WO2022252931A1 - 一种抗菌和防静电的实验室陶瓷台面板及其制备方法 - Google Patents

一种抗菌和防静电的实验室陶瓷台面板及其制备方法 Download PDF

Info

Publication number
WO2022252931A1
WO2022252931A1 PCT/CN2022/091788 CN2022091788W WO2022252931A1 WO 2022252931 A1 WO2022252931 A1 WO 2022252931A1 CN 2022091788 W CN2022091788 W CN 2022091788W WO 2022252931 A1 WO2022252931 A1 WO 2022252931A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
green body
antistatic
antibacterial
nano
Prior art date
Application number
PCT/CN2022/091788
Other languages
English (en)
French (fr)
Inventor
柯善军
田维
蒙臻明
范伟峰
Original Assignee
佛山欧神诺陶瓷有限公司
广西欧神诺陶瓷有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山欧神诺陶瓷有限公司, 广西欧神诺陶瓷有限公司 filed Critical 佛山欧神诺陶瓷有限公司
Publication of WO2022252931A1 publication Critical patent/WO2022252931A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/20Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing titanium compounds; containing zirconium compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/1305Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • C04B33/34Burning methods combined with glazing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Definitions

  • the disclosure belongs to the technical field of building materials, and in particular relates to an antibacterial and antistatic laboratory ceramic tabletop and a preparation method thereof.
  • Laboratory countertops often face harsh extreme environments, so laboratory countertops must have excellent physical and chemical properties.
  • plastic panels, thermosetting phenolic resin panels or artificial stone panels are generally used as materials for laboratory bench panels, which are mainly divided into two categories, one is polymer material panels, and the other is inorganic artificial stone panels.
  • the high temperature resistance and weather resistance of polymer material plates are poor, while the inorganic artificial stone is insufficient in chemical corrosion resistance, antifouling, etc., and there are also problems such as moisture absorption and alkali resistance.
  • ceramic tiles can be made larger and thicker in size, and their application has also been extended to various countertop fields.
  • Ceramic is an inorganic non-metallic material sintered at high temperature. Its physical and chemical properties such as impact resistance, wear resistance, high temperature resistance, weather resistance, corrosion resistance and anti-fouling performance are superior to plastic products and artificial stone. Its unique Excellent performance is an excellent choice for laboratory countertop materials.
  • the ceramic panels prepared in the prior art can be used for laboratory countertops, but since most of the ceramic panels used for laboratory countertops are whole-body blanks, and the thickness is not less than 20mm, the edges of the countertops in the later cutting process have different colors in different thickness directions. The difference is large, mainly due to the large thickness of the countertop and the difference in the degree of oxidation inside the green body during the firing process; at the same time, the stress concentration caused by uneven shrinkage is prone to defects such as cutting cracks.
  • antistatic glass frits containing conductive tin oxide, conductive titanium oxide, conductive zinc oxide, conductive iron oxide, conductive barium titanate and conductive lead titanate are used as antistatic materials, and strontium, Rare earth nano-clay antibacterial particles are used as antibacterial materials, and 24% to 50% of the antistatic glass frit is antistatic powder. High, antistatic and antibacterial properties are also very limited, unable to meet actual needs.
  • the present disclosure proposes an antibacterial and antistatic laboratory ceramic countertop and a preparation method thereof, so as to solve one or more technical problems existing in the prior art, and at least provide a beneficial option or create conditions.
  • An antibacterial and antistatic laboratory ceramic countertop including a green body and a glaze layer, wherein the raw material components of the glaze layer include zirconia and antistatic antibacterial materials; the raw materials of the antistatic antibacterial materials include: nano Zinc/antimony co-doped tin oxide, nano zinc oxide, nano antimony trioxide and micro tin oxide.
  • the nano zinc/antimony co-doped tin oxide is a commercially available product, with an average particle size of 50-100 nm.
  • zinc and antimony are used as doping elements.
  • Mixed tin oxide, micron-scale tin oxide meets the requirements, and the cost of micron-scale tin oxide is lower than that of nano-scale.
  • the zirconia introduced into the glaze layer can strengthen the glass network structure in the glaze layer and improve the chemical corrosion resistance of the glaze surface.
  • the raw material components of the glaze layer include 6-12 parts of zirconia and 8-10 parts of antistatic and antibacterial materials.
  • zirconia will be associated with radioactive trace elements, so the content of zirconia should not be too high, otherwise the radioactivity parameters will easily exceed the range of the national standard, and if the zirconia content is too low, the glaze layer will have poor acid and alkali resistance Therefore, it is enough to control the amount of zirconia added to 6-12 parts. If the amount of antistatic antibacterial material added is too low, the resistance value will not meet the standard, and if the content is too high, the cost of materials will be high. 8-10 parts is a more reasonable range for adding.
  • the raw material components of the antistatic antibacterial material include 0.5 to 1.2 parts of nano-zinc/antimony co-doped tin oxide, 3-6 parts of nano-zinc oxide, and 2-2 parts of nano-antimony trioxide in parts by weight. 5 parts and 90-95 parts of micron tin oxide.
  • the addition amount of micron tin oxide is relatively high.
  • tin ions are effective antibacterial components, so tin oxide itself has antibacterial effect.
  • Ceramic countertops have both antibacterial and antistatic functions.
  • nano-zinc/antimony co-doped tin oxide is used as a seed crystal, the main function is to induce nano-zinc oxide, nano-antimony trioxide and micro-tin oxide to generate doped tin oxide, so it does not need too high addition amount, and The cost of this raw material is high, so it is necessary to control the amount of addition.
  • the raw material components of the glaze layer also include 11-15 parts of kaolin, 65-70 parts of low-temperature frit, 2-6 parts of quartz and 1-2 parts of chrome-cobalt-iron black material .
