WO2024022451A1 - 热泵空调系统及车辆 - Google Patents

热泵空调系统及车辆 Download PDF

Info

Publication number
WO2024022451A1
WO2024022451A1 PCT/CN2023/109619 CN2023109619W WO2024022451A1 WO 2024022451 A1 WO2024022451 A1 WO 2024022451A1 CN 2023109619 W CN2023109619 W CN 2023109619W WO 2024022451 A1 WO2024022451 A1 WO 2024022451A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
water
circuit
heat
air conditioning
Prior art date
Application number
PCT/CN2023/109619
Other languages
English (en)
French (fr)
Inventor
董军启
Original Assignee
北京车和家信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京车和家信息技术有限公司 filed Critical 北京车和家信息技术有限公司
Publication of WO2024022451A1 publication Critical patent/WO2024022451A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3223Cooling devices using compression characterised by the arrangement or type of the compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/02Moistening ; Devices influencing humidity levels, i.e. humidity control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/02Moistening ; Devices influencing humidity levels, i.e. humidity control
    • B60H3/024Moistening ; Devices influencing humidity levels, i.e. humidity control for only dehumidifying the air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow

Definitions

  • the present disclosure relates to the field of thermal management technology, and specifically to a heat pump air conditioning system and a vehicle.
  • embodiments of the present disclosure provide a heat pump air conditioning system and a vehicle.
  • a first aspect of embodiments of the present disclosure provides a heat pump air conditioning system including a refrigerant subsystem
  • the refrigerant subsystem includes a compressor connected through a refrigerant pipeline, a reversing valve group, a front air-conditioning box, a first throttling component and an external heat exchanger.
  • the front air-conditioning box is provided with a first heat exchanger. heater;
  • the reversing valve group has four connection ports, wherein the first connection port is connected to the air outlet of the compressor, the second connection port is connected to the first heat exchanger, and the third connection port is connected to the outside heat exchanger.
  • the fourth connection port is connected to the air return port of the compressor;
  • the first connection port is connected to the second connection port, the third connection port is connected to the fourth connection port, the compressor, the first heat exchanger, the The first throttling component and the external heat exchanger are connected in sequence to form a refrigerant circulation loop;
  • the first connection port is connected to the third connection port
  • the second connection port is connected to the fourth connection port
  • the first throttling component and the first heat exchanger are connected in sequence to form the refrigerant circulation circuit.
  • a second heat exchanger is further provided in the front air conditioning box, the second heat exchanger is connected in series with the first heat exchanger, and the first throttling component is connected to the between the second heat exchanger and the exterior heat exchanger.
  • the front air conditioning box is further provided with an electronic all-pass throttle valve, and the electronic all-pass throttle valve is connected between the first heat exchanger and the second heat exchanger.
  • the refrigerant subsystem further includes a rear air conditioning box and a second throttling component connected through the refrigerant pipeline, and a third heat exchanger is provided in the rear air conditioning box, and the The third heat exchanger and the front air conditioning box In parallel connection, the second throttling component is connected between the third heat exchanger and the vehicle exterior heat exchanger.
  • the refrigerant subsystem further includes a battery heat exchanger and a third throttling component connected through the refrigerant pipeline, and the battery heat exchanger is connected in parallel with the front air conditioning box, The third throttling component is connected between the battery heat exchanger and the vehicle exterior heat exchanger.
  • the heat pump air conditioning system further includes a water circuit subsystem, the water circuit subsystem includes a battery water circuit, a first water pump is provided in the battery water circuit, and the battery heat exchanger is connected to the In the battery water circuit, the battery heat exchanger transfers the heat or cold generated by the refrigerant subsystem to the battery water circuit.
  • the water circuit subsystem further includes a warm air circuit.
  • a second water pump, a water-cooled condenser and a warm air core are provided in the warm air circuit.
  • the water-cooled condenser is connected to the refrigerant.
  • the warm air core is located in the front air conditioning box, and the warm air core and the first heat exchanger There is a warm air damper between the appliances.
  • the water circuit subsystem further includes a motor water dissipation circuit.
  • the motor water dissipation circuit is provided with a third water pump, an exterior radiator and a water-to-water heat exchanger.
  • the water-to-water heat exchanger is Connected to the warm air circuit, the water-to-water heat exchanger transfers the heat generated by the warm air circuit to the motor water dissipation circuit.
  • the water circuit subsystem also includes a waste heat recovery water circuit.
  • the waste heat recovery water circuit is connected in parallel with the motor water dissipation circuit through a three-way water valve.
  • the three-way water valve controls the electric drive assembly. Connected to one of the motor water dissipation circuit and the waste heat recovery water circuit.
  • the motor water dissipation circuit is interconnected with the battery water circuit through a first four-way water valve, and the first four-way water valve controls the motor water dissipation circuit and the waste heat recovery water circuit. One of them is independent of or connected to the battery water circuit.
  • a heater is provided in the warm air circuit and/or the battery water circuit, and the warm air circuit is interconnected with the battery water circuit through a second four-way water valve, and the second The four-way water valve controls the warm air circuit and the battery water circuit to be independent or connected to each other.
  • the refrigerant subsystem further includes an intermediate heat exchanger connected between the vehicle exterior heat exchanger and the air return port of the compressor.
  • the reversing valve group includes a four-way reversing valve; or,
  • the reversing valve group includes four stop valves.
  • the four stop valves are respectively arranged on four pipe sections connected end to end. The connection between each two adjacent pipe sections forms a connection port.
  • a second aspect of an embodiment of the present disclosure provides a vehicle, including the heat pump air conditioning system as described in any of the above embodiments.
  • the reversing valve group can be used to switch the flow direction of the refrigerant in the refrigerant subsystem, thereby forming a refrigeration system in the refrigeration mode.
  • Circulation loop forms a heating circulation loop in heating mode, so that the refrigerant subsystem can not only be used to cool the passenger compartment, but also the refrigerant subsystem can be used to heat the passenger compartment; simultaneously achieved through the refrigerant circulation loop heating and Cooling the needs of different modes, simplifying the system and greatly reducing costs.
  • Figure 1 is a schematic structural diagram of a heat pump air conditioning system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of the heat pump air conditioning system in standard heating mode according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of the heat pump air conditioning system in cooling fast charging mode according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of the heat pump air conditioning system in the heating and dehumidification mode according to the embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of the heat pump air conditioning system in the battery and passenger compartment simultaneous heating mode according to the embodiment of the present disclosure
  • Figure 6 is a schematic structural diagram of the heat pump air conditioning system in cooling mode according to the embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of the heat pump air conditioning system in the waste heat recovery mode according to the embodiment of the present disclosure
  • Figure 8 is a schematic structural diagram of a reversing valve group of a heat pump air conditioning system according to some embodiments of the present disclosure
  • Figure 9 is a schematic structural diagram of a reversing valve group of a heat pump air conditioning system according to other embodiments of the present disclosure.
  • some embodiments of the present disclosure provide a heat pump air conditioning system, including a refrigerant subsystem.
  • the refrigerant subsystem can use carbon dioxide as the refrigerant.
  • the carbon dioxide refrigerant It has strong heating capacity and can use carbon dioxide refrigerant to meet the heating needs of the passenger compartment under low-temperature heating conditions. beg.
  • the refrigerant subsystem is not limited to carbon dioxide as the refrigerant, but can also use R22 refrigerant, R410A refrigerant, etc.
  • the refrigerant subsystem includes a compressor 1, a reversing valve group 2, a front air conditioning box 3, a first throttling component 4 and a vehicle connected through a refrigerant pipeline.
  • External heat exchanger 5 the first heat exchanger 31 is provided in the front air conditioning box 3;
  • the reversing valve group 2 has four connection ports, namely the first connection port, the second connection port, the third connection port and the third connection port.
  • the first connection port is connected to the air outlet of the compressor 1
  • the second connection port is connected to the first heat exchanger 31
  • the third connection port is connected to the external heat exchanger 5
  • the fourth connection port is connected to the air outlet of the compressor 1.
  • the air return port; the first throttling component 4 is located on the refrigerant pipeline where the front air conditioning box 3 is located, and is connected between the first heat exchanger 31 and the exterior heat exchanger 5; the first throttling component 4 can specifically be Of course, the first electronic expansion valve may also be a first capillary tube or the like.
  • front air conditioning box 3 is also an air conditioning box used to blow air to the front passenger compartment.
  • the reversing valve group 2 can be used to switch the flow direction of the refrigerant in the refrigerant subsystem.
  • the first connection port of the reversing valve group 2 in the heating mode, is connected to the second connection port, and the third connection port is connected to the fourth connection port.
  • the first throttling component 4 and the external heat exchanger 5 are connected in sequence to form a refrigerant circulation loop; in the cooling mode, the first connection port of the reversing valve group 2 is connected to the third connection port, and the second connection port is connected to The fourth connection port is connected, and the compressor 1, the exterior heat exchanger 5, the first throttling component 4 and the first heat exchanger 31 are connected in sequence to form a refrigerant circulation circuit.
  • the refrigerant subsystem can not only be used to cool the passenger compartment, but also the refrigerant subsystem can be used to heat the passenger compartment.
  • the needs of different heating and cooling modes are simultaneously realized, simplifying the system and greatly reducing costs.
  • a second heat exchanger 32 is also provided in the front air conditioning box 3 .
  • the second heat exchanger 32 is connected in series with the first heat exchanger 31 .
  • the first throttling component 4 It is connected between the second heat exchanger 32 and the vehicle exterior heat exchanger 5 .
  • the heat exchange area of the air has greatly improved the heating energy efficiency of the heat pump air-conditioning system in low-temperature environments, and solved the problem of low heating efficiency caused by the existing heat pump air-conditioning system using PTC heating in low-temperature environments, which seriously affects the vehicle's endurance. Mileage issue.
  • existing heat pump air conditioning systems usually only use the refrigerant subsystem to directly cool the passenger compartment.
