WO2022252460A1 - 转子、电机及家用电器 - Google Patents

转子、电机及家用电器 Download PDF

Info

Publication number
WO2022252460A1
WO2022252460A1 PCT/CN2021/122395 CN2021122395W WO2022252460A1 WO 2022252460 A1 WO2022252460 A1 WO 2022252460A1 CN 2021122395 W CN2021122395 W CN 2021122395W WO 2022252460 A1 WO2022252460 A1 WO 2022252460A1
Authority
WO
WIPO (PCT)
Prior art keywords
contour line
magnetic field
rotor
iron core
groove
Prior art date
Application number
PCT/CN2021/122395
Other languages
English (en)
French (fr)
Inventor
李伟
Original Assignee
广东威灵电机制造有限公司
威灵(芜湖)电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202121215272.5U external-priority patent/CN214707441U/zh
Priority claimed from CN202110610136.4A external-priority patent/CN113300543A/zh
Priority claimed from CN202110610133.0A external-priority patent/CN113300542B/zh
Application filed by 广东威灵电机制造有限公司, 威灵(芜湖)电机制造有限公司 filed Critical 广东威灵电机制造有限公司
Publication of WO2022252460A1 publication Critical patent/WO2022252460A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors

Definitions

  • the invention relates to the technical field of motors, in particular to a rotor, a motor and household appliances.
  • the AC motor with PG Pulse Generator, pulse generator
  • the AC motor with PG Pulse Generator, pulse generator
  • the magnetic ring is installed at the position of the rotor bearing, and a Hall sensor is arranged above the magnetic ring.
  • the Hall sensor senses the magnetic field of the magnetic ring Change, obtain the speed signal of the rotor, and then feed the signal back to the whole machine to realize the speed adjustment.
  • the axial space occupied by the magnetic ring is relatively large, and the power density of the motor cannot be increased under the condition of a certain installation size limitation.
  • the magnetic ring is installed on the rotor core to save axial space, but the magnetic field of the rotor will affect the magnetic field distribution of the magnetic ring, thereby affecting the detection of the magnetic ring magnetic field by the Hall sensor and reducing the speed of the motor. accuracy.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. Therefore, the present invention proposes a rotor capable of reducing the interference of the rotor magnetic field on the magnetic field signal of the magnet.
  • the present invention also provides a motor with the above-mentioned rotor and a household appliance with the above-mentioned motor.
  • the rotor according to the embodiment of the first aspect of the present invention includes a rotating shaft, an iron core, an end ring, a magnet and a shielding component; the iron core is wound around the outer peripheral wall of the rotating shaft, and the end ring is located along the One axial end of the rotor, the end ring away from the iron core is provided with a groove; the magnet is installed in the groove; the shielding part is made of magnetically conductive material, and the shielding part Installed in the groove and located on the side of the magnet facing the iron core.
  • the rotor according to the embodiment of the first aspect of the present invention has at least the following beneficial effects: by installing a shielding part made of magnetically permeable material in the groove, since the magnetic permeability of the shielding part is much greater than that of air, the The magnetic field lines of the rotor magnetic field passing through the groove will pass through the shielding parts more to form a closed loop, thereby reducing the closed loop formed by the magnetic field lines of the rotor magnetic field passing through the air, thereby reducing the influence of the rotor magnetic field on the magnetic field of the magnet and reducing the impact of harmonics on the magnetic field
  • the interference of the induction device is conducive to improving the detection accuracy of the magnetic field induction device to the magnetic field of the magnet, thereby helping to improve the accuracy of motor speed regulation.
  • the shielding member has a first surface along the axial direction of the rotor near the end of the magnet, and the first surface is provided with a first inner contour line and a first outer contour line, so Both the first inner contour line and the first outer contour line are closed curves and form a closed surface.
  • the groove is provided with a first groove wall and a second groove wall at intervals along the radial direction of the rotor, and the first groove wall is closer to the rotor than the second groove wall.
  • axis line the distance between the first inner contour line and the first groove wall is d11
  • the distance between the first outer contour line and the second groove wall is d12
  • the d11 and The d12 satisfies the following relationship: max(d11, d12) ⁇ 2mm.
  • the shielding member has a second surface at an end facing away from the magnet along the axial direction of the rotor, and the second surface is provided with a second inner contour line and a second outer contour line, so Both the second inner contour line and the second outer contour line are closed curves and form a closed surface.
  • the distance between the second inner contour line and the first groove wall is d21
  • the distance between the second outer contour line and the second groove wall is d22
  • the d21 and the d22 satisfy the following relationship: max(d21, d22) ⁇ 2mm.
  • the distance between the first inner contour line and the second inner contour line is h1
  • the distance between the first outer contour line and the second outer contour line is h2
  • the h1 and the h2 satisfy the following relationship: min(h1, h2) ⁇ 0.2mm.
  • the two end rings are located at both ends of the iron core along the axial direction of the rotor, and one of the end rings is away from the iron core
  • the end portion is provided with a first protrusion and a second protrusion, and the first protrusion and the second protrusion are distributed along the radial direction of the rotor at intervals, and the first protrusion and the second protrusion The grooves are formed between them.
  • the surface of the magnet protrudes beyond the first convex surface and the second convex surface.
  • the groove is an annular groove, and the annular groove is arranged around the axis of the rotor.
  • the groove is an annular groove, and the geometric center of the annular groove is located on the axis of the rotor.
  • the motor according to the embodiment of the second aspect of the present invention comprises: a stator having a housing cavity; a rotor rotatingly disposed in the housing cavity, the rotor including an iron core, an end ring and a magnet, and the end ring is connected to the One axial end of the iron core, the end of the end ring away from the iron core is provided with a groove, and the magnet is arranged in the groove; a magnetic field induction device, the magnetic field induction device includes a magnetic field induction device and The circuit board connected to the magnetic field induction device, the magnetic field induction device and the magnet are arranged at intervals along the axial direction of the iron core; wherein, the end ring is also provided with a first protrusion and a second protrusion, the The first protrusion is located on a side of the groove away from the center of the iron core, and the second protrusion is located on a side of the groove facing the center of the iron core.
  • the end ring is provided with a first protrusion and a second protrusion located on both sides of the groove along the radial direction of the iron core.
  • the magnetic field lines generated by the magnetic field of the first protrusion and the magnetic field lines generated by the magnetic field of the second protrusion are in opposite directions. , so that the magnetic fluxes of the first raised magnetic field and the second raised magnetic field respectively entering the magnetic field induction device cancel each other, effectively reducing the interference of the motor's magnetic field to the magnet, and ensuring the accuracy of the motor's speed signal.
  • the width of the first raised surface along the radial direction of the iron core is d12
  • the width of the second raised surface along the radial direction of the iron core is d32
  • the plane where the surface of the first protrusion is located is perpendicular to the axial direction of the iron core, and the surface of the first protrusion includes first outer contour lines and first inner contour lines arranged at intervals. Contour lines, the first outer contour line and the first inner contour line enclose to form a closed annular plane.
  • the plane where the second convex surface is located is perpendicular to the axial direction of the iron core, and the second convex surface includes a second outer contour line and a second inner contour line arranged at intervals.
  • the contour line, the second outer contour line and the second inner contour line enclose to form a closed annular plane.
  • the distance between the magnet and the magnetic field induction device is d1;
  • the surface of the magnet includes a third outer contour line and a third
  • the inner contour line, along the radial direction of the iron core, the distance between the third outer contour line and the centerline of the third inner contour line and the geometric center of the magnetic field induction device is d2, satisfying:
  • the distance between the magnet and the magnetic field induction device is d1, which satisfies: 0 ⁇ d1 ⁇ 3mm.
  • the surface of the magnet includes a third outer contour line and a third inner contour line arranged at intervals, and along the radial direction of the iron core, the third outer contour line and the third
  • the distance between the center line of the inner contour line and the geometric center of the magnetic field induction device is d2; the width of the surface of the magnet along the radial direction of the iron core is d3, satisfying: 0 ⁇ d2 ⁇ 1/4 ⁇ d3 .
  • the surface of the magnet includes a third outer contour line and a third inner contour line arranged at intervals, the third outer contour line and the third inner contour line are both circular, so The third outer contour line and the third inner contour line enclose to form a closed circular ring plane.
  • the magnetic field sensing device is a Hall sensor.
  • the rotor further includes a conductive part, two end rings are provided and are respectively connected to the two ends of the iron core in the axial direction, and the conductive part is connected to the two ends between rings.
  • the end ring and the conductive component are integrally manufactured.
  • the stator and the magnetic field induction device are plastic-molded.
  • the motor further includes an end cover positioned and installed with the stator, and the end cover and the magnet are respectively located at two ends of the rotor along the axial direction of the iron core.
  • the surface of the magnet protrudes beyond the first convex surface and the second convex surface.
  • the household appliance according to the embodiment of the third aspect of the present invention includes the motor described in the above embodiment.
  • the motor reduces the occupation of the axial space of the motor by the magnet by arranging the magnet in the groove of the end ring, and arranging the magnetic field induction device along the axial direction of the iron core and the magnet at intervals. Under the condition that the shell size of the motor is limited, the axial space of the motor is saved, the output power of the motor is increased, and thus the load capacity of the motor is improved.
  • the end ring is provided with a first protrusion and a second protrusion located on both sides of the groove along the radial direction of the iron core.
  • the magnetic field lines generated by the magnetic field of the first protrusion and the magnetic field lines generated by the magnetic field of the second protrusion are in opposite directions. , so that the magnetic fluxes of the first raised magnetic field and the second raised magnetic field respectively entering the magnetic field induction device cancel each other, effectively reducing the interference of the motor's magnetic field to the magnet, and ensuring the accuracy of the motor's speed signal.
  • Fig. 1 is a partial sectional view of a rotor of an embodiment of the present invention
  • Figure 2 is an enlarged view of A in Figure 1;
  • Fig. 3 is an exploded schematic view of the rotor of the embodiment of the present invention.
  • FIG. 4 is a perspective view of a shielding component according to an embodiment of the present invention.
  • Fig. 5 is an enlarged view at B place in Fig. 4;
  • Fig. 6 is a schematic diagram of the assembly of the iron core and the end ring of the embodiment of the present invention.
  • Figure 7 is an enlarged view at C in Figure 6;
  • Fig. 8 is a schematic diagram of the installation structure of the Hall sensor of the embodiment of the present invention.
  • Fig. 9 is a change coordinate diagram of the frequency fluctuation of the magnet according to the embodiment of the present invention.
  • Fig. 10 is a change coordinate diagram of the frequency fluctuation of the magnet according to another embodiment of the present invention.
  • Fig. 11 is a partial structural schematic diagram of a motor according to an embodiment of the present invention.
  • Fig. 12 is a partial sectional view of Fig. 11;
  • Fig. 13 is an enlarged view of place A in Fig. 12;
  • Fig. 14 is a schematic structural view of the rotor assembly in Fig. 11, wherein the magnetic ring is removed;
  • Fig. 15 is a structural schematic diagram of the magnetic ring in Fig. 11;
  • Fig. 16 is a schematic top view of Fig. 15;
  • Fig. 17 is a change coordinate diagram of the frequency fluctuation of the magnetic field felt by the Hall sensor of the motor according to an embodiment of the present invention.
  • Fig. 18 is a change coordinate diagram of the frequency fluctuation of the magnetic field felt by the Hall sensor of the motor according to another embodiment of the present invention.
  • Fig. 19 is a schematic structural view of a motor according to an embodiment of the present invention.
  • FIG. 20 is a schematic partial cross-sectional view of FIG. 19 .
  • End ring 300 first end ring 140, second end ring 150, grooves 310, 160, first groove wall 311, second groove wall 312, first protrusions 320, 180, second protrusions 330, 190, The first raised surface 181, the first raised outer contour line A111, the first raised inner contour line A112, the second raised surface 191, the second raised outer contour line A311, the second raised inner contour line A312;
  • Shielding component 500 first surface 510, first inner contour line 511, first outer contour line 512, second surface 520, second inner contour line 521, second outer contour line 522;
  • Plastic-encapsulated stator 700 inner side 710;
  • the second end cap 900 The second end cap 900 .
  • orientation descriptions such as up, down, front, back, left, right, etc. indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only In order to facilitate the description of the present invention and simplify the description, it does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and thus should not be construed as limiting the present invention.
  • the PG speed regulating motor has a magnetic field induction device.
  • the principle of speed regulation is to sense the magnetic field change signal of the magnetic ring through the magnetic field induction device, and output the corresponding signal to the control board to adjust the working voltage output to the PG motor for automatic control of the speed.
  • the magnetic ring is installed near the rotor bearing position, and the magnetic ring occupies a large axial space. Under the condition of certain installation size limitation, the power density of the motor cannot be improved.
  • the rotor magnetic ring is installed on the rotor core to save the axial space, but the magnetic field of the rotor affects the magnetic field distribution of the magnetic ring.
  • the present invention provides a rotor, which can reduce the interference of the magnetic field of the rotor to the magnetic field signal of the magnetic ring.
  • the present invention also provides a motor with the above-mentioned rotor and a household appliance with the above-mentioned motor.
  • the rotor according to the first embodiment of the present invention is applied to a motor, and the rotor includes a rotating shaft 100 , an iron core 200 , an end ring 300 , a magnet 400 and a shielding component 500 .
  • the iron core 200 is wound around the outer peripheral wall of the rotating shaft 100 and is fixedly connected with the rotating shaft 100.
  • the conductive component 210 can be cast aluminum or cast copper.
  • the conductive component 210 generates induced current under the action of the changing magnetic field of the stator of the motor, and the changing induced current of the conductive part 210 generates the magnetic field of the rotor.
  • the structure of the rotor is similar to a squirrel cage, so this type of rotor is usually called a squirrel-cage rotor.
  • the two ends of the iron core 200 along the axial direction of the rotor are respectively provided with end rings 300, and one of the end rings 300 is provided with a groove 310 at the end away from the iron core 200.
  • the groove 310 can be a circular groove or a square groove or other The structure of the shape.
  • the end ring 300 can also be made of cast aluminum or copper, and can be integrated with the conductive part 210.
  • the end ring 300 and the conductive part 210 can be integrally formed on the iron core by casting 200 on.
  • the magnet 400 is installed in the groove 310 for cooperating with the magnetic field sensing device 600 to detect the rotation speed of the rotor, as shown in FIG. 8 .
  • the magnetic field sensing device 600 includes a Hall sensor 610 and a circuit board 620, the Hall sensor 610 is connected to the circuit board 620, and the circuit board 620 can be installed on the casing of the motor. It should be noted that the Hall sensor 610 may also be replaced by other magnetic field sensing devices, which is not specifically limited here.
  • the magnet 400 rotates with the rotor to generate a changing magnetic field
  • the Hall sensor 610 detects the change of the magnetic field of the magnet 400 so as to obtain the rotational speed information of the rotor.
  • the shielding component 500 is made of magnetically permeable material, which may be engineering pure iron, magnetically permeable stainless steel, low carbon steel or other materials. Specifically, the shielding component 500 is installed at the bottom of the groove 310 , and the magnet 400 is installed in the groove 310 and above the shielding component 500 .
  • the rotor is provided with a groove 310 on the end ring 300, and the magnet 400 is installed in the groove 310, thereby reducing the occupation of the axial space of the motor by the magnet 400, which is conducive to improving the output power and load capacity of the motor
  • the shielding part 500 made of magnetically permeable material in the groove 310, since the magnetic permeability of the shielding part 500 is much greater than that of air, the magnetic force lines of the rotor magnetic field passing through the groove 310 will be more Many places pass through the shielding part 500 to form a closed loop, thereby reducing the closed loop formed by the magnetic field lines of the rotor magnetic field passing through the air, thereby reducing the influence of the rotor's magnetic field on the magnetic field of the magnet 400, and reducing the interference of harmonics on the Hall sensor 610, which is beneficial Improving the detection accuracy of the Hall sensor 610 on the magnetic field of the magnet 400 is beneficial to improving the accuracy of motor speed regulation.
  • the two ends of the shielding member 500 along the axial direction of the rotor are respectively provided with a first surface 510 and a second surface 520 , wherein the first surface 510 is closer to the second surface 520
  • the first surface 510 is provided with a first inner contour line 511 and a first outer contour line 512 distributed along the radial direction of the rotor at intervals
