WO2023088242A1 - 换热系统及车辆 - Google Patents

换热系统及车辆 Download PDF

Info

Publication number
WO2023088242A1
WO2023088242A1 PCT/CN2022/131961 CN2022131961W WO2023088242A1 WO 2023088242 A1 WO2023088242 A1 WO 2023088242A1 CN 2022131961 W CN2022131961 W CN 2022131961W WO 2023088242 A1 WO2023088242 A1 WO 2023088242A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
water pipe
chamber
pipe group
air
Prior art date
Application number
PCT/CN2022/131961
Other languages
English (en)
French (fr)
Inventor
袁志
李海鹏
刘超鹏
李泉明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023088242A1 publication Critical patent/WO2023088242A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00328Heat exchangers for air-conditioning devices of the liquid-air type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/008Arrangement or mounting of electrical propulsion units with means for heating the electrical propulsion units

Definitions

  • the present application relates to the technical field of heat exchange, in particular to a heat exchange system and a vehicle.
  • the thermal management system of new energy vehicles usually includes the refrigerant circuit of the air conditioning system, the battery liquid cooling circuit and the motor liquid cooling circuit.
  • the main function of the thermal management system is to realize the passenger compartment, battery pack,
  • the temperature of the controlled object such as the motor is within the target range.
  • a thermal management system usually requires the use of multiple heat exchangers, such as plate heat exchangers for heat exchange between refrigerant and water, parallel flow heat exchangers for heat exchange between air and water or air and refrigerant, etc.
  • the present application provides a heat exchange system and a vehicle.
  • the heat exchange system has fewer components, which simplifies the complexity of the heat exchange system tube group and reduces the difficulty of layout.
  • the heat exchange system in the present application may include a multi-way valve, an air duct, and at least one heat exchanger disposed in the air duct, the heat exchanger has an air passage through which air passes, and the at least one The water inlet and the water outlet of the heat exchanger communicate with the multi-way valve through the water pipe group, and the refrigerant inlet of the at least one heat exchanger communicates with the refrigerant outlet of the at least one heat exchanger through the refrigerant pipe group,
  • An electronic expansion valve is arranged on the refrigerant tube group; the multi-way valve is also used to communicate with the heat exchange unit, and when exchanging heat for the heat exchange unit, the multi-way valve connects the heat exchange unit to , the multi-way valve, the water pipe group and the heat exchanger are in a circulation loop.
  • the refrigerant inlet and refrigerant outlet can form a refrigerant channel in the heat exchanger
  • the water inlet and water outlet can form a water flow channel in the heat exchanger, that is, the heat exchanger can pass through the refrigerant, water and air
  • the refrigerant Heat exchange between water and air can reduce the number of heat exchangers in the heat exchange system, and due to the reduction in the number of heat exchangers, the complexity of the refrigerant circuit and water circuit can also be reduced, thereby simplifying the heat exchange system.
  • the complexity of the tube group reduces the difficulty of laying out the heat exchange system.
  • the multi-way valve can make the heat exchange unit, the water pipe group and at least one heat exchanger in the same circulation circuit.
  • the refrigerant inlet and the refrigerant in the heat exchanger The pipeline with the outlet in the heat exchanger can exchange heat with the pipeline with the water inlet and water outlet in the heat exchanger, and the air circulation can also exchange heat with the water inlet and water outlet in the heat exchanger
  • the pipes in the device are used for heat exchange, so that the speed of heat exchange can be increased to improve the heat exchange efficiency of the heat exchange system.
  • the two heat exchangers may be an evaporator and a condenser respectively, and both the evaporator and the condenser are arranged in the air duct.
  • the second water pipe group, the first water pipe group can connect the water inlet of the evaporator with the water outlet of the evaporator and the multi-way valve, and the second water pipe group can connect the water inlet of the condenser with the
  • the water outlet of the condenser communicates with the multi-way valve;
  • the refrigerant tube group can communicate the refrigerant outlet of the evaporator with the refrigerant inlet of the condenser, and the refrigerant tube group can also connect the A refrigerant outlet of the condenser communicates with a refrigerant inlet of the evaporator.
  • Setting two heat exchangers can increase the speed of heat exchange, further simplify the heat exchange system, and reduce the difficulty of laying out the heat exchange system.
  • a compressor may be arranged between the refrigerant outlet of the evaporator and the refrigerant inlet of the condenser, so as to Allows the refrigerant to flow between the evaporator and condenser.
  • a first water pump in order to increase the speed of water flow between the evaporator and the multi-way valve, can be provided on the first water pipe group; in order to improve the speed of water flow between the condenser and the multi-way valve speed, a second water pump can also be provided on the second water pipe group.
  • the heat exchange unit may include a battery pack assembly; the battery pack assembly may include a battery pack and a third water pipe group, and the battery pack may communicate with the multi-way valve through the third water pipe group , the third water pipe group may be provided with the third water pump; when dissipating heat from the battery pack, the multi-way valve is used to connect the evaporator, the first water pipe group, the third water pump, the third The water pipe group and the battery pack are connected; in this way, when the high-temperature water in the battery pack exchanges heat with the refrigerant in the evaporator, it can also exchange heat with the air in the air passage in the evaporator, thereby improving heat transfer. The speed allows the battery pack to cool down quickly.
  • the multi-way valve is used to connect the condenser, the second water pipe group, the third water pump, the third water pipe group and the battery pack.
  • the low-temperature water in the battery pack exchanges heat with the refrigerant in the condenser, it can also exchange heat with the air in the air passage in the condenser, thereby increasing the speed of heat exchange and enabling the battery pack to heat up quickly .
  • the heat exchange unit may also include a power assembly; the power assembly may include a power assembly and a fourth water pipe group, and the fourth water pipe group may communicate the power assembly with the multi-way valve , the fourth water pipe group is provided with a fourth water pump; when dissipating heat from the powertrain, the multi-way valve can connect the evaporator, the first water pipe group, the fourth water pump, the fourth water pipe group and Powertrain connectivity. At this time, the powertrain can dissipate heat through the evaporator, so that the powertrain can cool down quickly.
  • the heat exchange unit further includes a front-end assembly
  • the front-end assembly includes a front-end module and a fifth water pipe group
  • the fifth water pipe group can communicate the front-end module with the multi-way valve;
  • the multi-way valve can connect the power assembly, the fourth water pipe group, the fourth water pump, the fifth water pipe group and the front-end module.
  • the powertrain components can be dissipated through the front-end components.
  • the heat exchange system may further include a casing, a first switch and a second switch, wherein the casing may be provided with an air inlet and an air outlet, and the air inlet and the air outlet form the above-mentioned air duct , the evaporator, the condenser, the first switch and the second switch can all be arranged in the air duct; when the first switch is in the first state and the second switch is in the second state, the gas in the air duct can Pass through the air channel of the evaporator, the gas in the air channel does not pass through the air channel of the condenser, so that the air discharged through the air outlet is cold air; when the first switch is in the second state, the When the second switch is in the first state, the gas in the air passage does not pass through the air passage of the evaporator, and the gas in the air passage passes through the air passage of the condenser, so that the air discharged through the air outlet is heated Air; when the first switch is in the first state and
  • a fresh air inlet can also be provided on the casing, so that air other than the air inlet can enter the air duct.
  • a fan can also be provided in the air duct (inside the casing), and the fan can increase the flow rate of the air entering the air duct through the air inlet and the fresh air inlet.
  • the present application also provides a vehicle.
  • the vehicle has the heat exchange system and the heat exchange unit in any of the above-mentioned technical solutions.
  • the heat exchange speed of the vehicle using the above-mentioned heat exchange system to the heat exchange unit is improved, and the heat exchange system is arranged
  • the difficulty is reduced, and the speed of cold and hot air in the vehicle can also be increased.
  • FIG. 1 is a schematic structural diagram of a thermal management system in the prior art
  • Fig. 2a is a schematic structural diagram of a heat exchange system provided in an embodiment of the present application.
  • Fig. 2b is another structural schematic diagram of the heat exchange system provided by the embodiment of the present application.
  • Fig. 2c is another structural schematic diagram of the heat exchange system provided by the embodiment of the present application.
  • Fig. 3a to Fig. 3c are still another structural schematic diagram of the heat exchange system provided by the embodiment of the present application.
  • Fig. 4 is the frame diagram of the heat exchange system provided by the embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a heat exchanger in a heat exchange system provided by an embodiment of the present application
  • FIG. 6 is a partially exploded schematic diagram of the heat exchanger 1 shown in FIG. 1;
  • Fig. 7 is a partial sectional view of the heat exchanger shown in Fig. 1;
  • Fig. 8 is a schematic structural diagram of the heat exchange unit in the heat exchanger provided by the embodiment of the present application.
  • Fig. 9 is an exploded schematic view of the heat exchange unit shown in Fig. 8.
  • Fig. 10 is a schematic structural diagram of another heat exchanger provided in the embodiment of the present application.
  • Fig. 11 is a partially exploded schematic view of the heat exchanger shown in Fig. 10;
  • Fig. 12 is a schematic structural diagram of another heat exchanger provided in the embodiment of the present application.
  • Fig. 13 is a partially exploded schematic view of the heat exchanger shown in Fig. 12;
  • Fig. 14 is a schematic structural diagram of another heat exchanger provided in the embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of another heat exchanger provided in the embodiment of the present application.
  • Fig. 16 is a partially exploded schematic view of the heat exchanger shown in Fig. 15;
  • Fig. 17 is a schematic structural diagram of another heat exchanger provided in the embodiment of the present application.
  • Fig. 18 is a schematic structural diagram of another heat exchanger provided in the embodiment of the present application.
  • FIG. 19 is a partially exploded schematic view of the heat exchanger shown in FIG. 18 .
  • the thermal management system is an important part of new energy vehicles.
  • the HVAC (heating, ventilation and air conditioning, air conditioning box module) of the thermal management system in Figure 1 includes an air-cooled condenser and an evaporator, and the air-cooled condenser and The evaporator is also connected to the replacement plate, which leads to more heat exchange devices in the thermal management system, complicated pipelines, and difficult layout.
  • this setting method heats the cockpit, the thermal response speed is slow and the heat exchange efficiency is low .
  • the present application provides a heat exchange system to solve the above problems.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • the present application provides a heat exchange system
  • the heat exchange system includes a multi-way valve 05, an air duct 091 and at least one heat exchanger, at least one heat exchanger is arranged in the air duct 091, and At least one heat exchanger has an air passage through which air passes, and at least one heat exchanger also has a water inlet, a water outlet, a refrigerant outlet and a refrigerant inlet, and the water inlet and water outlet of at least one heat exchanger pass through the water pipe group 03 and
  • the multi-way valve 05 is connected, and the refrigerant outlet and refrigerant inlet of at least one heat exchanger are connected through the refrigerant tube group 04, and the refrigerant tube group 04 is provided with an electronic expansion valve 042; wherein, the multi-way valve 05 can be connected with the exchange
  • the heat units are connected, and when exchanging heat for the heat exchange unit, the multi-way valve 05 can put the heat exchange unit, the multi-way valve 05 , the
  • the multi-way valve 05 can make the heat exchange unit, the water pipe group and at least one heat exchanger in the same circulation circuit.
  • the refrigerant inlet and refrigerant outlet in the heat exchanger The pipeline in the heat exchanger can exchange heat with the pipeline in the heat exchanger where the water inlet and outlet are in the heat exchanger, and the air circulation can also be connected with the water inlet and outlet in the heat exchanger.
  • the internal pipeline is used for heat exchange, so that the speed of heat exchange can be increased to improve the heat exchange efficiency of the heat exchange system.
  • the heat exchanger can pass through the refrigerant, water and air, which can reduce the number of components used in the heat exchange system, and also reduce the complexity of the refrigerant circuit and the water circuit, so as to simplify the complexity of the tube group in the heat exchange system. Reduce the difficulty of layout.
  • the radiator can replace the two heat exchangers in the heat management system in the prior art, thereby simplifying the refrigerant pipeline and the water pipe in the above-mentioned heat exchange system.
  • the number of heat exchangers for water outlet, refrigerant outlet and refrigerant inlet is one, and one heat exchanger is evaporator 01, the other two heat exchangers in the prior art are connected in parallel, and the two existing There is a three-way valve between the heat exchangers in the prior art, wherein one heat exchanger of the prior art communicates with the refrigerant tube set 04 and the water tube set 03, and the other heat exchanger of the prior art is only set between the refrigerant tube set 04 and the water tube set 03 tube group 04, and the other two heat exchangers of the prior art are connected to the evaporator 01 through the electronic expansion valve 042, and the above-mentioned heat exchanger replaces the two heat exchangers of the prior art;
  • the two heat exchangers when there are two heat exchangers, can be the evaporator 01 and the condenser 02 respectively, and both the evaporator 01 and the condenser 02 are arranged in the air duct 091, and the water pipe group 03 can include The first water pipe group 031 and the second water pipe group 032, the first water pipe group 031 can connect the water inlet of the evaporator 01 and the water outlet of the evaporator 01 to the multi-way valve 05, and the second water pipe group 032 can connect the condenser The water inlet of 02 and the water outlet of condenser 02 are also connected with the multi-way valve 05.
  • the multi-way valve 05 can communicate with the evaporator 01 through the first water pipe group 031, and the multi-way valve 05 is also connected to the heat exchange unit that needs to be cooled, so that the heat in the heat exchange unit can be continuously transferred to the evaporator 01 to realize the cooling of the heat exchange unit.
  • the refrigerant tube group 04 can connect the refrigerant outlet of the evaporator 01 with the refrigerant inlet of the condenser 02, and the refrigerant tube group 04 can also connect the refrigerant outlet of the condenser 02 with the refrigerant inlet of the evaporator 01. connected.
  • the refrigerant inlet of the evaporator 01 passes through a refrigerant with a lower temperature, and the refrigerant with a lower temperature will exchange heat with the water at a higher temperature entering the evaporator 01 through the first water tube group 031 ,
