WO2022252627A1 - 电源电路、驱动装置和显示装置 - Google Patents

电源电路、驱动装置和显示装置 Download PDF

Info

Publication number
WO2022252627A1
WO2022252627A1 PCT/CN2022/071794 CN2022071794W WO2022252627A1 WO 2022252627 A1 WO2022252627 A1 WO 2022252627A1 CN 2022071794 W CN2022071794 W CN 2022071794W WO 2022252627 A1 WO2022252627 A1 WO 2022252627A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power supply
voltage signal
power
output
Prior art date
Application number
PCT/CN2022/071794
Other languages
English (en)
French (fr)
Inventor
李博文
段伟亮
李岩
朱辰
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to US17/792,981 priority Critical patent/US20240144869A1/en
Priority to EP22735283.8A priority patent/EP4123629A4/en
Publication of WO2022252627A1 publication Critical patent/WO2022252627A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0248Precharge or discharge of column electrodes before or after applying exact column voltages
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/026Arrangements or methods related to booting a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/027Arrangements or methods related to powering off a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD

Definitions

  • the present application relates to the field of display technology, in particular to a power supply circuit, a driving device and a display device.
  • the display device includes a power supply circuit, a driving module and a display panel.
  • the power circuit includes a first power module and a second power module.
  • the first power supply module outputs a VCI signal to the drive module
  • the drive module triggers the second power supply module to work when receiving the VCI signal.
  • the second power supply module When the second power supply module is working, it outputs ELVDD signal and ELVSS signal to the display panel, and outputs AVDD signal to the driving module.
  • the driving module generates a VGH signal according to the AVDD signal and the VCI signal, and generates a data signal according to an image to be displayed, and outputs both the VGH signal and the data signal to the display panel, so that the display panel displays an image.
  • the voltage of the VGH signal is equal to the sum of the voltage of the AVDD signal and the voltage of the VCI signal without considering the wire voltage drop, so the voltage of the VGH signal is too low to meet the high refresh rate requirement of the display panel.
  • the present application provides a power supply circuit, a driving device and a display device, which can solve the problem in the related art that the voltage of the VGH signal is low and cannot meet the high refresh frequency requirement of the display panel. Described technical scheme is as follows:
  • a power supply circuit including: a first power supply module and a second power supply module.
  • the output end of the first power supply module is connected to the first output end of the second power supply module, and both the output end of the first power supply module and the first output end of the second power supply module are used to connect to the first input end of the drive module.
  • the second output terminal of the second power supply module is used to connect with the second input terminal of the driving module.
  • the output terminal of the first power supply module, the first output terminal of the second power supply module and the second output terminal of the second power supply module all output voltage signals to indicate
  • the driving module generates a gate open signal for driving the switch transistor in the display panel to be turned on.
  • the voltage of the voltage signal output by the output end of the first power module is lower than the voltage of the voltage signal output by the first output end of the second power module.
  • the voltage signal output from the output terminal of the first power module is used to instruct the driving module to trigger the second power module to work.
  • the output terminal of the first power supply module, the first output terminal of the second power supply module and the second output terminal of the second power supply module all output voltage signals to indicate
  • the driving module generates a gate open signal for driving the switch transistor in the display panel to be turned on.
  • the voltage of the voltage signal output by the first output terminal of the second power module is greater than the voltage of the first voltage signal.
  • the first input terminal of the driving module inputs the second voltage signal
  • the second input terminal of the driving module inputs the third voltage signal
  • the driving module can be based on the second voltage signal.
  • the voltage signal and the third voltage signal generate a door open signal. Since the driving module in the related art generates the door opening signal according to the first voltage signal and the third voltage signal, the present application can increase the voltage of the door opening signal generated by the driving module, so that the voltage of the door opening signal meets the high refresh rate of the display panel. frequency requirements.
  • the power supply circuit connects the first output end of the second power supply module for outputting the second voltage signal to the output end of the first power supply module for outputting the first voltage signal, so as to increase the voltage of the door opening signal,
  • the layout area of the power supply circuit will not be increased too much, which is beneficial to the cost control of the power supply circuit.
  • the power circuit further includes a discharge module.
  • the first end of the discharge module is connected to the output end of the first power module and the first output end of the second power module, and the second end of the discharge module is connected to the ground wire GND.
  • the discharge module is used to quickly release the voltage signal remaining in the wire connected to the first input end of the drive module to the ground wire GND when the first power module and the second power module stop outputting voltage signals, thereby The screen-off delay of the display device to which the power supply circuit is applied is shortened.
  • the discharge module includes a resistor R1.
  • the first end of the resistor R1 is connected to the output end of the first power module and the first output end of the second power module, and the second end of the resistor R1 is connected to the ground line GND.
  • the discharge module further includes a switch unit.
  • the first terminal of the switch unit is connected to the second terminal of the resistor R1, the second terminal of the switch unit is connected to the ground wire GND, the control terminal of the switch unit is connected to the control terminal of the second power module, and the control terminal of the second power module outputs The switching unit is turned off when the voltage signal is applied.
  • the switch unit is used to control the conduction between the resistor R1 and the ground GND, and the conduction of the switch unit is controlled by the control terminal of the second power module.
  • the switch unit can be turned off, thereby avoiding unnecessary waste of electric energy caused by the voltage signal input to the first input terminal of the driving module flowing into the ground line GND through the resistor R1.
  • the switch unit can be closed, so that the residual voltage signal in the wire connected to the first input terminal of the drive module can be quickly released to the ground wire GND through the resistor R1 and the switch unit .
  • the switch unit includes: a transistor M1, a resistor R2 and a resistor R3.
  • the first end of the transistor M1 is connected to the second end of the resistor R1, and the second end of the transistor M1 is connected to the ground line GND.
  • a first end of the resistor R2 is connected to the power supply V1, and a second end of the resistor R2 is connected to the control end of the transistor M1.
  • the first terminal of the resistor R3 is connected to the second terminal of the resistor R2, and the second terminal of the resistor R3 is connected to the control terminal of the second power module.
  • the voltage signal output by the control terminal of the second power module is also used to drive the light emitting unit in the display panel to emit light.
  • the voltage signal output by the control terminal of the second power module is used not only to drive the light emitting unit in the display panel to emit light, but also to control the transistor M1 to turn off.
  • the transistor M1 can be turned off when the display device needs to display an image, and turned on when the display device does not need to display an image, and the control of the transistor M1 will not increase the layout area of the power circuit 20 too much, which is beneficial to the power circuit. 20 cost control.
  • the power circuit further includes: a first unidirectional module.
  • the input end of the first one-way module is connected to the output end of the first power supply module, and the output end of the first one-way module is connected to the first output end of the second power supply module.
  • a unidirectional module refers to a circuit in which a voltage signal can only flow from an input terminal to an output terminal.
  • the first one-way module can prevent the second voltage signal from being fed back to the output terminal of the first power module when the first output terminal of the second power module outputs the second voltage signal.
  • the first unidirectional module includes: a diode D1.
  • the anode of the diode D1 is connected to the output end of the first power module, and the cathode of the diode D1 is connected to the first output end of the second power module.
  • the diode D1 is used to form the first unidirectional module, which can prevent the second voltage signal from being fed back to the output terminal of the first power module.
  • the use of the diode to form the unidirectional module will not increase the layout area of the power circuit too much, which is beneficial to the cost control of the power circuit.
  • the first unidirectional module includes: an operational amplifier A1.
  • the non-inverting input terminal of the operational amplifier A1 is connected to the output terminal of the first power module, and the inverting input terminal of the operational amplifier A1 and the output terminal of the operational amplifier A1 are both connected to the first output terminal of the second power module.
  • the first one-way module includes: one-way thyristor SCR1. Both the anode and the control pole of the one-way thyristor SCR1 are connected to the output end of the first power supply module, and the cathode of the one-way thyristor SCR1 is connected to the first output end of the second power supply module.
  • the power circuit further includes: a second unidirectional module.
  • the input end of the second one-way module is connected to the first output end of the second power supply module, and the output end of the second one-way module is connected to the output end of the first power supply module.
  • the second unidirectional module can prevent the first voltage signal from being fed back to the first output terminal of the second power module when the output terminal of the first power module outputs the first voltage signal.
  • the output terminal of the first power module starts to output a voltage signal at time T1; the second output terminal of the second power module starts to output a voltage signal after time T1 and before time T2; the first output terminal of the second power module Start to output the voltage signal at T2 time; the first output terminal of the second power supply module stops outputting the voltage signal at T3 time; the second output terminal of the second power supply module stops outputting the voltage signal after T3 time and before T4 time; the first power supply The output terminal of the module stops outputting the voltage signal at time T4.
  • the voltage of the gate opening signal can be increased without changing the sequence of the power supply circuit, which is beneficial to the cost control of the power supply circuit.
  • the third output terminal of the second power supply module starts to output a voltage signal at time T21, and the voltage signal output by the third output terminal of the second power supply module is used to drive the light emitting unit in the display panel to emit light; T21 The time is the same as the time T2, or the time T21 is located after the time T2 and before the time T3.
  • the third output terminal of the second power module stops outputting the voltage signal at time T22; time T22 and time T3 are the same time, or time T22 is after time T21 and before time T3.
  • the voltage signal output by the third output terminal of the second power supply module is used to drive the light emitting unit in the display panel to emit light.
  • the third output terminal of the second power module is the control terminal of the second power module.
  • the third output terminal of the second power module is used to output a fourth voltage signal.
  • a driving device including a driving module and the power supply circuit as described in the first aspect.
  • the drive module is used to trigger the operation of the second power supply module when the first input terminal of the drive module has a voltage signal input and the second input terminal of the drive module has no voltage signal input;
  • a gate open signal is generated according to the voltage signals input from the first input terminal and the second input terminal of the driving module, and the gate open signal is used to drive the switch transistor in the display panel to conduct.
  • a display device including a display panel and the driving device as described in the second aspect.
  • FIG. 1 is a schematic structural diagram of a first display device provided by an embodiment of the present application.
  • Fig. 2 is a partial current flow diagram of the first display device provided by the embodiment of the present application.
  • Fig. 3 is a partial current flow diagram of the second display device provided by the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a first power supply circuit provided in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a second power supply circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a third power supply circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a fourth power supply circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a fifth power supply circuit provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a sixth power supply circuit provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a seventh power supply circuit provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an eighth power supply circuit provided by an embodiment of the present application.
  • FIG. 12 is a timing diagram of the output voltage signal of the first power supply circuit provided by the embodiment of the present application.
  • Fig. 13 is a timing diagram of the output voltage signal of the second power supply circuit provided by the embodiment of the present application.
  • Fig. 14 is a partial current flow diagram of the first power supply circuit provided by the embodiment of the present application.
  • Fig. 15 is a partial current flow diagram of the second power supply circuit provided by the embodiment of the present application.
  • Fig. 16 is a partial current flow diagram of the third power supply circuit provided by the embodiment of the present application.
  • Fig. 17 is a partial current flow diagram of the fourth power supply circuit provided by the embodiment of the present application.
  • Fig. 18 is a partial current flow diagram of the fifth power supply circuit provided by the embodiment of the present application.
  • Fig. 19 is a partial current flow diagram of the sixth power supply circuit provided by the embodiment of the present application.
  • the first power supply module
  • the second power supply module
  • the first one-way module
  • the second one-way module The second one-way module.
  • connection between two electronic devices refers to electrical connection
  • electrical connection refers to the transmission of electrical signals between two electronic devices through wires or wireless connection.
  • FIG. 1 is a schematic structural diagram of a display device 20 including a power supply circuit 10 provided by an embodiment of the present application.
  • a display device 20 includes a power circuit 10 , a driving module 22 and a display panel 24 .
  • the display panel 24 includes a plurality of pixel circuits 242 and a plurality of light-emitting units OLED (only one is shown in the figure), and the plurality of pixel circuits 242 correspond to the plurality of light-emitting units OLED one-to-one, and each pixel circuit 242 is used to drive a corresponding light-emitting unit.
  • the unit OLEDs emit light, and each light emitting unit OLED is a sub-pixel on the display panel 24 .
  • the pixel circuit 242 includes a switching transistor TFT1 and a driving transistor TFT2.
  • ELVDD signal, ELVSS signal, AVDD signal, VDDIO signal, VDDD signal and VCI signal are analog signals
  • VDDIO signal and VDDD signal are digital signals.
  • the voltage of the ELVDD signal is generally 4.6V; the voltage of the ELVSS signal is generally -2.3V to -4.6V; the voltage of the AVDD signal is generally 7.6V; the voltage of the VCI signal is generally 3V; the voltage of the VDDIO signal is generally 1.8V V;
  • the voltage of the VDDD signal is generally 1.2V.
  • the power circuit 10 includes a first power module 110 and a second power module 120 .
  • the first power module 110 may be a power management chip, such as a power management unit (power management unit, PMU).
  • the first power module 110 has an output terminal a for outputting a voltage signal.
  • the second power module 120 may also be a power management chip, such as a PMU.
  • the second power module 120 has a first output terminal b, a second output terminal c, and a third output terminal d for outputting voltage signals.
  • the voltage signal output from the output terminal a of the first power module 110 is called the first voltage signal when the first power module 110 is working;
  • the voltage signal output from the first output terminal b of the second power module 120 is called the second voltage when the second power module 120 is working.
  • signal, the voltage signal output from its second output terminal c is called a third voltage signal, and the voltage signal output from its third output terminal d is called a fourth voltage signal.
  • the voltage of the second voltage signal is greater than the
  • the output terminal a of the first power supply module 110 is connected to the first output terminal b of the second power supply module 120 , and is used to connect to the first input terminal e of the driving module 22 .
  • the output terminal a of the first power supply module 110 is used to connect with the first input terminal e of the driving module 22, so that when the output terminal a of the first power supply module 110 outputs the first voltage signal, the first voltage signal can be Input to the first input terminal e of the driving module 22 .
  • the first output terminal b of the second power supply module 120 is also used to connect with the first input terminal e of the driving module 22, so that when the first output terminal b of the second power supply module 120 outputs the second voltage signal, the second voltage signal It can also be input to the first input terminal e of the driving module 22 .
  • the second output terminal c of the second power supply module 120 is used to connect with the second input terminal f of the driving module 22, so that when the second output terminal c of the second power supply module 120 outputs a third voltage signal, the third voltage signal can be Input to the second input terminal f of the driving module 22 .
  • the first output terminal b of the second power supply module 120 is also used to connect to the anode of the light emitting unit OLED in the display panel 24, so that the second voltage signal output by the first output terminal b of the second power supply module 120 can be input to the light emitting unit Anode of the OLED.
  • the third output terminal d of the second power supply module 120 is also used to connect with the cathode of the light-emitting unit OLED in the display panel 24, so that when the third output terminal d of the second power supply module 120 outputs a fourth voltage signal, the fourth voltage A signal may be input to a cathode of the light emitting unit OLED.
  • the first voltage signal output from the output terminal a of the first power module 110 is used to instruct the driving module 22 to trigger the second power module 120 to work. That is, the first voltage signal is a VCI signal.
  • the first voltage signal output from the output terminal a of the first power module 110 is referred to as a "first voltage signal VCI”.
  • the third voltage signal output by the second output terminal c of the second power supply module 120 is input to the second input terminal f of the driving module 22, which is different from the first voltage signal VCI input to the first input terminal e of the driving module 22, and the third The voltage signal is an AVDD signal.
  • the voltage of the second voltage signal is greater than the voltage of the first voltage signal, that is, the second voltage signal is the ELVDD signal.
  • the second voltage signal output from the first output terminal b of the second power module 120 is referred to as "second voltage signal ELVDD”
  • the third voltage signal output from the second output terminal c of the second power module 120 The signal is referred to as "third voltage signal AVDD”.
  • the second voltage signal ELVDD is a positive voltage signal input to the anode of the light emitting unit OLED in the display panel 24 .
  • the fourth voltage signal is an ELVSS signal.
  • the fourth voltage signal output from the third output terminal d of the second power module 120 is referred to as a "fourth voltage signal ELVSS”.
  • the fourth voltage signal ELVSS is a negative voltage signal input to the negative electrode of the light emitting unit OLED in the display panel 24 .
  • the driving module 22 may be a driving chip, such as a timing control chip.
  • the drive module 22 is used to trigger the second power supply module 120 to work when the first input terminal e of the drive module 22 has a voltage signal input and the second input terminal f of the drive module 22 has no voltage signal input;
  • the gate open signal is generated according to the voltage signals input from the first input end e and the second input end f of the driving module 22 .
  • the gate open signal is used to drive the switching transistor TFT1 in the display panel 24 to conduct, that is, the gate open signal is a VGH signal. Also, in the following description, it will be referred to as "gate opening signal VGH".
  • the working process of the display device 20 is as follows:
  • both the first power module 110 and the second power module 120 are in a dormant state.
  • the first power module 110 works first, and the output terminal a of the first power module 110 outputs the first voltage signal VCI to the first input terminal e of the driving module 22 .
  • the driving module 22 triggers the second power module 120 to work when receiving the first voltage signal VCI. At this time, both the first power module 110 and the second power module are working.
  • the first output terminal b of the second power module 120 When both the first power module 110 and the second power module are working, the first output terminal b of the second power module 120 outputs the second voltage signal ELVDD to the display panel 24, and the first output terminal b of the second power module 120 outputs the second voltage signal ELVDD.
  • the second voltage signal ELVDD is sent to the first input terminal e of the driving module 22, as shown in FIG. 3; the second output terminal c of the second power supply module 120 outputs the third voltage signal AVDD to the second input terminal f of the driving module 22;
  • the third output terminal d of the second power module 120 outputs the fourth voltage signal ELVSS to the display panel 24 .
  • both the first input terminal e and the second input terminal f of the driving module 22 input voltage signals.
  • the drive module 22 generates the gate open signal VGH according to the voltage signal input from the first input terminal e and the voltage signal input from the second input terminal f, and the voltage of the gate open signal VGH is the same as the voltage signal input from the first input terminal e of the drive module 22
  • the voltage is positively correlated, and the voltage of the gate open signal VGH is positively correlated with the voltage of the voltage signal input from the second input terminal f of the driving module 22 .
  • the driving module 22 When the driving module 22 generates the gate open signal VGH, it also generates the data signal VData according to the image to be displayed.
  • the data signal VData is used to drive the driving transistor TFT2 in the display panel 24 to be turned on. Both the gate opening signal VGH and the data signal VData are transmitted to the display panel 24 .
  • the VGH signal generated by the driving module 22 is transmitted to the control terminal of the switching transistor TFT1 to control the switching transistor TFT1 to be turned on. After the switching transistor TFT1 is turned on, the VData signal generated by the driving module 22 is transmitted to the control terminal of the driving transistor TFT2 through the switching transistor TFT1 to control the driving transistor TFT2 to turn on.
  • the ELVDD signal output by the second power supply module 124 is transmitted to the anode of the light emitting unit OLED through the driving transistor TFT2, and the ELVSS signal output by the second power supply module 124 is transmitted to the cathode of the light emitting unit OLED, so that the light emitting unit OLED emits light , at this time the display panel 24 displays an image.
  • the voltage of the gate open signal VGH generated by the driving module 22 is equal to the sum of the voltage signal input from the first input terminal e and the voltage signal input from the second input terminal f.
  • the gate opening signal VGH generated by the driving module 22 when both the first power module 110 and the second power module 120 are working.
  • the first output terminal b of the second power supply module 120 outputs the second voltage signal ELVDD to the first input terminal e of the driving module 22, and the second output terminal c of the second power supply module 120 outputs the third
  • the voltage signal AVDD is sent to the second input terminal f of the driving module 22 .
  • the output terminal a of the first power module 110 and the first output terminal b of the second power module 120 are output to the first output terminal b of the driving module 22 .
  • the voltage signal of an input terminal e is the second voltage signal ELVDD
  • the voltage signal output from the second output terminal c of the second power module 120 to the second input terminal f of the driving module 22 is the third voltage signal AVDD.
  • the driving module 22 When the driving module 22 has a voltage signal input at its first input terminal e and its second input terminal f, it generates the gate opening signal VGH according to the voltage signal input at its first input terminal e and its second input terminal f, that is, , the driving module 22 generates the gate open signal VGH according to the second voltage signal ELVDD and the third voltage signal AVDD.
  • the gate opening signal generated by the driving module 22 in the related art is equal to the sum of the voltage of the first voltage signal VCI and the voltage of the third voltage signal AVDD
  • the gate opening signal generated by the driving module 22 in the embodiment of the present application The voltage of VGH is equal to the sum of the voltage of the second voltage signal ELVDD and the voltage of the third voltage signal AVDD, so the embodiment of the present application increases the voltage of the gate opening signal VGH, thereby helping to meet the high refresh rate requirement of the display panel 24 .
  • the first output end of the second power module 120 in the power supply circuit 10 for outputting the second voltage signal ELVDD is connected to the output end of the first power module 110 for outputting the first voltage signal VCI , that is, to increase the voltage of the gate open signal VGH without excessively increasing the layout area of the power circuit 10 , which is beneficial to the cost control of the power circuit 10 .
  • the display panel 24 When the display device 20 is displaying an image, when the display device 20 receives a screen-off instruction sent by the user, the display panel 24 needs to stop displaying the image quickly.
  • the first power supply module 110 and the second power supply module 120 stop outputting voltage signals, but the wires connected to the first input terminal e of the drive module 22 (including the drive module The wire connected between the first input end e of 22 and the output end a of the first power module 110, and the wire connected between the output end a of the first power module 110 and the first output end b of the second power module 120 ) still has a residual voltage signal.
  • the driving module 22 may continue to generate the gate open signal VGH according to the residual voltage signal, so that the display device 20 has a longer screen-off delay.
  • the screen-off delay refers to the time period from when the display device 20 receives the screen-off command to when the display panel 24 of the display device 20 completely stops displaying images.
  • the power supply circuit 10 may further include a discharge module 130 .
  • the first terminal g of the discharge module 130 is connected to the output terminal a of the first power module 110 and the first output terminal b of the second power module 120 , and the second terminal h of the discharge module 130 is connected to the ground line GND.
  • the discharge module 130 is used to quickly release the voltage signal remaining in the wire connected to the first input terminal e of the drive module 22 to the ground wire GND when the first power module 110 and the second power module 120 stop outputting voltage signals, thereby The screen-off delay of the display device 20 is shortened.
  • the discharge module 130 includes a resistor R1.
  • the first end of the resistor R1 is used to connect to the output end a of the first power module 110 and the first output end b of the second power module 120 , and the second end of the resistor R1 is connected to the ground line GND.
  • the display device 20 to which the power supply circuit 10 is applied receives an instruction to turn off the screen, and the first power supply module 110 and the second power supply module 120 stop outputting voltage signals, the wire connected to the first input terminal e of the driving module 22 remains The voltage signal can be quickly released to the ground line GND through the resistor R1.
  • the discharge module 130 includes a resistor R1 and a switch unit 132 .
  • the resistor R1 and the switch unit 132 are connected in series to form the discharge module 130 .
  • the first end of the resistor R1 is connected to the output end a of the first power module 110 and the first output end b of the second power module 120
  • the second end of the resistor R1 is connected to the first end j of the switch unit 132
  • the switch The second end k of the unit 132 is connected to the ground line GND.
  • the conduction between the resistor R1 and the ground wire can be controlled by the switch unit 132 .
  • the switch unit 132 When the switch unit 132 is closed and the first terminal j and the second terminal k of the switch unit 132 are conducted, the resistor R1 is connected to the ground line GND through the switch unit 132 . Conversely, when the switch unit 132 is turned off and the first terminal j and the second terminal k of the switch unit 132 are not conducting, the resistor R1 is disconnected from the ground line GND.
  • the control terminal m of the switch unit 132 is connected to the control terminal n of the second power module 120 , so that the second power module 120 can control the switch unit 132 to be turned on and off.
  • the control terminal n of the second power module 120 can control the switch unit 132 to turn off, so as to avoid unnecessary waste of electric energy caused by the voltage signal input to the first input terminal of the driving module 22 flowing into the ground line GND through the resistor R1.
  • the control terminal n of the second power supply module 120 can control the switch unit 132 to close, so that the residual voltage signal in the wire connected to the first input terminal e of the drive module 22 can be quickly released to the Ground wire GND.
  • the switch unit 132 may have various possible structures, and three possible structures will be described below.
  • the switch unit 132 may include a triode, and the control terminal n of the second power module 120 may output a first level signal and a second level signal.
  • the collector of the triode can be connected to the second end of the resistor R1, and the emitter of the triode can be connected to the ground wire GND.
  • the base of the transistor can be connected to the control terminal n of the second power module 120 .
  • the first level signal can control the switch unit 132 to turn off, and the second level signal can control the switch unit 132 to turn on.
  • the control terminal n of the second power supply module 120 inputs the first level signal to the base of the triode to control the transistor to turn off; when the display device 20 stops displaying images, the second power supply module The control terminal of 120 inputs a second level signal to the base of the triode to control the conduction of the triode.
  • the transistor is a PNP transistor
  • the first level signal here is a high level signal
  • the second level signal is a low level signal
  • the transistor is an NPN type transistor
  • the first level signal here is a low level signal
  • the second level signal is a high level signal.
  • the switch unit 132 may include a one-way thyristor.
  • the anode of the one-way thyristor can be connected to the second end of the resistor R1, and the cathode of the one-way thyristor can be connected to the ground line GND.
  • the control electrode of the one-way thyristor can be connected with the control terminal n of the second power module 120 .
  • the control terminal n of the second power supply module 120 inputs a high-level signal to the gate electrode of the one-way thyristor to control the conduction of the one-way thyristor; when the display device 20 stops displaying When the image is displayed, the control terminal n of the second power supply module 120 inputs a low-level signal to the gate electrode of the one-way thyristor or the control terminal of the second power supply module 120 does not output a level signal, thereby controlling the one-way thyristor to turn off .
  • the switch unit 132 can be designed such that: when the control terminal n of the second power module 120 outputs a voltage signal, the switch unit 132 is turned off; when the control terminal n of the second power module 120 does not output voltage signal, the switch unit 132 is turned on.
  • the switch unit 132 includes a transistor M1 , a resistor R2 and a resistor R3 .
  • the first end (drain) of the transistor M1 is connected to the second end of the resistor R1, and the second end (source) of the transistor M1 is connected to the ground line GND.
  • the first end of the resistor R2 is connected to the power supply V1, and the second end of the resistor R2 is connected to the control end (gate) of the transistor M1.
  • the power supply V1 here may be a constant power supply of the display device 20 applied by the power supply circuit 10 , and the voltage of the power supply V1 is greater than the turn-on voltage of the transistor M1 .
  • the first end of the resistor R3 is connected to the second end of the resistor R2 , and the second end of the resistor R3 is connected to the control terminal n of the second power module 120 .
  • the control terminal n of the second power module 120 can output a negative voltage signal, so that when the control terminal n of the second power module 120 outputs a voltage signal, the transistor M1 is turned off, and when the control terminal n of the second power module 120 does not output a voltage signal , the transistor M1 is turned on.
  • the control terminal n of the second power module 120 outputs a negative voltage signal, and the control transistor M1 is turned off; when the display device 20 stops displaying images, the control terminal n of the second power module 120 stops A negative voltage signal is output, and the transistor M1 is turned on under the action of the power supply V1.
  • the voltage signal output from the control terminal n of the second power module 120 is not only used to control the switch unit 132, but also used to drive the light emitting unit OLED in the display panel 24 to emit light.
  • the control terminal n of the second power module 120 may be the third output terminal d of the second power module 120 .
  • the third output terminal d of the second power module 120 outputs the fourth voltage signal ELVSS. Since the fourth voltage signal ELVSS is a negative voltage signal, the fourth voltage signal ELVSS will pull down the voltage of the control terminal of the transistor M1 to turn off the transistor M1. At this moment, the resistor R1 is disconnected from the ground wire GND, which can prevent the voltage signal input to the first input terminal e of the driving module 22 from flowing into the ground wire GND through the resistor R1 and causing unnecessary waste of electric energy.
  • the second power module 120 no longer outputs the fourth voltage signal ELVSS.
  • the voltage in the power supply V1 is input to the control terminal of the transistor M1 through the resistor R2, so that the transistor M1 is turned on.
  • the resistor R1 is connected to the ground GND, so that the residual voltage signal in the wire connected to the first input terminal e of the driving module 22 can be quickly released to the ground GND through the resistor R1 and the transistor M1.
  • the switch unit 132 is connected to the power supply V1 and the third output terminal d of the second power supply module 120, and utilizes the fourth voltage output by the third output terminal d of the second power supply module 120 when the display device 20 displays images.
  • the signal ELVSS can make the switch unit 132 turn off when the display device 20 needs to display images, and turn on when the display device 20 does not need to display images. In this way, the layout area of the power circuit 10 will not be increased too much, which is beneficial to the cost control of the power circuit 10 .
  • the first power module 110 starts to work first, and its output terminal a outputs the first voltage signal VCI.
  • the first voltage signal VCI is used to trigger the second power module 120 to work. Therefore, before the second power module 120 starts to work, because the output terminal a of the first power module 110 is connected to the first output terminal b of the second power module 120, the first voltage signal VCI may be fed back to the second power module. 120's first output terminal b.
  • the second voltage signal ELVDD may be fed back to the output terminal a of the first power module 110 .
  • "Backfeeding" means that the voltage signal is input from the output terminal of a certain power module to the inside of the power module.
  • the power supply circuit 10 may also include a one-way module.
  • a one-way module is a one-way circuit, which is different from a two-way circuit.
  • a bidirectional circuit can be, for example, a wire.
  • the voltage signal flows from the first end of the bidirectional circuit to the second end of the bidirectional circuit; when the voltage at the first end of the bidirectional circuit is lower than the second end of the bidirectional circuit
  • the voltage signal flows from the second terminal of the bidirectional circuit to the first terminal of the bidirectional circuit.
  • the voltage signal in the one-way module can only flow from the first end of the one-way module to the second end of the one-way module.
  • the first end of the one-way module is called the input end of the one-way module
  • the second end of the one-way module is called the output end of the one-way module.
  • the power circuit 10 further includes a first unidirectional module 140 .
  • the input end of the first one-way module 140 is connected to the output end a of the first power module 110 , and the output end of the first one-way module 140 is connected to the first output end b of the second power module 120 .
  • the input of the first one-way module 140 The voltage at the terminal is higher than the voltage at the output terminal of the first one-way module 140, and the first single-phase module 140 is turned on, so that the output terminal a of the first power supply module 110 inputs the first voltage signal to the first input terminal e of the driving module 22 VCI.
  • the first one-way module 140 can prevent the second voltage signal ELVDD from being fed back to the output terminal a of the first power module 110 and damage the first power module 110 .
  • the power circuit 10 further includes a second unidirectional module 150 .
  • the input end of the second one-way module 150 is connected to the first output end b of the second power module 120 , and the output end of the second one-way module 150 is connected to the output end a of the first power module 110 .
  • the input of the second one-way module 150 The voltage at the terminal is lower than the voltage at the output terminal of the second one-way module 150, and the second one-way module 150 is turned off.
  • the second unidirectional module 150 can prevent the first voltage signal VCI from being fed back to the first output terminal b of the second power module 120 from damaging the second power module 120 .
  • the power supply circuit 10 when the power supply circuit 10 includes the first one-way module 140 and the second one-way module 150 at the same time, the input end of the first one-way module 140 and the first power supply module 110 The output terminal a is connected, and the output terminal of the first one-way module 140 is connected with the first output terminal of the second one-way module 150 and connected with the first input terminal e of the driving module 22 .
  • the input end of the second one-way module 150 is connected to the first output end b of the second power supply module 120 .
  • first one-way module 140 and the second one-way module 150 will be explained below in conjunction with specific embodiments.
  • the first one-way module 140 includes a diode D1
  • the second one-way module 150 includes a diode D2.
  • the anode of the diode D1 is connected to the output terminal a of the first power module 110
  • the cathode of the diode D1 is used to be connected to the first input terminal e of the driving module 22 .
  • the anode of the diode D2 is connected to the first output terminal b of the second power module 120
  • the cathode of the diode D2 is used to be connected to the first input terminal e of the driving module 22 .
  • Diodes have the function of forward conduction and reverse cutoff. In this way, using the diode D2 to form the second unidirectional module 150 can prevent the first voltage signal VCI from being fed back to the first output terminal b of the second power module 120; using the diode D1 to form the first unidirectional module 140 can avoid The second voltage signal ELVDD is fed back to the output terminal a of the first power module 110 . At the same time, because the cost of the diode is low and the connection method is simple, the layout area of the power circuit 10 will not be increased too much, which is beneficial to the cost control of the power circuit 10 .
  • the first unidirectional module 140 includes an operational amplifier A1
  • the second unidirectional module 150 includes an operational amplifier A2.
  • An operational amplifier has a non-inverting input, an inverting input, and an output.
  • the non-inverting input terminal of the operational amplifier A1 is connected to the output terminal a of the first power module 110
