WO2023116657A1 - 流道板组件、流体控制组件以及热管理系统 - Google Patents

流道板组件、流体控制组件以及热管理系统 Download PDF

Info

Publication number
WO2023116657A1
WO2023116657A1 PCT/CN2022/140237 CN2022140237W WO2023116657A1 WO 2023116657 A1 WO2023116657 A1 WO 2023116657A1 CN 2022140237 W CN2022140237 W CN 2022140237W WO 2023116657 A1 WO2023116657 A1 WO 2023116657A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
valve part
channel
plate
port
Prior art date
Application number
PCT/CN2022/140237
Other languages
English (en)
French (fr)
Inventor
吴春强
谭永翔
李超龙
Original Assignee
浙江三花汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三花汽车零部件有限公司 filed Critical 浙江三花汽车零部件有限公司
Publication of WO2023116657A1 publication Critical patent/WO2023116657A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00557Details of ducts or cables
    • B60H1/00571Details of ducts or cables of liquid ducts, e.g. for coolant liquids or refrigerants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to a channel plate assembly, a fluid control assembly and a thermal management system.
  • the purpose of the present application is to provide a flow channel plate assembly, a fluid control assembly and a heat management system, which are beneficial to reduce harmful heat transfer of the working fluid between the flow channels.
  • a flow channel plate assembly including a first flow channel plate and a second flow channel plate, the flow channel plate assembly has a flow channel, the flow channel includes a flow channel before throttling and a flow channel after throttling, the throttling At least part of the front flow channel is located on the first flow channel plate, at least part of the throttling rear flow channel is located on the second flow channel plate, and the first flow channel plate is not in direct contact with the second flow channel plate .
  • a fluid control assembly including a valve part and a channel plate assembly
  • the valve part includes a valve part before throttling and a valve part after throttling
  • the flow channel plate assembly For the above-mentioned flow channel plate assembly, the pre-throttle valve part is located on the first flow channel plate, the pre-throttle valve part is connected to the first flow channel plate, and the pre-throttle valve part can communicate with or not
  • the throttled front flow channel is connected, the throttled valve part is located in the second flow channel plate, the throttled valve part is connected with the second flow channel plate, and the throttled valve part can connected or not connected with the throttling passage.
  • a thermal management system including a compressor, a gas-liquid separator, a first heat exchanger, a second heat exchanger, a third heat exchanger, and a fourth heat exchanger .
  • a fluid control assembly is the above-mentioned fluid control assembly, the fluid control assembly has an interface, and the fluid control assembly is respectively connected to the compressor, the gas-liquid separator, and the first exchange through the interface.
  • the heat exchanger communicates with the fourth heat exchanger.
  • the present application provides a flow channel plate assembly, a flow channel control assembly, and a thermal management system.
  • the fluid control assembly can be applied to a heat management system.
  • the fluid control assembly includes a flow channel plate assembly and a valve component, and the valve component and the flow channel plate assembly connection, the flow channel plate assembly includes a flow channel before throttling and a flow channel after throttling, the flow channel plate assembly includes a first flow channel plate and a second flow channel plate, by setting at least part of the flow channel before throttling is located on the first flow channel plate , after throttling, at least part of the flow channel is located on the second flow channel plate, and the first flow channel plate and the second flow channel plate are not in direct contact, which is beneficial to reduce harmful heat transfer of the working fluid between the flow channels.
  • Fig. 1 is a schematic diagram of an exploded structure of an embodiment of a fluid control assembly
  • Fig. 2 is a three-dimensional structural schematic view of the flow channel plate assembly and valve components in Fig. 1;
  • Fig. 3 is a schematic diagram of a three-dimensional structure of the first flow channel plate in Fig. 2;
  • Fig. 4 is a schematic diagram of a three-dimensional structure of the second channel plate in Fig. 2;
  • Fig. 5 is a schematic diagram of a three-dimensional structure of the flow channel connection plate in Fig. 2;
  • Fig. 6 is another schematic diagram of the three-dimensional structure of the first flow channel plate in Fig. 2;
  • Fig. 7 is a system schematic diagram of the first working mode of an embodiment in which the fluid control assembly in Fig. 1 is applied to a thermal management system;
  • Fig. 8 is a system schematic diagram of the second working mode of the thermal management system in Fig. 7;
  • FIG. 9 is a system schematic diagram of a third working mode of the thermal management system in FIG. 7 .
  • the fluid control component can be applied to a thermal management system, where the thermal management system can be a vehicle thermal management system, such as a new energy vehicle thermal management system.
  • the fluid control assembly 100 includes a driving part 1, a valve part 2 and a flow channel plate assembly 3, the valve part 2 is connected to the flow channel plate assembly 3, part of the valve part 2 is located in the driving part 1, and the driving part 1 can drive the valve
  • the component 2 operates, and the driving component 1 is connected with the channel plate assembly 3 .
  • the flow channel plate assembly 3 has a flow channel. Under the action of the driving part 1, the valve part 2 can control the on-off of the flow channel. through the runner.
  • the defined connection includes fixed connection or limit connection or detachable connection or buckle connection or sealing connection or bonding and other conventional connection methods in the field.
  • the number of valve parts 2 can be multiple, and the channel plate assembly 3 has a mounting cavity for installing the valve part 2, and the number of the mounting cavity corresponds to the number of the valve parts 2 one by one.
  • the respective parts are located in one-to-one corresponding installation cavities, and the valve part 2 is connected with the flow channel plate assembly 3 .
  • the valve component 2 includes a first valve component 21, a second valve component 22, a third valve component 23, a fourth valve component 24, a fifth valve component 25, a sixth valve component component 26, the seventh valve component 27, and the eighth valve component 28, wherein the first valve component 21 to the fourth valve component 24 are sequentially arranged linearly, and the fifth valve component 25 to the eighth valve component 28 are sequentially arranged linearly, And the first valve part 21 to the fourth valve part 24 are arranged side by side with the fifth valve part 25 to the eighth valve part 28, the linear arrangement described here is one of the arrangement modes of the valve part 2, and the valve part 2 can also be Non-linear or otherwise arranged.
  • the flow channel plate assembly 3 includes a first flow channel plate 31, a second flow channel plate 32 and a flow channel connection plate 33, the first flow channel plate 31 and the second flow channel plate 32 can be formed by mold casting and then machining
  • the installation cavities for installing the valve parts as in this embodiment, the first flow channel plate 31 includes four installation cavities for installing the first valve parts 21 to the fourth valve parts 24, that is, the first valve parts 21 to the fourth valve parts Components 24 are sequentially installed linearly on the first flow channel plate 31;
  • the second flow channel plate 32 includes another four installation cavities for installing the fifth valve component 25 to the eighth valve component 28, and the fifth valve component 25 to the eighth valve component
  • the valve parts 28 are sequentially installed linearly on the second flow channel plate 32, wherein the openings of the installation chambers of the first flow channel plate 31 and the second flow channel plate 32 have the same orientation, which facilitates the installation of the valve part 2 and the fluid control assembly 100 assembly molding.
  • the flow channel includes a first part of the flow channel and a second part of the flow channel, and the first flow channel plate 31 has a groove cavity forming the first part of the flow channel.
  • the first flow channel plate 31 includes a first wall surface 310, along a direction, the cavity of the first flow channel plate 31 is recessed from the first wall surface 310 toward the direction away from the first wall surface 310, and the cavity cavity of the first flow channel plate 31 does not penetrate the first flow channel plate 31, wherein the first wall surface 310
  • the vertical direction is perpendicular or tends to be perpendicular to the axial direction of the installation cavity formed in the first flow channel plate 31 .
  • the second flow channel plate 32 has a groove cavity forming the second part of the flow channel, specifically, the second flow channel plate 32 includes a second wall surface 320, along a direction perpendicular to the second wall surface 320, the second flow channel plate 32 is recessed from the second wall 320 toward the direction away from the second wall 320, wherein the vertical direction of the second wall 320 is perpendicular to or tends to be perpendicular to the axial direction of the installation cavity formed on the second flow channel plate 32 .
