WO2022252768A1 - 可补偿随行电缆重量的电梯系统 - Google Patents

可补偿随行电缆重量的电梯系统 Download PDF

Info

Publication number
WO2022252768A1
WO2022252768A1 PCT/CN2022/082162 CN2022082162W WO2022252768A1 WO 2022252768 A1 WO2022252768 A1 WO 2022252768A1 CN 2022082162 W CN2022082162 W CN 2022082162W WO 2022252768 A1 WO2022252768 A1 WO 2022252768A1
Authority
WO
WIPO (PCT)
Prior art keywords
moment
accompanying
gravity
car frame
elevator system
Prior art date
Application number
PCT/CN2022/082162
Other languages
English (en)
French (fr)
Inventor
帅红星
汉默克
Original Assignee
蒂升电梯(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蒂升电梯(中国)有限公司 filed Critical 蒂升电梯(中国)有限公司
Publication of WO2022252768A1 publication Critical patent/WO2022252768A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • B66B11/0206Car frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B17/00Hoistway equipment
    • B66B17/12Counterpoises
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • B66B7/068Cable weight compensating devices

Definitions

  • the invention relates to the technical field of elevator equipment, and more specifically, the invention relates to an elevator system capable of compensating the weight of accompanying cables.
  • the elevator accompanying cable is a component of the elevator. Since its own weight and its suspension point do not coincide with the elevator suspension center, it will generate an eccentric load moment on the car frame, and then transmit an eccentric load force to the rolling guide shoes and guide rails, and the lifting height The higher the value is, the greater the eccentric load force will be, which will reduce the running comfort of the elevator and the life of the rolling guide shoe.
  • the suspension point of the accompanying cable when the suspension point of the accompanying cable is outside the running path of the elevator car and away from the suspension center of the car frame, the unbalanced load is more serious and the impact is more significant.
  • the method of balancing the weight of the accompanying cable on the market is generally to use a fixed balance weight at the symmetrical position of the suspension point of the accompanying cable or to add an additional accompanying cable.
  • the former cannot be completely balanced, while the latter is very expensive, and due to space requirements , which is difficult to realize in a multi-car elevator system.
  • the accompanying cable moves up and down as the elevator runs, and its weight suspended at the end of the car changes all the time, so a dynamic corresponding weight is needed to balance the partial load force generated by it on the rolling guide shoe.
  • the present invention is proposed in order to provide an elevator system capable of compensating the weight of the accompanying cables which overcomes the above problems or at least partially solves the above problems.
  • the present invention provides an elevator system capable of compensating the weight of accompanying cables, comprising: a car; Leading rope, the lower beam is used to carry the car; traction rope, the bottom end of the traction rope is connected to the upper beam of the car frame; accompanying cable, it is suspended on the first beam of the upper beam One end or the first end of the lower beam, the accompanying cable generates a first moment to the center of gravity of the car frame; the elevator system also includes: a moment balance device for generating a first moment to the center of gravity of the car frame Two moments, the second moment is basically equal in magnitude and opposite in direction to the first moment.
  • the elevator system further includes a first suspension bracket, and the accompanying cable is suspended from the first end of the upper beam or the first end of the lower beam through the first suspension bracket.
  • the projection of the suspension point of the accompanying cable on the first suspension bracket on the horizontal plane is outside the projection plane of the car on the horizontal plane.
  • the moment balancing device includes two compensation ropes, and when the traveling cable is suspended at the first end of the upper beam, the two compensation ropes are respectively suspended at the first end of the lower beam. end and the second end, the resultant point of the two compensation ropes generates the second moment which is equal in magnitude to the first moment and opposite in direction to the center of gravity of the car frame.
  • the elevator system further includes two second suspension brackets, and each of the two compensation ropes is suspended on the first end and the second end of the lower beam through a second suspension bracket. end.
  • the moment balancing device includes two compensation ropes, and when the traveling cable is suspended at the first end of the lower beam, the two compensation ropes are respectively suspended at the first end of the upper beam. end and the second end, the resultant point of the two compensation ropes generates the second moment which is equal in magnitude to the first moment and opposite in direction to the center of gravity of the car frame.
  • the elevator system further includes two second suspension brackets, and each of the two compensation ropes is suspended on the first end and the second end of the upper beam through a second suspension bracket. end.
  • the moment balance device is set so that the projection of the traction rope on the horizontal plane of the suspension point of the upper beam of the car frame is the same as the projection of the center of gravity of the car frame on the horizontal plane.
  • the projections do not coincide, so that the hoisting rope generates the second moment of gravity equal to the first moment and opposite in direction to the center of gravity of the car frame.
  • the elevator system also includes a static balance weight, the static balance weight is suspended on the second end of the upper beam or the lower beam suspended by the accompanying cable, the suspension point of the accompanying cable and the second end of the lower beam.
  • the projection of the straight line where the suspension point of the static balance weight is located on the horizontal plane passes through the projection of the center of gravity of the car frame on the horizontal plane, and the suspension point of the static balance weight and the suspension point of the accompanying cable are respectively located in the horizontal plane. Both sides of the center of gravity of the frame.
  • the present invention generates a dynamically changing eccentric load moment to the center of gravity of the car frame through the resultant force point generated by the asymmetric setting of the existing two compensating ropes or the eccentric setting of the suspension point of the traction rope , to balance the dynamic first moment of the accompanying cable on the center of gravity of the car frame, thereby eliminating the impact on the rolling guide shoe, with low cost and significant effect.
  • Fig. 1 is the structural representation of the elevator system that can compensate the weight of accompanying cables provided by the present invention
  • Fig. 2 is a top view of Fig. 1 in a state where two compensation ropes are asymmetrically arranged;
  • Fig. 3 is a bottom view of Fig. 1 in the state where two compensation ropes are asymmetrically arranged;
  • Fig. 4 is the schematic diagram of the subjected moment after Fig. 2 simplification
  • Fig. 5 is a top view of Fig. 1 in the state where the traction rope is set eccentrically;
  • Fig. 6 is the schematic diagram of the subjected moment after Fig. 5 simplification
  • Figure 7 is a schematic diagram of the position of two cars running in the same shaft.
  • the x-axis and y-axis are both axes on the horizontal plane, and the positive direction of the x-axis is parallel to the car door 501 and points to the accompanying car door 501.
  • the direction of one side of the cable 1 the positive direction of the y-axis is the direction in which the car frame 4 points to the car door 501
  • the z-axis is the axis in the vertical direction
  • the positive direction of the z-axis is vertically upward.
  • the x-axis points the same way, and the y-axis points the same way.
  • the invention provides an elevator system capable of compensating the weight of accompanying cables, comprising: a car 5, a car frame 4, a traveling cable 1 and a moment balance device.
  • the car 5 is used to carry people or goods.
  • Car frame 4 comprises upper beam 41, left side beam 43, lower beam 42 and right side beam 44.
  • the upper beam 41 is used for connecting the traction rope 6
  • the lower beam 42 is used for carrying the car 4
  • the car frame 4 has a center of gravity 4104 .
  • Traction rope 6 the bottom end of the traction rope 6 is connected to the top of the car frame 4 (ie on the upper beam 41), for pulling the car frame 4 to move up and down.
  • the accompanying cable 1 is suspended on the first end 4101 of the upper beam 41 of the car frame 4, and the accompanying cable 1 generates a first moment to the center of gravity 4104 of the car frame 4
  • the accompanying cable 1 moves up and down as the elevator runs, so that the force applied to the elevator due to the weight of the accompanying cable 1 changes, so the first moment It also changes as the elevator moves up and down.
  • Moment balance device for generating a second moment to the center of gravity of the car frame 4
  • the second moment is substantially equal in magnitude and opposite in direction to the first moment, eliminating or reducing the partial load force on the rolling guide shoe 2 caused by the moment of the accompanying cable.