  • the refrigerant subsystem is usually used to exchange heat with the water loop subsystem, or directly use The PTC heater installed in the water circuit heats the passenger compartment. This heating method leads to low heating energy efficiency of the heat pump air conditioning system.
  • the heat pump air conditioning system provided by the embodiment of the present disclosure can not only use the refrigerant subsystem to directly cool the passenger compartment, but can also switch the flow direction of the refrigerant in the refrigerant subsystem by setting the reversing valve group 2 to realize the use of refrigerant.
  • the subsystem directly heats the passenger compartment; and in the heating mode, the two heat exchangers in the front air-conditioning box 3 serve as the heating core at the same time, effectively improving the heating energy efficiency.
  • the front air-conditioning box 3 The two heat exchangers in it serve as refrigeration cores at the same time, effectively improving the refrigeration energy efficiency, thus effectively improving the refrigeration and heating energy efficiency of the heat pump air conditioning system, thereby effectively increasing the vehicle's cruising range.
  • the first throttling component 4 may be a two-way electronic expansion valve, and the first throttling component 4 is located at Between the condenser and the evaporator, after the high-pressure liquid refrigerant flowing out of the condenser flows through the first throttling component 4, the pressure is instantly reduced and becomes low-pressure liquid refrigerant.
  • the low-pressure liquid refrigerant vaporizes in the evaporator and becomes Gaseous refrigerant; by switching the flow direction of the refrigerant in the refrigerant subsystem through the reversing valve group 2, the cooling mode and the heating mode can be switched.
  • the liquid separators 6 are connected in sequence to form a passenger compartment heating circuit.
  • the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the reversing valve group 2, it enters the front air-conditioning box 3, and flows through the first heat exchanger 31 and the second heat exchanger 32 in sequence.
  • the first The heat exchanger 31 and the second heat exchanger 32 serve as a condenser (or heating core) at the same time, liquefying the high-temperature and high-pressure refrigerant gas into liquid.
  • the refrigerant liquefaction process will release a large amount of heat, which is harmful to the refrigerant entering the refrigerant.
  • the air inside the car in the front air conditioning box 3 is heated to effectively ensure the heating effect of the heat pump air conditioning system on the air in the passenger compartment.
  • the liquefied refrigerant liquid flows through the first throttling component 4 for decompression, and the refrigerant flows out.
  • the pressure behind the first throttling component 4 is instantly reduced, and the low-pressure refrigerant liquid enters the outdoor heat exchanger 5 (acting as an evaporator at this time).
  • the refrigerant liquid evaporates, vaporizes, and absorbs heat to become refrigerant gas, and at the same time absorbs the heat of the outdoor air.
  • the flow direction of the refrigerant in the refrigerant subsystem is switched through the reversing valve group 2.
  • the flow component 4, the second heat exchanger 32, the first heat exchanger 31 and the gas-liquid separator 6 are connected in sequence to form a passenger cabin refrigeration circuit.
  • the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the reversing valve group 2, it enters the exterior heat exchanger 5 (acting as a condenser at this time), where the high-temperature and high-pressure refrigerant gas is liquefied into liquid.
  • the refrigerant will release a large amount of heat to the outdoor environment, and then the liquefied refrigerant liquid will be decompressed through the first throttling component 4.
  • the pressure will drop instantly, and the low-pressure refrigerant liquid will enter the inside the front air-conditioning box 3 and flows through the first heat exchanger 31 and the second heat exchanger 32 in sequence.
  • the first heat exchanger 31 and the second heat exchanger 32 simultaneously serve as evaporators (or called refrigeration cores). body), the refrigerant liquid evaporates and absorbs heat and turns into refrigerant gas. At the same time, it absorbs the heat of the air in the passenger compartment, effectively ensuring the cooling effect of the heat pump air conditioning system on the air in the passenger compartment.
  • the refrigerant that becomes gas enters the compressor again. Start the next cycle.
  • the refrigerant subsystem also includes a rear air conditioning box 8 and a second throttling component 9 connected through a refrigerant pipeline.
  • a third heat exchanger is provided in the rear air conditioning box 8. 81, the third heat exchanger 81 is connected in parallel with the front air conditioning box 3, the second throttling component 9 is located on the refrigerant pipeline where the rear air conditioning box 8 is located, and is connected to the third heat exchanger 81 and the outside vehicle exchanger.
  • the second throttling component 9 can specifically be a second electronic expansion valve, or of course can also be a second capillary tube, etc.
  • rear air conditioning box 8 is also an air conditioning box used to blow air to the rear passenger compartment.
  • the second throttling component 9 can use a two-way electronic expansion valve, and the flow direction of the refrigerant in the refrigerant subsystem is switched through the reversing valve group 2 to achieve switching between the cooling mode and the heating mode. , thus by changing the flow direction of the refrigerant in the refrigerant pipeline where the third heat exchanger 81 in the rear air-conditioning box 8 is located, the refrigerant subsystem can be used to cool the rear air-conditioning box 8 in the cooling mode. (As shown in Figure 6), and the refrigerant subsystem can be used to heat the rear air-conditioning box 8 in the heating mode (as shown in Figure 2). There is no need to heat the rear air-conditioning box 8. An additional heater 20 is provided for heating, or high-temperature coolant is introduced from the front end to the rear air-conditioning box 8 heating, thus effectively simplifying the pipeline structure of the heat pump air conditioning system.
  • the refrigerant subsystem also includes a battery heat exchanger 10 and a third throttling component 11 connected through a refrigerant pipeline.
  • the battery heat exchanger 10 is combined with the front air conditioning box 3.
  • the third throttling component 11 is located on the refrigerant pipeline where the battery heat exchanger 10 is located, and is connected between the battery heat exchanger 10 and the vehicle exterior heat exchanger 5;
  • the third throttling component 11 can specifically be a third Electronic expansion valve, of course, can also be a third capillary tube, etc.
  • the third throttling component 11 can use a two-way electronic expansion valve, and the flow direction of the refrigerant in the refrigerant subsystem is switched through the reversing valve group 2 to achieve switching between the cooling mode and the heating mode. , thereby by changing the flow direction of the refrigerant in the refrigerant pipeline where the battery heat exchanger 10 is located, the refrigerant subsystem can be used to achieve cooling of the battery heat exchanger 10 (as shown in Figures 3 and 6), and The refrigerant subsystem can be used to heat the battery heat exchanger 10 (as shown in Figure 2), thereby meeting the cooling and heating requirements for the battery 12. There is no need to set up an additional heater 20 for heating the battery. , or lead high-temperature coolant from the front end to heat the battery 12, thereby effectively simplifying the pipeline structure of the heat pump air conditioning system.
  • the heat pump air conditioning system also includes a water circuit subsystem.
  • the water circuit subsystem includes a battery water circuit.
  • a first water pump 13 is provided in the battery water circuit.
  • the battery heat exchanger 10 is connected to the battery. In the water circuit, the battery heat exchanger 10 transfers the heat or cold generated by the refrigerant subsystem to the battery water circuit.
  • the battery heat exchanger 10 is connected to the refrigerant subsystem and the battery water circuit at the same time, and can also be used. That is to say, the battery heat exchanger 10 has a set of refrigerant inlets and outlets and a set of cooling liquid inlets and outlets, wherein the refrigerant inlets and outlets are used to connect to the refrigerant circuit, and the coolant inlet and outlet are used to connect to the battery water circuit.
  • the refrigerant circuit where the battery heat exchanger 10 is located when the battery 12 needs to be cooled, as shown in Figures 3 and 6, the refrigerant circuit where the battery heat exchanger 10 is located is in the cooling mode, and the battery heat exchanger 10 serves as an evaporator to absorb the energy of the battery.
  • the heat in the water circuit is used to cool the battery 12; when the battery 12 needs to be heated, as shown in Figure 1, the refrigerant circuit where the battery heat exchanger 10 is located is in the heating mode, and the battery heat exchanger 10 serves as The condenser releases heat into the battery water circuit, thereby heating the battery 12 .
  • the water circuit subsystem also includes a warm air circuit.
  • the warm air circuit is provided with a second water pump 14, a water-cooled condenser 15 and a warm air core 34.
  • the water-cooled condenser 15 is connected to In the refrigerant subsystem, and is located between the exterior heat exchanger 5 and the reversing valve group 2, the warm air core 34 is located in the front air conditioning box 3, and between the warm air core 34 and the first heat exchanger 31
  • the room is provided with a warm air damper 35.
  • the water-cooled condenser 15 is connected to the warm air circuit and the refrigerant subsystem at the same time. That is to say, the water-cooled condenser 15 has a set of refrigerant inlets and outlets and a set of coolant inlets and outlets, wherein the refrigerant inlets and outlets are It is used to connect to the refrigerant circuit, and the coolant inlet and outlet is used to connect to the warm air circuit.
  • the warm air core 34 of the warm air circuit can be used to adjust the temperature, humidity, etc. of the air in the front air conditioning box 3; by connecting the warm air core 34 and the first exchanger A warm air damper 35 is provided between the heaters 31 to separate the warm air core 34 and the first heat exchanger 31 when the warm air damper 35 is closed to avoid mutual interference between the two; when the warm air damper 35 is opened, The warm air core 34, the first heat exchanger 31 and the second heat exchanger 32 can be used to At the same time, the temperature, humidity, etc. of the air flowing through the front air-conditioning box 3 are adjusted.
  • the water circuit subsystem also includes a motor water dissipation circuit.
  • a third water pump 17, an exterior radiator 18 and a water-to-water heat exchanger 19 are provided in the motor water dissipation circuit.
  • the heat exchanger 19 is connected to the warm air circuit, and the water-to-water heat exchanger 19 transfers the heat generated by the warm air circuit to the motor water dissipation circuit.
  • the water-to-water heat exchanger 19 is connected to the motor's water dissipation circuit and the warm air circuit. That is to say, the water-to-water heat exchanger 19 has two sets of coolant inlets and outlets, one of which is used for It is connected to the heater circuit, and another set of coolant inlets and outlets is used to connect to the motor's water dissipation circuit.
  • the battery water circuit provides heat dissipation for the battery through water circulation, and the battery heat exchanger
  • the condenser 10 acts as an evaporator at this time, transferring the heat of the battery water circuit to the refrigerant subsystem.
  • the water-cooled condenser 15 transfers the heat generated by the refrigerant subsystem to the warm air circuit, and then uses the water-to-water heat exchanger 19 to transfer the heat generated by the refrigerant subsystem to the warm air circuit.
  • the water circuit subsystem also includes a waste heat recovery water circuit.
  • the waste heat recovery water circuit is connected in parallel with the motor water dissipation circuit through a three-way water valve 21.
  • the three-way water valve 21 controls the electric drive assembly.
  • the component 16 is connected to one of the motor water dissipation circuit and the waste heat recovery water circuit.
  • the heat generated by the electric drive assembly 16 can be recycled and utilized.
  • the heat generated by the electric drive assembly 16 can be used in the heating mode to cool the water-cooled condenser 15 ( At this time, the evaporator (evaporator) is heated, thereby increasing the heating capacity of the water-cooled condenser 15.
  • the electric drive assembly 16 can be controlled to be connected to the motor water dissipation circuit through the three-way water valve 21;
  • the electric drive assembly 16 can be controlled to be connected to the waste heat recovery water circuit through the three-way water valve 21.
  • the motor water dissipation circuit and the waste heat recovery water circuit can share a section of water pipeline, and an electric drive assembly 16 (which may specifically include a motor, an inverter, etc.), a third water pump 17 and a water pipeline are provided on the shared water pipeline.
  • the water heat exchanger 19 is provided with an exterior radiator 18 on a section of the water pipeline that is not shared by the motor water circuit and the waste heat recovery water circuit. No other components are provided on the section of water pipeline that is not shared by the waste heat recovery water pipeline and the motor heat recovery water circuit. , in this way, through the valve port switching of the three-way water valve 21, the electric drive assembly 16 is controlled to be connected to one of the motor water dissipation circuit and the waste heat recovery water circuit.
  • the motor water dissipation circuit is interconnected with the battery water circuit through a first four-way water valve 22.
  • the first four-way water valve 22 controls the motor water dissipation circuit and the waste heat recovery water circuit.
  • One and the battery water dissipation circuit are independent or connected to each other.
  • the motor water dissipation circuit and the battery water dissipation circuit can be controlled independently through the first four-way water valve 22; in the heating mode, the first four-way water valve 22 can be used to control the motor water dissipation circuit and the battery water dissipation circuit to be independent.
  • the waste heat recovery water circuit and the battery water dissipation circuit are controlled independently; in the waste heat recovery mode, the waste heat recovery water circuit and the battery water dissipation circuit can be controlled to be connected to each other through the first four-way water valve 22 .
  • a heater 20 is provided in the warm air circuit, and the warm air circuit passes through the second four-way
  • the water valve 23 is interconnected with the battery water circuit, and the second four-way water valve 23 controls the heater circuit and the battery water circuit to be independent or connected with each other.
  • the heater 20 disposed in the warm air circuit can be used to heat the battery by connecting the warm air circuit and the battery water circuit to each other.
  • the location of the heater 20 is not limited to being placed in the warm air circuit, it can also be placed in the battery water circuit, or the heater 20 can be separately installed in the warm air circuit and the battery water circuit as needed. All of the above can be done
  • the heater 20 is used to achieve the purpose of auxiliary heating of the battery.
  • the front air conditioning box 3 is also provided with an electronic all-pass throttle valve 33, and the electronic all-pass throttle valve 33 is connected to the first heat exchanger 31 and the second heat exchanger. between 32.
  • the electronic all-pass throttle valve 33 between the first heat exchanger 31 and the second heat exchanger 32 in the front air-conditioning box 3 In the throttling state, the second heat exchanger 32 operates in the cooling and dehumidification mode, the first heat exchanger 31 operates in the heating mode, and the exterior heat exchanger 5 functions as an evaporator, thereby meeting the heating and dehumidification requirements.
  • the opening of the first throttling component 4 between the second heat exchanger 32 and the exterior heat exchanger 5 can be determined according to the actual air condition.
  • the opening of the first throttling component 4 is adjusted to be small at this time to ensure that heat can be absorbed from the heat exchanger 5 outside the vehicle, and the refrigerant temperature in the second heat exchanger 32 is not lower than zero, preventing Ice forms on the fin surface of the second heat exchanger 32, hindering air circulation.
  • the refrigerant subsystem also includes an intermediate heat exchanger 7 .
  • the intermediate heat exchanger 7 is connected between the exterior heat exchanger 5 and the air return port of the compressor 1 , that is, located far away from the air return port of the compressor 1 .
  • the intermediate heat exchanger 7 is connected to the refrigerant pipeline on the return port side of the compressor 1, so as to provide the cooling and heating capabilities of the refrigerant subsystem by providing the intermediate heat exchanger 7.
  • the heat pump air conditioning system provided by the above embodiments of the present disclosure can implement a variety of different working modes.
  • the working modes of the heat pump air conditioning system can include standard heating mode, cooling mode, cooling fast charging mode, heating and dehumidification mode, battery and passenger compartment Simultaneous heating mode, waste heat recovery mode, etc.
  • the passenger cabin is heated.
  • the two heat exchangers in the front air-conditioning box 3 both heat the air flowing through the front air-conditioning box 3 to achieve heating of the passenger cabin. demand, improve the heating rate and energy efficiency, and make it easier to control; at the same time, the refrigerant subsystem can also be used to heat the rear air-conditioning box 8 without adding APTC for heating or specially introducing high-temperature coolant from the front end to the rear air-conditioning The box 8 is heated.
  • the refrigerant subsystem is used to cool the battery water circuit where the battery is located.
  • the vehicle exterior radiator 18 and the water-to-water heat exchanger 19 are used to form a motor cooling circuit, which is connected with the heater.
  • the water-cooled condenser 15 in the air circuit works together to cool the high-temperature and high-pressure refrigerant, effectively improving the cooling capacity of the water-cooled condenser 15 and improving the battery cooling capacity.
  • the warm air door 35 in the front air conditioning box 3 is in a closed state, ensuring that the air in the front air conditioning box 3 does not pass through the warm air core 34 .
  • the electronic all-pass throttle valve 33 between the first heat exchanger 31 and the second heat exchanger 32 in the front air conditioning box is in a throttling state, and the second heat exchanger
  • the first heat exchanger 32 is in the cooling and dehumidification mode
  • the first heat exchanger 31 is in the heating mode
  • the exterior heat exchanger 5 is in the evaporator, thereby meeting the heating and dehumidification requirements.
  • the opening of the first throttling component 4 between the second heat exchanger 32 and the exterior heat exchanger 5 can be determined according to the actual air condition.
  • the opening of the first throttling component 4 is adjusted to be small at this time to ensure that heat can be absorbed from the heat exchanger 5 outside the vehicle, and the refrigerant temperature in the second heat exchanger 32 is not lower than zero, preventing Ice forms on the fin surface of the second heat exchanger 32, hindering air circulation.
  • the high-temperature and high-pressure refrigerant coming out of the compressor 1 passes through the reversing valve group 2 and directly enters the two heat exchangers in the front air-conditioning box 3 and the rear air-conditioning box 3.
  • the two heat exchangers in the front air conditioning box 3 serve as condensers to heat the air in the front air conditioning box 3, and the rear air conditioning box
  • the heat exchanger in the body 8 serves as a condenser to heat the air in the rear air conditioning box 8
  • the battery heat exchanger 10 serves as a condenser to heat the battery water.
  • the battery heating capacity is not enough, you can turn on the heater 20 in the warm air circuit and connect the warm air circuit and the battery water circuit in series through the four-way water valve; or use the heater 20 of the warm air circuit to warm the air in the front air conditioning box 3
  • the air core body 34 is heated, and the water-cooled condenser 15 (acted as an evaporator at this time) is used to heat the refrigerant, thereby improving the heat absorption capacity of the low-pressure side of the heat pump, and ultimately achieving rapid heating of the battery.
  • the heater 20 and the compressor 1 work together and absorb heat from the air. The three parts of heat heat heat the coolant in the battery water circuit to meet the heating requirements of the battery.
  • the PTC heater 20 can be placed in the warm air circuit or in the battery water circuit. In addition, by blocking the motor for heating, the power of the heater 20 can be minimized or eliminated.
  • the two heat exchangers in the front air conditioning box work as evaporators at the same time.
  • the electronic all-pass throttle valve 33 between the two heat exchangers operates in the all-pass mode.
  • the air-conditioning box 3, the rear air-conditioning box 8 and the battery are in parallel mode; the water-to-water heat exchanger 19 in the motor water dissipation circuit is also used to cool the liquid in the water-cooled condenser 15 in the warm air circuit to realize the high-pressure side The cooling capacity of the refrigerant is increased.
  • the passenger compartment needs cooling and dehumidification mode.
  • the two heat exchangers in the front air-conditioning box 3 are used as evaporators to achieve refrigeration at the same time, and water-cooled condensation is used at the same time.
  • the device 15 generates heat to heat the warm air core 34, thereby achieving the purpose of cooling and dehumidification.
  • dual temperature zone control of the front air conditioning box 3 can be achieved by utilizing the warm air damper 35 between the warm air core 34 and the first heat exchanger 31 .
  • the battery water circuit and the waste heat recovery water circuit are connected to each other through the first four-way water valve 22, so as to utilize the heat generated by the motor and battery working process to cool the water-cooled condenser 15 (at this time (as an evaporator) is heated, thereby improving the heating capacity of the water-cooled condenser 15 and realizing energy recovery and utilization.
  • the reversing valve group 2 may be a four-way reversing valve or a valve group composed of four stop valves. That is to say, the above system schematic diagram describes the use of a four-way reversing valve to switch the refrigerant between the high and low pressure sides of the refrigerant subsystem to achieve cooling and heating purposes.
  • the four-way reversing valve is not the only method.
  • Four stop valves can also be used to replace the four-way reversing valve, which can also achieve cooling and heating purposes.
  • the reversing valve group 2 includes a four-way reversing valve.
  • the reversing valve group 2 includes four stop valves.
  • the four stop valves are respectively arranged on four pipe sections connected from end to end.
  • the four stop valves are opened two times and closed two times for refrigeration. mode and heating mode switching.
  • the heat pump air conditioning system provided by the embodiments of the present disclosure has at least the following technical effects:
  • the heat pump air conditioning system adopts a direct heat pump system, which uses direct heating and cooling methods for the air, and the heat exchange with the ambient air is also direct heat exchange, improving the energy efficiency and capacity of the system;
  • Using a four-way reversing valve to switch between cooling and heating modes can greatly reduce the complexity of the refrigerant side of the system and reduce the risk of seal leakage.
  • the vehicle provided by the embodiments of the present disclosure includes the heat pump air conditioning system of any of the above embodiments, and therefore has the beneficial effects of the heat pump air conditioning system of any of the above embodiments, which will not be described again here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种热泵空调系统及车辆,该热泵空调系统包括制冷剂子系统,制冷剂子系统包括通过制冷剂管路连接的压缩机(1)、换向阀组(2)、前空调箱体(3)、第一节流部件(4)和车外换热器(5),前空调箱体(3)内设置第一换热器(31);换向阀组(2)具有四个连接口,其中第一连接口连接压缩机(1)的出气口,第二连接口连接第一换热器(31),第三连接口连接车外换热器(5),第四连接口连接压缩机(1)的回气口。

Description

热泵空调系统及车辆
相关申请的交叉引用
本公开要求在2022年07月27日在中国提交的中国专利申请号202210893741.1的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及热管理技术领域,具体涉及一种热泵空调系统及车辆。
背景技术
电动汽车中如何提高能量利用效率,提高续航里程是当前最为关注的话题之一。相关的电动汽车热泵空调系统,制冷时大多采用制冷剂循环管路实现对乘员舱制冷,而制热时,一般是在低温环境下采用PTC电加热系统实现对乘员舱加热,为了满足制冷和制热两种需求,导致热泵空调系统非常复杂,成本较高。
发明内容
为了解决上述技术问题,本公开实施例提供了一种热泵空调系统及车辆。
本公开实施例的第一方面提供了一种热泵空调系统,包括制冷剂子系统;
所述制冷剂子系统包括通过制冷剂管路连接的压缩机、换向阀组、前空调箱体、第一节流部件和车外换热器,所述前空调箱体内设置有第一换热器;
所述换向阀组具有四个连接口,其中第一连接口连接所述压缩机的出气口,第二连接口连接所述第一换热器,第三连接口连接所述车外换热器,第四连接口连接所述压缩机的回气口;
在制热模式下,所述第一连接口与所述第二连接口连通,所述第三连接口与所述第四连接口连通,所述压缩机、所述第一换热器、所述第一节流部件和所述车外换热器依次连通形成制冷剂循环回路;
在制冷模式下,所述第一连接口与所述第三连接口连通,所述第二连接口与所述第四连接口连通,所述压缩机、所述车外换热器、所述第一节流部件和所述第一换热器依次连通形成所述制冷剂循环回路。
在一些实施例中,所述前空调箱体内还设置有第二换热器,所述第二换热器与所述第一换热器串联连接,所述第一节流部件连接于所述第二换热器和所述车外换热器之间。
在一些实施例中,所述前空调箱体内还设置有电子全通节流阀,所述电子全通节流阀连接于所述第一换热器和所述第二换热器之间。
在一些实施例中,所述制冷剂子系统还包括通过所述制冷剂管路连接的后空调箱体和第二节流部件,所述后空调箱体内设置有第三换热器,所述第三换热器与所述前空调箱体 并接,所述第二节流部件连接于所述第三换热器与所述车外换热器之间。
在一些实施例中,所述制冷剂子系统还包括通过所述制冷剂管路连接的电池换热器和第三节流部件,所述电池换热器与所述前空调箱体并接,所述第三节流部件连接于所述电池换热器与所述车外换热器之间。
在一些实施例中,所述热泵空调系统还包括水回路子系统,所述水回路子系统包括电池水回路,所述电池水回路中设置有第一水泵,所述电池换热器连接于所述电池水回路中,所述电池换热器将所述制冷剂子系统产生的热量或冷量转移到所述电池水回路中。
在一些实施例中,所述水回路子系统还包括暖风回路,所述暖风回路中设置有第二水泵、水冷冷凝器和暖风芯体,所述水冷冷凝器连接于所述制冷剂子系统中,且位于所述车外换热器与所述换向阀之间,所述暖风芯体位于所述前空调箱体内,且所述暖风芯体和所述第一换热器之间设置有暖风风门。
在一些实施例中,所述水回路子系统还包括电机散热水回路,所述电机散热水回路中设置有第三水泵、车外散热器和水水换热器,所述水水换热器连接于所述暖风回路中,所述水水换热器将所述暖风回路产生的热量转移到所述电机散热水回路中。
在一些实施例中,所述水回路子系统还包括余热回收水回路,所述余热回收水回路通过三通水阀与所述电机散热水回路并接,所述三通水阀控制电驱总成连接于所述电机散热水回路和所述余热回收水回路中的一者。
在一些实施例中,所述电机散热水回路通过第一四通水阀与所述电池水回路交互连接,所述第一四通水阀控制所述电机散热水回路和所述余热回收水回路中的一者与所述电池水回路各自独立或者相互连通。
在一些实施例中,所述暖风回路和/或所述电池水回路中设置有加热器,所述暖风回路通过第二四通水阀与所述电池水回路交互连接,所述第二四通水阀控制所述暖风回路与所述电池水回路各自独立或者相互连通。
在一些实施例中,所述制冷剂子系统还包括中间换热器,所述中间换热器连接于所述车外换热器与所述压缩机的回气口之间。
在一些实施例中,所述换向阀组包括四通换向阀;或,
所述换向阀组包括四个截止阀,四个所述截止阀分别设置在首尾依次连接的四个管段上,每相邻的两个所述管段的连接处形成一所述连接口。
本公开实施例的第二方面提供了一种车辆,包括如上述任一实施例所述的热泵空调系统。
本公开实施例提供的技术方案与现有技术相比具有如下优点:
本公开实施例提供的热泵空调系统及车辆,通过在制冷剂子系统中设置换向阀组,可以利用换向阀组切换制冷剂在制冷剂子系统中的流向,从而在制冷模式下形成制冷循环回路,在制热模式下形成制热循环回路,如此不仅可以利用制冷剂子系统对乘员舱进行制冷,还可以实现利用制冷剂子系统对乘员舱进行制热;通过制冷剂循环回路同时实现制热和制 冷不同模式的需求,简化系统,也大大降低了成本。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的热泵空调系统的结构示意图;
图2为本公开实施例的热泵空调系统在标准制热模式下的结构示意图;
图3为本公开实施例的热泵空调系统在制冷快充模式下的结构示意图;
图4为本公开实施例的热泵空调系统在制热除湿模式下的结构示意图;
图5为本公开实施例的热泵空调系统在电池和乘员舱同时加热模式下的结构示意图;
图6为本公开实施例的热泵空调系统在制冷模式下的结构示意图;
图7为本公开实施例的热泵空调系统在余热回收模式下的结构示意图;
图8为本公开一些实施例的热泵空调系统的换向阀组的结构示意图;
图9为本公开另一些实施例的热泵空调系统的换向阀组的结构示意图。
附图标记:
1-压缩机;2-换向阀组;3-前空调箱体;31-第一换热器;32-第二换热器;33-电子
全通节流阀;34-暖风芯体;35-暖风风门;4-第一节流部件;5-车外换热器;6-气液分离器;7-中间换热器;8-后空调箱体;81-第三换热器;9-第二节流部件;10-电池换热器;11-第三节流部件;12-电池;13-第一水泵;14-第二水泵;15-水冷冷凝器;16-电驱总成;17-第三水泵;18-车外散热器;19-水水换热器;20-加热器;21-三通水阀;22-第一四通水阀;23-第二四通水阀。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
如图1至图7所示,本公开的一些实施例提供了一种热泵空调系统,包括制冷剂子系统,在一些具体实施例中,制冷剂子系统可以以二氧化碳作为制冷剂,二氧化碳制冷剂具有较强的制热能力,以在低温制热工况下利用二氧化碳制冷剂满足对于乘员舱等的制热需 求。当然,制冷剂子系统不限于以二氧化碳作为制冷剂,也可以采用R22制冷剂、R410A制冷剂等。
在一些具体实施例中,如图1所示,该制冷剂子系统包括通过制冷剂管路连接的压缩机1、换向阀组2、前空调箱体3、第一节流部件4和车外换热器5,前空调箱体3内设置有第一换热器31;换向阀组2具有四个连接口,分别为第一连接口、第二连接口、第三连接口和第四连接口,其中第一连接口连接压缩机1的出气口,第二连接口连接第一换热器31,第三连接口连接车外换热器5,第四连接口连接压缩机1的回气口;第一节流部件4位于前空调箱体3所在的制冷剂管路上,且连接于第一换热器31与车外换热器5之间;第一节流部件4具体可以为第一电子膨胀阀,当然也可以为第一毛细管等。
应当理解的是,前空调箱体3也即用于向前排乘员舱吹送风的空调箱体。
本公开实施例提供的热泵空调系统,通过在制冷剂子系统中设置换向阀组2,可以利用换向阀组2切换制冷剂在制冷剂子系统中的流向。在一些具体实施例中,在制热模式下,换向阀组2的第一连接口与第二连接口连通,第三连接口与第四连接口连通,压缩机1、第一换热器31、第一节流部件4和车外换热器5依次连通形成制冷剂循环回路;在制冷模式下,换向阀组2的第一连接口与第三连接口连通,第二连接口与第四连接口连通,压缩机1、车外换热器5、第一节流部件4和第一换热器31依次连通形成制冷剂循环回路。如此不仅可以利用制冷剂子系统对乘员舱进行制冷,还可以实现利用制冷剂子系统对乘员舱进行制热。通过制冷剂回路同时实现制热和制冷不同模式的需求,简化系统,也大大降低了成本。
在一些实施例中,如图1所示,前空调箱体3内还设置有第二换热器32,第二换热器32与第一换热器31串联连接,第一节流部件4连接于第二换热器32与车外换热器5之间。通过在前空调箱体3内串联连接有两个换热器,在低温制热工况下两个换热器同时作为制热芯体,有效增加了换热器与流经前空调箱体3的空气的换热面积,从而很好地提升了热泵空调系统在低温环境下的制热能效,解决了现有热泵空调系统在低温环境下采用PTC加热而导致加热效率低,严重影响车辆的续航里程的问题。
具体而言,现有的热泵空调系统通常仅利用制冷剂子系统对乘员舱进行直接制冷,而对于乘员舱的制热,通常利用制冷剂子系统与水回路子系统发生热交换,或者直接利用设置在水回路中的PTC加热器对乘员舱进行加热,该制热方式导致热泵空调系统的制热能效低。而本公开实施例提供的热泵空调系统,不仅可以利用制冷剂子系统对乘员舱进行直接制冷,还可以通过设置换向阀组2切换制冷剂在制冷剂子系统中的流向,实现利用制冷剂子系统对乘员舱进行直接制热;并且在制热模式下前空调箱体3中的两个换热器同时作为制热芯体,有效提高制热能效,在制冷模式下前空调箱体3中的两个换热器同时作为制冷芯体,有效提高制冷能效,从而有效提高了热泵空调系统的制冷及制热能效,进而有效提高了车辆的续航里程。
在一些具体实施例中,第一节流部件4可采用双通电子膨胀阀,第一节流部件4位于 冷凝器和蒸发器之间,从冷凝器流出的高压液态制冷剂在流经第一节流部件4后,压力瞬间降低变成低压液态制冷剂,低压液态制冷剂在蒸发器中气化变为气态制冷剂;通过换向阀组2切换制冷剂在制冷剂子系统中的流动方向,可以实现制冷模式和制热模式的切换。
如图2所示,在制热模式下,压缩机1、换向阀组2、第一换热器31、第二换热器32、第一节流部件4、车外换热器5和气液分离器6依次连接形成乘员舱制热回路。从压缩机1排出的高温高压制冷剂气体通过换向阀组2后,进入到前空调箱体3内,并依次流经第一换热器31和第二换热器32,此时第一换热器31和第二换热器32同时作为冷凝器(或称为制热芯体),对高温高压制冷剂气体进行液化变为液体,制冷剂液化过程会释放大量的热,对进入到前空调箱体3内的车内空气进行加热,有效确保热泵空调系统对乘员舱内空气的制热效果,然后经液化的制冷剂液体流经第一节流部件4进行减压,制冷剂流出第一节流部件4后压力瞬间降低,低压的制冷剂液体进入车外换热器5(此时作为蒸发器),制冷剂液体蒸发气化吸热变为制冷剂气体,同时吸收室外空气的热量,成为气体的制冷剂再次进入到压缩机开始下一个循环。
如图6所示,在制冷模式下,通过换向阀组2切换制冷剂在制冷剂子系统中的流动方向,压缩机1、换向阀组2、车外换热器5、第一节流部件4、第二换热器32、第一换热器31和气液分离器6依次连接形成乘员舱制冷回路。从压缩机1排出的高温高压制冷剂气体通过换向阀组2后,进入到车外换热器5(此时作为冷凝器),对高温高压制冷剂气体进行液化变为液体,此时制冷剂会向室外环境中释放大量的热,然后经液化的制冷剂液体经过第一节流部件4进行减压,制冷剂流出第一节流部件4后压力瞬间降低,低压的制冷剂液体进入到前空调箱体3内,并依次流经第一换热器31和第二换热器32,此时第一换热器31和第二换热器32同时作为蒸发器(或称为制冷芯体),制冷剂液体蒸发气化吸热变为制冷剂气体,同时吸收乘员舱内空气的热量,有效确保热泵空调系统对乘员舱内空气的制冷效果,成为气体的制冷剂再次进入到压缩机开始下一个循环。
在一些实施例中,如图1所示,制冷剂子系统还包括通过制冷剂管路连接的后空调箱体8和第二节流部件9,后空调箱体8内设置有第三换热器81,第三换热器81与前空调箱体3并接,第二节流部件9位于后空调箱体8所在的制冷剂管路上,且连接于第三换热器81与车外换热器5之间;第二节流部件9具体可以为第二电子膨胀阀,当然也可以为第二毛细管等。
应当理解的是,后空调箱体8也即用于向后排乘员舱吹送风的空调箱体。
在一些具体实施例中,第二节流部件9可采用双通电子膨胀阀,通过换向阀组2切换制冷剂在制冷剂子系统中的流动方向,可以实现制冷模式和制热模式的切换,从而通过改变制冷剂在后空调箱体8内的第三换热器81所在的制冷剂管路中的流向,既可以在制冷模式下利用制冷剂子系统实现对后空调箱体8的制冷(如图6所示),又可以在制热模式下利用制冷剂子系统实现对后空调箱体8的加热(如图2所示),不需要为了实现对后空调箱体8的加热而额外设置加热器20进行加热,或者从前端引出高温的冷却液对后空调箱体8进 行加热,从而有效简化了热泵空调系统的管路结构。
在一些实施例中,如图1所示,制冷剂子系统还包括通过制冷剂管路连接的电池换热器10和第三节流部件11,电池换热器10与前空调箱体3并接,第三节流部件11位于电池换热器10所在的制冷剂管路上,且连接于电池换热器10与车外换热器5之间;第三节流部件11具体可以为第三电子膨胀阀,当然也可以为第三毛细管等。
在一些具体实施例中,第三节流部件11可采用双通电子膨胀阀,通过换向阀组2切换制冷剂在制冷剂子系统中的流动方向,可以实现制冷模式和制热模式的切换,从而通过改变制冷剂在电池换热器10所在的制冷剂管路中的流向,既可以利用制冷剂子系统实现对电池换热器10的制冷(如图3和图6所示),又可以利用制冷剂子系统实现对电池换热器10的加热(如图2所示),从而满足对于电池12的制冷和制热需求,无需为了实现对电池制热而额外设置加热器20进行加热,或者从前端引出高温的冷却液对电池12进行加热,从而有效简化了热泵空调系统的管路结构。
在一些实施例中,如图1所示,热泵空调系统还包括水回路子系统,水回路子系统包括电池水回路,电池水回路中设置有第一水泵13,电池换热器10连接于电池水回路中,电池换热器10将制冷剂子系统产生的热量或冷量转移到电池水回路中。
需要说明的是,在水回路中流动的不限于为水,也可以为其它具有良好蓄冷或蓄热能力的冷却液;电池换热器10同时连接于制冷剂子系统和电池水回路中,也就是说,电池换热器10具有一组制冷剂进出口和一组冷却液进出口,其中制冷剂进出口用于与制冷剂回路连接,冷却液进出口用于与电池水回路连接。
在一些具体实施例中,当需要对电池12进行冷却时,如图3和图6所示,电池换热器10所在的制冷剂回路处于制冷模式,电池换热器10作为蒸发器,吸收电池水回路中的热量,从而实现对电池12进行冷却;当需要对电池12进行加热时,如图1所示,电池换热器10所在的制冷剂回路处于制热模式,电池换热器10作为冷凝器,向电池水回路中释放热量,从而实现对电池12进行加热。
在一些实施例中,如图1所示,水回路子系统还包括暖风回路,暖风回路中设置有第二水泵14、水冷冷凝器15和暖风芯体34,水冷冷凝器15连接于制冷剂子系统中,且位于车外换热器5与换向阀组2之间,暖风芯体34位于前空调箱体3内,且暖风芯体34和第一换热器31之间设置有暖风风门35。
需要说明的是,水冷冷凝器15同时连接于暖风回路和制冷剂子系统中,也就是说,水冷冷凝器15具有一组制冷剂进出口和一组冷却液进出口,其中制冷剂进出口用于与制冷剂回路连接,冷却液进出口用于与暖风回路连接。
上述实施例中,通过设置暖风回路,可以利用暖风回路的暖风芯体34对前空调箱体3中的空气进行温度、湿度等的调节;通过在暖风芯体34和第一换热器31之间设置暖风风门35,以在暖风风门35关闭时将暖风芯体34和第一换热器31隔开,避免两者产生相互干涉;当暖风风门35开启时,可以利用暖风芯体34和第一换热器31及第二换热器32共 同调节流经前空调箱体3的空气的温度、湿度等。
在一些实施例中,如图1所示,水回路子系统还包括电机散热水回路,电机散热水回路中设置有第三水泵17、车外散热器18和水水换热器19,水水换热器19连接于暖风回路中,水水换热器19将暖风回路产生的热量转移到电机散热水回路中。
需要说明的是,水水换热器19连接于电机散热水回路和暖风回路中,也就是说,水水换热器19具有两组冷却液进出口,其中一组冷却液进出口用于与暖风回路连接,另一组冷却液进出口用于与电机散热水回路连接。
上述实施例中,通过在暖风回路和电机散热水回路中设置水水换热器19,在制冷快充模式下,如图3所示,电池水回路通过水循环为电池提供散热,电池换热器10此时作为蒸发器,将电池水回路的热量转移到制冷剂子系统中,水冷冷凝器15将制冷剂子系统产生的热量转移到暖风回路中,再通过水水换热器19将水冷冷凝器15在制冷过程产生的部分热量转移到电机散热水回路中(此时电机不工作无散热需求),进而利用闲置的电机散热水回路将水冷冷凝器15产生的部分热量排出到车外空气中,从而便于提升水冷冷凝器15的冷凝能力,进而满足快充模式下大制冷量的需求,实现对电池进行快速散热的目的。
在一些实施例中,如图1所示,水回路子系统还包括余热回收水回路,余热回收水回路通过三通水阀21与电机散热水回路并接,三通水阀21控制电驱总成16连接于电机散热水回路和余热回收水回路中的一者。
上述实施例中,通过设置余热回收水回路,可以实现对电驱总成16产生的热量的回收利用,例如可以在制热模式下利用电驱总成16产生的热量,对水冷冷凝器15(此时为蒸发器)进行加热,从而提高水冷冷凝器15的制热能力。
具体而言,在制冷模式下(如图6所示)和制冷快充模式下(如图3所示),可以通过三通水阀21控制电驱总成16连接于电机散热水回路;在余热回收模式下(如图7所示),可以通过三通水阀21控制电驱总成16连接于余热回收水回路。在具体实施中,电机散热水回路与余热回收水回路可共用一段水管路,在共用的水管路上设置有电驱总成16(具体可包括电机、逆变器等)、第三水泵17和水水换热器19,在电机散热水回路与余热回收水回路非共用的一段水管路上设置有车外散热器18,在余热回收水管路与电机散热水回路非共用的一段水管路上未设置其它部件,如此通过三通水阀21的阀口切换,控制电驱总成16连接于电机散热水回路和余热回收水回路中的一者。
在一些实施例中,如图1所示,电机散热水回路通过第一四通水阀22与电池水回路交互连接,第一四通水阀22控制电机散热水回路和余热回收水回路中的一者与电池散热水回路各自独立或者相互连通。例如,在制冷模式下和制冷快充模式下,可以通过第一四通水阀22控制电机散热水回路与电池散热水回路各自独立;在制热模式下,可以通过第一四通水阀22控制余热回收水回路与电池散热水回路各自独立;在余热回收模式下,可以通过第一四通水阀22控制余热回收水回路与电池散热水回路相互连通。
在一些实施例中,如图1所示,暖风回路中设置有加热器20,暖风回路通过第二四通 水阀23与电池水回路交互连接,第二四通水阀23控制暖风回路和电池水回路各自独立或者相互连通。例如,当电池的加热能力不够时,可以通过将暖风回路和电池水回路相互连通,利用设置在暖风回路中的加热器20对电池进行加热。当然,加热器20的设置位置,不限于放置在暖风回路中,也可以放置在电池水回路中,或者还可以根据需要在暖风回路和电池水回路中分别设置加热器20,以上均能够实现利用加热器20对电池进行辅助加热的目的。
在一些实施例中,如图1所示,前空调箱体3内还设置有电子全通节流阀33,电子全通节流阀33连接于第一换热器31和第二换热器32之间。
具体而言,当前空调箱体3内需要制热除湿时,如图4所示,前空调箱内的第一换热器31和第二换热器32之间的电子全通节流阀33处于节流状态,第二换热器32作为制冷除湿模式,第一换热器31处于加热模式,同时车外换热器5作为蒸发器,从而满足制热除湿的需求。在具体实施中,可根据实际空气状态,决定第二换热器32与车外换热器5之间的第一节流部件4的开度。若环境温度很低,此时第一节流部件4调节的开度小,确保可以从车外换热器5吸收热量,且第二换热器32内的制冷剂温度不低于零度,防止第二换热器32的翅片表面结冰,阻碍空气流通。
在一些实施例中,如图1所示,制冷剂子系统还包括中间换热器7,中间换热器7连接于车外换热器5与压缩机1的回气口之间,即位于远离换向阀组2的一侧,中间换热器7连接于压缩机1的回气口侧的制冷剂管路上,以通过设置中间换热器7提供制冷剂子系统的制冷和制热能力。
本公开上述实施例提供的热泵空调系统,可以实现多种不同的工作模式,热泵空调系统的工作模式可包括标准制热模式、制冷模式、制冷快充模式、制热除湿模式、电池和乘员舱同时加热模式、余热回收模式等。
在标准制热模式下,如图2所示,对乘员舱进行加热,前空调箱体3内的两个换热器均对流经前空调箱体3的空气进行加热,实现对乘员舱的加热需求,提高加热速率和能效,控制起来更简单;同时,还可以利用制冷剂子系统实现对后空调箱体8的加热,不需要增加APTC进行加热或特殊从前端引出高温的冷却液对后空调箱体8进行加热。
在电池制冷快充模式,如图3所示,利用制冷剂子系统对电池所在的电池水回路进行冷却降温,同时利用车外散热器18和水水换热器19组成电机冷却回路,与暖风回路中的水冷冷凝器15联合工作,实现对高温高压冷媒的冷却,有效提升水冷冷凝器15的冷却能力,实现对电池冷却能力的提升。此时前空调箱体3内的暖风风门35处于关闭状体,确保前空调箱体3中的空气不经过暖风芯体34。
在制热除湿模式下,如图4所示,前空调箱内的第一换热器31和第二换热器32之间的电子全通节流阀33处于节流状态,第二换热器32作为制冷除湿模式,第一换热器31处于加热模式,同时车外换热器5作为蒸发器,从而满足制热除湿的需求。在具体实施中,可根据实际空气状态,决定第二换热器32与车外换热器5之间的第一节流部件4的开度。 若环境温度很低,此时第一节流部件4调节的开度小,确保可以从车外换热器5吸收热量,且第二换热器32内的制冷剂温度不低于零度,防止第二换热器32的翅片表面结冰,阻碍空气流通。
在电池和乘员舱同时加热模式下,如图5所示,从压缩机1出来的高温高压冷媒,通过换向阀组2后,直接进入前空调箱体3内的两个换热器、后空调箱体8内的换热器、以及电池换热器10,此时前空调箱体3内的两个换热器作为冷凝器实现对前空调箱体3内的空气的加热,后空调箱体8内的换热器作为冷凝器实现对后空调箱体8内的空气的加热,电池换热器10作为冷凝器实现对电池水的加热。如果电池加热能力不够,可以开启暖风回路中的加热器20,通过四通水阀让暖风回路与电池水回路串联;或者利用暖风回路的加热器20对前空调箱体3内的暖风芯体34加热、以及利用水冷冷凝器15(此时作为蒸发器)对制冷剂加热,提高热泵低压侧吸热能力,最终实现对电池的快速加热。此时加热器20和压缩机1一起工作,并从空气中吸收热量,三部分热量对电池水回路中的冷却液进行加热,满足对于电池的加热需求。
需要说明的是,PTC加热器20的位置,可以放置在暖风回路,也可以放置在电池水回路中。此外,通过电机堵转发热,可以实现加热器20功率最小化或取消。
在制冷模式下,如图6所示,前空调箱内的两个换热器同时作为蒸发器工作,此时两个换热器之间的电子全通节流阀33作为全通模式,前空调箱体3、后空调箱体8和电池处于并联模式;同样利用电机散热水回路中的水水换热器19对暖风回路中的水冷冷凝器15中的液体进行冷却,实现对高压侧制冷剂的冷却能力提升。
此外,在另外一种场景,例如15~20℃环境工况下,乘员舱内需要制冷除湿模式,利用前空调箱体3内的两个换热器同时作为蒸发器实现制冷,同时利用水冷冷凝器15产生热量对暖风芯体34加热,从而实现制冷除湿的目的。在一些实施例中,利用暖风芯体34与第一换热器31之间的暖风风门35可实现前空调箱体3的双温区控制。
在余热回收模式下,如图7所示,通过第一四通水阀22实现电池水回路和余热回收水回路相互连通,以利用电机及电池工作过程产生的热量对水冷冷凝器15(此时作为蒸发器)进行加热,从而提高水冷冷凝器15的制热能力,实现能量回收利用。
需要说明的是,换向阀组2具体可以采用四通换向阀,或者由四个截止阀组合而成的阀组。也就是说,在上述系统原理图中描述采用四通换向阀对制冷剂子系统实现高低压侧冷媒的切换,实现制冷和制热目的。四通换向阀并不是唯一手段,还可以通过四个截止阀实现对四通换向阀的代替,同样能够达到制冷和制热目的,
在一些实施例中,如图8所示,换向阀组2包括四通换向阀。
在另一些实施例中,如图9所示,换向阀组2包括四个截止阀,四个截止阀分别设置在首尾依次连接的四个管段上,四个截止阀两开两关进行制冷模式和制热模式切换。
综上所述,本公开实施例提供的热泵空调系统至少具有如下技术效果:
1)利用二氧化碳制热能力强的优势,利用二氧化碳制冷剂对电池和空调箱体同时加热; 通过换热器和阀的组合,实现对多种模式的切换最佳组合,提高制冷和制热能效;
2)热泵空调系统采用直接热泵系统,对空气采用直接加热和冷却的方式,与环境空气热交换也是直接换热,提高系统能效和能力;
3)通过前空调箱内的两个换热器同时作为制冷芯体,或者同时作为制热芯体,更好地增加了换热器的面积,从而更好地提升了制冷和制热能力,提高系统能效;
4)通过暖风回路和加热器等功率调节,以及水冷冷凝器和水水换热器组合,充分利用电机散热水回路中的车外散热器,实现各种制冷和制热功能组合,特别是电池的制冷快充;
5)利用二氧化碳制冷剂直接加热电池换热器,实现电池的加热;以及通过后空调内的第三换热器和双向全通的第二电子膨胀阀实现后空调的采暖制热,降低成本;
6)采用四通换向阀切换制冷和制热模式,可以大大降低系统冷媒侧复杂程度,降低密封泄露风险。
本公开的另一些实施例提供了一种车辆,包括如上述任一实施例的热泵空调系统。
本公开实施例提供的车辆,因其包括上述任一实施例的热泵空调系统,因而具有上述任一实施例的热泵空调系统的有益效果,在此不再赘述。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所述的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种热泵空调系统,其特征在于,包括制冷剂子系统;
    所述制冷剂子系统包括通过制冷剂管路连接的压缩机、换向阀组、前空调箱体、第一节流部件和车外换热器,所述前空调箱体内设置有第一换热器;
    所述换向阀组具有四个连接口,其中第一连接口连接所述压缩机的出气口,第二连接口连接所述第一换热器,第三连接口连接所述车外换热器,第四连接口连接所述压缩机的回气口;
    在制热模式下,所述第一连接口与所述第二连接口连通,所述第三连接口与所述第四连接口连通,所述压缩机、所述第一换热器、所述第一节流部件和所述车外换热器依次连通形成制冷剂循环回路;
    在制冷模式下,所述第一连接口与所述第三连接口连通,所述第二连接口与所述第四连接口连通,所述压缩机、所述车外换热器、所述第一节流部件和所述第一换热器依次连通形成所述制冷剂循环回路。
  2. 根据权利要求1所述的热泵空调系统,其特征在于,所述前空调箱体内还设置有第二换热器,所述第二换热器与所述第一换热器串联连接,所述第一节流部件连接于所述第二换热器和所述车外换热器之间。
  3. 根据权利要求2所述的热泵空调系统,其特征在于,所述前空调箱体内还设置有电子全通节流阀,所述电子全通节流阀连接于所述第一换热器和所述第二换热器之间。
  4. 根据权利要求1至3中任一项所述的热泵空调系统,其特征在于,所述制冷剂子系统还包括通过所述制冷剂管路连接的后空调箱体和第二节流部件,所述后空调箱体内设置有第三换热器,所述第三换热器与所述前空调箱体并接,所述第二节流部件连接于所述第三换热器与所述车外换热器之间。
  5. 根据权利要求1至4中任一项所述的热泵空调系统,其特征在于,所述制冷剂子系统还包括通过所述制冷剂管路连接的电池换热器和第三节流部件,所述电池换热器与所述前空调箱体并接,所述第三节流部件连接于所述电池换热器与所述车外换热器之间。
  6. 根据权利要求5所述的热泵空调系统,其特征在于,还包括水回路子系统,所述水回路子系统包括电池水回路,所述电池水回路中设置有第一水泵,所述电池换热器连接于所述电池水回路中,所述电池换热器将所述制冷剂子系统产生的热量或冷量转移到所述电池水回路中。
  7. 根据权利要求6所述的热泵空调系统,其特征在于,所述水回路子系统还包括暖风回路,所述暖风回路中设置有第二水泵、水冷冷凝器和暖风芯体,所述水冷冷凝器连接于所述制冷剂子系统中,且位于所述车外换热器与所述换向阀组之间,所述暖风芯体位于所述前空调箱体内,且所述暖风芯体和所述第一换热器之间设置有暖风风门。
  8. 根据权利要求7所述的热泵空调系统,其特征在于,所述水回路子系统还包括电机 散热水回路,所述电机散热水回路中设置有第三水泵、车外散热器和水水换热器,所述水水换热器连接于所述暖风回路中,所述水水换热器将所述暖风回路产生的热量转移到所述电机散热水回路中。
  9. 根据权利要求8所述的热泵空调系统,其特征在于,所述水回路子系统还包括余热回收水回路,所述余热回收水回路通过三通水阀与所述电机散热水回路并接,所述三通水阀控制电驱总成连接于所述电机散热水回路和所述余热回收水回路中的一者。
  10. 根据权利要求9所述的热泵空调系统,其特征在于,所述电机散热水回路通过第一四通水阀与所述电池水回路交互连接,所述第一四通水阀控制所述电机散热水回路和所述余热回收水回路中的一者与所述电池水回路各自独立或者相互连通。
  11. 根据权利要求7至10中任一项所述的热泵空调系统,其特征在于,所述暖风回路和/或所述电池水回路中设置有加热器,所述暖风回路通过第二四通水阀与所述电池水回路交互连接,所述第二四通水阀控制所述暖风回路与所述电池水回路各自独立或者相互连通。
  12. 根据权利要求1至11中任一项所述的热泵空调系统,其特征在于,所述制冷剂子系统还包括中间换热器,所述中间换热器连接于所述车外换热器与所述压缩机的回气口之间。
  13. 根据权利要求1至12中任一项所述的热泵空调系统,其特征在于,所述换向阀组包括四通换向阀;或,
    所述换向阀组包括四个截止阀,四个所述截止阀分别设置在首尾依次连接的四个管段上,每相邻的两个所述管段的连接处形成一所述连接口。
  14. 一种车辆,其特征在于,包括如权利要求1至13中任一项所述的热泵空调系统。
PCT/CN2023/109619 2022-07-27 2023-07-27 热泵空调系统及车辆 WO2024022451A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210893741.1 2022-07-27
CN202210893741.1A CN117507761A (zh) 2022-07-27 2022-07-27 热泵空调系统及车辆