  • the flow channel connecting plate 33 is located between the first flow channel plate 31 and the second flow channel plate 32, the flow channel connecting plate 33 is adapted to the shape of the cavity, and the flow channel connecting plate 33 Cooperate with the first flow channel plate 31 and the second flow channel plate 32 respectively to form the flow channel of the flow channel plate assembly 3 .
  • the first wall surface 310 of the first flow channel plate 31 is attached to the flow channel connection plate 33, and the two are fixed by welding to form the first partial flow channel; the second flow channel of the second flow channel plate 32
  • the wall surface 320 is attached to the flow channel connecting plate 33, and the two are fixed by welding to form the second part of the flow channel.
  • the first part of the flow channel and the second part of the flow channel are located on the flow channel connecting plate. 33 sides.
  • the flow channel connection plate 33 may also be provided with a through hole, through which the communication between the first part of the flow channel and the second part of the flow channel can be realized.
  • other plates can also be set between the flow channel connecting plate 33 and the first flow channel plate 31, and or, other plates can also be set between the flow channel connecting plate 33 and the second flow channel plate 32;
  • the channel connecting plate 33 can also be one or more pieces, and these channel connecting plates can be distributed along the thickness direction of the first channel plate 31, or can be distributed along the thickness direction perpendicular to the first channel plate, and will not be described in detail.
  • the groove cavity forming the first part of the flow channel and the groove cavity forming the second part of the flow channel can also be located on the flow channel connecting plate 33, that is, along the thickness direction of the flow channel connecting plate 33, forming the first part of the flow channel
  • the groove cavity and the groove cavity forming the second partial flow channel are located on both sides of the flow channel connecting plate 33 .
  • one side of the first flow channel plate 31 and the flow channel connecting plate 33 is formed with a groove cavity forming a first part of the flow channel
  • the second flow channel plate 32 and the flow channel connecting plate 33 The other side of each is formed with a groove cavity forming the second part of the flow channel.
  • the first channel plate 31 cooperates with the channel connecting plate 33 to form at least part of the first part of the channel
  • the second channel plate 32 cooperates with the channel connecting plate 33 to form at least part of the second part of the channel.
  • the grooves formed in the first flow channel plate 31 include a first groove 311, a second groove 312, a third groove 313, and a fourth groove 314, which are formed in the first flow channel plate
  • the installation cavity of 31 includes a first installation cavity 301, a second installation cavity 302, a third installation cavity 303, and a fourth installation cavity 304.
  • the first installation cavity 301 communicates with the first groove cavity 311
  • the second installation cavity 302 communicates with the first groove cavity 311 and the second groove cavity 312
  • the third installation cavity 303 communicates with the second groove cavity 313 and the third groove cavity 313,
  • the fourth installation cavity 304 communicates with the third groove cavity 313 and the fourth groove cavity 313.
  • Cavity 314 .
  • the first installation cavity 301 to the fourth installation cavity 304 are respectively used for correspondingly installing the first valve component 21 to the fourth valve component 24, such as the first installation cavity 301 is used for installing the first valve component 21, and the second installation cavity 302 is used for The second valve component 22 is installed, the third installation cavity 303 is used for installing the third valve component 23 , and the fourth installation cavity 304 is used for installing the fourth valve component 24 .
  • the first valve part 21 can communicate or not communicate with the first flow passage 331 and an interface of the fluid control assembly 100, wherein the interface is used to communicate with other elements in the thermal management system such as heat exchangers, compressors, etc.
  • the second valve part 22 can communicate with or not communicate with the first channel 331 and the second channel 332
  • the third valve part 23 can communicate with or not communicate with the second channel 332 and the third channel 333
  • the second The four-valve component 24 can communicate with or not communicate with the third channel 333 and the fourth channel 334 .
  • the grooves formed on the second flow channel plate 32 include fifth grooves 325, sixth grooves 326, seventh grooves 327, and eighth grooves 328, correspondingly, forming
  • the installation cavities on the second flow channel plate 32 include the fifth installation cavity 305, the sixth installation cavity 306, the seventh installation cavity 307, and the eighth installation cavity 308.
  • the fifth installation cavity 305 to the eighth installation cavity 308 are respectively used for Corresponding to the installation of the fifth valve part 25 to the eighth valve part 28, as far as the second channel plate 32 is concerned, the fifth groove cavity 325 communicates with the fifth installation cavity 305 and the sixth installation cavity 306, and the seventh installation cavity 307 communicates with the sixth installation cavity.
  • the cavity 326 communicates with the seventh cavity 327
  • the eighth installation cavity 308 communicates with the seventh cavity 327 and the eighth cavity 328 .
  • the fifth groove cavity 325 cooperates with the flow channel connecting plate 33 to form the fifth flow channel 335
  • the sixth groove cavity 326 cooperates with the flow channel connecting plate 33 to form the sixth flow channel.
  • the flow channel 336 and the seventh groove cavity 327 cooperate with the flow channel connecting plate 33 to form the seventh flow channel 337
  • the eighth groove cavity 328 cooperates with the flow channel connecting plate 33 to form the eighth flow channel 338 .
  • the fifth valve part 25 can communicate or not communicate with the fifth flow channel 335 and another interface of the fluid control assembly
  • the sixth valve part 26 can communicate with the fifth flow channel 335 and the flow channel control port.
  • Another interface of the assembly the seventh valve part 27 can be connected or not connected with the sixth flow channel 336 and the seventh flow channel 337
  • the eighth valve part 28 can be connected or not connected with the seventh flow channel 337 and the eighth flow channel 338 . It should be pointed out that one of the above-mentioned interfaces, another interface, and another interface are different interfaces of the fluid control assembly.
  • the direction perpendicular to the first wall surface 310 is defined as the thickness direction of the flow channel plate assembly 3.
  • the thickness direction of the first flow channel plate 31 The thickness direction of the second flow channel plate 32 and the thickness direction of the flow channel connecting plate 33 are the same.
  • the fifth flow channel 335 to the eighth flow channel 338 are located on the other side of the flow channel connecting plate 33 .
  • the flow channel connecting plate 33 has through holes, the through holes include a first through hole 3301 , a second through hole 3302 , and a third through hole 3303 , and the through holes are arranged through the flow channel connecting plate 33 along the thickness direction of the flow channel connecting plate 33 .
  • the first through hole 3301 communicates with the second flow channel 332 and the sixth flow channel 336
  • the second through hole 3302 communicates with the fourth flow channel 334 and the eighth flow channel 338
  • the third through hole 3303 connects the second flow channel 332 with the fluid control Another interface of the component is connected.
  • the second channel 332 establishes a communication relationship with multiple channels and interfaces at the same time.
  • the second channel 332 includes a first sub-channel 3321, a second sub-channel 3322, a third sub-channel channel 3323, the first sub-channel 3321 communicates with the second sub-channel 3322 and the third sub-channel 3323 respectively, along the axial direction of the installation cavity, the second sub-channel 3322 is closer to the opening of the installation cavity than the third sub-channel 3323 Set, limited by the layout space of the first channel plate 31, the length of the flow path of the second sub-channel 3322 is shorter than the length of the flow path of the third sub-channel 3323, wherein the third through hole 3303 makes the first sub-channel 3321 and the fluid control Another interface of the component is connected, the first through hole 3301 is connected to the second sub-channel 3322 and the sixth channel 336, the second valve part 22 can be connected or not connected to the first channel 331 and the first sub-channel 3321, the third The valve member 23 can communicate
  • the fluid control assembly 100 has an interface.
  • the interface is arranged on the flow channel plate assembly 3, and the interface can be formed by machining, casting or extrusion; the interface can be located in the flow channel Tubes or other parts of a plate assembly that are fixedly connected or limitedly connected.
