, that is to say, in this mode, the indoor condenser 92 is used as a flow channel.
  • the specific flow path of the refrigerant is: compressor 91 ⁇ indoor condenser 92 ⁇ indoor condenser outlet interface 67 ⁇ second flow channel inlet 802 ⁇ second flow channel 102 ⁇ third switch Valve inlet port 801 ⁇ third switch valve 13 ⁇ third switch valve outlet port 806 ⁇ third flow channel 103 ⁇ third flow channel outlet 804 ⁇ outdoor heat exchanger inlet port 66 ⁇ outdoor heat exchanger 93 ⁇ outdoor heat exchanger Outlet port 64 ⁇ fourth flow channel inlet 810 ⁇ fourth flow channel 104 ⁇ second on-off valve inlet port 809 ⁇ second on-off valve 12 ⁇ second on-off valve outlet port 807 ⁇ first flow channel 101 ⁇ second expansion valve inlet port 818 ⁇ Second expansion valve 22 ⁇ Indoor evaporator inlet port 65 ⁇ Indoor evaporator 94 ⁇ Indoor evaporator outlet port 63 ⁇ First through hole 813 ⁇ Fifth flow channel 105 ⁇ Third through hole 815 ⁇ Return inlet port 62 ⁇
  • Mode 2 battery pack 97 cooling mode.
  • the main flow path of the refrigerant is: compressor 91 ⁇ indoor condenser 92 ⁇ third on-off valve 13 ⁇ outdoor heat exchanger 93 ⁇ second on-off valve 12 ⁇ first An expansion valve 21 ⁇ battery pack heat exchanger 96 ⁇ gas-liquid separator 95 ⁇ compressor 91.
  • the main flow path of the coolant is: battery pack 97 ⁇ battery pack heat exchanger 96 ⁇ battery pack 97 .
  • the low-temperature and low-pressure refrigerant absorbs the heat of the high-temperature coolant, so that the coolant outlet of the battery pack heat exchanger 96 flows out of the low-temperature coolant, and the low-temperature coolant flows through the battery
  • the battery pack 97 When the battery pack 97 is packed, it can absorb the heat of the battery pack 97 to realize the cooling of the battery pack 97.
  • the refrigerant flowing out of the outlet of the compressor 91 flows through the indoor condenser 92, it can blow to the indoor condenser 92 without using a fan or blower, so that the high temperature and high pressure flowing into the indoor condenser 92
  • the refrigerant does not dissipate heat and condense in the indoor condenser 92, that is to say, in this mode, the indoor condenser 92 is used as a flow channel.
  • the specific flow path of the refrigerant is: compressor 91 ⁇ indoor condenser 92 ⁇ indoor condenser outlet interface 67 ⁇ second flow channel inlet 802 ⁇ second flow channel 102 ⁇ third switch Valve inlet port 801 ⁇ third switch valve 13 ⁇ third switch valve outlet port 806 ⁇ third flow channel 103 ⁇ third flow channel outlet 804 ⁇ outdoor heat exchanger inlet port 66 ⁇ outdoor heat exchanger 93 ⁇ outdoor heat exchanger Outlet port 64 ⁇ fourth channel inlet 810 ⁇ fourth channel 104 ⁇ second switch valve inlet port 809 ⁇ second switch valve 12 ⁇ second switch valve outlet port 807 ⁇ first channel 101 ⁇ first expansion valve inlet port 819 ⁇ first expansion valve 21 ⁇ inlet port 68 of battery pack heat exchanger ⁇ battery pack heat exchanger 96 ⁇ outlet port 61 of battery pack heat exchanger ⁇ fourth through hole 816 ⁇ fifth flow channel 105 ⁇ third through hole 815 ⁇ return inlet port 62 ⁇ gas-liquid separator 95 ⁇ compressor
  • Mode 3 Crew compartment cooling and battery pack 97 cooling mode. It can be understood that this mode is the same opening mode as the above-mentioned mode 1 and mode 2.
  • the main flow path of the refrigerant is: compressor 91 ⁇ indoor condenser 92 ⁇ third switch valve 13 ⁇ outdoor heat exchanger 93 ⁇ second switch valve 12, here, the outlet of the second switch valve 12 flows out
  • the refrigerant will be divided into two streams, the flow path of one stream is: second expansion valve 22 ⁇ indoor evaporator 94 ⁇ gas-liquid separator 95 ⁇ compressor 91, and the flow path of the other stream is: first expansion valve 21 ⁇ battery pack heat exchanger 96 ⁇ gas-liquid separator 95 ⁇ compressor 91 .
  • the main flow path of the coolant is: battery pack 97 ⁇ battery pack heat exchanger 96 ⁇ battery pack 97 . It should be noted that, in this mode, although the refrigerant flowing out of the outlet of the compressor 91 flows through the indoor condenser 92, it can blow to the indoor condenser 92 without using a fan or blower, so that the high temperature and high pressure flowing into the indoor condenser 92 The refrigerant does not dissipate heat and condense in the indoor condenser 92, that is to say, in this mode, the indoor condenser 92 is used as a flow channel.
  • the specific flow path of the refrigerant is: compressor 91 ⁇ indoor condenser 92 ⁇ indoor condenser outlet interface 67 ⁇ second flow channel inlet 802 ⁇ second flow channel 102 ⁇ third switch Valve inlet port 801 ⁇ third switch valve 13 ⁇ third switch valve outlet port 806 ⁇ third flow channel 103 ⁇ third flow channel outlet 804 ⁇ outdoor heat exchanger inlet port 66 ⁇ outdoor heat exchanger 93 ⁇ outdoor heat exchanger Outlet interface 64 ⁇ fourth flow channel inlet 810 ⁇ fourth flow channel 104 ⁇ second switch valve inlet port 809 ⁇ second switch valve 12 ⁇ second switch valve outlet port 807 ⁇ first flow channel 101.
  • the refrigerant in the first flow channel 101 is divided into two streams, and the specific flow path of one stream is: second expansion valve inlet port 818 ⁇ second expansion valve 22 ⁇ indoor evaporator inlet port 65 ⁇ indoor evaporator 94 ⁇ indoor evaporator Outlet port 63 ⁇ first through hole 813 ⁇ fifth flow channel 105; another specific flow path is: first expansion valve inlet port 819 ⁇ first expansion valve 21 ⁇ battery pack heat exchanger inlet port 68 ⁇ battery pack Heat exchanger 96 ⁇ battery pack heat exchanger outlet interface 61 ⁇ fourth through hole 816 ⁇ fifth flow channel 105 .
  • the refrigerant flowing out from the outlet of the indoor evaporator 94 and the refrigerant flowing out of the refrigerant outlet of the battery pack heat exchanger 96 flow into the second outlet through the indoor evaporator outlet interface 63 and the battery pack heat exchanger outlet interface 61 respectively.
  • the five flow channels 105 converge in the fifth flow channel 105 , and the specific flow path of the merged refrigerant is: the third through hole 815 ⁇ return inlet port 62 ⁇ gas-liquid separator 95 ⁇ compressor 91 .
  • Mode 4 Crew cabin heating mode.
  • the main flow path of the refrigerant is: compressor 91 ⁇ indoor condenser 92 ⁇ third expansion valve 23 ⁇ outdoor heat exchanger 93 ⁇ fourth switch valve 14 ⁇ gas Liquid separator 95 ⁇ compressor 91.
  • the high-temperature and high-pressure refrigerant flowing out from the outlet of the compressor 91 flows into the indoor condenser 92 and releases heat in the indoor condenser 92, thereby raising the temperature of the passenger compartment and realizing heating of the passenger compartment.
  • the PTC wind heater 98 can also be turned on in the passenger compartment heating mode, so as to combine with the indoor condenser 92 to jointly heat the passenger compartment.
  • the PTC water heater 99 in the coolant circuit formed by the battery pack 97 and the battery pack heat exchanger 96 in series can be turned on, and the PTC water heater 99 can heat Coolant, so as to realize the heating of the battery pack 97, and then realize the heating mode of the passenger compartment and the heating mode of the battery pack 97.
  • the battery pack heat exchanger 96 can be considered as a through-flow channel.
  • the specific flow path of the refrigerant in Mode 4 is: compressor 91 ⁇ indoor condenser 92 ⁇ indoor condenser 92 ⁇ indoor condenser outlet port 67 ⁇ second channel inlet 802 ⁇ second Second channel 102 ⁇ third expansion valve inlet port 817 ⁇ third expansion valve 23 ⁇ third expansion valve outlet port 805 ⁇ third channel 103 ⁇ third channel outlet 804 ⁇ outdoor heat exchanger inlet port 66 ⁇ outdoor heat exchanger Heater 93 ⁇ outdoor heat exchanger outlet port 64 ⁇ fourth flow channel inlet 810 ⁇ fourth flow channel 104 ⁇ fourth switch valve inlet port 811 ⁇ fourth switch valve 14 ⁇ fourth switch valve outlet port 812 ⁇ fifth flow Road 105 ⁇ third through hole 815 ⁇ return inlet port 62 ⁇ gas-liquid separator 95 ⁇ compressor 91.
  • Mode 5 The passenger compartment heating mode using 97% heat from the battery pack.
  • the main flow path of the refrigerant is: compressor 91 ⁇ indoor condenser 92 ⁇ first switching valve 11 ⁇ first expansion valve 21 ⁇ battery pack heat exchanger 96 ⁇ Gas-liquid separator 95 ⁇ compressor 91.
  • the high-temperature and high-pressure refrigerant flowing out from the outlet of the compressor 91 flows into the indoor condenser 92 and releases heat in the indoor condenser 92, thereby raising the temperature of the passenger compartment and realizing heating of the passenger compartment.
  • the low-temperature and low-pressure refrigerant absorbs the heat of the high-temperature coolant, thereby transferring the heat of the battery pack 97 to the refrigerant for heating the passenger compartment.
  • the specific flow path of the refrigerant is: compressor 91 ⁇ indoor condenser 92 ⁇ inlet interface of indoor condenser 92 ⁇ second flow channel inlet 802 ⁇ second flow channel 102 ⁇ first switch Valve inlet port 803 ⁇ first switch valve 11 ⁇ first switch valve outlet port 808 ⁇ first flow channel 101 ⁇ first expansion valve inlet port 819 ⁇ first expansion valve 21 ⁇ battery pack heat exchanger inlet port 68 ⁇ battery pack replacement Heater 96 ⁇ battery pack heat exchanger outlet port 61 ⁇ fourth through hole 816 ⁇ fifth flow channel 105 ⁇ third through hole 815 ⁇ return inlet port 62 ⁇ gas-liquid separator 95 ⁇ compressor 91.
  • Mode 6 Crew cabin dehumidification mode.
  • the main flow path of the refrigerant is: compressor 91 ⁇ indoor condenser 92 ⁇ third on-off valve 13 ⁇ outdoor heat exchanger 93 ⁇ second on-off valve 12 ⁇ first Second expansion valve 22 ⁇ indoor evaporator 94 ⁇ gas-liquid separator 95 ⁇ compressor 91.
  • the high-temperature and high-pressure refrigerant flowing out from the outlet of the compressor 91 dissipates heat in the indoor condenser 92, and the indoor evaporator 94 is a low-temperature and low-pressure refrigerant.
  • the hot humid air in the passenger compartment meets
  • the indoor evaporator 94 is cold, the water vapor in the humid air can be condensed into condensed water on the surface of the indoor evaporator 94, thereby achieving the purpose of dehumidification of the passenger compartment.
  • the specific flow path of the refrigerant is: compressor 91 ⁇ indoor condenser 92 ⁇ indoor condenser outlet interface 67 ⁇ second flow channel inlet 802 ⁇ second flow channel 102 ⁇ third switch Valve inlet port 801 ⁇ third switch valve 13 ⁇ third switch valve outlet port 806 ⁇ third flow channel 103 ⁇ third flow channel outlet 804 ⁇ outdoor heat exchanger inlet port 66 ⁇ outdoor heat exchanger 93 ⁇ outdoor heat exchanger Outlet port 64 ⁇ fourth flow channel inlet 810 ⁇ fourth flow channel 104 ⁇ second on-off valve inlet port 809 ⁇ second on-off valve 12 ⁇ second on-off valve outlet port 807 ⁇ first flow channel 101 ⁇ second expansion valve inlet port 818 ⁇ Second expansion valve 22 ⁇ Indoor evaporator inlet port 65 ⁇ Indoor evaporator 94 ⁇ Indoor evaporator outlet port 63 ⁇ First through hole 813 ⁇ Fifth flow channel 105 ⁇ Third through hole 815 ⁇ Return inlet port 62 ⁇
  • a vehicle thermal management system including the above valve group integration module.
  • a vehicle including the above-mentioned vehicle thermal management system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