  • the first inner contour line 511 and the first outer contour line 512 are both closed curves
  • the first inner contour line 511 and the first outer contour line 512 surround and form a closed surface to constitute the first surface 510 .
  • the closed surface is a plane, and its shape can be specifically set according to actual needs, for example, it can be an elliptical ring or a ring or other shapes.
  • the groove 310 is provided with a first groove wall 311 and a second groove wall 312 at intervals along the radial direction of the rotor, and the first groove wall 311 is closer to the axis of the rotor relative to the second groove wall 312 , the first groove wall 311 and the second groove wall 312 are the two inner sidewalls of the groove 310 .
  • the distance between the first inner contour line 511 and the first groove wall 311 is d11, when the distance between the first inner contour line 511 and the first groove wall 311 is constant, then d11 is a constant value, when the second When the distance between the inner contour line 511 and the first groove wall 311 is not constant everywhere, d11 is a value varying within a certain value range.
  • the distance between the first outer contour line 512 and the second groove wall 312 is d12.
  • d12 is a fixed value
  • d12 is a value that changes within a certain value range at this time.
  • d11 and d12 satisfy the following relationship: max(d11, d12) ⁇ 2mm, that is, the value of the larger of d11 and d12 is less than or equal to 2mm, that is, both d11 and d12 are less than or equal to 2mm.
  • the magnetic field lines of the rotor pass through the air gap and then pass through the shielding member 500 to form a closed loop. Since there is an air gap in the loop, And when the distance of the air gap is larger, the magnetic permeability of the magnetic circuit drops more obviously, so by limiting the air gap distance between the inner contour line and the outer contour line of the first surface 510 and the two inner sidewalls of the groove 310, so that The drop value of the composite magnetic permeability of the loop is small, so that the magnetic field lines of the rotor magnetic field can pass through the shielding part 500 more to form a closed loop, thereby reducing the closed loop formed by the magnetic field lines of the rotor magnetic field passing through the air, so that the magnetic field of the rotor enters the magnet
  • the magnitude of the magnetic field of 400 is at a relatively low level, further reducing the influence of the rotor's magnetic field on the magnetic field of magnet 400
  • the second surface 520 is provided with a second inner contour line 521 and a second outer contour line 522 distributed along the radial direction of the rotor, and the second inner contour line 521 and Both the second outer contour lines 522 are closed curves, and the second inner contour line 521 and the second outer contour line 522 enclose to form a closed surface to constitute the second surface 520 .
  • the closed surface is a plane, and its shape can be specifically set according to actual needs, for example, it can be an elliptical ring or a ring or other shapes.
  • the distance between the second inner contour line 521 and the first groove wall 311 is d21, when the distance between the second inner contour line 521 and the first groove wall 311 is constant , d21 is a fixed value at this time, and when the distance between the second inner contour line 521 and the first groove wall 311 is not constant everywhere, d21 is a value varying within a certain value range.
  • the distance between the second outer contour line 522 and the second groove wall 312 is d12.
  • d22 is a fixed value at this time, when the distance between the second outer contour line 522 and the second groove wall 312 is at When everywhere is not constant, d22 is a value that changes within a certain value range at this time.
  • d21 and d22 satisfy the following relationship: max(d21, d22) ⁇ 2mm, that is, the value of the larger of d21 and d22 is less than or equal to 2mm, that is, neither d21 nor d22 is greater than 2mm.
  • the magnetic lines of force of the rotor pass through the air gap and then pass through the shielding member 500 to form a closed loop.
  • gap, and the magnetic permeability of the magnetic circuit drops more obviously when the distance of the air gap is larger, so by defining the air gap distance between the inner contour line and the outer contour line of the second surface 520 and the two inner side walls of the groove 310 , so that the combined magnetic permeability drop of the loop is smaller, so that more magnetic lines of the rotor magnetic field can pass through the shielding component 500 to form a closed loop, thereby reducing the closed loop formed by the magnetic field lines of the rotor magnetic field passing through the air, so that the magnetic field of the rotor enters
  • the magnitude of the magnetic field of the magnet 400 is at a relatively low level, further reducing the influence of the magnetic field of the rotor on the magnetic field of the magnet 400 .
  • d11, d12, d21 and d22 when the maximum value is not greater than 2mm, at this time the magnetic field lines of the rotor pass through the air gap and then pass through the closed loop formed by the shielding part 500.
  • the lower magnetic permeability drop is beneficial to improve the shielding effect of the shielding component 500 on the rotor magnetic field, thereby improving the detection accuracy of the Hall sensor 610 on the magnetic field of the magnet 400 .
  • the distance between the first inner contour line 511 and the second inner contour line 521 is h1, when the distance between the first inner contour line 511 and the second inner contour line 521 is constant, At this time h1 is a fixed value, when the distance between the first inner contour line 511 and the second inner contour line 521 is not constant everywhere, then h1 is a value varying within a certain value range.
  • the distance between the first outer contour line 512 and the second outer contour line 522 is h2, similarly, when the distance between the first outer contour line 512 and the second outer contour line 522 is constant, then h2 is a fixed When the distance between the first outer contour line 512 and the second outer contour line 522 is not constant everywhere, then h2 is a value that varies within a certain value range.
  • h1 and h2 satisfy the following relationship: min(h1, h2) ⁇ 0.2mm, that is, the smallest of h1 and h2 is h, and h is greater than or equal to 0.2mm, that is, neither h1 nor h2 is less than 0.2mm, so that the shielding part 500 The thickness is not less than a certain value. Referring to Fig.
  • the thickness of the shielding part 500 when the thickness of the shielding part 500 is reduced, when the magnetic field of the rotor enters the shielding part 500, its magnetic permeability decreases, even, the shielding part 500 is saturated, and the magnetic permeability drops more obviously. Therefore, by limiting the shielding part 500 The thickness of the shielding component 500 reduces the magnetic permeability at a relatively low level, so that most of the magnetic field lines of the rotor can pass through the shielding component 500, thereby reducing the influence on the magnetic field of the magnet 400.
  • the end of the end ring 300 is provided with a first protrusion 320 and a second protrusion 330, the first protrusion 320 and the second protrusion 330 are spaced along the radial direction, the first protrusion A groove 310 is formed between 320 and the second protrusion 330, and the groove 310 can be a circular groove, an elliptical groove, a polygonal groove or other shapes of groove structures, which can be specifically set according to actual needs.
  • the first protrusion 320 includes a first upper surface, a first lower surface, a first inner surface and a first outer surface, and the first upper surface is distributed along the radial direction of the rotor with the inner contour line of the first upper surface and the first outer surface.
  • An outer contour line of the upper surface, the inner contour line of the first upper surface and the outer contour line of the first upper surface are all closed curves, and the inner contour line of the first upper surface and the outer contour line of the first upper surface are surrounded to form a closed surface to form a The first upper surface.
  • the first upper surface may be in the shape of a ring, an ellipse, or a petal.
  • the second protrusion 330 includes a second upper surface, a second lower surface, a second inner surface and a second outer surface, and the second upper surface is distributed with the inner contour line of the second upper surface and the second outer surface at intervals along the radial direction of the rotor.
  • the outer contour line of the second upper surface, the inner contour line of the second upper surface and the outer contour line of the second upper surface are all closed curves, and the inner contour line of the second upper surface and the outer contour line of the second upper surface are surrounded to form a closed surface to constitute The second upper surface.
  • the second upper surface may be in the shape of a ring, an ellipse, or a petal.
  • the first inner surface forms the first groove wall 311
  • the second inner surface forms the second groove wall 312 .
  • the groove 310 is an annular groove, and the annular groove is arranged around the axis of the rotor. Specifically, the head and tail ends of the ring groove are connected, and the magnet 400 matches the shape of the groove 310, and is also a ring magnet 400 connected from the head to the tail. , so that it is beneficial to increase the magnetic field of the magnet 400 , thereby improving the detection accuracy of the sensor for the magnetic field of the magnet 400 .
  • the groove 310 is further set in the shape of an annular groove, the geometric center of which is located on the axis of the rotor, and the magnet 400 is also in the shape of an annular shape matching the groove 310 .
  • the magnetic field distribution of the magnet 400 is more uniform, which is further conducive to improving the detection accuracy of the Hall sensor 610 for the magnetic field of the magnet 400 .
  • FIG. 11 is a schematic diagram of a partial structure of a motor according to an embodiment of the second aspect of the present invention.
  • the motor in one embodiment of the present invention is a PG motor, that is, an AC motor with speed regulation by a pulse generator.
  • PG motors are widely used in household appliances such as air conditioners.
  • the speed adjustment of the PG motor is achieved by setting a magnet on the rotor and setting a Hall element above the magnet.
  • the Hall element obtains the rotation speed signal of the rotor by inducing the change of the magnetic field of the magnet, and then feeds the rotation speed signal back to the motor. .
  • the motor in the embodiment of the present invention includes a stator (not shown in the figure) and a rotor.
  • the stator has an accommodating cavity, and the rotor is rotatably arranged in the accommodating cavity.
  • the stator includes a stator core.
  • the stator core includes stator teeth uniformly distributed along the circumferential direction and a stator yoke connected to the stator teeth. Coils are wound on the stator teeth to form a winding.
  • the rotor includes a rotating shaft 110 and an iron core 120 sleeved on the rotating shaft 110 , and the rotating shaft 110 is located at the center of the iron core 120 .
  • the stator core is disposed around the periphery of the core 120 , the stator core and the core 120 are coaxially arranged, and an air gap is formed between the stator core and the core 120 .
  • the air gap is the gap between the stator core and the iron core 120, and the size of the air gap is set according to the actual use requirements of the motor.
  • the rotor further includes a conductive component 130 , a first end ring 140 and a second end ring 150 , and the first end ring 140 and the second end ring 150 are respectively arranged at two axial ends of the iron core 120 .
  • the conductive component 130 is a plurality of guide bars, which are arranged at intervals along the circumferential direction of the iron core 120 , and two ends of the guide bars are respectively connected to the first end ring 140 and the second end ring 150 .
  • the conductive component 130 may be replaced by a permanent magnet, and the permanent magnet is disposed in the iron core 120 and located between the first end ring 140 and the second end ring 150 .
  • FIG. 12 is a partial cross-sectional view of a motor according to an embodiment of the present invention.
  • the motor also includes a magnetic field induction device 200, the magnetic field induction device 200 includes a Hall sensor 210 and a circuit board 220, the Hall sensor 210 is connected to the circuit board 220, and the circuit board 220 can be installed on the casing of the motor.
  • the Hall sensor 210 may also be replaced by other magnetic field sensing devices, which is not specifically limited here.
  • FIG. 14 is a structural schematic diagram of a rotor in a motor of the present invention, wherein the magnet 170 is removed.
  • FIG. 15 is a schematic structural diagram of a magnet 170 in a motor according to an embodiment of the present invention.
  • the magnet 170 is a magnetic ring.
  • the rotor also includes a magnetic ring 170 .
  • the magnetic ring 170 may also be replaced by other magnetic field generating components, which are not specifically limited here.
  • the first end ring 140 is located above the iron core 120, the surface of the first end ring 140 is provided with a groove 160, the groove 160 is annular and is located on the surface of the end of the first end ring 140 away from the iron core 120, the magnetic ring 170 Installed in the groove 160.
  • the upper surface 171 of the magnetic ring 170 is an annular plane, but not limited to an annular plane, such as an elliptical annular plane, a petal annular plane and the like.
  • FIG. 13 is an enlarged view of A in FIG. 12 .
  • the Hall sensor 210 is located above the magnetic ring 170 along the axial direction of the iron core 120 , that is, spaced apart from the magnetic ring 170 along the axial direction of the iron core 120 .
  • the magnetic field direction of the magnetic ring 170 in this embodiment is an axial magnetic field, and the installation position of the Hall sensor 210 can accurately sense the change of the magnetic field of the magnetic ring 170, obtain the speed signal of the rotor, and then feed the signal back to the motor to realize the rotational speed. adjust.
  • the magnetic ring 170 is installed in the first end ring 140, which can reduce the occupation of the axial space of the rotating shaft 110 by the traditional installation position of the magnetic ring 170, and save the axial space of the motor.
  • Increase the length of the iron core 120 According to the basic principles of motor design, increasing the length of the iron core 120 can increase the output power of the motor and thus improve the load capacity of the motor while keeping the motor speed constant.
  • the first end ring 140 can also be disposed under the iron core 120 , and the Hall sensor 210 is located under the magnetic ring 170 along the axial direction of the iron core 120 .
  • the Hall sensor 210 is provided with a sensing surface 211 for detecting changes in the magnetic field.
  • the sensing surface 211 faces the magnetic ring 170 and is perpendicular to the axial direction of the iron core 120, so that the sensing surface 211 is along the axial direction of the iron core 120.
  • the magnetic field of the magnetic ring 170 is detected.
  • the magnetic field of the magnetic ring 170 is perpendicular to the induction surface 211, and the magnetic field change signal of the magnetic ring 170 can be induced by the induction surface 211, and the signal is sent to the control circuit of the motor, and then The operating voltage supplied to the motor is adjusted through the conduction angle of the thyristor, thereby realizing automatic control of the rotational speed.
  • the Hall sensor 210 has the advantages of firm structure, small size, light weight, long life, and convenient installation.
  • first protrusion 180 is located on a side of the groove 160 away from the rotating shaft 110
  • second protrusion 190 is located on a side of the groove 160 facing the rotating shaft 110 .
  • the surface of the first protrusion 180 and the surface of the second protrusion 190 are annular planes, but not limited to annular planes, such as elliptical annular planes, petal annular planes and the like.
  • the magnetic ring 170 is arranged in the first end ring 140, and the magnetic field of the motor coincides with the magnetic field direction of the first end ring 140, causing the magnetic field of the motor to affect the magnetic field of the magnetic ring 170, so that the magnetic field entering the Hall
  • the magnetic field of the Er sensor 210 is a synthetic magnetic field.
  • the Hall sensor 210 will introduce harmonics of the magnetic field, so that the frequency fluctuates and the rotational speed signal is distorted. It is further explained that, according to Maxwell's law, when a current exists in the first end ring 140 , a magnetic field exists around it.
  • the magnetic field of the first protrusion 180 enters into the direction of the magnetic field line of the Hall sensor 210 and the magnetic field of the second protrusion 190
  • the directions of the magnetic lines entering into the Hall sensor 210 are opposite, so the magnetic flux of the magnetic field of the first protrusion 180 and the magnetic field of the second protrusion 190 into the Hall sensor 210 cancel each other out, thereby reducing the magnetic field of the first end ring 140 to
  • the interference of the magnetic field of the magnetic ring 170 reduces the influence of the magnetic field harmonics of the motor on the magnetic field entering the Hall sensor 210 , and reduces the frequency fluctuation of the magnetic field of the Hall sensor 210 .
  • the surface width d12 of the first protrusion 180 and the surface d32 of the second protrusion 190 are set to be substantially the same, for example satisfying the following definition:
  • the width of the surface of the first protrusion 180 along the radial direction of the iron core 120 is d12
  • the width of the surface of the second protrusion 190 along the radial direction of the iron core 120 is d32.
  • the magnetic field of the first protrusion 180 and the magnetic field lines generated by the magnetic field of the second protrusion 190 respectively enter the Hall sensor
  • the magnetic fluxes of 210 cancel each other out, reducing the interference generated by the magnetic field of the motor on the magnetic ring 170 .
  • FIG. 17 is a coordinate diagram of the frequency fluctuation of the magnetic field felt by the Hall sensor 210 of the motor and the value of
  • the motor of this embodiment is defined by the above parameters, so that the surface width d12 of the first protrusion 180 and the surface d32 of the second protrusion 190 are substantially equal, so that the magnetic flux on the surface of the first protrusion 180 is equal to that of the second protrusion.
  • the magnetic flux on the surface from 190 is basically equal.
  • the motor of this embodiment makes the magnetic flux of the magnetic field of the first protrusion 180 entering the Hall sensor 210 equal to the magnetic flux of the magnetic field of the second protrusion 190 entering the Hall sensor 210, and the magnetic field lines generated by the magnetic field of the first protrusion 180
  • the direction of the magnetic field line generated by the magnetic field of the second protrusion 190 is opposite, so that the magnetic flux of the magnetic field of the first protrusion 180 and the magnetic field of the second protrusion 190 respectively entering the Hall sensor 210 cancel each other out, avoiding the magnetic flux of the first protrusion 180