  • the interfaces specifically include a first interface 341, a second interface 342, a third interface 343, a fourth interface 344, a fifth interface 345, a sixth interface 346, a seventh interface 347, an eighth interface 348, and a ninth interface 349.
  • the first interface 341 to the third interface 343 are arranged on the first flow channel plate 31, the fourth interface 344 to the sixth interface 346, the eighth interface 348, and the ninth interface 349 are arranged on the second flow channel plate 32, and the seventh interface 347 is arranged on the In the channel connection plate 33 , the seventh interface 347 faces or is close to the second channel plate 32 . It can be understood that the arrangement of the interfaces is not limited to this manner.
  • the first interface 341 communicates with the first flow channel 331 through (but not limited to) the first installation cavity 301, and of course the first interface 341 can also directly communicate with the first flow channel 331; the first valve member 21 can communicate with or not communicate with the first flow channel 331 and the second interface 342; the third interface 343 communicates with the third flow channel 333 through (but not limited to) the fourth installation cavity 304; the fourth valve member 24 can communicate with or not communicate with the third interface 343 and the fourth flow channel 334 ;
  • the fourth interface 344 communicates with the fifth flow channel 335 through (but not limited to) the fifth installation cavity 305; the fifth valve part 25 can communicate with or not communicate with the fourth interface 344 and the fifth interface 345; the sixth valve part 26 can The fifth flow channel 335 and the sixth interface 346 may or may not be connected; the second flow channel 332, more specifically, the first sub-channel 3321 communicates with the seventh interface 347 through (but not limited to) the third through hole 3303; The eighth port 348 communicates with the seventh
  • the thermal management system includes a compressor 201, a gas-liquid separator 202, a first heat exchanger 203, a second The second heat exchanger 204, the third heat exchanger 205 and the fourth heat exchanger 206, wherein the working fluid in the first heat exchanger 203 to the third heat exchanger 205 is a refrigerant, which is often used as an evaporator or a condenser ;
  • the fourth heat exchanger 206 is a dual-channel heat exchanger, specifically, the fourth heat exchanger 206 has a first channel and a second channel that are not connected, and the working fluid (such as refrigerant) in the first channel and the second channel
  • the working fluid (such as cooling liquid) in the channel can be heat-exchanged in the fourth heat exchanger 206, wherein the second channel can be formed as a part of the flow path for the thermal management of the battery assembly;
  • the outlet of the compressor 201 communicates with the first interface 341, the inlet of the compressor 201 communicates with a communication port of the gas-liquid separator 202; a communication port of the first heat exchanger 203 The port communicates with the second interface 342, and the other port of the first heat exchanger 203 communicates with the third interface 343 (not shown in Figure 7); one port of the second heat exchanger 204 communicates with the fourth interface 344, the second Another port of the second heat exchanger 204 communicates with the ninth interface 349; a port of the third heat exchanger 205 communicates with the seventh interface 347, and another port of the third heat exchanger 205 communicates with the other port of the gas-liquid separator 202 A communication port is communicated; a port of the first channel of the fourth heat exchanger 206 communicates with the sixth interface 346, and another port of the first channel of the fourth heat exchanger 206 communicates with the eighth interface 348 and the gas-liquid separator 202 The pipeline connected to the first communication port is connected
  • the application of the fluid control assembly 100 to the thermal management system includes but not limited to three working modes:
  • the first valve part 21, the third valve part 23, the fourth valve part 24, and the seventh valve part 27 are closed, the second valve part 22, the fifth valve part 25, the sixth valve part 26, the eighth valve part
  • the valve part 28 is opened, and at this moment, the second valve part 22 is in direct communication with the first port 341 and the seventh port 347, the fifth valve part 25 is throttlingly connected with the fourth port 344 and the fifth port 345, and the sixth valve part 26 is throttlingly connected.
  • the fourth port 344 and the sixth port 346 are directly connected to the eighth port 348 and the ninth port 349 by the eighth valve member 28 .
  • the high-temperature and high-pressure gas-phase working fluid (such as refrigerant) at the outlet side of the compressor 201 flows into the first flow channel 331 from the first interface 341 , and when the first valve member 21 is closed, it is located at the second The high-temperature working fluid in the first passage 331 flows directly into the second flow passage 332 through the second valve part 22.
  • the third valve part 23 and the seventh valve part 27 are closed, the high-temperature working fluid in the second flow passage 332 flows from the first The seven ports 347 flow out and flow to the third heat exchanger 205. After being cooled by the third heat exchanger 205, the working fluid becomes a higher temperature working fluid and flows to the gas-liquid separator 202.
  • the gas-liquid separator 202 After heat exchange and cooling in the middle of the gas-liquid separator 202, It flows in from the fifth interface 345, and becomes a low-temperature and low-pressure gas-liquid two-phase working fluid after being throttled by the fifth valve member 25: a part of it flows from the fourth interface 344 to the second heat exchanger 204, and evaporates through the second heat exchanger 204 After absorbing heat, the lower-temperature working fluid flows into the eighth channel 338 from the ninth port 349 , and when the fourth valve part 24 and the seventh valve part 27 are closed, the lower-temperature working fluid in the eighth channel 338 passes through The eighth valve part 28 flows directly to the seventh flow channel 337, and flows out through the eighth interface 348 communicated with the seventh flow channel 337; the other part of the working fluid (low temperature, low pressure, gas-liquid two-phase) after throttling by the fifth valve part 25 ) flows into the fifth channel 335, and flows from the sixth interface 346 to the first channel of the fourth heat exchanger 206 after
  • Second working mode the second valve part 22, the third valve part 23, the eighth valve part 28 are closed, the first valve part 21, the fourth valve part 24, the fifth valve part 25, the sixth valve part 26, the seventh valve part
  • the valve part 27 When the valve part 27 is opened, the first valve part 21 is directly connected to the first port 341 and the second port 342, the fourth valve part 24 is directly connected to the third port 343 and the ninth port 349, and the fifth valve part 25 is throttlingly connected to the second port 349.
  • the fourth port 344 and the fifth port 345 , the sixth valve part 26 is throttlingly connected to the fourth port 344 and the sixth port 346 , and the seventh valve part 27 is directly connected to the seventh port 347 and the eighth port 348 .
  • the high-temperature and high-pressure gas-phase working fluid at the outlet side of the compressor 201 flows into the first flow channel 331 from the first port 341 , and when the second valve part 22 is closed, the working fluid flowing in from the first port 341
  • the high-temperature and high-pressure gas-phase working fluid directly flows through the first valve part 21 to the second port 342, flows from the second port 342 to the first heat exchanger 203, and becomes a higher-temperature working fluid after being cooled and dissipated by the first heat exchanger 203.
  • the working fluid in the fourth channel 334 flows from the ninth port 349 to the second heat exchanger 204, and after being cooled again by the second heat exchanger 204, it flows in from the fourth port 344 and flows to In the fifth channel 335, a part of the working fluid flowing in from the fourth port 344 is throttled by the fifth valve member 25 and becomes a low-temperature and low-pressure gas-liquid two-phase working fluid, which flows out from the fifth port 345, flows to the gas-liquid separator 202, and passes through
  • the gas-liquid separator 202 flows to the third heat exchanger 205 after exchanging heat and absorbing heat in the middle, and after being evaporated and absorbing heat in the third heat exchanger 205, the working fluid that becomes a relatively low temperature flows into the second flow channel 332 from the
  • the working fluid located in the second flow channel 332 flows to the sixth flow channel 336 through the first through hole 331 of the flow channel connection plate 33, and passes through the seventh valve part.
  • 27 flows directly to the seventh channel 337, when the eighth valve member 28 is closed, the working fluid located in the seventh channel 337 flows out from the eighth port 348; another part of the working fluid flowing in from the fourth port 344 flows into the fifth port
  • the flow passage 335 becomes a low-temperature and low-pressure gas-liquid two-phase working fluid after being throttled by the sixth valve member 26, flows out from the sixth interface 346, flows to the first passage of the fourth heat exchanger 206, and connects with the first passage of the fourth heat exchanger 206.