本公开涉及一种阀组集成模块、车辆热管理系统以及车辆,该模块包括基体和设置在基体上的阀组,阀组包括第一开关阀、第二开关阀和第一膨胀阀;基体上形成有用于与基体外部的室内冷凝器的出口连接的室内冷凝器出口接口、用于与基体外部的室外换热器的出口连接的室外换热器出口接口、用于与基体外部的电池包换热器的制冷剂进口连接的电池包换热器进口接口;基体内形成有第一流道,第一开关阀的进口与室内冷凝器出口接口连通,第一开关阀的出口与第一流道连通,第一膨胀阀的进口与第一流道连通,第一膨胀阀的出口与电池包换热器进口接口连通,室外换热器出口接口与第二开关阀的进口连通,第二开关阀的出口与第一流道连通。

Description

阀组集成模块、车辆热管理系统以及车辆
本公开要求于2021年05月31日提交中国专利局,申请号为202110603349.4,申请名称为“阀组集成模块、车辆热管理系统以及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于车辆技术领域,特别是涉及一种阀组集成模块、车辆热管理系统以及车辆。
背景技术
车辆热管理系统是车辆的重要组成部分,其能够实现改变乘员舱内的温度环境等作用,以提成驾驶者和乘客的驾乘体验。在现有技术中,为了使车辆热管理系统能够具有不同工作模式,使制冷剂在不同工作模式下有不同的流动路径,通常需要设置多个阀部件(例如膨胀阀、开关阀等),多个阀部件通过管道与对应的设备连接。在一些车辆热管理系统中,多个阀部件可能需要与同一设备连接,这就需要用到多根管道和接头,导致管道数量和接头数量的增加,再加上阀部件零散分布在管路上,导致管道布置复杂、杂乱,不利于安装和后期维修。
发明内容
本公开的目的是提供一种阀组集成模块、车辆热管理系统以及车辆,该 阀组集成模块能够降低车辆热管理系统中管路布置的复杂度,降低空间占用率。
为了实现上述目的,根据本公开的一个方面,本公开提供一种阀组集成模块,包括基体和设置在所述基体上的阀组,所述阀组包括第一开关阀、第二开关阀和第一膨胀阀;
所述基体上形成有用于与所述基体外部的室内冷凝器的出口连接的室内冷凝器出口接口、用于与所述基体外部的室外换热器的出口连接的室外换热器出口接口、用于与所述基体外部的电池包换热器的制冷剂进口连接的电池包换热器进口接口;
所述基体内形成有第一流道,所述第一开关阀的进口与所述室内冷凝器出口接口连通,所述第一开关阀的出口与所述第一流道连通,所述第一膨胀阀的进口与所述第一流道连通,所述第一膨胀阀的出口与所述电池包换热器进口接口连通,所述室外换热器出口接口与所述第二开关阀的进口连通,所述第二开关阀的出口与所述第一流道连通。
可选地,所述阀组还包括第二膨胀阀,所述基体上还形成有用于与所述基体外部的室内蒸发器的进口连接的室内蒸发器进口接口,所述第二膨胀阀的进口与所述第一流道连通,所述第二膨胀阀的出口与所述室内蒸发器进口接口连通。
可选地,所述阀组还包括第三开关阀,所述基体上还形成有与所述室外换热器的进口连接的室外换热器进口接口,所述基体内还形成有第二流道,所述室内冷凝器出口接口与所述第二流道连通,所述第一开关阀的进口与所述第二流道连通,所述第三开关阀的进口与所述第二流道连通,所述第三开关阀的出口与所述室外换热器进口接口连通。
可选地,通过所述第一开关阀的导通或截断以及所述第三开关阀的导通或截断能够使从所述室内冷凝器出口接口流入所述第二流道的制冷剂经由所述第一开关阀流入所述第一流道,或者经由所述第三开关阀从所述室外换热 器进口接口流出。
可选地,所述阀组还包括第三膨胀阀,所述基体内还形成有第三流道,所述室外换热器进口接口与所述第三流道连通,所述第三开关阀的出口与所述第三流道连通,所述第三膨胀阀的进口与所述第二流道连通,所述第三膨胀阀的出口与所述第三流道连通。
可选地,通过所述第三开关阀的导通或截断以及所述第三膨胀阀的节流或截断能够使从所述室内冷凝器出口接口流入所述第二流道的制冷剂经由所述第三开关阀流入所述第三流道,或者经由所述第三膨胀阀流入所述第三流道。
可选地,所述基体包括第一分体和第二分体,所述第一分体包括第一连接面,所述第二分体包括第二连接面,所述第一连接面与所述第二连接面密封连接,所述第一连接面向内凹陷并形成第一凹槽、第二凹槽以及第三凹槽,所述第二连接面与所述第一凹槽共同限定出所述第一流道,所述第二连接面与所述第二凹槽共同限定出所述第二流道,所述第二连接面与所述第三凹槽共同限定出所述第三流道;
其中,所述第一开关阀、所述第二开关阀、所述第三开关阀、所述第一膨胀阀所述第三膨胀阀均设置在所述第一分体上,或者所述第一开关阀、所述第二开关阀、所述第三开关阀、所述第一膨胀阀、所述第三膨胀阀均设置在所述第二分体上。
可选地,所述第一凹槽、所述第二凹槽以及所述第三凹槽中的至少一者为曲线型凹槽。
可选地,所述阀组还包括第四开关阀,所述基体上还形成有用于与所述基体外部的压缩机的进口或者与压缩机连接的气液分离器的进口连接的回流进口接口,所述基体内还形成有第四流道,所述室外换热器出口接口与所述第四流道连通,所述第二开关阀的进口与所述第四流道连通,所述第四开关阀的进口与所述第四流道连通,所述第四开关阀的出口与所述回流进口接口 连通。
可选地,所述基体内还形成有第五流道,所述第四开关阀的出口与所述第五流道连通,所述回流进口接口与所述第五流道连通,所述基体上还形成有用于与电池包换热器的制冷剂出口连接的电池包换热器出口接口,所述电池包换热器出口接口与所述第五流道连通。
可选地,所述基体内还形成有第五流道,所述第四开关阀的出口与所述第五流道连通,所述回流进口接口与所述第五流道连通,所述基体上还形成有用于与室内蒸发器的出口连接的室内蒸发器出口接口,所述室内蒸发器出口接口与所述第五流道连通。
可选地,所述阀组集成模块还包括温度传感器,所述第五流道上形成有第一通孔、第二通孔以及第三通孔,所述第二通孔位于所述第一通孔与所述第三通孔之间,所述第一通孔与所述室内蒸发器出口接口连通,所述第三通孔与所述回流进口接口连通,所述温度传感器设置在所述基体上且所述温度传感器的检测端穿过所述第二通孔并位于所述第五流道内。
可选地,所述基体包括第一分体和第二分体,所述第一分体包括第一连接面,所述第二分体包括第二连接面,所述第一连接面与所述第二连接面密封连接,所述第一连接面向内凹陷并形成第四凹槽和第五凹槽,所述第二连接面与所述第四凹槽共同限定出所述第四流道,所述第二连接面与所述第五凹槽共同限定出所述第五流道;
其中,所述第四开关阀设置在所述第一分体或所述第二分体上。
可选地,所述第四凹槽和所述第五凹槽中的至少一者为曲线型凹槽。
根据本公开的另一个方面,提供一种车辆热管理系统,包括上述的阀组集成模块。
根据本公开的再一个方面,提供一种车辆,包括上述的车辆热管理系统
通过上述技术方案,由于第一开关阀、第二开关阀以及第一膨胀阀均集成在基体上,并与基体内形成的第一流道连通,第一膨胀阀的进口无需通过 不同的多根管道分别与第一开关阀的出口以及第二开关阀的出口连接,也就是说,在本公开中,形成在基体内的第一流道可以替代第一膨胀阀的进口用于连接第一开关阀的出口以及第二开关阀的出口的多根外部管道,降低了第一开关阀和第二开关阀与第一膨胀阀之间的管道和接头数量,降低了管道布置的复杂度。
并且,由于基体上形成有室内冷凝器出口接口、室外换热器出口接口、电池包换热器进口接口,而设置在基体上的第一开关阀连通在室内冷凝器出口接口与第一流道之间,第二开关阀连通在室外换热器出口接口与第一流道之间,第一膨胀阀连通在第一流道与电池包换热器进口接口之间,在装配时,只需要将室内冷凝器的出口通过管道与室内冷凝器出口接口连通,将室外换热器的出口通过管道与室外换热器出口接口连通,将电池包换热器的制冷剂进口通过管道与电池包换热器进口接口连通,即可实现室内冷凝器和室外换热器与电池包换热器之间的连接,无需通过多根连接管道复杂地将第一开关阀、第二开关阀以及第一膨胀阀组装在室内冷凝器、室外换热器以及电池包换热器之间,装配过程简单方便。另外,第一膨胀阀、第一开关阀以及第二开关阀均设置在基体上,与基体组成模块形式,可以解决因第一膨胀阀、第一开关阀、第二开关阀零散分部在车辆内而造成的空间占用率高、装配及维修不便等问题。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开一种示例性实施方式提供的阀组集成模块的立体图;
图2是本公开一种示例性实施方式提供的阀组集成模块的爆炸图;
图3是本公开一种示例性实施方式提供的阀组集成模块的基体的第一分体的立体图;
图4是本公开一种示例性实施方式提供的阀组集成模块的基体的第一分体的立体图(与图3不同视角);
图5是本公开一种示例性实施方式提供的阀组集成模块的基体的第一分体的主视图;
图6是本公开一种示例性实施方式提供的车辆热管理系统的流路示意图;
图7是本公开一种示例性实施方式提供的车辆热管理系统的流路示意图,其中,还示出了阀组集成模块上所集成的阀以及阀组集成模块上的接口。
附图标记说明