  • the magnetic field and the magnetic field of the second protrusion 190 interfere with the detection of the magnetic field of the magnetic ring 170 by the Hall sensor 210, thereby achieving the effect of avoiding the magnetic field of the motor from interfering with the magnetic field of the magnetic ring 170, and then achieving the purpose of stabilizing the frequency of the magnetic field of the Hall sensor 210 .
  • the motor in this embodiment keeps the signal fluctuation of the Hall sensor
  • the motor in this embodiment limits the shape of the magnetic ring 170, so that the frequency of the magnetic ring 170 changes, and then makes the magnetic field of the motor coincide with the magnetic field frequency of the magnetic ring 170, so that the frequency of the magnetic field entering the Hall sensor 210 is constant. Value, so as to limit the frequency fluctuation of the magnetic field felt by the Hall sensor 210, and further ensure the accuracy of the motor speed signal.
  • the plane where the first raised surface 181 of the first protrusion 180 (that is, the surface facing one end of the Hall sensor 210 ) is located is parallel to the plane where the sensing surface 211 of the Hall sensor 210 is located, Therefore, it is ensured that the Hall sensor 210 can sense the magnetic field of the magnetic ring 170 more accurately, and the detection accuracy of the Hall sensor 210 is improved.
  • Both the first convex surface 181 and the sensing surface 211 are perpendicular to the axial direction of the iron core 120, which reduces the frequency fluctuation of the magnetic field felt by the Hall sensor 210 during the rotation of the rotor, and further ensures the accuracy of the motor speed signal.
  • the first convex surface 181 includes a first convex outer contour line A111 and a first convex inner contour line A112 arranged at intervals.
  • the first convex outer contour line A111 may be a circle, an ellipse, a closed wavy line, a closed tooth shape and the like.
  • the first convex inner contour line A112 may be a circle, an ellipse, a closed wavy line, a closed tooth shape and the like.
  • the first convex surface 181 is an annular plane surrounded by the first convex outer contour line A111 and the first convex inner contour line A112 .
  • the first raised surface 181 can be designed according to the parameter requirements of the motor, so that the motor can meet the needs of actual use.
  • the plane where the second convex surface 191 of the second protrusion 190 (that is, the surface facing one end of the Hall sensor 210 ) is located is parallel to the plane where the sensing surface 211 of the Hall sensor 210 is located, Therefore, it is ensured that the Hall sensor 210 can sense the magnetic field of the magnetic ring 170 more accurately, and the detection accuracy of the Hall sensor 210 is improved.
  • Both the second raised surface 191 and the sensing surface 211 are perpendicular to the axial direction of the iron core 120, which reduces the frequency fluctuation of the magnetic field felt by the Hall sensor 210 during the rotation of the rotor, and further ensures the accuracy of the motor speed signal.
  • the second convex surface 191 includes a second convex outer contour line A311 and a second convex inner contour line A312 arranged at intervals.
  • the second convex outer contour line A311 may be a circle, an ellipse, a closed wavy line, a closed tooth shape and the like.
  • the second convex inner contour line A312 may be a circle, an ellipse, a closed wavy line, a closed tooth shape and the like.
  • the second convex surface 191 is an annular plane surrounded by the second convex outer contour line A311 and the second convex inner contour line A312 .
  • the second convex surface 191 can be designed according to the parameter requirements of the motor, so that the motor can meet the needs of actual use.
  • the Hall sensor 210 is triggered only when the magnetic flux entering the sensing surface 211 is large enough.
  • the distance between the sensing surface 211 and the magnetic ring 170 is closely related to the frequency fluctuation of the magnetic ring 170.
  • the distance When the value is larger, the magnetic flux density is weaker, and when there is a certain interference in the magnetic field, the influence of the harmonic is more obvious, which further increases the frequency fluctuation of the magnetic ring 170 .
  • the magnetic field of the magnetic ring 170 has the highest magnetic induction intensity on the upper surface 171 of the magnetic ring 170, and at a position close to the upper surface 171, the magnetic induction line of each magnetic pole of the magnetic ring 170 is perpendicular to the upper surface 171, and the magnetic induction intensity increases with distance from the upper surface 171.
  • the farther away from the upper surface 171 the weaker the magnetic field lines will diverge in different directions. Not all the magnetic field lines away from the top surface 171 are perpendicular to the top surface 171 .
  • the upper surface 171 of the magnetic ring 170 protrudes from the first end ring 140 . That is, along the axial direction of the iron core 120, the distance between the upper surface 171 of the magnetic ring 170 and the sensing surface 211 of the Hall sensor 210 is smaller than the distance between the first convex surface 181 of the first protrusion 180 and the sensing surface 211, and is also smaller than The distance between the second protruding surface 191 of the second protrusion 190 and the sensing surface 211 . Therefore, the magnetic field intensity of the magnetic ring 170 felt by the Hall sensor 210 is large, so that the Hall sensor 210 can detect more accurately.
  • the strength of the magnetic field of the first protrusion 180 and the magnetic field of the second protrusion 190 felt by the Hall sensor 210 is small, so that the influence of the magnetic field of the first protrusion 180 and the magnetic field of the second protrusion 190 on the magnetic ring 170 can be reduced.
  • the influence of the magnetic field can prevent the magnetic field of the motor from interfering with the magnetic field of the magnetic ring 170 and further improve the detection accuracy of the Hall sensor 210 .
  • the upper surface 171 of the magnetic ring 170 can also be arranged flush with the first end ring 140 .
  • the embodiment of the present invention optimizes the distance d1 between the upper surface 171 of the magnetic ring 170 and the sensing surface 211 of the Hall sensor 210, so that d1 satisfies: 0 ⁇ d1 ⁇ 3mm, That is, the distance between the sensing surface 211 and the upper surface 171 is not greater than 3mm. Therefore, d1 satisfies the above range, the magnetic field of the magnetic ring 170 is distributed roughly along the axial direction and perpendicular to the sensing surface 211, which is beneficial to reduce the influence of harmonics, reduce the frequency fluctuation of the magnetic field felt by the Hall sensor 210, and further improve the Hall effect. Er sensor 210 detection accuracy.
  • the magnetic induction lines When d1 is greater than 3mm, the magnetic induction lines will diverge along the direction of the magnetic field, the sensitivity of the sensing surface 211 to a magnetic field that is not perpendicular to the sensing surface 211 will decrease, and the magnetic induction intensity will also decrease, and the influence of harmonics will be greater, increasing the The frequency of the large magnetic ring 170 fluctuates.
  • FIG. 6 is a schematic top view of a magnetic ring 170 in a motor according to an embodiment of the present invention. It can be understood that, in the radial direction of the iron core 120 , the upper surface 171 of the magnetic ring 170 has a certain width.
  • the upper surface 171 of the magnetic ring 170 includes a third outer contour line S111 and a third inner contour line S112 arranged at intervals, and the third outer contour line S111 and the third inner contour line S112 enclose to form a closed annular plane.
  • the width of the third outer contour line S111 and the third inner contour line S112 along the radial direction of the iron core 120 can be understood as the width direction of the upper surface 171, and passes through the third outer contour line S111 and the third inner contour line S112.
  • the curve formed by the set of midpoints can be understood as the centerline S113 of the upper surface 171 , and the centerline S113 of the upper surface 171 can also be understood as the centerline of the upper surface 171 along the width direction.
  • the radial distance between the central line S113 and the geometric center of the sensing surface 211 is d2
  • the width of the upper surface 171 is d3, and d2 and d3 satisfy the following constraints: 0 ⁇ d2 ⁇ 1/4 ⁇ d3.
  • the positional relationship and structure between the sensing surface 211 and the magnetic ring 170 can be optimized, and the frequency fluctuation of the magnetic field felt by the Hall sensor 210 can be kept at a low level. It can be understood that when the centerline S113 of the upper surface 171 deviates greatly from the geometric center of the sensing surface 211, the magnetic field entering the sensing surface 211 is asymmetrical, the magnetic field waveform is distorted, and the frequency fluctuation is more serious.
  • the magnetic ring 170 has an arc-shaped structure.
  • the third outer contour line S111 is a circle, and the third inner contour line S112 is also a circle. Therefore, the upper surface 171 of the magnetic ring 170 is an annular plane enclosed by the third outer contour line S111 and the third inner contour line S112 .
  • the centerline S113 of the upper surface 171 and the geometric center of the sensing surface 211 can coincide or have a small deviation, which can keep the frequency fluctuation of the magnetic field felt by the Hall sensor 210. at a lower level.
  • d1 is greater than 0 and less than or equal to 3mm, the influence of frequency fluctuation can be further reduced, making the motor more practical and reliable.
  • the width of the surface of the first protrusion 180 along the radial direction of the iron core 120 is d12.
  • the distance between the upper surface 171 of the magnetic ring 170 and the sensing surface 211 of the Hall sensor 210 is d1.
  • the distance between the centerline S113 of the upper surface 171 of the magnetic ring 170 and the geometric center of the Hall sensor 210 is d2.
  • FIG. 8 is a coordinate diagram of the frequency fluctuation of the magnetic field felt by the Hall sensor 210 of the motor and the value of d1 ⁇ d2 according to an embodiment of the present invention.
  • the axial distance between the upper surface 171 of the magnetic ring 170 and the sensing surface 211 of the Hall sensor 210 is d1 and the center line S113 of the upper surface 171 of the magnetic ring 170 and the geometric center of the Hall sensor 210
  • the radial distance between them is optimized as the product of d2, so that d1 ⁇ d2 is within the range of the above parameters. Combining a large number of optimization calculations and a large number of experiments shows that the frequency fluctuation of the magnetic field felt by the Hall sensor 210 is at a low level.
  • the motor in the embodiment of the present invention can reduce the asymmetric component of the magnetic field of the motor from entering the Hall sensor 210, and further reduce the frequency fluctuation of the magnetic field felt by the Hall sensor 210, thereby realizing the purpose of stabilizing the frequency of the magnetic field felt by the Hall sensor 210.
  • the interference of the magnetic field of the motor on the magnetic field of the magnetic ring 170 is small, and the influence of the magnetic field of the motor can be ignored.
  • the pulse signal output by the Hall sensor 210 has high accuracy, which is conducive to more accurate adjustment of the motor speed.
  • the Hall sensor 210 when the magnetic flux entering the Hall sensor 210 is greater than a threshold, the Hall sensor 210 is in a conduction state. Therefore, the distance between the magnetic ring 170 and the Hall sensor 210 is closely related to the frequency fluctuation of the magnetic field felt by the Hall sensor 210 .
  • the axial distance between the upper surface 171 of the magnetic ring 170 and the sensing surface 211 of the Hall sensor 210 is larger, that is, when the value of d1 is larger, the magnetic flux density is weaker.
  • the influence of harmonics is more obvious, which further increases the frequency fluctuation of the magnetic field felt by the Hall sensor 210 .
  • the values of d1 and d2 are controlled to be small, it is beneficial to reduce the interference of the magnetic field of the first protrusion 180 and the magnetic field of the second protrusion 190 on the magnetic field of the magnetic ring 170, thereby reducing the The magnetic field of the motor interferes with the magnetic field of the magnetic ring 170, so that the signal fluctuation of the Hall sensor 210 is at a small level, ensuring the accuracy of the motor speed signal.
  • first end ring 140 the second end ring 150 and the conductive component 130 are integrally formed, which makes the structure of the rotor more stable, thereby improving the structural stability of the motor.
  • the first end ring 140, the second end ring 150 and the conductive member 130 are all made of aluminum material, and the conductive member 130 is connected between the first end ring 140 and the second end ring 150
  • a plurality of aluminum strips, the first end ring 140, the second end ring 150 and the plurality of aluminum strips can be formed by integral casting, thereby forming a stable connection structure with the iron core 120, further improving the stability of the rotor and reducing the processing time. difficulty.
  • the first end ring 140, the second end ring 150 and the conductive member 130 are all made of copper material, and the conductive member 130 is connected between the first end ring 140 and the second end ring 150.
  • the plurality of copper bars, the first end ring 140 , the second end ring 150 and the plurality of copper bars are fixed by means of welding or the like, so as to form a stable connection structure with the iron core 120 .
  • Fig. 19 is a schematic structural view of a motor according to an embodiment of the present invention
  • Fig. 20 is a schematic partial cross-sectional view of a motor according to an embodiment of the present invention.
  • the motor in this embodiment is a plastic-sealed motor
  • the stator is a plastic-sealed stator 700 .
  • the magnetic field induction device 200 including the Hall sensor 210 and the circuit board 220 and the plastic-encapsulated stator 700 are integrally molded, which can make the installation accuracy of the Hall sensor 210 higher and the installation structure more stable, thereby improving the detection of the Hall sensor 210. Accuracy, but also improve the stability of the motor; and can effectively reduce the axial size of the motor.
  • the motor further includes a first end cover 800 and a second end cover 900 . Both ends of the first end cover 800 and the second end cover 900 are installed with bearings, and the two ends of the rotating shaft 110 are rotatably connected to the two bearings, so that the rotor can achieve stable rotation.
  • the first end cover 800 is molded integrally with one end of the plastic-sealed stator 700 .
  • the other end of the plastic-encapsulated stator 700 is provided with an opening (not shown in the figure), through which the rotor can be inserted into the cavity of the plastic-encapsulated stator 700 .
  • the second end cap 900 is used to cover the opening.
  • the second end cap 900 can be interference-fitted with the inner surface 310 of the plastic-encapsulated stator 700 , so as to achieve a stable connection between the second end cap 900 and the plastic-encapsulated stator 700 .
  • Adopting the above-mentioned structure the second end cover 900 does not occupy the axial space of the plastic-sealed stator 700 , which is beneficial to increase the thickness of the stator core and improve the performance of the motor.
  • the second end cover 900 and the magnetic ring 170 are respectively located at both ends of the rotor along the axial direction of the iron core 120 , so that the internal structure of the plastic-encapsulated motor in this embodiment is more reasonable, the structure is more reliable, and the assembly is more efficient.
  • the second end cover 900 can also be positioned and connected with the plastic-encapsulated stator 700 by means of bonding, clipping, etc., so as to fix the second end cover 900 to the plastic-enclosed stator 700 , and the specific method is not specifically limited here.
  • a household appliance includes the motor of the above embodiment.
  • the household appliance may be an air conditioner hanger, an air conditioner cabinet, a mobile air conditioner, a window air conditioner, etc., which are not specifically limited here.
  • the present invention is a household appliance according to an embodiment.
  • the motor according to the embodiment of the first aspect is adopted.
  • the motor is configured by placing the magnetic ring 170 in the groove 160 of the first end ring 140 and placing the Hall sensor 210 along the axial direction of the iron core 120. It is spaced apart from the magnetic ring 170, thereby reducing the occupation of the axial space of the motor by the magnetic ring 170. Under the condition of the limited size of the motor shell, it saves the axial space of the motor and increases the output power of the motor, thereby increasing the belt capacity of the motor. load capacity.
  • the first end ring 140 is provided with a first protrusion 180 and a second protrusion 190 located on both sides of the groove 160 along the radial direction of the iron core 120, and the width of the surface of the first protrusion 180 along the radial direction of the iron core 120 is d12 , the width of the surface of the second protrusion 190 along the radial direction of the iron core 120 is d32, which satisfies:
  • the width of the surface of the first protrusion 180 and the width of the surface of the second protrusion 190 are set to be substantially equal, so that the magnetic flux of the magnetic field of the first protrusion 180 entering the Hall sensor 210 is equal to that of the second protrusion.
  • the magnetic flux of the magnetic field of 190 entering the Hall sensor 210 is equal, and the magnetic field lines generated by the magnetic field of the first protrusion 180 and the magnetic field lines of the second protrusion 190 are in opposite directions, so that the magnetic field of the first protrusion 180 and the magnetic field of the second protrusion 190 are opposite in direction.
  • the magnetic flux of the magnetic field of the second protrusion 190 respectively entering the Hall sensor 210 cancels each other, avoiding the magnetic field of the first protrusion 180 and the magnetic field of the second protrusion 190 from interfering with the detection of the magnetic field of the magnetic ring 170 by the Hall sensor 210, thereby achieving The effect of the magnetic field of the motor from interfering with the magnetic field of the magnetic ring 170 is avoided, thereby achieving the purpose of stabilizing the frequency of the magnetic field of the Hall sensor 210 .
  • the motor in this embodiment keeps the signal fluctuation of the Hall sensor 210 at a small level, which ensures the accuracy of the motor speed signal.
  • the household appliance of the embodiment of the third aspect of the present invention includes the motor of the embodiment of the second aspect of the present invention.
  • the home appliance may be an air conditioner, a fan, or the like.
  • the indoor unit of the air conditioner adopts the motor of the above embodiment to drive the wind wheel to rotate, so as to realize the air supply of the indoor unit. Since the air conditioner adopts all the technical solutions of the motor of the above-mentioned embodiments, it at least has all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种转子、电机及家用电器,其中转子包括转轴(100)、铁芯(201)、端环(300)、磁体(400)和屏蔽部件(500);铁芯(201)绕设于转轴(100)的外周壁,端环(300)位于铁芯(201)沿转轴(100)的轴向的一端,端环(300)远离铁芯(201)的端部设置有凹槽(310);磁体(400)安装于凹槽(310);屏蔽部件(500)由导磁材料制成,屏蔽部件(500)安装于凹槽(310)且位于磁体(400)朝向铁芯(201)的一侧。