  • the inverting input terminal of the operational amplifier A1 and the output terminal of the operational amplifier A1 are both used to connect to the first input terminal e of the driving module 22 .
  • the non-inverting input terminal of the operational amplifier A2 is connected to the first output terminal b of the second power supply module 120, and the inverting input terminal of the operational amplifier A2 and the output terminal of the operational amplifier A2 are both used to connect to the first input terminal e of the driving module 22 .
  • using the operational amplifier A2 to form the second unidirectional module 150 can prevent the first voltage signal VCI from being fed back to the first output terminal b of the second power supply module 120; using the operational amplifier A1 to form the first unidirectional module 140, namely It can prevent the second voltage signal ELVDD from being fed back to the output terminal a of the first power module 110 .
  • the first one-way module 140 includes a one-way thyristor SCR1
  • the second one-way module 150 includes a one-way thyristor SCR2
  • a SCR has an anode, a cathode and a gate. Both the anode and the control pole of the one-way thyristor SCR1 are connected to the output terminal a of the first power module 110 , and the cathode of the one-way thyristor SCR1 is used to be connected to the first input terminal e of the driving module 22 .
  • the anode and control pole of the one-way thyristor SCR2 are both connected to the first output end b of the second power module 120 , and the cathode of the one-way thyristor SCR2 is used to be connected to the first input end e of the driving module 22 .
  • using the one-way thyristor SCR2 to form the second one-way module 150 can prevent the first voltage signal VCI from being fed back to the first output terminal b of the second power supply module 120; using the one-way thyristor SCR1 to form the first
  • the one-way module 140 can prevent the second voltage signal ELVDD from being fed back to the output terminal a of the first power module 110 .
  • FIG. 12 is a timing diagram of an output voltage signal of a power supply circuit 10 provided in an embodiment of the present application. As shown in FIG. 12 , the timing of the output voltage signal of the power supply circuit 10 includes:
  • the output terminal a of the first power module 110 starts to output the first voltage signal VCI at time T1.
  • the second output terminal c of the second power module 120 starts to output the third voltage signal AVDD after the time T1 and before the time T2.
  • the first output terminal b of the second power module 120 starts to output the second voltage signal ELVDD at time T2.
  • the first output terminal b of the second power module 120 stops outputting the second voltage signal ELVDD at time T3.
  • the second output terminal c of the second power module 120 stops outputting the third voltage signal AVDD after the time T3 and before the time T4.
  • the output terminal a of the first power module 110 stops outputting the first voltage signal VCI at time T4.
  • time T1 to time T3 is the power-on time of the display panel 24 of the display device 20 , and during this process, the display device 20 switches from the screen-off state to the display image state.
  • time T3 is the power-off time of the display panel 24 of the display device 20 , and during this process, the display device 20 switches from the state of displaying images to the state of turning off the screen.
  • the working process of the power supply circuit 10 is as follows:
  • the display device 20 When the display device 20 receives an instruction to display an image in the off-screen state, at time T1, the display device 20 is ready to display an image, and the output terminal a of the first power module 110 starts to output the first voltage signal VCI.
  • the first voltage signal VCI is input to the first input end e of the driving module 22 through the first unidirectional module 140 .
  • the driving module 22 triggers the second power module 120 to work after receiving the first voltage signal VCI.
  • the second output terminal c of the second power module 120 starts to output the third voltage signal AVDD.
  • the third voltage signal AVDD is output to the second input terminal f of the driving module 22 .
  • the display device 20 starts to display images, and the first output terminal b of the second power module 120 starts to output the second voltage signal ELVDD.
  • the second voltage signal ELVDD is input to the first input terminal e of the driving module 22 through the second unidirectional module 150 .
  • the first input terminal e of the driving module 22 inputs the second voltage signal ELVDD
  • the second input terminal f of the driving module 22 inputs the third voltage signal AVDD.
  • the driving module 22 can generate the gate opening signal VGH according to the second voltage signal ELVDD input from the first input terminal e and the third voltage signal AVDD input from the second input terminal f, so as to drive the switch transistor TFT1 in the display panel 24 to turn on.
  • the display device 20 When the display device 20 receives the screen-off instruction in the state of displaying images, at time T3, the display device 20 starts to turn off the screen, and the first output terminal b of the second power module 120 stops outputting the second voltage signal ELVDD. After time T3 and before time T4, the second output terminal v of the second power module 120 stops outputting the third voltage signal AVDD. At time T4, the output terminal a of the first power module 110 stops outputting the first voltage signal VCI.
  • the driving module 22 During the process of displaying images on the display device 20 , that is, between time T2 and time T3 , the driving module 22 generates the gate open signal VGH according to the second voltage signal ELVDD and the third voltage signal AVDD. In this way, the voltage of the gate open signal VGH can be increased, so that the voltage of the gate open signal VGH can meet the high refresh rate requirement of the display panel 24 .
  • the first power module 110 starts to output the first voltage signal VCI at time T1.
  • the second power module 120 starts to output the third voltage signal AVDD after the time T1 and before the time T2.
  • the second power module 120 starts to output the second voltage signal ELVDD at time T2.
  • the second power module 120 starts to output the fourth voltage signal ELVSS at time T21.
  • the fourth voltage signal ELVSS is used to drive the light emitting unit OLED in the display panel 24 to emit light.
  • the second power module 120 stops outputting the fourth voltage signal ELVSS at time T22.
  • the second power module 120 stops outputting the second voltage signal ELVDD at time T3.
  • the second power module 120 stops outputting the third voltage signal AVDD after the time T3 and before the time T4.
  • the first power module 110 stops outputting the first voltage signal VCI at time T4.
  • the time T21 and the time T2 are the same time, or the time T21 is located after the time T2 and before the time T3.
  • Time T22 and time T3 are the same time, or time T22 is located after time T21 and before time T3.
  • time T21 and time T2 are the same time, and time T22 and time T3 are the same time
  • time T3 is the power-on time of the display panel 24 of the display device 20.
  • the display device 20 Switch from the off-screen state to the state of displaying images.
  • time T3 is the power-off time of the display panel 24 of the display device 20
  • the display device 20 switches from the state of displaying images to the state of turning off the screen.
  • the display device 20 When the display device 20 receives an instruction to display an image in the off-screen state, at time T1, the display device 20 is ready to display an image, and the output terminal a of the first power module 110 starts to output the first voltage signal VCI.
  • the first voltage signal VCI is input to the first input end e of the driving module 22 through the first unidirectional module 140 .
  • the transistor M1 since the second power module 120 has not started to output the fourth voltage signal ELVSS, the transistor M1 is turned on, and the first voltage signal VCI is also output to the ground line GND through the resistor R1 and the transistor M1.
  • the driving module 22 triggers the second power module 120 to work after receiving the first voltage signal VCI.
  • the second output terminal c of the second power module 120 starts to output the third voltage signal AVDD.
  • the third voltage signal AVDD is output to the second input terminal f of the driving module 22 .
  • the display device 20 starts to display images, the first output terminal b of the second power module 120 starts to output the second voltage signal ELVDD, and the third output terminal d of the second power module 120 starts to output the fourth voltage signal ELVSS.
  • the second voltage signal ELVDD is input to the first input terminal e of the driving module 22 through the second unidirectional module 150 .
  • the first input terminal e of the driving module 22 inputs the second voltage signal ELVDD
  • the second input terminal f of the driving module 22 inputs the third voltage signal AVDD.
  • the driving module 22 can generate the gate opening signal VGH according to the second voltage signal ELVDD input to the first input terminal e and the third voltage signal AVDD input to the second input terminal f, so as to drive the switching transistor TFT1 in the display panel 24 to turn on.
  • the fourth voltage signal ELVSS controls the transistor M1 to turn off, so as to prevent the second voltage signal ELVDD from being output to the ground line GND through the resistor R1 and the transistor M1, thereby avoiding waste of electric energy.
  • the display device 20 When the display device 20 receives an instruction to turn off the screen in the state of displaying an image, at time T3, the display device 20 starts to turn off the screen, and the first output terminal b of the second power module 120 stops outputting the second voltage signal ELVDD, and the second power module The third output terminal d of 120 stops outputting the fourth voltage signal ELVSS.
  • the transistor M1 is turned on, and the first voltage signal VCI output by the first power supply module 110 is input to the first input terminal e of the driving module 22 through the first one-way module 140, and is also output to the ground line through the resistor R1 and the transistor M1. GND.
  • the second output terminal c of the second power module 120 stops outputting the third voltage signal AVDD.
  • the output terminal a of the first power module 110 stops outputting the first voltage signal VCI.
  • the residual voltage signal in the wire connected to the first input terminal e of the driving module 22 is quickly released to the ground wire GND through the resistor R1 and the transistor M1, thereby shortening the screen-off delay of the display device 20 .
  • time T21 is after time T2 and before time T3; time T22 is after time T21 and before time T3" as an example
  • time T1 to time T22 is the power-on time of the display panel 24 of the display device 20.
  • the display device 20 switches from the screen-off state to the state of displaying images.
  • time T22 is the power-off time of the display panel 24 of the display device 20 to which the power supply circuit 10 is applied.
  • the display device 20 switches from the state of displaying images to the state of turning off the screen.
  • 14 to 19 are partial current flow diagrams of the power circuit 10 during the operation of the display device 20 . Below in conjunction with Fig. 14 to Fig. 19, the working engineering of the power supply circuit 10 is described in detail:
  • the display device 20 When the display device 20 receives an instruction to display an image while the screen is off, at time T1, the display device 20 is ready to display an image.
  • the output terminal a of the first power module 110 starts to output the first voltage signal VCI.
  • the first voltage signal VCI is input to the first input end e of the driving module 22 through the first unidirectional module 140 .
  • the transistor M1 since the second power module 120 has not started to output the fourth voltage signal ELVSS, the transistor M1 is turned on, and the first voltage signal VCI is also output to the ground line GND through the resistor R1 and the transistor M1.
  • the driving module 22 triggers the second power module 120 to work after receiving the first voltage signal VCI.
  • the second output terminal c of the second power module 120 starts to output the third voltage signal AVDD.
  • the third voltage signal AVDD is output to the second input terminal f of the driving module 22 .
  • the first output terminal b of the second power module 120 starts to output the second voltage signal ELVDD.
  • the second voltage signal ELVDD is input to the first input terminal e of the driving module 22 through the second unidirectional module 150 , and the second voltage signal ELVDD is also output to the ground line GND through the resistor R1 and the transistor M1 .
  • the first input terminal e of the driving module 22 inputs the second voltage signal ELVDD
  • the second input terminal f of the driving module 22 inputs the third voltage signal AVDD.
  • the driving module 22 can generate the gate opening signal VGH according to the second voltage signal ELVDD input from the first input terminal e and the third voltage signal AVDD input from the second input terminal f, so as to drive the switching transistor TFT1 in the display panel 24 to turn on.
  • the third output terminal d of the second power module 120 starts to output the fourth voltage signal ELVSS
  • the display device 20 starts to display images.
  • the fourth voltage signal ELVSS controls the transistor M1 to turn off, so as to prevent the second voltage signal ELVDD from being output to the ground line GND through the resistor R1 and the transistor M1, thereby avoiding waste of electric energy.
  • the display device 20 When the display device 20 receives the screen-off instruction in the state of displaying images, at time T22, as shown in FIG. 17 , the display device 20 starts to turn off the screen, and the third output terminal d of the second power module 120 stops outputting the fourth voltage signal. ELVSS. At this time, the transistor M1 is turned on, and the second voltage signal ELVDD output from the first output terminal b of the second power module 120 is input to the first input terminal e of the driving module 22, and then output to the ground line GND through the resistor R1 and the transistor M1 . At time T3, as shown in FIG.
  • the first output terminal b of the second power module 120 stops outputting the second voltage signal ELVDD, and the first voltage signal VCI output by the first power module 110 is input to the The first input terminal e of the driving module 22 is also output to the ground line GND through the resistor R1 and the transistor M1.
  • the second output terminal c of the second power module 120 stops outputting the third voltage signal AVDD.
  • the output terminal a of the first power module 110 stops outputting the first voltage signal VCI.
  • the residual voltage signal in the wire connected to the first input terminal of the driving module 22 is quickly released to the ground wire GND through the resistor R1 and the transistor M1, thereby shortening the screen-off delay of the display device 20 .
  • the driving module 22 Between time T21 and time T22 when the display device 20 displays an image, the driving module 22 generates the gate open signal VGH according to the second voltage signal ELVDD and the third voltage signal AVDD. In this way, the voltage of the gate open signal VGH can be increased, so that the voltage of the gate open signal VGH can meet the high refresh rate requirement of the display panel 24 .
  • the control transistor M1 is turned off, which can avoid unnecessary waste of electric energy when the display device 20 displays images.
  • the control transistor M1 is turned on, and the voltage signal remaining in the wire connected to the first input terminal e of the driving module 22 after time T4 can be quickly released to the ground through the resistor R1 and the transistor M1 Line GND, thereby shortening the screen-off delay of the display device 20 .
  • the power circuit 10 includes a first power module 110 and a second power module 120 .
  • the output terminal a of the first power module 110 is used to output the first voltage signal VCI.
  • the first output terminal b of the second power module 120 is used to output the second voltage signal ELVDD.
  • the output terminal a of the first power supply module 110 is connected to the first output terminal b of the second power supply module 120 , and is used to connect to the first input terminal e of the driving module 22 .
  • the second output terminal c of the second power module 120 is used to output the third voltage signal AVDD.
  • the second output terminal c of the second power supply module 120 is used to connect with the second input terminal f of the driving module 22 .
  • the voltage signals output by the output terminal a of the first power module 110 , the first output terminal b and the second output terminal c of the second power module 120 It is used to instruct the driving module 22 to generate the door opening signal VGH.
  • the gate open signal VGH is used to drive the switching transistor TFT1 in the display panel 24 to be turned on.
  • the power supply circuit 10 is input to the drive
  • the voltage signal of the first input end e of the module 22 is the second voltage signal ELVDD
  • the driving module 22 generates the gate opening signal VGH according to the second voltage signal ELVDD and the third voltage signal AVDD.
  • the voltage of the gate opening signal VGH generated by the driving module 22 is relatively high, which meets the requirement of a high refresh rate of the display panel 24 .
  • the second power supply module 120 in the power supply circuit 10 is used to output the first output terminal b of the second voltage signal ELVDD and the first output terminal b of the first power supply module 110 is used to output the first voltage signal VCI a connection can increase the voltage of the gate opening signal VGH without excessively increasing the layout area of the power circuit 10 , which is beneficial to the cost control of the power circuit 10 .
  • the power circuit 10 further includes a discharge module 130 for connecting between the output terminal a of the first power module 110 and the first output terminal b of the second power module 120 and the ground line GND.
  • the discharge module 130 is used to quickly release the voltage signal remaining in the wire connected to the first input end e of the drive module 22 to the ground wire GND when the first power module 110 and the second power module 120 stop outputting voltage signals, so , the screen-off delay of the display device 20 can be shortened.
  • the discharge module 130 includes a switch unit 132 for controlling the conduction between the resistor R1 in the discharge module 130 and the ground line GND. When the display device 20 needs to display images, the switch unit 132 is turned off; when the display device 20 needs to turn off the screen, the switch unit 132 is closed.
  • the control terminal of the transistor M1 in the switch unit 132 can be connected to the third output terminal d of the second power supply module 120, so that when the display device 20 needs to display images, the third output terminal d of the second power supply module 120 outputs a fourth level signal At ELVSS, the transistor M1 in the switch unit 132 is automatically turned off, that is, the switch unit 132 is turned off.
  • the transistor M1 in the switch unit 132 is automatically turned on, that is, the switch unit 132 is turned on.
  • the power circuit 10 also includes a first one-way module 140 and a second one-way module 150, the first one-way module 140 can prevent the second voltage signal ELVDD from being fed back to the output terminal a of the first power module 110 and damage the first power module 110 , the second unidirectional module 150 can prevent the first voltage signal VCI from being fed back to the first output terminal b of the second power module 120 from damaging the second power module 120 .
  • the driving module 22 When the power supply circuit 10 in the embodiment of the present application is working, the driving module 22 generates the voltage of the gate open signal VGH equal to the sum of the voltage of the second voltage signal ELVDD and the voltage of the third voltage signal AVDD, which is greater than the sum of the voltage of the first voltage signal VCI and the voltage of the third voltage signal AVDD.
  • the sum of the voltages of the third voltage signal AVDD makes the voltage of the gate opening signal VGH meet the high refresh rate requirement of the display panel 24 .
  • the voltage of the gate opening signal VGH is equal to twice the voltage of AVDD.
  • the voltage of the door opening signal VGH is too high, which will waste power.
  • the voltage of the gate opening signal VGH generated by the driving module 22 is less than twice the voltage of the third voltage signal AVDD, which can avoid waste of electric energy, thereby improving the display device 20 using the power supply circuit 10. working hours.
  • the first power module 110 and the second power module 110 may be integrated into one body, that is, the first power module 110 and the second power module are integrated into the above-mentioned power circuit 10 .
  • the power circuit 10 and the driving module 22 connected to the power circuit 10 may be integrated into one body.
  • the power circuit 10 and the driving module 22 can be integrated into a driving device for driving the display panel 24 .
  • the power supply circuit 10 , the driving module 22 and the display panel 24 are integrated into a display device 20 , and the display device 20 may be a mobile phone, a tablet computer, a monitor, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种电源电路(10)、驱动装置和显示装置(20),电源电路(10)包括:第一电源模块(110)和第二电源模块(120)。第一电源模块(110)的输出端和第二电源模块(120)的第一输出端连接,并用于与驱动模块(22)的第一输入端连接。第一电源模块(110)的输出端用于输出第一电压信号,第二电源模块(120)的第一输出端用于输出第二电压信号。第二电源模块(120)的第二输出端用于与驱动模块(22)的第二输入端连接,以输出第三电压信号。第一电源模块(110)的输出端、第二电源模块(120)的第一输出端和第二输出端输出的电压信号用于指示驱动模块(22)生成门开启信号。该电源电路(10)可以提升驱动模块(22)生成的门开启信号的电压,从而使门开启信号的电压可以满足显示面板(24)的高刷新频率需求。

Description

电源电路、驱动装置和显示装置
本申请要求于2021年06月03日提交到国家知识产权局、申请号为202110620650.6、申请名称为“电源电路、驱动装置和显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别涉及一种电源电路、驱动装置和显示装置。
背景技术
显示装置包括电源电路、驱动模块和显示面板。电源电路包括第一电源模块和第二电源模块。显示面板需要显示图像时,第一电源模块输出VCI信号至驱动模块,驱动模块在接收到VCI信号时触发第二电源模块工作。第二电源模块工作时输出ELVDD信号和ELVSS信号至显示面板,并输出AVDD信号至驱动模块。驱动模块根据AVDD信号和VCI信号生成VGH信号,并根据需要显示的图像生成数据信号,将VGH信号和数据信号均输出至显示面板,以使显示面板显示图像。
相关技术中,在不考虑导线压降的情况下,VGH信号的电压等于AVDD信号的电压和VCI信号的电压之和,如此VGH信号的电压较低,无法满足显示面板的高刷新频率需求。
发明内容
本申请提供了一种电源电路、驱动装置和显示装置,可以解决相关技术中VGH信号的电压较低,无法满足显示面板的高刷新频率需求的问题。所述技术方案如下:
第一方面,提供了一种电源电路,包括:第一电源模块和第二电源模块。第一电源模块的输出端和第二电源模块的第一输出端连接,第一电源模块的输出端和第二电源模块的第一输出端均用于与驱动模块的第一输入端连接。第二电源模块的第二输出端用于与驱动模块的第二输入端连接。在第一电源模块工作且第二电源模块休眠的情况下,第一电源模块的输出端输出电压信号,以指示驱动模块触发第二电源模块工作。在第一电源模块和第二电源模块均工作的情况下,第一电源模块的输出端、第二电源模块的第一输出端和第二电源模块的第二输出端均输出电压信号,以指示驱动模块生成用于驱动显示面板中的开关晶体管导通的门开启信号。第一电源模块的输出端输出的电压信号的电压小于第二电源模块的第一输出端输出的电压信号的电压。
在本申请中,在第一电源模块工作且第二电源模块休眠的情况下,第一电源模块的输出端输出的电压信号用于指示驱动模块触发第二电源模块工作。在第一电源模块和第二电源模块均工作的情况下,第一电源模块的输出端、第二电源模块的第一输出端和第二电源模块的第二输出端均输出电压信号,以指示驱动模块生成用于驱动显示面板中的开关晶体管导通的门开启信号。第二电源模块的第一输出端输出的电压信号的电压大于第一电压信号的电压。如此,第一电源模块和第二电源模块均工作的情况下,驱动模块的第一输入端输入第二电压信号,驱动模块的第二输入端输入第三电压 信号,驱动模块即可根据第二电压信号和第三电压信号生成门开启信号。由于相关技术中驱动模块是根据第一电压信号和第三电压信号生成门开启信号,所以本申请可以提升驱动模块生成的门开启信号的电压,从而使门开启信号的电压满足显示面板的高刷新频率需求。同时,该电源电路,将第二电源模块用于输出第二电压信号的第一输出端与第一电源模块用于输出第一电压信号的输出端连接,即可提升门开启信号的电压大小,不会过于增大电源电路的版图布局面积,有利于电源电路的成本控制。
可选地,电源电路还包括放电模块。放电模块的第一端与第一电源模块的输出端和第二电源模块的第一输出端连接,放电模块的第二端与地线GND连接。
在本申请中,放电模块用于在第一电源模块和第二电源模块停止输出电压信号时,将与驱动模块的第一输入端连接的导线中残留的电压信号迅速释放至地线GND,从而缩短应用该电源电路的显示装置的熄屏延时。
可选地,放电模块包括电阻R1。电阻R1的第一端与第一电源模块的输出端和第二电源模块的第一输出端连接,电阻R1的第二端与地线GND连接。
可选地,放电模块还包括开关单元。开关单元的第一端与电阻R1的第二端连接,开关单元的第二端与地线GND连接,开关单元的控制端与第二电源模块的控制端连接,第二电源模块的控制端输出电压信号时开关单元关断。
在本申请中,开关单元用于控制电阻R1与地线GND之间的导通与否,开关单元的导通与否则由第二电源模块的控制端控制。当该电源电路应用的显示装置需要显示图像时,开关单元可以关断,从而避免输入至驱动模块的第一输入端的电压信号经电阻R1流入地线GND而造成不必要的电能浪费。当该电源电路应用的显示装置需要停止显示图像时,开关单元可以闭合,从而使驱动模块的第一输入端所连接的导线中残留的电压信号可以通过电阻R1和开关单元迅速释放至地线GND。
可选地,开关单元包括:晶体管M1、电阻R2和电阻R3。晶体管M1的第一端与电阻R1的第二端连接,晶体管M1的第二端与地线GND连接。电阻R2的第一端与电源V1连接,电阻R2的第二端与晶体管M1的控制端连接。电阻R3的第一端与电阻R2的第二端连接,电阻R3的第二端与第二电源模块的控制端连接,第二电源模块的控制端输出电压信号时,晶体管M1关断。
可选地,第二电源模块的控制端输出的电压信号还用于驱动显示面板中的发光单元发光。
在本申请中,第二电源模块的控制端输出的电压信号既用于驱动显示面板中的发光单元发光,又用于控制晶体管M1关断。如此,即可使晶体管M1在显示装置需要显示图像时关断,在显示装置不需要显示图像时导通,且晶体管M1的控制不会过于增大电源电路20的版图布局面积,有利于电源电路20的成本控制。
可选地,电源电路还包括:第一单向模块。第一单向模块的输入端与第一电源模块的输出端连接,第一单向模块的输出端与第二电源模块的第一输出端连接。
在本申请中,单向模块是指电压信号仅能从输入端流向输出端的电路。第一单向模块可以防止第二电源模块的第一输出端输出第二电压信号时,第二电压信号反灌至第一电源模块的输出端。
可选地,第一单向模块包括:二极管D1。二极管D1的阳极与第一电源模块的输 出端连接,二极管D1的阴极与第二电源模块的第一输出端连接。
在本申请中,使用二极管D1构成第一单向模块,可以避免第二电压信号反灌至第一电源模块的输出端。同时,由于二极管成本较低,连接方式简单,因此使用二极管构成单向模块不会过于增大电源电路的版图布局面积,有利于电源电路的成本控制。
可选地,第一单向模块包括:运算放大器A1。运算放大器A1的同相输入端与第一电源模块的输出端连接,运算放大器A1的反相输入端及运算放大器A1的输出端均与第二电源模块的第一输出端连接。
可选地,第一单向模块包括:单向可控硅SCR1。单向可控硅SCR1的阳极和控制极均与第一电源模块的输出端连接,单向可控硅SCR1的阴极与第二电源模块的第一输出端连接。
可选地,电源电路还包括:第二单向模块。第二单向模块的输入端与第二电源模块的第一输出端连接,第二单向模块的输出端与第一电源模块的输出端连接。第二单向模块可以防止第一电源模块的输出端输出第一电压信号时,第一电压信号反灌至第二电源模块的第一输出端。
可选地,第一电源模块的输出端在T1时刻开始输出电压信号;第二电源模块的第二输出端在T1时刻之后、T2时刻之前开始输出电压信号;第二电源模块的第一输出端在T2时刻开始输出电压信号;第二电源模块的第一输出端在T3时刻停止输出电压信号;第二电源模块的第二输出端在T3时刻之后、T4时刻之前停止输出电压信号;第一电源模块的输出端在T4时刻停止输出电压信号。该电源电路,不需要对电源电路的时序做出改变,即可提升门开启信号的电压,有利于电源电路的成本控制。
可选地,第二电源模块的第三输出端在T21时刻开始输出电压信号,所述第二电源模块的第三输出端输出的电压信号用于驱动所述显示面板中的发光单元发光;T21时刻与T2时刻为同一时刻,或,T21时刻位于T2时刻之后、T3时刻之前。第二电源模块的第三输出端在T22时刻停止输出电压信号;T22时刻与T3时刻为同一时刻,或,T22时刻位于T21时刻之后、T3时刻之前。
第二电源模块的第三输出端输出的电压信号用于驱动所述显示面板中的发光单元发光。换句话说,第二电源模块的第三输出端即为上述第二电源模块的控制端。第二电源模块的第三输出端用于输出第四电压信号。
第二方面,提供了一种驱动装置,包括驱动模块和如第一方面所述的电源电路。驱动模块用于:在驱动模块的第一输入端有电压信号输入且驱动模块的第二输入端无电压信号输入的情况下,触发第二电源模块工作;在驱动模块的第一输入端和第二输入端均有电压信号输入的情况下,根据驱动模块的第一输入端和第二输入端输入的电压信号生成门开启信号,门开启信号用于驱动显示面板中的开关晶体管导通。
第三方面,提供了一种显示装置,包括显示面板和如第二方面所述的驱动装置。
上述第二方面和第三方面所获得的技术效果与上述第一方面中对应的技术手段获得的技术效果近似,在这里不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述 中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的第一种显示装置的结构示意图;
图2是本申请实施例提供的第一种显示装置的局部电流流向图;
图3是本申请实施例提供的第二种显示装置的局部电流流向图;
图4是本申请实施例提供的第一种电源电路的结构示意图;
图5是本申请实施例提供的第二种电源电路的结构示意图;
图6是本申请实施例提供的第三种电源电路的结构示意图;
图7是本申请实施例提供的第四种电源电路的结构示意图;
图8是本申请实施例提供的第五种电源电路的结构示意图;
图9是本申请实施例提供的第六种电源电路的结构示意图;
图10是本申请实施例提供的第七种电源电路的结构示意图;
图11是本申请实施例提供的第八种电源电路的结构示意图;
图12是本申请实施例提供的第一种电源电路输出电压信号的时序图;
图13是本申请实施例提供的第二种电源电路输出电压信号的时序图;
图14是本申请实施例提供的第一种电源电路的局部电流流向图;
图15是本申请实施例提供的第二种电源电路的局部电流流向图;
图16是本申请实施例提供的第三种电源电路的局部电流流向图;
图17是本申请实施例提供的第四种电源电路的局部电流流向图;
图18是本申请实施例提供的第五种电源电路的局部电流流向图;
图19是本申请实施例提供的第六种电源电路的局部电流流向图。
其中,各附图标号所代表的含义分别为:
10、电源电路;
110、第一电源模块;
120、第二电源模块;
20、显示装置;
22、驱动模块;
24、显示面板;
242、像素电路;
130、放电模块;
132、开关单元;
140、第一单向模块;
150、第二单向模块。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
应当理解的是,本申请提及的“多个”是指两个或两个以上。在本申请的描述中,除非另有说明,“/”表示或的意思,比如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,比如,A和/或B,可 以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,为了便于清楚描述本申请的技术方案,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
下面对本申请实施例提供的电源电路、驱动装置和显示装置进行详细地解释说明。在本申请的各实施例中,两个电子器件之间的连接均指电连接,这里的电连接指两个电子器件之间通过导线或无线连接以进行电信号的传输。
实施例一:
图1是本申请实施例提供的一种包括电源电路10的显示装置20的结构示意图。参见图1,显示装置20包括电源电路10、驱动模块22和显示面板24。
显示面板24包括多个像素电路242和多个发光单元OLED(图中仅示出一个),多个像素电路242与多个发光单元OLED一一对应,每个像素电路242用于驱动对应的发光单元OLED发光,每个发光单元OLED为显示面板24上的一个子像素。像素电路242包括开关晶体管TFT1和驱动晶体管TFT2。
显示装置20工作时,电源电路10需要输出的电压信号包括ELVDD信号、ELVSS信号、AVDD信号、VDDIO信号、VDDD信号和VCI信号。其中,ELVDD信号、ELVSS信号、AVDD信号和VCI信号是模拟信号,VDDIO信号和VDDD信号是数字信号。示例地,ELVDD信号的电压一般为4.6V;ELVSS信号的电压一般为-2.3V到-4.6V;AVDD信号的电压一般为7.6V;VCI信号的电压一般为3V;VDDIO信号的电压一般为1.8V;VDDD信号的电压一般为1.2V。
电源电路10包括第一电源模块110和第二电源模块120。第一电源模块110可以是电源管理芯片,如可以是电源管理单元(power management unit,PMU)。第一电源模块110具有用于输出电压信号的输出端a。第二电源模块120也可以是电源管理芯片,如可以是PMU。第二电源模块120具有用于输出电压信号的第一输出端b和第二输出端c、第三输出端d。为便于描述,将第一电源模块110工作时其输出端a输出的电压信号称为第一电压信号;将第二电源模块120工作时其第一输出端b输出的电压信号称为第二电压信号,其第二输出端c输出的电压信号称为第三电压信号,其第三输出端d输出的电压信号称为第四电压信号。第二电压信号的电压大于第一电压信号的电压。
第一电源模块110的输出端a和第二电源模块120的第一输出端b连接,并用于与驱动模块22的第一输入端e连接。换句话说,第一电源模块110的输出端a用于与驱动模块22的第一输入端e连接,以当第一电源模块110的输出端a输出第一电压信号时,第一电压信号可以输入至驱动模块22的第一输入端e。第二电源模块120的第一输出端b也用于与驱动模块22的第一输入端e连接,以当第二电源模块120的第一输出端b输出第二电压信号时,第二电压信号也可以输入至驱动模块22的第一输入端e。第二电源模块120的第二输出端c用于与驱动模块22的第二输入端f连接,以当第二电源模块120的第二输出端c输出第三电压信号时,第三电压信号可以输入至驱 动模块22的第二输入端f。第二电源模块120的第一输出端b还用于与显示面板24中发光单元OLED的阳极连接,从而使第二电源模块120的第一输出端b输出的第二电压信号可以输入至发光单元OLED的阳极。第二电源模块120的第三输出端d也用于与显示面板24中发光单元OLED的阴极连接,以当第二电源模块120的第三输出端d输出第四电压信号时,该第四电压信号可以输入至发光单元OLED的阴极。
其中,在第一电源模块110工作且第二电源模块120休眠的情况下,第一电源模块110的输出端a输出的第一电压信号用于指示驱动模块22触发第二电源模块120工作。即第一电压信号为VCI信号,在下述描述中,将第一电源模块110的输出端a输出的第一电压信号称为“第一电压信号VCI”。第二电源模块120的第二输出端c输出的第三电压信号输入至驱动模块22的第二输入端f,区别于第一电压信号VCI输入至驱动模块22的第一输入端e,第三电压信号为AVDD信号。第二电压信号的电压大于第一电压信号的电压,即第二电压信号为ELVDD信号。在下述描述中,将第二电源模块120的第一输出端b输出的第二电压信号称为“第二电压信号ELVDD”,将第二电源模块120的第二输出端c输出的第三电压信号称为“第三电压信号AVDD”。第二电压信号ELVDD为输入至显示面板24中的发光单元OLED的正极的正电压信号。第四电压信号为ELVSS信号,在下述描述中,将第二电源模块120的第三输出端d输出的第四电压信号称为“第四电压信号ELVSS”。第四电压信号ELVSS为输入至显示面板24中的发光单元OLED的负极的负电压信号。
驱动模块22可以是驱动芯片,如时序控制芯片等。驱动模块22用于:在驱动模块22的第一输入端e有电压信号输入且驱动模块22的第二输入端f无电压信号输入的情况下,触发第二电源模块120工作;在驱动模块22的第一输入端e和第二输入端f均有电压信号输入的情况下,根据驱动模块22的第一输入端e和第二输入端f输入的电压信号生成门开启信号。门开启信号用于驱动显示面板24中的开关晶体管TFT1导通,即门开启信号为VGH信号。同样的,在下述描述中,将其称为“门开启信号VGH”。
该显示装置20的工作过程如下:
显示面板24未显示图像时,第一电源模块110和第二电源模块120均处于休眠状态。当显示面板24需要显示图像时,如图2所示,第一电源模块110先工作,第一电源模块110的输出端a输出第一电压信号VCI至驱动模块22的第一输入端e。驱动模块22在接收到第一电压信号VCI时触发第二电源模块120工作。此时,第一电源模块110和第二电源模块均工作。
第一电源模块110和第二电源模块均工作时,第二电源模块120的第一输出端b输出第二电压信号ELVDD至显示面板24,且第二电源模块120的第一输出端b输出第二电压信号ELVDD至驱动模块22的第一输入端e,如图3所示;第二电源模块120的第二输出端c输出第三电压信号AVDD至驱动模块22的第二输入端f;第二电源模块120的第三输出端d输出第四电压信号ELVSS至显示面板24。此时,驱动模块22的第一输入端e和第二输入端f均输入电压信号。
驱动模块22根据其第一输入端e输入的电压信号和第二输入端f输入的电压信号生成门开启信号VGH,门开启信号VGH的电压与驱动模块22的第一输入端e输入的 电压信号的电压正相关,且门开启信号VGH的电压与驱动模块22的第二输入端f输入的电压信号的电压正相关。驱动模块22在生成门开启信号VGH时,还根据需要显示的图像生成数据信号VData。数据信号VData用于驱动显示面板24中的驱动晶体管TFT2导通。门开启信号VGH和数据信号VData均传输至显示面板24。
驱动模块22生成的VGH信号传输至开关晶体管TFT1的控制端,以控制开关晶体管TFT1导通。在开关晶体管TFT1导通后,驱动模块22生成的VData信号通过开关晶体管TFT1传输至驱动晶体管TFT2的控制端,以控制驱动晶体管TFT2导通。驱动晶体管TFT2导通后,第二电源模块124输出的ELVDD信号通过驱动晶体管TFT2传输至发光单元OLED的阳极,第二电源模块124输出的ELVSS信号传输至发光单元OLED的阴极,使发光单元OLED发光,此时显示面板24显示图像。
一般地,驱动模块22生成的门开启信号VGH的电压等于其第一输入端e输入的电压信号和第二输入端f输入的电压信号的电压之和。驱动模块22在第一电源模块110和第二电源模块120均工作时生成的门开启信号VGH。第二电源模块120工作时,第二电源模块120的第一输出端b输出第二电压信号ELVDD至驱动模块22的第一输入端e,第二电源模块120的第二输出端c输出第三电压信号AVDD至驱动模块22的第二输入端f。此时,由于第二电压信号ELVDD的电压大于第一电压信号VCI的电压,因此第一电源模块110的输出端a和第二电源模块120的第一输出端输b出至驱动模块22的第一输入端e的电压信号为第二电压信号ELVDD,第二电源模块120的第二输出端c输出至驱动模块22的第二输入端f的电压信号为第三电压信号AVDD。驱动模块22在其第一输入端e和第二输入端f均有电压信号输入的情况下,根据其第一输入端e和第二输入端f输入的电压信号生成门开启信号VGH,也即,驱动模块22会根据第二电压信号ELVDD和第三电压信号AVDD生成门开启信号VGH。由于相关技术中的驱动模块22生成的门开启信号VGH的电压等于第一电压信号VCI的电压与第三电压信号AVDD的电压之和,而本申请实施例中的驱动模块22生成的门开启信号VGH的电压等于第二电压信号ELVDD的电压与第三电压信号AVDD的电压之和,所以本申请实施例提升了门开启信号VGH的电压,从而有助于满足显示面板24的高刷新频率需求。同时,本申请实施例中通过将电源电路10中的第二电源模块120用于输出第二电压信号ELVDD的第一输出端与第一电源模块110用于输出第一电压信号VCI的输出端连接,即可提升门开启信号VGH的电压,不会过于增大电源电路10的版图布局面积,有利于电源电路10的成本控制。
实施例二:
显示装置20在显示图像的过程中,当显示装置20收到用户发送的熄屏指令时,显示面板24需要迅速停止显示图像。一般地,显示装置20收到用户发送的熄屏指令时,第一电源模块110和第二电源模块120停止输出电压信号,但驱动模块22的第一输入端e所连接的导线(包括驱动模块22的第一输入端e与第一电源模块110的输出端a之间连接的导线,以及第一电源模块110的输出端a与第二电源模块120的第一输出端b之间连接的导线)中仍具有残留的电压信号。驱动模块22可能会根据该残留的电压信号继续生成门开启信号VGH,从而使显示装置20具有较长时间的熄屏延时。 熄屏延时是指从显示装置20收到熄屏指令开始,到显示装置20的显示面板24完全停止显示图像时的时长。
为了缩短显示装置20的熄屏延时,如图4所示,电源电路10还可以包括放电模块130。放电模块130的第一端g与第一电源模块110的输出端a和第二电源模块120的第一输出端b连接,放电模块130的第二端h与地线GND连接。放电模块130用于在第一电源模块110和第二电源模块120停止输出电压信号时,将与驱动模块22的第一输入端e连接的导线中残留的电压信号快速释放至地线GND,从而缩短显示装置20的熄屏延时。
下面结合具体实施例,对放电模块130的多种不同实现方式进行解释说明。
在第一种可能的实现方式中,如图5所示,放电模块130包括电阻R1。电阻R1的第一端用于与第一电源模块110的输出端a和第二电源模块120的第一输出端b连接,电阻R1的第二端与地线GND连接。
如此,当电源电路10所应用的显示装置20收到熄屏指令,第一电源模块110和第二电源模块120停止输出电压信号时,驱动模块22的第一输入端e所连接的导线中残留的电压信号可以通过电阻R1迅速释放至地线GND。
在第二种可能的实现方式中,如图6所示,放电模块130包括电阻R1和开关单元132。电阻R1和开关单元132串联形成放电模块130。其中,电阻R1的第一端与第一电源模块110的输出端a和第二电源模块120的第一输出端b连接,电阻R1的第二端与开关单元132的第一端j连接,开关单元132的第二端k与地线GND连接。
如此,可通过开关单元132控制电阻R1与地线之间的导通与否。当开关单元132闭合,开关单元132的第一端j和第二端k之间导通时,电阻R1通过开关单元132与地线GND连通。反之,当开关单元132关断,开关单元132的第一端j和第二端k之间不导通时,电阻R1与地线GND之间断开。
开关单元132的控制端m与第二电源模块120的控制端n连接,从而使第二电源模块120可以控制开关单元132的导通与关断。当显示装置20需要显示图像时,驱动模块22的第一输入端e需要输入电压信号。此时,第二电源模块120的控制端n可以控制开关单元132关断,以避免输入至驱动模块22的第一输入端的电压信号经电阻R1流入地线GND而造成不必要的电能浪费。当显示装置20需要停止显示图像时,驱动模块22的第一输入端e不再需要输入电压信号。此时,第二电源模块120的控制端n可以控制开关单元132闭合,从而使驱动模块22的第一输入端e所连接的导线中残留的电压信号可以通过电阻R1和开关单元132迅速释放至地线GND。
其中,开关单元132可以有多种可能的结构,下面对三种可能的结构进行说明。
在第一种可能的结构中,开关单元132可以包括一个三极管,第二电源模块120的控制端n可以输出第一电平信号和第二电平信号。三极管的集电极可以与电阻R1的第二端连接,三极管的发射极可以与地线GND连接。三极管的基极可以与第二电源模块120的控制端n连接。第一电平信号可以控制开关单元132关断,第二电平信号可以控制开关单元132导通。
如此,当显示装置20需要显示图像时,第二电源模块120的控制端n向三极管的 基极输入第一电平信号,控制三极管关断;当显示装置20停止显示图像时,第二电源模块120的控制端向三极管的基极输入第二电平信号,控制三极管导通。当该三极管是PNP型三极管时,这里的第一电平信号为高电平信号,第二电平信号为低电平信号;当该三极管是NPN型三极管时,这里的第一电平信号为低电平信号,第二电平信号为高电平信号。
在第二种可能的结构中,开关单元132可以包括一个单向可控硅。单向可控硅的阳极可以与电阻R1的第二端连接,单向可控硅的阴极可以与地线GND连接。单向可控硅的控制极可以与第二电源模块120的控制端n连接。
如此,当显示装置20需要显示图像时,第二电源模块120的控制端n向单向可控硅的控制极输入高电平信号,控制单向可控硅导通;当显示装置20停止显示图像时,第二电源模块120的控制端n向单向可控硅的控制极输入低电平信号或第二电源模块120的控制端不输出电平信号,从而控制单向可控硅关断。
在第三种可能的结构中,可以将开关单元132设计为:当第二电源模块120的控制端n输出电压信号时,开关单元132关断;当第二电源模块120的控制端n不输出电压信号时,开关单元132导通。例如,如图7所示,开关单元132包括晶体管M1、电阻R2和电阻R3。晶体管M1的第一端(漏极)与电阻R1的第二端连接,晶体管M1的第二端(源极)与地线GND连接。电阻R2的第一端与电源V1连接,电阻R2的第二端与晶体管M1的控制端(栅极)连接。这里的电源V1可以是电源电路10所应用的显示装置20的常在电源,电源V1的电压大于晶体管M1的开启电压。电阻R3的第一端与电阻R2的第二端连接,电阻R3的第二端与第二电源模块120的控制端n连接。第二电源模块120的控制端n可以输出负电压信号,以当第二电源模块120的控制端n输出电压信号时,晶体管M1关断,当第二电源模块120的控制端n不输出电压信号时,晶体管M1导通。
如此,当显示装置20需要显示图像时,第二电源模块120的控制端n输出负电压信号,控制晶体管M1关断;当显示装置20停止显示图像时,第二电源模块120的控制端n停止输出负电压信号,晶体管M1在电源V1的作用下导通。
在一些实施例中,第二电源模块120的控制端n输出的电压信号不仅用于控制开关单元132,还用于驱动显示面板24中的发光单元OLED发光。换句话说,第二电源模块120的控制端n可以为第二电源模块120的第三输出端d。如此,当显示装置20需要显示图像时,第二电源模块120的第三输出端d输出第四电压信号ELVSS。由于第四电压信号ELVSS是负电压信号,因此,第四电压信号ELVSS会拉低晶体管M1的控制端的电压,使晶体管M1关断。此时,电阻R1与地线GND之间断开,可以避免输入至驱动模块22的第一输入端e的电压信号经电阻R1流入地线GND而造成不必要的电能浪费。
当显示装置20不需要显示图像时,第二电源模块120不再输出第四电压信号ELVSS。电源V1中的电压通过电阻R2输入至晶体管M1的控制端,使晶体管M1导通。此时,电阻R1与地线GND之间导通,从而使驱动模块22的第一输入端e所连接的导线中残留的电压信号可以通过电阻R1和晶体管M1迅速释放至地线GND。电源电路10中,开关单元132通过与电源V1及第二电源模块120的第三输出端d连接, 利用显示装置20在显示图像时第二电源模块120的第三输出端d输出的第四电压信号ELVSS,即可使开关单元132在显示装置20需要显示图像时关断,在显示装置20不需要显示图像时导通。如此,不会过于增大电源电路10的版图布局面积,有利于电源电路10的成本控制。
实施例三:
显示装置20需要显示图像时,第一电源模块110先开始工作,其输出端a输出第一电压信号VCI。第一电压信号VCI用于触发第二电源模块120工作。因此,在第二电源模块120开始工作之前,由于第一电源模块110的输出端a和第二电源模块120的第一输出端b连接,第一电压信号VCI可能会反灌至第二电源模块120的第一输出端b。同样的,第二电源模块120开始工作之后,由于第二电压信号ELVDD的电压大于第一电压信号VCI的电压,因此第二电压信号ELVDD可能会反灌至第一电源模块110的输出端a。“反灌”是指电压信号从某一电源模块的输出端输入至电源模块内部。
为避免电压信号的反灌,该电源电路10还可以包括单向模块。
单向模块即单向电路,区别于双向电路。双向电路例如可以是导线。当双向电路的第一端的电压高于双向电路的第二端的电压时,电压信号从双向电路的第一端流向双向电路的第二端;当双向电路的第一端的电压低于第二端的电压时,电压信号从双向电路的第二端流向双向电路的第一端。单向模块中电压信号仅能从单向模块的第一端流向单向模块的第二端。为便于描述,将单向模块的第一端称为单向模块的输入端,将单向模块的第二端称为单向模块的输出端。
在一些实施例中,如图8所示,电源电路10还包括第一单向模块140。
第一单向模块140的输入端与第一电源模块110的输出端a连接,第一单向模块140的输出端与第二电源模块120的第一输出端b连接。如此,在第一电源模块110的输出端a开始输出第一电压信号VCI之后,在第二电源模块120的第一输出端b开始输出第二电压信号ELVDD之前,第一单向模块140的输入端的电压高于第一单向模块140的输出端的电压,第一单相模块140导通,从而使第一电源模块110的输出端a向驱动模块22的第一输入端e输入第一电压信号VCI。在第二电源模块120的第一输出端b开始输出第二电压信号ELVDD之后,第一单向模块140的输入端的电压低于第一单向模块140的输出端的电压,第一单向模块140截止。此时,第一单向模块140可以避免第二电压信号ELVDD反灌至第一电源模块110的输出端a而损坏第一电源模块110。
在另一些实施例中,如图8所示,电源电路10还包括第二单向模块150。第二单向模块150的输入端与第二电源模块120的第一输出端b连接,第二单向模块150的输出端与第一电源模块110的输出端a连接。如此,在第一电源模块110的输出端a开始输出第一电压信号VCI之后,在第二电源模块120的第一输出端b开始输出第二电压信号ELVDD之前,第二单向模块150的输入端的电压低于第二单向模块150的输出端的电压,第二单向模块150截止。此时,第二单向模块150可以避免第一电压信号VCI反灌至第二电源模块120的第一输出端b损坏第二电源模块120。
在又一些实施例中,如图8所示,当电源电路10同时包括第一单向模块140和第 二单向模块150时,第一单向模块140的输入端与第一电源模块110的输出端a连接,第一单向模块140的输出端与第二单向模块150的第一输出端连接并与驱动模块22的第一输入端e连接。第二单向模块150的输入端与第二电源模块120的第一输出端b连接。
下面结合具体实施例,对第一单向模块140和第二单向模块150的多种不同实现方式进行解释说明。
在第一种可能的实现方式中,如图9所示,第一单向模块140包括二极管D1,第二单向模块150包括二极管D2。二极管D1的阳极与第一电源模块110的输出端a连接,二极管D1的阴极用于与驱动模块22的第一输入端e连接。二极管D2的阳极与第二电源模块120的第一输出端b连接,二极管D2的阴极用于与驱动模块22的第一输入端e连接。
二极管具有正向导通,反向截止的功能。如此,使用二极管D2构成第二单向模块150,即可避免第一电压信号VCI反灌至第二电源模块120的第一输出端b;使用二极管D1构成第一单向模块140,即可避免第二电压信号ELVDD反灌至第一电源模块110的输出端a。同时,由于二极管成本较低,连接方式简单,不会过于增大电源电路10的版图布局面积,有利于电源电路10的成本控制。
在第二种可能的实现方式中,如图10所示,第一单向模块140包括运算放大器A1,第二单向模块150包括运算放大器A2。运算放大器具有同相输入端、反相输入端和输出端。运算放大器A1的同相输入端与第一电源模块110的输出端a连接,运算放大器A1的反相输入端及运算放大器A1的输出端均用于与驱动模块22的第一输入端e连接。运算放大器A2的同相输入端与第二电源模块120的第一输出端b连接,运算放大器A2的反相输入端及运算放大器A2的输出端均用于与驱动模块22的第一输入端e连接。
如此,使用运算放大器A2构成第二单向模块150,即可避免第一电压信号VCI反灌至第二电源模块120的第一输出端b;使用运算放大器A1构成第一单向模块140,即可避免第二电压信号ELVDD反灌至第一电源模块110的输出端a。
在第三种可能的实现方式中,如图11所示,第一单向模块140包括单向可控硅SCR1,第二单向模块150包括单向可控硅SCR2。单向可控硅具有阳极、阴极和控制极。单向可控硅SCR1的阳极和控制极均与第一电源模块110的输出端a连接,单向可控硅SCR1的阴极用于与驱动模块22的第一输入端e连接。单向可控硅SCR2的阳极和控制极均与第二电源模块120的第一输出端b连接,单向可控硅SCR2的阴极用于与驱动模块22的第一输入端e连接。
如此,使用单向可控硅SCR2构成第二单向模块150,即可避免第一电压信号VCI反灌至第二电源模块120的第一输出端b;使用单向可控硅SCR1构成第一单向模块140,即可避免第二电压信号ELVDD反灌至第一电源模块110的输出端a。
实施例四:
下面对电源电路10的工作过程进行解释说明。
图12是本申请实施例提供的一种电源电路10输出电压信号的时序图。如图12 所示,电源电路10输出电压信号的时序包括:
第一电源模块110的输出端a在T1时刻开始输出第一电压信号VCI。第二电源模块120的第二输出端c在T1时刻之后、T2时刻之前开始输出第三电压信号AVDD。第二电源模块120的第一输出端b在T2时刻开始输出第二电压信号ELVDD。第二电源模块120的第一输出端b在T3时刻停止输出第二电压信号ELVDD。第二电源模块120的第二输出端c在T3时刻之后、T4时刻之前停止输出第三电压信号AVDD。第一电源模块110的输出端a在T4时刻停止输出第一电压信号VCI。
其中,T1时刻至T3时刻为显示装置20的显示面板24的上电时刻,在此过程中,显示装置20从熄屏状态切换至显示图像的状态。T3时刻之后为显示装置20的显示面板24的下电时刻,在此过程中,显示装置20从显示图像的状态切换至熄屏状态。具体来说,电源电路10的工作过程如下:
显示装置20在熄屏状态下接收到显示图像的指令时,在T1时刻,显示装置20准备显示图像,第一电源模块110的输出端a开始输出第一电压信号VCI。第一电压信号VCI经第一单向模块140输入至驱动模块22的第一输入端e。驱动模块22在接收到第一电压信号VCI后触发第二电源模块120工作。第二电源模块120工作时,在T1时刻之后、T2时刻之前,第二电源模块120的第二输出端c开始输出第三电压信号AVDD。第三电压信号AVDD输出至驱动模块22的第二输入端f。在T2时刻,显示装置20开始显示图像,第二电源模块120的第一输出端b开始输出第二电压信号ELVDD。第二电压信号ELVDD经第二单向模块150输入至驱动模块22的第一输入端e。此时,驱动模块22的第一输入端e输入第二电压信号ELVDD,驱动模块22的第二输入端f输入第三电压信号AVDD。驱动模块22可以根据其第一输入端e输入的第二电压信号ELVDD和第二输入端f输入的第三电压信号AVDD生成门开启信号VGH,从而驱动显示面板24中的开关晶体管TFT1导通。
显示装置20在显示图像的状态下接收到熄屏指令时,在T3时刻,显示装置20开始熄屏,第二电源模块120的第一输出端b停止输出第二电压信号ELVDD。T3时刻之后、T4时刻之前,第二电源模块120的第二输出端v停止输出第三电压信号AVDD。在T4时刻,第一电源模块110的输出端a停止输出第一电压信号VCI。
在显示装置20显示图像的过程中,即T2时刻至T3时刻之间,驱动模块22根据第二电压信号ELVDD和第三电压信号AVDD生成门开启信号VGH。如此,可以提升门开启信号VGH的电压,从而使门开启信号VGH的电压满足显示面板24的高刷新频率需求。
在一些实施例中,如图13所示,第一电源模块110在T1时刻开始输出第一电压信号VCI。第二电源模块120在T1时刻之后、T2时刻之前开始输出第三电压信号AVDD。第二电源模块120在T2时刻开始输出第二电压信号ELVDD。第二电源模块120在T21时刻开始输出第四电压信号ELVSS。第四电压信号ELVSS用于驱动显示面板24中的发光单元OLED发光。第二电源模块120在T22时刻停止输出第四电压信号ELVSS。第二电源模块120在T3时刻停止输出第二电压信号ELVDD。第二电源模块120在T3时刻之后、T4时刻之前停止输出第三电压信号AVDD。第一电源模块110在T4时刻停止输出第一电压信号VCI。其中,T21时刻与T2时刻为同一时刻, 或,T21时刻位于T2时刻之后、T3时刻之前。T22时刻与T3时刻为同一时刻,或,T22时刻位于T21时刻之后、T3时刻之前。
以“T21时刻与T2时刻为同一时刻,T22时刻与T3时刻为同一时刻”为例,此时T1时刻至T3时刻为显示装置20的显示面板24的上电时刻,在此过程中,显示装置20从熄屏状态切换至显示图像的状态。T3时刻之后为显示装置20的显示面板24的下电时刻,在此过程中,显示装置20从显示图像的状态切换至熄屏状态。对电源电路10的工作工程进行具体说明:
显示装置20在熄屏状态下接收到显示图像的指令时,在T1时刻,显示装置20准备显示图像,第一电源模块110的输出端a开始输出第一电压信号VCI。第一电压信号VCI经第一单向模块140输入至驱动模块22的第一输入端e。同时,由于第二电源模块120尚未开始输出第四电压信号ELVSS,晶体管M1导通,第一电压信号VCI还经电阻R1和晶体管M1输出至地线GND。驱动模块22在接收到第一电压信号VCI后触发第二电源模块120工作。第二电源模块120工作时,在T1时刻之后、T2时刻之前,第二电源模块120的第二输出端c开始输出第三电压信号AVDD。第三电压信号AVDD输出至驱动模块22的第二输入端f。在T2时刻,显示装置20开始显示图像,第二电源模块120的第一输出端b开始输出第二电压信号ELVDD,第二电源模块120的第三输出端d开始输出第四电压信号ELVSS。第二电压信号ELVDD经第二单向模块150输入至驱动模块22的第一输入端e。此时,驱动模块22的第一输入端e输入第二电压信号ELVDD,驱动模块22的第二输入端f输入第三电压信号AVDD。驱动模块22可以根据其第一输入端e输入的第二电压信号ELVDD和第二输入端输入f的第三电压信号AVDD生成门开启信号VGH,从而驱动显示面板24中的开关晶体管TFT1导通。同时,第四电压信号ELVSS控制晶体管M1关断,避免第二电压信号ELVDD经电阻R1和晶体管M1输出至地线GND,从而避免电能浪费。
显示装置20在显示图像的状态下接收到熄屏指令时,在T3时刻,显示装置20开始熄屏,第二电源模块120的第一输出端b停止输出第二电压信号ELVDD,第二电源模块120的第三输出端d停止输出第四电压信号ELVSS。此时,晶体管M1导通,第一电源模块110输出的第一电压信号VCI经第一单向模块140输入至驱动模块22的第一输入端e,还经电阻R1和晶体管M1输出至地线GND。T3时刻之后、T4时刻之前,第二电源模块120的第二输出端c停止输出第三电压信号AVDD。在T4时刻,第一电源模块110的输出端a停止输出第一电压信号VCI。此时,与驱动模块22的第一输入端e连接的导线中残留的电压信号经电阻R1和晶体管M1快速释放至地线GND,从而缩短显示装置20的熄屏延时。
以“T21时刻位于T2时刻之后、T3时刻之前;T22时刻位于T21时刻之后、T3时刻之前”为例,此时T1时刻至T22时刻为显示装置20的显示面板24的上电时刻,在此过程中,显示装置20从熄屏状态切换至显示图像的状态。T22时刻之后为电源电路10所应用的显示装置20的显示面板24的下电时刻,在此过程中,显示装置20从显示图像的状态切换至熄屏状态。图14至图19为显示装置20工作过程中电源电路10的局部电流流向图。下面结合图14至图19对电源电路10的工作工程进行具体说明:
显示装置20在熄屏状态下接收到显示图像的指令时,在T1时刻,显示装置20准备显示图像,如图14所示,第一电源模块110的输出端a开始输出第一电压信号VCI。第一电压信号VCI经第一单向模块140输入至驱动模块22的第一输入端e。同时,由于第二电源模块120尚未开始输出第四电压信号ELVSS,晶体管M1导通,第一电压信号VCI还经电阻R1和晶体管M1输出至地线GND。驱动模块22在接收到第一电压信号VCI后触发第二电源模块120工作。第二电源模块120工作时,在T1时刻之后、T2时刻之前,第二电源模块120的第二输出端c开始输出第三电压信号AVDD。第三电压信号AVDD输出至驱动模块22的第二输入端f。在T2时刻,如图15所示,第二电源模块120的第一输出端b开始输出第二电压信号ELVDD。第二电压信号ELVDD经第二单向模块150输入至驱动模块22的第一输入端e,第二电压信号ELVDD还经电阻R1和晶体管M1输出至地线GND。此时,驱动模块22的第一输入端e输入第二电压信号ELVDD,驱动模块22的第二输入端f输入第三电压信号AVDD。驱动模块22可以根据其第一输入端e输入的第二电压信号ELVDD和第二输入端f输入的第三电压信号AVDD生成门开启信号VGH,从而驱动显示面板24中的开关晶体管TFT1导通。在T21时刻,如图16所示,第二电源模块120的第三输出端d开始输出第四电压信号ELVSS,显示装置20开始显示图像。同时,第四电压信号ELVSS控制晶体管M1关断,避免第二电压信号ELVDD经电阻R1和晶体管M1输出至地线GND,从而避免电能浪费。
显示装置20在显示图像的状态下接收到熄屏指令时,在T22时刻,如图17所示,显示装置20开始熄屏,第二电源模块120的第三输出端d停止输出第四电压信号ELVSS。此时,晶体管M1导通,第二电源模块120的第一输出端b输出的第二电压信号ELVDD输入至驱动模块22的第一输入端e,并经电阻R1和晶体管M1输出至地线GND。在T3时刻,如图18所示,第二电源模块120的第一输出端b停止输出第二电压信号ELVDD,第一电源模块110输出的第一电压信号VCI经第一单向模块140输入至驱动模块22的第一输入端e,还经电阻R1和晶体管M1输出至地线GND。T3时刻之后、T4时刻之前,第二电源模块120的第二输出端c停止输出第三电压信号AVDD。在T4时刻,如图19所示,第一电源模块110的输出端a停止输出第一电压信号VCI。此时,与驱动模块22的第一输入端连接的导线中残留的电压信号经电阻R1和晶体管M1快速释放至地线GND,从而缩短显示装置20的熄屏延时。
在显示装置20显示图像的T21时刻至T22时刻之间,驱动模块22根据第二电压信号ELVDD和第三电压信号AVDD生成门开启信号VGH。如此,可以提升门开启信号VGH的电压,从而使门开启信号VGH的电压满足显示面板24的高刷新频率需求。同时,在显示装置20显示图像的T21时刻至T22时刻之间,控制晶体管M1断开,可以避免显示装置20显示图像时造成不必要的电能浪费。在显示装置20收到熄屏指令之后,控制晶体管M1导通,可以将T4时刻之后与驱动模块22的第一输入端e连接的导线中残留的电压信号经电阻R1和晶体管M1快速释放至地线GND,从而缩短显示装置20的熄屏延时。
在本申请实施例中,电源电路10包括第一电源模块110和第二电源模块120。第一电源模块110的输出端a用于输出第一电压信号VCI。第二电源模块120的第一输 出端b用于输出第二电压信号ELVDD。第一电源模块110的输出端a和第二电源模块120的第一输出端b连接,并用于与驱动模块22的第一输入端e连接。第二电源模块120的第二输出端c用于输出第三电压信号AVDD。第二电源模块120的第二输出端c用于与驱动模块22的第二输入端f连接。在第一电源模块110和第二电源模块120均工作的情况下,第一电源模块110的输出端a、第二电源模块120的第一输出端b和第二输出端c所输出的电压信号用于指示驱动模块22生成门开启信号VGH。门开启信号VGH用于驱动显示面板24中的开关晶体管TFT1导通。如此,由于第二电源模块120的第一输出端b输出的第二电压信号ELVDD的电压大于第一电源模块110的输出端a输出的第一电压信号VCI的电压,因此电源电路10输入至驱动模块22的第一输入端e的电压信号为第二电压信号ELVDD,驱动模块22会根据第二电压信号ELVDD和第三电压信号AVDD生成门开启信号VGH。如此,驱动模块22所生成的门开启信号VGH的电压较高,满足显示面板24的高刷新频率需求。同时,本申请实施例中通过将电源电路10中的第二电源模块120用于输出第二电压信号ELVDD的第一输出端b与第一电源模块110用于输出第一电压信号VCI的输出端a连接,即可提升门开启信号VGH的电压大小,不会过于增大电源电路10的版图布局面积,有利于电源电路10的成本控制。
电源电路10还包括用于连接在第一电源模块110的输出端a和第二电源模块120的第一输出端b与地线GND之间的放电模块130。放电模块130用于在第一电源模块110和第二电源模块120停止输出电压信号时,将与驱动模块22的第一输入端e连接的导线中残留的电压信号快速释放至地线GND,如此,可以缩短显示装置20的熄屏延时。放电模块130中包括开关单元132,用于控制放电模块130中的电阻R1与地线GND之间的导通与否。当显示装置20需要显示图像时,开关单元132关断;当显示装置20需要熄屏时,开关单元132闭合。如此,电源电路10还可以避免显示装置20需要显示图像时放电模块130造成不必要的电能浪费。开关单元132中晶体管M1的控制端可以与第二电源模块120的第三输出端d连接,从而当显示装置20需要显示图像,第二电源模块120的第三输出端d输出第四电平信号ELVSS时,开关单元132中的晶体管M1自动关断,即开关单元132关断。当显示装置20需要熄屏,第二电源模块120的第三输出端d停止输出第四电平信号ELVSS时,开关单元132中的晶体管M1自动导通,即开关单元132导通。如此,不会过于增大电源电路10的版图布局面积,有利于电源电路10的成本控制。电源电路10还包括第一单向模块140和第二单向模块150,第一单向模块140可以避免第二电压信号ELVDD反灌至第一电源模块110的输出端a损坏第一电源模块110,第二单向模块150可以避免第一电压信号VCI反灌至第二电源模块120的第一输出端b损坏第二电源模块120。
本申请实施例中的电源电路10工作时,驱动模块22生成门开启信号VGH的电压等于第二电压信号ELVDD的电压与第三电压信号AVDD的电压之和,大于第一电压信号VCI的电压与第三电压信号AVDD的电压之和,从而使门开启信号VGH的电压满足显示面板24的高刷新频率需求。相关技术中还有门开启信号VGH的电压等于AVDD的电压的两倍的技术方案,然而该技术方案下门开启信号VGH的电压过高,会造电能浪费。本申请实施例中的电源电路10工作时,驱动模块22生成的门开启信 号VGH的电压小于第三电压信号AVDD的电压的两倍,可以避免电能浪费,从而提高应用电源电路10的显示装置20的工作时间。
可以理解的是,在一些实施例中,第一电源模块110和第二电源模块110可以集成为一体,即第一电源模块110和第二电源模块集成为上述的电源电路10。在另一些实施例中,电源电路10和与该电源电路10连接的驱动模块22可以集成为一体。例如,电源电路10和驱动模块22可以集成为一个用于驱动显示面板24的驱动装置。。在又一些实施例中,电源电路10、驱动模块22和显示面板24集成为显示装置20,该显示装置20可以是手机、平板电脑、显示器等。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种电源电路,其特征在于,包括:第一电源模块和第二电源模块;
    所述第一电源模块的输出端和所述第二电源模块的第一输出端连接,所述第一电源模块的输出端和所述第二电源模块的第一输出端均用于与驱动模块的第一输入端连接;所述第二电源模块的第二输出端用于与所述驱动模块的第二输入端连接;
    在所述第一电源模块工作且所述第二电源模块休眠的情况下,所述第一电源模块的输出端输出电压信号,以指示所述驱动模块触发所述第二电源模块工作;在所述第一电源模块和所述第二电源模块均工作的情况下,所述第一电源模块的输出端、所述第二电源模块的第一输出端和所述第二电源模块的第二输出端均输出电压信号,以指示所述驱动模块生成用于驱动显示面板中的开关晶体管导通的门开启信号,所述第一电源模块的输出端输出的电压信号的电压小于所述第二电源模块的第一输出端输出的电压信号的电压。
  2. 如权利要求1所述的电源电路,其特征在于,所述电源电路还包括:放电模块;
    所述放电模块的第一端与所述第一电源模块的输出端和所述第二电源模块的第一输出端连接,所述放电模块的第二端与地线GND连接。
  3. 如权利要求2所述的电源电路,其特征在于,所述放电模块包括:电阻R1;
    所述电阻R1的第一端与所述第一电源模块的输出端和所述第二电源模块的第一输出端连接,所述电阻R1的第二端与所述地线GND连接。
  4. 如权利要求3所述的电源电路,其特征在于,所述放电模块还包括:开关单元;
    所述开关单元的第一端与所述电阻R1的第二端连接,所述开关单元的第二端与所述地线GND连接,所述开关单元的控制端与所述第二电源模块的控制端连接,所述第二电源模块的控制端输出电压信号时所述开关单元关断。
  5. 如权利要求4所述的电源电路,其特征在于,所述开关单元包括:晶体管M1、电阻R2和电阻R3;
    所述晶体管M1的第一端与所述电阻R1的第二端连接,所述晶体管M1的第二端与所述地线GND连接;
    所述电阻R2的第一端与电源V1连接,所述电阻R2的第二端与所述晶体管M1的控制端连接;
    所述电阻R3的第一端与所述电阻R2的第二端连接,所述电阻R3的第二端与所述第二电源模块的控制端连接,所述第二电源模块的控制端输出电压信号时,所述晶体管M1关断。
  6. 如权利要求4所述的电源电路,其特征在于,所述第二电源模块的控制端输出的电压信号还用于驱动所述显示面板中的发光单元发光。
  7. 如权利要求1-6任一所述的电源电路,其特征在于,所述电源电路还包括:第一单向模块;
    所述第一单向模块的输入端与所述第一电源模块的输出端连接,所述第一单向模块的输出端与所述第二电源模块的第一输出端连接。
  8. 如权利要求7所述的电源电路,其特征在于,所述第一单向模块包括:二极管 D1;
    所述二极管D1的阳极与所述第一电源模块的输出端连接,所述二极管D1的阴极与所述第二电源模块的第一输出端连接。
  9. 如权利要求7所述的电源电路,其特征在于,所述第一单向模块包括:运算放大器A1;
    所述运算放大器A1的同相输入端与所述第一电源模块的输出端连接,所述运算放大器A1的反相输入端及所述运算放大器A1的输出端均与所述第二电源模块的第一输出端连接。
  10. 如权利要求7所述的电源电路,其特征在于,所述第一单向模块包括:单向可控硅SCR1;
    所述单向可控硅SCR1的阳极和控制极均与所述第一电源模块的输出端连接,所述单向可控硅SCR1的阴极与所述第二电源模块的第一输出端连接。
  11. 如权利要求1-6任一所述的电源电路,其特征在于,所述电源电路还包括:第二单向模块;
    所述第二单向模块的输入端与所述第二电源模块的第一输出端连接,所述第二单向模块的输出端与所述第一电源模块的输出端连接。
  12. 如权利要求1-6任一所述的电源电路,其特征在于,
    所述第一电源模块的输出端在T1时刻开始输出电压信号;
    所述第二电源模块的第二输出端在所述T1时刻之后、T2时刻之前开始输出电压信号;
    所述第二电源模块的第一输出端在所述T2时刻开始输出电压信号;
    所述第二电源模块的第一输出端在T3时刻停止输出电压信号;
    所述第二电源模块的第二输出端在所述T3时刻之后、T4时刻之前停止输出电压信号;
    所述第一电源模块的输出端在所述T4时刻停止输出电压信号。
  13. 如权利要求12所述的电源电路,其特征在于,所述第二电源模块的第三输出端在T21时刻开始输出电压信号,所述第二电源模块的第三输出端输出的电压信号用于驱动所述显示面板中的发光单元发光;所述T21时刻与所述T2时刻为同一时刻,或,所述T21时刻位于所述T2时刻之后、所述T3时刻之前。
  14. 如权利要求13所述的电源电路,其特征在于,所述第二电源模块的第三输出端在T22时刻停止输出电压信号;所述T22时刻与所述T3时刻为同一时刻,或,所述T22时刻位于所述T21时刻之后、所述T3时刻之前。
  15. 一种驱动装置,其特征在于,包括驱动模块和如权利要求1至14任意一项所述的电源电路;
    所述驱动模块用于:在所述驱动模块的第一输入端有电压信号输入且所述驱动模块的第二输入端无电压信号输入的情况下,触发所述第二电源模块工作;在所述驱动模块的第一输入端和第二输入端均有电压信号输入的情况下,根据所述驱动模块的第一输入端和第二输入端输入的电压信号生成门开启信号,所述门开启信号用于驱动显示面板中的开关晶体管导通。
  16. 一种显示装置,其特征在于,包括显示面板和如权利要求15所述的驱动装置。
PCT/CN2022/071794 2021-06-03 2022-01-13 电源电路、驱动装置和显示装置 WO2022252627A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/792,981 US20240144869A1 (en) 2021-06-03 2022-01-13 Power Supply Circuit, Driving Apparatus, and Display Apparatus
EP22735283.8A EP4123629A4 (en) 2021-06-03 2022-01-13 POWER SUPPLY CIRCUIT, DRIVER AND DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110620650.6 2021-06-03
CN202110620650.6A CN113436563B (zh) 2021-06-03 2021-06-03 电源电路、驱动装置和显示装置