11-第一开关阀;12-第二开关阀;13-第三开关阀;14-第四开关阀;21-第一膨胀阀;22-第二膨胀阀;23-第三膨胀阀;30-温度传感器;111-第一开关阀安装孔;112-第一开关阀定位孔;121-第二开关阀安装孔;122-第二开关阀定位孔;131-第三开关阀安装孔;132-第三开关阀定位孔;141-第四开关阀安装孔;142-第四开关阀定位孔;211-第一膨胀阀安装孔;212-第一膨胀阀紧固孔;221-第二膨胀阀安装孔;222-第二膨胀阀紧固孔;231-第三膨胀阀安装孔;232-第三膨胀阀紧固孔;61-电池包换热器出口接口;62-回流进口接口;63-室内蒸发器出口接口;64-室外换热器出口接口;65-室内蒸发器进口接口;66-室外换热器进口接口;67-室内冷凝器出口接口;68-电池包换热器进口接口;101-第一流道;102-第二流道;103-第三流道;104-第四流道;105-第五流道;701-第一凹槽;702-第二凹槽;703-第三凹槽;704-第四凹槽;705-第五凹槽; 802-第二流道入口;804-第三流道出口;810-第四流道入口;803-第一开关阀进口接口;808-第一开关阀出口接口;809-第二开关阀进口接口;807-第二开关阀出口接口;801-第三开关阀进口接口;806-第三开关阀出口接口;811-第四开关阀进口接口;812-第四开关阀出口接口;819-第一膨胀阀进口接口;818-第二膨胀阀进口接口;817-第三膨胀阀进口接口;805-第三膨胀阀出口接口;813-第一通孔;814-第二通孔;815-第三通孔;816-第四通孔;60-基体;40-第一分体;401-第一连接面;50-第二分体;501-第二连接面;91-压缩机;92-室内冷凝器;93-室外换热器;94-室内蒸发器;95-气液分离器;96-电池包换热器;97-电池包;98-PTC风加热器;99-PTC水加热器。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在本公开中,在未作相反说明的情况下,使用的术语“第一”、“第二”、等仅用于区分描述,而不能理解为指示或暗示相对重要性。此外,在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,出现的术语“设置”、“相连”、“连接”、“安装”应做广义理解,例如,可以是固定相连,也可以是可拆卸连接或一体地连接,可以是直接连接也可以是间接连接;“连通”可以是两个元件直接连通或者间接连通,对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
对于混动车或纯电动车而言,混动车或纯电动车上搭载有电池包97,为保证电池包97处于适宜的工作温度值范围内,在电池包97温度过高时,需要对电池包97进行冷却。如图6所示,为实现利用制冷剂的冷量为电池包97冷却,在本公开提供的车辆热管理系统中设置与电池包97串联的电池包换热 器96,在电池包97独立冷却时,压缩机91出口流出的高温高压的制冷剂在室外换热器93内向外界大气放热,然后经过第一膨胀阀21节流降压后流入电池包换热器96,在电池包换热器96中,低温低压的制冷剂吸收高温冷却液的热量,使电池包换热器96的冷却液出口流出低温冷却液,该低温冷却在流过电池包97时能够吸收电池包97的热量,实现电池包97的冷却降温。
对于常规的乘员舱采暖模式而言,如图6所示,压缩机91出口流出的高温高压的制冷剂在室内冷凝器92中向乘员舱放热,以提升乘员舱的温度,室内冷凝器92出口流出的放热后的制冷剂在室外换热器93中吸收外界大气的热量后再回到压缩机91中。然而,当外界环境的温度与室外换热器93中的制冷剂的温度相差不大时,制冷剂在室外换热器93中的吸热量有限,这会影响乘员舱的采暖能力。而对于这种情况,由于电池包97在运行时会产生热量,因此,在本公开提供的车辆热管理系统中,还具有利用电池包97热量的乘员舱采暖模式。具体地,如图6所示,室内冷凝器92出口流出的制冷剂不流入室外换热器93,而是经过第一膨胀阀21节流降压后流入电池包换热器96中,在电池包换热器96中吸收高温冷却液的热量,从而将电池包97产生的热量搬运到空调系统中,用于乘员舱采暖。
由于在车辆热管理系统的不同工作模式下,需要控制第一膨胀阀21的进口与不同的装置导通,例如,在电池包97独立冷却模式下,第一膨胀阀21的进口需要与室外换热器93的出口导通,而在利用电池包97热量的乘员舱采暖模式,第一膨胀阀21的进口需要与室内冷凝器92的出口导通,因此,在室内冷凝器92的出口与第一膨胀阀21的进口之间需要设置第一开关阀11,而在室外换热器93的出口与第一膨胀阀21的进口之间需要设置第二开关阀12,但这会使得车辆热管理系统的管道和接头数量的增加,导致管道布置非常复杂,且这些阀零散分布在管道上,不利于安装。
因此,为降低车辆热管理系统的管道布置复杂度,减少管道和接头的数量,根据本公开的一个方面,如图1至图7所示,提供一种阀组集成模块, 包括基体60和设置在基体60上的阀组,阀组包括第一开关阀11、第二开关阀12和第一膨胀阀21。其中,如图3和图4所示,基体60上形成有用于与基体60外部的室内冷凝器92的出口连接的室内冷凝器出口接口67、用于与基体60外部的室外换热器93的出口连接的室外换热器出口接口64、用于与基体60外部的电池包换热器96的制冷剂进口连接的电池包换热器进口接口68。如图3至图5所示,基体60内形成有第一流道101,第一开关阀11的进口与室内冷凝器出口接口67连通,第一开关阀11的出口与第一流道101连通,第一膨胀阀21的进口与第一流道101连通,第一膨胀阀21的出口与电池包换热器进口接口68连通,室外换热器出口接口64与第二开关阀12的进口连通,第二开关阀12的出口与第一流道101连通。
当车辆热管理系统处于电池包97独立冷却模式时,第二开关阀12处于打开且能够导通制冷剂的状态,第一开关阀11处于关闭且不允许制冷剂通过的状态,第一膨胀阀21处于打开且能够使制冷剂通过并节流的状态,压缩机91出口流出的高温高压的制冷剂在室外换热器93中放热,室外换热器93出口流出的制冷剂通过室外换热器出口接口64流入第二开关阀12,并从第二开关阀12的出口流入第一流道101内,第一流道101内的制冷剂经由第一膨胀阀21节流降压后从电池包换热器进口接口68流出,进而流入到电池包换热器96中,以对电池包97进行冷却。在该模式下,由于与第一流道101连通的第一开关阀11处于关闭状态,第一流道101内的制冷剂无法通过第一开关阀11流向室内冷凝器出口接口67,因此,第一开关阀11能够起到避免第一流道101内的制冷剂倒流回到室内冷凝器92中的作用。
当车辆热管理系统处于利用电池包97热量的乘员舱采暖模式时,第一开关阀11处于打开且能够导通制冷剂的状态,第二开关阀12处于关闭且不允许制冷剂通过的状态,第一膨胀阀21处于打开且能够使制冷剂通过并节流的状态,压缩机91出口流出的高温高压的制冷剂先流入室内冷凝器92中,在室内冷凝器92中向乘员舱放热,提高乘员舱的温度,室内冷凝器92的出口 流出的制冷剂通过室内冷凝器出口接口67流入第一开关阀11,并从第一开关阀11的出口流出进入到第一流道101内,第一流道101内的制冷剂经由第一膨胀阀21节流降压后从电池包换热器进口接口68流出,进而流入到电池包换热器96中,以吸收电池包97的热量并最终回到压缩机91中。在该模式下,由于与第一流道101连通的第二开关阀12处于关闭状态,第一流道101内的制冷剂无法通过第二开关阀12流向室外换热器出口接口64,因此,第二开关阀12能够起到避免第一流道101内的制冷剂倒流回到室外换热器93中的作用。
通过上述技术方案,由于第一开关阀11、第二开关阀12以及第一膨胀阀21均集成在基体60上,并与基体60内形成的第一流道101连通,第一膨胀阀21的进口无需通过不同的多根管道分别与第一开关阀11的出口以及第二开关阀12的出口连接,也就是说,在本公开中,形成在基体60内的第一流道101可以替代第一膨胀阀21的进口用于连接第一开关阀11的出口以及第二开关阀12的出口的多根外部管道,降低了第一开关阀11和第二开关阀12与第一膨胀阀21之间的管道和接头数量,降低了管道布置的复杂度。
并且,由于基体60上形成有室内冷凝器出口接口67、室外换热器出口接口64、电池包换热器进口接口68,而设置在基体60上的第一开关阀11连通在室内冷凝器出口接口67与第一流道101之间,第二开关阀12连通在室外换热器出口接口64与第一流道101之间,第一膨胀阀21连通在第一流道101与电池包换热器进口接口68之间,在装配时,只需要将室内冷凝器92的出口通过管道与室内冷凝器出口接口67连通,将室外换热器93的出口通过管道与室外换热器出口接口64连通,将电池包换热器96的制冷剂进口通过管道与电池包换热器进口接口68连通,即可实现室内冷凝器92和室外换热器93与电池包换热器96之间的连接,无需通过多根连接管道复杂地将第一开关阀11、第二开关阀12以及第一膨胀阀21组装在室内冷凝器92、室外换热器93以及电池包换热器96之间,装配过程简单方便。另外,第一膨胀阀21、 第一开关阀11以及第二开关阀12均设置在基体60上,与基体60组成模块形式,可以解决因第一膨胀阀21、第一开关阀11、第二开关阀12零散分部在车辆内而造成的空间占用率高、装配及维修不便等问题。
可选地,为提高驾驶者和乘客的驾乘体验,车辆热管理系统可以有乘员舱制冷模式,如图6所示,在乘员舱制冷模式时,室外换热器93出口流出的制冷剂经由第二膨胀阀22节流降压后流入室内蒸发器94,在室内蒸发器94中吸收乘员舱的热量,实现乘员舱的制冷。由于第二膨胀阀22的进口也要与室外换热器93的出口连接,因此,为了提高本公开提供的阀组集成模块的集成度,可以将第二膨胀阀22进行集成。具体地,如图1和图2所示,阀组还可以包括第二膨胀阀22,如图3所示,基体60上还形成有用于与基体60外部的室内蒸发器94的进口连接的室内蒸发器进口接口65,第二膨胀阀22的进口与第一流道101连通,第二膨胀阀22的出口与室内蒸发器进口接口65连通。这样,第一流道101不仅可以替代第一膨胀阀21的进口用于连接第一开关阀11的出口以及第二开关阀12的出口的多根外部管道,还可以替代第二膨胀阀22的进口用于连接第一开关阀11的出口以及第二开关阀12的出口的多根外部管道,使得本公开提供的阀组集成模块集成度更高。