Publications (1)

Publication Number Publication Date
WO2024022451A1 true WO2024022451A1 (zh) 2024-02-01

Family

ID=89705479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109619 WO2024022451A1 (zh) 2022-07-27 2023-07-27 热泵空调系统及车辆

Country Status (2)

Country Link
CN (1) CN117507761A (zh)
WO (1) WO2024022451A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161794A (ja) * 1998-11-27 2000-06-16 Calsonic Corp 車両用の空気調和装置
CN106274372A (zh) * 2016-11-14 2017-01-04 吉林大学 具有电池热管理功能的热泵式汽车空调
CN206436773U (zh) * 2017-02-10 2017-08-25 苏州赛普瑞新能源汽车空调有限公司 一种电动汽车用空调系统
CN108001157A (zh) * 2017-12-05 2018-05-08 珠海长欣汽车智能系统有限公司 一种电池箱加热系统
CN114312219A (zh) * 2021-12-31 2022-04-12 优跑汽车技术(上海)有限公司 电动汽车空调系统及其控制方法
CN114379326A (zh) * 2022-03-01 2022-04-22 上海爱斯达克汽车空调系统有限公司 电动汽车双分流热管理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161794A (ja) * 1998-11-27 2000-06-16 Calsonic Corp 車両用の空気調和装置
CN106274372A (zh) * 2016-11-14 2017-01-04 吉林大学 具有电池热管理功能的热泵式汽车空调
CN206436773U (zh) * 2017-02-10 2017-08-25 苏州赛普瑞新能源汽车空调有限公司 一种电动汽车用空调系统
CN108001157A (zh) * 2017-12-05 2018-05-08 珠海长欣汽车智能系统有限公司 一种电池箱加热系统
CN114312219A (zh) * 2021-12-31 2022-04-12 优跑汽车技术(上海)有限公司 电动汽车空调系统及其控制方法
CN114379326A (zh) * 2022-03-01 2022-04-22 上海爱斯达克汽车空调系统有限公司 电动汽车双分流热管理系统

Also Published As

Publication number Publication date
CN117507761A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
US11760162B2 (en) Thermal management system
WO2022057936A1 (zh) 车辆热管理系统及电动汽车
CN113173050B (zh) 热管理系统
CN109059341A (zh) 一种热泵汽车空调系统
WO2024065154A1 (zh) 汽车的热管理系统及汽车
WO2023284356A1 (zh) 热管理系统和电动汽车
CN113173049B (zh) 热管理系统
EP3666565B1 (en) Automotive air conditioning system
WO2024179530A1 (zh) 热管理集成模块和车辆
CN212289436U (zh) 热管理系统、电动汽车
CN111251807A (zh) 整车热管理系统及具有其的车辆
CN208952460U (zh) 一种热泵汽车空调系统
CN207790310U (zh) 车辆及其热管理系统
CN117507760A (zh) 热泵空调系统及其控制方法和车辆
WO2024022451A1 (zh) 热泵空调系统及车辆
CN115692944A (zh) 一种电池热管理装置、车辆和控制方法
CN111251803B (zh) 车辆的热管理系统及车辆
CN208134007U (zh) 车辆热管理系统及车辆
CN111923693A (zh) 电动汽车热泵空调系统及电动汽车
CN218769777U (zh) 一种电池热管理装置、车辆
US20230398835A1 (en) Thermal management system
CN219838412U (zh) 一种直接热泵式热管理集成模块及系统
CN220904610U (zh) 车辆热管理系统及车辆
WO2024174788A1 (zh) 热管理系统和车辆
CN220662215U (zh) 一种电力机车整车热管理系统及电力机车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845658

Country of ref document: EP

Kind code of ref document: A1