  • the working fluid (such as cooling liquid) in the second channel turns into a lower temperature working fluid after heat exchange, evaporation and heat absorption, and flows to the gas-liquid separator 202 after joining with the lower temperature working fluid flowing out of the eighth interface 348 , and passes through the gas-liquid After gas-liquid separation by the separator 202 , the gas-phase working fluid flows back to the inlet of the compressor 201 for recirculation.
  • the fourth valve part 2 in the second working mode, in order to meet different requirements, such as the subcooling degree of the working fluid, can also throttle and communicate with the third port 343 and the ninth port 349 .
  • the third working mode the second valve part 22, the fourth valve part 24, the seventh valve part 27, and the eighth valve part 28 are closed, the first valve part 21, the third valve part 23, the fifth valve part 25, the sixth valve part
  • the valve part 26 When the valve part 26 is opened, the first valve part 21 is directly connected to the first port 331 and the second port 342, the third valve part 23 is directly connected to the third port 343 and the seventh port 347, and the fifth valve part 25 is throttlingly connected to the second port 347.
  • the fifth port 345 and the fifth flow channel 335, the sixth valve part 26 throttles and connects the fifth flow channel 335 and the sixth port 346, that is, the fifth valve part 25 and the sixth valve part 26 jointly throttle and communicate with the fifth port 345 and the sixth port 346.
  • the sixth interface 346 .
  • the thermal management system When the thermal management system is in the third working mode: the high-temperature and high-pressure gas-phase working fluid from the outlet side of the compressor 201 flows into the first flow channel 331 from the first interface 341 , and the working fluid passes through the first valve when the second valve member 22 is closed.
  • the component 21 flows directly to the second port 342, and after being cooled and dissipated by the first heat exchanger 203, the higher temperature working fluid flows to the third port 343.
  • the fourth valve part 24 When the fourth valve part 24 is closed, the fluid flowing in from the third port 343 The working fluid flows to the third flow channel 333, and flows directly into the second flow channel 332 through the third valve part 23.
  • the higher temperature working fluid in the second flow channel 332 The fluid flows to the third heat exchanger 205 through the seventh interface 347, and flows into the gas-liquid separator 202 after being cooled again by the third heat exchanger 205 to dissipate heat. , after being throttled by the fifth valve part 25, it becomes a low-temperature and low-pressure gas-liquid two-phase working fluid.
  • the throttled working fluid cannot flow from the fourth interface 344
  • the flow path is realized through the second heat exchanger 205, that is, the working fluid flows into the fifth channel 335 after being throttled by the fifth valve part 25, and then flows from the sixth port 346 to the fourth heat exchange channel after being throttled again by the sixth valve part 26.
  • the first channel of the heat exchanger 206 exchanges heat with the working fluid (such as cooling liquid) in the second channel of the fourth heat exchanger 206. After evaporating and absorbing heat, it becomes a lower temperature working fluid and flows to the gas-liquid separator 202 for gas-liquid separation. After the gas-liquid separation in the device 202, the gas-phase working fluid flows back to the inlet of the compressor 201 for recirculation.
  • the fifth valve part 25 and the sixth valve part 26 are used as throttle valve parts, mainly used for the high temperature and high pressure working fluid coming out of the compressor 201 or the relatively high temperature and high pressure after condensing.
  • the working fluid becomes a low-temperature and low-pressure working fluid after throttling
  • the first valve part 21, the second valve part 22, the third valve part 23, and the fourth valve part 24 are mainly used for high temperature and high pressure or relatively high pressure before throttling.
  • the valve part through which the high-temperature and high-pressure working fluid is conducted is defined as a high-pressure side valve part or a pre-throttle valve part.
  • the first valve part 21 to the fourth valve part 21 are high-pressure side valve parts or
  • the valve part before throttling defines that the flow channel that establishes a communication relationship with the first valve part 21 to the fourth valve part 24 is a high-pressure side flow channel or a pre-throttle flow channel, that is, the first part of the flow channel, the high-pressure side flow channel (or
  • the working medium in the channel before throttling is mostly high-temperature or higher-temperature high-pressure working fluid, while the seventh valve part 27 and the eighth valve part 28 are mainly used for low-temperature and low-pressure or lower-temperature and low-pressure work after throttling.
  • a valve component for fluid communication which is defined as a low-pressure side valve component or a throttled valve component.
  • the seventh valve component 27 and the eighth valve component 28 are low-pressure side valve components or a throttled valve component.
  • the valve part is defined as the flow channel of the seventh valve part 28 and the eighth valve part 28 as the low-pressure side flow channel or the throttled flow channel, that is, the second part of the flow channel, the low-pressure side flow channel (or throttle The working medium in the flow passage) is mostly a low temperature or lower temperature low pressure working fluid. Define high-pressure and low-pressure sides to divide before and after throttling.
  • the first valve part 21 to the fourth valve part 24 are located in the first flow channel Plate 31, so that at least part of the pre-throttle flow passage that establishes a communication relationship with the first valve member 21 to the fourth valve member 24 is located on the first flow passage plate 31, specifically, in this embodiment, a pre-throttle flow passage is formed.
  • the grooves of channels are located on the first flow channel plate 31, and the first flow channel plate 31 cooperates with the flow channel connecting plate 33 to form a throttling front runner.
  • the seventh valve part 27 and the eighth valve part 28 are arranged on the second flow channel plate 32, so that at least part of the throttled flow channel forming a communication relationship with the seventh valve part 27 and the eighth valve part 28 is located on the second flow channel.
  • Channel plate 32 specifically, in this embodiment, the grooves forming the throttling flow channels (fifth flow channel 335, sixth flow channel 336, seventh flow channel 337, eighth flow channel 338) are located in the second The flow channel plate 32 and the second flow channel plate 32 cooperate with the flow channel connecting plate 33 to form a throttled flow channel.
  • the fifth valve part 25 and the sixth valve part 26 are also arranged on the second flow channel plate.
  • the pre-throttle valve part can be located on the first flow channel plate 31, and the part of the pre-throttle flow channel that establishes a communication relationship with the pre-throttle valve part can be set.
  • At least part of it is located on the first flow channel plate 31, and the throttled valve part is located on the second flow channel plate 32. At least part of the throttled flow channel that establishes a communication relationship with the throttled valve part is located on the second flow channel plate 32.
  • the first channel plate 31 is not in direct contact with the second channel plate 32 .
  • the cavity forming the flow channel before throttling starts from the first wall surface. 310 is formed by inward depression; along the direction perpendicular to the second wall surface 320 of the second flow channel plate 32, or in other words along the thickness direction of the second flow channel plate 32, the groove cavity forming the throttling flow channel starts from the second wall surface 320 Inwardly recessed, the first flow channel plate 31 cooperates with the flow channel connecting plate 33 to form a throttled front flow channel, and the second flow channel plate 32 cooperates with the flow channel connecting plate 33 to form a throttled rear flow channel, and along the flow channel connecting plate In the thickness direction of 33, the flow channel before throttling and the flow channel after throttling are respectively located on both sides of the flow channel connecting plate 33, so that the flow channels are formed in layers and arranged in layers, which is convenient and beneficial to flow.
  • the layered flow channels before throttling and the flow channels after throttling can be communicated through but not limited to the through holes, as in this embodiment, through the second A through hole 3301 connects the second sub-channel 3322 of the second channel 332 with the sixth channel 336, which better solves the problem that the flow path of the second sub-channel 3322 is limited by the layout space as mentioned above.
  • the length of the flow path that connects the flow path between the two valve components is spatially extended through the through hole, which reduces the temperature concentration of the working fluid and is conducive to reducing the harmful effects of the working fluid between the flow paths. heat transfer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Valve Housings (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