在乘员舱制冷时,第二开关阀12处于打开状态,第二膨胀阀22处于打开状态,第一开关阀11处于关闭状态,室外换热器93出口流出的制冷剂从室外换热器出口接口64流入第二开关阀12,并从第二开关阀12的出口流入第一流道101内,第一流道101内的制冷剂经由第二膨胀阀22节流降压后从室内蒸发器进口接口65流出,并流入室内蒸发器94中。在乘员舱制冷的情况下,由于第一开关阀11处于关闭状态,因此第一流道101内的制冷剂不会经由第一开关阀11倒流至室内冷凝器92中。在乘员舱制冷时,若电池包97有冷却需求,则可以使第一膨胀阀21也处于打开状态,这样第一流道101内的制冷剂可以分为两股,一股经由第一膨胀阀21流向电池包换热器96,另一股经由第二膨胀阀22流向室内蒸发器94。
此外,在乘员舱制冷的情况下,如图6所示,压缩机91出口流出的制冷剂先流入室内冷凝器92中,此时由于不通过风扇或鼓风机向室内冷凝器92吹风,制冷剂在室内冷凝器92中不向乘员舱放热,即,室内冷凝器92作为通流流道使用,室内冷凝器92出口流出的制冷剂需要进入室外换热器93中放热。因此,室内冷凝器92的出口可以经由第三开关阀13与室外换热器93的入口连接。
为了将第三开关阀13集成到阀组集成模块中,进一步地减少室内冷凝器92的出口与第三开关阀13的进口和第一开关阀11的进口之间的连接管道及接头的数量,作为一种示例性地实施方式,阀组还包括第三开关阀13,如图4和图5所示,基体60上还形成有与室外换热器93的进口连接的室外换热器进口接口66,基体60内还形成有第二流道102,室内冷凝器出口接口67与第二流道102连通,第一开关阀11的进口与第二流道102连通,第三开关阀13的进口与第二流道102连通,第三开关阀13的出口与室外换热器进口接口66连通。
这样,通过第一开关阀11的导通或截断以及第三开关阀13的导通或截断能够使从室内冷凝器出口接口67流入第二流道102的制冷剂经由第一开关阀11流入第一流道101,或者经由第三开关阀13从室外换热器进口接口66流出。换言之,室内冷凝器92的出口流出的制冷剂可以经由室内冷凝器出口接口67进入第二流道102内,若此时第一开关阀11处于打开状态,则第二流道102内的制冷剂可以经由第一开关阀11流入第一流道101内,进而可以进一步地经由第一膨胀阀21流入电池包换热器96和/或经由第二膨胀阀22流入室内蒸发器94;若第三开关阀13处于打开状态,则第二流道102内的制冷剂可以经由第三开关阀13从室外换热器进口接口66流出,进而可以进一步地流入室外换热器93。
由于第三开关阀13的进口和第一开关阀11的进口均与基体60内形成的第二流道102连通,而第二流道102还与用于与室内冷凝器92的出口连接的 室内冷凝器出口接口67连通,因此,基体60内的第二流道102相当于替代了连接在室内冷凝器92的出口与第一开关阀11的进口和第三开关阀13的进口之间的多根管道和接头,进一步地提升阀组集成模块的集成度,简化车辆热管理系统管道布置的复杂度。
在车辆热管理系统中,对于常规的乘员舱采暖模式而言,在室内冷凝器92中放热后的制冷剂需要经过第三膨胀阀23节流降压后进入室外换热器93中吸收外界大气的热量,第三膨胀阀23与第三开关阀13相互并联地连接在室内冷凝器92与室外换热器93之间。为了对第三膨胀阀23进行集成,可选地,阀组还包括第三膨胀阀23,如图4和图5所示,基体60内还可以形成有第三流道103,室外换热器进口接口66与第三流道103连通,第三开关阀13的出口与第三流道103连通,从而通过第三流道103与室外换热器进口接口66连通,第三膨胀阀23的进口与第二流道102连通,第三膨胀阀23的出口与第三流道103连通,从而通过第三流道103与室外换热器进口接口66连通。
这样,通过第三开关阀13的导通或截断以及第三膨胀阀23的节流或截断能够使从室内冷凝器出口接口67流入第二流道102的制冷剂经由第三开关阀13流入第三流道103,或者经由第三膨胀阀23流入第三流道103,以使室内冷凝器92出口流出的制冷剂能够选择性地经由第三膨胀阀23节流降压后流入室外换热器93,或者经由第三开关阀13不被节流、不受影响地直接流入室外换热器93。这里,需要说明的是,第一膨胀阀21、第二膨胀阀22以及第三膨胀阀23为能够实现节流降压的阀门,因此,在本公开中,膨胀阀的节流或截断可以理解为膨胀阀的打开或关闭,在膨胀阀打开时,制冷剂能够流过膨胀阀并被膨胀阀节流降压,而在膨胀阀关闭时,制冷剂无法流过膨胀阀。
由于第二流道102与室内冷凝器出口接口67连通,第一开关阀11的进口、第三膨胀阀23的进口、第三开关阀13的进口均与第二流道102连通,第二流道102相当于替代了连接在室内冷凝器92的出口与第一开关阀11的进口、第三开关阀13的进口、第三膨胀阀23的进口之间的多根管道和接头, 进一步减少了车辆热管理系统中管道的数量。而第三流道103与室外换热器进口接口66连通,第三开关阀13的出口和第三膨胀阀23的出口均与第三流道103连通,第三流道103相当于替代了连接在第三开关阀13的出口和第三膨胀阀23的出口与室外换热器93的进口之间的多个管道,从而实现了减少车辆热管理系统中管道的数量的目的。
另外,对于常规的乘员舱采暖模式而言,室外换热器93的出口流出的制冷剂直接流入压缩机91的进口或者先经过气液分离器95后流入压缩机91的进口,室外换热器93的出口与压缩机91的进口或者与压缩机91连接的气液分离器95的进口之间设置有第三开关阀13。由于第三开关阀13的进口与第一开关阀11的进口都是与室外换热器93的出口连接,为对第三开关阀13进行集成,可选地,阀组还包括第四开关阀14,如图3所示,基体60上还形成有用于与基体60外部的压缩机91的进口或者与压缩机91连接的气液分离器95的进口连接的回流进口接口62,基体60内还形成有第四流道104,室外换热器出口接口64与第四流道104连通,第二开关阀12的进口与第四流道104连通,第四开关阀14的进口与第四流道104连通,第四开关阀14的出口与回流进口接口62连通。
由于第四流道104与室外换热器出口接口64连通,第二开关阀12的进口和第四开关阀14的进口均与第四流道104连通,基体60内的第四流道104提到了室外换热器93的出口与第二开关阀12的进口和第四开关阀14的进口连接的多根管道,进一步地减少了车辆热管理系统中的管道数量。
如图6所示,电池包换热器96的制冷剂出口流出的制冷剂也需要流入压缩机91的进口或者先经过气液分离器95后流入压缩机91的进口,为减少电池包换热器96的制冷剂出口和第四开关阀14的出口与压缩机91或气液分离器95之间的连接管道的数量,在本公开提供的一种实施方式中,如图4和图5所示,基体60内还形成有第五流道105,第四开关阀14的出口与第五流道105连通,回流进口接口62与第五流道105连通,基体60上还形成有用于与 电池包换热器96的制冷剂出口连接的电池包换热器出口接口61,电池包换热器出口接口61与第五流道105连通。这样,无论是电池包换热器96的制冷剂出口流出的制冷剂还是第四开关阀14的出口流出的制冷剂均可以流入第五流道105内,然后经由回流进口接口62流入压缩机91或者与压缩机91连接的气液分离器95中。
此外,室内蒸发器94的出口流出的制冷剂也需要流入压缩机91的进口或者先经过气液分离器95后流入压缩机91的进口,可选地,如图3和图5所示,基体60上还可以形成有用于与室内蒸发器94的出口连接的室内蒸发器出口接口63,室内蒸发器出口接口63与第五流道105连通。这样,室内蒸发器94的出口流出的制冷剂也可以通过第五流道105及与第五流道105连通的回流进口接口62流入压缩机91或者与压缩机91连接的气液分离器95中。
为便于检测室内蒸发器94的出口流出的制冷剂的温度,可以将温度传感器30也集成在阀组集成模块中。作为一种可选地实施方式,如图1、图2、图5所示,阀组集成模块还包括温度传感器30,第五流道105上形成有第一通孔813、第二通孔814以及第三通孔815,第二通孔814位于第一通孔813与第三通孔815之间,第一通孔813与室内蒸发器出口接口63连通,第三通孔815与回流进口接口62连通,温度传感器30设置在基体60上且温度传感器30的检测端穿过第二通孔814并位于第四子流道内。从室内蒸发器94的出口流出的制冷剂通过室内蒸发器出口接口63、第一通孔813流入第五流道105中,并在第五流道105中朝向第三通孔815流动,以通过与第三通孔815连通的回流进口接口62流入压缩机91的进口或气液分离器95的进口,由于温度传感器30的检测端位于第一通孔813和第二通孔814之间,从室内蒸发器94的出口流出的制冷剂在第五流道105中流动时会经过温度传感器30的检测端,从而使得温度传感器30能够检测第五流道105中的制冷剂的温度。
可选地,如图4和图5所示,第五流道105上海可以形成有第四通孔816,该第四通孔816用于与电池包换热器出口接口61连通。
可选地,如图5所示,第一流道101上可以形成有第一开关阀出口接口808、第二开关阀出口接口807、第一膨胀阀进口接口819以及第二膨胀阀进口接口818。第一开关阀出口接口808可以通过第一过渡流道与第一开关阀11的出口间接连通,或者不通过过渡流道直接与第一开关阀11的出口对接。第二开关阀出口接口807可以通过第二过渡流道与第二开关阀12的出口间接连通,或者不通过过渡流道直接与第二开关阀12的出口对接。第一膨胀阀进口接口819可以通过第三过渡流道与第一膨胀阀21的出口间接连通,或者不通过过渡流道直接与第一膨胀阀21的进口对接,第一膨胀阀21的出口可以通过第四过渡流道与电池包换热器进口接口68间接连通,或者不通过过渡流道直接与电池包换热器进口接口68对接。第二膨胀阀进口接口818可以通过第五过渡流道与第二膨胀阀22的出口间接连通,或者不通过过渡流道直接与第二膨胀阀22的进口对接,第二膨胀阀22的出口可以通过第六过渡流道与室内蒸发器进口接口65间接连通,或者不通过过渡流道直接与室内蒸发器进口接口65对接。