Description

转子、电机及家用电器
相关申请的交叉引用
本申请要求于2021年06月01日提交的申请号为202110610136.4、名称为“电机及家用电器”,于2021年06月01日提交的申请号为202121215272.5、名称为“电机及家用电器”,以及于2021年06月01日提交的申请号为202110610133.0、名称为“转子、电机及家用电器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电机技术领域,特别涉及一种转子、电机及家用电器。
背景技术
具有PG(Pulse Generator,脉冲发生器)调速的交流电机通常在转子上带有磁环,磁环安装在转子轴承位置,在磁环上方设置霍尔传感器,霍尔传感器通过感应磁环磁场的变化,获取转子的速度信号,从而将该信号反馈给整机实现转速调节。然而,磁环占用的轴向空间较大,在一定的安装尺寸限制的条件下,无法提高电机的功率密度。
相关技术中,将磁环安装在转子铁芯上,节省轴向空间,但转子的磁场会影响磁环的磁场分布,从而影响了霍尔传感器检测对磁环磁场的检测,降低了电机调速的精度。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种能够减少转子磁场对磁体磁场信号干扰的转子。
本发明还提供一种具有上述转子的电机以及具有上述电机的家用电器。
根据本发明第一方面实施例的转子,包括转轴、铁芯、端环、磁体和屏蔽部件;所述铁芯绕设于所述转轴的外周壁,所述端环位于所述铁芯沿所述转子的轴向的一端,所述端环远离所述铁芯的端部设置有凹槽;所述磁体安装于所述凹槽;所述屏蔽部件由导磁材料制成,所述屏蔽部件安装于所述凹槽且位于所述磁体朝向所述铁芯的一侧。
根据本发明第一方面实施例的转子,至少具有如下有益效果:通过在凹槽内安装有导磁材料制成的屏蔽部件,由于屏蔽部件的磁导率远大于空气的磁导率,因此穿过凹槽的转子磁场的磁力线将会更多地经过屏蔽部件从而形成闭合回路,进而减少转子磁场的磁力线经过空气形成的闭合回路,从而降低转子磁场对磁体的磁场的影响,减少谐波对磁场感应器件的干扰,有利于提高磁场感应器件对磁体磁场的检测精度,从而有利于提高电机调速的精度。
根据本发明的一些实施例,所述屏蔽部件沿所述转子的轴向靠近所述磁体的一端具有第一表面,所述第一表面设置有第一内轮廓线和第一外轮廓线,所述第一内轮廓线与所述第一外轮廓线均为闭合曲线且围设形成封闭面。
根据本发明的一些实施例,所述凹槽沿所述转子的径向间隔设置有第一槽壁和第二槽壁,所述第一槽壁相对所述第二槽壁靠近所述转子的轴心线,所述第一内轮廓线与所述第一槽壁之间的距离为d11,所述第一外轮廓线与所述第二槽壁之间的距离为d12,所述d11和所述d12满足以下关系:max(d11,d12)≤2mm。
根据本发明的一些实施例,所述屏蔽部件沿所述转子的轴向背离所述磁体的一端具有第二表面,所述第二表面设置有第二内轮廓线和第二外轮廓线,所述第二内轮廓线与所述第二外轮廓线均为闭合曲线且围设形成封闭面。
根据本发明的一些实施例,所述第二内轮廓线与所述第一槽壁之间的距离为d21,所述第二外轮廓线与所述第二槽壁之间的距离为d22,所述d21和所述d22满足以下关系:max(d21,d22)≤2mm。
根据本发明的一些实施例,所述第一内轮廓线与所述第二内轮廓线之间的距离为h1,所述第一外轮廓线与所述第二外轮廓线之间的距离为h2,所述h1和所述h2满足以下关系:min(h1,h2)≥0.2mm。
根据本发明的一些实施例,所述端环设置有两个,两个所述端环位于所述铁芯沿所述转子的轴 向的两端,其中一个所述端环背离所述铁芯的端部设置有第一凸起和第二凸起,所述第一凸起和所述第二凸起沿所述转子的径向间隔分布,所述第一凸起和所述第二凸起之间构成所述凹槽。
根据本发明的一些实施例,所述磁体的表面凸出于所述第一凸起的表面和所述第二凸起的表面。
根据本发明的一些实施例,所述凹槽为环形槽,所述环形槽绕所述转子的轴心线设置。
根据本发明的一些实施例,所述凹槽为圆环槽,所述圆环槽的几何中心位于所述转子的轴心线。
根据本发明第二方面实施例的电机,包括:定子,具有容纳腔;转子,转动设于所述容纳腔内,所述转子包括铁芯、端环和磁体,所述端环连接于所述铁芯的轴向的一端,所述端环远离所述铁芯的一端设有凹槽,所述磁体设于所述凹槽内;磁场感应装置,所述磁场感应装置包括磁场感应器件和与所述磁场感应器件连接的电路板,所述磁场感应器件与所述磁体沿所述铁芯的轴向间隔设置;其中,所述端环还设有第一凸起和第二凸起,所述第一凸起位于所述凹槽远离所述铁芯中心的一侧,所述第二凸起位于所述凹槽朝向所述铁芯中心的一侧。
根据本发明实施例的电机,至少具有如下有益效果:
通过将磁体设置于端环的凹槽内,并且将磁场感应器件沿铁芯的轴向与磁体间隔设置,从而减少了磁体对电机轴向空间的占用,在电机的外壳尺寸限制的条件下,节省了电机的轴向空间,提高电机的输出功率,从而提高电机的带载能力。端环设有位于凹槽沿铁芯径向两侧的第一凸起和第二凸起,第一凸起的磁场产生的磁感线和第二凸起的磁场产生的磁感线方向相反,使得第一凸起的磁场和第二凸起的磁场分别进入磁场感应器件的磁通量互相抵消,有效降低电机的磁场对磁体产生的干扰,保证了电机的转速信号的准确性。
根据本发明的一些实施例,所述第一凸起的表面沿所述铁芯的径向的宽度为d12,所述第二凸起的表面沿所述铁芯的径向的宽度为d32,满足:|d12-d32|≤6mm。
根据本发明的一些实施例,所述第一凸起的表面所在平面与所述铁芯的轴向相垂直,所述第一凸起的表面包括间隔设置的第一外轮廓线和第一内轮廓线,所述第一外轮廓线和所述第一内轮廓线围合形成封闭的环形平面。
根据本发明的一些实施例,所述第二凸起的表面所在平面与所述铁芯的轴向相垂直,所述第二凸起的表面包括间隔设置的第二外轮廓线和第二内轮廓线,所述第二外轮廓线和所述第二内轮廓线围合形成封闭的环形平面。
根据本发明的一些实施例,沿所述铁芯的轴向,所述磁体与所述磁场感应器件之间的距离为d1;所述磁体的表面包括间隔设置的第三外轮廓线和第三内轮廓线,沿所述铁芯的径向,所述第三外轮廓线和所述第三内轮廓线的中线与所述磁场感应器件的几何中心之间的距离为d2,满足:
Figure PCTCN2021122395-appb-000001
根据本发明的一些实施例,沿所述铁芯的轴向,所述磁体与所述磁场感应器件之间的距离为d1,满足:0<d1≤3mm。
根据本发明的一些实施例,所述磁体的表面包括间隔设置的第三外轮廓线和第三内轮廓线,沿所述铁芯的径向,所述第三外轮廓线和所述第三内轮廓线的中线与所述磁场感应器件的几何中心之间的距离为d2;所述磁体的表面沿所述铁芯的径向的宽度为d3,满足:0≤d2≤1/4·d3。
根据本发明的一些实施例,所述磁体的表面包括间隔设置的第三外轮廓线和第三内轮廓线,所述第三外轮廓线和所述第三内轮廓线均为圆形,所述第三外轮廓线和所述第三内轮廓线围合形成封闭的圆环平面。
根据本发明的一些实施例,所述磁场感应器件为霍尔传感器。
根据本发明的一些实施例,所述转子还包括导电部件,所述端环设有两个且分别连接于所述铁芯的轴向的两端,所述导电部件连接于两个所述端环之间。
根据本发明的一些实施例,所述端环和所述导电部件采用一体制造成型。
根据本发明的一些实施例,所述定子与所述磁场感应装置塑封成型。
根据本发明的一些实施例,所述电机还包括与所述定子定位安装的端盖,所述端盖和所述磁体分别位于所述转子沿所述铁芯的轴向的两端。
根据本发明的一些实施例,所述磁体的表面凸出于所述第一凸起的表面和所述第二凸起的表面。
根据本发明第三方面实施例的家用电器,包括以上实施例所述的电机。
根据本发明实施例的家用电器,至少具有如下有益效果:
采用第一方面实施例的电机,电机通过将磁体设置于端环的凹槽内,并且将磁场感应器件沿铁芯的轴向与磁体间隔设置,从而减少了磁体对电机轴向空间的占用,在电机的外壳尺寸限制的条件下,节省了电机的轴向空间,提高电机的输出功率,从而提高电机的带载能力。端环设有位于凹槽沿铁芯径向两侧的第一凸起和第二凸起,第一凸起的磁场产生的磁感线和第二凸起的磁场产生的磁感线方向相反,使得第一凸起的磁场和第二凸起的磁场分别进入磁场感应器件的磁通量互相抵消,有效降低电机的磁场对磁体产生的干扰,保证了电机的转速信号的准确性。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是本发明实施例的转子的局部剖视图;
图2是图1中A处放大图;
图3是本发明实施例的转子的分解示意图;
图4是本发明实施例的屏蔽部件的立体图;
图5是图4中的B处放大图;
图6是本发明实施例的铁芯和端环的装配示意图;
图7是图6中的C处放大图;
图8是本发明实施例的霍尔传感器的安装结构示意图;
图9是本发明实施例的磁体的频率波动的变化坐标图;
图10是本发明另一实施例的磁体的频率波动的变化坐标图;
图11为本发明一种实施例的电机的局部结构示意图;
图12为图11的局部剖视图;
图13为图12中A处的放大图;
图14为图11中转子组件的结构示意图,其中磁环被除去;
图15为图11中磁环的结构示意图;
图16为图15的俯视示意图;
图17为本发明一种实施例的电机的霍尔传感器感受的磁场的频率波动的变化坐标图;
图18为本发明另一种实施例的电机的霍尔传感器感受的磁场的频率波动的变化坐标图;
图19为本发明一种实施例的电机的结构示意图;
图20为图19的局部剖视示意图。
附图标记:
转轴100、110;
铁芯201、120,导电部件202、130;
端环300,第一端环140,第二端环150,凹槽310、160,第一槽壁311,第二槽壁312,第一凸起320、180,第二凸起330、190,第一凸起表面181,第一凸起外轮廓线A111,第一凸起内轮廓线A112,第二凸起表面191,第二凸起外轮廓线A311,第二凸起内轮廓线A312;
磁体400、170,上表面171,第三外轮廓线S111,第三内轮廓线S112,中线S113;
屏蔽部件500,第一表面510,第一内轮廓线511,第一外轮廓线512,第二表面520,第二内轮廓线521,第二外轮廓线522;
磁场感应装置600、200,霍尔传感器610、210,感应面211,电路板620、220;
塑封定子700,内侧面710;
第一端盖800;以及
第二端盖900。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的 方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接、装配、配合等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
PG调速电机具有磁场感应器件,其调速原理是通过磁场感应器件感应磁环的磁场变化信号,并输出相应的信号给控制板,调整输给PG电机的工作电压进行转速的自动控制。传统的PG调速电机,其磁环安装在转子轴承位置附近,磁环占用的轴向空间较大,在一定的安装尺寸限制的条件下,无法提高电机的功率密度。相关技术中,将转子磁环安装在转子铁芯上,节省轴向空间,但转子的磁场影响磁环的磁场分布,因此,采用适当的方法降低转子的磁场对磁环的磁场信号的干扰显得尤为重要。为此,本发明提供了一种转子,其可以降低转子的磁场对磁环的磁场信号的干扰。本发明还提供了一种具有上述转子的电机以及具有上述电机的家用电器。
参照图1至图3,本发明第一方面实施例的转子,应用于电机,转子包括转轴100、铁芯200、端环300、磁体400和屏蔽部件500。铁芯200绕设于转轴100的外周壁上而与转轴100固定连接,其内部设置有安装槽,安装槽内可以安装有导电部件210,导电部件210可以是铸铝或者是铸铜,导电部件210在电机的定子变化的磁场作用下产生感应电流,导电部件210变化的感应电流产生转子的磁场,此时的转子结构因类似鼠笼,因此此类转子通常称为鼠笼式转子。
铁芯200沿转子的轴向的两端分别设置有端环300,其中一个端环300远离铁芯200的端部设置有凹槽310,凹槽310可以是圆环槽或者方形槽或是其他形状的结构。端环300和导电部件210一样,其也可以为铸铝或铸铜制成,其可以与导电部件210为一体结构,比如,端环300和导电部件210可以通过浇筑的方式一体成型于铁芯200上。磁体400安装于凹槽310内,用于配合磁场感应装置600以检测转子的转速,如图8所示。具体的,磁场感应装置600包括霍尔传感器610和电路板620,霍尔传感器610连接于电路板620,电路板620可安装于电机的外壳。需要说明的是,霍尔传感器610也可以采用其他磁场感应器件进行代替,在此不再具体限定。
磁体400随着转子转动,从而产生变化的磁场,霍尔传感器610通过检测磁体400的磁场变化,从而可以获知转子的转速信息。
屏蔽部件500由导磁材料制成,导磁材料可以是工程纯铁、导磁不锈钢、低碳钢或是其他材料。具体的,屏蔽部件500安装于凹槽310的底部,磁体400安装于凹槽310内且位于屏蔽部件500的上方。
参照图2,该转子通过在端环300设置有凹槽310,磁体400安装于凹槽310,从而可以减少磁体400对电机的轴向空间的占用,有利于提高电机的输出功率和带载能力,另外通过在凹槽310内安装有导磁材料制成的屏蔽部件500,由于屏蔽部件500的磁导率远大于空气的磁导率,因此穿过凹槽310的转子磁场的磁力线将会更多地经过屏蔽部件500从而形成闭合回路,进而减少转子磁场的磁力线经过空气形成的闭合回路,从而降低转子的磁场对磁体400的磁场的影响,减少谐波对霍尔传感器610的干扰,有利于提高霍尔传感器610对磁体400磁场的检测精度,从而有利于提高电机调速的精度。