  • the low-temperature frit is the main component of the glaze, and its chemical composition is about: 67.20% silicon oxide, 6.05% aluminum oxide, 0.10% iron oxide, 0.08% titanium oxide, 4.09% calcium oxide, and 0.48% magnesium oxide %, potassium oxide 3.17%, sodium oxide 4.44%, zinc oxide 0.01%, barium oxide 7.05%, boron oxide 7.33%.
  • kaolin is used as a suspending agent, which can effectively improve the suspension of the glaze slurry, but too much kaolin will affect the high-temperature leveling performance of the glaze; quartz is used to adjust the high-temperature viscosity of the glaze; zirconia will be associated with There are radioactive trace elements, so the content of zirconia should not be too high, otherwise the radioactive parameters will easily exceed the national standard range, and if the content of zirconia is too low, the acid and alkali resistance of the glaze layer will be poor; as a black glaze, chromium
  • the cobalt-iron black material is the main hair color component. The color material is expensive. To control the cost, just add 1-2 parts.
  • the raw material components of the body include 2-4 parts by weight of wollastonite, 3-5 parts of pyrophyllite, 5-7 parts of diopside and 5-10 parts of ferrochrome tailings.
  • the firing shrinkage of the green body is reduced, the internal stress of the green body is reduced, and the cutting performance of the ceramic countertop is improved. It overcomes the defect that it is easy to produce splits when cutting.
  • the needle-like microcrystals formed by wollastonite are beneficial to the green body. increased toughness.
  • diopside into the green body, which belongs to chain silicate minerals, has short columnar crystals, and diopside columnar crystals are interlaced in the green body, which is also conducive to improving the strength and toughness of the green body.
  • ferrochrome tailings By introducing ferrochrome tailings into the green body, increasing the black coloring elements in the green body, reducing the use of colorants, and greatly reducing the cost; this is mainly because the ferrochrome tailings appear black after high-temperature sintering and can be used as black color However, its price is only 1/15 of that of ordinary ferrochrome black material.
  • the glaze layer is black
  • the green body should also be a black color green body, in which ferrochrome is a black color-producing element, so adding ferrochrome tailings can make the green body appear black throughout.
  • the raw material components of the green body further include 12-15 parts of ball clay, 8-10 parts of white mud, 8-12 parts of high alumina sand, and 10-12 parts of potassium feldspar , 20-25 parts of stone powder, 6-8 parts of waste bricks, 1-3 parts of ferrochrome black material and 0.2-0.6 parts of dispersant.
  • the dispersant includes sodium tripolyphosphate and sodium carboxymethyl cellulose; alternatively, in parts by weight, the dispersant includes 0.1 to 0.3 parts of sodium tripolyphosphate and 0.1 to 0.1 parts of sodium carboxymethyl cellulose 0.3 parts.
  • the addition of the above-mentioned dispersant can effectively improve the dispersion performance of the green body slurry.
  • the preparation method of laboratory ceramic countertop as described in any one of the present disclosure comprises the following steps:
  • the various raw material components of the green body are mixed by ball milling to make a green body slurry, and then sieved, sprayed, granulated, and aged to obtain the green body powder;
  • nano-zinc/antimony co-doped tin oxide, nano-zinc oxide, nano-antimony trioxide and micro-tin oxide dissolve and stir to form a slurry, and then grind to obtain an antistatic antibacterial material
  • the raw material components of the glaze layer are mixed by ball milling to make the glaze layer slurry;
  • the green body is dried, coated with glaze layer slurry and fired to obtain the laboratory ceramic table top.
  • the present disclosure can uniformly couple nanoscale antimony trioxide particles on the surface of micron-scale tin oxide particles by performing mechanochemical ultrafine grinding on the raw material components during ball milling, and simultaneously introduce zinc/
  • the antimony-doped tin oxide powder is used as a seed crystal to promote the formation of doped tin oxide through seed crystal induction, which reduces the usage amount of doped tin oxide and reduces the cost while realizing antistatic.
  • the mesh of the green body slurry is about 200 mesh when sieved; the moisture content of the powder is 6.2-7.6% during spray granulation; the glaze layer slurry passes through a 250-mesh sieve, and the specific gravity of the glaze slurry is 1.40-1.43 g/cubic centimeter; the temperature for drying the green body is 110-130°C, and the drying time is 1.2-1.5 hours; the glaze application method is high-pressure spray glaze.
  • the moisture content of the body slurry is 33-35%; the moisture content of the glaze layer slurry is 30-32%.
  • the firing temperature of the firing molding is 1200-1230° C., and the firing time is 1.5-2.0 hours.
  • surface elastic semi-polishing treatment is also included.
  • the surface elastic semi-polishing process can effectively expose the tin element in the antistatic antibacterial material on the surface of the glaze layer, which is conducive to the dissolution of tin ions, and tin is an excellent antibacterial material, so that the ceramic table The panel has both anti-static and antibacterial functions.
  • the disclosure provides an antibacterial and antistatic laboratory ceramic countertop and a preparation method thereof.
  • zirconia By introducing zirconia into the glaze layer, the glass network structure can be strengthened in the glaze, and the chemical corrosion resistance of the glaze surface can be improved; at the same time, through Anti-static and anti-bacterial materials are added to make the ceramic countertop both anti-bacterial and anti-static.
  • the laboratory ceramic tabletop obtained in the disclosure effectively improves the toughness and cutting performance of the green body, and at the same time enables the obtained ceramic tabletop to have excellent antibacterial and antistatic properties, and has broad application prospects.
  • nano-zinc/antimony co-doped tin oxide in this disclosure is a commercially available product, specifically a powder material with an average particle size of 50-100 nanometers provided by Guangzhou Qianhui Huabo Instrument Co., Ltd.