  • the present invention relates to an elevator system capable of compensating the weight of accompanying cables, comprising: a car 5, a car frame 4, a traveling cable 1 and two compensating ropes 3. It should be noted that, in order to illustrate the positional relationship of the main components more clearly, the compensating rope 3 and the traction rope 6 are not shown in Fig. 2 and Fig. 3 .
  • the car 5 is used to carry people or goods.
  • the main body of the car frame 4 is a rectangular frame, including an upper beam 41 , a left side beam 43 , a lower beam 42 and a right side beam 44 .
  • the car frame 4 has a center of gravity 4104 .
  • the lower beam 42 is used to carry the car 5 .
  • the middle part of the upper beam 41 is used for connecting the traction rope 6 , and the first end 4101 of the upper beam 41 is used for hanging the accompanying cable 1 .
  • the lower beam 42 comprises a crossbeam 421 and an extension plate 422 and an extension plate 423 positioned at two ends of the crossbeam 421.
  • the extension plate 422 is located on the negative side of the y-axis of the beam 421, and the extension plate 423 is located on the positive side of the y-axis of the beam 421).
  • the end of the extension plate 422 away from the beam 421 is the first end 4201 of the lower beam 42.
  • the extension plate The end of 423 away from the cross beam 421 is the second end 4202 of the lower beam 42 , the first end 4201 of the lower beam 42 and the second end 4202 of the lower beam 42 are respectively used to carry two compensation ropes 3 .
  • the accompanying cable 1 is suspended on the first end 4101 of the upper beam 41, and the accompanying cable 1 generates a first moment to the center of gravity 4104 of the car frame 4
  • the accompanying cable 1 is suspended on the first end 4101 (see Fig. 2 ) of the upper beam 41 of the car frame 4 by the first suspension bracket 101, so the point of application of the accompanying cable 1 to the car frame 4 is located in Fig. 2
  • the suspension point 1011 of the accompanying cable on the first suspension bracket 101 is located in Fig. 2
  • Two compensation ropes 3 are hung on the first end 4201 of the lower beam 42 of the car frame 4 and the second end 4202 of the lower beam 42 respectively, the same as the accompanying cable 1, the two compensation ropes 3 will also run with the elevator And move up and down, and make the force that compensation rope 3 is applied to elevator due to weight change.
  • the resultant point 302 of the two compensating ropes 3 generates a second moment to the center of gravity 4104 of the car frame 4 second moment with the first moment They are equal in size and opposite in direction, and also change as the elevator moves up and down.
  • the weights of the two compensating ropes 3 are the same, that is, the magnitude of the force exerted on the car frame 4 is the same, and only need to adjust the suspension position to realize the position adjustment of the resultant force point of the two, thereby generating the second moment
  • the two compensating ropes 3 are symmetrically arranged, and the resultant point of the two compensating ropes 3 coincides with the center of gravity 4104 of the car frame 4 on the horizontal plane projection, and the two face the center of gravity 4104 of the car frame 4 at the level
  • the torque sum of the two compensating ropes 3 is zero (that is, the moment in the horizontal direction is not produced), and in this embodiment, two compensating ropes 3 are suspended asymmetrically.
  • the projections of the projections are no longer coincident, and a moment is generated to balance the moment of the accompanying cable 1, eliminate or reduce the eccentric load force of the moment of the accompanying cable on the rolling guide shoe 2, and reduce the wear on the rolling guide shoe 2.
  • the two compensating ropes 3 asymmetrically arranged here are the moment balance devices mentioned above.
  • the direction of the moment is perpendicular to the direction of the force. Whether it is the gravity of the traveling cable 1 or the force exerted by the resultant force point of the compensation rope on the car frame 4, it is vertically downward (the negative direction of the z-axis), so the first a moment and the second moment They are all perpendicular to the z-axis direction, that is, the projection on the horizontal plane is consistent with its own direction and size, so in the following legend, the projection of the moment on the horizontal plane is directly used to represent the magnitude and direction of the moment itself; at the same time, the actual displacement vector
  • the component on the z-axis is no longer discussed, only its component on the horizontal plane is discussed. For the convenience of illustration, the component of the displacement vector on the horizontal plane is also used here to represent the magnitude and direction of the displacement vector itself. This simplification does not affect the Torque analysis.
  • Figure 4 Project all the structures in Figure 1 onto the horizontal plane (that is, the plane where the x-axis and y-axis are located in Figure 1) to obtain Figure 2, and perform a simplified force analysis on Figure 2 to obtain Figure 4.
  • represents the force direction
  • the vertical paper faces inward (that is, the force direction is the negative direction of the z-axis).
  • the distance vector of the suspension point 1011 of the accompanying cable 1 on the first suspension bracket 101 relative to the center of gravity 4104 of the car frame 4 is first force applied (i.e. the gravity of the accompanying cable 1 ) is vertically downward (that is, the negative direction of the z-axis), according to the formula of the moment
  • the distance vector of the force point 302 of the two compensating ropes 3 relative to the center of gravity 4104 of the car frame 4 is applied second force (with the gravity of two compensating ropes 3
  • the size is proportional to the same direction) and the direction is vertically downward (that is, the negative direction of the z-axis), according to the formula of the torque
  • the second moment produced by the force point 302 of the two compensating ropes 3 on the center of gravity 4104 of the car frame 4 The direction is shown in Figure 4.
  • First Force and the second force have the same direction and cannot be changed, to achieve the first moment with the second moment
  • the purpose of the opposite direction can only be reversed by adjusting the distance vectors of the two, that is, the force point of the accompanying cable 1 (that is, the suspension point 1011 on the first suspension bracket 101) and the resultant force point 302 of the two compensation ropes 3 are respectively Located on both sides of the center of gravity 4104 of the car frame 4, and the projection of the line on the horizontal plane where the suspension point 1011 of the accompanying cable 1 on the first suspension bracket 101 and the resultant point 302 of the two compensation ropes 3 on the horizontal plane passes through the car frame
  • the center of gravity of 4 is 4104.
  • first moment with the second moment Adjust the direction to the opposite, as long as it is adjusted to the same position during the installation process, the size of the two moments will change synchronously at each height point of the elevator in the future, so as to realize the dynamic compensation of the compensation rope 3 and the generation of the accompanying cable 1 eccentric load moment.
  • the types of accompanying cables 1 and compensating ropes 3 that the elevator can choose are limited. Once the type is determined, that is, its weight increase with height is fixed, the best adjustment method It is to adjust the distance between the two to the center of gravity 4104 of the car frame 4.
  • moving distance can calculate approximate distance in advance according to relevant material, or directly debug the specific distance of compensating rope 3 when elevator lowest point.
  • the projection of the suspension point 1011 of the accompanying cable 1 on the first suspension bracket 101 on the horizontal plane is outside the projection plane of the car 5 on the horizontal plane.
  • the elevator system capable of compensating the weight of the accompanying cables also includes two second suspension brackets 301, and each of the two compensation ropes 3 is suspended on the first end 4201 and the first end 4201 of the lower beam 42 through a second suspension bracket 301 respectively.
  • the projections of the suspension points of the two compensation ropes 3 on the two second suspension brackets 301 on the horizontal plane are outside the projection plane of the car 5 on the horizontal plane.
  • the elevator system capable of compensating the weight of the accompanying cable further includes a static balance block 7 located at the second end 4102 of the upper beam 41, the suspension point 1011 of the accompanying cable 1 on the first suspension bracket 101 and the static counterweight 7.
  • the projection of the straight line where the suspension point of the balance weight 7 is on the horizontal plane passes through the projection of the center of gravity 4104 of the car frame 4 on the horizontal plane, and the suspension point of the static balance weight 7 and the suspension point of the accompanying cable 1 on the first suspension bracket 101 1011 are respectively located on both sides of the center of gravity 4104 of the car frame 4 .
  • the weight of the static balance weight 7 is fixed, that is, its gravity is fixed.
  • the static balance weight 7 is installed on the second end 4102 of the upper beam 41 through the third suspension bracket 701 .
  • Static balance block 7 is set to gravity as In this way, under the same other conditions, the maximum value of the force that needs to be balanced is given by reduced to