  • the refrigerant after absorbing water and high temperature heats up, and the heated refrigerant enters the condenser 02 through the refrigerant outlet of the evaporator 01, and the air in the air passage will also exchange heat with the high-temperature water entering the heat exchanger to improve The cooling rate of the heat exchange unit.
  • a first water pump can be provided in the first water pipe group 031 to increase the circulation speed of the circulating loop water with the first water pipe; in addition, in the specific setting of the second When the water pipe group 032, also can be provided with the first water pump in the second water pipe group 032, to improve the circulation speed of the circulation circuit water with the second water pipe;
  • the first water pipe group 031 and the second pipe group can be provided with The first water pump, or one of the first water pipe group 031 or the second water pipe group 032 is provided with a first water pump.
  • a compressor 041 may also be provided in the refrigerant tube group 04 , and the refrigerant discharged from the refrigerant outlet of the evaporator 01 enters the compressor 041 and is discharged from the outlet of the compressor 041 Exclude the high-temperature refrigerant, the high-temperature refrigerant can enter the condenser 02, and the high-temperature refrigerant entering the condenser 02 can condense and release heat, and the high-pressure and high-temperature liquid refrigerant flows out from the refrigerant outlet of the condenser 02 and passes through the expansion valve Throttling expansion quickly cools down, and the low-temperature and low-pressure refrigerant enters the evaporator 01 to absorb heat and evaporate, then becomes a low-pressure gaseous refrigerant and then returns to the compressor 041 to form a cycle of refrigerant.
  • the heat exchange unit may include a battery pack assembly 06
  • the battery pack assembly 06 may include a battery pack 061 and a third water pipe group 062, and a third water pump 063 may be arranged on the third water pipe; when the battery pack 061 When the temperature is high and the battery pack 061 needs to be cooled, the working state of the multi-way valve 05 can be adjusted so that the multi-way valve 05, the evaporator 01, the first water pipe group 031, the third water pump 063, the third water pipe group 062 and The battery pack 061 is connected, the temperature of the water is lowered through the evaporator 01, and then enters the multi-way valve 05 through the first water pipe group 031, and the third water pump 063 can inject the water passing through the multi-way valve 05 into the battery through the third water pipe group 062 In the battery pack 061, after absorbing heat in the battery pack 061, it returns to the evaporator 01 to dissipate heat through the multi-way valve 05.
  • the working state of the multi-way valve 05 can be adjusted so that the multi-way valve 05, the condenser 02, the second water pipe group 032, the third water pump 063, and the third The water pipe group 062 and the battery pack 061 are connected, the water absorbs heat through the condenser 02 and the temperature rises, and then enters the multi-way valve 05 through the second water pipe group 032, and the third water pump 063 can pass the water passing through the multi-way valve 05 through the third water pipe
  • the group 062 is injected into the battery pack 061, and after the heat is released in the battery pack 061, it passes through the multi-way valve 05, and then returns to the condenser 02 to absorb heat through the second water pipe group 032, so that the circulation flows, and the battery pack 061 continues to
  • the heat exchange unit may also include a power assembly 07, and the power assembly 07 may include a power assembly 071 and a fourth water pipe group 072, wherein the power assembly 071 communicates with the multi-way valve 05 through the fourth water pipe group 072, and
  • the fourth water pipe group 072 can also be provided with a fourth water pump 073; the power assembly 071 will generate a large amount of heat when it is working, and when the power assembly 071 is radiated, the working state of the multi-way valve 05 can be adjusted to make the multi-way valve 05
  • the through valve 05, the evaporator 01, the first water pipe group 031, the fourth water pump 073, the fourth water pipe group 072 and the power assembly 071 are in a circulation loop.
  • Group 031 enters the multi-way valve 05, and the fourth water pump 073 can inject the water passing through the multi-way valve 05 into the powertrain 071 through the fourth water pipe group 072, and then pass through the multi-way valve 05 after absorbing heat in the powertrain 071 Returning to the evaporator 01 to release heat, such a circulation flow, the heat in the powertrain 071 is continuously transferred to the evaporator 01, thereby realizing the cooling of the powertrain 071.
  • the heat exchange unit can also include a front-end assembly 08, and the front-end assembly 08 can include a front-end module 081 and a fifth water pipe group 082, wherein the fifth water pipe group 082 can communicate the front-end module 081 with the multi-way valve 05; when the power assembly When the temperature of 071 is high, adjust the working state of the multi-way valve 05 to connect the powertrain 071, the fourth water pipe group 072, the fourth water pump 073, the fifth water pipe group 082 and the front-end module 081, and the water passes through the front end
  • the heat release temperature of the module 081 decreases, and then enters the multi-way valve 05 through the fifth water pipe group 082, and the fourth water pump 073 can inject the water passing through the multi-way valve 05 into the powertrain 071 through the fourth water pipe group 072.
  • adjusting the working state of the multi-way valve 05 can also make the multi-way valve 05, the fifth water pipe group 082, the front-end module 081, the fourth water pump 073, the fourth The water pipe group 072 and the power assembly 071 are in a circulation loop.
  • the temperature of the water is lowered through the front-end module 081, and then enters the multi-way valve 05 through the fifth water pipe group 082.
  • the fourth water pump 073 can transfer the water passing through the multi-way valve 05. Water is injected into the powertrain 071 through the fourth water pipe group 072, and after absorbing heat in the powertrain 071, it returns to the front-end module 081 through the multi-way valve 05 to release heat. It is continuously transmitted to the front-end module 081 to realize the cooling of the powertrain 071.
  • the heat exchange system may further include a housing 09, and a first switch 094 and a second switch 095 may also be arranged in the housing 09, and the housing 09 may 09 is provided with an air inlet 092 and an air outlet 093, and an air duct 091 is formed between the air inlet 092 and the air outlet 093.
  • the first switch 094, the second switch 095, the evaporator 01 and the condenser 02 are all arranged in the air duct 091; Wherein, the first switch 094 , the second switch 095 , the casing 09 , the evaporator 01 and the condenser 02 can form an air conditioning box structure, and the expansion valve 42 can also be arranged in the casing 09 .
  • the air-conditioning box has the functions of cooling, heating and dehumidification.
  • the air-conditioning box is cooling, referring to FIG.
  • the air of the evaporator 01 can pass through the air passage of the evaporator 01, the second switch 095 is in the second state, that is, the second switch 095 blocks the air passage of the condenser 02, and the air in the air passage 091 does not pass through the air passage of the condenser 02, At this time, the air can enter the air channel 091 through the air inlet 092, and the air entering the air channel 091 can pass through the air channel of the evaporator 01, and the air exchanges heat with the evaporator 01 to reduce the temperature of the air, and finally passes through the air channel of the evaporator 01.
  • the air outlet 093 discharges low-temperature air. In this way, the air can directly exchange heat with the low-temperature refrigerant in the condenser 02 without secondary transfer, thereby improving the efficiency of heat exchange and the speed of refrigeration
  • the first switch 094 is in the second state, that is, the first switch 094 blocks the air channel of the evaporator 01, so that the gas in the air channel 091 cannot pass through the air channel of the evaporator 01
  • the second switch 095 is in the first state
  • the gas in the air channel 091 can pass through the air channel of the condenser 02, at this time, the air can enter the air channel 091 through the air inlet 092, and the air entering the air channel 091 can be Through the air channel of the condenser 02, the air exchanges heat with the condenser 02 to increase the temperature of the air, and finally the high-temperature air is discharged through the air outlet 093.
  • the air can directly exchange heat with the high-temperature refrigerant in the evaporator 01 without secondary transfer, thereby improving the efficiency of heat exchange and increasing the speed of temperature rise.
  • the air in the air duct 091 can pass through the air passage of the evaporator 01, and the air in the air duct 091 can also pass through The air passage of the condenser 02, at this time, the air can enter the air passage 091 through the air inlet 092, and the air entering the air passage 091 can pass through the air passage of the evaporator 01, and the air exchanges heat with the evaporator 01 to Lower the temperature of the air, and then pass through the air channel of the condenser 02, and the air exchanges heat with the condenser 02 to increase the temperature of the air, so that the air returns to normal temperature, and the moisture in the air condenses from the The condensed water pipe of the air conditioning box is discharged, and the dried air is finally discharged through the air outlet 093.
  • a fan 096 may be provided in the housing 09, and the setting of the fan 096 may enable Air circulates rapidly in the air duct 091.
  • a fresh air inlet 097 may also be provided on the casing 09 , and the fresh air inlet 097 is located between the fan 096 and the air inlet 092 .
  • the number of the air inlet 092 and the air outlet 093 can be one or more, and can be adjusted according to actual needs.
  • the present application also provides a vehicle, the vehicle has the heat exchange system in any of the above technical solutions, the vehicle may include a vehicle body, and the vehicle has a cockpit, wherein the cockpit may be provided with an air inlet 092 of the casing 09 And the air outlet 093, so that the driver can change the temperature in the cockpit according to the change of the external environment, and then improve the comfort of driving.
  • Fig. 5 is a schematic structural diagram of a heat exchanger in a heat exchange system provided by an embodiment of the present application
  • Fig. 6 is a partially exploded schematic diagram of the heat exchanger 1 shown in Fig. 5
  • the heat exchanger 1 may include a first current collector 10, a second current collector 20, and a heat exchange core 30, wherein the first current collector 10 and the second current collector 20 are spaced apart
  • the first current collector 10 may include a first chamber 11 and a second chamber 12 that are isolated
  • the second collector 20 may include a third chamber 21 and a fourth chamber 22 that are isolated.
  • the first The chamber 11 , the second chamber 12 , the third chamber 21 and the fourth chamber 22 can be respectively used for buffering fluid.
  • the heat exchange core 30 can be located between the first collector 10 and the second collector 20 , between the first chamber 11 and the third chamber 21 , and between the second chamber 12 and the fourth chamber 22 Both can communicate through the heat exchange core 30 .
  • the first current collector 10 and the second current collector 20 can be arranged in parallel, or can also be arranged at a certain angle, which is not limited by the present application.
  • the embodiment shown in FIG. Behavior examples are described.
  • the heat exchange core 30 may include a plurality of heat exchange units 31 , and the plurality of heat exchange units 31 may be arranged in parallel between the first collector 10 and the second collector 20 .
  • the arrangement direction of a plurality of heat exchange units 31 as the first direction (x direction).
  • the first direction x and the first current collector may also be substantially parallel.
  • each heat exchange unit 31 may include at least one fin 311 , and multiple airflow channels may be arranged in the fin 311 .
  • the fins 311 have an air inlet side and an air outlet side. When the heat exchanger 1 is in operation, air can enter each airflow channel from the air inlet side of the fins 311 and then be discharged from the air outlet side.
  • the air inlet side and the air outlet side of the fins 311 may be arranged opposite to each other along the second direction (y direction), and the second direction y and the first direction x may be arranged at a certain angle.
  • the second direction y and the first direction x may be perpendicular to each other.
  • the arrangement direction of the first current collector 10 and the second current collector 20 is defined as the third direction (z direction).
  • the first direction x, the second direction y and the third direction z may be perpendicular to each other.
  • each heat exchange unit 31 can also include at least one flow guide member 312, and at least one flow guide member 312 can be used to form a first flow channel 3121 and a second flow channel 3122 which are isolated, and the first flow channel 3121 and the second flow channel 3122 Channels 3122 can be used to communicate different fluids respectively.
  • the heat exchange core 30 can simultaneously allow three different fluids to pass through.
  • the first flow channel 3121 can be used for circulating refrigerant
  • the second flow channel 3122 can be used for circulating water
  • the first flow channel 3121 can be used for circulating water
  • the second flow channel 3122 can be used for circulating refrigerant.
  • the first flow channel 3121, the second flow channel 3122 and the fins 311 can be arranged according to a certain rule, so that between the first flow channel 3121 and the second flow channel 3122, the second flow channel 3122 It can form direct or indirect heat conduction contact with the fins 311 and between the first flow channel 3121 and the fins 311 .
  • heat conduction contact can also be formed between flow channels in adjacent heat exchange units 31 . In this way, the three fluids in the first flow channel 3121 , the second flow channel 3122 and the airflow channels of the fins 311 can realize heat exchange in the heat exchange core 30 .
  • the first chamber 11 may be provided with a plurality of first flow openings 112 , and the plurality of first flow openings 112 may be respectively connected to one end of the first flow channel 3121 of each heat exchange unit 31 .
  • the third chamber 21 may be provided with a plurality of third flow openings (not shown in the figure), and the plurality of third flow openings may be respectively connected to the other end of the first flow channel 3121 of each heat exchange unit 31 . That is to say, the first chamber 11 and the third chamber 21 can communicate through a plurality of first flow channels 3121, and the first chamber 11, the first flow channels 3121 and the third chamber 21 can form the whole heat exchanger 1 the first circulation path.
  • the first flow path can be provided with two openings that can communicate with the outside.
  • the two openings can be opened in the first chamber 11 and the third chamber 21 respectively.
  • the first chamber will be referred to below as The opening through which the chamber 11 communicates with the outside is called the first opening 111, and the opening through which the third chamber 21 communicates with the outside is called the third opening 211.
  • the first flow through The path is connected to a corresponding circulation circuit.
  • the circulation circuit is a refrigerant circuit.
  • the second chamber 12 may be provided with a plurality of second flow openings 122 , and the plurality of second flow openings 122 may be respectively connected to one end of the second flow channel 3122 of each heat exchange unit 31 .
  • the fourth chamber 22 may be provided with a plurality of fourth flow openings (not shown in the figure), and the plurality of fourth flow openings may be respectively connected with the other end of the second flow channel 3122 of each heat exchange unit 31 . That is to say, the second chamber 12 and the fourth chamber 22 can communicate through a plurality of second flow channels 3122, and the second chamber 12, the second flow channels 3122 and the fourth chamber 22 can form a heat exchanger. 1 overall second circulation path.
  • the second flow path can also be provided with two openings that can communicate with the outside.
  • the two openings can be opened in the second chamber 12 and the fourth chamber 22 respectively.
  • the second The opening through which the chamber 12 communicates with the outside is called the second opening 121