参照图2、图4和图5,可以理解的是,屏蔽部件500沿转子的轴向的两端分别设置有第一表面510和第二表面520,其中第一表面510相对第二表面520靠近磁体400,第一表面510设置有沿转子的径向间隔分布的第一内轮廓线511和第一外轮廓线512,第一内轮廓线511与第一外轮廓线512均为闭合曲线,且第一内轮廓线511与第一外轮廓线512围设形成封闭面从而构成第一表面510。该封闭面为平面,其形状可以根据实际需要而具体设置,比如,其可以是椭圆环状或圆环状或是其他形状。
参照图2、图6和图7,凹槽310沿转子的径向间隔设置有第一槽壁311和第二槽壁312,第一槽壁311相对第二槽壁312靠近转子的轴心线,第一槽壁311和第二槽壁312即为凹槽310的两 个内侧壁。第一内轮廓线511与第一槽壁311之间的距离为d11,当第一内轮廓线511与第一槽壁311之间的距离恒定时,此时d11是一个恒定的值,当第一内轮廓线511与第一槽壁311之间的距离在各处并不恒定时,此时d11是一个在一定数值范围内变化的值。第一外轮廓线512与第二槽壁312之间的距离为d12。类似的,当第一外轮廓线512与第二槽壁312之间的距离恒定时,此时d12是一个固定的值,当第一外轮廓线512与第二槽壁312之间的距离在各处并不恒定时,此时d12是一个在一定数值范围内变化的值。d11和d12满足以下关系:max(d11,d12)≤2mm,即d11和d12两者中较大的一个的值小于或等于2mm,即d11和d12均小于或等于2mm。参照图9,当屏蔽部件500的第一表面510与凹槽310的内侧壁之间存在气隙时,转子的磁力线经过气隙后再经屏蔽部件500形成闭合回路,由于回路中存在气隙,而气隙的距离较大时磁路的磁导率下降较为明显,因此通过限定第一表面510的内轮廓线和外轮廓线与凹槽310的两个内侧壁之间的气隙距离,使得回路的合成磁导率的下降值较小,从而使得转子磁场的磁力线可以更多地经过屏蔽部件500形成闭合回路,进而减少转子磁场的磁力线经过空气形成的闭合回路,从而使得转子的磁场进入磁体400的磁场的量处于相对较低的水平,进一步降低转子的磁场对磁体400的磁场的影响。
参照图4和图5,可以理解的是,类似的,第二表面520设置有沿转子的径向间隔分布的第二内轮廓线521和第二外轮廓线522,第二内轮廓线521与第二外轮廓线522均为闭合曲线,且第二内轮廓线521与第二外轮廓线522围设形成封闭面从而构成第二表面520。该封闭面为平面,其形状可以根据实际需要而具体设置,比如,其可以是椭圆环状或圆环状或是其他形状。
参照图2、图5和图7,具体的,第二内轮廓线521与第一槽壁311之间的距离为d21,当第二内轮廓线521与第一槽壁311之间的距离恒定时,此时d21是一个固定的值,当第二内轮廓线521与第一槽壁311之间的距离在各处并不恒定时,此时d21是一个在一定数值范围内变化的值。第二外轮廓线522与第二槽壁312之间的距离为d12。类似的,当第二外轮廓线522与第二槽壁312之间的距离恒定时,此时d22是一个固定的值,当第二外轮廓线522与第二槽壁312之间的距离在各处并不恒定时,此时d22是一个在一定数值范围内变化的值。d21和d22满足以下关系:max(d21,d22)≤2mm,即d21和d22两者中较大的一个的值小于或等于2mm,即d21和d22均不大于2mm。参照图9,当屏蔽部件500的第二表面520与凹槽310的内侧壁之间存在气隙时,转子的磁力线经过气隙后再经屏蔽部件500形成闭合回路,此时由于回路中存在气隙,而气隙的距离较大时磁路的磁导率下降较为明显,因此通过限定第二表面520的内轮廓线和外轮廓线与凹槽310的两个内侧壁之间的气隙距离,使得回路的合成磁导率下降值较小,从而使得转子磁场的磁力线可以更多地经过屏蔽部件500形成闭合回路,进而减少转子磁场的磁力线经过空气形成的闭合回路,从而使得转子的磁场进入磁体400的磁场的量处于相对较低的水平,进一步降低转子的磁场对磁体400的磁场的影响。
参照图9,可以理解的是,上述的d11、d12、d21和d22中,当最大者的值不大于2mm时,此时转子的磁力线经过气隙后再经屏蔽部件500形成的闭合回路的合成磁导率下降值较小,有利于提高屏蔽部件500对转子磁场的屏蔽作用,从而提高霍尔传感器610对磁体400的磁场的检测精度。
参照图2,可以理解的是,第一内轮廓线511与第二内轮廓线521之间的距离为h1,当第一内轮廓线511与第二内轮廓线521之间的距离恒定时,此时h1是一个固定的值,当第一内轮廓线511与第二内轮廓线521之间的距离在各处并不恒定时,此时h1是一个在一定数值范围内变化的值。第一外轮廓线512与第二外轮廓线522之间的距离为h2,类似的,当第一外轮廓线512与第二外轮廓线522之间的距离恒定时,此时h2是一个固定的值,当第一外轮廓线512与第二外轮廓线522之间的距离在各处并不恒定时,此时h2是一个在一定数值范围内变化的值。h1和h2满足以下关系:min(h1,h2)≥0.2mm,即h1和h2中最小的一个为h,h大于或等于0.2mm,即h1和h2均不小于0.2mm,从而使得屏蔽部件500的厚度不小于一定的数值。参照图10,当屏蔽部件500厚度减小时,转子的磁场进入屏蔽部件500时,其磁导率降低,甚至,屏蔽部件500发生饱和,磁导率下降更为明显,因此,通过限定屏蔽部件500的厚度,使得屏蔽部件500的磁导率下降处在较低水平,从而使得转子大部分的磁力线可以经过屏蔽部件500,从而降低对磁体400的磁场的影响。
参照图6,可以理解的是,端环300的端部设置有第一凸起320和第二凸起330,第一凸起320和第二凸起330沿径向间隔分布,第一凸起320和第二凸起330之间构成凹槽310,凹槽310可以是圆环槽或者椭圆环槽或者多边形槽或者是其他形状的槽结构,可以根据实际需要而具体设置。具 体的,第一凸起320包括第一上表面、第一下表面、第一内侧面和第一外侧面,第一上表面沿转子的径向间隔分布有第一上表面内轮廓线和第一上表面外轮廓线,第一上表面内轮廓线和第一上表面外轮廓线均为闭合曲线,且第一上表面内轮廓线和第一上表面外轮廓线围设形成封闭面从而构成第一上表面,第一上表面可以是圆环状或椭圆状或是花瓣状等形状。类似的,第二凸起330包括第二上表面、第二下表面、第二内侧面和第二外侧面,第二上表面沿转子的径向间隔分布有第二上表面内轮廓线和第二上表面外轮廓线,第二上表面内轮廓线和第二上表面外轮廓线均为闭合曲线,且第二上表面内轮廓线和第二上表面外轮廓线围设形成封闭面从而构成第二上表面,第二上表面可以是圆环状或椭圆状或是花瓣状等形状。其中,第一内侧面构成第一槽壁311,第二内侧面构成第二槽壁312。转子转动时,第一凸起320和第二凸起330存在激励电流,其周围存在磁场,该磁场的磁力线经凹槽310的气隙形成闭合回路,当凹槽310内存在导磁材料制成的屏蔽部件500时,该磁场很大一部分的磁力线将经过屏蔽部件500形成闭合回路,从而减少该磁场的磁力线经过空气形成的闭合回路,即减少该磁场进入磁体400的磁场的量,从而降低谐波对霍尔传感器610的干扰。可以理解的是,凹槽310为环形槽,环形槽绕转子的轴心线设置,具体的,环形槽的首尾端连通,磁体400与凹槽310形状匹配,也为首尾端连接的环形磁体400,从而有利于提高磁体400的磁场,从而提高传感器对磁体400磁场的检测的精度。
参照图6,上述实施例中,凹槽310进一步设置为圆环槽的形状,圆环槽的几何中心位于转子的轴心线上,磁体400也呈与凹槽310匹配的圆环状,此时磁体400的磁场分布更为均匀,进一步有利于提高霍尔传感器610对磁体400的磁场的检测精度。
参照图11所示,图11为本发明第二方面实施例的一种电机的局部结构示意图。本发明一种实施例的电机,为PG电机,即具有脉冲发生器调速的交流电机。PG电机广泛应用于空调器等家用电器上。PG电机的转速调节是通过转子上设置磁体,并在磁体上方设置霍尔元件,霍尔元件通过感应磁体的磁场的变化,获取转子的转动速度信号,从而将转动速度信号反馈给电机而实现的。
本发明实施例的电机,包括定子(图中未示出)和转子。定子具有容纳腔,转子转动设于容纳腔内。定子包括定子铁芯,定子铁芯包括沿周向均匀分布定子齿部和与定子齿部相连接的定子轭部,定子齿部上绕制有线圈从而形成绕组。转子包括转轴110和套装于转轴110的铁芯120,转轴110位于铁芯120的中心。定子铁芯围设于铁芯120的外周,定子铁芯与铁芯120同轴设置,定子铁芯与铁芯120之间形成气隙。其中,气隙是定子铁芯与铁芯120之间的空隙,气隙的大小根据电机的实际使用要求进行设置。
继续参照图11所示,转子还包括导电部件130、第一端环140和第二端环150,第一端环140和第二端环150分别设于铁芯120的轴向的两端。导电部件130为多个导条,多个导条沿铁芯120的周向间隔设置,导条的两端分别连接第一端环140和第二端环150。作为另一种实施方式,导电部件130可以替换为永磁体,永磁体设于铁芯120内并位于第一端环140和第二端环150之间。
参照图12所示,图12为本发明一种实施例的电机的局部剖视图。电机还包括磁场感应装置200,磁场感应装置200包括霍尔传感器210和电路板220,霍尔传感器210连接于电路板220,电路板220可安装于电机的外壳。需要说明的是,霍尔传感器210也可以采用其他磁场感应器件进行代替,在此不再具体限定。
参照图14和图15所示,图14为本发明一种电机中转子的结构示意图,其中磁体170被除去。图15为本发明一种实施例的电机中磁体170的结构示意图,在此实施例中磁体170为磁环。转子还包括磁环170,需要说明的是,磁环170也可以采用其他磁场发生部件进行代替,在此不再具体限定。第一端环140位于铁芯120的上方,第一端环140的表面设有凹槽160,凹槽160为环状且位于第一端环140远离铁芯120的一端的表面,磁环170安装于凹槽160内。需要说明的是,磁环170的上表面171(即背离凹槽160的表面)为环状的平面,但不限于圆环状平面,例如椭圆环状平面、花瓣环状平面等等。
参照图13所示,图13为图12中A处的放大图。霍尔传感器210位于磁环170沿铁芯120的轴向的上方,即与磁环170沿铁芯120的轴向间隔设置。本实施例的磁环170的磁场方向为轴向磁场,霍尔传感器210的安装位置能够便于准确地感应磁环170的磁场的变化,获取转子的速度信号,从而将该信号反馈给电机实现转速调节。而且,磁环170安装于第一端环140内,能够减少传统的磁环170安装位置对转轴110的轴向空间的占用,节省电机的轴向空间,在电机的外壳尺寸限制的 条件下,提高铁芯120的长度。根据电机设计的基本原理,在保证电机转速不变的情况下,增大铁芯120的长度,可以提高电机的输出功率,从而提高电机的带载能力。可以理解的是,第一端环140还可以设于铁芯120的下方,则霍尔传感器210位于磁环170沿铁芯120的轴向的下方。
继续参照图13所示,霍尔传感器210设有用于检测磁场变化的感应面211,感应面211朝向磁环170且垂直于铁芯120的轴向,使感应面211沿铁芯120的轴向检测磁环170的磁场。磁环170随着铁芯120的转动过程中,磁环170的磁场垂直于感应面211,通过感应面211能够感应磁环170的磁场变化信号,并将该信号发送给电机的控制电路,然后通过可控硅的导通角度来调整供给电机的工作电压,从而实现转速的自动控制。霍尔传感器210具有结构牢固、体积小、重量轻、寿命长、安装方便等优点。
继续参照图13和图14所示,可以理解的是,凹槽160沿第一端环140径向的两端分别形成有第一凸起180和第二凸起190。第一凸起180位于凹槽160远离转轴110的一侧,第二凸起190位于凹槽160朝向转轴110的一侧。需要说明的是,第一凸起180的表面和第二凸起190的表面均为环状的平面,但不限于圆环状平面,例如椭圆环状平面、花瓣环状平面等等。
参照图12和图13所示,磁环170设于第一端环140内,电机的磁场与第一端环140的磁场方向重合,导致电机的磁场影响磁环170的磁场,从而使进入霍尔传感器210的磁场为合成磁场。而且,当电机的极数与磁环170的极数不等时,霍尔传感器210会引入磁场谐波,使得频率发生波动,使得转速信号失真。进一步说明的是,根据麦克斯韦定律,当第一端环140存在电流时,其周围存在磁场。因此,当第一端环140设有第一凸起180和第二凸起190时,第一凸起180的磁场进入至霍尔传感器210的磁感线的方向与第二凸起190的磁场进入至霍尔传感器210的磁感线的方向相反,所以第一凸起180的磁场和第二凸起190的磁场进入霍尔传感器210的磁通量互相抵消,从而降低第一端环140的磁场对磁环170的磁场的干扰,降低进入霍尔传感器210的磁场存在电机的磁场谐波的影响,减少霍尔传感器210的磁场频率波动。
继续参照图13所示,为了解决上述问题,第一凸起180的表面宽度d12和第二凸起190的表面d32之间设置为基本相同,例如满足如下限定:|d12-d32|≤6mm。其中,第一凸起180的表面沿铁芯120的径向的宽度为d12,第二凸起190的表面沿铁芯120的径向的宽度为d32。当第一凸起180的磁场产生的磁感线和第二凸起190的磁场产生的磁感线方向相反时,第一凸起180的磁场和第二凸起190的磁场分别进入霍尔传感器210的磁通量互相抵消,降低电机的磁场对磁环170产生的干扰。