可选地,如图5所示,第二流道102上可以形成有第一开关阀进口接口803、第三开关阀进口接口801、第三膨胀阀进口接口817以及第二流道入口802。第一开关阀进口接口803可以通过第七过渡流道与第一开关阀11的进口间接连通,或者不通过过渡流道直接与第一开关阀11的进口对接。第三开关阀进口接口801可以通过第八过渡流道与第三开关阀13的进口间接连通,或者不通过过渡流道直接与第三开关阀13的进口对接。第三膨胀阀进口接口817可以通过第九过渡流道与第三膨胀阀23的进口间接连通,或者不通过过渡流道直接与第三膨胀阀23的进口对接。第二流道入口802可以通过第十过渡流道与室内冷凝器出口接口67间接连通。
可选地,如图5所示,第三流道103上可以形成有第三开关阀出口接口806、第三膨胀阀出口接口805以及第三流道出口804。第三开关阀出口接口806可以通过第十一过渡流道与第三开关阀13的出口间接连通,或者不通过 过渡流道直接与第三开关阀13的出口对接。第三膨胀阀出口接口805可以通过第十二过渡流道与第三膨胀阀23的出口间接连通,或者不通过过渡流道直接与第三膨胀阀23的出口对接。室外换热器进口接口66可以通过第十三过渡流道与第三流道出口804间接连通。
可选地,如图5所示,第四流道104上可以形成有第二开关阀进口接口809、第四开关阀进口接口811以及第四流道入口810。第二开关阀进口接口809可以通过第十四过渡流道与第二开关阀12的进口间接连通,或者不通过过渡流道直接与第二开关阀12的进口对接。第四开关阀进口接口811可以通过第十五过渡流道与第四开关阀14的进口间接连通,或者不通过过渡流道直接与第四开关阀14的进口对接。室外换热器出口接口64可以通过第十六过渡流道与第四流道入口810连通。
可选地,如图5所示,第五流道105上可以形成有第四开关阀出口接口812,第四开关阀出口接口812可以通过第十七过渡流道与第四开关阀14的出口间接连通,或者不通过过渡流道直接与第四开关阀14的出口对接。
正如上文中提到的,基体60内形成有第一流道101、第二流道102、第三流道103、第四流道104以及第五流道105,基体60可以具有任意适当的结构和形状,并通过任意适当的方式制造并形成第一流道101、第二流道102、第三流道103、第四流道104以及第五流道105。例如,作为一种实施方式,基体60可以利用成型模具,通过例如浇灌的方式一体成型,以在成型过程中形成第一流道101、第二流道102、第三流道103、第四流道104以及第五流道105。
作为另一种实施方式,基体60可以为分体式结构,如图2和图4所示,基体60包括第一分体40和第二分体50,第一分体40包括第一连接面401,第二分体50包括第二连接面501,第一连接面401与第二连接面501密封连接,第一连接面401向内凹陷并形成第一凹槽701、第二凹槽702、第三凹槽703、第四凹槽704以及第五凹槽705。第二连接面501与第一凹槽701共同 限定出第一流道101,第二连接面501与第二凹槽702共同限定出第二流道102,第二连接面501与第三凹槽703共同限定出第三流道103,第二连接面501与第四凹槽704共同限定出第四流道104,第二连接面501与第五凹槽705共同限定出第五流道105。第一开关阀11、第二开关阀12、第三开关阀13、第四开关阀14、第一膨胀阀21、第二膨胀阀22、第三膨胀阀23均设置在第一分体40上,或者第一开关阀11、第二开关阀12、第三开关阀13、第四开关阀14、第一膨胀阀21、第二膨胀阀22、第三膨胀阀23均设置在第二分体50上。也就是说,第一开关阀11、第二开关阀12、第三开关阀13、第一膨胀阀21、第二膨胀阀22以及第三膨胀阀23可以与第一凹槽701、第二凹槽702、第三凹槽703、第四凹槽704、第四凹槽704位于同一分体上,也可以位于不同的分体上,本公开对此不作限定。
将基体60设置为包括相互配合的第一分体40和第二分体50,并在第一分体40的表面上开设第一凹槽701、第二凹槽702、第三凹槽703、第四凹槽704以及第五凹槽705,并通过第一分体40与第二分体50配合的方式来构成第一流道101、第二流道102、第三流道103、第四流道104以及第五流道105,其优势在于:由于在第一分体4040的表面上开设第一凹槽701、第二凹槽702、第三凹槽703、第四凹槽704以及第五凹槽705的制造过程更为简单,这样能够便于流道的形成和制造,特别是便于制造弯曲的流道。
可选地,第一凹槽701、第二凹槽702以及第三凹槽703中的至少一者为曲线型凹槽,第四凹槽704和第五凹槽705中的至少一者为曲线型凹槽。
对于第一凹槽701、第二凹槽702、第三凹槽703、第四凹槽704、以及第五凹槽705中形成有曲线型凹槽的实施例而言,该曲线型凹槽的拐折处的角度可以大于等于90°,以减少制冷剂在弯曲流道中流动的流动阻力。
此外,由于室内冷凝器出口接口67、室外换热器进口接口66、室外换热器出口接口64、室内蒸发器进口接口65、回流进口接口62、电池包换热器出口接口61等接口设置在基体60的外表面,在第一分体40上开设第一凹槽701、 第二凹槽702、第三凹槽703、第四凹槽704以及第五凹槽705可以便于连通位于表面的接口与其对应的子流道。具体地,例如,对于第四流道104和与第四流道104连通的室外换热器出口接口64而言,可以在第一分体40上开设第四凹槽704后,从第三凹槽703四的槽壁开始打一个贯穿的直线型腔体直至第一分体40的外表面,从而形成第四流道入口810、室外换热器出口接口64以及连通在第四流道入口810与室外换热器出口接口64之间的过渡流道。对于其他接口与其对应的子流道的连通方式和上述室外换热器出口接口64与第四流道104的连通方式类似,在此不再赘述。
此外,上述第一开关阀11、第二开关阀12可以安装在基体60上的任意适当的位置。作为一种实施方式,参照图1至图5所示,第一开关阀11的阀芯的轴线可以与第一流道101所在的平面和第二流道102所在的平面相互垂直,第二开关阀12的阀芯的轴线与第一流道101所在的平面和第四流道104所在的平面均相互垂直,第三开关阀13的阀芯的轴线与第一流道101所在的平面和第三流道103所在的平面均相互垂直,第四开关阀14的阀芯的轴线与第四流道104所在的平面和第五流道105所在的平面均相互垂直,以防止在第一开关阀11、第二开关阀12、第三开关阀13以及第四开关阀14内沉积杂质。这里,流道所在的平面指的是,图5中所示的由基体60的长度方向和宽度方向所限定出的平面。
在本公开提供的一种具体实施方式中,如图2至图4所示,第一分体40可以形成为立方体形,并具有由第一分体40的长度及宽度限定出的两个大面、以及由第一分体40的长度及厚度和第一分体40的宽度及厚度限定出的四个窄面,第一凹槽701、第二凹槽702、第三凹槽703、第四凹槽704以及第五凹槽705可以形成在一个大面上,第一开关阀11、第二开关阀12、第三开关阀13以及第四开关阀14可以安装在另一个大面上,以使第一开关阀11的阀芯的轴线可以与第一流道101所在的平面和第二流道102所在的平面相互垂直,第二开关阀12的阀芯的轴线与第一流道101所在的平面和第四流道104 所在的平面均相互垂直,第三开关阀13的阀芯的轴线与第一流道101所在的平面和第三流道103所在的平面均相互垂直,第四开关阀14的阀芯的轴线与第四流道104所在的平面和第五流道105所在的平面均相互垂直。而第一膨胀阀21、第二膨胀阀22以及第三膨胀阀23可以安装在窄面上,以便于第一膨胀阀21、第二膨胀阀22以及第三膨胀阀23与其对应的流道和接口连接。可选地,第一膨胀阀21、第二膨胀阀22以及第三膨胀阀23可以安装在不同的窄面上。
第一开关阀11、第二开关阀12、第三开关阀13、第四开关阀14、第一膨胀阀21、第二膨胀阀22、第三膨胀阀23、温度传感器30可以以任意适当的安装方式安装在基体60上。例如,如图2至图4所示,在本公开提供的一种实施方式中,基体60上可以形成有第一膨胀阀安装孔211、第二膨胀阀安装孔221、第三膨胀阀安装孔231、第一开关阀安装孔111、第二开关阀安装孔121、第三开关阀安装孔131、第四开关阀安装孔141、以及温度传感器安装孔,其中,第一膨胀阀安装孔211、第二膨胀阀安装孔221、第三膨胀阀安装孔231、第一开关阀安装孔111、第二开关阀安装孔121、第三开关阀安装孔131、第四开关阀安装孔141以及温度传感器安装孔的孔壁上可以均形成有内螺纹,以使第一开关阀11、第二开关阀12、第三开关阀13、第四开关阀14、第一膨胀阀21、第二膨胀阀22、第三膨胀阀23、温度传感器30分别与第一开关阀安装孔111、第二开关阀安装孔121、第三开关阀安装孔131、第四开关阀安装孔141、第一膨胀阀安装孔211、第二膨胀阀安装孔221、第三膨胀阀安装孔231、温度传感器安装孔螺纹连接。
此外,为进一步地提高第一膨胀阀21、第二膨胀阀22以及第三膨胀阀23的固定性,如图2和图3所示,基体60上可以形成有第一膨胀阀紧固孔212、第二膨胀阀紧固孔222以及第三膨胀阀紧固孔232,第一螺栓可以穿过第一膨胀阀21上的安装板并与第一膨胀阀紧固孔212螺纹连接,第二螺栓可以穿过第二膨胀阀22上的安装板并与第二膨胀阀紧固孔222螺纹连接,第三 螺栓可以穿过第三膨胀阀23上的安装板并与第三膨胀阀紧固孔232螺纹连接。
可选地,为便于第一开关阀11、第二开关阀12、第三开关阀13、第四开关阀14的定位与装配,如图3所示,基体60上还可以形成有第一开关阀定位孔112、第二开关阀定位孔122、第三开关阀定位孔132、第四开关阀定位孔142,第一开关阀定位孔112用于与第一开关阀11上的定位板相互配合,第二开关阀定位孔122用于与第二开关阀12上的定位板相互配合,第三开关阀定位孔132用于与第三开关阀13上的定位板相互配合,第四开关阀定位孔142用于与第四开关阀14上的定位板相互配合。