  • the opening through which the fourth chamber 22 communicates with the outside is called the fourth opening 221.
  • the second The circulation path is connected to a corresponding circulation circuit.
  • the circulation circuit is a water cooling circuit.
  • the two ends of the flow guiding member 312 used to form the first flow channel 3121 can be respectively welded to the first flow opening 112 and the third flow opening, thereby improving the connection between the first flow channel 3121 and the second flow opening.
  • the two ends of the flow guide member 312 used to form the second flow channel 3122 can be welded to the second flow port 122 and the fourth flow port respectively to improve the connection between the second flow channel 3122 and the second chamber 12 and the second flow port.
  • the first opening 111 of the first chamber 11 can be used as the inlet of the first flow path
  • the third opening 211 of the third chamber 21 can be used as the outlet of the first flow path.
  • the end of the first flow channel 3121 connected to the first branch port 112 is its liquid inlet port
  • the end connected to the third branch port is its liquid outlet port.
  • the fluid in the first flow channel 3121 flows from left to right.
  • the fourth opening 221 of the fourth chamber 22 can be used as the inlet of the second flow path
  • the second opening 121 of the second chamber 12 can be used as the outlet of the second flow path.
  • the end of the second flow channel 3122 connected to the fourth flow port is its liquid inlet port, and the end connected to the second flow port 122 is its liquid outlet port, and the fluid in the second flow channel 3122 flows from right to left .
  • the fluid in the first flow channel 3121 and the fluid in the second flow channel 3122 flow in opposite directions, thereby forming convection in the heat exchange core 30.
  • This design helps to improve the flow rate of the two fluids. heat exchange efficiency, thereby improving the overall heat exchange performance of the heat exchanger 1 .
  • the fluid in the first flow channel 3121 and the fluid in the second flow channel 3122 can also flow in the same direction, for example, when the first flow channel 3121 and the first distribution port 112 of the first cavity 11
  • the end connected to the second flow channel 3122 and the second split port 122 of the second cavity 12 can also be the liquid inlet port, which can be determined according to the actual application scene of the heat exchanger 1. setting, which is not limited in this application.
  • orientation words such as “left”, “right”, “upper” and “lower” used in the heat exchanger of the embodiment of the present application are mainly explained based on the display orientation of the heat exchanger in Figure 5, and do not form a contradictory The limitation of the orientation of the heat exchanger in the actual application scenario.
  • FIG. 7 is a partial cross-sectional view of the heat exchanger shown in FIG. 5 .
  • the first chamber 11 can be arranged inside the second chamber 12.
  • the whole of the first chamber 11 can be submerged in the fluid of the second chamber 12, so that heat conduction contact can be realized between the first chamber 11 and the second chamber 12, so that the first chamber 11
  • the fluid in the second chamber 12 can exchange heat with the fluid in the second chamber 12 .
  • the third chamber 21 can also be arranged inside the fourth chamber 22. When two fluids enter the third chamber 21 and the fourth chamber 22 respectively, the third chamber 21 can be submerged in the fourth chamber.
  • heat conduction contact can also be realized between the third chamber 21 and the fourth chamber 22, so that the fluid in the third chamber 21 and the fluid in the fourth chamber 22 can also perform heat exchange. That is to say, the two fluids entering the heat exchanger 1 can not only realize heat exchange in the first flow channel 3121 and the second flow channel 3122, but also in the first collector 10 and the second collector 20. Heat exchange, thereby prolonging the heat exchange time of the two fluids, and thus improving the heat exchange effect of the heat exchanger.
  • the second chamber 12 may include a first housing 123 having an accommodating cavity and a first side wall 124, the first side wall 124 is disposed toward the second current collector 20, and the first side wall 124 and the first
  • the housing 123 is detachably connected to seal the receiving chamber of the second chamber 12 .
  • a first sealing ring 125 can also be provided at the connection position between the first side wall 124 and the first housing 123, and the first sealing ring 125 can be pressed against the first side wall 124 and the first housing 123 to improve the sealing effect of the second chamber 12 .
  • First through holes 1241 may be provided on the first side wall 124 corresponding to the first flow channels 3121 of each heat exchange unit 31 , so that the ends of the flow guide members 312 forming the first flow channels 3121 can pass through the first through holes. 1241 is connected to the first branch port 112 .
  • the second split port 122 provided on the second chamber 12 is also opened on the first side wall 124.
  • the chamber 11 blocks the second flow port 122, and there may be a certain gap between the outer wall of the first chamber 11 and the first side wall 124, so that the second flow port 122 passes through the gap and the second chamber 12.
  • the entire inner cavity is communicated, thereby reducing the resistance of the fluid entering and exiting the second chamber 12 through the second diverter port 122 , thereby improving the heat exchange efficiency of the heat exchanger 1 .
  • the fourth chamber 22 may include a second housing 223 having an accommodating cavity and a second side wall (not shown in the figure), the second side wall is disposed toward the first current collector 10, and the second side wall and the second The housing 223 is detachably connected to seal the containing chamber of the fourth chamber 22 .
  • a second sealing ring 224 can be provided at the connection position between the second side wall and the second housing 223, and the second sealing ring 224 can be squeezed on the second side Between the wall and the second housing 223 to improve the sealing effect of the fourth chamber 22 .
  • the positions of the second side walls corresponding to the first flow channels 3121 of each heat exchange unit 31 can be respectively provided with second through holes, so that the ends of the flow guide members 312 forming the first flow channels 3121 can pass through the second through holes and the first flow channels.
  • the fourth diversion port provided on the fourth chamber 22 is opened on the second side wall.
  • the diversion port causes blockage, and a certain gap can be provided between the outer wall of the third chamber 21 and the second side wall, so that the fourth diversion port communicates with the entire inner cavity of the fourth chamber 22 through the gap, thereby reducing
  • the resistance of fluid entering and exiting the fourth chamber 22 through the fourth split port is beneficial to improve the heat exchange efficiency of the heat exchanger 1 .
  • a first extension pipe 1111 can be provided at the first opening 111, and the position of the first housing 123 corresponding to the first extension pipe 1111 can be provided There is a third through hole (not shown), the first extension pipe 1111 can extend to the outside of the second chamber 12 from the third through hole, so that the first chamber 11 can be connected to the second chamber 11 through the first extension pipe 1111 in the corresponding loop.
  • a third sealing ring 1112 can be provided at the third through hole, and the third sealing ring 1112 can be partially squeezed between the outer wall of the first extension tube 1111 and the inner wall of the third through hole, so as to avoid the The fluid in the second chamber 12 leaks.
  • a second extension tube 2111 may be provided at the third opening 211
  • a fourth through hole 2231 may be provided at a position corresponding to the second extension tube 2111 in the second housing 223, and the second extension tube 2111 may be formed by the fourth through hole 2231. It extends to the outside of the fourth chamber 22 so that the third chamber 21 can communicate with other components through the second extension tube 2111 .
  • a fourth sealing ring 2112 may be provided at the fourth through hole 2231, and the fourth sealing ring 2112 may be partially squeezed between the outer wall of the second extension tube 2111 and the inner wall of the fourth through hole 2231, thereby preventing the fourth chamber from Fluid in 22 leaks.
  • FIG. 8 is a schematic structural view of a heat exchange unit provided in an embodiment of the present application
  • FIG. 9 is an exploded schematic view of the heat exchange unit shown in FIG. 8
  • each heat exchange unit 31 may include three flow guide members 312 and a fin 311, and the three flow guide members 312 may respectively form a first flow Channel 3121 and two second channels 3122, along the first direction x, the first channel 3121 can be located between the two second channels 3122, and the fin 311 can be located in one of the second channels 3122 away from the first channel 3121 side.
  • the three guide members 312 can be in the form of flat tubes, and the cross-section of the fins 311 perpendicular to the second direction y can be roughly the square waveform shown in the figure, or it can also be wavy, zigzag or Serpentine, etc., the present application does not limit this.
  • heat can be directly conducted between the flow guide member 312 used to form the first flow channel 3121 and the flow guide member 312 used to form the second flow channel 3122 Contact, so as to realize direct heat exchange between the fluid in the first flow channel 3121 and the fluid in the second flow channel 3122; the flow guide member 312 and the fins 311 used to form the second flow channel 3122 can also be in direct heat conduction contact, In this way, the direct heat exchange between the fluid in the second flow channel 3122 and the air flowing through the fins 311 is realized; the heat conduction between the flow guide member 312 used to form the first flow channel 3121 and the fins 311 can be conducted indirectly through the second flow channel 3122 Contact, when water or refrigerant with high thermal conductivity flows in the second flow channel 3122, the thermal resistance of the flow guide member 312 can be ignored basically, so the fluid in the first flow channel 3121 and the air flowing through the fins 311 can also be Realize heat exchange.
  • the two ends of the two flow guide members 312 used to form the second flow channel 3122 can be respectively provided with bent parts 31221 , and the bent parts 31221 can face away from the first flow channel.
  • One side of the channel 3121 is bent, so that at both ends of the heat exchange unit 31, the ends of the three flow guide members 312 can be spaced apart from each other.
  • the second split port 122 and the first through hole 1241 can be independent of each other, and, on the second side wall 224 of the fourth chamber 22, the second The four branch ports and the second through hole can also be independent from each other, which helps to improve the sealing performance of the second chamber 12 and the fourth chamber 22 .
  • FIG. 10 is a schematic structural view of another heat exchanger provided by an embodiment of the present application
  • FIG. 11 is a cross-sectional view of the heat exchanger shown in FIG. 10
  • the two openings of the first circulation path can also both be opened in the first chamber 11, or both be opened in the third chamber 21.
  • the two openings are both opened in the The third chamber 21 will be described as an example.
  • the two openings of the first flow path are respectively marked as the first opening 111 and the third opening 211, and the first opening 111 and the third opening 211 can also be respectively extended to the outside of the fourth chamber 22 through extension pipes, so that the second The three chambers 21 can communicate with other components through the extension pipe 2111 .
  • a first baffle plate 213 may be provided in the third chamber 21, and the first baffle plate 213 may divide the third chamber 21 into a first subchamber 214a and a first subchamber 214b, the first opening 111 and the second subchamber 214b.
  • the three openings 211 are respectively disposed in the two first sub-chambers 214a and 214b, and communicate the corresponding first sub-chambers 214a and 214b with the outside.
  • the two openings of the second flow path can both be opened in the second chamber 12, or both be opened in the fourth chamber 22, and in the embodiment shown in FIG. 10, the two openings are both opened in the second chamber. Room 12 will be described as an example.
  • the two openings of the second flow path are respectively marked as the second opening 121 and the fourth opening 221, and a second baffle plate 126 can be arranged in the second chamber 12, and the second baffle plate 126 can separate the second chamber 12 Divided into the second subchamber 127a and the second subchamber 127b, the second opening 121 and the fourth opening 221 can be respectively provided in the second subchamber 127a and the second subchamber 127b, and the corresponding second subchamber
  • the chamber 127a and the second sub-chamber 127b communicate with the outside.
  • the fluid in the circulation circuit where the first circulation path is located enters one of the first subchambers 214a of the third chamber 21 through the first opening 111, and the corresponding fluid in the first subchamber 214a
  • the first channel 3121 of the first flow path 3121 flows to the first chamber 11. Since the first chamber 11 has no opening communicating with the outside, as the fluid continuously enters the first chamber 11, the pressure will gradually increase, so that the first chamber The fluid in 11 can return to the third chamber 21 through the first channel 3121 corresponding to the other first subchamber 214b, and then flow out of the heat exchanger 1 through the third opening 211 of the first subchamber 214b.
  • the fluid in the circulation circuit where the second circulation path is located enters one of the second sub-chambers 127a of the second chamber 12 through the second opening 121, and the corresponding second flow in the second sub-chamber 127a
  • the channel 3122 flows to the fourth chamber 22. Since the fourth chamber 22 has no opening communicating with the outside, as the fluid continuously enters the pressure in the fourth chamber 22, the pressure in the fourth chamber 22 will gradually increase, so that the pressure in the fourth chamber 22
  • the fluid can return to the second chamber 12 through the second channel 3122 corresponding to the other second subchamber 127b, and then flow out of the heat exchanger 1 through the fourth opening 221 of the second subchamber 127b.
  • the fluid in the first circulation path can realize the operation of two processes from the third chamber 21 to the first chamber 11 and from the first chamber 11 to the third chamber 21 in the heat exchange unit 31
  • the fluid in the second circulation path can realize the operation of two processes from the second chamber 12 to the fourth chamber 22 and the fourth chamber 22 to the second chamber 12 in the heat exchange unit 31, thereby
  • the heat exchange of the three fluids in the heat exchanger 1 can be performed more fully, thereby improving the heat exchange effect of the heat exchanger 1 .
  • each heat exchange unit 31 may include two flow guide members 312 and two fins 311, the two flow guide members 312 may be in the form of flat tubes respectively, and the two flow guide members 312 may be formed as A first flow channel 3121 and a second flow channel 3122 .
  • the flow guide member 312 used to form the first flow channel 3121 can be located between two fins 311, and the flow guide member 312 used to form the second flow channel 3122 can be located on one of the fins 311 away from the second fin.
  • One side of flow channel 3121 is a schematic structural view of another heat exchanger provided in the embodiment of the present application
  • Fig. 13 is an exploded schematic view of the heat exchange unit shown in Fig. 12 .
  • each heat exchange unit 31 may include two flow guide members 312 and two fins 311, the two flow guide members 312 may be in the form of flat tubes respectively, and the two flow guide members 312 may be formed as A first flow channel 3121 and a second flow channel 3122 .
  • the flow guide member 312 for forming the second flow channel 3122 can also be arranged between the two fins 311, and the flow guide member 312 for forming the first flow channel 3121 can be located in one of the fins 311 away from the second fin.
  • first opening 111 and the third opening 211 may be respectively provided in the first chamber 11 and the third chamber 21, or both may be provided in the first chamber 11 or the third chamber 21,
  • the second opening 121 and the fourth opening 221 may be set in the second chamber 12 and the fourth chamber 22 respectively, or both may be set in the second chamber 12 or the fourth chamber 22, which is not limited in the present application.