参照图17所示,图17为本发明一种实施例的电机的霍尔传感器210感受的磁场的频率波动与|d32-d12|取值的变化坐标图。可以理解的是,本实施例通过对|d32-d12|的取值进行优化,结合大量优化计算及大量实验表明,从而使第一凸起180的表面宽度d12和第二凸起190的表面d32之间满足在|d12-d32|≤6mm的范围内,霍尔传感器210感受的磁场的频率波动最小。因此,本实施例的电机通过上述参数的限定,使得第一凸起180的表面宽度d12和第二凸起190的表面d32基本相等,从而使第一凸起180的表面的磁通量与第二凸起190的表面的磁通量基本相等。本实施例的电机使得第一凸起180的磁场进入霍尔传感器210的磁通量与第二凸起190的磁场进入霍尔传感器210的磁通量相等,并且第一凸起180的磁场产生的磁感线和第二凸起190的磁场产生的磁感线方向相反,使得第一凸起180的磁场和第二凸起190的磁场分别进入霍尔传感器210的磁通量互相抵消,避免第一凸起180的磁场和第二凸起190的磁场干扰霍尔传感器210对磁环170的磁场的检测,从而达到避免电机的磁场干扰磁环170的磁场的效果,进而达到霍尔传感器210的磁场频率稳定的目的。本实施例的电机使得霍尔传感器210的信号波动处在较小水平,保证了电机的转速信号的准确性。
另外,本实施例的电机通过限定磁环170的形状,使得磁环170的频率发生变化,进而使得电机的磁场与磁环170的磁场频率重合,从而使得进入霍尔传感器210的磁场频率为恒定值,从而达到限定霍尔传感器210感受的磁场的频率波动,进一步地保证电机的转速信号的准确性。
参照图14所示,可以理解的是,第一凸起180的第一凸起表面181(即朝向霍尔传感器210的一端的表面)所在平面与霍尔传感器210的感应面211所在平面平行,从而保证了霍尔传感器210能够更准确感受磁环170的磁场,提高了霍尔传感器210的检测准确性。第一凸起表面181和感应面211均与铁芯120的轴向相垂直,降低了转子在旋转过程中霍尔传感器210感受的磁场的频 率波动,进一步保证了电机的转速信号的准确性。
可以理解的是,第一凸起表面181包括间隔设置的第一凸起外轮廓线A111和第一凸起内轮廓线A112。第一凸起外轮廓线A111可以为圆形、椭圆形、封闭的波浪线、封闭的齿形等等。第一凸起内轮廓线A112可以为圆形、椭圆形、封闭的波浪线、封闭的齿形等等。
第一凸起表面181为第一凸起外轮廓线A111和第一凸起内轮廓线A112围合形成的环形平面。第一凸起表面181可以根据电机的参数要求进行设计,从而使电机能够满足实际使用需要。
参照图14所示,可以理解的是,第二凸起190的第二凸起表面191(即朝向霍尔传感器210的一端的表面)所在平面与霍尔传感器210的感应面211所在平面平行,从而保证了霍尔传感器210能够更准确感受磁环170的磁场,提高了霍尔传感器210的检测准确性。第二凸起表面191和感应面211均与铁芯120的轴向相垂直,降低了转子在旋转过程中霍尔传感器210感受的磁场的频率波动,进一步保证了电机的转速信号的准确性。
可以理解的是,第二凸起表面191包括间隔设置的第二凸起外轮廓线A311和第二凸起内轮廓线A312。第二凸起外轮廓线A311可以为圆形、椭圆形、封闭的波浪线、封闭的齿形等等。第二凸起内轮廓线A312可以为圆形、椭圆形、封闭的波浪线、封闭的齿形等等。
第二凸起表面191为第二凸起外轮廓线A311和第二凸起内轮廓线A312围合形成的环形平面。第二凸起表面191可以根据电机的参数要求进行设计,从而使电机能够满足实际使用需要。
可以理解的是,根据霍尔传感器210的工作原理,进入感应面211的磁通量足够大时才触发霍尔传感器210,感应面211与磁环170的距离和磁环170的频率波动息息相关,当距离越大时,磁通密度越弱,当磁场存在一定干扰时,谐波的影响更为明显,进一步增大磁环170的频率波动。其中,磁环170的磁场在磁环170的上表面171的磁感应强度最高,在靠近上表面171的位置,磁环170的每个磁极的磁感线垂直于上表面171,磁感应强度随着离上表面171越远而逐渐减弱,磁感线也会朝向不同的方向发散,远离上表面171的磁感线并非全部与上表面171垂直。
参照图13所示,可以理解的是,作为另一种实施方式,磁环170的上表面171凸出于第一端环140。即沿铁芯120的轴向,磁环170的上表面171与霍尔传感器210的感应面211的距离小于第一凸起180的第一凸起表面181与感应面211的距离,同时也小于第二凸起190的第二凸起表面191与感应面211的距离。因此,霍尔传感器210感受到的磁环170的磁场强度大,使霍尔传感器210能够更准确地检测。而且,霍尔传感器210感受到的第一凸起180的磁场和第二凸起190的磁场强度小,从而能够减少第一凸起180的磁场和第二凸起190的磁场对磁环170的磁场的影响,能够避免电机的磁场干扰磁环170的磁场,进一步提高霍尔传感器210的检测精度。当然,在实际生产中,磁环170的上表面171也可以与第一端环140平齐设置。
参见图13所示,可以理解的是,本发明实施例对磁环170的上表面171与霍尔传感器210的感应面211之间的距离d1进行优化,使d1满足:0<d1≤3mm,即感应面211与上表面171之间的距离不大于3mm。因此,d1满足上述范围内,磁环170的磁场大致沿轴向方向分布且垂直于感应面211,有利于降低谐波的影响,减小霍尔传感器210感受的磁场的频率波动,进而提高霍尔传感器210检测准确度。当d1大于3mm的情况下,磁感线会沿磁场的方向发散,感应面211对非垂直于感应面211的磁场的敏感度降低,且磁感应强度也会降低,谐波的影响更大,增大磁环170的频率波动。
参照图16所示,图6为本发明一种实施例的电机中磁环170的俯视示意图。可以理解的是,在铁芯120的径向方向上,磁环170的上表面171具有一定的宽度。磁环170的上表面171包括间隔设置的第三外轮廓线S111和第三内轮廓线S112,第三外轮廓线S111和第三内轮廓线S112围合形成封闭的环状平面。第三外轮廓线S111与第三内轮廓线S112沿铁芯120的径向的宽度可以理解为上表面171的宽度方向,而经过第三外轮廓线S111与第三内轮廓线S112之间的中点的集合形成的曲线可以理解为上表面171的中线S113,上表面171的中线S113也可理解为上表面171沿宽度方向的中心线。中线S113与感应面211的几何中心之间的径向距离为d2,上表面171的宽度为d3,d2与d3满足如下限定:0≤d2≤1/4·d3。通过上述参数的限定,能够优化感应面211与磁环170的位置关系和结构,能够使霍尔传感器210感受的磁场的频率波动处在较低水平。可以理解的是,当上表面171的中线S113与感应面211的几何中心偏差较大时,导致进入感应面211的磁场不对称,磁场波形发生畸变,频率波动更加严重。
参照图15和图16所示,可以理解的是,磁环170为圆弧状结构。第三外轮廓线S111为圆形,第三内轮廓线S112也为圆形。因此,磁环170的上表面171为第三外轮廓线S111和第三内轮廓线S112围合形成的圆环平面。在霍尔传感器210和磁环170的位置相对固定的情况下,上表面171的中线S113与感应面211的几何中心可以重合或偏差较小,可以使霍尔传感器210感受的磁场的频率波动保持在较低水平。而且,在满足d1大于0小于等于3mm的情况下,能够进一步降低频率波动的影响,使电机更加实用可靠。
参照图13所示,可以理解的是,第一凸起180的表面沿铁芯120的径向的宽度为d12。沿铁芯120的轴向,磁环170的上表面171与霍尔传感器210的感应面211之间的距离为d1。沿铁芯120的径向,磁环170的上表面171的中线S113与霍尔传感器210的几何中心之间的距离为d2。通过对d1和d2的乘积进行优化,从而满足如下限定:
Figure PCTCN2021122395-appb-000002
参照图18所示,图8为本发明一种实施例的电机的霍尔传感器210感受的磁场的频率波动与d1·d2取值的变化坐标图。可以理解的是,通过对磁环170的上表面171与霍尔传感器210的感应面211之间的轴向距离为d1和磁环170的上表面171的中线S113与霍尔传感器210的几何中心之间的径向距离为d2的乘积进行优化,从而使d1·d2在上述参数的范围内,结合大量优化计算及大量实验表明,霍尔传感器210感受的磁场的频率波动在较低的水平。
本发明实施例的电机可减小电机的磁场不对称分量进入霍尔传感器210,进一步减小霍尔传感器210感受的磁场的频率波动,从而实现霍尔传感器210感受的磁场频率稳定的目的。电机的磁场对磁环170的磁场的干扰较小,可忽略电机的磁场的影响,霍尔传感器210输出的脉冲信号准确度较高,有利于电机调节转速更精准。
根据霍尔传感器210的基本原理,当进入霍尔传感器210的磁通量大于阈值时,霍尔传感器210呈导通状态。因此,磁环170与霍尔传感器210的距离,与霍尔传感器210感受的磁场的频率波动息息相关。当磁环170的上表面171与霍尔传感器210的感应面211的轴向距离越大时,即d1的值越大时,磁通密度越弱,当磁环170的磁场存在一定干扰时,谐波的影响更为明显,进一步使得霍尔传感器210感受的磁场的频率波动变大。此外,当磁环170的上表面171的中线S113与霍尔传感器210的几何中心的径向距离偏差较大时,即d2的值较大时,导致进入霍尔传感器210感受的磁场不对称,磁场波形发生畸变,进一步使得霍尔传感器210感受的磁场的频率波动变大。
因此,在本发明的实施例中,将d1和d2的值控制为较小时,有利于降低第一凸起180的磁场和第二凸起190的磁场对磁环170的磁场的干扰,从而降低电机的磁场干扰磁环170的磁场的效果,使得霍尔传感器210的信号波动处在较小水平,保证了电机的转速信号的准确性。
参照图14所示,可以理解的是,第一端环140、第二端环150和导电部件130采用一体制造成型,使得转子的结构更加稳定,从而提高了电机的结构稳定性。
作为其中一种实施方式,第一端环140、第二端环150和导电部件130均采用铝质材料制成,导电部件130为连接于第一端环140和第二端环150之间的多个铝条,第一端环140、第二端环150和多个铝条可以通过一体浇铸形成,从而与铁芯120之间形成稳定的连接结构,进一步提高了转子的稳定性,降低加工的难度。
作为另一种实施方式,第一端环140、第二端环150和导电部件130均采用铜质材料制成,导电部件130为连接于第一端环140和第二端环150之间的多个铜条,第一端环140、第二端环150和多个铜条之间通过焊接等方式固定,从而形成与铁芯120的稳定连接的结构。
参照图19和图20所示,图19为本发明一种实施例的电机的结构示意图,图20为本发明一种实施例的电机的局部剖视示意图。可以理解的是,本实施例的电机为塑封电机,定子为塑封定子700。采用将包括霍尔传感器210和电路板220等磁场感应装置200与塑封定子700一体塑封成型,能够使霍尔传感器210的安装精度更高,安装结构更稳定,从而提高了霍尔传感器210的检测准确性,也提高了电机的稳定性;而且能够有效减少电机的轴向尺寸。
继续参照图20所示,可以理解的是,电机还包括第一端盖800和第二端盖900,第一端盖800和第二端盖900分别位于电机沿铁芯120的轴向的两端,第一端盖800和第二端盖900均安装有轴承,转轴110的两端分别转动连接于两个轴承,从而使转子实现稳定的转动。
本实施例中,第一端盖800与塑封定子700的一端一体塑封成型。塑封定子700的另一端设有开口(图中未示出),转子可通过开口插入安装至塑封定子700的内腔。第二端盖900用于封盖开口,举例来说,第二端盖900可以与塑封定子700的内侧面310过盈配合,从而实现第二端盖900与塑封定子700的稳定连接。采用上述结构第二端盖900不占用塑封定子700的轴向空间,有利于提高定子铁芯的叠厚,提升了电机的性能。
可以理解的是,第二端盖900和磁环170分别位于转子沿铁芯120的轴向的两端,使得本实施例的塑封电机的内部结构布置更加合理,结构更加可靠,装配更加高效。
需要说明的是,第二端盖900还可以通过粘接、卡接等方式与塑封定子700定位连接,从而将第二端盖900固定连接于塑封定子700,具体方式在此不再具体限定。
本发明一种实施例的家用电器,包括以上实施例的电机。其中家用电器可以为空调挂机、空调柜机、移动空调、窗式空调等等,在此不再具体限定。本发明是实施例的家用电器,采用第一方面实施例的电机,电机通过将磁环170设置于第一端环140的凹槽160内,并且将霍尔传感器210沿铁芯120的轴向与磁环170间隔设置,从而减少了磁环170对电机轴向空间的占用,在电机的外壳尺寸限制的条件下,节省了电机的轴向空间,提高电机的输出功率,从而提高电机的带载能力。
第一端环140设有位于凹槽160沿铁芯120径向两侧的第一凸起180和第二凸起190,第一凸起180的表面沿铁芯120的径向的宽度为d12,第二凸起190的表面沿铁芯120的径向的宽度为d32,满足:|d12-d32|≤6mm。满足上述参数范围的电机,第一凸起180表面的宽度和第二凸起190表面的宽度设置为基本相等,从而使第一凸起180的磁场进入霍尔传感器210的磁通量与第二凸起190的磁场进入霍尔传感器210的磁通量相等,并且第一凸起180的磁场产生的磁感线和第二凸起190的磁场产生的磁感线方向相反,使得第一凸起180的磁场和第二凸起190的磁场分别进入霍尔传感器210的磁通量互相抵消,避免第一凸起180的磁场和第二凸起190的磁场干扰霍尔传感器210对磁环170的磁场的检测,从而达到避免电机的磁场干扰磁环170的磁场的效果,进而达到霍尔传感器210的磁场频率稳定的目的。本实施例的电机使得霍尔传感器210的信号波动处在较小水平,保证了电机的转速信号的准确性。
本发明第三方面实施例的家用电器,包括本发明第二方面实施例的电机。家用电器可以是空调器、风扇等。例如,以空调器为示例,空调器的室内机采用上述实施例的电机驱动风轮转动,实现室内机的送风。由于空调器采用了上述实施例的电机的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再赘述。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (25)