Publications (1)

Publication Number Publication Date
WO2022252627A1 true WO2022252627A1 (zh) 2022-12-08

Family

ID=77803527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071794 WO2022252627A1 (zh) 2021-06-03 2022-01-13 电源电路、驱动装置和显示装置

Country Status (4)

Country Link
US (1) US20240144869A1 (zh)
EP (1) EP4123629A4 (zh)
CN (1) CN113436563B (zh)
WO (1) WO2022252627A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113436563B (zh) * 2021-06-03 2022-05-13 荣耀终端有限公司 电源电路、驱动装置和显示装置
CN114360429A (zh) * 2022-01-21 2022-04-15 重庆京东方光电科技有限公司 驱动电路及显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110175880A1 (en) * 2010-01-21 2011-07-21 Samsung Mobile Display Co., Ltd. Power driver, driving method of the same, and organic light emitting display device including power driver
CN104882111A (zh) * 2015-06-24 2015-09-02 京东方科技集团股份有限公司 一种显示驱动电路及其驱动方法、显示装置
CN105427828A (zh) * 2016-01-08 2016-03-23 京东方科技集团股份有限公司 显示面板驱动电路、显示面板驱动方法和显示装置
CN106157915A (zh) * 2016-08-31 2016-11-23 深圳市华星光电技术有限公司 薄膜晶体管液晶显示器的驱动装置及驱动方法
CN106847200A (zh) * 2015-11-24 2017-06-13 乐金显示有限公司 显示装置及其驱动方法
CN206932170U (zh) * 2017-04-12 2018-01-26 深圳市峰泳科技有限公司 电源电路及其液晶显示装置
KR20190045661A (ko) * 2017-10-24 2019-05-03 엘지디스플레이 주식회사 게이트 드라이버와 이를 포함한 표시장치, 및 게이트 드라이버의 구동방법
CN208986673U (zh) * 2018-08-07 2019-06-14 昆山龙腾光电有限公司 电源管理电路以及显示装置
CN113436563A (zh) * 2021-06-03 2021-09-24 荣耀终端有限公司 电源电路、驱动装置和显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100894606B1 (ko) * 2007-10-29 2009-04-24 삼성모바일디스플레이주식회사 유기 전계 발광 표시 장치 및 그의 전원 공급 방법
TWI409776B (zh) * 2008-12-09 2013-09-21 Chunghwa Picture Tubes Ltd 降低液晶顯示器雜訊之雜訊抑制裝置及相關液晶顯示器
KR101718068B1 (ko) * 2010-08-20 2017-03-21 삼성디스플레이 주식회사 표시 장치용 전원 공급 장치 및 전원 공급 방법
JP2015018064A (ja) * 2013-07-10 2015-01-29 株式会社ジャパンディスプレイ 表示装置
KR20200061121A (ko) * 2018-11-23 2020-06-02 엘지디스플레이 주식회사 방전회로 및 이를 포함하는 표시장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110175880A1 (en) * 2010-01-21 2011-07-21 Samsung Mobile Display Co., Ltd. Power driver, driving method of the same, and organic light emitting display device including power driver
CN104882111A (zh) * 2015-06-24 2015-09-02 京东方科技集团股份有限公司 一种显示驱动电路及其驱动方法、显示装置
CN106847200A (zh) * 2015-11-24 2017-06-13 乐金显示有限公司 显示装置及其驱动方法
CN105427828A (zh) * 2016-01-08 2016-03-23 京东方科技集团股份有限公司 显示面板驱动电路、显示面板驱动方法和显示装置
CN106157915A (zh) * 2016-08-31 2016-11-23 深圳市华星光电技术有限公司 薄膜晶体管液晶显示器的驱动装置及驱动方法
CN206932170U (zh) * 2017-04-12 2018-01-26 深圳市峰泳科技有限公司 电源电路及其液晶显示装置
KR20190045661A (ko) * 2017-10-24 2019-05-03 엘지디스플레이 주식회사 게이트 드라이버와 이를 포함한 표시장치, 및 게이트 드라이버의 구동방법
CN208986673U (zh) * 2018-08-07 2019-06-14 昆山龙腾光电有限公司 电源管理电路以及显示装置
CN113436563A (zh) * 2021-06-03 2021-09-24 荣耀终端有限公司 电源电路、驱动装置和显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4123629A4

Also Published As

Publication number Publication date
EP4123629A4 (en) 2023-08-23
EP4123629A1 (en) 2023-01-25
US20240144869A1 (en) 2024-05-02
CN113436563A (zh) 2021-09-24
CN113436563B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
KR101323493B1 (ko) 유기발광다이오드 표시소자
WO2022252627A1 (zh) 电源电路、驱动装置和显示装置
KR101323390B1 (ko) 유기발광다이오드 표시소자와 그 저전력 구동방법
CN109872686B (zh) 一种驱动电路、显示面板及显示面板的制作方法
KR101539593B1 (ko) 표시 장치
TWI602169B (zh) 掃描驅動器及使用其之有機發光二極體顯示器
WO2020248762A1 (zh) 供电控制电路、供电控制方法和显示装置
WO2020143234A1 (zh) 像素驱动电路、像素驱动方法和显示装置
CN104835453B (zh) 一种像素电路、驱动方法及显示装置
JP2007316639A (ja) 画素およびディスプレイパネル
WO2020155902A1 (zh) 像素驱动电路、像素驱动方法和显示装置
CN106782322A (zh) Amoled像素驱动电路及amoled像素驱动方法
CN108053792A (zh) 一种像素电路及其驱动方法、显示装置
TW201327527A (zh) 發光二極體電路,驅動發光二極體電路之方法及顯示器
WO2022217891A1 (zh) 像素电路及其驱动方法、显示基板、显示装置
WO2019041835A1 (zh) 像素电路、及其驱动方法和显示装置
WO2018196096A1 (zh) 像素驱动电路、显示面板及像素驱动方法
CN109036269A (zh) 像素电路、像素驱动方法和有机电致发光显示装置
WO2019228033A1 (zh) 像素驱动电路、像素驱动方法及显示装置
CN110264947A (zh) 像素电路、驱动方法和显示装置
CN108877679A (zh) 像素电路、显示装置和像素驱动方法
CN113053297A (zh) 像素电路、像素驱动方法和显示装置
KR102232449B1 (ko) 전압 공급 회로 및 이를 포함하는 전계발광 디스플레이 장치
KR102070583B1 (ko) 유기발광 표시장치와, 그 구동방법
US11211005B2 (en) Pixel driving circuit, display device and driving method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17792981

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022735283

Country of ref document: EP

Effective date: 20220713

NENP Non-entry into the national phase

Ref country code: DE