  • the accompanying cable 1 and the compensating rope 3 are arranged on the upper beam 41 and the lower beam 42 respectively, their positions can also be changed without affecting the effect of the present invention.
  • the accompanying cable 1 is arranged on the lower beam, while the compensation rope 3 is arranged on the upper beam.
  • the resultant force point generated by the asymmetric arrangement of the existing two compensation ropes produces a dynamically changing second moment to the center of gravity of the car frame to balance the impact of the accompanying cable on the car.
  • the dynamically changing first moment generated by the center of gravity of the box frame eliminates the influence on the rolling guide shoe, and the cost is low and the effect is remarkable.
  • the present invention relates to an elevator system capable of compensating the weight of accompanying cables, comprising: a car 5, a car frame 4, a traveling cable 1 and a traction rope 6. It should be noted that, in order to illustrate the positions of the main components more clearly, the traction rope 6 is not shown in FIG. 5 .
  • the car 5, the car frame 4, and the accompanying cable 1 of this embodiment are the same as those of the first embodiment, but the difference is that by changing the position of the hoisting rope 6 at the suspension point 4103 of the upper beam 41, the hoisting The guide rope 6 produces a second moment equal to the first moment and opposite in direction to the car frame 4 .
  • the accompanying cable 1 is suspended on the first end 4101 (see Fig. 5 ) of the upper beam 41 of the car frame 4 by the first suspension bracket 101, so the point of application of the accompanying cable 1 to the car frame 4 is located in Fig. 5
  • the suspension point 1011 of the accompanying cable 1 on the first suspension bracket 101 is located in Fig. 5
  • the bottom end of the traction rope 6 is connected to the upper beam 41, and the projection of the traction rope 6 on the horizontal plane at the suspension point 4103 of the upper beam 41 does not coincide with the projection of the center of gravity 4104 of the car frame 4 on the horizontal plane, so that Make the hoisting rope 6 generate a first moment to the center of gravity 4104 of the car frame 4
  • the suspension point 4103 of the traction rope 6 coincides with the projection of the center of gravity 4104 of the car frame 4 on the horizontal plane, and the moment of the traction rope 6 facing the center of gravity 4104 of the car frame 4 is zero (that is, not generate a moment in the horizontal direction), the application sets the suspension point 4103 of the traction rope 6 eccentrically, and the projection of the suspension point 4103 of the traction rope 6 and the center of gravity 4104 of the car frame 4 on the horizontal plane no longer coincides, generating a moment , so as to balance the moment of the accompanying cable 1, eliminate or reduce the eccentric load force of the moment of the accompanying cable on the rolling guide shoe 2, and reduce the wear on the rolling guide shoe 2.
  • the direction of the moment is perpendicular to the direction of the force, whether it is the gravity of the accompanying cable 1 (vertically downward), or the force exerted by the resultant force point of the compensation rope on the car frame 4 (vertically upward), they are all vertical (along the positive or negative direction of the z-axis), so the first moment and the second moment They are all perpendicular to the z-axis direction, that is, the projection on the horizontal plane is consistent with its own direction and size, so in the following legend, the projection of the moment on the horizontal plane is directly used to represent the magnitude and direction of the moment itself; at the same time, the actual displacement vector
  • the component on the z-axis is no longer discussed, only its component on the horizontal plane is discussed. For the convenience of illustration, the component of the displacement vector on the horizontal plane is also used here to represent the magnitude and direction of the displacement vector itself. This simplification does not affect the Torque analysis.
  • represents the force direction
  • the vertical paper faces inward (that is, the force direction is the negative direction of the z-axis)
  • represents the force direction and the vertical paper faces outward (that is, the force direction is the positive direction of the z-axis).
  • the distance vector of the suspension point 1011 of the accompanying cable 1 on the first suspension bracket 101 relative to the center of gravity 4104 of the car frame 4 is first force applied (i.e. the gravity of the accompanying cable 1 ) is vertically downward (that is, the negative direction of the z-axis), according to the formula of the moment
  • the first moment produced by the accompanying cable 1 to the center of gravity 4104 of the car frame 4 The direction is shown in Figure 6;
  • the distance vector of the suspension point 4103 of the traction rope 6 relative to the center of gravity 4104 of the car frame 4 is third force applied (that is, the traction force of the traction rope 6) is vertically upward (that is, the positive direction of the z-axis), according to the formula of the torque
  • the second moment generated by the suspension point 4103 of the traction rope 6 to the center of gravity 4104 of the car frame 4 The direction is shown in Figure 6.
  • the direction of is opposite and cannot be changed, to achieve the first moment with the second moment
  • the opposite purpose of the direction can only be the same direction by adjusting the distance vectors of the two, that is, the point of effort of the accompanying cable 1 (i.e. the suspension point 1011 of the accompanying cable 1 on the first suspension bracket 101) and the suspension of the traction rope 6
  • Point 4103 is located on the same side of the center of gravity 4104 of the car frame 4, and the projection of the line on the horizontal plane where the suspension point 1011 of the traveling cable 1 on the first suspension bracket 101 and the suspension point 4103 of the traction rope 6 on the horizontal plane passes through the car Center of gravity 4104 of frame 4.
  • the weight of accompanying cable 1 is all increasing (or decreasing), i.e. the first force increases (or decreases) synchronously, and the first moment generated by accompanying cable 1
  • the size of is increased (or decreased) synchronously.
  • the third force (that is, the traction force of the traction rope 6) is equal to the sum of the weights of the traction car frame 4, the car 5, the accompanying cable 1 and the compensation rope 3, namely Wherein, the gravity of car frame 4 and the gravity of car 5
  • the size is fixed, accompanying the gravity of the cable 1 and the gravity of compensation rope 3
  • the size increases (or decreases) with the increase (or decrease) of the height, so the third force
  • the size increases (or decreases) synchronously with the increase (or decrease) of the height, the third force
  • the resulting second moment The magnitude of increases (or decreases) synchronously with the increase (or decrease) of the height, so that the first moment generated by the accompanying cable 1 and the second moment generated by the hoist rope 6 on the center of gravity 4104 of the car frame 4
  • the size of is increased or decreased synchronously to achieve a state of dynamic balance.
  • the moving distance can calculate the rough distance in advance according to relevant materials, or directly debug the specific distance that the traction rope 6 moves when the elevator is at the lowest point.
  • the projection of the first suspension bracket 101 on the horizontal plane is located outside the projection plane of the car frame 4 on the horizontal plane.
  • the elevator system capable of compensating the weight of the accompanying cable further includes a static balance block 7 located at the second end 4102 of the upper beam 41, the suspension point 1011 of the accompanying cable 1 on the first suspension bracket 101 and the static counterweight 7.
  • the projection of the straight line where the suspension point of the balance weight 7 is on the horizontal plane passes through the projection of the center of gravity 4104 of the car frame 4 on the horizontal plane, and the suspension point of the static balance weight 7 and the suspension point of the accompanying cable 1 on the first suspension bracket 101 1011 are respectively located on both sides of the center of gravity 4104 of the car frame 4 .
  • the weight of the static balance weight 7 is fixed, that is, its gravity is fixed.
  • the static balance weight 7 is installed on the second end 4102 of the upper beam 41 through the third suspension bracket 701 .
  • Static balance block 7 is set to gravity as In this way, under the same other conditions, the maximum value of the force that needs to be balanced is given by reduced to
  • the eccentric setting of the suspension point of the traction rope generates a dynamically changing second moment to the center of gravity of the car frame to balance the dynamic force of the accompanying cable on the center of gravity of the car frame.
  • the variable first moment thereby eliminating the influence on the rolling guide shoe, is low cost and effective.
  • the present invention provides an elevator system capable of compensating the weight of the accompanying cable.
  • the asymmetric setting of the compensation rope and the eccentric setting of the suspension point of the traction rope are adopted to balance the weight of the accompanying cable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Abstract

一种可补偿随行电缆(1)重量的电梯系统,包括:轿厢(5);轿厢架(4),其包括上梁(41)、左侧梁(43)、下梁(42)和右侧梁(44),上梁(41)的中部用于连接曳引绳(6),下梁(42)用于承载轿厢(5);曳引绳(6),曳引绳(6)的底端连接至轿厢架(4)的上梁(41);随行电缆(1),其悬挂在上梁(41)的第一端或下梁(42)的第一端,随行电缆(1)对轿厢架(4)的重心产生一个第一力矩;电梯系统还包括力矩平衡装置,用于对轿厢架(4)的重心产生一个第二力矩,第二力矩基本上与第一力矩的大小相等且方向相反。该系统通过采用补偿绳的不对称设置和/或曳引绳悬挂点的偏心设置来平衡随行电缆的重量,来做到大部分甚至完全消除随行电缆重量对轿厢架产生的偏载力矩,进而消除对滚动导靴的影响,成本低廉,效果显著。

Description

可补偿随行电缆重量的电梯系统 技术领域
本发明涉及电梯设备技术领域,更具体地,本发明涉及一种可补偿随行电缆重量的电梯系统。
背景技术
电梯随行电缆是一种电梯的部件,由于自身重量及其悬挂点与电梯悬挂中心不重合,会对轿厢架产生一个偏载力矩,进而传递给滚动导靴和导轨一个偏载力,提升高度越高,偏载力越大,其结果导致降低了电梯的运行舒适性及滚动导靴的寿命。对于单轿厢或多轿厢电梯系统,当随行电缆悬挂点位于电梯轿厢运行路径之外,远离轿厢架悬挂中心时,其偏载更加严重,影响更加显著。
目前市场上平衡随行电缆重量的方法,一般是在随行电缆悬挂点对称位置采用固定平衡重或者额外增加一根随行电缆的方式,前者不能完全平衡,而后者成本很高,且由于空间上的要求,在多轿厢电梯系统中是难以实现的。
随行电缆随着电梯运行而上下运动,其悬挂在轿厢端的重量在时刻变化,这样就需要一个动态的相对应的重量去平衡其对滚动导靴产生的偏载力。
因此,本领域需要一种能对重量动态变化的随行电缆进行动态平衡的低成本的方案。
发明内容
鉴于上述问题,提出了本发明以便提供克服上述问题或者至少部分地解决上述问题的一种可补偿随行电缆重量的电梯系统。
本发明提供了一种可补偿随行电缆重量的电梯系统,包括:轿厢;轿厢架,其包括上梁、左侧梁、下梁和右侧梁,所述上梁的中部用于连接曳引绳,所述下梁用于承载所述轿厢;曳引绳,所述曳引绳的底端连接至所述轿厢架的上梁;随行电缆,其悬挂在所述上梁的第一端或下梁的第一端,所述随行电缆对所述轿厢架的重心产生一个第一力 矩;所述电梯系统还包括:力矩平衡装置,用于对轿厢架的重心产生一个第二力矩,所述第二力矩基本上与所述第一力矩的大小相等且方向相反。
在本申请的一个优选实施方案中,所述电梯系统还包括第一悬挂支架,所述随行电缆通过所述第一悬挂支架悬挂在所述上梁的第一端或下梁的第一端。
在本申请的一个优选实施方案中,所述随行电缆在所述第一悬挂支架上的悬挂点在水平面的投影位于所述轿厢在水平面的投影面之外。
在本申请的一个优选实施方案中,所述力矩平衡装置包括两根补偿绳,当随行电缆悬挂在所述上梁的第一端时,两根补偿绳分别悬挂在所述下梁的第一端和第二端,所述两根补偿绳的合力点对轿厢架的重心产生与所述第一力矩的大小相等且方向相反的所述第二力矩。
在本申请的一个优选实施方案中,所述电梯系统还包括两个第二悬挂支架,所述两根补偿绳各通过一个第二悬挂支架分别悬挂在所述下梁的第一端和第二端。
在本申请的一个优选实施方案中,所述力矩平衡装置包括两根补偿绳,当随行电缆悬挂在所述下梁的第一端时,两根补偿绳分别悬挂在所述上梁的第一端和第二端,所述两根补偿绳的合力点对轿厢架的重心产生与所述第一力矩的大小相等且方向相反的所述第二力矩。
在本申请的一个优选实施方案中,所述电梯系统还包括两个第二悬挂支架,所述两根补偿绳各通过一个第二悬挂支架分别悬挂在所述上梁的第一端和第二端。
在本申请的一个优选实施方案中,所述力矩平衡装置设置成使得所述曳引绳在所述轿厢架的上梁的悬挂点在水平面的投影与所述轿厢架的重心在水平面的投影不重合,以使得所述曳引绳对所述轿厢架的重心产生与所述第一力矩的大小相等且方向相反的所述第二力矩。
在本申请的一个优选实施方案中,所述电梯系统还包括静平衡块,所述静平衡块悬挂在所述随行电缆悬挂的上梁或者下梁的第二端,随行电缆的悬挂点和所述静平衡块的悬挂点所在直线在水平面上的投影经过所述轿厢架的重心在水平面上的投影,并且所述静平衡块的悬挂 点和所述随行电缆的悬挂点分别位于所述轿厢架的重心的两侧。
本发明在不增加任何结构的基础上,通过现有的两根补偿绳的不对称设置产生的合力点或者曳引绳悬挂点的偏心设置对轿厢架的重心产生一个动态变化的偏载力矩,来平衡随行电缆的对轿厢架的重心产生的动态变化的第一力矩,进而消除对滚动导靴的影响,成本低廉,效果显著。
附图说明
图1为本发明提供的可补偿随行电缆重量的电梯系统的结构示意图;
图2为图1在两根补偿绳不对称设置的状态下的俯视图;
图3为图1在两根补偿绳不对称设置的状态下的仰视图;
图4为图2简化后的所受力矩示意图;
图5为图1在曳引绳偏心设置的状态下的俯视图;
图6为图5简化后的所受力矩示意图;
图7为2个轿厢在同一井道运行时的位置示意图。
附图标记说明:
1        随行电缆
2        滚动导靴
3        补偿绳
4        轿厢架
5        轿厢
6        曳引绳
7        静平衡块
101      第一悬挂支架
301      第二悬挂支架
302      两根补偿绳的合力点
41       上梁
42       下梁
43       左侧梁
44       右侧梁
4101      上梁的第一端
4102      上梁的第二端
421       横梁
422、423  延伸板
4201      下梁的第一端
4202      下梁的第二端
4103      曳引绳在上梁的悬挂点
4104      轿厢架的重心
701       第三悬挂支架。
应当理解的是,附图并非按比例地绘制,而是展示了稍微简化后呈现的说明本发明的基本原理的各种特征。在本发明的附图中,相同的附图标记表示本发明的相同的或等同的部分。
具体实施方式
下面将详细地参考本发明的各种实施方案,这些实施方案的示例显示在附图中并且描述如下。尽管将结合本发明的示例性实施方案来描述本发明,但是将理解的是,本说明书并非旨在将本发明限制于那些示例性实施方案。正相反,本发明旨在不但覆盖本发明的示例性实施方案,而且覆盖包括在如所附权利要求所定义的本发明的精神和范围之内的各种替代形式、修改形式、等效形式以及其它实施方案。
为更清楚的示意各个结构的位置关系,在附图中加入了三维直角坐标系,其x轴和y轴均是在水平面上的轴,x轴正向为平行于轿厢门501且指向随行电缆1的一侧的方向,y轴正向为轿厢架4指向轿厢门501的方向,z轴是竖直方向的轴,所述z轴的正方向为竖直向上,不同图中的x轴指向相同,y轴指向也相同。
下文中,本发明的各种示例性实施方案将参考附图更具体地描述。
本发明提供一种可补偿随行电缆重量的电梯系统,包括:轿厢5、轿厢架4、随行电缆1和力矩平衡装置。
其中,轿厢5用于承载人或者货物。
轿厢架4,轿厢架4包括上梁41、左侧梁43、下梁42和右侧梁44。其中,上梁41用于连接曳引绳6,下梁42用于承载所述轿厢4, 轿厢架4具有重心4104。
曳引绳6,曳引绳6的底端连接在所述轿厢架4的顶端(即上梁41上),用于牵引轿厢架4上下运动。
随行电缆1,其悬挂在所述轿厢架4的上梁41的第一端4101,所述随行电缆1对所述轿厢架4的重心4104产生一个第一力矩
Figure PCTCN2022082162-appb-000001
随行电缆1随着电梯运行而上下运动,而使得随行电缆1因重量而施加到电梯的力发生变化,由此第一力矩
Figure PCTCN2022082162-appb-000002
也随着电梯运行而上下运动而变化。
力矩平衡装置,用于对轿厢架4的重心产生一个第二力矩
Figure PCTCN2022082162-appb-000003
所述第二力矩基本上与所述第一力矩的大小相等且方向相反,消除或者减小随行电缆的力矩对滚动导靴2的产生的偏载力。
下面将结合详细的附图和实施例对力矩平衡装置如何产生第二力矩进行详细介绍。
实施例1
参见图1-4所示,本发明涉及一种可补偿随行电缆重量的电梯系统,包括:轿厢5,轿厢架4、随行电缆1以及两根补偿绳3。需要说明的是,为更清楚地示意主要部件的位置关系,图2和图3未示出补偿绳3和曳引绳6。
其中,轿厢5用于承载人或者货物。
轿厢架4的主体为一个矩形框架,包括上梁41、左侧梁43、下梁42和右侧梁44。其中,轿厢架4具有重心4104。
下梁42用于承载所述轿厢5。
上梁41的中部用于连接曳引绳6,上梁41的第一端4101用于悬挂随行电缆1。
参见图3,下梁42包括横梁421和位于横梁421两端的延伸板422和延伸板423,横梁421承载所述轿厢4,延伸板422和延伸板423分别位于横梁421的相对的两侧(延伸板422位于横梁421的y轴负方向一侧,延伸板423位于横梁421的y轴正方向一侧),延伸板422上远离横梁421的一端为下梁42的第一端4201,延伸板423上远离横梁421的一端为下梁42的第二端4202,下梁42的第一端4201和下梁42的第二端4202分别用于承载两根补偿绳3。
随行电缆1悬挂在上梁41的第一端4101,所述随行电缆1对所述轿厢架4的重心4104产生一个第一力矩
Figure PCTCN2022082162-appb-000004
通常,随行电缆1通过第一悬挂支架101悬挂在所述轿厢架4的上梁41的第一端4101(参阅图2),那么随行电缆1对轿厢架4的施力点位于图2中的随行电缆在第一悬挂支架101上的悬挂点1011。
两根补偿绳3分别悬挂在所述轿厢架4的下梁42的第一端4201和下梁42的第二端4202,同随行电缆1一样,两根补偿绳3也会随着电梯运行而上下运动,而使得补偿绳3因重量而施加到电梯的力发生变化。所述两根补偿绳3的合力点302对轿厢架4的重心4104产生一个第二力矩
Figure PCTCN2022082162-appb-000005
第二力矩
Figure PCTCN2022082162-appb-000006
与第一力矩
Figure PCTCN2022082162-appb-000007
大小相等且方向相反,也随着电梯运行而上下运动而变化。
两根补偿绳3的重量是相同的,即对轿厢架4施加的力的大小相同,只需要将悬挂的位置加以调整,即可实现二者合力点的位置调整,进而产生第二力矩
Figure PCTCN2022082162-appb-000008
产生第二力矩
Figure PCTCN2022082162-appb-000009
与第一力矩
Figure PCTCN2022082162-appb-000010
大小的力的大小不同,力臂也不同,但是其乘积相等,所以可以实现力矩的大小相等。
现有的电梯中,两根补偿绳3是对称布置的,两根补偿绳3的合力点与轿厢架4的重心4104在水平面投影重合,二者在水平面对轿厢架4的重心4104的力矩和为零(即不产生水平方向上的力矩),而本实施例将两根补偿绳3进行不对称布置悬挂,两根补偿绳3的合力点与轿厢架4的重心4104在水平面的投影不再重合,产生一个力矩,以此来平衡随行电缆1的力矩,消除或者减小随行电缆的力矩对滚动导靴2的产生的偏载力,减小对滚动导靴2的磨损。这里不对称设置的两根补偿绳3即为前面提到的力矩平衡装置。
根据力矩的公式
Figure PCTCN2022082162-appb-000011
力矩的方向是垂直于力的方向的,不管是随行电缆1的重力,还是补偿绳的合力点对轿厢架4施加的力,都是竖直向下的(z轴负方向),所以第一力矩
Figure PCTCN2022082162-appb-000012
和第二力矩
Figure PCTCN2022082162-appb-000013
都是垂直于z轴方向的,即在水平面的投影与其本身的方向、大小一致,所以在下面的图例中,直接用力矩在水平面的投影代表其力矩本身的大小和方向;同时实际的位移矢量在z轴上的分量也不再讨论,只讨论其在水平面上的分量,为方便说明,这里也用位移矢量在水平面的分量 代表位移矢量本身的大小和方向,这种简化处理并不影响对力矩的判断分析。
将图1中将所有的结构投影到水平面(即图1中x轴和y轴所在平面),得到图2,对图2进行受力简化分析得到图4,图4中以×代表受力方向垂直纸面朝里(即受力方向为z轴负方向)。
随行电缆1在第一悬挂支架101上的悬挂点1011相对于轿厢架4的重心4104的距离矢量为
Figure PCTCN2022082162-appb-000014
施加的第一力
Figure PCTCN2022082162-appb-000015
(即随行电缆1的重力
Figure PCTCN2022082162-appb-000016
)的方向为竖直向下(即z轴负方向),根据力矩的公式
Figure PCTCN2022082162-appb-000017
随行电缆1对轿厢架4的重心4104产生的第一力矩
Figure PCTCN2022082162-appb-000018
的方向如图4所示;两根补偿绳3的合力点302相对于轿厢架4的重心4104的距离矢量为
Figure PCTCN2022082162-appb-000019
施加的第二力
Figure PCTCN2022082162-appb-000020
(与两根补偿绳3的重力
Figure PCTCN2022082162-appb-000021
大小成正比,方向相同)的方向竖直向下(即z轴负方向),根据力矩的公式
Figure PCTCN2022082162-appb-000022
两根补偿绳3的合力点302对轿厢架4的重心4104产生的第二力矩
Figure PCTCN2022082162-appb-000023
的方向如图4所示。
如果要达第一力矩
Figure PCTCN2022082162-appb-000024
与第二力矩
Figure PCTCN2022082162-appb-000025
相互抵消(即矢量和为零)的效果,需要满足2个条件,一是二者方向相反,二是二者大小相等。
关于方向:第一力
Figure PCTCN2022082162-appb-000026
和第二力
Figure PCTCN2022082162-appb-000027
的方向相同且不可改变,要达到第一力矩
Figure PCTCN2022082162-appb-000028
与第二力矩
Figure PCTCN2022082162-appb-000029
的方向相反的目的,只能通过调整二者的距离矢量为方向相反,即随行电缆1的着力点(即第一悬挂支架101上的悬挂点1011)与两根补偿绳3的合力点302分别位于轿厢架4的重心4104的两侧,并且随行电缆1在第一悬挂支架101上的悬挂点1011与两根补偿绳3的合力点302所在直线在水平面上的投影经过所述轿厢架4的重心4104。
关于大小:电梯安装过程中,随行电缆1的安装点(即在第一悬挂支架101上的悬挂点1011)和两根补偿绳3的合力点302一旦确定,就不会再更改,所以随行电缆1的安装点(在第一悬挂支架101上的悬挂点1011)到轿厢架4的重心4104的距离(即
Figure PCTCN2022082162-appb-000030
的大小),以及两根补偿绳3的合力点302到轿厢架4的重心4104的距离(即
Figure PCTCN2022082162-appb-000031
的大小)在安装好之后是固定值,而随着电梯高度的增加(或者减少),随行电缆1和两根补偿绳3的重量都在增加(或者减少),第一力
Figure PCTCN2022082162-appb-000032
和第二力
Figure PCTCN2022082162-appb-000033
的大小同步增加(或者减少),产生的力矩的大小同步增大(或者较小),以达到一个动态平衡的状态。
第一力矩
Figure PCTCN2022082162-appb-000034
与第二力矩
Figure PCTCN2022082162-appb-000035
的方向调整到相反,只要安装过程中,调整到大小相等的位置,以后电梯升降的每个高度点,两个力矩的大小都是同步变化的,以此实现补偿绳3动态补偿随行电缆1产生的偏载力矩。
实际上,在具体的电梯应用场景中,电梯可以选择的随行电缆1和补偿绳3的类型是有限的,一旦类型确定,即其随高度增加而增加的重量是固定的,最好的调整方法是调整二者到轿厢架4的重心4104的距离。
具体地,参考图2和图3,调整补偿绳3在下梁42的第一端4201的具体悬挂位置向靠近轿厢架4的重心4104方向(x轴负方向和y轴正方向)移动,或者调整补偿绳3在下梁42的第二端4202的具体悬挂位置向远离轿厢架4的重心4104方向(x轴负方向和y轴正方向)移动,或者二者同时移动(向x轴负方向和y轴正方向移动)。而移动距离可以根据相关材料提前计算出大致距离,或者在电梯最低点时直接调试补偿绳3的具体距离。
进一步地,随行电缆1在第一悬挂支架101上的悬挂点1011在水平面的投影位于所述轿厢5在水平面的投影面之外。
进一步地,可补偿随行电缆重量的电梯系统还包括两个第二悬挂支架301,所述两根补偿绳3各通过一个第二悬挂支架301分别悬挂在所述下梁42的第一端4201和第二端4202。
进一步地,两根补偿绳3在两个第二悬挂支架301上的悬挂点在水平面的投影位于所述轿厢5在水平面的投影面之外。
当涉及多轿厢的电梯,例如图7所示的两个轿厢5时,两个轿厢5在同一个井道里同时运行时,如果轿厢5的随行电缆1和补偿绳3位于轿厢5在水平面的投影面之内,两个轿厢5之间的随行电缆1和补偿绳3会相互干涉,影响正常运行,所以随行电缆1和补偿绳3要位于轿厢5的水平投影面之外。
进一步地,可补偿随行电缆重量的电梯系统还包括位于所述上梁41的第二端4102的静平衡块7,所述随行电缆1在第一悬挂支架101 上的悬挂点1011和所述静平衡块7的悬挂点所在直线在水平面上的投影经过所述轿厢架4的重心4104在水平面的投影,并且静平衡块7的悬挂点和随行电缆1在第一悬挂支架101上的悬挂点1011分别位于所述轿厢架4的重心4104的两侧。这里静平衡块7的重量是固定的,即其重力是固定的。
进一步地,静平衡块7通过第三悬挂支架701安装在上梁41的第二端4102。
进一步地,假设电梯系统位于最高点时,需要施加用于平衡随行电缆1的力为
Figure PCTCN2022082162-appb-000036
静平衡块7设置为重力为
Figure PCTCN2022082162-appb-000037
这样在其它条件相同的情况下,需要平衡的力的最大值由
Figure PCTCN2022082162-appb-000038
减小为
Figure PCTCN2022082162-appb-000039
应当理解,图2、图3和图4中的两根补偿绳3的合力点302的位置只是示意,其对应的
Figure PCTCN2022082162-appb-000040
的大小不一定比
Figure PCTCN2022082162-appb-000041
小,二者的大小关系取决于随行电缆1和补偿绳3的材质种类,如果随行电缆1的密度的大于补偿绳3的密度的2倍,
Figure PCTCN2022082162-appb-000042
的数值大于
Figure PCTCN2022082162-appb-000043
虽然在上述实施例中,随行电缆1和补偿绳3分别设置在上梁41和下梁42上,但是其位置也可以进行变化而不会影响本发明的效果。例如将随行电缆1设置在下梁,而补偿绳3设置在上梁。
本实施例在不增加任何结构的基础上,通过现有的两根补偿绳的不对称设置产生的合力点对轿厢架的重心产生一个动态变化的第二力矩,来平衡随行电缆的对轿厢架的重心产生的动态变化的第一力矩,进而消除对滚动导靴的影响,成本低廉,效果显著。
实施例2
参见图1、图5和图6所示,本发明涉及一种可补偿随行电缆重量的电梯系统,包括:轿厢5、轿厢架4、随行电缆1和曳引绳6。需要说明的是,为更清楚地示意主要部件的位置,图5未示出曳引绳6。
本实施例的轿厢5、轿厢架4、随行电缆1与第一实施例相同,而不同之处在于,是通过改变曳引绳6在上梁41的悬挂点4103的位置,继而使得曳引绳6对轿厢架4产生与第一力矩大小相等且方向相反的第二力矩。
通常,随行电缆1通过第一悬挂支架101悬挂在所述轿厢架4的上梁41的第一端4101(参阅图5),那么随行电缆1对轿厢架4的施力点位于图5中的随行电缆1在第一悬挂支架101上的悬挂点1011。
曳引绳6的底端连接在上梁41上,曳引绳6在所述上梁41的悬挂点4103在水平面的投影与所述轿厢架4的重心4104在水平面的投影不重合,以使得所述曳引绳6对所述轿厢架4的重心4104产生一个与第一力矩
Figure PCTCN2022082162-appb-000044
的大小相等且方向相反的第二力矩
Figure PCTCN2022082162-appb-000045
产生第二力矩
Figure PCTCN2022082162-appb-000046
与第一力矩
Figure PCTCN2022082162-appb-000047
大小的力的大小不同,力臂也不同,但是其乘积相等,所以可以实现力矩的大小相等。
现有的电梯中,曳引绳6的悬挂点4103与轿厢架4的重心4104在水平面的投影重合,曳引绳6在水平面对轿厢架4的重心4104的力矩为零(即不产生水平方向上的力矩),本申请将曳引绳6的悬挂点4103进行偏心设置,曳引绳6的悬挂点4103与轿厢架4的重心4104在水平面的投影不再重合,产生一个力矩,以此来平衡随行电缆1的力矩,消除或者减小随行电缆的力矩对滚动导靴2的产生的偏载力,减小对滚动导靴2的磨损。
根据力矩的公式
Figure PCTCN2022082162-appb-000048
力矩的方向是垂直于力的方向的,不管是随行电缆1的重力(竖直向下),还是补偿绳的合力点对轿厢架4施加的力(竖直向上),都是竖直的(沿着z轴的正方向或者负方向),所以第一力矩
Figure PCTCN2022082162-appb-000049
和第二力矩
Figure PCTCN2022082162-appb-000050
都是垂直于z轴方向的,即在水平面的投影与其本身的方向、大小一致,所以在下面的图例中,直接用力矩在水平面的投影代表其力矩本身的大小和方向;同时实际的位移矢量在z轴上的分量也不再讨论,只讨论其在水平面上的分量,为方便说明,这里也用位移矢量在水平面的分量代表位移矢量本身的大小和方向,这种简化处理并不影响对力矩的判断分析。
将图1中将所有的结构投影到水平面(即图1中x轴和y轴所在平面),得到图5,对图5进行受力简化分析得到图6,图6中以×代表受力方向垂直纸面朝里(即受力方向为z轴负方向),以·代表受力方向垂直纸面朝外(即受力方向为z轴正方向)。
随行电缆1在第一悬挂支架101上的悬挂点1011相对于轿厢架4的重心4104的距离矢量为
Figure PCTCN2022082162-appb-000051