为便于理解,下面将基于图6和图7所示的车辆热管理系统,并结合体图1至图5所示的阀组集成模块详细描述车辆热管理系统在主要工作模式下的制冷剂的流动路径。
模式一:乘员舱制冷模式。如图6和图7所示,在该模式下,制冷剂的主要流动路径为:压缩机91→室内冷凝器92→第三开关阀13→室外换热器93→第二开关阀12→第二膨胀阀22→室内蒸发器94→气液分离器95→压缩机91。在该模式下,室内蒸发器94中为低温低压的制冷剂,制冷剂在室内蒸发器94中吸收乘员舱的热量,实现乘员舱的制冷。
需要说明的是,在该模式下,压缩机91出口流出的制冷剂虽然流过室内冷凝器92,但可以不利用风扇或鼓风机向室内冷凝器92吹风,从而使流入室内冷凝器92的高温高压的制冷剂不在室内冷凝器92中放热冷凝,也就是说,在该模式下,室内冷凝器92作为通流流道使用。
结合本公开提供的阀组集成模块,制冷剂的具体流动路径为:压缩机91→室内冷凝器92→室内冷凝器出口接口67→第二流道入口802→第二流道102→第三开关阀进口接口801→第三开关阀13→第三开关阀出口接口806→第三流道103→第三流道出口804→室外换热器进口接口66→室外换热器93→室外换热器出口接口64→第四流道入口810→第四流道104→第二开关阀进口接口809→第二开关阀12→第二开关阀出口接口807→第一流道101→第二 膨胀阀进口接口818→第二膨胀阀22→室内蒸发器进口接口65→室内蒸发器94→室内蒸发器出口接口63→第一通孔813→第五流道105→第三通孔815→回流进口接口62→气液分离器95→压缩机91。
模式二:电池包97冷却模式。如图6和图7所示,在该模式下,制冷剂的主要流动路径为:压缩机91→室内冷凝器92→第三开关阀13→室外换热器93→第二开关阀12→第一膨胀阀21→电池包换热器96→气液分离器95→压缩机91。冷却液的主要流动路径为:电池包97→电池包换热器96→电池包97。在该模式下,在电池包换热器96中,低温低压的制冷剂吸收高温冷却液的热量,使电池包换热器96的冷却液出口流出低温冷却液,该低温冷却液在流经电池包97时能够吸收电池包97的热量,实现电池包97的冷却降温。
需要说明的是,在该模式下,压缩机91出口流出的制冷剂虽然流过室内冷凝器92,但可以不利用风扇或鼓风机向室内冷凝器92吹风,从而使流入室内冷凝器92的高温高压的制冷剂不在室内冷凝器92中放热冷凝,也就是说,在该模式下,室内冷凝器92作为通流流道使用。
结合本公开提供的阀组集成模块,制冷剂的具体流动路径为:压缩机91→室内冷凝器92→室内冷凝器出口接口67→第二流道入口802→第二流道102→第三开关阀进口接口801→第三开关阀13→第三开关阀出口接口806→第三流道103→第三流道出口804→室外换热器进口接口66→室外换热器93→室外换热器出口接口64→第四流道入口810→第四流道104→第二开关阀进口接口809→第二开关阀12→第二开关阀出口接口807→第一流道101→第一膨胀阀进口接口819→第一膨胀阀21→电池包换热器进口接口68→电池包换热器96→电池包换热器出口接口61→第四通孔816→第五流道105→第三通孔815→回流进口接口62→气液分离器95→压缩机91。
模式三:乘员舱制冷及电池包97冷却模式。可以理解的是,该模式为上述模式一及模式二的同开模式。在该模式下,制冷剂的主要流动路径为:压缩机91→室内冷凝器92→第三开关阀13→室外换热器93→第二开关阀12, 这里,第二开关阀12的出口流出的制冷剂将分为两股,一股的流动路径为:第二膨胀阀22→室内蒸发器94→气液分离器95→压缩机91,另一股的流动路径为:第一膨胀阀21→电池包换热器96→气液分离器95→压缩机91。冷却液的主要流动路径为:电池包97→电池包换热器96→电池包97。需要说明的是,在该模式下,压缩机91出口流出的制冷剂虽然流过室内冷凝器92,但可以不利用风扇或鼓风机向室内冷凝器92吹风,从而使流入室内冷凝器92的高温高压的制冷剂不在室内冷凝器92中放热冷凝,也就是说,在该模式下,室内冷凝器92作为通流流道使用。
结合本公开提供的阀组集成模块,制冷剂的具体流动路径为:压缩机91→室内冷凝器92→室内冷凝器出口接口67→第二流道入口802→第二流道102→第三开关阀进口接口801→第三开关阀13→第三开关阀出口接口806→第三流道103→第三流道出口804→室外换热器进口接口66→室外换热器93→室外换热器出口接口64→第四流道入口810→第四流道104→第二开关阀进口接口809→第二开关阀12→第二开关阀出口接口807→第一流道101。第一流道101内的制冷剂分为两股,一股的具体流动路径为:第二膨胀阀进口接口818→第二膨胀阀22→室内蒸发器进口接口65→室内蒸发器94→室内蒸发器出口接口63→第一通孔813→第五流道105;另一股的具体流动路径为:第一膨胀阀进口接口819→第一膨胀阀21→电池包换热器进口接口68→电池包换热器96→电池包换热器出口接口61→第四通孔816→第五流道105。也就是说,从室内蒸发器94的出口流出的制冷剂和从电池包换热器96的制冷剂出口流出的制冷剂分别通过室内蒸发器出口接口63和电池包换热器出口接口61流入第五流道105并在第五流道105中汇流,汇流后的制冷剂的具体流动路径为:第三通孔815→回流进口接口62→气液分离器95→压缩机91。
模式四:乘员舱采暖模式。如图6和图7所示,在该模式下,制冷剂的主要流动路径为:压缩机91→室内冷凝器92→第三膨胀阀23→室外换热器93→第四开关阀14→气液分离器95→压缩机91。在该模式下,压缩机91出 口流出的高温高压的制冷剂流入室内冷凝器92中,并在室内冷凝器92中放热,从而提升乘员舱的温度,实现乘员舱的采暖。对于设置有PTC风加热器98的实施例而言,在乘员舱采暖模式下还可以开启PTC风加热器98,从而结合室内冷凝器92共同对乘员舱制热。
此外,在该模式下,若电池包97有采暖需求,则可以开启电池包97与电池包换热器96串联而成的冷却液回路中的PTC水加热器99,通过PTC水加热器99加热冷却液,从而实现电池包97的加热,进而实现乘员舱采暖及电池包97加热模式。在乘员舱采暖模式下,由于制冷剂不流入电池包换热器96,电池包换热器96中仅有冷却液流入,冷却液在电池包换热器96中不发生热量交换,此时电池包换热器96可以看作通流流道。
结合本公开提供的阀组集成模块,模式四中制冷剂的具体流动路径为:压缩机91→室内冷凝器92→室内冷凝器92→室内冷凝器出口接口67→第二流道入口802→第二流道102→第三膨胀阀进口接口817→第三膨胀阀23→第三膨胀阀出口接口805→第三流道103→第三流道出口804→室外换热器进口接口66→室外换热器93→室外换热器出口接口64→第四流道入口810→第四流道104→第四开关阀进口接口811→第四开关阀14→第四开关阀出口接口812→第五流道105→第三通孔815→回流进口接口62→气液分离器95→压缩机91。
模式五:利用电池包97热量的乘员舱采暖模式。如图6和图7所示,在该模式下,制冷剂的主要流动路径为:压缩机91→室内冷凝器92→第一开关阀11→第一膨胀阀21→电池包换热器96→气液分离器95→压缩机91。在该模式下,压缩机91出口流出的高温高压的制冷剂流入室内冷凝器92中,并在室内冷凝器92中放热,从而提升乘员舱的温度,实现乘员舱的采暖。在电池包换热器96中,低温低压的制冷剂吸收高温冷却液的热量,从而将电池包97的热量搬运到制冷剂中,用于乘员舱采暖。
结合本公开提供的阀组集成模块,制冷剂的具体流动路径为:压缩机91 →室内冷凝器92→室内冷凝器92进口接口→第二流道入口802→第二流道102→第一开关阀进口接口803→第一开关阀11→第一开关阀出口接口808→第一流道101→第一膨胀阀进口接口819→第一膨胀阀21→电池包换热器进口接口68→电池包换热器96→电池包换热器出口接口61→第四通孔816→第五流道105→第三通孔815→回流进口接口62→气液分离器95→压缩机91。
模式六:乘员舱除湿模式。如图6和图7所示,在该模式下,制冷剂的主要流动路径为:压缩机91→室内冷凝器92→第三开关阀13→室外换热器93→第二开关阀12→第二膨胀阀22→室内蒸发器94→气液分离器95→压缩机91。在该模式下,压缩机91出口流出的高温高压的制冷剂在室内冷凝器92中放热,室内蒸发器94中为低温低压的制冷剂,这样,在乘员舱中的热的湿空气遇到冷的室内蒸发器94时,湿空气中的水蒸气能够在室内蒸发器94的表面冷凝成冷凝水,从而达到乘员舱除湿的目的。
结合本公开提供的阀组集成模块,制冷剂的具体流动路径为:压缩机91→室内冷凝器92→室内冷凝器出口接口67→第二流道入口802→第二流道102→第三开关阀进口接口801→第三开关阀13→第三开关阀出口接口806→第三流道103→第三流道出口804→室外换热器进口接口66→室外换热器93→室外换热器出口接口64→第四流道入口810→第四流道104→第二开关阀进口接口809→第二开关阀12→第二开关阀出口接口807→第一流道101→第二膨胀阀进口接口818→第二膨胀阀22→室内蒸发器进口接口65→室内蒸发器94→室内蒸发器出口接口63→第一通孔813→第五流道105→第三通孔815→回流进口接口62→气液分离器95→压缩机91。
根据本公开的另一个方面,还提供一种车辆热管理系统,包括上述的阀组集成模块。
根据本公开的再一个方面,还提供一种车辆,包括上述的车辆热管理系统。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限 于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (16)