公开了一种流道板组件、流体控制组件以及热管理系统,流体控制组件(100)能够应用于热管理系统,流体控制组件(100)包括流道板组件(3)和阀部件(2),阀部件(2)与流道板组件(3)连接,流道板组件(3)包括节流前流道和节流后流道,流道板组件(3)包括第一流道板(31)和第二流道板(32),通过设置节流前流道的至少部分位于第一流道板(31),节流后流道的至少部分位于第二流道板(32),第一流道板(31)和第二流道板(32)不直接接触。本流道板组件、流体控制组件以及热管理系统有利于减少流道间工作流体的有害传热。

Description

流道板组件、流体控制组件以及热管理系统
本申请要求于2021年12月20日提交中国专利局、申请号为202111560130.7、发明名称为“流道板组件、流体控制组件以及热管理系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种流道板组件、流体控制组件以及热管理系统。
背景技术
在热管理系统中,为减少管路连接,已知相关技术有将流道进行集成的设计,如何减少各流道间工作流体的有害传热是一个待改善的技术问题。
发明内容
本申请的目的在于提供一种流道板组件、流体控制组件以及热管理系统,有利于减少流道间工作流体的有害传热。
为实现上述目的,本申请的一个实施方式采用如下技术方案:
一种流道板组件,包括第一流道板和第二流道板,所述流道板组件具有流道,所述流道包括节流前流道和节流后流道,所述节流前流道的至少部分位于所述第一流道板,所述节流后流道的至少部分位于所述第二流道板,所述第一流道板与所述第二流道板不直接接触。
本申请的另一个实施方式采用如下技术方案:一种流体控制组件,包括阀部件和流道板组件,所述阀部件包括节流前阀部件和节流后阀部件,所述流道板组件为上述的流道板组件,所述节流前阀部件位于所述第一流道板,所述节流前阀部件与所述第一流道板连接,所述节流前阀部件能够连通或不连通所述节流前流道,所述节流后阀部件位于所述第二流道板,所述节流后阀部件与所述第二流道板连接,所述节流后阀部件能够连通或不连通所述节流后流道。
本申请的又一个实施方式采用如下技术方案:一种热管理系统,包括 压缩机、气液分离器、第一换热器、第二换热器、第三换热器、第四换热器、流体控制组件,所述流体控制组件为上述流体控制组件,所述流体控制组件具有接口,所述流体控制组件通过接口分别与所述压缩机、所述气液分离器、所述第一换热器至所述第四换热器连通。
本申请的提供了一种流道板组件、流道控制组件以及热管理系统,流体控制组件能够应用于热管理系统,流体控制组件包括流道板组件和阀部件,阀部件与流道板组件连接,流道板组件包括节流前流道和节流后流道,流道板组件包括第一流道板和第二流道板,通过设置节流前流道的至少部分位于第一流道板,节流后流道的至少部分位于第二流道板,第一流道板和第二流道板不直接接触,有利于减少流道间工作流体的有害传热。
附图说明
图1是流体控制组件的一个实施例的一个爆炸结构示意图;
图2是图1中流道板组件和阀部件的一个立体结构示意图;
图3是图2中第一流道板的一个立体结构示意图;
图4是图2中第二流道板的一个立体结构示意图;
图5是图2中流道连接板的一个立体结构示意图;
图6是图2中第一流道板的又一个立体结构示意图;
图7是图1中流体控制组件应用于热管理系统的一个实施例的第一工作模式的系统示意图;
图8是图7中热管理系统的第二工作模式的系统示意图;
图9是图7中热管理系统的第三工作模式的系统示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个与另一个具有相同名称的部件区分开来,而不一定要求或者暗示这些部件之间存在任何这种实际的关系或者顺序。
流体控制组件可以应用于热管理系统,其中热管理系统可以为车辆热 管理系统,如新能源车辆热管理系统。参见图1,流体控制组件100包括驱动部件1、阀部件2以及流道板组件3,阀部件2与流道板组件3连接,部分阀部件2位于驱动部件1内,驱动部件1能够驱动阀部件2动作,驱动部件1与流道板组件3连接。流道板组件3具有流道,在驱动部件1的作用下,阀部件2能够控制流道的通断,具体地,阀部件2在控制流道连通时,阀部件2可以直通连通或节流连通流道。定义直通连通为不改变或者趋于不改变(如压损范围<1%)工作流体流过阀部件2前后的压力,定义节流连通为工作流体流过阀部件2前的压力大于流过阀部件2后的压力,定义连接包括固定连接或限位连接或可拆卸连接或卡扣连接或密封连接或粘接等本领域常规的连接方式。
参见图1和图2,阀部件2的数量可以为多个,流道板组件3具有用于安装阀部件2的安装腔,安装腔的数量和阀部件2的数量一一对应,阀部件的各自的部分位于一一对应的各自安装腔内,阀部件2与流道板组件3连接。参见图2至图5,在本实施例中,阀部件2包括第一阀部件21、第二阀部件22、第三阀部件23、第四阀部件24、第五阀部件25、第六阀部件26、第七阀部件27、第八阀部件28,其中第一阀部件21至第四阀部件24依次沿线性排布,第五阀部件25至第八阀部件28依次沿线性排布,且第一阀部件21至第四阀部件24与第五阀部件25至第八阀部件28并排设置,这里所述的线性排布是阀部件2的排布方式之一,阀部件2也可以非线性或者其他方式排布。具体地,流道板组件3包括第一流道板31、第二流道板32以及流道连接板33,第一流道板31和第二流道板32可以通过模具铸造成型再通过机加工形成安装阀部件的安装腔,如在本实施例中,第一流道板31包括用于安装第一阀部件21至第四阀部件24的四个安装腔,即第一阀部件21至第四阀部件24依次沿线性安装于第一流道板31上;第二流道板32包括用于安装第五阀部件25至第八阀部件28的另四个安装腔,第五阀部件25至第八阀部件28依次沿线性安装于第二流道板32上,其中第一流道板31和第二流道板32的安装腔的开口朝向相同,这样方便阀部件2的安装,方便流体控制组件100的装配成型。
流道包括第一部分流道和第二部分流道,第一流道板31具有形成第一部分流道的槽腔,具体地,第一流道板31包括第一壁面310,沿垂直于第 一壁面310的方向,第一流道板31的槽腔自第一壁面310朝远离第一壁面310的方向凹陷形成,第一流道板31的槽腔不贯穿第一流道板31,其中,第一壁面310的垂直方向与形成于第一流道板31的安装腔的轴向垂直或趋于垂直。定义趋于垂直为:相对于垂直,由于加工或其他原因影响使两者间的垂直存在公差或偏差的情况,即为趋于垂直。相应地,第二流道板32具有形成第二部分流道的槽腔,具体地,第二流道板32包括第二壁面320,沿垂直于第二壁面320的方向,第二流道板32的槽腔自第二壁面320朝远离第二壁面320的方向凹陷形成,其中,第二壁面320的垂直方向与形成于第二流道板32上的安装腔的轴向垂直或趋于垂直。沿垂直于第一壁面310的方向,流道连接板33位于第一流道板31和第二流道板32之间,流道连接板33与槽腔的形状相适配,流道连接板33分别与第一流道板31和第二流道板32配合,形成流道板组件3的流道。具体地,在本实施例中,第一流道板31的第一壁面310与流道连接板33贴合设置,两者通过焊接固定以形成第一部分流道;第二流道板32的第二壁面320与流道连接板33贴合设置,两者通过焊接固定以形成第二部分流道,沿垂直于第一壁面310的方向,第一部分流道和第二部分流道位于流道连接板33的两侧。另外,根据实际使用的需要,流道连接板33还可以设置有通孔,通过通孔可以实现第一部分流道和第二部分流道的连通。在其他实施方式中,流道连接板33和第一流道板31之间也可以设置其他板,和或,流道连接板33和第二流道板32之间也可以设置其他板;另外流道连接板33也可以是一片或者多片,这些流道连接板可以沿第一流道板31的厚度方向分布,也可以沿垂直于第一流道板的厚度方向分布,不再详细描述。另外,作为其他实施方式,形成第一部分流道的槽腔和形成第二部分流道的槽腔还可以位于流道连接板33,即沿流道连接板33的厚度方向,形成第一部分流道的槽腔和形成第二部分流道的槽腔位于所述流道连接板33的两侧。或者,沿流道连接板33的厚度方向,第一流道板31和流道连接板33的一侧均形成有形成第一部分流道的槽腔,第二流道板32和流道连接板33的另一侧均形成有形成第二部分流道的槽腔。第一流道板31与流道连接板33配合形成第一部分流道的至少部分,第二流道板32与流道连接板33配合形成第二部分流道的至少部分。