施加的第一力
Figure PCTCN2022082162-appb-000052
(即随行电缆1的重力
Figure PCTCN2022082162-appb-000053
)的方向为竖直向下(即z轴负方向),根据力矩的公式
Figure PCTCN2022082162-appb-000054
随行电缆1对轿厢架4的重心4104产生的第一力矩
Figure PCTCN2022082162-appb-000055
的方向如图6所示;曳引绳6的悬挂点4103相对于轿厢架4的重心4104的距离矢量为
Figure PCTCN2022082162-appb-000056
施加的第三力
Figure PCTCN2022082162-appb-000057
(即曳引绳6的牵引力)的方向竖直向上(即z轴正方向),根据力矩的公式
Figure PCTCN2022082162-appb-000058
曳引绳6的悬挂点4103对轿厢架4的重心4104产生的第二力矩
Figure PCTCN2022082162-appb-000059
的方向如图6所示。
如果要达第一力矩
Figure PCTCN2022082162-appb-000060
与第二力矩
Figure PCTCN2022082162-appb-000061
相互抵消(即矢量和为零)的效果,需要满足2个条件,一是二者方向相反,二是二者大小相等。
关于方向:第一力
Figure PCTCN2022082162-appb-000062
和第三力
Figure PCTCN2022082162-appb-000063
的方向相反且不可改变,要达到第一力矩
Figure PCTCN2022082162-appb-000064
与第二力矩
Figure PCTCN2022082162-appb-000065
的方向相反的目的,只能通过调整二者的距离矢量为方向相同,即随行电缆1的着力点(即随行电缆1在第一悬挂支架101上的悬挂点1011)与曳引绳6的悬挂点4103位于轿厢架4的重心4104的同一侧,并且随行电缆1在第一悬挂支架101上的悬挂点1011与曳引绳6的悬挂点4103所在直线在水平面上的投影经过所述轿厢架4的重心4104。
关于大小:电梯安装过程中,随行电缆1的安装点(即随行电缆1在第一悬挂支架101上的悬挂点1011)和曳引绳6的悬挂点4103一旦确定,就不会再更改,所以随行电缆1的安装点(随行电缆1在第一悬挂支架101上的悬挂点1011)到轿厢架4的重心4104的距离(即
Figure PCTCN2022082162-appb-000066
的大小),以及曳引绳6的悬挂点4103到轿厢架4的重心4104的距离(即
Figure PCTCN2022082162-appb-000067
的大小)在组装好之后是固定值。
随着电梯高度的增加(或者减少),随行电缆1的重量都在增加(或者减少),即第一力
Figure PCTCN2022082162-appb-000068
的大小同步增加(或者减少),随行电缆1产生的第一力矩
Figure PCTCN2022082162-appb-000069
的大小同步增大(或者减小)。而第三力
Figure PCTCN2022082162-appb-000070
(即曳引绳6的牵引力)的大小等于牵引轿厢架4、轿厢5、随行电缆1以及补偿绳3的重量之和,即
Figure PCTCN2022082162-appb-000071
其中,轿厢架4的重力
Figure PCTCN2022082162-appb-000072
和轿厢5的重力
Figure PCTCN2022082162-appb-000073
的大小是固定,随行电缆1的重力
Figure PCTCN2022082162-appb-000074
和补偿绳3的重力
Figure PCTCN2022082162-appb-000075
的大小是随高度的增加(或者减少)而增加(或者减少)的,所以第三力
Figure PCTCN2022082162-appb-000076
的大小(即曳引绳6的牵引力)随高度的增加(或者减少)而同步增加(或者减少)的,第三力
Figure PCTCN2022082162-appb-000077
产生的第二 力矩
Figure PCTCN2022082162-appb-000078
的大小随高度的增加(或者减少)而同步增加(或者减少),如此,随行电缆1产生的第一力矩
Figure PCTCN2022082162-appb-000079
与曳引绳6对所述轿厢架4的重心4104产生的第二力矩
Figure PCTCN2022082162-appb-000080
的大小同步增大或者减小,以达到一个动态平衡的状态。
第一力矩
Figure PCTCN2022082162-appb-000081
与第二力矩
Figure PCTCN2022082162-appb-000082
的方向调整到相反,只要安装过程中,调整到大小相等的位置,以后电梯升降的每个高度,两个力矩的大小都是同步变化的,以此实现曳引绳6动态补偿随行电缆1产生的偏载力矩。
具体地,参考图5和图6,将曳引绳6在所述上梁41的悬挂点4103向靠近随行电缆1(x轴正方向和y轴负方向)移动。而移动距离可以根据相关材料提前计算出大致距离,或者在电梯最低点时直接调试曳引绳6移动的具体距离。
进一步地,所述第一悬挂支架101在水平面的投影位于所述轿厢架4在水平面的投影面之外。
当涉及多轿厢的电梯,例如图7所示的两个轿厢5时,两个轿厢5在同一个井道里同时运行时,如果轿厢5的随行电缆1位于轿厢5在水平面的投影面之内,两个轿厢5之间的随行电缆1会相互干涉,影响正常运行,所以随行电缆1要位于轿厢5的水平投影面之外。
进一步地,可补偿随行电缆重量的电梯系统还包括位于所述上梁41的第二端4102的静平衡块7,所述随行电缆1在第一悬挂支架101上的悬挂点1011和所述静平衡块7的悬挂点所在直线在水平面上的投影经过所述轿厢架4的重心4104在水平面的投影,并且静平衡块7的悬挂点和随行电缆1在第一悬挂支架101上的悬挂点1011分别位于所述轿厢架4的重心4104的两侧。这里静平衡块7的重量是固定的,即其重力是固定的。
进一步地,静平衡块7通过第三悬挂支架701安装在上梁41的第二端4102。
进一步地,假设电梯系统位于最高点时,需要施加用于平衡随行电缆1的力为
Figure PCTCN2022082162-appb-000083
静平衡块7设置为重力为
Figure PCTCN2022082162-appb-000084
这样在其它条件相同的 情况下,需要平衡的力的最大值由
Figure PCTCN2022082162-appb-000085
减小为
Figure PCTCN2022082162-appb-000086
本实施例在不增加任何结构的基础上,通过曳引绳悬挂点的偏心设置对轿厢架的重心产生一个动态变化的第二力矩,来平衡随行电缆的对轿厢架的重心产生的动态变化的第一力矩,进而消除对滚动导靴的影响,成本低廉,效果显著。
本发明提供一种可补偿随行电缆重量的电梯系统,同时采用上述补偿绳的不对称设置和曳引绳悬挂点的偏心设置,平衡随行电缆的重量。
前面的对本发明具体的示例性实施方案所呈现的描述出于说明和描述的目的。它们并非旨在穷举,或者将本发明限制为公开的精确的形式,且显然的是,根据以上教导,可以进行很多修改和变化。示例性实施方案的选择和描述是为了解释本发明的某些原理及其实际应用,从而使得本领域技术人员能够制造并利用本发明的各种示例性实施方案及其不同替代形式和修改形式。本发明的范围旨在通过所附权利要求及其等效形式来限定。