  • the embodiment shown in FIG. 12 is described by taking each chamber respectively provided with openings as an example.
  • the flow guiding member 312 for forming the second flow channel 3122 between the two fins 311 is used to form the first flow channel
  • the direct heat conduction contact between the flow guide member 312 of 3121 and the fin 311 can realize direct heat exchange between the fluid in the first flow channel 3121 and the air flowing through the fin 311; it is used to form the second flow channel 3122
  • the member 312 and the fin 311 can also be in direct heat conduction contact, so as to realize the direct heat exchange between the fluid in the second flow channel 3122 and the air flowing through the fin 311;
  • the flow guide members 312 used to form the second flow channel 3122 can be in thermal contact through the fins. Since the thermal resistance of the fins 311 is small, the fluid in the first flow channel 3121 and the fluid in the second flow channel 3122 are also in contact with each other. Heat exchange is possible.
  • the first chamber 11 and the second chamber 12 may be arranged side by side along the second direction y, and the outer walls of the first chamber 11 and the outer walls of the second chamber 12 are in contact with each other, so that The fluid in the first chamber 11 can exchange heat with the fluid in the second chamber 12 .
  • the third chamber 21 and the fourth chamber 22 can also be arranged side by side along the second direction y, and the outer walls of the third chamber 21 and the fourth chamber 22 are also in contact with each other, so that the third chamber The fluid in 21 can exchange heat with the fluid in the fourth chamber 22 .
  • the flow guide member 312 used to form the first flow channel 3121 is designed to correspond to the position of the first branch port 112 of the first chamber 11, corresponding to The position of the second chamber 12 adopts a closing design.
  • the flow guiding member 312 used to form the first flow channel 3121 corresponds to the third flow opening of the third chamber 21.
  • the position (not shown in the figure) adopts an opening design
  • the position corresponding to the fourth chamber 22 adopts a closed design, so as to prevent the fluid in the first flow channel 3121 from flowing out of the first chamber 11 or the third chamber 21 The place.
  • the flow guide member 312 used to form the second flow channel 3122 is designed to correspond to the position of the second split port of the second chamber 12, corresponding to the second flow port of the second chamber 12.
  • the position of the first chamber 11 adopts a closed design.
  • the flow guide member 312 used to form the second flow channel 3122 corresponds to the fourth branch of the fourth chamber 22.
  • the position of the port (not shown in the figure) adopts an open design
  • the position corresponding to the third chamber 21 adopts a closed design to prevent the fluid in the second flow channel (not shown in the figure) from flowing into the second chamber 12 Or a place other than the fourth chamber 22 .
  • the first chamber 11 may be located above the second chamber 12 ; for the second collector 20 , the fourth chamber 22 may be located above the third chamber 21 . That is to say, along the third direction z, the first chamber 11 is opposite to the fourth chamber 22 , and the second chamber 12 is opposite to the third chamber 21 .
  • the fluid in the first flow channel 3121 flows from left to right, since the first chamber 11 on the left is located above and the third chamber 21 on the right is located below, the fluid in the first flow channel 3121 also has its own Up-down flow trend; when the fluid in the second channel 3122 flows from right to left, since the fourth chamber 22 on the right is at the top and the second chamber 12 on the right is at the bottom, the second flow The fluid in the channel 3122 also has a top-down flow tendency. In this way, when the air passes through the airflow channel of the fin 311 from bottom to top, it will form convection with the fluid in the first flow channel 3121 and the fluid in the second flow channel 3122, thereby improving the heat exchange efficiency of the three fluids .
  • the first current collector 10 and the second current collector 20 can also refer to the arrangement of the foregoing embodiments, that is, the first chamber 11 is disposed inside the second chamber 12 , The third chamber 21 is disposed inside the fourth chamber 22 , and the specific structures of the two current collectors can refer to the descriptions in the foregoing embodiments, and will not be repeated here.
  • each heat exchange unit 31 may include two flow guide members 312 and a fin 311, and the two flow guide members 312 may be in the form of flat tubes respectively.
  • 312 can be respectively formed as a first flow channel 3121 and a second flow channel 3122 , and the first flow channel 3121 , the second flow channel 3122 and the fins 311 are arranged side by side along the first direction x.
  • the fin 311 can be located between the first flow channel 3121 and the second flow channel 3122, or on the side of the first flow channel 3121 away from the second flow channel 3122, or on the side of the second flow channel 3122 away from the first flow channel.
  • One side of road 3121 the present application does not limit this.
  • first opening 111 and the third opening 211 may be respectively provided in the first chamber 11 and the third chamber 21, or both may be provided in the first chamber 11 or the third chamber 21,
  • the second opening 121 and the fourth opening 221 may be set in the second chamber 12 and the fourth chamber 22 respectively, or both may be set in the second chamber 12 or the fourth chamber 22, which is not limited in the present application.
  • the embodiment shown in FIG. 14 is described by taking each chamber respectively provided with openings as an example.
  • the member 312 can be in direct thermal contact with the flow guide member 312 used to form the second flow channel 3122, so as to realize the direct heat exchange between the fluid in the first flow channel 3121 and the fluid in the second flow channel 3122;
  • the flow guide member 312 of the second flow channel 3122 and the fin 311 can also be in direct heat conduction contact, so as to realize the direct heat exchange between the fluid in the second flow channel 3122 and the air flowing through the fin 311; for forming the first flow channel
  • the flow guide member 312 of 3121 can be in indirect contact with the fins 311 through the second flow channel 3122. When water or refrigerant with high thermal conductivity flows in the second flow channel 3122, the thermal resistance of the flow guide member 312 can basically be ignored. Regardless, the fluid in the first
  • the first current collector 10 may adopt a built-in structure in which the first chamber 11 is arranged inside the second chamber 12, or may adopt the first chamber 11 and the second chamber 12 along the second chamber.
  • the side-by-side structure of the chambers 22 arranged along the second direction y is not limited in this application.
  • the specific arrangement of the built-in structure and the side-by-side structure reference may be made to the descriptions in the foregoing embodiments, and details are not repeated here.
  • FIG. 15 is a schematic structural diagram of another heat exchanger provided by an embodiment of the present application
  • FIG. 16 is a partially exploded schematic diagram of the heat exchanger shown in FIG. 15
  • each heat exchange unit 31 may include two flow guide members 312 and a fin 311, and the two flow guide members 312 may be in the form of flat tubes respectively.
  • the two flow guiding members 312 can be respectively formed into a first flow channel 3121 and a second flow channel 3122 .
  • the two flow guide members 312 can be arranged side by side along the second direction y to form a flow guide assembly, and the outer walls of the two flow guide members 312 are in contact with each other; the flow guide assembly formed by the two flow guide members 312
  • the fins 311 may be juxtaposed with the fins 311 along the first direction x.
  • the flow guide member 312 for forming the first flow channel 3121 may be located above the flow guide member 312 for forming the second flow channel 3122, or the flow guide member 312 for forming the second flow channel 3122 may also be located Above the flow guide member 312 for forming the first channel 3121 .
  • first opening 111 and the third opening 211 may be respectively provided in the first chamber 11 and the third chamber 21, or both may be provided in the first chamber 11 or the third chamber 21,
  • the second opening 121 and the fourth opening 221 may be set in the second chamber 12 and the fourth chamber 22 respectively, or both may be set in the second chamber 12 or the fourth chamber 22, which is not limited in the present application.
  • the embodiment shown in FIG. 15 is described by taking each chamber respectively provided with openings as an example.
  • heat can be directly conducted between the flow guide member 312 used to form the first flow channel 3121 and the flow guide member 312 used to form the second flow channel 3122 Contact, so as to realize direct heat exchange between the fluid in the first flow channel 3121 and the fluid in the second flow channel 3122; the flow guide member 312 and the fins 311 used to form the second flow channel 3122 can also be in direct heat conduction contact, In this way, direct heat exchange between the fluid in the second channel 3122 and the air flowing through the fins 311 can be realized; the direct heat conduction contact between the flow guide member 312 and the fins 311 used to form the first channel 3121 can also be realized, thereby realizing the second The fluid in the channel 3121 exchanges heat directly with the air flowing through the fins 311 .
  • the first current collector 10 can either adopt a built-in structure in which the first chamber 11 is arranged inside the second chamber 12, or adopt the first chamber 11 and the second chamber 12 along the second chamber.
  • the side-by-side structure of the four chambers 22 arranged along the second direction y is not limited in this application.
  • the first current collector 10 and the second current collector 20 adopt a parallel structure
  • the first flow channel 3121 and the second flow channel 3122 are arranged side by side up and down, in order to facilitate the first flow channel 3121
  • the two ends of are connected with the first chamber 11 and the third chamber 21, along the third direction z
  • the first chamber 11 and the third chamber 21 can be arranged oppositely, and the first chamber 11 and the third chamber 21
  • the upper and lower positions of the first flow channel can be set according to the upper and lower positions of the first flow channel.
  • the first chamber 11 and the third chamber 21 can be located at the second chamber 12 and the second chamber 21 respectively. above the fourth chamber 22 .
  • the positions of the second flow channel 3122, the second chamber 12 and the fourth chamber 22 can also be determined accordingly , so it will not be repeated here.
  • the first flow channel in order to make the fluid in the first flow channel 3121 and the second flow channel 3122 form a better heat exchange effect with the air flowing through the fins 311, the first flow channel can also be 3121 and the second flow channel 3122 are respectively provided with corresponding passages, so that the fluid in the two flow passages can form convection flow with the air when flowing along the passages, thereby improving the heat exchange efficiency.
  • FIG. 17 the embodiment shown in FIG. 17 is described by taking each heat exchange unit 31 including two flow guide members 312 and two fins 311 as an example.
  • the flow guide member 312 for forming the first channel 3121 may have a first passage 31211, a second passage 31212 and a third passage 31213, wherein the first passage 31211 and the second passage 31212 may be respectively along the first passage 31212.
  • the three directions z are arranged, and the first passage 31211 communicates with the first distribution port of the first chamber 11, the second passage 31212 communicates with the third distribution port of the third chamber 21, and the third passage 31213 can be along the second direction y is set, and the two ends of the third passage 31213 communicate with the first passage 31211 and 31212 respectively.
  • the first passage 31211 and the second passage 31212 can be respectively arranged on both sides of the first flow channel 3121 along the second direction y, that is, above and below the first flow channel 3121, and the number of the third passage 31213 can be many
  • a plurality of third passages 31213 can be arranged side by side along the third direction z.
  • the flow guide member 312 for forming the second flow channel 3122 may have a fourth passage, a fifth passage and a sixth passage, wherein the fourth passage and the fifth passage may be respectively arranged along the third direction, and the third passage
  • the four passages communicate with the second flow opening of the second chamber
  • the fifth passage communicates with the fourth flow opening of the fourth chamber
  • the sixth passage can be arranged along the second direction y, and the two ends of the sixth passage are respectively connected to the The fourth passage communicates with the fifth passage.
  • the fourth passage and the fifth passage can be arranged on both sides of the second flow channel 3122 along the second direction y, that is, below and above the second flow channel 3122, and the number of sixth passages can be multiple , a plurality of sixth passages may be arranged in parallel along the third direction.
  • the fluid in the fourth chamber 22 enters the fifth channel of the second flow channel 3122 through the fourth flow opening, then enters the fourth channel through the sixth channel in the fifth channel, and finally passes through the fourth channel.
  • Four channels flow into the second chamber 12 .
  • the air can pass through the airflow channel of the fin 311 from bottom to top at the same time, so that the two can form convection, thereby improving the heat exchange efficiency.
  • FIG. 18 is a schematic structural view of another heat exchanger provided by an embodiment of the present application
  • FIG. 19 is a partially exploded schematic view of the heat exchanger shown in FIG. 18
  • each heat exchange unit 31 may include a flow guide member 312 and a fin 311, and the flow guide member 312 and the fin 311 may be juxtaposed along the first direction x set up.
  • a partition 3123 may be provided inside the flow guiding member 312 , and the number of the partitions 3123 may be one or more.
  • the inside of the flow guiding member 312 can be divided into a first flow channel 3121 and a second flow channel 3122 by using the partition 3123 .
  • the number of partitions 3123 may be one or more, so that the number of the first flow channel 3121 and the second flow channel 3122 formed separately is also one or more. It can be understood that when the number of the first flow channel 3121 and the number of the second flow channel 3122 are multiple, in order to improve the heat exchange effect between the fluid in the first flow channel 3121 and the fluid in the second flow channel 3122, the first flow channel 3121 and the second channel 3122 may be alternately arranged along the second direction y.
  • first opening 111 and the third opening 211 may be respectively provided in the first chamber 11 and the third chamber 21, or both may be provided in the first chamber 11 or the third chamber 21,
  • the second opening 121 and the fourth opening 221 may be set in the second chamber 12 and the fourth chamber 22 respectively, or both may be set in the second chamber 12 or the fourth chamber 22, which is not limited in the present application.
  • the embodiment shown in FIG. 18 is described by taking that each chamber is respectively provided with openings as an example.
  • the first flow channel 3121 and the second flow channel 3122 can be in direct heat conduction contact, so that the fluid in the first flow channel 3121 and the second flow channel
  • the first current collector 10 and the second current collector 20 can respectively adopt a built-in structure, that is, the first chamber 11 is arranged inside the second chamber 12, and the third chamber 21 is arranged inside the Inside the fourth chamber 22 .
  • the position of the side wall of the flow guiding member 312 corresponding to each first flow channel 3121 can be appropriately extended, and correspondingly, the partitions 3123 can also be extended respectively so that the two ends 3121 of the first flow channel exceed the second flow channel, thereby It is convenient to connect the first channel 3121 with the first chamber 11 and the third chamber 21 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种换热系统及车辆。换热系统包括:多通阀(05)、风道(091)和设置于风道(091)中的至少一个换热器(1),其中,换热器(1)具有空气通过的空气流道,至少一个换热器(1)的进水口和出水口通过水管组(03)与多通阀(05)连通,至少一个换热器(1)的制冷剂入口与至少一个换热器(1)的制冷剂出口通过制冷剂管组(04)连通,制冷剂管组(04)上设置有电子膨胀阀(042);多通阀(05)还用于与换热单元(31)连通,且对换热单元(31)进行换热时,多通阀(05)将换热单元(31)、多通阀(05)、水管组(03)以及换热器(1)处于一循环回路。

Description

换热系统及车辆
相关申请的交叉引用
本申请要求在2021年11月17日提交中国专利局、申请号为202111361140.8、申请名称为“换热系统及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及换热技术领域,尤其涉及到一种换热系统及车辆。
背景技术
新能源汽车的热管理系统通常包含空调系统冷媒回路、电池液冷回路和电机液冷回路,热管理系统主要的功能就是通过控制多种工质之间的热交换,实现乘员舱、电池包、电机等被控制对象的温度处于目标范围内。但是,一个热管理系统通常需要用到多个换热器,如冷媒和水换热的板式换热器,空气与水或者空气与冷媒之间换热的平行流换热器等。
由于,现有技术中的热管理系统大都采用两流体换热器,所以需要的换热器的数量较多,会导致热管理系统的管组比较复杂,体积庞大,且布置的难度也较大。
发明内容
本申请提供了一种换热系统及车辆,该换热系统中部件较少,简化了换热系统管组的复杂程度,降低布设的难度。
第一方面,本申请中的换热系统可以包括多通阀、风道和设置于所述风道中的至少一个换热器,所述换热器具有空气通过的空气流道,所述至少一个换热器的进水口和出水口通过水管组与所述多通阀连通,所述至少一个换热器的制冷剂入口与所述至少一个换热器的制冷剂出口通过制冷剂管组连通,所述制冷剂管组上设置有电子膨胀阀;所述多通阀还用于与换热单元连通,且对所述换热单元进行换热时,所述多通阀将所述换热单元、所述多通阀、所述水管组以及所述换热器处于一循环回路。其中,制冷剂的入口和制冷剂出口可以在换热器内形成冷媒通道,进水口和出水口可以在换热器内形成水流通道,即换热器内可以通过冷媒、水和空气,且冷媒、水和空气之间可以进行热交换,进而可以减少换热系统中换热器的数量,且由于换热器数量的减少,还可以冷媒回路和水路回路的复杂程度,从而简化换热系统内管组的复杂度,降低换热系统的布设难度。另外,当需要对换热单元进行换热时,多通阀可以使换热单元、水管组以及至少一个换热器在同一个循环回路当中,此时,换热器中制冷剂入口和制冷剂出口在换热器内的管路可以与换热器中进水口和出水口在换热器内的管路进行换热,且空气流通也可以与换热器中进水口和出水口在换热器内的管路进行换热,从而可以提高换热的速度,以提高换热系统的换热效率。
在一种可能实施例中,换热器可以为两个,两个换热器可以分别为蒸发器和冷凝器,蒸发器和冷凝器均设置在风道中,水管组可以包括第一水管组和第二水管组,第一水管组可以将蒸发器的进水口和所述蒸发器的出水口以及所述多通阀连通,所述第二水管组可以将所述冷凝器的进水口和所述冷凝器的出水口与所述多通阀连通;所述制冷剂管组可以将 所述蒸发器的制冷剂出口与所述冷凝器的制冷剂入口连通,且所述制冷剂管组还可以将所述冷凝器的制冷剂出口与所述蒸发器的制冷剂入口连通。将换热器设置为两个,可以使换热的速度提高,还可以更加的简化换热系统,降低换热系统的布设难度。
需要说明的是,换热器为两个,且两个换热器分别为蒸发器和冷凝器时,在蒸发器的制冷剂出口和冷凝器的制冷剂入口之间可以设置有压缩机,以使冷媒可以在蒸发器和冷凝器之间流动。
在一种可能的实施例中,为了提高蒸发器与多通阀之间水流动的速度,可以在第一水管组上设有第一水泵;为了提高冷凝器与多通阀之间水流动的速度,还可以在第二水管组上设有第二水泵。
在上述的实施例中,换热单元可以包括电池包组件;所述电池包组件可以包括电池包和第三水管组,所述电池包可以通过所述第三水管组与所述多通阀连通,所述第三水管组上可以设有所述第三水泵;当对所述电池包散热时,所述多通阀用于将所述蒸发器、第一水管组、第三水泵、第三水管组以及电池包连通;此种方式中,电池包中的高温的水在与蒸发器中的冷媒换热时,还可以与蒸发器中空气流道中的空气进行换热,从而可以提高换热的速度,使电池包能快速的降温。当对所述电池包加热时,所述多通阀用于将所述冷凝器、第二水管组、第三水泵、第三水管组以及电池包连通。其中,电池包中的低温的水在与冷凝器中的冷媒换热时,还可以与冷凝器中空气流道中的空气进行换热,从而可以提高换热的速度,使电池包能快速的升温。
换热单元还可以包括还包括动力总成组件;所述动力总成组件可以包括动力总成和第四水管组,所述第四水管组可以将所述动力总成与所述多通阀连通,所述第四水管组上设有第四水泵;当对所述动力总成散热时,所述多通阀可以将所述蒸发器、第一水管组、第四水泵、第四水管组以及动力总成连通。此时,动力总成可以通过蒸发器进行散热,以使动力总成快速的降温。另外,当换热单元还包括前端组件时,所述前端组件包括前端模组和第五水管组,所述第五水管组可以将所述前端模组与所述多通阀连通;当对所述动力总成散热时,所述多通阀可以将所述动力总成、第四水管组、第四水泵、第五水管组和前端模组连通。此时,根据多通阀的工作状态,可以使动力总成组件通过前端组件进行散热。
在一种可能的实施例中,换热系统还可以包括壳体、第一开关和第二开关,其中,壳体上可以设有进风口和出风口,进风口和出风口形成上述的风道,蒸发器、冷凝器、第一开关和第二开关可以均设在风道中;当所述第一开关处于第一状态,所述第二开关处于第二状态时,所述风道中的气体可以经过所述蒸发器的空气通道,所述风道中的气体不经过所述冷凝器的空气通道,以使经过出风口排除的空气为冷空气;当所述第一开关处于第二状态,所述第二开关处于第一状态时,所述风道中的气体不经过所述蒸发器的空气通道,所述风道中的气体经过所述冷凝器的空气通道,以使经过出风口排除的空气为热空气;当所述第一开关处于第一状态,所述第二开关处于第一状态时,所述风道中的气体经过所述蒸发器的空气通道,所述风道中的气体经过所述冷凝器的空气通道,经过出风口排除的空气为除湿后的常温空气。
为了使出风口还能够排出新风,还可以在壳体上设有新风入口,以使风道内能够进入除了进风口之外的空气。另外,为了使进入到风道中的空气能快速的流动,还可以在风道(壳体内)设置有风机,风机可以提高经过进风口和新风入口进入到风道中空气的流速。
第二方面,本申请还提供了车辆,车辆具有上述任意技术方案中的换热系统以及换热 单元,采用上述换热系统的车辆对换热单元的换热速度提高,且换热系统布设的难度降低,还可以提高车辆内出冷风以及热风的速度。
附图说明
图1为现有技术热管理系统的结构示意图;
图2a为本申请实施例提供的换热系统的一种结构示意图;
图2b为本申请实施例提供的换热系统的又一种结构示意图;
图2c为本申请实施例提供的换热系统的又一种结构示意图;
图3a至图3c为本申请实施例提供的换热系统的又一种结构示意图;
图4为本申请实施例提供的换热系统的构架图;
图5为本申请实施例提供的一种换热系统中的换热器的结构示意图;
图6为图1中所示的换热器1的部分分解示意图;
图7为图1中所示的换热器的局部剖视图;
图8为本申请实施例提供的换热器中换热单元的结构示意图;
图9为图8中所示的换热单元的分解示意图;
图10为本申请实施例提供的另一种换热器的结构示意图;
图11为图10中所示的换热器的部分分解示意图;
图12为本申请实施例提供的另一种换热器的结构示意图;
图13为图12中所示的换热器的部分分解示意图;
图14为本申请实施例提供的另一种换热器的结构示意图;
图15为本申请实施例提供的另一种换热器的结构示意图;
图16为图15中所示的换热器的部分分解示意图;
图17为本申请实施例提供的另一种换热器的结构示意图;
图18为本申请实施例提供的另一种换热器的结构示意图;
图19为图18中所示的换热器的部分分解示意图。
附图标记:
01-蒸发器;02-冷凝器;03-水管组;031-第一水管组;032-第二水管组;04-制冷剂管组;041-压缩机;042-电子膨胀阀;05-多通阀;06-电池包组件;061-电池包;062-第三水管组;063-第三水泵;07-动力总成组件;071-动力总成;072-第四水管组;073-第四水泵;08-前端组件;081-前端模组;082-第五水管组;09-壳体;091-风道;092-进风口;093-出风口;094-第一开关;095-第二开关;096-风机;097-新风入口;1-换热器;10-第一集流器;20-第二集流器;30-换热芯体;11-第一腔室;12-第二腔室;21-第三腔室;22-第四腔室;31-换热单元;311-翅片;312-导流构件;3121-第一流道;3122-第二流道;111-第一开口;112-第一分流口;211-第三开口;121-第二开口;122-第二分流口;221-第四开口;123-第一壳体;124-第一侧壁;125-第一密封圈;223-第二壳体;1241-第一通孔;224-第二密封圈;1111-第一延伸管;1112-第三密封圈;2111-第二延伸管;2231-第四通孔;2112-第四密封圈;3123-隔板;213-第一档板;214a、214b-第一子腔室;126-第二档板;127a、127b-第二子腔室。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
热管理系统为新能源汽车的重要组成部分,其中,图1中热管理系统的HVAC(heating,ventilation and air conditioning,空调箱模块)包括一个风冷冷凝器和蒸发器,且风冷冷凝器和蒸发器还与换板连接,进而导致了热管理系统中的换热器件较多,管路复杂,布局困难,另外,此种设置方式对驾驶舱加热时,热响应速度慢,换热效率低。
因此,本申请提供了一种换热系统,以解决上述的问题。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
参照图2a和图3a,本申请提供了一种换热系统,该换热系统包括多通阀05、风道091和至少一个换热器,至少一个换热器设置于风道091中,且至少一个换热器具有空气通过的空气流道,至少一个换热器还具有进水口、出水口、制冷剂出口和制冷剂入口,至少一个换热器的进水口和出水口通过水管组03与多通阀05连通,至少一个换热器的制冷剂出口和制冷剂入口通过制冷剂管组04连通,且制冷剂管组04上设置有电子膨胀阀042;其中,多通阀05可以与换热单元连通,且在对换热单元进行换热时,多通阀05可以将换热换单元、多通阀05、水管组以及至少一个换热器处于同一循环回路。当需要对换热单元进行换热时,多通阀05可以使换热单元、水管组以及至少一个换热器在同一个循环回路当中,此时,换热器中制冷剂入口和制冷剂出口在换热器内的管路可以与换热器中进水口和出水口在换热器内的管路进行换热,且空气流通也可以与换热器中进水口和出水口在换热器内的管路进行换热,从而可以提高换热的速度,以提高换热系统的换热效率。另外,换热器中可以通过冷媒、水以及空气,可以降低换热系统中部件的使用数量,而且还可降低冷媒回路以及水路回路的复杂程度,以简化换热系统内管组的复杂度,降低布设的难度。
需要说明的是,上述的换热器内可以通过三种流体,该散热器可以代替现有技术中热管理系统中的两个换热器,进而可以简化上述换热系统中冷媒管路以及水管组的布设,且因换热器数量的减少,从而减少了换热系统中部件的数量,进而减小换热系统的体积,以及换热系统中部件布设的难度。
其中,换热系统中具有空气流道、进水口、出水口、制冷剂出口和制冷剂入口的换热器可以为一个、也可以为两个;参照图2b当具有空气流道、进水口、出水口、制冷剂出口和制冷剂入口的换热器的数量为一个,且一个换热器为蒸发器01时,另外两个现有技术中的换热器之间并联连接,且两个现有技术中的换热器之间设置有三通阀,其中,一个现有技术的换热器与制冷剂管组04和水管组03连通,另外一个现有技术的换热器仅设置 于制冷剂管组04上,且另外两个现有技术的换热器均通过电子膨胀阀042与蒸发器01连接,上述的换热器替代现有技术中的两个换热器;参照图2c当具有空气流道、进水口、出水口、制冷剂出口和制冷剂入口的换热器的数量为一个,且一个换热器为冷凝器02时,另外两个现有技术中的换热器之间并联连接,且两个现有技术中的换热器分别通过一个电子膨胀阀与冷凝器02连接,其中,一个现有技术的换热器与制冷剂管组04和水管组03连通,另外一个现有技术的换热器仅设置于制冷剂管组04上,上述的换热器替代现有技术中的两个换热器;当具有空气流道、进水口、出水口、制冷剂出口和制冷剂入口的换热器的数量为两个时,该换热器可以替代现有技术中的四个换热器;下面以上述的换热器是两个为例:
继续参照图3a,当换热器为两个时,两个换热器可以分别蒸发器01和冷凝器02,且蒸发器01和冷凝器02均设置在风道091中,水管组03可以包括第一水管组031和第二水管组032,第一水管组031可以将蒸发器01的进水口和蒸发器01的出水口均可以与多通阀05连通,第二水管组032可以将冷凝器02的进水口和冷凝器02的出水口也与多通阀05连通,当需要对换热单元进行降温时,多通阀05可以通过第一水管组031与蒸发器01连通,且多通阀05还与需要进行降温的换热单元连通,可以使换热单元内的热量源源不断传输到蒸发器01中,以实现对换热单元的冷却。另外,制冷剂管组04可以将蒸发器01的制冷剂出口与冷凝器02的制冷剂入口连通,且制冷剂管组04还可以将冷凝器02的制冷剂出口与蒸发器01的制冷剂入口连通。以使当需要将换热单元冷却时,蒸发器01的制冷剂入口通过温度较低的冷媒,低温的冷媒会与经过第一水管组031进入到蒸发器01的温度高的水进行换热,吸水高温后的冷媒升温,升温后的冷媒经过蒸发器01的制冷剂出口进入到冷凝器02中,且空气流道中的空气也会与进入到换热器的高温的水进行换热,以提高对换热单元的冷却速度。
需要说明的是,在具体设置第一水管组031时,可以在第一水管组031内设有第一水泵,以提高具有第一水管的循环回路水的循环速度;另外,在具体设置第二水管组032时,也可以在第二水管组032内设置有第一水泵,以提高具有第二水管的循环回路水的循环速度;其中,第一水管组031和第二管组可以同时设置有第一水泵,或者,第一水管组031或第二水管组032中的一个设有第一水泵。
在上述的实施例中,继续参照图3a,制冷剂管组04中还可以设置有压缩机041,从蒸发器01的制冷剂出口排出的冷媒进入到压缩机041,并从压缩机041的出口排除高温的冷媒,高温的冷媒可以进入到冷凝器02中,且进入到冷凝器02中高温的冷媒可以进行冷凝放热,高压高温的液态冷媒从冷凝器02的制冷剂出口流出,经过膨胀阀节流膨胀迅速降温,变成低温低压的冷媒进入蒸发器01吸热蒸发后变为低压气态冷媒然后重新回到压缩机041,以形成冷媒的循环。
在上述实施例中,换热单元可以包括电池包组件06,电池包组件06可以包括电池包061和第三水管组062,且在第三水管上可以设置有第三水泵063;当电池包061温度较高,需要对电池包061进行散热时,可以调整多通阀05的工作状态,使多通阀05、蒸发器01、第一水管组031、第三水泵063、第三水管组062以及电池包061连通,水经过蒸发器01放热温度降低,然后经过第一水管组031进入多通阀05,第三水泵063可以将经过多通阀05的水通过第三水管组062注入到电池包061中,在电池包061内吸热之后再经过多通阀05回到蒸发器01放热,如此循环流动,电池包061内的热量源源不断被传输到蒸发器01 中,进而实现电池包061的冷却。当电池包061温度较低,需要对电池包061进行升温时,可以调整多通阀05的工作状态,使多通阀05、冷凝器02、第二水管组032、第三水泵063、第三水管组062以及电池包061连通,水经过冷凝器02吸热温度升高,然后经过第二水管组032进入多通阀05,第三水泵063可以将经过多通阀05的水通过第三水管组062注入到电池包061中,在电池包061内放热之后再经过进入多通阀05,然后通过第二水管组032回到冷凝器02吸热,如此循环流动,电池包061源源不断的从第三水管组062冷凝器02中吸收热量,实现电池包061的加热。
换热单元还可以包括动力总成组件07,动力总成组件07可以包括动力总成071和第四水管组072,其中,动力总成071通过第四水管组072与多通阀05连通,且在第四水管组072还可以设置有第四水泵073;动力总成071在工作时会产生大量的热量,在对动力总成071进行散热时,可以调整多通阀05的工作状态,使多通阀05、蒸发器01、第一水管组031、第四水泵073、第四水管组072以及动力总成071处于一循环回路中,水经过蒸发器01放热温度降低,然后经过第一水管组031进入多通阀05,第四水泵073可以将经过多通阀05的水通过第四水管组072注入到动力总成071中,在动力总成071内吸热之后再经过多通阀05回到蒸发器01放热,如此循环流动,动力总成071内的热量源源不断被传输到蒸发器01中,进而实现动力总成071的冷却。
换热单元还可以包括前端组件08,前端组件08可以包括前端模组081和第五水管组082,其中,第五水管组082可以将前端模组081与多通阀05连通;当动力总成071的温度较高时,调整多通阀05的工作状态,还可以使动力总成071、第四水管组072、第四水泵073、第五水管组082和前端模组081连通,水经过前端模组081放热温度降低,然后经过第五水管组082进入多通阀05,第四水泵073可以将经过多通阀05的水通过第四水管组072注入到动力总成071中,在动力总成071内吸热之后再经过多通阀05回到前端模组081放热,如此循环流动,动力总成071内的热量源源不断被传输到前端模组081中,进而实现动力总成071的冷却。
需要说明的是,当对动力总成071进行散热时,调整多通阀05的工作状态,还可以使多通阀05、第五水管组082、前端模组081、第四水泵073、第四水管组072以及动力总成071处于一循环回路中,水经过前端模组081放热温度降低,然后经过第五水管组082进入多通阀05,第四水泵073可以将经过多通阀05的水通过第四水管组072注入到动力总成071中,在动力总成071内吸热之后再经过多通阀05回到前端模组081放热,如此循环流动,动力总成071内的热量源源不断被传输到前端模组081中,进而实现动力总成071的冷却。
在上述实施例的基础上,继续参照图3a至图3c以及图4,换热系统还可以包括可以壳体09,壳体09内还可以设置有第一开关094和第二开关095,壳体09上设有进风口092和出风口093,进风口092和出风口093之间形成风道091,第一开关094、第二开关095、蒸发器01和冷凝器02均设置于风道091;其中,第一开关094、第二开关095、壳体09、蒸发器01以及冷凝器02可以形成空调箱结构,膨胀阀42也可以设在壳体09内。
空调箱具有制冷、加热以及除湿的功能,当空调箱制冷时,参照图3b,第一开关094处于第一状态,即蒸发器01的空气通道与风道091处于连通的状态,风道091中的空气可以通过蒸发器01的空气通道,第二开关095处于第二状态,即第二开关095将冷凝器02的空气通道封堵,风道091中的空气不经过冷凝器02的空气通道,此时,空气可以经 过进风口092进入到风道091中,进入到风道091中的空气可以经过蒸发器01的空气通道,空气与蒸发器01进行热交换,以降低空气的温度,最后经过出风口093排出低温空气。此种方式中,空气可以直接的与冷凝器02中的低温冷媒进行换热,而不需要进行二次传递,进而可以提高换热的效率,还可以提高制冷的速度。
当空调箱加热时,参照图3c,第一开关094处于第二状态,即第一开关094将蒸发器01的空气通道封堵,使风道091中的气体不能够经过蒸发器01的空气通道,第二开关095处于第一状态,风道091中的气体可以经过冷凝器02的空气通道,此时,空气可以经过进风口092进入到风道091中,进入到风道091中的空气可以经过冷凝器02的空气通道,空气与冷凝器02进行热交换,以提高空气的温度,最后经过出风口093排出高温空气。此种方式中,空气可以直接的与蒸发器01中的高温冷媒进行换热,而不需要进行二次传递,进而可以提高换热的效率,还可以提高升温的速度。
当空调箱进行除湿时,参照图3a,第一开关094和第二开关095均处于第一状态,风道091中的空气可以经过蒸发器01的空气通道,风道091中的空气也可以经过冷凝器02的空气通道,此时,空气可以经过进风口092进入到风道091中,进入到风道091中的空气可以经过蒸发器01的空气通道,空气与蒸发器01进行热交换,以降低空气的温度,然后经过冷凝器02的空气通道,空气与冷凝器02进行热交换,以提高空气的温度,使空气恢复到常温,空气中的水分在经过蒸发器01时遇冷凝结后从空调箱的冷凝水管排出,干燥后的空气最后经过出风口093排出。
需要说明的是,为了使进入到风道091中的空气能够快速的通过蒸发器01和/或冷凝器02的空气流道,可以在壳体09中设置有风机096,风机096的设置可以使空气在风道091中快速的流通。另外,还可以在壳体09上设有新风入口097,新风入口097位于风机096与进风口092之间。
在上述的实施例中,进风口092和出风口093的数量可以为一个也可以为多个,可以根据实际的需要进行调整。
本申请还提供了一种车辆,该车辆具有上述任一技术方案中的换热系统,该车辆可以包括车身,车上具有驾驶舱,其中,驾驶舱内可以设置有壳体09的进风口092和出风口093,以使驾驶员可以根据外部环境的变化而改变驾驶舱内的温度,进而提高驾驶的舒适性。
下面对上述实施例中的换热系统中的换热器(蒸发器和冷凝器)的具体结构进行介绍:
首先一并参考图5和图6,图5为本申请实施例提供的一种换热系统中的换热器的结构示意图,图6为图5中所示的换热器1的部分分解示意图。本申请实施例中,换热器1可包括第一集流器10、第二集流器20以及换热芯体30,其中,第一集流器10与第二集流器20之间间隔设置,第一集流器10可包括相隔离的第一腔室11和第二腔室12,第二集流器20可包括相隔离的第三腔室21和第四腔室22,第一腔室11、第二腔室12、第三腔室21及第四腔室22可分别用于缓存流体。换热芯体30可位于第一集流器10与第二集流器20之间,第一腔室11与第三腔室21之间、以及第二腔室12与第四腔室22之间均可通过换热芯体30连通。
具体实施时,第一集流器10与第二集流器20可以平行设置,或者也可以呈一定夹角设置,本申请对此不作限制,图5中所示的实施例以两者相互平行为例进行说明。换热芯体30可包括多个换热单元31,多个换热单元31可以在第一集流器10与第二集流器20 之间并列设置。定义多个换热单元31的排列方向为第一方向(x方向),示例性地,当第一集流器10与第二集流器20平行设置时,第一方向x与第一集流器10及第二集流器20的设置方向也可大致平行。
本申请实施例中,每个换热单元31可包括至少一个翅片311,翅片311内可设置有多个气流通道。翅片311具有进风侧和出风侧,换热器1在工作时,空气可由翅片311的进风侧进入各个气流通道,然后由出风侧排出。具体设置时,翅片311的进风侧与出风侧可沿第二方向(y方向)相对设置,该第二方向y与第一方向x可呈一定的夹角设置。例如在图5所示的实施例中,第二方向y与第一方向x可相互垂直。另外,当第一集流器10与第二集流器20平行设置时,定义第一集流器10与第二集流器20的排列方向为第三方向(z方向),本实施例中,第一方向x、第二方向y及第三方向z可两两垂直。
此外,每个换热单元31还可包括至少一个导流构件312,至少一个导流构件312则可用于形成相隔离的第一流道3121及第二流道3122,第一流道3121与第二流道3122可分别用于流通不同的流体。这样,配合翅片311的气流通道内流经的空气,该换热芯体30可同时允许三种不同的流体通过。示例性地,第一流道3121可用于流通冷媒,第二流道3122可用于流通水,或者,第一流道3121可用于流通水,第二流道3122可用于流通冷媒。
在每个换热单元中,第一流道3121、第二流道3122以及翅片311可按一定的规律排布,以使第一流道3121与第二流道3122之间、第二流道3122与翅片311之间、以及第一流道3121与翅片311之间能够形成直接或间接地导热接触。另外,对于换热芯体30整体来说,相邻的换热单元31中的流道之间也可以形成导热接触。这样,第一流道3121、第二流道3122以及翅片311的气流通道内的三种流体即可在换热芯体30内实现换热。
请继续参考图5和图6,第一腔室11可设置有多个第一分流口112,多个第一分流口112可分别与各个换热单元31的第一流道3121的其中一端连接。第三腔室21可设置有多个第三分流口(图中未示出),多个第三分流口可分别与各个换热单元31的第一流道3121的另一端连接。也就是说,第一腔室11与第三腔室21之间可通过多个第一流道3121连通,第一腔室11、第一流道3121与第三腔室21可组成换热器1整体的第一流通路径。
第一流通路径可设置有两个能够与外部连通的开口,在一些实施例中,两个开口可分别开设于第一腔室11和第三腔室21,为便于区分,以下将第一腔室11与外部连通的开口称为第一开口111,将第三腔室21与外部连通的开口称为第三开口211,利用第一开口111及第三开口211,即可将该第一流通路径连接于对应的循环回路中,示例性地,当第一流道3121用于流通冷媒时,该循环回路即为冷媒回路。
类似地,第二腔室12可设置有多个第二分流口122,多个第二分流口122可分别与各个换热单元31的第二流道3122的其中一端连接。第四腔室22可设置有多个第四分流口(图中未示出),多个第四分流口可分别与各个换热单元31的第二流道3122的另一端连接。也就是说,第二腔室12与第四腔室22之间可通过多个第二流道3122连通,第二腔室12、第二流道3122与第四腔室22可组成换热器1整体的第二流通路径。
第二流通路径也可设置有两个能够与外部连通的开口,在一些实施例中,两个开口可分别开设于第二腔室12和第四腔室22,为便于区分,以下将第二腔室12与外部连通的开口称为第二开口121,将第四腔室22与外部连通的开口称为第四开口221,利用第二开口121及第四开口221,即可将该第二流通路径连接于对应的循环回路中,示例性地,当 第二流道3122用于流通水时,该循环回路即为水冷回路。
值得一提的是,在具体实施时,用于形成第一流道3121的导流构件312的两端可分别与第一分流口112及第三分流口焊接连接,从而提高第一流道3121与第一腔室11及第三腔室21连接时的密封性。同理,用于形成第二流道3122的导流构件312的两端可分别与第二分流口122及第四分流口焊接连接,以提高第二流道3122与第二腔室12及第四腔室22连接时的密封性。
在一些实施例中,第一腔室11的第一开口111可以作为第一流通路径的进口,第三腔室21的第三开口211则可作为第一流通路径的出口。此时,第一流道3121与第一分流口112连接的一端为其进液端口,与第三分流口连接的一端为其出液端口,第一流道3121内的流体自左向右流动。此外,第四腔室22的第四开口221可以作为第二流通路径的进口,第二腔室12的第二开口121则可以作为第二流通路径的出口。此时,第二流道3122与第四分流口连接的一端为其进液端口,与第二分流口122连接的一端为其出液端口,第二流道3122内的流体自右向左流动。这样,换热器1在工作时,第一流道3121的流体与第二流道3122内的流体相向流动,从而在换热芯体30内形成对流,这种设计有助于提高两种流体的换热效率,进而提高换热器1整体的换热性能。
当然,在其它一些实施例中,第一流道3121内的流体与第二流道3122内的流体也可以同向流动,例如,当第一流道3121与第一腔体11的第一分流口112连接的一端为其进液端口时,第二流道3122与第二腔体12的第二分流口122连接的一端也可以为其进液端口,具体可以根据换热器1的实际应用场景进行设置,本申请对此不加以限定。
需要说明的是,本申请实施例的换热器所采用“左”“右”“上”“下”等方位用词主要依据换热器于图5中的展示方位进行阐述,并不形成对换热器于实际应用场景中的方位的限定。
图7为图5中所示的换热器的局部剖视图。请一并参考图6和图7所示,在本申请的一些实施例中,第一腔室11可设置于第二腔室12内部,当两种流体分别进入第一腔室11与第二腔室12内时,第一腔室11整体可浸没在第二腔室12的流体内,这样第一腔室11与第二腔室12之间即可实现导热接触,使得第一腔室11内的流体与第二腔室12内的流体能够进行热交换。类似地,第三腔室21也可设置于第四腔室22内部,当两种流体分别进入第三腔室21与第四腔室22内时,第三腔室21可浸没在第四腔室22的流体内,这样第三腔室21与第四腔室22之间也可实现导热接触,使得第三腔室21内的流体与第四腔室22内的流体也能够进行热交换。也就是说,进入换热器1内的两种流体不仅可以在第一流道3121与第二流道3122内实现热交换,在第一集流器10与第二集流体20内也同样可以实现热交换,从而延长了两种流体的换热时长,进而可以提高换热器的换热效果。
具体实施时,第二腔室12可以包括具有容纳腔的第一壳体123以及第一侧壁124,第一侧壁124朝向第二集流器20设置,且第一侧壁124与第一壳体123可拆卸连接,以将第二腔室12的容纳腔封闭。为了避免第二腔室12内的流体泄露,第一侧壁124与第一壳体123的连接位置还可以设置有第一密封圈125,第一密封圈125可被挤压于第一侧壁124与第一壳体123之间,以提高第二腔室12的密封效果。第一侧壁124对应各个换热单元31的第一流道3121的位置可分别设置有第一通孔1241,以使形成第一流道3121的导流构件312的端部可穿过第一通孔1241与第一分流口112连接。
可以理解的是,第二腔室12上所设置的第二分流口122也开设于第一侧壁124上,在将第一腔室11设置于第二腔室12内时,为了避免第一腔室11对第二分流口122造成堵 塞,第一腔室11的外壁与第一侧壁124之间可以具有一定的间隙,以使第二分流口122通过该间隙与第二腔室12的整个内腔连通,从而减小第二腔室12通过第二分流口122进出流体的阻力,进而有利于提高换热器1的换热效率。同理,第一腔室11的外壁与第一壳体123上开设第二开口121的侧壁之间也可具有一定的间隙,以避免第一腔室11对第二开口121造成堵塞。
第四腔室22可以包括具有容纳腔的第二壳体223以及第二侧壁(图中未示出),第二侧壁朝向第一集流器10设置,且第二侧壁与第二壳体223可拆卸连接,以将第四腔室22的容纳腔封闭。类似地,为了避免第四腔室22内的流体泄露,第二侧壁与第二壳体223的连接位置可以设置有第二密封圈224,第二密封圈224可被挤压于第二侧壁与第二壳体223之间,以提高第四腔室22的密封效果。第二侧壁对应各个换热单元31的第一流道3121的位置可分别设置有第二通孔,以使形成第一流道3121的导流构件312的端部可穿过第二通孔与第三分流口连接。
另外,第四腔室22上所设置的第四分流口开设于第二侧壁上,在将第三腔室21设置于第四腔室22内时,为了避免第三腔室21对第四分流口造成堵塞,可以使第三腔室21的外壁与第二侧壁之间具有一定的间隙,以使第四分流口通过该间隙与第四腔室22的整个内腔连通,从而减小第四腔室22通过第四分流口进出流体的阻力,进而有利于提高换热器1的换热效率。同理,第三腔室21的外壁与第二壳体223上开设第四开口221的侧壁之间也可具有一定的间隙,以避免第三腔室21对第四开口221造成堵塞。
另外,为了便于将第一腔室11与换热器1外部的其它部件连通,第一开口111处可设置有第一延伸管1111,第一壳体123对应第一延伸管1111的位置可设置有第三通孔(图中未示出),第一延伸管1111可由第三通孔延伸至第二腔室12的外部,这样,第一腔室11即可通过第一延伸管1111连接于对应的循环回路中。需要说明的是,第三通孔处可设置有第三密封圈1112,第三密封圈1112可部分被挤压于第一延伸管1111的外壁与第三通孔的内壁之间,从而避免第二腔室12内的流体泄露。
类似地,第三开口211处可设置有第二延伸管2111,第二壳体223对应第二延伸管2111的位置可设置有第四通孔2231,第二延伸管2111可由第四通孔2231延伸至第四腔室22的外部,从而使得第三腔室21可以通过第二延伸管2111与其它部件连通。第四通孔2231处可设置有第四密封圈2112,第四密封圈2112可部分被挤压于第二延伸管2111的外壁与第四通孔2231的内壁之间,从而避免第四腔室22内的流体泄露。
图8为本申请实施例提供的一种换热单元的结构示意图,图9为图8中所示的换热单元的分解示意图。一并参考图8和图9所示,该实施例中,每个换热单元31可包括三个导流构件312以及一个翅片311,该三个导流构件312可分别形成为一个第一流道3121以及两个第二流道3122,沿第一方向x,第一流道3121可位于两个第二流道3122之间,翅片311则可位于其中一个第二流道3122背离第一流道3121的一侧。具体设置时,三个导流构件312可分别为扁管形式,翅片311在垂直于第二方向y的截面可以大致为图中所示的方波形,或者也可以为波浪形、锯齿形或者蛇形等等,本申请对此不作限制。
对于由多个换热单元31组成的换热芯体30整体来说,用于形成第一流道3121的导流构件312与用于形成第二流道3122的导流构件312之间可直接导热接触,从而实现第一流道3121内的流体与第二流道3122内的流体的直接换热;用于形成第二流道3122的导流构件312与翅片311之间也可以直接导热接触,从而实现第二流道3122内的流体与流 经翅片311的空气的直接换热;用于形成第一流道3121的导流构件312与翅片311之间可以通过第二流道3122间接导热接触,当第二流道3122内流通导热率较高的水或者冷媒时,导流构件312的热阻基本可以忽略不计,因此第一流道3121内的流体与流经翅片311的空气也可以实现换热。
请一并参考图6、图8和图9,用于形成第二流道3122的两个导流构件312的两端可分别设置有弯折部31221,该弯折部31221可朝向远离第一流道3121的一侧弯曲,从而在换热单元31的两端,三个导流构件312的端部可以分别相间隔。这样,在第二腔室12的第一侧壁124上,第二分流口122与第一通孔1241之间可以相互独立,以及,在第四腔室22的第二侧壁224上,第四分流口与第二通孔之间也可以相互独立,从而有助于提高第二腔室12及第四腔室22的密封性。
图10为本申请实施例提供的另一种换热器的结构示意图,图11为图10中所示的换热器的剖视图。在本实施例中,第一流通路径的两个开口还可以均开设于第一腔室11,或者均开设于第三腔室21,图10所示的实施例以该两个开口均开设于第三腔室21为例进行说明。将第一流通路径的两个开口分别记为第一开口111和第三开口211,第一开口111和第三开口211也可分别通过延伸管延伸至第四腔室22的外部,从而使得第三腔室21可以通过延伸管2111与其它部件连通。第三腔室21内可设置有第一档板213,该第一档板213可将第三腔室21分隔为第一子腔室214a和第一子腔室214b,第一开口111和第三开口211可分别设置于两个第一子腔室214a和214b,并将对应的第一子腔室214a和214b与外部连通。类似地,第二流通路径的两个开口可以均开设于第二腔室12,或者均开设于第四腔室22,图10中所示的实施例以该两个开口均开设于第二腔室12为例进行说明。将第二流通路径的两个开口分别记为第二开口121和第四开口221,第二腔室12内可设置有第二档板126,该第二档板126可将第二腔室12分隔为第二子腔室127a和第二子腔室127b,第二开口121和第四开口221可分别设置于第二子腔室127a和第二子腔室127b,并将对应的第二子腔室127a和第二子腔室127b与外部连通。
换热器1工作时,第一流通路径所在的循环回路内的流体由第一开口111进入第三腔室21的其中一个第一子腔室214a,在该第一子腔室214a内由对应的第一流道3121向第一腔室11流动,由于第一腔室11没有与外部连通的开口,随着流体的不断进入第一腔体11内的压力会逐渐增大,这样第一腔室11内的流体就可以通过与另外一个第一子腔室214b对应的第一流道3121返回至第三腔室21内,进而由该第一子腔室214b的第三开口211流出换热器1。同理,第二流通路径所在的循环回路内的流体由第二开口121进入第二腔室12的其中一个第二子腔室127a,在该第二子腔室127a内由对应的第二流道3122向第四腔室22流动,由于第四腔室22没有与外部连通的开口,随着流体的不断进入第四腔室22内的压力会逐渐增大,这样第四腔室22内的流体就可以通过与另外一个第二子腔室127b对应的第二流道3122返回至第二腔室12内,进而由该第二子腔室127b的第四开口221流出换热器1。可以看出,第一流通路径内的流体在换热单元31内可实现由第三腔室21-第一腔室11,以及由第一腔室11-第三腔室21两个流程的运转,同时,第二流通路径内的流体在换热单元31内可实现由第二腔室12-第四腔室22,以及第四腔室22-第二腔室12两个流程的运转,从而可以使换热器1内的三种流体可以更加充分地换热,进而可以提高换热器1的换热效果。