  1. 一种阀组集成模块,其特征在于,包括基体(60)和设置在所述基体(60)上的阀组,所述阀组包括第一开关阀(11)、第二开关阀(12)和第一膨胀阀(21);
    所述基体(60)上形成有用于与所述基体(60)外部的室内冷凝器(92)的出口连接的室内冷凝器出口接口(67)、用于与所述基体(60)外部的室外换热器(93)的出口连接的室外换热器出口接口(64)、用于与所述基体(60)外部的电池包换热器(96)的制冷剂进口连接的电池包换热器进口接口(68);
    所述基体(60)内形成有第一流道(101),所述第一开关阀(11)的进口与所述室内冷凝器出口接口(67)连通,所述第一开关阀(11)的出口与所述第一流道(101)连通,所述第一膨胀阀(21)的进口与所述第一流道(101)连通,所述第一膨胀阀(21)的出口与所述电池包换热器进口接口(68)连通,所述室外换热器出口接口(64)与所述第二开关阀(12)的进口连通,所述第二开关阀(12)的出口与所述第一流道(101)连通。
  2. 根据权利要求1所述的阀组集成模块,其特征在于,所述阀组还包括第二膨胀阀(22),所述基体(60)上还形成有用于与所述基体(60)外部的室内蒸发器(94)的进口连接的室内蒸发器进口接口(65),所述第二膨胀阀(202)的进口与所述第一流道(101)连通,所述第二膨胀阀(202)的出口与所述室内蒸发器进口接口(65)连通。
  3. 根据权利要求1-2任一项所述的阀组集成模块,其特征在于,所述阀组还包括第三开关阀(13),所述基体(60)上还形成有与所述室外换热器(93)的进口连接的室外换热器进口接口(66),所述基体(60)内还形成 有第二流道(102),所述室内冷凝器出口接口(67)与所述第二流道(102)连通,所述第一开关阀(11)的进口与所述第二流道(102)连通,所述第三开关阀(13)的进口与所述第二流道(102)连通,所述第三开关阀(13)的出口与所述室外换热器进口接口(66)连通。
  4. 根据权利要求1-3任一项所述的阀组集成模块,其特征在于,通过所述第一开关阀(11)的导通或截断以及所述第三开关阀(13)的导通或截断能够使从所述室内冷凝器出口接口(67)流入所述第二流道(102)的制冷剂经由所述第一开关阀(11)流入所述第一流道(101),或者经由所述第三开关阀(13)从所述室外换热器进口接口(66)流出。
  5. 根据权利要求1-4任一项所述的阀组集成模块,其特征在于,所述阀组还包括第三膨胀阀(23),所述基体(60)内还形成有第三流道(103),所述室外换热器进口接口(66)与所述第三流道(103)连通,所述第三开关阀(13)的出口与所述第三流道(103)连通,所述第三膨胀阀(23)的进口与所述第二流道(102)连通,所述第三膨胀阀(23)的出口与所述第三流道(103)连通。
  6. 根据权利要求1-5任一项所述的阀组集成模块,其特征在于,通过所述第三开关阀(13)的导通或截断以及所述第三膨胀阀(23)的节流或截断能够使从所述室内冷凝器出口接口(67)流入所述第二流道(102)的制冷剂经由所述第三开关阀(13)流入所述第三流道(103),或者经由所述第三膨胀阀(23)流入所述第三流道(103)。
  7. 根据权利要求1-6任一项所述的阀组集成模块,其特征在于,所述基体(60)包括第一分体(40)和第二分体(50),所述第一分体(40)包括第一连接面(401),所述第二分体(50)包括第二连接面(501),所述第 一连接面(401)与所述第二连接面(501)密封连接,所述第一连接面(401)向内凹陷并形成第一凹槽(701)、第二凹槽(702)以及第三凹槽(703),所述第二连接面(501)与所述第一凹槽(701)共同限定出所述第一流道(101),所述第二连接面(501)与所述第二凹槽(702)共同限定出所述第二流道(102),所述第二连接面(501)与所述第三凹槽(703)共同限定出所述第三流道(103);
    其中,所述第一开关阀(11)、所述第二开关阀(12)、所述第三开关阀(13)、所述第一膨胀阀(21)、所述第三膨胀阀(23)均设置在所述第一分体(40)上,或者所述第一开关阀(11)、所述第二开关阀(12)、所述第三开关阀(13)、所述第一膨胀阀(21)、所述第三膨胀阀(23)均设置在所述第二分体(50)上。
  8. 根据权利要求1-7任一项所述的阀组集成模块,其特征在于,所述第一凹槽(701)、所述第二凹槽(702)以及所述第三凹槽(703)中的至少一者为曲线型凹槽。
  9. 根据权利要求1-8任一项所述的阀组集成模块,其特征在于,所述阀组还包括第四开关阀(14),所述基体(60)上还形成有用于与所述基体(60)外部的压缩机(91)的进口或者与压缩机(91)连接的气液分离器(95)的进口连接的回流进口接口(62),所述基体(60)内还形成有第四流道(104),所述室外换热器出口接口(64)与所述第四流道(104)连通,所述第二开关阀(12)的进口与所述第四流道(104)连通,所述第四开关阀(14)的进口与所述第四流道(104)连通,所述第四开关阀(14)的出口与所述回流进口接口(62)连通。
  10. 根据权利要求1-9任一项所述的阀组集成模块,其特征在于,所述基体(60)内还形成有第五流道(105),所述第四开关阀(14)的出口与所述 第五流道(105)连通,所述回流进口接口(62)与所述第五流道(105)连通,所述基体(60)上还形成有用于与电池包换热器(96)的制冷剂出口连接的电池包换热器出口接口(61),所述电池包换热器出口接口(61)与所述第五流道(105)连通。
  11. 根据权利要求1-10任一项所述的阀组集成模块,其特征在于,所述基体(60)内还形成有第五流道(105),所述第四开关阀(14)的出口与所述第五流道(105)连通,所述回流进口接口(62)与所述第五流道(105)连通,所述基体(60)上还形成有用于与室内蒸发器(94)的出口连接的室内蒸发器出口接口(63),所述室内蒸发器出口接口(63)与所述第五流道(105)连通。
  12. 根据权利要求1-11任一项所述的阀组集成模块,其特征在于,所述阀组集成模块还包括温度传感器(30),所述第五流道(105)上形成有第一通孔(813)、第二通孔(814)以及第三通孔(815),所述第二通孔(814)位于所述第一通孔(813)与所述第三通孔(815)之间,所述第一通孔(813)与所述室内蒸发器出口接口(63)连通,所述第三通孔(815)与所述回流进口接口(62)连通,所述温度传感器(30)设置在所述基体(60)上且所述温度传感器(30)的检测端穿过所述第二通孔(814)并位于所述第五流道(105)内。
  13. 根据权利要求1-12任一项所述的阀组集成模块,其特征在于,所述基体(60)包括第一分体(40)和第二分体(50),所述第一分体(40)包括第一连接面(401),所述第二分体(50)包括第二连接面(501),所述第一连接面(401)与所述第二连接面(501)密封连接,所述第一连接面(401)向内凹陷并形成第四凹槽(704)和第五凹槽(705),所述第二连接面(501) 与所述第四凹槽(704)共同限定出所述第四流道(104),所述第二连接面(501)与所述第五凹槽(705)共同限定出所述第五流道(105);
    其中,所述第四开关阀(14)设置在所述第一分体(40)或所述第二分体(50)上。
  14. 根据权利要求1-13任一项所述的阀组集成模块,其特征在于,所述第四凹槽(704)和所述第五凹槽(705)中的至少一者为曲线型凹槽。
  15. 一种车辆热管理系统,其特征在于,包括权利要求1-14中任一项所述的阀组集成模块。
  16. 一种车辆,其特征在于,包括权利要求15所述的车辆热管理系统。
PCT/CN2022/095513 2021-05-31 2022-05-27 阀组集成模块、车辆热管理系统以及车辆 WO2022253121A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2022284987A AU2022284987A1 (en) 2021-05-31 2022-05-27 Valve group integrated module, vehicle thermal management system, and vehicle
BR112023021778A BR112023021778A2 (pt) 2021-05-31 2022-05-27 Módulo integrado de conjunto de válvulas, sistema de gerenciamento térmico de veículo, e, veículo
EP22815167.6A EP4299345A1 (en) 2021-05-31 2022-05-27 Valve group integrated module, vehicle thermal management system, and vehicle
IL307285A IL307285A (en) 2021-05-31 2022-05-27 An integrated module of a group of valves, a thermal management system for a car, and a car
JP2023560226A JP2024514784A (ja) 2021-05-31 2022-05-27 弁群統合モジュール、車両熱管理システム及び車両
US18/373,959 US20240017587A1 (en) 2021-05-31 2023-09-27 Valve set integrated module, vehicle thermal management system, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110603349.4 2021-05-31
CN202110603349.4A CN115476637A (zh) 2021-05-31 2021-05-31 阀组集成模块、车辆热管理系统以及车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/373,959 Continuation US20240017587A1 (en) 2021-05-31 2023-09-27 Valve set integrated module, vehicle thermal management system, and vehicle