Claims (9)

  1. 一种可补偿随行电缆重量的电梯系统,包括:
    轿厢;
    轿厢架,其包括上梁、左侧梁、下梁和右侧梁,所述上梁的中部用于连接曳引绳,所述下梁用于承载所述轿厢;
    曳引绳,所述曳引绳的底端连接至所述轿厢架的上梁;
    随行电缆,其悬挂在所述上梁的第一端或下梁的第一端,所述随行电缆对所述轿厢架的重心产生一个第一力矩;
    其特征在于,所述电梯系统还包括:
    力矩平衡装置,用于对轿厢架的重心产生一个第二力矩,所述第二力矩基本上与所述第一力矩的大小相等且方向相反。
  2. 根据权利要求1所述的可补偿随行电缆重量的电梯系统,其特征在于,所述电梯系统还包括第一悬挂支架,所述随行电缆通过所述第一悬挂支架悬挂在所述上梁的第一端或下梁的第一端。
  3. 根据权利要求2所述的可补偿随行电缆重量的电梯系统,其特征在于,所述随行电缆在所述第一悬挂支架上的悬挂点在水平面的投影位于所述轿厢在水平面的投影面之外。
  4. 根据权利要求1所述的可补偿随行电缆重量的电梯系统,其特征在于,所述力矩平衡装置包括两根补偿绳,当随行电缆悬挂在所述上梁的第一端时,两根补偿绳分别悬挂在所述下梁的第一端和第二端,所述两根补偿绳的合力点对轿厢架的重心产生与所述第一力矩的大小相等且方向相反的所述第二力矩。
  5. 根据权利要求4所述的可补偿随行电缆重量的电梯系统,其特征在于,所述电梯系统还包括两个第二悬挂支架,所述两根补偿绳各通过一个第二悬挂支架分别悬挂在所述下梁的第一端和第二端。
  6. 根据权利要求1所述的可补偿随行电缆重量的电梯系统,其特 征在于,所述力矩平衡装置包括两根补偿绳,当随行电缆悬挂在所述下梁的第一端时,两根补偿绳分别悬挂在所述上梁的第一端和第二端,所述两根补偿绳的合力点对轿厢架的重心产生与所述第一力矩的大小相等且方向相反的所述第二力矩。
  7. 根据权利要求6所述的可补偿随行电缆重量的电梯系统,其特征在于,所述电梯系统还包括两个第二悬挂支架,所述两根补偿绳各通过一个第二悬挂支架分别悬挂在所述上梁的第一端和第二端。
  8. 根据权利要求1所述的可补偿随行电缆重量的电梯系统,其特征在于,所述力矩平衡装置设置成使得所述曳引绳在所述轿厢架的上梁的悬挂点在水平面的投影与所述轿厢架的重心在水平面的投影不重合,以使得所述曳引绳对所述轿厢架的重心产生与所述第一力矩的大小相等且方向相反的所述第二力矩。
  9. 根据权利要求1-8任一所述的可补偿随行电缆重量的电梯系统,其特征在于,所述电梯系统还包括静平衡块,所述静平衡块悬挂在所述随行电缆悬挂的上梁或者下梁的第二端,随行电缆的悬挂点和所述静平衡块的悬挂点所在直线在水平面上的投影经过所述轿厢架的重心在水平面上的投影,并且所述静平衡块的悬挂点和所述随行电缆的悬挂点分别位于所述轿厢架的重心的两侧。
PCT/CN2022/082162 2021-06-03 2022-03-22 可补偿随行电缆重量的电梯系统 WO2022252768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110619461.7A CN115432543A (zh) 2021-06-03 2021-06-03 可补偿随行电缆重量的电梯系统
CN202110619461.7 2021-06-03

Publications (1)

Publication Number Publication Date
WO2022252768A1 true WO2022252768A1 (zh) 2022-12-08

Family

ID=84239803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082162 WO2022252768A1 (zh) 2021-06-03 2022-03-22 可补偿随行电缆重量的电梯系统

Country Status (2)

Country Link
CN (1) CN115432543A (zh)
WO (1) WO2022252768A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139239A (ja) * 1999-11-09 2001-05-22 Toshiba Corp エレベーター
JP2004075235A (ja) * 2002-08-12 2004-03-11 Toshiba Elevator Co Ltd エレベータかごのバランス補正装置
JP2005104672A (ja) * 2003-09-30 2005-04-21 Toshiba Elevator Co Ltd エレベータかご自動バランス調整装置
JP2007314254A (ja) * 2006-05-23 2007-12-06 Nippon Otis Elevator Co エレベータのかごバランス補正装置
CN101962145A (zh) * 2010-10-13 2011-02-02 日立电梯(中国)有限公司 电梯补偿条结构的重量平衡装置
CN101962147A (zh) * 2010-05-31 2011-02-02 江南嘉捷电梯股份有限公司 电梯上背包式轿架系统
CN102838009A (zh) * 2012-07-11 2012-12-26 三洋电梯(珠海)有限公司 一种电梯轿厢重心动态自动平衡装置
CN106956995A (zh) * 2017-05-04 2017-07-18 江南嘉捷电梯股份有限公司 一种电梯

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139239A (ja) * 1999-11-09 2001-05-22 Toshiba Corp エレベーター
JP2004075235A (ja) * 2002-08-12 2004-03-11 Toshiba Elevator Co Ltd エレベータかごのバランス補正装置
JP2005104672A (ja) * 2003-09-30 2005-04-21 Toshiba Elevator Co Ltd エレベータかご自動バランス調整装置
JP2007314254A (ja) * 2006-05-23 2007-12-06 Nippon Otis Elevator Co エレベータのかごバランス補正装置
CN101962147A (zh) * 2010-05-31 2011-02-02 江南嘉捷电梯股份有限公司 电梯上背包式轿架系统
CN101962145A (zh) * 2010-10-13 2011-02-02 日立电梯(中国)有限公司 电梯补偿条结构的重量平衡装置
CN102838009A (zh) * 2012-07-11 2012-12-26 三洋电梯(珠海)有限公司 一种电梯轿厢重心动态自动平衡装置
CN106956995A (zh) * 2017-05-04 2017-07-18 江南嘉捷电梯股份有限公司 一种电梯

Also Published As

Publication number Publication date
CN115432543A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
TW553881B (en) Traction type elevator
US5509503A (en) Method for reducing rope sway in elevators
US9067761B2 (en) Arrangement for damping lateral sways of a rope-like means fixed to an elevator car
JP4838633B2 (ja) エレベータのかごバランス補正装置
JP4833225B2 (ja) 1つの昇降路に複数のかごを有するエレベータシステムにおける補償
US10207894B2 (en) Controlling sway of elevator cable with movement of elevator car
JP2002167137A (ja) エレベータ
US9580277B2 (en) Elevator car suspension
CN102606672B (zh) 曳引机隔振平衡结构
CN102838009A (zh) 一种电梯轿厢重心动态自动平衡装置
WO2022252768A1 (zh) 可补偿随行电缆重量的电梯系统
JP7268243B2 (ja) 工事用エレベーター装置
JPH04121387A (ja) エレベーター装置
CN202829219U (zh) 一种电梯轿厢重心动态自动平衡装置
JPH11106159A (ja) エレベーター
JP2000309482A (ja) エレベーター装置
CN104477732A (zh) 电梯补偿系统
CN104671031B (zh) 电梯
JPWO2003020628A1 (ja) エレベータ装置
CN106219386A (zh) 一种用于吊装汽车纵梁的吊具
JPWO2004046009A1 (ja) エレベータ装置
JP2653547B2 (ja) エレベータ
JP2002179356A (ja) エレベータ
JP2000351556A (ja) エレベータ
WO2020095431A1 (ja) 工事用エレベーター装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22814816

Country of ref document: EP

Kind code of ref document: A1