  • An antibacterial and antistatic laboratory ceramic table top including a green body and a glaze layer, wherein the green body includes 12 parts of ball clay, 10 parts of white clay, 10 parts of high alumina sand, and 12 parts of potassium longan by weight of raw materials.
  • the raw material components of the glaze layer include 11 parts of kaolin, 65 parts of low-temperature frit, 6 parts of quartz, 8 parts of zirconia, 2 parts of chromium cobalt iron black material, and 8 parts of antistatic antibacterial material.
  • a preparation method of an antibacterial and antistatic laboratory ceramic table top comprising the steps of:
  • the moisture content of the obtained glaze formula is 30%, ball mill for 10 hours, and sieve 250 mesh to obtain the glaze, the specific gravity of the glaze slurry is 1.40 g/cubic centimeters; the green body powder is placed in a press for compression molding to obtain a green body, and then the green body is dried at 110°C for 1.5 hours, glazed with high-pressure spray glaze, fired at a high temperature of 1230°C, and the firing cycle is 2.0 hours to obtain a semi-finished product Ceramic worktops, followed by elastic semi-polishing and edge chamfering to obtain antibacterial and antistatic laboratory ceramic worktops.
  • An antibacterial and antistatic laboratory ceramic table top comprising a green body and a glaze layer, wherein the green body includes 15 parts of ball clay, 8 parts of white clay, 12 parts of high alumina sand, and 10 parts of potassium longan by weight of raw materials.
  • Stone 23 parts of stone powder, 6 parts of waste brick, 4 parts of wollastonite, 5 parts of pyrophyllite, 5 parts of diopside, 10 parts of ferrochrome tailings, 1.6 parts of ferrochrome black material, 0.1 part of sodium tripolyphosphate, 0.3 parts Sodium carboxymethyl cellulose;
  • the raw material components of the glaze layer include 12 parts of kaolin, 66 parts of low-temperature frit, 4 parts of quartz, 8 parts of zirconia, 1 part of chromium cobalt iron black material, and 9 parts of antistatic antibacterial material.
  • a preparation method of an antibacterial and antistatic laboratory ceramic table top comprising the steps of:
  • An antibacterial and antistatic laboratory ceramic table top comprising a green body and a glaze layer, wherein the green body includes 14 parts of ball clay, 10 parts of white clay, 12 parts of high alumina sand, and 12 parts of potassium longan by weight of raw materials.
  • the raw material components of the glaze layer include 11 parts of kaolin, 70 parts of low-temperature frit, 2 parts of quartz, 6 parts of zirconia, 1 part of chromium cobalt iron black material, and 10 parts of antistatic antibacterial material.
  • a preparation method of an antibacterial and antistatic laboratory ceramic table top comprising the steps of:
  • Comparative Example 1 The difference between Comparative Example 1 and Example 3 is that wollastonite was not added in Comparative Example 1, and the rest of the components and preparation process were the same as Example 3 to obtain a finished ceramic countertop.
  • Comparative Example 2 The difference between Comparative Example 2 and Example 3 is that no pyrophyllite was added in Comparative Example 2, and the rest of the components and preparation process were the same as in Example 3 to obtain a finished ceramic countertop.
  • Comparative Example 3 The difference between Comparative Example 3 and Example 3 is that no diopside was added in Comparative Example 3, and the rest of the components and preparation process were the same as Example 3 to obtain a finished ceramic countertop.
  • Comparative Example 4 The difference between Comparative Example 4 and Example 3 is that waste bricks are not added in Comparative Example 4, and the remaining components and preparation process are the same as Example 3 to obtain a finished ceramic countertop.
  • Comparative Example 5 The difference between Comparative Example 5 and Example 3 is that no ferrochrome tailings were added in Comparative Example 5, and the rest of the components and preparation process were the same as in Example 3 to obtain a finished ceramic countertop.
  • Comparative Example 6 The difference between Comparative Example 6 and Example 3 is that no zirconia is added in Comparative Example 6, and the rest of the components and preparation process are the same as those of Example 3 to obtain a finished ceramic countertop.
  • Comparative Example 7 The difference between Comparative Example 7 and Example 3 is that no nanometer zinc/antimony co-doped tin oxide was added in Comparative Example 7, and the rest of the components and preparation process were the same as Example 3 to obtain a finished ceramic countertop.
  • Antibacterial performance According to the industry standard JCT 897-2014 "antibacterial performance of ceramic products”.
  • Anti-static According to the national standard GB 26539-2011 "anti-static ceramic tiles", measure the point-to-point resistance and surface resistance of the glazed surface.
  • Cutting damage rate Cut the 600*1200 bricks into 20*20 samples with a grinding wheel cutting machine, and calculate the percentage of cutting damage and edge cracking among the 250 samples.
  • Table 1 The performance test results of the finished ceramic countertops of Examples 1 to 3 and Comparative Examples 1 to 7
  • the green body of Comparative Example 1 did not add wollastonite, resulting in a higher cutting damage rate, indicating that the acicular wollastonite is conducive to improving the cutting performance of the green body; the green body of Comparative Example 2 No pyrophyllite was added to the green body, and the shrinkage of the green body became larger, indicating that pyrophyllite was beneficial to reduce the shrinkage of the green body; no diopside was added to the green body of Comparative Example 3, resulting in a higher cutting damage rate, and the introduction of diopside was beneficial Improve the toughness of the green body; no waste bricks are added to the green body of comparative example 4, resulting in larger firing shrinkage, and the introduction of waste bricks into the green body can reduce the firing shrinkage of the green body; the green body of comparative example 5 does not add ferrochrome tailings ore, resulting in defects of side color difference; comparative example 6 did not add zirconia to the glaze, and the chemical corrosion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Abstract