Publications (1)

Publication Number Publication Date
WO2022253121A1 true WO2022253121A1 (zh) 2022-12-08

Family

ID=84323898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095513 WO2022253121A1 (zh) 2021-05-31 2022-05-27 阀组集成模块、车辆热管理系统以及车辆

Country Status (8)

Country Link
US (1) US20240017587A1 (zh)
EP (1) EP4299345A1 (zh)
JP (1) JP2024514784A (zh)
CN (1) CN115476637A (zh)
AU (1) AU2022284987A1 (zh)
BR (1) BR112023021778A2 (zh)
IL (1) IL307285A (zh)
WO (1) WO2022253121A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123071A (ja) * 1997-07-08 1999-01-26 Sharp Corp 空気調和装置
KR100978680B1 (ko) * 2009-08-26 2010-08-30 충주대학교 산학협력단 밸브 블록, 이를 구비한 냉난방 장치 및 방법
CN107351632A (zh) * 2016-05-10 2017-11-17 比亚迪股份有限公司 汽车热管理系统和电动汽车
CN112432396A (zh) * 2020-09-30 2021-03-02 三花控股集团有限公司 流体控制组件及热管理系统
JP2021047000A (ja) * 2019-09-13 2021-03-25 株式会社デンソー 接続モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123071A (ja) * 1997-07-08 1999-01-26 Sharp Corp 空気調和装置
KR100978680B1 (ko) * 2009-08-26 2010-08-30 충주대학교 산학협력단 밸브 블록, 이를 구비한 냉난방 장치 및 방법
CN107351632A (zh) * 2016-05-10 2017-11-17 比亚迪股份有限公司 汽车热管理系统和电动汽车
JP2021047000A (ja) * 2019-09-13 2021-03-25 株式会社デンソー 接続モジュール
CN112432396A (zh) * 2020-09-30 2021-03-02 三花控股集团有限公司 流体控制组件及热管理系统

Also Published As

Publication number Publication date
CN115476637A (zh) 2022-12-16
EP4299345A1 (en) 2024-01-03
JP2024514784A (ja) 2024-04-03
AU2022284987A1 (en) 2023-10-12
US20240017587A1 (en) 2024-01-18
BR112023021778A2 (pt) 2023-12-26
IL307285A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
WO2022253097A1 (zh) 阀组集成模块及具有其的车辆
US9751378B2 (en) Air conditioning system and heat exchanger
WO2022253096A1 (zh) 阀组集成模块及具有其的车辆
TWI646288B (zh) 一種空調系統及其換熱器
CN107351619B (zh) 汽车热管理系统和电动汽车
CN106532173B (zh) 一种换热器及一种车用热管理系统
US11207948B2 (en) Thermal management system and flow control device
CN105408142A (zh) 车辆用空调装置
US20240034122A1 (en) Valve set integrated module, thermal management system, and vehicle
CN111231621A (zh) 车辆热管理系统和车辆
WO2022253121A1 (zh) 阀组集成模块、车辆热管理系统以及车辆
CN105650780B (zh) 一种汽车电动热泵空调系统
CN113173047B (zh) 热管理系统
ITTO990528A1 (it) Condizionatore d'aria di tipo multiplo per l'uso combinato di un refrigeratore e un riscaldatore
CN108397573B (zh) 一种空调装置以及汽车空调
US20240017588A1 (en) Valve set integrated module, vehicle thermal management system, and vehicle
WO2022253095A1 (zh) 用于热管理系统的阀组集成模块、车辆热管理系统及车辆
CN115476642A (zh) 阀组集成模块、车辆热管理系统以及车辆
WO2023207583A1 (zh) 用于车辆热管理系统的集成模块、车辆热管理系统及车辆
WO2022253122A1 (zh) 阀组集成模块、热管理系统及车辆
CN110530063A (zh) 一种热管理系统
WO2023088242A1 (zh) 换热系统及车辆
WO2023116657A1 (zh) 流道板组件、流体控制组件以及热管理系统
CN115476638A (zh) 阀组集成模块、车辆热管理系统以及车辆
CN113479037A (zh) 一种集成式制冷装置和车载空调系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815167

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 804016

Country of ref document: NZ

Ref document number: 2022284987

Country of ref document: AU

Ref document number: AU2022284987

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 307285

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2023560226

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022815167

Country of ref document: EP

Ref document number: 2301006394

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2022284987

Country of ref document: AU

Date of ref document: 20220527

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022815167

Country of ref document: EP

Effective date: 20230929

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023021778

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023021778

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231019

NENP Non-entry into the national phase

Ref country code: DE