具体地,在本实施例中,形成于第一流道板31的槽腔包括第一槽腔311、第二槽腔312、第三槽腔313、第四槽腔314,形成于第一流道板31的安装腔包括第一安装腔301、第二安装腔302、第三安装腔303、第四安装腔304,就第一流道板31而言,第一安装腔301连通第一槽腔311,第二安装腔302连通第一槽腔311和第二槽腔312,第三安装腔303连通第二槽腔313和第三槽腔313,第四安装腔304连通第三槽腔313和第四槽腔314。第一安装腔301至第四安装腔304分别用于对应安装第一阀部件21至第四阀部件24,如第一安装腔301用于安装第一阀部件21,第二安装腔302用于安装第二阀部件22,第三安装腔303用于安装第三阀部件23,第四安装腔304用于安装第四阀部件24。当第一流道板31与流道连接板33配合时,第一槽腔311与流道连接板33配合形成第一流道331,第二槽腔312与流道连接板33配合形成第二流道332,第三槽腔313与流道连接板33配合形成第三流道333,第四槽腔314与流道连接板33配合形成第四流道334。这样,在驱动部件1的驱动下,第一阀部件21能够连通或不连通第一流道331和流体控制组件100的一个接口,其中接口用于与热管理系统中其他元件如换热器、压缩机等进行对接连通,第二阀部件22能够连通或不连通第一流道331和第二流道332,第三阀部件23能够连通或不连通第二流道332和第三流道333,第四阀部件24能够连通或不连通第三流道333和第四流道334。
同样的,在本实施例中,形成于第二流道板32上的槽腔包括第五槽腔325、第六槽腔326、第七槽腔327、第八槽腔328,相应地,形成于第二流道板32上的安装腔包括第五安装腔305、第六安装腔306、第七安装腔307、第八安装腔308,第五安装腔305至第八安装腔308分别用于对应安装第五阀部件25至第八阀部件28,就第二流道板32而言,第五槽腔325连通第五安装腔305和第六安装腔306,第七安装腔307连通第六槽腔326和第七槽腔327,第八安装腔308连通第七槽腔327和第八槽腔328。当第二流道板32与流道连接板33配合时,第五槽腔325与流道连接板33配合形成第五流道335,第六槽腔326与流道连接板33配合形成第六流道336,第七槽腔327与流道连接板33配合形成第七流道337,第八槽腔328与流道连接板33配合形成第八流道338。这样,在驱动部件1的驱动下,第五 阀部件25能够连通或不连通第五流道335和流体控制组件的另一接口,第六阀部件26能够连通第五流道335和流道控制组件的又一接口,第七阀部件27能够连通或不连通第六流道336和第七流道337,第八阀部件28能够连通或不连通第七流道337和第八流道338。需要指出的是:上述中的一个接口、另一接口、又一接口为流体控制组件的不同接口。
在本实施例中,沿流道板组件3的厚度方向,定义沿垂直于第一壁面310的方向为流道板组件3的厚度方向,可以理解的是,第一流道板31的厚度方向、第二流道板32的厚度方向,流道连接板33的厚度方向三者相同,沿流道板组件3的厚度方向,第一流道331至第四流道334位于流道连接板33的一侧,第五流道335至第八流道338位于流道连接板33的另一侧。流道连接板33具有通孔,通孔包括第一通孔3301、第二通孔3302、第三通孔3303,沿流道连接板33的厚度方向,通孔贯穿流道连接板33设置。第一通孔3301连通第二流道332和第六流道336,第二通孔3302连通第四流道334和第八流道338,第三通孔3303使第二流道332与流体控制组件的再一接口连通。
在本实施例中,第二流道332同时与多个流道和接口建立连通关系,具体地,第二流道332包括第一子流道3321、第二子流道3322、第三子流道3323,第一子流道3321分别连通第二子流道3322和第三子流道3323,沿安装腔的轴向,第二子流道3322比第三子流道3323靠近安装腔的开口设置,受第一流道板31布局空间限制,第二子流道3322的流通路径长度小于第三子流道3323的流通路径长度,其中第三通孔3303使第一子流道3321与流体控制组件的再一接口连通,第一通孔3301连通第二子流道3322和第六流道336,第二阀部件22能够连通或不连通第一流道331和第一子流道3321,第三阀部件23能够连通或不连通第三子流道3323和第三流道333。
参见图1至图6,流体控制组件100具有接口,在本实施例中,接口设置于流道板组件3,接口可以通过机加工形成,也可以铸造、挤压成型;接口可以位于与流道板组件固定连接或者限位连接的管或其他部件。接口具体包括第一接口341、第二接口342、第三接口343、第四接口344、第 五接口345、第六接口346、第七接口347、第八接口348、第九接口349,其中第一接口341至第三接口343设置于第一流道板31,第四接口344至第六接口346、第八接口348、第九接口349设置于第二流道板32,第七接口347设置于流道连接板33,第七接口347朝向或者说靠近第二流道板32。可以理解的是,接口的布置不限于该种方式。第一接口341通过(但不限于)第一安装腔301与第一流道331连通,当然第一接口341也可以直接与第一流道331连通;第一阀部件21能够连通或不连通第一流道331和第二接口342;第三接口343通过(但不限于)第四安装腔304与第三流道333连通;第四阀部件24能够连通或不连通第三接口343和第四流道334;第四接口344通过(但不限于)第五安装腔305与第五流道335连通;第五阀部件25能够连通或不连通第四接口344和第五接口345;第六阀部件26能够连通或不连通第五流道335和第六接口346;第二流道332,更具体地,第一子流道3321通过(但不限于)第三通孔3303与第七接口347连通;第八接口348与第七流道337连通,第七阀部件27能够连通或不连通第八接口348和第六流道336,第八阀部件28能够连通或不连通第八接口348和第八流道338;第九接口349与第八流道338连通。
参见图7至图9,为流体控制组件100应用于热管理系统的一个实施例,在本实施例中,热管理系统包括压缩机201、气液分离器202、第一换热器203、第二换热器204、第三换热器205以及第四换热器206,其中第一换热器203至第三换热器205内的工作流体为制冷剂,常作为蒸发器或冷凝器使用;第四换热器206为双通道换热器,具体地,第四换热器206具有不连通的第一通道和第二通道,第一通道内的工作流体(如制冷剂)和第二通道内的工作流体(如冷却液)能够在第四换热器206热交换,其中第二通道可以形成为电池组件热管理的部分流路;气液分离器202内置有用于进行中间换热或者说具有热交换功能的结构通道,或者说气液分离器还具有中间换热功能。
结合图1至图6,在本实施例中,压缩机201的出口与第一接口341连通,压缩机201的进口与气液分离器202的一连通口连通;第一换热器203的一端口与第二接口342连通,第一换热器203的另一端口与第三接口343(图7中未图示)连通;第二换热器204的一端口与第四接口344 连通,第二换热器204的另一端口与第九接口349连通;第三换热器205的一端口与第七接口347连通,第三换热器205的另一端口与气液分离器202的另一连通口连通;第四换热器206的第一通道的一端口与第六接口346连通,第四换热器206的第一通道的另一端口与第八接口348和气液分离器202又一连通口连通的管路连通;气液分离器202的再一连通口与第五接口345连通。在本实施例中,流体控制组件100集成有热管理系统中涉及的所有阀部件,在其他实施方式,流体控制组件也可以集成热管理系统中的部分阀部件,阀部件2安装于流道板组件3。
在本实施例中,流体控制组件100应用于热管理系统包括但不限于三种工作模式:
第一工作模式:第一阀部件21、第三阀部件23、第四阀部件24、第七阀部件27关闭,第二阀部件22、第五阀部件25、第六阀部件26、第八阀部件28打开,此时第二阀部件22直通连通第一接口341和第七接口347,第五阀部件25节流连通第四接口344和第五接口345,第六阀部件26节流连通第四接口344和第六接口346,第八阀部件28直通连通第八接口348和第九接口349。
热管理系统处于第一工作模式时:压缩机201出口侧的高温高压气相工作流体(如制冷剂)从第一接口341流入第一流道331,在第一阀部件21关闭的情况下,位于第一流道331的高温工作流体通过第二阀部件22直通流入第二流道332,在第三阀部件23和第七阀部件27关闭的情况下,位于第二流道332的高温工作流体从第七接口347流出,流向第三换热器205,经第三换热器205冷却散热后变为较高温的工作流体流向气液分离器202,经气液分离器202中间再次换热冷却后,从第五接口345流入,经第五阀部件25节流后变为低温低压气液两相工作流体:其中一部分从第四接口344流向第二换热器204,经第二换热器204蒸发吸热后变为较低温工作流体从第九接口349流入第八流道338,在第四阀部件24和第七阀部件27关闭的情况下,位于第八流道338的较低温工作流体通过第八阀部件28直通流向第七流道337,并通过与第七流道337连通的第八接口348流出;经第五阀部件25节流后的另外部分工作流体(低温低压气液两相)流入第 五流道335,经第六阀部件26再次节流后从第六接口346流向第四换热器206的第一通道,与第四换热器206的第二通道内的工作流体(如冷却液)热交换蒸发吸热后变为较低温工作流体,与从第八接口348流出的较低温工作流体汇合后共同流向气液分离器202,经气液分离器202气液分离后气相工作流体回流至压缩机201的进口进行再循环。