本公开属建筑材料领域,公开了一种抗菌和防静电的实验室陶瓷台面板及其制备方法,该实验室陶瓷台面板包括坯体和釉层,其中,所述釉层的原料组分包括氧化锆和防静电抗菌材料;所述防静电抗菌材料的原料包括:纳米锌/锑共掺杂氧化锡、纳米氧化锌、纳米三氧化二锑和微米氧化锡。本公开通过在釉层中引入氧化锆可在釉中加强玻璃网络结构,提高釉面的耐化学腐蚀性能;同时,通过添加防静电抗菌材料,使陶瓷台面板兼具抗菌和防静电的功能。本公开所得的实验室陶瓷台面板有效改善了坯体的韧性和切割性能,同时使得所得陶瓷台面板具备优异的抗菌和防静电性能,应用前景广泛。

Description

一种抗菌和防静电的实验室陶瓷台面板及其制备方法
相关申请的交叉引用
本公开要求于2021年05月31日提交中国专利局的申请号为“CN 202110598922.7”名称为“一种抗菌和防静电的实验室陶瓷台面板及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于建筑材料技术领域,具体涉及一种抗菌和防静电的实验室陶瓷台面板及其制备方法。
背景技术
实验室的台面板常面临恶劣的极端环境,因此实验室台面板需具备优异的物化特性。现有技术中一般采用塑胶面板、热固性酚醛树脂板或人造石板等作为实验台面板用料,主要分为两个大类,一类是高分子材料板材,另一类是无机人造石板材,其中高分子材料板材的耐高温和耐候性能等较差,而无机人造石在耐化学腐蚀、防污性等方面不足,且还存在吸湿反碱等问题。随着建筑陶瓷技术的不断发展,陶瓷砖在尺寸上可以做得更大、更厚,其应用也延伸至各种台面板领域。
陶瓷是由高温烧结而成的无机非金属材料,其耐冲击性、耐磨性、耐高温性、耐候性、耐腐蚀性及抗污性能等物化特性均优于塑胶制品和人造石,其独特的性能是实验室台面板材料的极佳选择。现有技术中制备的陶瓷面板可用于实验室台面,但由于用于实验室台面的陶瓷板多为通体坯,且厚度均不低于在20mm,导致后期切割加工后台面边缘在不同厚度方向颜色差异较大,主要是台面板厚度大,烧成过程坯体内部的氧化程度有差异;同时收缩不均引起的应力集中,因此容易产生切割裂等缺陷。此外,作为实验室台面用陶瓷,对耐酸碱腐蚀和防污性有较高的要求。
随着人们对家居环境和工作环境的安全与健康更加重视,具有抗菌功能的板材备受关注。与此同时,针对实验室的特殊环境,具有防静电功能的板材具有广阔的应用前景。现有技术中,有通过在底釉中添加Ag-Zn-Ce/Si/石墨烯作为抗菌粉,在面釉中添加石墨烯-铝粉-炭黑-石墨作为导电粉,再经烧成,得到具有抗菌和防静电陶瓷砖,但是,由于石墨烯-铝粉-炭黑-石墨导电材料不耐高温,因此该法仅适合应用在中低温陶瓷砖领域。现有技术中还有通过采 用含导电氧化锡、导电氧化钛、导电氧化锌、导电氧化铁、导电钛酸钡和导电钛酸铅的防静电玻璃熔块作为防静电材料,并采用含锶、稀土的纳米粘土抗菌颗粒作为抗菌材料,其中防静电玻璃熔块中24%~50%为防静电粉料,但该类方法中由于防静电材料多为掺杂类材料且添加量较高,成本较高,防静电和抗菌性能也十分有限,无法满足实际需求。
发明内容
本公开提出一种抗菌和防静电的实验室陶瓷台面板及其制备方法,以解决现有技术中存在的一个或多个技术问题,至少提供一种有益的选择或创造条件。
为了克服上述技术问题,本公开采用的技术方案如下:
一种抗菌和防静电的实验室陶瓷台面板,包括坯体和釉层,其中,所述釉层的原料组分包括氧化锆和防静电抗菌材料;所述防静电抗菌材料的原料包括:纳米锌/锑共掺杂氧化锡、纳米氧化锌、纳米三氧化二锑和微米氧化锡。
在一些实施方式中,纳米锌/锑共掺杂氧化锡为市售产品,平均粒径为50~100nm。同时,锌和锑作为掺杂元素,粒度越小越容易掺杂进入氧化锡中,因此,原料组分中的氧化锌和三氧化二锑均为纳米级别更佳,而作为建筑陶瓷用的掺杂氧化锡,微米级的氧化锡即符合要求,并且微米级的氧化锡较纳米级成本更低。此外,在釉层中引入的氧化锆可在釉层中加强玻璃网络结构,提高釉面的耐化学腐蚀性能。
在一些实施方式中,按重量份计,所述釉层的原料组分包括氧化锆6~12份和防静电抗菌材料8~10份。
在一些实施方式中,氧化锆会伴生具有放射性的微量元素,因此氧化锆的含量不宜过高,否则放射性参数容易超出国标范围,而氧化锆含量过低则会出现釉层耐酸碱性不佳的问题,因此将氧化锆的添加量控制在6-12份即可。防静电抗菌材料加入量过低则电阻值达不到标准,含量过高则材料成本较高,8-10份为较合理添加量的范围。
在一些实施方式中,所述防静电抗菌材料的原料组分按重量份计包括纳米锌/锑共掺杂氧化锡0.5~1.2份、纳米氧化锌3~6份、纳米三氧化二锑2~5份和微米氧化锡90~95份。在一些实施方式中,添加的防静电抗菌材料中,为了达到防静电的作用,微米氧化锡的加入量相对较高,同时,锡离子是有效抗菌成分,因此氧化锡本身具有抗菌效果,这样下来陶瓷台面板就兼具了抗菌和防静电的功能。同时,纳米锌/锑共掺杂氧化锡作为晶种,主要作用是诱导纳米氧化锌、纳米三氧化二锑和微米氧化锡三者生成掺杂氧化锡,因此不需要过高的添加量, 且该原料成本高,所以需要控制添加量。
在一些实施方式中,按重量份计,所述釉层的原料组分还包括高岭土11~15份、低温熔块65~70份、石英2~6份和铬钴铁黑色料1~2份。
在一些实施方式中,低温熔块是釉料的主要成分,其化学组成约为:氧化硅67.20%、氧化铝6.05%、氧化铁0.10%、氧化钛0.08%、氧化钙4.09%、氧化镁0.48%、氧化钾3.17%、氧化钠4.44%、氧化锌0.01%、氧化钡7.05%、氧化硼7.33%。
在一些实施方式中,高岭土作为悬浮剂,可有效提高釉浆的悬浮性,但高岭土的添加量过多会影响釉料高温流平性能;石英用来调整釉料的高温粘度;氧化锆会伴生具有放射性的微量元素,因此氧化锆的含量不宜过高,否则放射性参数容易超国标范围,并且,氧化锆含量过低则会出现釉层耐酸碱性不佳的问题;作为黑色釉料,铬钴铁黑色料是主要发色成分,该色料价格昂贵,为控制成本,添加1~2份即可。
在一些实施方式中,所述坯体的原料组分按重量份计包括硅灰石2~4份、叶腊石3~5份、透辉石5~7份和铬铁尾矿5~10份。