图12为本申请实施例提供的另一种换热器的结构示意图,图13为图12中所示的换热 单元的分解示意图。该实施例中,每个换热单元31可包括两个导流构件312以及两个翅片311,两个导流构件312可分别为扁管形式,该两个导流构件312可分别形成为一个第一流道3121以及一个第二流道3122。沿第一方向,用于形成第一流道3121的导流构件312可位于两个翅片311之间,用于形成第二流道3122的导流构件312则可位于其中一个翅片311背离第一流道3121的一侧。或者,也可以将用于形成第二流道3122的导流构件312设置于两个翅片311之间,用于形成第一流道3121的导流构件312则可位于其中一个翅片311背离第二流道3122的一侧。
另外,在该实施例中,第一开口111和第三开口211可以分别设置于第一腔室11与第三腔室21,也可以均设置于第一腔室11或第三腔室21,第二开口121和第四开口221可以分别设置于第二腔室12与第四腔室22,也可以均设置于第二腔室12或第四腔室22,本申请对此不加以限制,图12中所示的实施例以各个腔室分别设置有开口为例进行说明。
以用于形成第二流道3122的导流构件312位于两个翅片311之间为例,对于由多个换热单元31组成的换热芯体30整体来说,用于形成第一流道3121的导流构件312与翅片311之间可以直接导热接触,从而实现第一流道3121内的流体与流经翅片311的空气的直接换热;用于形成第二流道3122的导流构件312与翅片311之间也可以直接导热接触,从而实现第二流道3122内的流体与流经翅片311的空气的直接换热;用于形成第一流道3121的导流构件312与用于形成第二流道3122的导流构件312之间可以通过翅片导热接触,由于翅片311的热阻较小,因此第一流道3121内的流体与第二流道3122内的流体也可以实现换热。
作为一种可能的实施例,第一腔室11与第二腔室12可以沿第二方向y并列设置,且第一腔室11的外壁与第二腔室12的外壁之间相互接触,以使第一腔室11内的流体与第二腔室12内的流体能够进行热交换。类似地,第三腔室21与第四腔室22也可以沿第二方向y并列设置,且第三腔室21与第四腔室22的外壁之间也相互接触,以使第三腔室21内的流体与第四腔室22内的流体能够进行热交换。
上述实施例中,在第一流道3121与第一腔室11连接的一端,用于形成第一流道3121的导流构件312对应第一腔室11的第一分流口112位置采用开口设计,对应第二腔室12的位置则采用收口设计,在第一流道3121与第三腔室21连接的一端,用于形成第一流道3121的导流构件312对应第三腔室21的第三分流口(图中未示出)的位置采用开口设计,对应第四腔室22的位置则采用收口设计,以避免第一流道3121内的流体流至第一腔室11或者第三腔室21之外的地方。同理,在第二流道3122与第二腔室12连接的一端,用于形成第二流道3122的导流构件312对应第二腔室12的第二分流口位置采用开口设计,对应第一腔室11的位置则采用收口设计,在第二流道3122与第四腔室22连接的一端,用于形成第二流道3122的导流构件312对应第四腔室22的第四分流口(图中未示出)的位置采用开口设计,对应第三腔室21的位置则采用收口设计,以避免第二流道(图中未示出)内的流体流至第二腔室12或者第四腔室22之外的地方。
另外,对于第一集流器10,第一腔室11可以位于第二腔室12的上方;对于第二集流器20,第四腔室22可以位于第三腔室21的上方。也就是说,沿第三方向z,第一腔室11与第四腔室22位置相对,第二腔室12与第三腔室21位置相对。第一流道3121内的流体在自左向右流动时,由于左侧的第一腔室11位于上方,右侧的第三腔室21位于下方,因此第一流道3121内的流体同时存在着自上而下的流动趋势;第二流道3122内的流体在 自右向左流动时,由于右侧的第四腔室22位于上方,右侧的第二腔室12位于下方,因此第二流道3122内的流体也同时存在着自上而下的流动趋势。这样,当空气自下而上经过翅片311的气流通道时,就会与第一流道3121内的流体及第二流道3122内的流体分别形成对流,从而可以提高三种流体的换热效率。
应当理解的是,在其它一些实施例中,第一集流器10与第二集流器20也可参考前述实施例的设置方式,即第一腔室11设置于第二腔室12内部,第三腔室21设置于第四腔室22内部,两个集流器的具体结构可参考前述实施例中的描述,此处不再进行赘述。
图14为本申请实施例提供的另一种换热器的结构示意图。参考图14所示,该实施例中,每个换热单元31可包括两个导流构件312以及一个翅片311,两个导流构件312可分别为扁管形式,该两个导流构件312可分别形成为一个第一流道3121以及一个第二流道3122,第一流道3121、第二流道3122以及翅片311沿第一方向x并列设置。具体设置时,翅片311可位于第一流道3121与第二流道3122之间,或者位于第一流道3121背离第二流道3122的一侧,或者也可以位于第二流道3122背离第一流道3121的一侧,本申请对此不作限制。
另外,在该实施例中,第一开口111和第三开口211可以分别设置于第一腔室11与第三腔室21,也可以均设置于第一腔室11或第三腔室21,第二开口121和第四开口221可以分别设置于第二腔室12与第四腔室22,也可以均设置于第二腔室12或第四腔室22,本申请对此不加以限制,图14中所示的实施例以各个腔室分别设置有开口为例进行说明。
以翅片311位于第二流道3122背离第一流道3121的一侧为例,对于由多个换热单元31组成的换热芯体30整体来说,用于形成第一流道3121的导流构件312与用于形成第二流道3122的导流构件312之间可直接导热接触,从而实现第一流道3121内的流体与第二流道3122内的流体的直接换热;用于形成第二流道3122的导流构件312与翅片311之间也可以直接导热接触,从而实现第二流道3122内的流体与流经翅片311的空气的直接换热;用于形成第一流道3121的导流构件312与翅片311之间可以通过第二流道3122间接接触,当第二流道3122内流通导热率较高的水或者冷媒时,导流构件312的热阻基本可以忽略不计,因此第一流道3121内的流体与流经翅片311的空气也可以实现换热。
在本实施例中,第一集流器10既可以采用第一腔室11设置于第二腔室12内部的内置式结构,也可以采用第一腔室11与第二腔室12沿第二方向y排布的并列式结构;同理,第二集流器20既可以采用第三腔室21设置于第四腔室22内部的内置式结构,也可以采用第三腔室21与第四腔室22沿第二方向y排布的并列式结构,本申请对此不作限制。内置式结构与并列式结构的具体设置方式可以参考前述实施例中的描述,此处不在进行赘述。
图15为本申请实施例提供的另一种换热器的结构示意图,图16为图15中所示的换热器的部分分解示意图。一并参考图15和图16所示,该实施例中,每个换热单元31可包括两个导流构件312以及一个翅片311,两个导流构件312可分别为扁管形式,该两个导流构件312可分别形成为一个第一流道3121以及一个第二流道3122。具体实施时,两个导流构件312可沿第二方向y并列设置并形成导流组件,且两个导流构件312的外壁之间相互接触;两个导流构件312所形成的导流组件与翅片311可以沿第一方向x并列设置。其中,用于形成第一流道3121的导流构件312可位于用于形成第二流道3122的导流构件312的上方,或者,用于形成第二流道3122的导流构件312也可以位于用于形成第一流道3121的导流构件312的上方。
另外,在该实施例中,第一开口111和第三开口211可以分别设置于第一腔室11与第三腔室21,也可以均设置于第一腔室11或第三腔室21,第二开口121和第四开口221可以分别设置于第二腔室12与第四腔室22,也可以均设置于第二腔室12或第四腔室22,本申请对此不加以限制,图15中所示的实施例以各个腔室分别设置有开口为例进行说明。
对于由多个换热单元31组成的换热芯体30整体来说,用于形成第一流道3121的导流构件312与用于形成第二流道3122的导流构件312之间可直接导热接触,从而实现第一流道3121内的流体与第二流道3122内的流体的直接换热;用于形成第二流道3122的导流构件312与翅片311之间也可以直接导热接触,从而实现第二流道3122内的流体与流经翅片311的空气的直接换热;用于形成第一流道3121的导流构件312与翅片311之间也可以直接导热接触,从而实现第一流道3121内的流体与流经翅片311的空气的直接换热。
在本申请实施例中,第一集流器10既可以采用第一腔室11设置于第二腔室12内部的内置式结构,也可以采用第一腔室11与第二腔室12沿第二方向y排布的并列式结构;同理,第二集流器20既可以采用第三腔室21设置于第四腔室22内部的内置式结构,也可以采用第三腔室21与第四腔室22沿第二方向y排布的并列式结构,本申请对此不作限制。与前述实施例不同的是,当第一集流器10与第二集流器20采用并列式结构时,由于第一流道3121与第二流道3122上下并列设置,为了便于将第一流道3121的两端与第一腔室11及第三腔室21连接,沿第三方向z,第一腔室11与第三腔室21可相对设置,且第一腔室11与第三腔室21的上下位置可根据第一流道的上下位置设置,例如,当第一流道3121位于第二流道3122的上方时,第一腔室11和第三腔室21可分别位于第二腔室12及第四腔室22的上方。可以理解的,当第一流道3121、第一腔室11及第三腔室21的位置确定后,第二流道3122、第二腔室12及第四腔室22的位置也可随之确定,故此处不再进行赘述。
需要说明的是,在上述各实施例中,为了使第一流道3121以及第二流道3122内的流体与流经翅片311的空气能够形成较好的换热效果,还可以在第一流道3121及第二流道3122内分别设置相应的通路,以使两个流道内的流体在沿通路流动时能够与空气形成对流,从而提高换热效率。参考图17,图17所示实施例以每个换热单元31包括两个导流构件312以及两个翅片311为例进行说明。在具体实施时,用于形成第一流道3121的导流构件312内可具有第一通路31211、第二通路31212和第三通路31213,其中,第一通路31211和第二通路31212可分别沿第三方向z设置,且第一通路31211与第一腔室11的第一分流口连通,第二通路31212与第三腔室21的第三分流口连通,第三通路31213则可沿第二方向y设置,且第三通路31213的两端分别与第一通路31211和31212连通。示例性地,第一通路31211和第二通路31212可分别设置在第一流道3121沿第二方向y的两侧,也即第一流道3121的上方和下方,第三通路31213的数量可以为多个,多个第三通路31213可沿第三方向z并列设置。换热器1在工作时,第一腔室11内的流体通过第一分流口进入第一流道3121的第一通路31211,然后在第一通路31211内经由第三通路31213进入第二通路31212,最后由第二通路31212流入第三腔室21。流体在自上而下流经第三通路31213时,空气可同时自下而上经过翅片311的气流通道,这样两者即可形成对流,从而提高换热效率。
类似地,用于形成第二流道3122的导流构件312内可具有第四通路、第五通路和第六通路,其中,第四通路和第五通路可分别沿第三方向设置,且第四通路与第二腔室的第 二分流口连通,第五通路与第四腔室的第四分流口连通,第六通路则可沿第二方向y设置,且第六通路的两端分别与第四通路和第五通路连通。示例性地,第四通路和第五通路可分别设置在第二流道3122沿第二方向y的两侧,也即第二流道3122的下方和上方,第六通路的数量可以为多个,多个第六通路可沿第三方向并列设置。换热器1在工作时,第四腔室22内的流体通过第四分流口进入第二流道3122的第五通路,然后在第五通路内经由第六通路进入第四通路,最后由第四通路流入第二腔室12。流体在自上而下流经第六通路时,空气可同时自下而上经过翅片311的气流通道,这样两者即可形成对流,从而提高换热效率。
图18为本申请实施例提供的另一种换热器的结构示意图,图19为图18中所示的换热器的部分分解示意图。一并参考图18和图19所示,该实施例中,每个换热单元31可包括一个导流构件312以及一个翅片311,导流构件312与翅片311可沿第一方向x并列设置。导流构件312内部可设置有隔板3123,隔板3123的数量可以为一个或多个,利用该隔板3123可将导流构件312内部分隔为第一流道3121和第二流道3122。具体实施时,隔板3123的数量可以为一个或多个,从而分隔形成的第一流道3121和第二流道3122的数量也分别为一个或多个。可以理解的,当第一流道3121和第二流道3122的数量分别为多个时,为了提高第一流道3121内的流体与第二流道3122内的流体的换热效果,第一流道3121与第二流道3122可以沿第二方向y交替排列。
另外,在该实施例中,第一开口111和第三开口211可以分别设置于第一腔室11与第三腔室21,也可以均设置于第一腔室11或第三腔室21,第二开口121和第四开口221可以分别设置于第二腔室12与第四腔室22,也可以均设置于第二腔室12或第四腔室22,本申请对此不加以限制,图18中所示的实施例以各个腔室分别设置有开口为例进行说明。
对于由多个换热单元31组成的换热芯体30整体来说,第一流道3121与第二流道3122之间可以直接导热接触,从而实现第一流道3121内的流体与第二流道3122内的流体的直接换热;导流构件312与翅片311之间可以直接导热接触,从而实现第一流道3121内的流体以及第二流道3122内的流体分别与流经翅片311的空气的直接换热。
在本实施例中,第一集流器10和第二集流器20可分别采用内置式结构,也即,第一腔室11设置于第二腔室12内部,第三腔室21设置于第四腔室22内部。具体设置时,导流构件312的侧壁对应各个第一流道3121的位置可适当延长,相应地,隔板3123也可分别延长,以使第一流道的两端3121超出第二流道,从而便于将第一流道3121与第一腔室11及第三腔室21连接。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种换热系统,其特征在于,包括:多通阀、风道和设置于所述风道中的至少一个换热器,其中,所述换热器具有空气通过的空气流道,所述至少一个换热器的进水口和出水口通过水管组与所述多通阀连通,所述至少一个换热器的制冷剂入口与所述至少一个换热器的制冷剂出口通过制冷剂管组连通,所述制冷剂管组上设置有电子膨胀阀;
    所述多通阀还用于与换热单元连通,且对所述换热单元进行换热时,所述多通阀将所述换热单元、所述多通阀、所述水管组以及所述换热器处于一循环回路。
  2. 根据权利要求1所述的换热系统,其特征在于,所述换热器为两个,两个所述换热器均设置于所述风道,所述水管组包括第一水管组和第二水管组,两个所述换热器分别为蒸发器和冷凝器;
    所述第一水管组将所述蒸发器的进水口和所述蒸发器的出水口与所述多通阀连通,所述第二水管组将所述冷凝器的进水口和所述冷凝器的出水口与所述多通阀连通;
    所述制冷剂管组将所述蒸发器的制冷剂出口与所述冷凝器的制冷剂入口连通,且所述制冷剂管组还将所述冷凝器的制冷剂出口与所述蒸发器的制冷剂入口连通。
  3. 根据权利要求2所述的换热系统,其特征在于,还包括压缩机,所述压缩机设置于所述蒸发器的制冷剂出口与所述冷凝器的制冷剂进口之间。
  4. 根据权利要求2或3所述的换热系统,其特征在于,还包括第一水泵,所述第一水泵设置于所述第一水管组或所述第二水管组;或,
    所述第一水管组和所述第二水管组均设置有所述第一水泵。
  5. 根据权利要求2或3所述的换热系统,其特征在于,所述换热单元包括电池包组件;
    所述电池包组件包括电池包和第三水管组,所述电池包通过所述第三水管组与所述多通阀连通,所述第三水管组上设有所述第三水泵;
    当对所述电池包散热时,所述多通阀用于将所述蒸发器、第一水管组、第三水泵、第三水管组以及电池包连通;
    当对所述电池包加热时,所述多通阀用于将所述冷凝器、第二水管组、第三水泵、第三水管组以及电池包连通。
  6. 根据权利要求2、3或5所述的换热系统,其特征在于,所述换热单元还包括动力总成组件;
    所述动力总成组件包括动力总成和第四水管组,所述第四水管组将所述动力总成与所述多通阀连通,所述第四水管组上设有第四水泵;
    当对所述动力总成散热时,所述多通阀用于将所述蒸发器、第一水管组、第四水泵、第四水管组以及动力总成连通。
  7. 根据权利要求2、3或5所述的换热系统,其特征在于,所述换热单元还包括动力总成组件和前端组件;
    所述动力总成组件包括动力总成和第四水管组,所述第四水管组将所述动力总成与所述多通阀连通,所述第四水管组上设有第四水泵;
    所述前端组件包括前端模组和第五水管组,所述第五水管组将所述前端模组与所述多通阀连通;
    当对所述动力总成散热时,所述多通阀用于将所述动力总成、第四水管组、第四水泵、 第五水管组和前端模组连通。
  8. 根据权利要求2至7任一项所述的换热系统,其特征在于,还包括壳体,所述壳体上设有进风口和出风口,所述进风口和所述出风口之间形成所述风道,所述蒸发器和所述冷凝器均设置于所述风道。
  9. 根据权利要求8所述的换热系统,其特征在于,还包括第一开关;
    所述第一开关设置于所述壳体中,所述第一开关具有第一状态和第二状态,当所述第一开关处于第一状态时,所述风道中的气体经过所述蒸发器的空气通道,当所述第一开关处于第二状态时,所述风道中的气体不经过所述蒸发器的空气通道。
  10. 根据权利要求9所述的换热系统,其特征在于,还包括第二开关;
    所述第二开关设置于所述壳体中,当所述第二开关处于第一状态时,所述风道中的气体经过所述冷凝器的空气通道,当所述第二开关处于第二状态时,所述风道中的气体不经过所述冷凝器的空气通道。
  11. 根据权利要求8至10任一项所述的换热系统,其特征在于,还包括风机,所述风机位于所述壳体的风道中。
  12. 根据权利要求11所述的换热系统,其特征在于,所述壳体上还设有新风入口,所述新风入口位于所述风机与所述进风口之间,或所述新风入口与所述风机相对应。
  13. 一种车辆,其特征在于,具有如权利要求1至12任一项所述的换热系统。
PCT/CN2022/131961 2021-11-17 2022-11-15 换热系统及车辆 WO2023088242A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111361140.8 2021-11-17
CN202111361140.8A CN116135560A (zh) 2021-11-17 2021-11-17 换热系统及车辆

Publications (1)

Publication Number Publication Date
WO2023088242A1 true WO2023088242A1 (zh) 2023-05-25

Family

ID=86332573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131961 WO2023088242A1 (zh) 2021-11-17 2022-11-15 换热系统及车辆

Country Status (2)

Country Link
CN (1) CN116135560A (zh)
WO (1) WO2023088242A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10100660A (ja) * 1996-09-30 1998-04-21 Calsonic Corp ヒートポンプ式自動車用空気調和装置
CN101279580A (zh) * 2008-05-30 2008-10-08 清华大学 燃料电池车用余热热泵空调系统
CN103121393A (zh) * 2011-11-17 2013-05-29 株式会社电装 车辆用热交换器的配置构造
CN103287252A (zh) * 2013-06-14 2013-09-11 上海交通大学 电动车热管理系统
CN112297758A (zh) * 2019-07-24 2021-02-02 现代自动车株式会社 车辆的hvac系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10100660A (ja) * 1996-09-30 1998-04-21 Calsonic Corp ヒートポンプ式自動車用空気調和装置
CN101279580A (zh) * 2008-05-30 2008-10-08 清华大学 燃料电池车用余热热泵空调系统
CN103121393A (zh) * 2011-11-17 2013-05-29 株式会社电装 车辆用热交换器的配置构造
CN103287252A (zh) * 2013-06-14 2013-09-11 上海交通大学 电动车热管理系统
CN112297758A (zh) * 2019-07-24 2021-02-02 现代自动车株式会社 车辆的hvac系统

Also Published As

Publication number Publication date
CN116135560A (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
KR101526427B1 (ko) 차량용 열교환기
KR101575315B1 (ko) 차량용 열교환기
KR101765582B1 (ko) 차량용 열교환기
KR101703606B1 (ko) 차량용 열교환기
WO2023088243A1 (zh) 一种换热器、车载热管理系统及电动汽车
CN106532173B (zh) 一种换热器及一种车用热管理系统
CN106926665B (zh) 车辆空调设备及具有其的车辆
JPH02185821A (ja) 自動車用空調装置
JP2013108745A (ja) 車両用熱交換器
WO2022057936A1 (zh) 车辆热管理系统及电动汽车
CN107089113B (zh) 车辆空调设备及具有其的车辆
WO2023029577A1 (zh) 电动车辆及其热管理装置
CN112026475A (zh) 换热装置及空调设备
WO2023088242A1 (zh) 换热系统及车辆
CN111854208B (zh) 热管理系统
CN112455214A (zh) 散热装置及汽车散热系统
KR101744801B1 (ko) 차량용 열교환기
US20220212518A1 (en) Thermal management system
CN221172637U (zh) 热管理模块、热管理系统和车辆
CN215336705U (zh) 空调器
CN219037682U (zh) 换热装置、换热系统及车辆
CN221005569U (zh) 用于冷水机组的换热装置、冷水机组
WO2024022451A1 (zh) 热泵空调系统及车辆
EP4299345A1 (en) Valve group integrated module, vehicle thermal management system, and vehicle
CN217685994U (zh) 空调室外机及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894775

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022894775

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022894775

Country of ref document: EP

Effective date: 20240523