  1. 转子,包括:
    转轴;
    铁芯,绕设于所述转轴的外周壁;
    端环,设置于所述铁芯沿所述转子的轴向的一端,所述端环远离所述铁芯的端部设置有凹槽;
    磁体,安装于所述凹槽;以及
    屏蔽部件,由导磁材料制成,所述屏蔽部件安装于所述凹槽内且位于所述磁体朝向所述铁芯的一侧。
  2. 根据权利要求1所述的转子,其中,所述屏蔽部件沿所述转子的轴向靠近所述磁体的一端具有第一表面,所述第一表面设置有第一内轮廓线和第一外轮廓线,所述第一内轮廓线与所述第一外轮廓线均为闭合曲线且围设形成封闭面。
  3. 根据权利要求2所述的转子,其中,所述凹槽沿所述转子的径向间隔设置有第一槽壁和第二槽壁,所述第一槽壁相对所述第二槽壁靠近所述转子的轴心线,所述第一内轮廓线与所述第一槽壁之间的距离为d11,所述第一外轮廓线与所述第二槽壁之间的距离为d12,所述d11和所述d12满足以下关系:max(d11,d12)≤2mm。
  4. 根据权利要求3所述的转子,其中,所述屏蔽部件沿所述转子的轴向背离所述磁体的一端具有第二表面,所述第二表面设置有第二内轮廓线和第二外轮廓线,所述第二内轮廓线与所述第二外轮廓线均为闭合曲线且围设形成封闭面。
  5. 根据权利要求4所述的转子,其中,所述第二内轮廓线与所述第一槽壁之间的距离为d21,所述第二外轮廓线与所述第二槽壁之间的距离为d22,所述d21和所述d22满足以下关系:max(d21,d22)≤2mm。
  6. 根据权利要求4所述的转子,其中,所述第一内轮廓线与所述第二内轮廓线之间的距离为h1,所述第一外轮廓线与所述第二外轮廓线之间的距离为h2,所述h1和所述h2满足以下关系:min(h1,h2)≥0.2mm。
  7. 根据权利要求1至6任一项所述的转子,其中,所述端环设置有两个,两个所述端环位于所述铁芯沿所述转子的轴向的两端,其中一个所述端环背离所述铁芯的端部沿所述转子的径向间隔设置有第一凸起和第二凸起,所述第一凸起和所述第二凸起之间构成所述凹槽。
  8. 根据权利要求7所述的转子,其中,所述磁体的表面凸出于所述第一凸起的表面和所述第二凸起的表面。
  9. 根据权利要求7所述的转子,其中,所述凹槽为环形槽,所述环形槽绕所述转子的轴心线设置。
  10. 根据权利要求9所述的转子,其中,所述凹槽为圆环槽,所述圆环槽的几何中心位于所述转子的轴心线。
  11. 电机,包括:
    定子,具有容纳腔;
    转子,转动设于所述容纳腔内,所述转子包括铁芯、端环和磁体,所述端环连接于所述铁芯的轴向的一端,所述端环远离所述铁芯的一端设有凹槽,所述体设于所述凹槽内;以及
    磁场感应装置,所述磁场感应装置包括磁场感应器件和与所述磁场感应器件连接的电路板,所述磁场感应器件与所述磁体沿所述铁芯的轴向间隔设置;
    其中,所述端环还设有第一凸起和第二凸起,所述第一凸起位于所述凹槽远离所述铁芯中心的一侧,所述第二凸起位于所述凹槽朝向所述铁芯中心的一侧。
  12. 根据权利要求11所述的电机,其中,所述第一凸起的表面沿所述铁芯的径向的宽度为d12,所述第二凸起的表面沿所述铁芯的径向的宽度为d32,满足:
    |d12-d32|≤6mm。
  13. 根据权利要求11所述的电机,其中,所述第一凸起的表面所在平面与所述铁芯的轴向相垂直,所述第一凸起的表面包括间隔设置的第一凸起外轮廓线和第一凸起内轮廓线,所述第一凸起外轮廓线和所述第一凸起内轮廓线围合形成封闭的环形平面。
  14. 根据权利要求11所述的电机,其中,所述第二凸起的表面所在平面与所述铁芯的轴向相垂直,所述第二凸起的表面包括间隔设置的第二凸起外轮廓线和第二凸起内轮廓线,所述第二凸起外轮廓线和所述第二凸起内轮廓线围合形成封闭的环形平面。
  15. 根据权利要求11所述的电机,其中,沿所述铁芯的轴向,所述磁体与所述磁场感应器件之间的距离为d1,满足:0<d1≤3mm。
  16. 根据权利要求11所述的电机,其中,所述磁体的表面包括间隔设置的第三外轮廓线和第三内轮廓线,沿所述铁芯的径向,所述第三外轮廓线和所述第三内轮廓线的中线与所述磁场感应器件的几何中心之间的距离为d2;所述磁体的表面沿所述铁芯的径向的宽度为d3,满足:0≤d2≤1/4·d3。
  17. 根据权利要求11所述的电机,其中,所述磁体的表面包括间隔设置的第三外轮廓线和第三内轮廓线,所述第三外轮廓线和所述第三内轮廓线均为圆形,所述第三外轮廓线和所述第三内轮廓线围合形成封闭的圆环平面。
  18. 根据权利要求12所述的电机,其中,沿所述铁芯的轴向,所述磁体与所述磁场感应器件之间的距离为d1;所述磁体的表面包括间隔设置的第三外轮廓线和第三内轮廓线,沿所述铁芯的径向,所述第三外轮廓线和所述第三内轮廓线的中线与所述磁场感应器件的几何中心之间的距离为d2,满足:
    Figure PCTCN2021122395-appb-100001
  19. 根据权利要求11所述的电机,其中,所述磁场感应器件为霍尔传感器。
  20. 根据权利要求11所述的电机,其中,所述转子还包括导电部件,所述端环设有两个且分别连接于所述铁芯的轴向的两端,所述导电部件连接于两个所述端环之间。
  21. 根据权利要求20所述的电机,其中,所述端环和所述导电部件采用一体制造成型。
  22. 根据权利要求21所述的电机,其中,所述定子与所述磁场感应装置塑封成型。
  23. 根据权利要求22所述的电机,其中,所述电机还包括与所述定子定位安装的端盖,所述端盖和所述磁体分别位于所述转子沿所述铁芯的轴向的两端。
  24. 根据权利要求11所述的电机,其中,所述磁体的表面凸出于所述第一凸起的表面和所述第二凸起的表面。
  25. 家用电器,包括权利要求11至24任一项所述的电机。
PCT/CN2021/122395 2021-06-01 2021-09-30 转子、电机及家用电器 WO2022252460A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202121215272.5U CN214707441U (zh) 2021-06-01 2021-06-01 电机及家用电器
CN202110610133.0 2021-06-01
CN202110610136.4A CN113300543A (zh) 2021-06-01 2021-06-01 电机及家用电器
CN202121215272.5 2021-06-01
CN202110610136.4 2021-06-01
CN202110610133.0A CN113300542B (zh) 2021-06-01 2021-06-01 转子、电机及家用电器