在一些实施方式中,通过在坯体中引入叶腊石,由于叶腊石在1050~1150℃会产生线膨胀,因而减小坯体烧成收缩,降低坯体内部应力,从而改善陶瓷台面板的切割性能,克服切割时容易产生割裂的缺陷。同时,通过在坯体中引入硅灰石和废砖,由于硅灰石和废砖的烧失量小,因此在减少坯体烧成收缩的同时,硅灰石形成的针状微晶有利于坯体的韧性提高。在坯体中引入透辉石,其属于链状硅酸盐矿物,晶体呈短柱状,透辉石柱状晶体相互交错在坯体中,也有利于提高坯体的强度和韧性。通过在坯体中引入铬铁尾矿,增加坯体中的黑色着色元素,降低色料的使用,能大大降低成本;这主要是由于,铬铁尾矿高温烧结后呈现黑色,可作为黑色色料使用,但其价格仅为普通铬铁黑色料的1/15,利用固废的同时可降低成本,但配方中不能全部替换成铬铁尾矿,因为铬铁尾矿烧失大,加入量过多易影响釉面质量,如针孔、起泡等,因此铬铁尾矿的添加量需控制在如上合理的范围内。此外,作为黑色通体陶瓷台面板,釉层为黑色,坯体也应当是黑色色坯,其中铬铁元素都是黑色发色元素,因此加入铬铁尾矿可使坯体呈现通体黑色,当后期切割加工时,台面边缘不会出现中间层,也不会出现夹心色差。
在一些实施方式中,按重量份计,所述坯体的原料组分还包括球土12~15份、白泥8~10份、高铝砂8~12份、钾长石10~12份、石粉20~25份、废砖6~8份、铬铁黑色料1~3份和分散剂0.2~0.6份。
进一步,所述分散剂包括三聚磷酸钠和羧甲基纤维素钠;可选地,按重量份计,所述分 散剂包括三聚磷酸钠0.1~0.3份和羧甲基纤维素钠0.1~0.3份。上述分散剂的添加可有效提高坯体浆料的分散性能。
如本公开任一项所述的实验室陶瓷台面板的制备方法,包括如下步骤:
取坯体的各原料组分经球磨混合,制成坯体料浆,再经过筛、喷雾造粒、陈腐,得坯体粉料;
取纳米锌/锑共掺杂氧化锡、纳米氧化锌、纳米三氧化二锑和微米氧化锡混合,经溶解搅拌成浆料,再经研磨后制得防静电抗菌材料;
取釉层的各原料组分经球磨混合,制成釉层料浆;
将坯体粉料压制成型,得生坯;
生坯经干燥、布施釉层料浆和烧制成型,得到所述的实验室陶瓷台面板。
在一些实施方式中,本公开在球磨时通过对原料组分进行机械力化学超细研磨,可将纳米级别的三氧化二锑颗粒均匀偶联在微米级别的氧化锡颗粒表面,同时引入锌/锑掺杂氧化锡粉体作为晶种,通过晶种诱导,促进掺杂氧化锡的形成,在实现防静电的同时降低了掺杂氧化锡的使用量,降低了成本。
进一步,所述坯体料浆在过筛时的筛目约为200目;喷雾造粒时粉料的含水率6.2~7.6%;釉层料浆过250目筛,釉浆比重为1.40~1.43克/立方厘米;生坯进行干燥时的温度为110~130℃,干燥时长为1.2~1.5小时;施釉方式为高压喷釉。
在一些实施方式中,所述坯体料浆的含水率为33-35%;所述釉层料浆的含水率为30-32%。
在一些实施方式中,所述烧制成型的烧成温度为1200-1230℃,烧成时间为1.5-2.0h。
在一些实施方式中,所述烧制成型之后还包括表面弹性半抛处理。在一些实施方式中,采用表面弹性半抛工艺,可使防静电抗菌材料中的锡元素有效暴露在釉层表面,有利于锡离子的溶出,而锡是效果优异的抗菌材料,从而使陶瓷台面板兼具防静电和抗菌的功能。
本公开的有益效果是:
本公开提供了一种抗菌和防静电的实验室陶瓷台面板及其制备方法,通过在釉层中引入氧化锆可在釉中加强玻璃网络结构,提高釉面的耐化学腐蚀性能;同时,通过添加防静电抗菌材料,使陶瓷台面板兼具抗菌和防静电的功能。本公开所得的实验室陶瓷台面板有效改善了坯体的韧性和切割性能,同时使得所得陶瓷台面板具备优异的抗菌和防静电性能,应用前景广泛。
具体实施方式
下面结合实施例对本公开进行具体描述,以便于所属技术领域的人员对本公开的理解。有必要在此特别指出的是,实施例只是用于对本公开做进一步说明,不能理解为对本公开保护范围的限制,所属领域技术熟练人员,根据上述公开内容对本公开所作出的非本质性的改进和调整,应仍属于本公开的保护范围。同时,下述所提及的原料未详细说明的,均为市售产品;未详细提及的工艺步骤或提取方法为均为本领域技术人员所知晓的工艺步骤或提取方法。
需要说明的是,本公开中的纳米锌/锑共掺杂氧化锡为市售产品,具体为广州市芊荟化玻仪器有限公司提供的平均粒径50~100纳米的粉体材料。
实施例1
一种抗菌和防静电的实验室陶瓷台面板,包括坯体和釉层,其中,坯体按原料重量份计包括12份球土、10份白泥、10份高铝砂、12份钾长石、25份石粉、8份废砖、2份硅灰石、3份叶腊石、7份透辉石、8份铬铁尾矿、2.6份铬铁黑色料、0.3份三聚磷酸钠、0.1份羧甲基纤维素钠;釉层的原料组分按原料重量份计包括11份高岭土、65份低温熔块、6份石英、8份氧化锆、2份铬钴铁黑色料、8份防静电抗菌材料。
一种抗菌和防静电的实验室陶瓷台面板的制备方法,包括如下步骤:
1)将坯体各原料组分与水一同置于球磨机中,坯体配方含水率为33%,球磨处理16小时得坯体料浆,料浆经过200目筛、喷雾造粒、陈腐,得含水率7.6%的坯体粉料;
2)将1份纳米锌/锑共掺杂氧化锡、6份纳米氧化锌、2份纳米三氧化二锑、91份微米氧化锡混合,加入水和1.0%的氨丙基三乙氧基硅烷作为分散剂搅拌成浆料,浆料中固含量为70%,随后将浆料倒入砂磨机中,砂磨机的研磨介质为钇稳定氧化锆微球,微球的直径为1.2毫米,微球的体积填充率为85%,砂磨机的转速为1800转/分钟,高速研磨3小时,得到防静电抗菌材料的浆料;
3)将釉层的各原料组分与水一同置于球磨机中,得到的釉料配方含水率为30%,球磨处理10小时,过筛250目得釉料,釉浆比重为1.40克/立方厘米;将坯体粉料置于压机进行压制成型,得生坯,随后生坯经110℃干燥1.5小时,采用高压喷釉施釉,1230℃高温烧成,烧成周期为2.0小时,得半成品陶瓷台面板,随后经过表面弹性半抛和切边倒角,得到抗菌和防静电的实验室陶瓷台面板成品。
实施例2
一种抗菌和防静电的实验室陶瓷台面板,包括坯体和釉层,其中,坯体按原料重量份计包括15份球土、8份白泥、12份高铝砂、10份钾长石、23份石粉、6份废砖、4份硅灰石、 5份叶腊石、5份透辉石、10份铬铁尾矿、1.6份铬铁黑色料、0.1份三聚磷酸钠、0.3份羧甲基纤维素钠;釉层的原料组分按原料重量份计包括12份高岭土、66份低温熔块、4份石英、8份氧化锆、1份铬钴铁黑色料、9份防静电抗菌材料。
一种抗菌和防静电的实验室陶瓷台面板的制备方法,包括如下步骤:
1)将坯体各原料组分与水一同置于球磨机中,坯体配方含水率为35%,球磨处理14小时得坯体料浆,料浆经过200目筛、喷雾造粒、陈腐,得含水率6.2%的坯体粉料;
2)将0.5份纳米锌/锑共掺杂氧化锡、3份纳米氧化锌、5份纳米三氧化二锑、91.5份微米氧化锡混合,加入水和1.0%氨丙基三乙氧基硅烷作为分散剂搅拌成浆料,浆料中固含量为65%,随后将浆料倒入砂磨机中,砂磨机的研磨介质为钇稳定氧化锆微球,微球的直径为0.8毫米,微球的体积填充率为75%,砂磨机的转速为1500转/分钟,高速研磨3小时,得到防静电抗菌材料的浆料;
3)将釉层的各原料组分与水一同置于球磨机中,得到的釉料配方含水率为32%,球磨处理9小时,过筛250目得釉料,釉浆比重为1.40克/立方厘米;将坯体粉料置于压机进行压制成型,得生坯,随后生坯经130℃干燥1.2小时,采用高压喷釉施釉、1200℃高温烧成,烧成周期为1.5小时,得半成品陶瓷台面板,随后经过表面弹性半抛和切边倒角,得到抗菌和防静电的实验室陶瓷台面板成品。
实施例3
一种抗菌和防静电的实验室陶瓷台面板,包括坯体和釉层,其中,坯体按原料重量份计包括14份球土、10份白泥、12份高铝砂、12份钾长石、22份石粉、8份废砖、3份硅灰石、4份叶腊石、6份透辉石、6份铬铁尾矿、2.6份铬铁黑色料、0.2份三聚磷酸钠、0.2份羧甲基纤维素钠;釉层的原料组分按原料重量份计包括11份高岭土、70份低温熔块、2份石英、6份氧化锆、1份铬钴铁黑色料、10份防静电抗菌材料。
一种抗菌和防静电的实验室陶瓷台面板的制备方法,包括如下步骤:
1)将坯体各原料组分与水一同置于球磨机中,坯体配方含水率为34%,球磨处理15小时得坯体料浆,料浆经过200目筛、喷雾造粒、陈腐,得含水率7.5%的坯体粉料;
2)将1.2份纳米锌/锑共掺杂氧化锡、5份纳米氧化锌、3份纳米三氧化二锑、90.8份微米氧化锡混合,加入水和1.2%氨丙基三乙氧基硅烷作为分散剂搅拌成浆料,浆料中固含量为68%,随后将浆料倒入砂磨机中,砂磨机的研磨介质为钇稳定氧化锆微球,微球的直径为1.0毫米,微球的体积填充率为80%,砂磨机的转速为1750转/分钟,高速研磨4小时,得到防静电抗菌材料的浆料;
3)将釉层的各原料组分与水一同置于球磨机中,得到的釉料配方含水率为31%,球磨处理10小时,过筛250目得釉料,釉浆比重为1.43克/立方厘米;将坯体粉料置于压机进行压制成型,得生坯,随后生坯经120℃干燥1.4小时,采用高压喷釉施釉、1220℃高温烧成,烧成周期为1.8小时,得半成品陶瓷台面板,随后经过表面弹性半抛和切边倒角,得到抗菌和防静电的实验室陶瓷台面板成品。
对比例1
对比例1与实施例3的区别在于,对比例1中未添加硅灰石,其余组分和制备过程与实施例3相同,得到陶瓷台面板成品。
对比例2
对比例2与实施例3的区别在于,对比例2中未添加叶腊石,其余组分和制备过程与实施例3相同,得到陶瓷台面板成品。
对比例3
对比例3与实施例3的区别在于,对比例3中未添加透辉石,其余组分和制备过程与实施例3相同,得到陶瓷台面板成品。
对比例4
对比例4与实施例3的区别在于,对比例4中未添加废砖,其余组分和制备过程与实施例3相同,得到陶瓷台面板成品。
对比例5
对比例5与实施例3的区别在于,对比例5中未添加铬铁尾矿,其余组分和制备过程与实施例3相同,得到陶瓷台面板成品。
对比例6
对比例6与实施例3的区别在于,对比例6中未添加氧化锆,其余组分和制备过程与实施例3相同,得到陶瓷台面板成品。
对比例7
对比例7与实施例3的区别在于,对比例7中未添加纳米锌/锑共掺杂氧化锡,其余组分和制备过程与实施例3相同,得到陶瓷台面板成品。
产品性能测试
将实施例1~3和对比例1~7分别制得的陶瓷台面板成品进行破坏强度、切割破损率、抗菌性能、防静电、表面耐酸碱性和防污性能检测,并观察侧面色差,所得测试结果如下表1所示。
其中,破坏强度:按照国家标准GB/T4100-2015《陶瓷砖》执行。
抗菌性能:按照行业标准JCT 897-2014《抗菌陶瓷制品抗菌性能》执行。
防静电:按照国家标准GB 26539-2011《防静电陶瓷砖》执行,测量釉面的点对点电阻和表面电阻值。
表面耐酸碱性能:将5%浓度的稀硫酸溶液、5%浓度的氢氧化钠溶液滴在样品表面,30分钟后清洗干净,对比砖面颜色是否发生变化。
切割破损率:将600*1200规格的砖采用砂轮切割机切成20*20规格的试样,统计250件试样中切割破损获边裂的百分比。
表1实施例1~3和对比例1~7的陶瓷台面板成品的性能测试结果
Figure PCTCN2022091788-appb-000001
从表1可以看出,和实施例3相比,对比例1坯体未添加硅灰石,导致切割破损率较高,说明针状硅灰石有利于提升坯体切割性能;对比例2坯体未添加叶腊石,坯体烧成收缩变大,说明叶腊石有利于减小坯体烧成收缩;对比例3坯体未添加透辉石,导致切割破损率较高,透辉石的引入有利于提高坯体的韧性;对比例4坯体未添加废砖,导致烧成收缩变大,坯体中引入废砖,可以减小坯体的烧成收缩;对比例5坯体未添加铬铁尾矿,导致侧面色差的缺 陷;对比例6釉中未添加氧化锆,釉面耐化学腐蚀性降低;对比例7釉中为未添加锌/锑掺杂氧化锡粉体作为晶种,导致釉面的电阻值较高。
对于本公开所属技术领域的普通技术人员来说,在不脱离本公开构思的前提下还可以做出若干简单推演或替换,而不必经过创造性的劳动。因此,本领域技术人员根据本公开的揭示,对本公开做出的简单改进都应该在本公开的保护范围之内。上述实施例为本公开的可选的实施例,凡与本公开类似的工艺及所作的等效变化,均应属于本公开的保护范畴。

Claims (10)

  1. 一种抗菌和防静电的实验室陶瓷台面板,其特征在于,包括坯体和釉层,其中,所述釉层的原料组分包括氧化锆和防静电抗菌材料;所述防静电抗菌材料的原料包括:纳米锌/锑共掺杂氧化锡、纳米氧化锌、纳米三氧化二锑和微米氧化锡。
  2. 根据权利要求1所述的实验室陶瓷台面板,其特征在于,按重量份计,所述釉层的原料组分包括氧化锆6~12份和防静电抗菌材料8~10份。
  3. 根据权利要求1所述的实验室陶瓷台面板,其特征在于,所述防静电抗菌材料的原料组分按重量份计包括纳米锌/锑共掺杂氧化锡0.5~1.2份、纳米氧化锌3~6份、纳米三氧化二锑2~5份和微米氧化锡90~95份。
  4. 根据权利要求2或3所述的实验室陶瓷台面板,其特征在于,按重量份计,所述釉层的原料组分还包括高岭土11~15份、低温熔块65~70份、石英2~6份和铬钴铁黑色料1~2份。
  5. 根据权利要求1所述的实验室陶瓷台面板,其特征在于,所述坯体的原料组分按重量份计包括硅灰石2~4份、叶腊石3~5份、透辉石5~7份和铬铁尾矿5~10份。
  6. 根据权利要求5所述的实验室陶瓷台面板,其特征在于,按重量份计,所述坯体的原料组分还包括球土12~15份、白泥8~10份、高铝砂8~12份、钾长石10~12份、石粉20~25份、废砖6~8份、铬铁黑色料1~3份和分散剂0.2~0.6份。
  7. 如权利要求1至6任一项所述的实验室陶瓷台面板的制备方法,其特征在于,包括如下步骤:
    取坯体的各原料组分经球磨混合,制成坯体料浆,再经过筛、喷雾造粒、陈腐,得坯体粉料;
    取纳米锌/锑共掺杂氧化锡、纳米氧化锌、纳米三氧化二锑和微米氧化锡混合,经溶解搅拌成浆料,再经研磨后制得防静电抗菌材料;
    取釉层的各原料组分经球磨混合,制成釉层料浆;
    将坯体粉料压制成型,得生坯;
    生坯经干燥、布施釉层料浆和烧制成型,得到所述的实验室陶瓷台面板。
  8. 根据权利要求7所述的制备方法,其特征在于,所述坯体料浆的含水率为33-35%;所述釉层料浆的含水率为30-32%。
  9. 根据权利要求7所述的制备方法,其特征在于,所述烧制成型的烧成温度为1200-1230℃,烧成时间为1.5-2.0h。
  10. 根据权利要求7所述的制备方法,其特征在于,所述烧制成型之后还包括表面弹性半抛处理。
PCT/CN2022/091788 2021-05-31 2022-05-09 一种抗菌和防静电的实验室陶瓷台面板及其制备方法 WO2022252931A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110598922.7 2021-05-31
CN202110598922.7A CN113248145B (zh) 2021-05-31 2021-05-31 一种抗菌和防静电的实验室陶瓷台面板及其制备方法

Publications (1)

Publication Number Publication Date
WO2022252931A1 true WO2022252931A1 (zh) 2022-12-08

Family

ID=77183805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091788 WO2022252931A1 (zh) 2021-05-31 2022-05-09 一种抗菌和防静电的实验室陶瓷台面板及其制备方法

Country Status (2)

Country Link
CN (1) CN113248145B (zh)
WO (1) WO2022252931A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116102362A (zh) * 2023-02-17 2023-05-12 广州华越新材料科技有限公司 一种防污卫浴陶瓷及其制备方法
CN116477939A (zh) * 2023-05-06 2023-07-25 河北领标科技发展有限公司 一种防霉抗菌陶瓷岩板及其制备方法
CN116751031A (zh) * 2023-08-22 2023-09-15 山东德尚新材料科技有限公司 抗菌日用陶瓷杯及其制备方法
CN117362067A (zh) * 2023-10-11 2024-01-09 福建省南安宝达建材有限公司 通体具有立体孔洞的无釉瓷质砖及其制作工艺
CN117401958A (zh) * 2023-10-16 2024-01-16 舒兰市鑫源建筑工程有限公司 一种日用陶瓷及其制备方法与应用
CN117430405A (zh) * 2023-10-09 2024-01-23 山东亮剑陶瓷有限公司 防静电陶瓷砖及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113248145B (zh) * 2021-05-31 2021-10-19 佛山欧神诺陶瓷有限公司 一种抗菌和防静电的实验室陶瓷台面板及其制备方法
CN114262209B (zh) * 2021-12-23 2023-07-07 佛山欧神诺陶瓷有限公司 一种轻质防静电陶瓷砖及其制备方法
CN115557781B (zh) * 2022-11-28 2023-05-12 蒙娜丽莎集团股份有限公司 纳米强韧化建筑陶瓷及其制备方法
CN115784710B (zh) * 2022-12-13 2023-10-20 福建七彩陶瓷有限公司 呼吸地铺砖及其生产方法
CN115594488B (zh) * 2022-12-15 2023-03-21 佛山市陶莹新型材料有限公司 一种防静电陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231187A (ja) * 1997-02-21 1998-09-02 Toto Ltd 抗菌性釉薬、この釉薬を用いた陶磁器製品及び抗菌性釉薬の調製方法
CN104276598A (zh) * 2014-09-12 2015-01-14 上海纳旭实业有限公司 纳米锌掺杂氧化锡锑复合材料及水性分散液的制备方法
CN107417118A (zh) * 2017-05-26 2017-12-01 陆洁容 一种耐磨性好的抗菌且防静电的陶瓷釉及瓷砖的制备方法
CN113248145A (zh) * 2021-05-31 2021-08-13 佛山欧神诺陶瓷有限公司 一种抗菌和防静电的实验室陶瓷台面板及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102795893B (zh) * 2012-09-10 2013-12-11 山东电盾科技有限公司 防静电抗菌陶瓷釉
CN103664193B (zh) * 2013-12-16 2015-06-10 酉阳县四达机械厂 瓷砖生产工艺
CN104860658A (zh) * 2015-05-04 2015-08-26 安徽省亚欧陶瓷有限责任公司 一种防静电陶瓷砖及其制备方法
CN106242508A (zh) * 2016-07-06 2016-12-21 吴海屏 利用花岩石粉废料生产陶瓷制品的方法
CN107473741A (zh) * 2017-09-21 2017-12-15 深圳市商德先进陶瓷股份有限公司 防静电陶瓷及其制备方法
CN109734314A (zh) * 2019-03-06 2019-05-10 盐城工业职业技术学院 一种耐酸碱陶瓷釉料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231187A (ja) * 1997-02-21 1998-09-02 Toto Ltd 抗菌性釉薬、この釉薬を用いた陶磁器製品及び抗菌性釉薬の調製方法
CN104276598A (zh) * 2014-09-12 2015-01-14 上海纳旭实业有限公司 纳米锌掺杂氧化锡锑复合材料及水性分散液的制备方法
CN107417118A (zh) * 2017-05-26 2017-12-01 陆洁容 一种耐磨性好的抗菌且防静电的陶瓷釉及瓷砖的制备方法
CN113248145A (zh) * 2021-05-31 2021-08-13 佛山欧神诺陶瓷有限公司 一种抗菌和防静电的实验室陶瓷台面板及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116102362A (zh) * 2023-02-17 2023-05-12 广州华越新材料科技有限公司 一种防污卫浴陶瓷及其制备方法
CN116102362B (zh) * 2023-02-17 2024-04-19 潮州市长鸿卫浴科技有限公司 一种防污卫浴陶瓷及其制备方法
CN116477939A (zh) * 2023-05-06 2023-07-25 河北领标科技发展有限公司 一种防霉抗菌陶瓷岩板及其制备方法
CN116751031A (zh) * 2023-08-22 2023-09-15 山东德尚新材料科技有限公司 抗菌日用陶瓷杯及其制备方法
CN116751031B (zh) * 2023-08-22 2023-10-13 山东德尚新材料科技有限公司 抗菌日用陶瓷杯及其制备方法
CN117430405A (zh) * 2023-10-09 2024-01-23 山东亮剑陶瓷有限公司 防静电陶瓷砖及其制备方法
CN117430405B (zh) * 2023-10-09 2024-05-07 山东亮剑陶瓷有限公司 防静电陶瓷砖及其制备方法
CN117362067A (zh) * 2023-10-11 2024-01-09 福建省南安宝达建材有限公司 通体具有立体孔洞的无釉瓷质砖及其制作工艺
CN117362067B (zh) * 2023-10-11 2024-05-17 福建省南安宝达建材有限公司 通体具有立体孔洞的无釉瓷质砖及其制作工艺
CN117401958A (zh) * 2023-10-16 2024-01-16 舒兰市鑫源建筑工程有限公司 一种日用陶瓷及其制备方法与应用

Also Published As

Publication number Publication date
CN113248145A (zh) 2021-08-13
CN113248145B (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2022252931A1 (zh) 一种抗菌和防静电的实验室陶瓷台面板及其制备方法
CN107721380B (zh) 一种低成本高铝质陶瓷薄板的制备方法
WO2021012309A1 (zh) 一种无机纤维增韧无机复合人造石材面板及其制备方法
CN111807704B (zh) 应用于卫生陶瓷的亚光釉及应用其的卫生陶瓷和制备方法
CN101844910B (zh) 一种薄壁轻量化卫生陶瓷坯体及其制造方法
CN104445966B (zh) 一种玻璃纤维
CN112094100B (zh) 一种高效率的陶瓷泥浆制备工艺
CN110483073A (zh) 一种陶瓷坯体增强剂、其制备方法及应用
CN111892390A (zh) 一种无原矿泥坯体制成的快烧陶瓷厚砖及制备工艺
CN106810208B (zh) 一种利用玻璃纤维废丝制作的玻化瓷砖及其制备方法
CN108546105A (zh) 一种高强韧性石墨烯复合陶瓷
CN106045529A (zh) 一种含80%以上废旧耐材的铁沟浇注料
CN107954734B (zh) 一种颗粒增强陶瓷薄板及其制备方法
CN113292312B (zh) 一种防水防潮瓷砖及其制备方法
CN101767984B (zh) 含氧化钬的熔融石英陶瓷材料及其制备方法
CN104909773B (zh) 含复合添加剂的铝酸钙水泥结合铝镁质浇注料及其制备方法
CN114702298A (zh) 一种深色通体景观厚砖及其制备方法
CN106747543A (zh) 氧化铝短纤维增强高断裂功瓷质陶瓷砖及其制备方法
CN103613321B (zh) 一种粉石英湿法球磨-涂料一体化制备方法
CN103496951B (zh) 一种低温烧成高强超薄陶瓷砖的制备方法
CN107140835B (zh) 釉浆及其制备方法和陶瓷制品
CN102731129B (zh) 一种利用金矿尾砂和镁橄榄石纤维制备复合型压裂支撑剂的方法
CN110981411B (zh) 一种薄板大砖用高岭土的制备工艺
CN114804832A (zh) 一种无机非金属低温烧结的陶瓷粉及其制备方法
CN106187135A (zh) 一种高生坯强度湿法浇注成型的建筑陶瓷及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22814978

Country of ref document: EP

Kind code of ref document: A1