第二工作模式:第二阀部件22、第三阀部件23、第八阀部件28关闭,第一阀部件21、第四阀部件24、第五阀部件25、第六阀部件26、第七阀部件27打开,此时第一阀部件21直通连通第一接口341和第二接口342,第四阀部件24直通连通第三接口343和第九接口349,第五阀部件25节流连通第四接口344和第五接口345,第六阀部件26节流连通第四接口344和第六接口346,第七阀部件27直通连通第七接口347和第八接口348。
热管理系统处于第二工作模式时:压缩机201出口侧的高温高压气相工作流体从第一接口341流入第一流道331,在第二阀部件22关闭的情况下,从第一接口341流入的高温高压气相工作流体直接通过第一阀部件21直通流向第二接口342,从第二接口342流向第一换热器203,经第一换热器203冷却散热后变为较高温的工作流体流向第三接口343,并流向第三流道333,在第三阀部件23关闭的情况下,从第三接口343流入的工作流体通过第四阀部件24直通流向第四流道334,在第八阀部件28关闭的情况下,位于第四流道334的工作流体从第九接口349流向第二换热器204,经第二换热器204再次冷却散热后从第四接口344流入,并流向第五流道335,从第四接口344流入的一部分工作流体通过第五阀部件25节流后变为低温低压气液两相工作流体从第五接口345流出,流向气液分离器202,经气液分离器202中间换热吸热后流向第三换热器205,经第三换热器205蒸发吸热后变为较低温的工作流体从第七接口347流入第二流道332,在第二阀部件22和第三阀部件23关闭的情况下,位于第二流道的332工作流体通过流道连接板33的第一通孔331流向第六流道336,并经第七阀部件27直通流向第七流道337,在第八阀部件28关闭的情况下,位于第七流道337的工作流体从第八接口348流出;从第四接口344流入的另外部分工作流体流入第五流道335,经第六阀部件26节流后变为低温低压气液两相工作流体从第六接口346流出,流向第四换热器206的第一通道,与 第四换热器206的第二通道内的工作流体(如冷却液)热交换蒸发吸热后变为较低温工作流体,与从第八接口348流出的较低温工作流体汇合后共同流向气液分离器202,经气液分离器202气液分离后气相工作流体回流至压缩机201的进口进行再循环。需要指出的是:在第二工作模式中,为适应不同的需求,如工作流体过冷度的需要,其中第四阀部件2还可以节流连通第三接口343和第九接口349。
第三工作模式:第二阀部件22、第四阀部件24、第七阀部件27、第八阀部件28关闭,第一阀部件21、第三阀部件23、第五阀部件25、第六阀部件26打开,此时第一阀部件21直通连通第一接口331和第二接口342,第三阀部件23直通连通第三接口343和第七接口347,第五阀部件25节流连通第五接口345和第五流道335,第六阀部件26节流连通第五流道335和第六接口346,即第五阀部件25和第六阀部件26共同节流连通第五接口345和第六接口346。
热管理系统处于第三工作模式时:从压缩机201出口侧的高温高压气相工作流体从第一接口341流入第一流道331,在第二阀部件22关闭的情况下,工作流体通过第一阀部件21直通流向第二接口342,经第一换热器203冷却散热后变为较高温的工作流体流向第三接口343,在第四阀部件24关闭的情况下,从第三接口343流入的工作流体流向第三流道333,经第三阀部件23直通流入第二流道332,在第二阀部件22和第七阀部件27关闭的情况下,位于第二流道332的较高温工作流体通过第七接口347流向第三换热器205,经第三换热器205再次冷却散热后流向气液分离器202,经气液分离器202中间换热进一步冷却后从第五接口345流入,经第五阀部件25节流后变为低温低压气液两相工作流体,在第四阀部件24和第八阀部件28关闭的情况向,节流后的工作流体无法从第四接口344通过第二换热器205实现流通路径,即经第五阀部件25节流后工作流体流入第五流道335,经第六阀部件26再次节流后从第六接口346流向第四换热器206的第一通道,与第四换热器206的第二通道内的工作流体(如冷却液)热交换蒸发吸热后变为较低温工作流体流向气液分离器202,经气液分离器202气液分离后气相工作流体回流至压缩机201的进口进行再循环。
根据上述热管理系统的工作模式可知,第五阀部件25和第六阀部件26作为节流阀部件应用,主要用于对从压缩机201出来的高温高压工作流体或经冷凝后的较高温高压工作流体进行节流处理后变为低温低压工作流体,而第一阀部件21、第二阀部件22、第三阀部件23、第四阀部件24主要为应用于节流前对高温高压或较高温高压工作流体导通的阀部件,定义该部分阀部件为高压侧阀部件或节流前阀部件,如在本实施例中第一阀部件21至第四阀部件21为高压侧阀部件或节流前阀部件,定义与第一阀部件21至第四阀部件24建立连通关系的流道为高压侧流道或节流前流道,也即第一部分流道,高压侧流道(或者说节流前流道)内的工作介质多为高温或较高温的高压工作流体,而第七阀部件27和第八阀部件28则主要为应用于节流后对低温低压或较低温低压工作流体导通的阀部件,定义该部分阀部件为低压侧阀部件或节流后阀部件,如在本实施例中第七阀部件27和第八阀部件28为低压侧阀部件或节流后阀部件,定义与第七阀部件28和第八阀部件28建立连通关系的流道为低压侧流道或节流后流道,也即第二部分流道,低压侧流道(或者说节流后流道)内的工作介质多为低温或较低温的低压工作流体。定义高压侧和低压侧以节流前后进行划分。
为减少节流前流道内的高温或较高温工作流体与节流后流道内的低温或较低温工作流体之间的有害传热,设置第一阀部件21至第四阀部件24位于第一流道板31,这样形成与第一阀部件21至第四阀部件24建立连通关系的节流前流道的至少部分位于第一流道板31,具体地,在本实施例中,形成节流前流道(第一流道331、第二流道332、第三流道333、第四流道334)的槽腔位于第一流道板31,第一流道板31与流道连接板33配合形成节流前流道。设置第七阀部件27和第八阀部件28位于第二流道板32,这样形成与第七阀部件27和第八阀部件28建立连通关系的节流后流道的至少部分位于第二流道板32,具体地,在本实施例中,形成节流后流道(第五流道335、第六流道336、第七流道337、第八流道338)的槽腔位于第二流道板32,第二流道板32与流道连接板33配合形成节流后流道。在本实施例中,为使流体控制组件结构紧凑,在本实施例中,第五阀部件25和第六阀部件26同样设置于第二流道板。需要理解的是,上述仅为一个实施例进行说明,不失一般性地,可以设置节流前阀部件位于第一流道板31, 与节流前阀部件建立连通关系的节流前流道的至少部分位于第一流道板31,设置节流后阀部件位于第二流道板32,与节流后阀部件建立连通关系的节流后流道的至少部分位于第二流道板32,第一流道板31与第二流道板32不直接接触。
另外,如在本实施例中,沿垂直于第一流道板31的第一壁面310的方向,或者说沿第一流道板31的厚度方向,形成节流前流道的槽腔自第一壁面310向内凹陷形成;沿垂直于第二流道板32的第二壁面320的方向,或者说沿第二流道板32的厚度方向,形成节流后流道的槽腔自第二壁面320向内凹陷形成,第一流道板31与流道连接板33配合形成节流前流道,第二流道板32与流道连接板33配合形成节流后流道,并沿流道连接板33的厚度方向,节流前流道和节流后流道分别位于流道连接板33的两侧,这样将流道以层的方式形成,并进行分层设置,一方便有利于便于将流道做成流线型,减小工作流体的流阻,另一方面有利于延长各个流道的流通路径的长度,减少了流道内工作流体温度因流道流通路径过短而导致过度集中,有利于减少各流道间工作流体的有害传热。进一步地,通过在流道连接板33上设置贯穿的通孔,将分层的节流前流道和节流后流道通过但不限于通孔实现连通,如在本实施例中,通过第一通孔3301将第二流道332的第二子流道3322和第六流道336连通,较好的解决了如前文中所说的第二子流道3322因受布局空间限制导致流通路径长度不长的情况,即通过通孔实现了在空间上延长连接两个阀部件之间的流道的流通路径长度,减少了工作流体温度的集中,有利于减少各流道间工作流体的有害传热。
需要说明的是:以上实施例仅用于说明本申请而并非限制本申请所描述的技术方案,尽管本说明书参照上述的实施例对本申请已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本申请进行修改或者等同替换,而一切不脱离本申请的精神和范围的技术方案及其改进,均应涵盖在本申请的权利要求范围内。

Claims (12)

  1. 一种流道板组件,其特征在于:包括第一流道板和第二流道板,所述流道板组件具有流道,所述流道包括节流前流道和节流后流道,所述节流前流道的至少部分位于所述第一流道板,所述节流后流道的至少部分位于所述第二流道板,所述第一流道板与所述第二流道板不直接接触。
  2. 根据权利要求1所述的流道板组件,其特征在于:所述流道板组件还包括流道连接板,沿所述流道板组件的厚度方向,所述流道连接板位于所述第一流道板和所述第二流道板之间,所述第一流道板与所述流道连接板配合形成所述节流前流道的至少部分,所述第二流道板与所述流道连接板配合形成所述节流后流道的至少部分,所述节流前流道和所述节流后流道位于所述流道连接板的两侧。
  3. 根据权利要求2所述的流道板组件,其特征在于:所述第一流道板具有形成所述节流前流道的槽腔,所述第一流道板包括第一壁面,沿垂直于所述第一壁面的方向,形成所述节流前流道的槽腔自所述第一壁面朝远离所述第一壁面的方向凹陷形成,所述流道连接板与所述第一壁面贴合形成所述节流前流道;
    所述第二流道板具有形成所述节流后流道的槽腔,所述第二流道板包括第二壁面,沿垂直于所述第二壁面的方向,形成所述节流后流道的槽腔自所述第二壁面朝远离所述第二壁面的方向凹陷形成,所述流道连接板与所述第二壁面贴合形成所述节流后流道。
  4. 根据权利要求2或3所述的流道板组件,其特征在于:所述流道板组件具有通孔,沿所述流道连接板的厚度方向,所述通孔贯穿所述流道连接板,所述通孔连通所述节流前流道的至少一个和所述节流后流道的至少一个。
  5. 一种流体控制组件,其特征在于:包括阀部件和流道板组件,所述阀部件包括节流前阀部件和节流后阀部件,所述流道板组件为权利要求1-4任一项所述的流道板组件,所述节流前阀部件位于所述第一流道板,所述节流前阀部件与所述第一流道板连接,所述节流前阀部件能够连通或不连通所述节流前流道,所述节流后阀部件位于所述第二流道板,所述节流后阀部件与所述第二流道板连接,所述节流后阀部件能够连通或不连通所述 节流后流道。
  6. 根据权利要求5所述的流体控制组件,其特征在于:所述阀部件还包括节流阀部件,所述节流阀部件位于所述第二流道板,所述节流阀部件能够连通或不连通所述节流后流道,所述节流前阀部件沿线性依次排布,所述节流阀部件、所述节流后阀部件沿线性依次排布。
  7. 根据权利要求6所述的流体控制组件,其特征在于:所述第一流道板具有用于安装所述节流前阀部件的安装腔,所述第二流道板具有用于安装所述节流后阀部件和所述节流阀部件的安装腔,位于所述第一流道板的安装腔的开口和位于所述第二流道板的安装腔的开口朝向相同,所述第一流道板的安装腔的轴向与所述流道板组件的厚度方向垂直或趋于垂直,所述第二流道板的安装腔的轴向与所述流道板组件的厚度方向垂直或趋于垂直。
  8. 根据权利要求6或7所述的流体控制组件,其特征在于:所述节流前阀部件包括第一阀部件、第二阀部件、第三阀部件、第四阀部件,所述节流阀部件包括第五阀部件、第六阀部件,所述节流后阀部件包括第七阀部件、第八阀部件,所述节流前流道包括第一流道、第二流道、第三流道、第四流道,所述节流后流道包括第五流道、第六流道、第七流道、第八流道;
    所述第一阀部件能够连通或不连通所述第一流道和所述流体控制组件的一个接口,所述第二阀部件能够连通或不连通所述第一流道和所述第二流道,所述第三阀部件能够连通或不连通所述第二流道和所述第三流道,所述第四阀部件能够连通或不连通所述第三流道和所述第四流道,所述第五阀部件能够连通或不连通第五流道和所述流体控制组件的另一接口,所述第六阀部件能够连通或不连通所述第五流道和所述流体控制组件的又一接口,所述第七阀部件能够连通或不连通所述第六流道和所述第七流道,所述第八阀部件能够连通或不连通所述第七流道和所述第八流道。
  9. 根据权利要求8所述的流体控制组件,其特征在于:所述第二流道包括第一子流道、第二子流道、第三子流道,所述第一子流道分别与所述第二子流道、所述第三子流道连通,所述流道板组件包括流道连接板,所述流道连接板具有沿其厚度方向贯穿的第一通孔和第二通孔;
    所述第二阀部件能够连通或不连通所述第一流道和所述第一子流道,所述第一通孔连通所述第二子流道和所述第六流道,所述第三阀部件能够连通或不连通所述第三子流道和所述第三流道,所述第二通孔连通所述第四流道和所述第八流道。
  10. 根据权利要求9所述的流体控制组件,其特征在于:所述流体控制组件具有接口,所述接口包括第一接口、第二接口、第三接口、第四接口、第五接口、第六接口、第七接口、第八接口、第九接口,所述第一接口至所述第三接口位于所述第一流道板,所述第四接口至所述第六接口、所述第八接口、所述第九接口位于所述第二流道板,所述第七接口位于所述流道连接板,所述流道连接板还具有沿其厚度方向贯穿的第三通孔;
    所述第一接口与所述第一流道连通,所述第一阀部件能够连通或不连通所述第一流道和所述第二接口,所述第三接口与所述第三流道连通,所述第四接口与所述第五流道连通,所述第五阀部件能够连通或不连通所述第四接口和所述第五接口,所述第六阀部件能够连通或不连通所述第五流道和所述第六接口,所述第三通孔连通所述第二子流道和所述第七接口,所述第八接口与所述第七流道连通,所述第七阀部件能够连通或不连通所述第八接口和所述第六流道,所述第八阀部件能够连通或不连通所述第八接口和所述第八流道,所述第九接口与所述第八流道连通。
  11. 根据权利要求10所述的流体控制组件,其特征在于:所述流体控制组件包括但不限于三种工作模式:
    第一工作模式:所述第一阀部件、所述第三阀部件、所述第四阀部件、所述第七阀部件关闭,所述第二阀部件、所述第五阀部件、所述第六阀部件、所述第八阀部件打开,所述第二阀部件直通连通所述第一接口和所述第七接口,所述第五阀部件节流连通所述第四接口和所述第五接口,所述第六阀部件节流连通所述第四接口和所第六接口,所述第八阀部件直通连通所述第八接口和所述第九接口;
    第二工作模式:所述第二阀部件、所述第三阀部件、所述第八阀部件关闭,所述第一阀部件、所述第四阀部件、所述第五阀部件、所述第六阀部件、所述第七阀部件打开,所述第一阀部件直通连通所述第一接口和所述第二接口,所述第四阀部件直通连通或节流连通所述第三接口和所述第 九接口,所述第五阀部件节流连通所述第四接口和所述第五接口,所述第六阀部件节流连通所述第四接口和所述第六接口,所述第七阀部件直通连通所述第七接口和所述第八接口;
    第三工作模式:所述第二阀部件、所述第四阀部件、所述第七阀部件、所述第八阀部件关闭,所述第一阀部件、所述第三阀部件、所述第五阀部件、所述第六阀部件打开,所述第一阀部件直通连通所述第一接口和所述第二接口,所述第三阀部件直通连通所述第三接口和所述第七接口,所述第五阀部件和所述第六阀部件共同节流连通所述第五接口和所述第六接口。
  12. 一种热管理系统,其特征在于:包括压缩机、气液分离器、第一换热器、第二换热器、第三换热器、第四换热器、流体控制组件,所述流体控制组件为权利要求5-11任一项所述的流体控制组件,所述流体控制组件具有接口,所述流体控制组件通过接口分别与所述压缩机、所述气液分离器、所述第一换热器至所述第四换热器连通。
PCT/CN2022/140237 2021-12-20 2022-12-20 流道板组件、流体控制组件以及热管理系统 WO2023116657A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111560130.7 2021-12-20
CN202111560130.7A CN116278581A (zh) 2021-12-20 2021-12-20 流道板组件、流体控制组件以及热管理系统

Publications (1)

Publication Number Publication Date
WO2023116657A1 true WO2023116657A1 (zh) 2023-06-29

Family

ID=86820850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140237 WO2023116657A1 (zh) 2021-12-20 2022-12-20 流道板组件、流体控制组件以及热管理系统

Country Status (2)

Country Link
CN (1) CN116278581A (zh)
WO (1) WO2023116657A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745411A (zh) * 2014-01-23 2016-07-06 宝马股份公司 用于内燃机的热管理系统
CN111586907A (zh) * 2020-06-30 2020-08-25 重庆超力高科技股份有限公司 加热器组件和ptc加热器
CN112428774A (zh) * 2020-11-06 2021-03-02 三花控股集团有限公司 流体控制元件及其热管理系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745411A (zh) * 2014-01-23 2016-07-06 宝马股份公司 用于内燃机的热管理系统
US20160325601A1 (en) * 2014-01-23 2016-11-10 Bayerische Motoren Werke Aktiengesellschaft Heat Management System for an Internal Combustion Engine
CN111586907A (zh) * 2020-06-30 2020-08-25 重庆超力高科技股份有限公司 加热器组件和ptc加热器
CN112428774A (zh) * 2020-11-06 2021-03-02 三花控股集团有限公司 流体控制元件及其热管理系统

Also Published As

Publication number Publication date
CN116278581A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2022022407A1 (zh) 热管理组件
WO2023116657A1 (zh) 流道板组件、流体控制组件以及热管理系统
CN215763449U (zh) 流体控制组件
WO2022083674A1 (zh) 一种换热器、换热组件及一种热管理系统
CN116278580A (zh) 流体控制组件
US20230204298A1 (en) Heat exchange assembly
EP4325632A1 (en) Connecting device and integrated assembly
WO2022253121A1 (zh) 阀组集成模块、车辆热管理系统以及车辆
WO2023088342A1 (zh) 流体控制组件以及热管理系统
WO2024002066A1 (zh) 冷却剂分配组件、热管理模块和车辆热管理系统
CN218764093U (zh) 流体控制组件及制冷系统
EP4310414A1 (en) Fluid management device and thermal management system
CN116135562A (zh) 流体控制组件
CN114056034A (zh) 一种换热组件及一种车辆热管理系统
CN114076530A (zh) 一种换热组件及一种热管理系统
CN114763974A (zh) 一种换热组件及一种车辆热管理系统
CN117818289A (zh) 热管理组件
CN115111790A (zh) 流体管理装置及热管理系统
CN114593618A (zh) 一种换热组件及热管理系统
CN113970259A (zh) 一种节流换热组件
CN117755042A (zh) 热管理组件
CN116118419A (zh) 流体控制组件以及热管理系统
CN113970264A (zh) 一种换热组件
CN114963833A (zh) 热管理组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909969

Country of ref document: EP

Kind code of ref document: A1