Publications (1)

Publication Number Publication Date
WO2022252460A1 true WO2022252460A1 (zh) 2022-12-08

Family

ID=84322732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122395 WO2022252460A1 (zh) 2021-06-01 2021-09-30 转子、电机及家用电器

Country Status (1)

Country Link
WO (1) WO2022252460A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08275462A (ja) * 1995-03-27 1996-10-18 Kusatsu Denki Kk 速度検出器付電動機
CN104300707A (zh) * 2014-08-19 2015-01-21 广东威灵电机制造有限公司 电机磁环的安装结构及电机
CN104617728A (zh) * 2015-01-21 2015-05-13 广东威灵电机制造有限公司 鼠笼式电机
KR101983315B1 (ko) * 2018-10-19 2019-05-28 기쁨과행복(주) 컨베이어 벨트용 아이들러 및 이를 포함하는 아이들러 장치
CN113258727A (zh) * 2021-06-01 2021-08-13 广东威灵电机制造有限公司 电机及家用电器
CN113300543A (zh) * 2021-06-01 2021-08-24 广东威灵电机制造有限公司 电机及家用电器
CN113300542A (zh) * 2021-06-01 2021-08-24 广东威灵电机制造有限公司 转子、电机及家用电器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08275462A (ja) * 1995-03-27 1996-10-18 Kusatsu Denki Kk 速度検出器付電動機
CN104300707A (zh) * 2014-08-19 2015-01-21 广东威灵电机制造有限公司 电机磁环的安装结构及电机
CN104617728A (zh) * 2015-01-21 2015-05-13 广东威灵电机制造有限公司 鼠笼式电机
KR101983315B1 (ko) * 2018-10-19 2019-05-28 기쁨과행복(주) 컨베이어 벨트용 아이들러 및 이를 포함하는 아이들러 장치
CN113258727A (zh) * 2021-06-01 2021-08-13 广东威灵电机制造有限公司 电机及家用电器
CN113300543A (zh) * 2021-06-01 2021-08-24 广东威灵电机制造有限公司 电机及家用电器
CN113300542A (zh) * 2021-06-01 2021-08-24 广东威灵电机制造有限公司 转子、电机及家用电器

Similar Documents

Publication Publication Date Title
CN113300542B (zh) 转子、电机及家用电器
CN203404127U (zh) 离心式风扇
JP6791692B2 (ja) 電動送風機
CN104917335A (zh) 一种永磁复合电机
CN110581614B (zh) 一种伺服有限转角力矩电机
JP2004274998A (ja) 単相誘導電動機
CN113300543A (zh) 电机及家用电器
CN108604843A (zh) 电机结构
KR101312204B1 (ko) 아우터 로터 타입 비엘디씨 모터
CN113258727B (zh) 电机及家用电器
WO2022252460A1 (zh) 转子、电机及家用电器
JP2015113781A (ja) 軸流ファンおよび直列型軸流ファン
CN209593238U (zh) 一种吊扇用的14极12槽低噪声变频电机
WO2022252446A1 (zh) 转子、电机及家用电器
CN205195443U (zh) 单相永磁电机
CN214707441U (zh) 电机及家用电器
CN110224569A (zh) 一种吊扇用的14极12槽低噪声变频电机
WO2015051571A1 (zh) 一种直流无刷电机磁路结构及其永磁体内嵌式转子
CN209982191U (zh) 一种静音卧室扇用电机以及卧室扇
WO2018051588A1 (ja) 電動送風機
CN218387220U (zh) 一种转子组件及无刷振动电机
CN204706995U (zh) 一种永磁复合电机
WO2010078734A1 (zh) 交流永磁同步电机
CN209593227U (zh) 一种吊扇用均匀气隙单相无刷电机
JP7284177B2 (ja) ロータおよびこれを具備するモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE