WO2022252446A1 - 转子、电机及家用电器 - Google Patents

转子、电机及家用电器 Download PDF

Info

Publication number
WO2022252446A1
WO2022252446A1 PCT/CN2021/120335 CN2021120335W WO2022252446A1 WO 2022252446 A1 WO2022252446 A1 WO 2022252446A1 CN 2021120335 W CN2021120335 W CN 2021120335W WO 2022252446 A1 WO2022252446 A1 WO 2022252446A1
Authority
WO
WIPO (PCT)
Prior art keywords
contour line
magnet
rotor
magnetic field
groove
Prior art date
Application number
PCT/CN2021/120335
Other languages
English (en)
French (fr)
Inventor
李伟
李虎
甘峰
Original Assignee
广东威灵电机制造有限公司
威灵(芜湖)电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110610133.0A external-priority patent/CN113300542B/zh
Priority claimed from CN202110608765.3A external-priority patent/CN113258727B/zh
Application filed by 广东威灵电机制造有限公司, 威灵(芜湖)电机制造有限公司 filed Critical 广东威灵电机制造有限公司
Publication of WO2022252446A1 publication Critical patent/WO2022252446A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors

Definitions

  • the invention relates to the technical field of motors, in particular to a rotor, a motor and household appliances.
  • the AC motor with PG Pulse Generator, pulse generator
  • the AC motor with PG Pulse Generator, pulse generator
  • the magnetic ring is installed at the position of the rotor bearing, and a Hall sensor is arranged above the magnetic ring.
  • the Hall sensor senses the magnetic field of the magnetic ring Change, obtain the speed signal of the rotor, and then feed the signal back to the whole machine to realize the speed adjustment.
  • the axial space occupied by the magnetic ring is relatively large, and the power density of the motor cannot be increased under the condition of a certain installation size limitation.
  • the magnetic ring is installed on the rotor core to save axial space, but the magnetic field of the rotor will affect the magnetic field distribution of the magnetic ring, thereby affecting the detection of the magnetic ring magnetic field by the Hall sensor and reducing the speed of the motor. accuracy.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. Therefore, the present invention proposes a rotor capable of reducing the interference of the rotor magnetic field on the magnetic field signal of the magnet.
  • the present invention also provides a motor with the above-mentioned rotor and a household appliance with the above-mentioned motor.
  • the rotor according to the embodiment of the first aspect of the present invention includes a rotating shaft, an iron core, an end ring, a magnet and a shielding component; the iron core is wound around the outer peripheral wall of the rotating shaft, and the end ring is located along the One end of the rotor in the axial direction, the end of the end ring away from the iron core is provided with a groove; the magnet is installed in the groove.
  • the rotor according to the embodiment of the first aspect of the present invention has at least the following beneficial effects: by installing a shielding part made of magnetically permeable material in the groove, since the magnetic permeability of the shielding part is much greater than that of air, the The magnetic field lines of the rotor magnetic field passing through the groove will pass through the shielding parts more to form a closed loop, thereby reducing the closed loop formed by the magnetic field lines of the rotor magnetic field passing through the air, thereby reducing the influence of the rotor magnetic field on the magnetic field of the magnet and reducing the impact of harmonics on the magnetic field
  • the interference of the induction device is conducive to improving the detection accuracy of the magnetic field induction device to the magnetic field of the magnet, thereby helping to improve the accuracy of motor speed regulation.
  • the shielding component is made of a magnetically permeable material, and is installed in the groove and located on a side of the magnet facing the iron core.
  • the shielding member has a first surface along the axial direction of the rotor near the end of the magnet, and the first surface is provided with a first inner contour line and a first outer contour line, so Both the first inner contour line and the first outer contour line are closed curves and form a closed surface.
  • the groove is provided with a first groove wall and a second groove wall at intervals along the radial direction of the rotor, and the first groove wall is closer to the rotor than the second groove wall.
  • axis line the distance between the first inner contour line and the first groove wall is d11
  • the distance between the first outer contour line and the second groove wall is d12
  • the d11 and The d12 satisfies the following relationship: max(d11, d12) ⁇ 2mm.
  • the shielding member has a second surface at an end facing away from the magnet along the axial direction of the rotor, and the second surface is provided with a second inner contour line and a second outer contour line, so Both the second inner contour line and the second outer contour line are closed curves and form a closed surface.
  • the distance between the second inner contour line and the first groove wall is d21
  • the distance between the second outer contour line and the second groove wall is d22
  • the d21 and the d22 satisfy the following relationship: max(d21, d22) ⁇ 2mm.
  • the distance between the first inner contour line and the second inner contour line is h1
  • the distance between the first outer contour line and the second outer contour line is h2
  • the h1 and the h2 satisfy the following relationship: min(h1, h2) ⁇ 0.2mm.
  • the two end rings are located at both ends of the iron core along the axial direction of the rotor, and one of the end rings is away from the iron core
  • the end portion is provided with a first protrusion and a second protrusion, and the first protrusion and the second protrusion are distributed along the radial direction of the rotor at intervals, and the first protrusion and the second protrusion are spaced along the radial direction of the rotor.
  • the groove is formed between the second protrusions.
  • the surface of the magnet protrudes from the surface of the first protrusion and the surface of the second protrusion.
  • the groove is an annular groove, and the annular groove is arranged around the axis of the rotor.
  • the groove is an annular groove, and the geometric center of the annular groove is located on the axis of the rotor.
  • the motor according to the embodiment of the second aspect of the present invention includes a magnetic induction device and the rotor according to the embodiment of the first aspect of the present invention.
  • the magnetic induction device is provided with a sensing surface for detecting changes in the magnetic field, the sensing surface faces the magnet and is arranged perpendicular to the axial direction of the rotating shaft, so that the sensing surface detects the magnetic field of the magnet along the axial direction of the rotating shaft magnetic field.
  • the magnet does not need to be connected with the rotating shaft, which can save the axial space of the motor, and is conducive to improving the output power and load of the motor.
  • the induction surface of the magnetic induction device faces the magnet, and the induction surface is perpendicular to the axial direction of the rotating shaft, so that the induction surface can detect the magnetic field of the magnet along the axial direction of the rotating shaft, and reduce the influence of the magnetic field of the motor on the magnetic field of the magnet, thus effectively reducing the
  • the interference of the magnetic field of the motor enables the sensing surface to accurately detect the change of the magnetic field of the magnet, which is conducive to more accurate adjustment of the motor speed.
  • the number of poles of the motor is 2p1
  • the number of poles of the magnet is 2p2, satisfying 2 ⁇ 2p1 ⁇ 6 and 2 ⁇ 2p2 ⁇ 12.
  • the surface of the magnet facing the sensing surface is an upper surface
  • the area of the upper surface is S
  • the peak magnetic induction intensity of the upper surface is Br
  • the magnet and the sensing surface The distance between them along the axial direction of the rotating shaft is d1, and when 2p1 ⁇ 2p2, (Br ⁇ S)/(2p1 ⁇ d1 2 ) ⁇ 9.68 is satisfied.
  • the distance between the magnet and the sensing surface along the axial direction of the rotating shaft is d1, which satisfies 0 ⁇ d1 ⁇ 3mm.
  • the surface of the magnet facing the sensing surface is an upper surface, and in the radial direction of the iron core, the upper surface includes an outer contour line and an inner contour line, and the outer contour line and The inner contour lines are all curves and enclose to form a closed surface.
  • a center line is provided between the outer contour line and the inner contour line, and the distance between the center line and the geometric center of the sensing surface is d2,
  • the width of the upper surface is d3, and the d2 and the d3 satisfy 0 ⁇ d2 ⁇ 1/4 ⁇ d3.
  • both the outer contour line and the inner contour line are circular, and the outer contour line and the inner contour line form an annular surface.
  • the motor further includes a stator assembly, and the stator assembly is molded with the magnetic induction device.
  • the motor further includes an end cover positioned and installed with the stator assembly, and the end cover and the magnet are respectively located at two ends of the rotor assembly along the axial direction of the iron core.
  • the magnetic induction device includes a Hall sensor and a circuit board, the Hall sensor is connected to the circuit board, and the Hall sensor is provided with the sensing surface.
  • the household appliance according to the embodiment of the third aspect of the present invention includes the motor described in the embodiment of the first aspect above.
  • Household appliances use the motor of the above embodiment to reduce the influence of the magnetic field of the motor on the magnetic field of the magnet, thereby effectively reducing the interference of the magnetic field of the motor, so that the sensing surface can accurately detect the change of the magnetic field of the magnet, which is conducive to more accurate adjustment of the motor speed.
  • Fig. 1 is a partial sectional view of a rotor of an embodiment of the present invention
  • Figure 2 is an enlarged view of A in Figure 1;
  • Fig. 3 is an exploded schematic view of the rotor of the embodiment of the present invention.
  • FIG. 4 is a perspective view of a shielding component according to an embodiment of the present invention.
  • Fig. 5 is an enlarged view at B place in Fig. 4;
  • Fig. 6 is a schematic diagram of the assembly of the iron core and the end ring of the embodiment of the present invention.
  • Figure 7 is an enlarged view at C in Figure 6;
  • Fig. 8 is a schematic diagram of the installation structure of the Hall sensor of the embodiment of the present invention.
  • Fig. 9 is a change coordinate diagram of the frequency fluctuation of the magnet according to the embodiment of the present invention.
  • Fig. 10 is a change coordinate diagram of the frequency fluctuation of the magnet according to another embodiment of the present invention.
  • Fig. 11 is a schematic diagram of a combined structure of a rotor assembly and a Hall sensor according to an embodiment of the present invention
  • Fig. 12 is a front structural schematic diagram of a rotor assembly and a Hall sensor according to an embodiment of the present invention.
  • Fig. 13 is a schematic diagram of an enlarged structure at a in Fig. 11;
  • Fig. 14 is a schematic diagram of an enlarged structure at b in Fig. 12;
  • Fig. 15 is a schematic diagram of a three-dimensional structure of a magnet according to an embodiment of the present invention.
  • Fig. 16 is a structural schematic diagram of another angle of a magnet according to an embodiment of the present invention.
  • Fig. 17 is a change coordinate diagram of the frequency fluctuation of the magnet according to an embodiment of the present invention.
  • Fig. 18 is a change coordinate diagram of the frequency fluctuation of the magnet according to another embodiment of the present invention.
  • Figure 19 is a schematic diagram of the overall structure of a motor according to an embodiment of the present invention.
  • FIG. 20 is a schematic partial cross-sectional view of FIG. 19 .
  • Shielding component 500 first surface 510, first inner contour line 511, first outer contour line 512, second surface 520, second inner contour line 521, second outer contour line 522;
  • orientation descriptions such as up, down, front, back, left, right, etc. indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only In order to facilitate the description of the present invention and simplify the description, it does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and thus should not be construed as limiting the present invention.
  • the PG speed regulating motor has a magnetic field induction device.
  • the principle of speed regulation is to sense the magnetic field change signal of the magnetic ring through the magnetic field induction device, and output the corresponding signal to the control board to adjust the working voltage output to the PG motor for automatic control of the speed.
  • the magnetic ring is installed near the rotor bearing position, and the magnetic ring occupies a large axial space. Under the condition of certain installation size limitation, the power density of the motor cannot be improved.
  • the rotor magnetic ring is installed on the rotor core to save axial space, but the magnetic field of the rotor affects the magnetic field distribution of the magnetic ring.
  • the present invention provides a rotor, which can reduce the interference of the magnetic field of the rotor to the magnetic field signal of the magnetic ring.
  • the present invention also provides a motor with the above-mentioned rotor and a household appliance with the above-mentioned motor.
  • the rotor according to the first embodiment of the present invention is applied to a motor, and the rotor includes a rotating shaft 100 , an iron core 200 , an end ring 300 , a magnet 400 and a shielding component 500 .
  • the iron core 200 is wound around the outer peripheral wall of the rotating shaft 100 and is fixedly connected with the rotating shaft 100.
  • the conductive component 210 can be cast aluminum or cast copper.
  • the conductive component 210 generates induced current under the action of the changing magnetic field of the stator of the motor, and the changing induced current of the conductive part 210 generates the magnetic field of the rotor.
  • the structure of the rotor is similar to a squirrel cage, so this type of rotor is usually called a squirrel-cage rotor.
  • the two ends of the iron core 200 along the axial direction of the rotor are respectively provided with end rings 300, and one of the end rings 300 is provided with a groove 310 at the end away from the iron core 200.
  • the groove 310 can be a circular groove or a square groove or other The structure of the shape.
  • the end ring 300 can also be made of cast aluminum or copper, and can be integrated with the conductive part 210.
  • the end ring 300 and the conductive part 210 can be integrally formed on the iron core by casting 200 on.
  • the magnet 400 is installed in the groove 310 for cooperating with the magnetic field sensing device 600 to detect the rotation speed of the rotor.
  • the magnetic field sensing device 600 includes a Hall sensor 610 and a circuit board 620, the Hall sensor 610 is connected to the circuit board 620, and the circuit board 620 can be installed on the casing of the motor. It should be noted that the Hall sensor 610 may also be replaced by other magnetic field sensing devices, which is not specifically limited here.
  • the magnet 400 rotates with the rotor to generate a changing magnetic field
  • the Hall sensor 610 detects the change of the magnetic field of the magnet 400 so as to obtain the rotational speed information of the rotor.
  • the shielding component 500 is made of magnetically permeable material, which may be engineering pure iron, magnetically permeable stainless steel, low carbon steel or other materials. Specifically, the shielding component 500 is installed at the bottom of the groove 310 , and the magnet 400 is installed in the groove 310 and above the shielding component 500 .
  • the rotor is provided with a groove 310 on the end ring 300, and the magnet 400 is installed in the groove 310, thereby reducing the occupation of the axial space of the motor by the magnet 400, which is conducive to improving the output power and load capacity of the motor
  • the shielding part 500 made of magnetically permeable material in the groove 310, since the magnetic permeability of the shielding part 500 is much greater than that of air, the magnetic force lines of the rotor magnetic field passing through the groove 310 will be more Many places pass through the shielding part 500 to form a closed loop, thereby reducing the closed loop formed by the magnetic field lines of the rotor magnetic field passing through the air, thereby reducing the influence of the rotor's magnetic field on the magnetic field of the magnet 400, and reducing the interference of harmonics on the Hall sensor 610, which is beneficial Improving the detection accuracy of the Hall sensor 610 on the magnetic field of the magnet 400 is beneficial to improving the accuracy of motor speed regulation.
  • the two ends of the shielding member 500 along the axial direction of the rotor are respectively provided with a first surface 510 and a second surface 520 , wherein the first surface 510 is closer to the second surface 520
  • the first surface 510 is provided with a first inner contour line 511 and a first outer contour line 512 distributed along the radial direction of the rotor at intervals
  • the first inner contour line 511 and the first outer contour line 512 are both closed curves
  • the first inner contour line 511 and the first outer contour line 512 surround and form a closed surface to constitute the first surface 510 .
  • the closed surface is a plane, and its shape can be specifically set according to actual needs, for example, it can be an elliptical ring or a ring or other shapes.
  • the groove 310 is provided with a first groove wall 311 and a second groove wall 312 at intervals along the radial direction of the rotor, and the first groove wall 311 is closer to the axis of the rotor relative to the second groove wall 312 , the first groove wall 311 and the second groove wall 312 are the two inner sidewalls of the groove 310 .
  • the distance between the first inner contour line 511 and the first groove wall 311 is d11, when the distance between the first inner contour line 511 and the first groove wall 311 is constant, then d11 is a constant value, when the second When the distance between the inner contour line 511 and the first groove wall 311 is not constant everywhere, d11 is a value varying within a certain value range.
  • the distance between the first outer contour line 512 and the second groove wall 312 is d12.
  • d12 is a fixed value
  • d12 is a value that changes within a certain value range at this time.
  • d11 and d12 satisfy the following relationship: max(d11, d12) ⁇ 2mm, that is, the value of the larger of d11 and d12 is less than or equal to 2mm, that is, both d11 and d12 are less than or equal to 2mm.
  • the magnetic field lines of the rotor pass through the air gap and then pass through the shielding member 500 to form a closed loop. Since there is an air gap in the loop, And when the distance of the air gap is larger, the magnetic permeability of the magnetic circuit drops more obviously, so by limiting the air gap distance between the inner contour line and the outer contour line of the first surface 510 and the two inner sidewalls of the groove 310, so that The drop value of the composite magnetic permeability of the loop is small, so that the magnetic field lines of the rotor magnetic field can pass through the shielding part 500 more to form a closed loop, thereby reducing the closed loop formed by the magnetic field lines of the rotor magnetic field passing through the air, so that the magnetic field of the rotor enters the magnet
  • the magnitude of the magnetic field of 400 is at a relatively low level, further reducing the influence of the rotor's magnetic field on the magnetic field of magnet 400
  • the second surface 520 is provided with a second inner contour line 521 and a second outer contour line 522 distributed along the radial direction of the rotor, and the second inner contour line 521 and Both the second outer contour lines 522 are closed curves, and the second inner contour line 521 and the second outer contour line 522 enclose to form a closed surface to constitute the second surface 520 .
  • the closed surface is a plane, and its shape can be specifically set according to actual needs, for example, it can be an elliptical ring or a ring or other shapes.
  • the distance between the second inner contour line 521 and the first groove wall 311 is d21, when the distance between the second inner contour line 521 and the first groove wall 311 is constant , d21 is a fixed value at this time, and when the distance between the second inner contour line 521 and the first groove wall 311 is not constant everywhere, d21 is a value varying within a certain value range.
  • the distance between the second outer contour line 522 and the second groove wall 312 is d12.
  • d22 is a fixed value at this time, when the distance between the second outer contour line 522 and the second groove wall 312 is at When everywhere is not constant, d22 is a value that changes within a certain value range at this time.
  • d21 and d22 satisfy the following relationship: max(d21, d22) ⁇ 2mm, that is, the value of the larger of d21 and d22 is less than or equal to 2mm, that is, neither d21 nor d22 is greater than 2mm.
  • the magnetic lines of force of the rotor pass through the air gap and then pass through the shielding member 500 to form a closed loop.
  • gap, and the magnetic permeability of the magnetic circuit drops more obviously when the distance of the air gap is larger, so by defining the air gap distance between the inner contour line and the outer contour line of the second surface 520 and the two inner side walls of the groove 310 , so that the combined magnetic permeability drop of the loop is smaller, so that more magnetic lines of the rotor magnetic field can pass through the shielding component 500 to form a closed loop, thereby reducing the closed loop formed by the magnetic field lines of the rotor magnetic field passing through the air, so that the magnetic field of the rotor enters
  • the magnitude of the magnetic field of the magnet 400 is at a relatively low level, further reducing the influence of the magnetic field of the rotor on the magnetic field of the magnet 400 .
  • d11, d12, d21 and d22 when the maximum value is not greater than 2mm, at this time the magnetic field lines of the rotor pass through the air gap and then pass through the closed loop formed by the shielding part 500.
  • the lower magnetic permeability drop is beneficial to improve the shielding effect of the shielding component 500 on the rotor magnetic field, thereby improving the detection accuracy of the Hall sensor 610 on the magnetic field of the magnet 400 .
  • the distance between the first inner contour line 511 and the second inner contour line 521 is h1, when the distance between the first inner contour line 511 and the second inner contour line 521 is constant, At this time h1 is a fixed value, when the distance between the first inner contour line 511 and the second inner contour line 521 is not constant everywhere, then h1 is a value varying within a certain value range.
  • the distance between the first outer contour line 512 and the second outer contour line 522 is h2, similarly, when the distance between the first outer contour line 512 and the second outer contour line 522 is constant, then h2 is a fixed When the distance between the first outer contour line 512 and the second outer contour line 522 is not constant everywhere, then h2 is a value that varies within a certain value range.
  • h1 and h2 satisfy the following relationship: mi n(h1, h2) ⁇ 0.2mm, that is, the smallest of h1 and h2 is h, and h is greater than or equal to 0.2mm, that is, neither h1 nor h2 is less than 0.2mm, so that the shielding part
  • the thickness of 500 is not less than a certain value.
  • the thickness of the shielding part 500 when the thickness of the shielding part 500 is reduced, when the magnetic field of the rotor enters the shielding part 500, its magnetic permeability decreases, even, the shielding part 500 is saturated, and the magnetic permeability drops more obviously. Therefore, by limiting the shielding part 500 The thickness of the shielding component 500 reduces the magnetic permeability at a relatively low level, so that most of the magnetic field lines of the rotor can pass through the shielding component 500, thereby reducing the influence on the magnetic field of the magnet 400.
  • the end of the end ring 300 is provided with a first protrusion 320 and a second protrusion 330 , and the first protrusion 320 and the second protrusion 330 are spaced along the radial direction,
  • a groove 310 is formed between the first raised portion 320 and the second raised portion 330, the groove 310 can be a circular groove or an elliptical groove or a polygonal groove or a groove structure of other shapes, which can be specifically set according to actual needs .
  • the first protruding portion 320 includes a first upper surface, a first lower surface, a first inner surface and a first outer surface, and the first upper surface is distributed with inner contour lines of the first upper surface and a first outer surface at intervals along the radial direction of the rotor.
  • the outer contour line of the first upper surface, the inner contour line of the first upper surface and the outer contour line of the first upper surface are all closed curves, and the inner contour line of the first upper surface and the outer contour line of the first upper surface are surrounded to form a closed surface so that
  • the first upper surface is formed, and the first upper surface may be in the shape of a ring, an ellipse, or a petal.
  • the second raised portion 330 includes a second upper surface, a second lower surface, a second inner surface and a second outer surface, and the second upper surface is distributed along the radial interval of the rotor with the inner contour line of the second upper surface and
  • the outer contour line of the second upper surface, the inner contour line of the second upper surface and the outer contour line of the second upper surface are all closed curves, and the inner contour line of the second upper surface and the outer contour line of the second upper surface form a closed surface so that The second upper surface is formed, and the second upper surface may be in the shape of a ring, an ellipse, or a petal.
  • the first inner surface forms the first groove wall 311
  • the second inner surface forms the second groove wall 312 .
  • the shielding part 500 When the rotor rotates, there is excitation current in the first protruding part 320 and the second protruding part 330, and there is a magnetic field around them.
  • the shielding part 500 When the shielding part 500 is manufactured, a large part of the magnetic field lines of the magnetic field will pass through the shielding part 500 to form a closed loop, thereby reducing the closed loop formed by the magnetic field lines of the magnetic field passing through the air, that is, reducing the amount of the magnetic field entering the magnetic field of the magnet 400, thereby The interference of harmonics to the Hall sensor 610 is reduced.
  • the groove 310 is an annular groove, and the annular groove is arranged around the axis of the rotor.
  • the head and tail ends of the ring groove are connected, and the magnet 400 matches the shape of the groove 310, and is also a ring magnet 400 connected from the head to the tail. , so that it is beneficial to increase the magnetic field of the magnet 400 , thereby improving the detection accuracy of the sensor for the magnetic field of the magnet 400 .
  • the groove 310 is further set in the shape of an annular groove, the geometric center of which is located on the axis of the rotor, and the magnet 400 is also in the shape of an annular shape matching the groove 310 .
  • the magnetic field distribution of the magnet 400 is more uniform, which is further conducive to improving the detection accuracy of the Hall sensor 610 for the magnetic field of the magnet 400 .
  • the end of the magnet 400 facing away from the shielding member 500 protrudes from the upper surface of the end ring 300 , that is, along the axial direction of the rotor, the distance between the upper surface of the magnet 400 and the sensing surface 611 of the Hall sensor 610 is smaller than the first protrusion.
  • the distance between the first upper surface of the raised portion 320 and the sensing surface 611 is also smaller than the distance between the second upper surface of the second protruding portion 320 and the sensing surface 611 . Therefore, the strength of the magnetic field of the magnet 400 felt by the Hall sensor 610 is large, so that the Hall sensor 610 can detect the change of the magnetic field of the magnet 400 more accurately.
  • the strength of the magnetic field of the first raised portion 320 and the magnetic field of the second raised portion 330 felt by the Hall sensor 610 is small, thereby reducing the impact of the magnetic field of the first raised portion 320 and the magnetic field of the second raised portion 330.
  • the influence of the magnetic field of the magnet 400 further improves the detection accuracy of the Hall sensor 610 for the magnetic field of the magnet 400 .
  • the upper surface of the magnet 400 may also be arranged flush with the upper surface of the end ring 300 .
  • the motor 1000 provided by the embodiment of the present invention can save the axial space of the motor 1000 by installing the magnet 200 on the iron core 110, which is beneficial to improve the output power and load capacity of the motor 1000; and Reduce the influence of the magnetic field of the motor 1000 on the magnetic field of the magnet 200, thereby effectively reducing the interference of the magnetic field of the motor 1000, so that the sensing surface 311 can accurately detect the change of the magnetic field of the magnet 200, which is beneficial to the motor 1000 to adjust the speed more accurately, more practical and reliable.
  • a motor 1000 according to an embodiment of the present invention is described with reference to FIG. 11 to FIG. 18 .
  • the motor 1000 is a PG speed-regulating motor 1000 and is suitable for household appliances.
  • the motor 1000 will be described below with a specific example.
  • the motor 1000 includes a rotor and a stator assembly (not shown in the drawings), wherein the specific structure of the rotor can refer to the above description, and will not be repeated here.
  • a magnetic induction device 300 is provided inside the motor 1000, and the magnetic induction device 300 is used to detect the magnetic field of the magnet 200. As shown in FIGS. Above, the change of the magnetic field of the magnet 200 can be sensed by the magnetic induction device 300 , and the rotation speed of the iron core 110 can be obtained according to the change signal of the magnetic field of the magnet 200 , so that the rotation speed of the motor 1000 can be adjusted.
  • the magnetic induction device 300 can be connected with the casing, and the specific connection structure of the magnetic induction device 300 is not shown in the drawing.
  • Both ends of the iron core 110 along the axial direction are respectively connected to end rings 130 , and a magnetic induction device 300 is installed on one of the end rings 130 , and the end ring 130 is embedded in the iron core 110 to make the connection structure of the end ring 130 more reliable.
  • the installation structure of the magnetic induction device 300 and the magnet 200 is optimized to reduce the interference of the magnetic field of the motor 1000 on the magnetic field signal of the magnet 200.
  • the working principle of the magnetic induction device 300 is to convert the magnetic signal into an electrical signal by detecting the magnetic field strength on the sensing surface 311 .
  • the magnetic induction device 300 is only sensitive to the magnetic induction intensity perpendicular to the surface of the sensing surface 311 , that is, the magnetic induction line of the magnetic field needs to be perpendicular to the sensing surface 311 , so that the magnetic induction intensity of the measured magnetic field can be accurately detected.
  • the definition of magnetic flux in a uniform magnetic field with magnetic induction intensity B, there is a plane with area S and perpendicular to the direction of the magnetic field. The product of magnetic induction intensity B and area S is called the magnetic flux passing through this plane.
  • the sensing surface 311 can be understood as a plane perpendicular to the direction of the magnetic field.
  • the induction surface 311 of the magnetic induction device 300 is set towards the magnet 200, and the induction surface 311 is arranged perpendicular to the axial direction of the rotating shaft 120, as shown in FIGS.
  • the magnetic field direction of the magnet 200 can be perpendicular to the sensing surface 311 , so that the sensing surface 311 can detect the magnetic field of the magnet 200 along the axial direction.
  • the magnetic field of the magnet 200 is distributed around the magnet 200. If it is described in the form of magnetic field lines, the direction of the magnetic field lines from the N pole to the S pole is from the S pole to the N pole inside the magnet 200. poles, forming closed magnetic field lines.
  • the direction of the magnetic field of the magnet 200 can be perpendicular to the sensing surface 311, which can be understood as that within the distance between the sensing surface 311 and the upper surface 210 of the magnet 200, the magnetic field lines of the magnetic field of the magnet 200 are generally distributed along the axial direction and perpendicular to the sensing surface 311 , so that the magnetic induction device 300 can accurately detect the change of the magnetic field of the magnet 200 .
  • the magnetic poles of the magnet 200 are distributed along the circumferential direction, and the magnetic induction lines of each magnetic pole are perpendicular to the upper surface 210 of the magnet 200, and the magnetic induction intensity near the upper surface 210 is relatively high, and the magnetic flux is also large.
  • the induction surface 311 can The magnetic flux of each magnetic pole is induced, so that the magnetic induction device 300 can accurately obtain the magnetic field change signal of the magnet 200 during the rotation of the iron core 110, effectively reducing the influence of the magnetic field of the motor 1000 on the magnetic field of the magnet 200, thereby reducing the magnetic field of the motor 1000 interference, improve the detection accuracy of the magnetic induction device 300, and help the motor 1000 to adjust the speed more accurately.
  • the magnetic induction device 300 of the embodiment detects the magnetic field of the magnet 200 and its variation through the Hall sensor 310.
  • the Hall sensor 310 is connected to the circuit board 320, and the circuit board 320 is installed on the rotating shaft 120 On one side of the magnet 200 , the circuit board 320 can be connected to the housing so that the Hall sensor 310 is located above the magnet 200 in the axial direction.
  • the plane of the Hall sensor 310 facing the magnet 200 is the sensing surface 311 , and the sensing surface 311 is perpendicular to the axial direction.
  • the magnetic field of the magnet 200 is perpendicular to the sensing surface 311, the magnetic field change signal of the magnet 200 can be sensed through the sensing surface 311, and the signal is sent to the control circuit of the motor 1000, and then passed
  • the conduction angle of the SCR is used to adjust the working voltage supplied to the motor 1000, thereby realizing the automatic control of the rotational speed.
  • the Hall sensor 310 has the advantages of firm structure, small size, light weight, long life, and convenient installation, etc., and details will not be repeated here.
  • the magnet 200 is roughly ring-shaped, the magnet 200 includes an upper surface 210, a lower surface 220, an outer surface 240 and an inner surface 230, and the magnet 200 consists of the upper surface 210, the lower surface 220, the outer surface 240 and the inner surface 230.
  • the inner surface 230 is surrounded and formed, and the magnet 200 is installed in the groove 131, wherein the surface of the magnet 200 facing the Hall sensor 310 is the upper surface 210 of the magnet 200, and the upper surface 210 is a plane, and the lower surface 220 of the magnet 200 is in contact with the groove 131 bottom fit.
  • the magnet 200 is not limited to the annular structure shown in the embodiment, and the magnet 200 of different shapes can be defined by the cooperation of the upper surface 210, the lower surface 220, the outer surface 240 and the inner surface 230, for example, the magnet 200 can be elliptical Shape, petal shape, etc., the groove 131 matches the shape of the magnet 200, so that the magnet 200 can be firmly installed in the groove 131.
  • the upper surface 210 of the magnet 200 has an outer contour line 211 and an inner contour line 212.
  • the outer contour line 211 can be understood as the outer contour curve of the magnet 200 along the radial direction of the iron core 110
  • the inner contour line 212 can be understood as
  • the inner contour curve of the magnet 200 along the radial direction of the iron core 110 is defined by the cooperation of the outer contour line 211 and the inner contour line 212 to define the upper surface 210
  • the upper surface 210 is a closed surface.
  • the magnetic poles of the magnet 200 are distributed along the circumferential direction of the upper surface 210, so that the sensing surface 311 of the Hall sensor 310 can sense the magnetic flux of each magnetic pole. In this embodiment, the number of magnetic poles of the magnet 200 is greater than two and is an even number.
  • the upper surface 210 defines a corresponding shape according to the shapes of the outer contour line 211 and the inner contour line 212, for example, the outer contour line 211 is a wave-shaped curve, and the inner contour line 212 is a circle, then the outer contour line 211 and the inner contour line 212 surround and form the upper surface 210 which is substantially in the shape of a petal.
  • the outer contour line 211 may be a tooth-shaped curve
  • the inner contour line 212 may be a circle, so the outer contour line 211 and the inner contour line 212 surround and form the upper surface 210 that is roughly in the shape of a gear.
  • the shape of the magnet 200 can be set according to the actual requirements of the product, which will not be repeated here.
  • the outer contour line 211 and the inner contour line 212 are both circular curves, thereby forming a ring-shaped upper surface 210, and the lower surface 220 of the magnet 200 is also a ring shape, and the magnet The magnetic induction intensity distribution of the magnetic field of 200 is uniform.
  • the magnet 200 can be magnetized to form magnetic poles, the upper surface 210 of the magnet 200 is a magnetized surface, and the magnetic induction intensity of the magnetized surface is large enough to ensure that the magnetic induction line of the magnetized surface can be perpendicular to the induction surface 311, so that the induction The surface 311 accurately senses the change of the magnetic field, and reduces the influence of the magnetic field of the motor 1000 on the magnetic field distribution of the magnet 200 .
  • the iron core 110 has rotor slots distributed along the circumferential direction, the rotor conductive parts are filled in the rotor slots to form conductors, and the end ring 130 is connected with the rotor conductive parts, the rotor slots and the rotor conductive parts are not shown in the drawing.
  • the magnetic poles of the motor 1000 are divided into N poles and S poles. Generally, the number of magnetic poles appears in pairs. Therefore, the number of poles of the motor 1000 can be understood as the number of pole pairs of the motor 1000 . In this embodiment, the number of poles of the motor 1000 is 2p1, and 2p1 is an even number satisfying 2 ⁇ 2p1 ⁇ 6.
  • the motor 1000 has 3 pairs of magnetic poles.
  • the number of poles of the magnet 200 is 2p2, and 2p2 is an even number, which satisfies 2 ⁇ 2p2 ⁇ 12 and meets the performance requirements of the PG motor 1000.
  • the number of poles of the motor 1000 and the number of poles of the magnet 200 may or may not be equal. According to the principle of signal fluctuation, when the number of poles of the motor 1000 and the number of poles of the magnet 200 are not equal, the two signals are superimposed to produce fluctuations are different. In the embodiment of the present invention, by further optimizing the installation structure of the Hall sensor 310 and the magnet 200 , the frequency fluctuation of the signal induced by the Hall sensor 310 is reduced, thereby effectively reducing the interference of the magnetic field of the motor 1000 on the magnetic field signal of the magnet 200 .
  • the area of the upper surface 210 of the magnet 200 is S, and the peak magnetic induction intensity of the upper surface 210 is Br.
  • the magnetic flux of the upper surface 210 of the magnet 200 is Br S, that is, the magnetic induction intensity Product of peak Br and area.
  • the upper surface 210 of the magnet 200 is approximately parallel to the sensing surface 311 of the Hall sensor 310, and the distance between the upper surface 210 and the sensing surface 311 is d1.
  • the Hall sensor 310 measures the rotational speed of the iron core 110 according to the principle of the Hall effect.
  • the magnet 200 also rotates synchronously. Affected by the magnetic field generated by the magnet 200, the magnetic field Periodic changes will occur, and the Hall sensor 310 outputs a pulse signal, the frequency of which is proportional to the rotational speed, thereby realizing the measurement of the rotational speed.
  • the magnetic field of the motor 1000 will affect the distribution of the magnetic field of the magnet 200, causing the magnetic field passing through the sensing surface 311 to be the combined magnetic field of the magnetic field of the motor 1000 and the magnetic field of the magnet 200.
  • the detected signal will be affected by the frequency fluctuation of the magnetic field of the motor 1000, which will reduce the measurement accuracy of the rotational speed. Moreover, when the number of poles of the motor 1000 is not equal to the number of poles of the magnet 200 , harmonics of the magnetic field are introduced, and the frequency fluctuates, distorting the rotational speed signal.
  • FIG. 17 is a graph showing the relationship between the frequency fluctuation and the value of (Br ⁇ S)/(2p1 ⁇ d1 2 ) in an embodiment. It can be understood that, by optimizing the magnetic flux of the upper surface 210 of the magnet 200 and the axial distance between the upper surface 210 and the sensing surface 311, under the condition that (Br ⁇ S)/(2p1 ⁇ d1 2 ) is greater than or equal to 9.68, The frequency fluctuation can be reduced to a lower level. At this time, the magnetic field of the motor 1000 has less interference with the magnetic field of the magnet 200, and the influence of the magnetic field of the motor 1000 can be ignored.
  • the pulse signal output by the Hall sensor 310 has higher accuracy. It is beneficial for the motor 1000 to adjust the rotation speed more accurately.
  • FIG. 18 is a graph showing the relationship between frequency fluctuation and the value of (Br ⁇ S)/(2p1 ⁇ d1 2 ) in an embodiment.
  • (Br ⁇ S)/(2p1 ⁇ d1 2 ) ⁇ 21.51 that is, when the number of poles of the motor 1000 is less than the number of poles of the magnet 200
  • the value of (Br ⁇ S)/(2p1 ⁇ d1 2 ) The value needs to be greater than or equal to 21.51, so as to reduce the interference of the magnetic field of the motor 1000 on the magnetic field signal of the magnet 200 .
  • the frequency fluctuation can be reduced to a lower level.
  • the magnetic field of the motor 1000 interferes less Small, the influence of the magnetic field of the motor 1000 can be ignored, and the pulse signal output by the Hall sensor 310 has a higher accuracy, which is beneficial for the motor 1000 to adjust the speed more accurately.
  • the Hall sensor 310 is only triggered when the magnetic flux entering the sensing surface 311 is large enough.
  • the distance between the sensing surface 311 and the magnet 200 is closely related to the frequency fluctuation of the magnet 200.
  • the magnetic induction intensity of the magnetic field of the magnet 200 is the highest at the position of the upper surface 210, and at the position close to the upper surface 210, the magnetic induction lines of each magnetic pole are perpendicular to the upper surface 210, and the magnetic induction intensity gradually weakens as it is farther away from the upper surface 210. , the magnetic induction lines also diverge in different directions, and not all the magnetic induction lines away from the upper surface 210 are perpendicular to the upper surface 210 .
  • the embodiment further optimizes the distance d1 between the sensing surface 311 and the upper surface 210, so that d1 satisfies 0 ⁇ d1 ⁇ 3mm, that is, the distance between the sensing surface 311 and the upper surface 210 is not greater than 3mm, for example, the distance d1 between the sensing surface 311 and the upper surface 210 can be 1mm, 1.5mm or 3mm, etc., so that within the above-mentioned distance d1, the magnetic field of the magnet 200 is distributed roughly along the axial direction and perpendicular to the sensing surface 311 , which is beneficial to reduce the influence of harmonics and frequency fluctuations, thereby improving the detection accuracy of the Hall sensor 310 .
  • the magnetic induction lines will diverge along the direction of the magnetic field, the sensitivity of the sensing surface 311 to a magnetic field that is not perpendicular to the sensing surface 311 will be reduced, and the magnetic induction intensity will also be reduced, and the influence of harmonics will be even greater. Larger, the frequency fluctuation of the magnet 200 is increased.
  • the upper surface 210 in the radial direction of the iron core 110 , has a certain width, and the direction between the outer contour line 211 and the inner contour line 212 can be understood as the width of the upper surface 210 In the width direction, the curve passing through the center point between the outer contour line 211 and the inner contour line 212 is the centerline 213 of the upper surface 210 , and the centerline 213 can also be understood as the centerline of the upper surface 210 along the width direction.
  • the radial distance between the centerline and the geometric center of the sensing surface 311 is d2, the width of the upper surface 210 is d3, and d2 and d3 satisfy 0 ⁇ d2 ⁇ 1/4 ⁇ d3, further optimizing the distance between the sensing surface 311 and the magnet 200
  • the structure can keep the frequency fluctuation at a low level.
  • the centerline 213 of the upper surface 210 deviates greatly from the geometric center of the sensing surface 311 , the magnetic field entering the sensing surface 311 is asymmetrical, the waveform of the magnetic field is distorted, and the frequency fluctuation becomes more serious.
  • the centerline 213 of the upper surface 210 and the geometric center of the sensing surface 311 can coincide or have a small deviation, which can make the frequency fluctuation Keep it at a low level; and under the condition that d1 is less than 3mm, the influence of frequency fluctuation is further reduced, which is more practical and reliable.
  • FIG. 19 is a schematic structural diagram of a motor 1000 according to an embodiment of the present invention
  • FIG. 20 is a partial cross-sectional schematic diagram of a motor 1000 according to an embodiment of the present invention.
  • the motor 1000 in the embodiment is a plastic-encapsulated motor
  • the stator assembly and the magnetic induction device 300 are integrally molded
  • a plastic-enclosed shell is formed outside the stator assembly, so that the stator assembly forms a plastic-enclosed stator 400 through plastic packaging.
  • the plastic package is injection molded by a plastic package 410, and the plastic package 410 is wrapped on the outside of the Hall sensor 310 and the circuit board 320, so that the installation structure of the Hall sensor 310 and the circuit board 320 is more stable, which is beneficial to improve the Hall sensor 310 and the circuit board 320.
  • the installation accuracy of the Hall sensor 310 is improved, thereby improving the detection accuracy of the Hall sensor 310, and also improving the stability of the motor 1000, and by packaging the stator assembly and the magnetic induction device 300 into one, it is beneficial to reduce the axial dimension of the motor 1000 .
  • the motor 1000 also includes a first end cover 500 and a second end cover 600 .
  • Bearings are mounted on both ends of the first end cover 500 and the second end cover 600, and the two ends of the rotating shaft 120 are rotatably connected to the two bearings, so that the rotor can achieve stable rotation.
  • the first end cover 500 and one end of the plastic-sealed stator 400 are integrally molded, so that one end of the plastic-sealed stator 400 is closed and the other end is an open structure, and the rotor can be installed into the inner cavity of the plastic-sealed stator 400 through the opening.
  • the two end caps 600 are used to cover the opening.
  • the second end cover 600 can be interference-fitted with the inner wall surface 420 of the plastic-encapsulated stator 400 , so as to realize the connection between the second end cover 600 and the plastic-enclosed stator 400 .
  • Adopting the above-mentioned structure can further reduce the axial space occupied by the plastic-sealed stator 400 by the second end cover 600 , which is beneficial to reduce the overall volume of the motor 1000 .
  • the second end cover 600 and the magnet 200 are located at both ends of the rotor along the axial direction of the iron core 110, the magnetic induction device 300 and the first end cover 500 are located on the same side of the iron core 110, and the magnetic induction device 300,
  • the first end cover 500 is integrally molded with the stator assembly, which makes the internal structure layout of the plastic-encapsulated motor 1000 more reasonable, more reliable in structure, and more efficient in assembly.
  • the second end cover 600 can also be positioned and connected with the plastic-encapsulated stator 400 by means of bonding, clamping, etc., so as to realize the fixed connection of the second end cover 600 , and the specific method is not specifically limited here.
  • the stator assembly includes a stator core, the stator core is in the shape of a ring, and the casing can be formed by injection molding on the outside of the stator core, that is, the stator core and the casing are integrally formed, and the iron core 110 is rotatably assembled on the stator Inside the iron core, an air gap is formed between the stator iron core and the iron core 110 , thus forming the motor 1000 with a stable and reliable structure.
  • the air gap is the gap between the stator core and the iron core 110.
  • the size of the air gap is set according to the actual use requirements of the motor 1000.
  • the stator core includes a yoke and a plurality of teeth arranged at intervals around the yoke. Evenly distributed along the circumference of the stator core, coils are wound on the teeth to form windings, which will not be repeated here.
  • the embodiment of the present invention also provides a household appliance (not shown in the drawings).
  • the household appliance may be an air conditioner, a fan, etc.
  • the wheel rotates to realize the air supply of the indoor unit. Since the air conditioner adopts all the technical solutions of the motor 1000 of the above-mentioned embodiments, it at least has all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

一种转子、电机及家用电器,转子包括转轴(100)、铁芯(200)、端环(300)、磁体(400)和屏蔽部件(500);铁芯(200)绕设于转轴(100)的外周壁,端环(300)位于铁芯(200)沿转轴(100)的轴向的一端,端环(300)远离铁芯(200)的端部设置有凹槽(310);磁体(400)安装于凹槽(310);屏蔽部件(500)由导磁材料制成,屏蔽部件(500)安装于凹槽(310)且位于磁体(400)朝向铁芯(200)的一侧。

Description

转子、电机及家用电器
相关申请的交叉引用
本申请要求于2021年06月01日提交的申请号为202110608765.3、名称为“电机及家用电器”,以及于2021年06月01日提交的申请号为202110610133.0、名称为“转子、电机及家用电器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电机技术领域,特别涉及一种转子、电机及家用电器。
背景技术
具有PG(Pulse Generator,脉冲发生器)调速的交流电机通常在转子上带有磁环,磁环安装在转子轴承位置,在磁环上方设置霍尔传感器,霍尔传感器通过感应磁环磁场的变化,获取转子的速度信号,从而将该信号反馈给整机实现转速调节。然而,磁环占用的轴向空间较大,在一定的安装尺寸限制的条件下,无法提高电机的功率密度。
相关技术中,将磁环安装在转子铁芯上,节省轴向空间,但转子的磁场会影响磁环的磁场分布,从而影响了霍尔传感器检测对磁环磁场的检测,降低了电机调速的精度。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种能够减少转子磁场对磁体磁场信号干扰的转子。
本发明还提供一种具有上述转子的电机以及具有上述电机的家用电器。
根据本发明第一方面实施例的转子,包括转轴、铁芯、端环、磁体和屏蔽部件;所述铁芯绕设于所述转轴的外周壁,所述端环位于所述铁芯沿所述转子的轴向的一端,所述端环远离所述铁芯的端部设置有凹槽;所述磁体安装于所述凹槽。
根据本发明第一方面实施例的转子,至少具有如下有益效果:通过在凹槽内安装有导磁材料制成的屏蔽部件,由于屏蔽部件的磁导率远大于空气的磁导率,因此穿过凹槽的转子磁场的磁力线将会更多地经过屏蔽部件从而形成闭合回路,进而减少转子磁场的磁力线经过空气形成的闭合回路,从而降低转子磁场对磁体的磁场的影响,减少谐波对磁场感应器件的干扰,有利于提高磁场感应器件对磁体磁场的检测精度,从而有利于提高电机调速的精度。
根据本发明的一些实施例,所述屏蔽部件由导磁材料制成,并安装于所述凹槽且位于所述磁体朝向所述铁芯的一侧。
根据本发明的一些实施例,所述屏蔽部件沿所述转子的轴向靠近所述磁体的一端具有第一表面,所述第一表面设置有第一内轮廓线和第一外轮廓线,所述第一内轮廓线与所述第一外轮廓线均为闭合曲线且围设形成封闭面。
根据本发明的一些实施例,所述凹槽沿所述转子的径向间隔设置有第一槽壁和第二槽壁,所述第一槽壁相对所述第二槽壁靠近所述转子的轴心线,所述第一内轮廓线与所述第一槽壁之间的距离为d11,所述第一外轮廓线与所述第二槽壁之间的距离为d12,所述d11和所述d12满足以下关系:max(d11,d12)≤2mm。
根据本发明的一些实施例,所述屏蔽部件沿所述转子的轴向背离所述磁体的一端具有第二表面,所述第二表面设置有第二内轮廓线和第二外轮廓线,所述第二内轮廓线与所述第二外轮廓线均为闭合曲线且围设形成封闭面。
根据本发明的一些实施例,所述第二内轮廓线与所述第一槽壁之间的距离为d21,所述第二外轮廓线与所述第二槽壁之间的距离为d22,所述d21和所述d22满足以下关系:max(d21,d22)≤2mm。
根据本发明的一些实施例,所述第一内轮廓线与所述第二内轮廓线之间的距离为h1,所述第一外轮廓线与所述第二外轮廓线之间的距离为h2,所述h1和所述h2满足以下关系:min(h1,h2)≥0.2mm。
根据本发明的一些实施例,所述端环设置有两个,两个所述端环位于所述铁芯沿所述转子的轴向的两端,其中一个所述端环背离所述铁芯的端部设置有第一凸起部和第二凸起部,所述第一凸起部和所述第二凸起部沿所述转子的径向间隔分布,所述第一凸起部和所述第二凸起部之间构成所述凹槽。
根据本发明的一些实施例,所述磁体的表面凸出于所述第一凸起部的表面和所述第二凸起部的表面。
根据本发明的一些实施例,所述凹槽为环形槽,所述环形槽绕所述转子的轴心线设置。
根据本发明的一些实施例,所述凹槽为圆环槽,所述圆环槽的几何中心位于所述转子的轴心线。
根据本发明的第二方面实施例的电机,包括磁感应装置以及根据本发明第一方面实施例的转子。所述磁感应装置设有用于检测磁场变化的感应面,所述感应面朝向所述磁体且垂直于所述转轴的轴向设置,使所述感应面沿所述转轴的轴向检测所述磁体的磁场。
根据本发明实施例的电机,至少具有如下有益效果:
通过在铁芯沿轴向的端部上设置端环,将磁体安装在端环的凹槽内,磁体无需与转轴连接,可节省电机的轴向空间,有利于提高电机的输出功率和带载能力;将磁感应装置的感应面朝向磁体,且感应面垂直于转轴的轴向,使感应面能够沿转轴的轴向检测磁体的磁场,降低电机的磁场对磁体的磁场的影响,从而有效减小电机的磁场的干扰,使感应面能够准确检测磁体的磁场变化,有利于电机调节转速更精准。
根据本发明的一些实施例,所述电机的极数为2p1,所述磁体的极数为2p2,满足2≤2p1≤6且2≤2p2≤12。
根据本发明的一些实施例,所述磁体朝向所述感应面的表面为上表面,所述上表面的面积为S,所述上表面的磁感应强度峰值为Br,所述磁体与所述感应面之间沿所述转轴的轴向的距离为d1,当2p1≥2p2时,满足(Br·S)/(2p1·d1 2)≥9.68。
根据本发明的一些实施例,当2p1<2p2时,满足(Br·S)/(2p1·d1 2)≥21.51。
根据本发明的一些实施例,所述磁体与所述感应面之间沿所述转轴的轴向的距离为d1,满足0<d1≤3mm。
根据本发明的一些实施例,所述磁体朝向所述感应面的表面为上表面,在所述铁芯的径向上,所述上表面包括外轮廓线和内轮廓线,所述外轮廓线与所述内轮廓线均为曲线且围设形成封闭面。
根据本发明的一些实施例,在所述铁芯的径向上,所述外轮廓线与所述内轮廓线之间设有中线,所述中线与所述感应面的几何中心的距离为d2,所述上表面的宽度为d3,所述d2与所述d3满足0≤d2≤1/4·d3。
根据本发明的一些实施例,所述外轮廓线和所述内轮廓线均为圆形,所述外轮廓线与所述内轮廓线围设形成环形面。
根据本发明的一些实施例,所述电机还包括定子组件,所述定子组件与所述磁感应装置塑封成型。
根据本发明的一些实施例,所述电机还包括与所述定子组件定位安装的端盖,所述端盖和所述磁体分别位于所述转子组件沿所述铁芯的轴向的两端。
根据本发明的一些实施例,所述磁感应装置包括霍尔传感器和电路板,所述霍尔传感器与所述电路板连接,所述霍尔传感器设有所述感应面。
根据本发明的第三方面实施例的家用电器,包括上述第一方面实施例所述的电机。
根据本发明实施例的家用电器,至少具有如下有益效果:
家用电器通过采用上述实施例的电机,降低电机的磁场对磁体的磁场的影响,从而有效减小电机的磁场的干扰,使感应面能够准确检测磁体的磁场变化,有利于电机调节转速更精准。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是本发明实施例的转子的局部剖视图;
图2是图1中A处放大图;
图3是本发明实施例的转子的分解示意图;
图4是本发明实施例的屏蔽部件的立体图;
图5是图4中的B处放大图;
图6是本发明实施例的铁芯和端环的装配示意图;
图7是图6中的C处放大图;
图8是本发明实施例的霍尔传感器的安装结构示意图;
图9是本发明实施例的磁体的频率波动的变化坐标图;
图10是本发明另一实施例的磁体的频率波动的变化坐标图;
图11是本发明一实施例的转子组件与霍尔传感器的组合结构示意图;
图12是本发明一实施例的转子组件与霍尔传感器的正面结构示意图;
图13是图11中a处的放大结构示意图;
图14是图12中b处的放大结构示意图;
图15是本发明一实施例的磁体的立体结构示意图;
图16是本发明一实施例的磁体的另一角度的结构示意图;
图17是本发明一实施例的磁体的频率波动的变化坐标图;
图18是本发明另一实施例的磁体的频率波动的变化坐标图;
图19为本发明一种实施例的电机的整体结构示意图;以及
图20为图19的局部剖视示意图。
附图标记:
转轴100、120;
铁芯200、110,导电部件210;
端环300、130,凹槽310、131,第一槽壁311,第二槽壁312,第一凸起部320,第二凸起部330;
磁体400、200,上表面210,外轮廓线211,内轮廓线212,中线213,下表面220,内侧面230,外侧面240;;
屏蔽部件500,第一表面510,第一内轮廓线511,第一外轮廓线512,第二表面520,第二内轮廓线521,第二外轮廓线522;
磁场感应装置600、300,霍尔传感器610、310,感应面611、311,电路板620、320;
塑封定子400,塑封体410,内壁面420;
第一端盖500;
第二端盖600;以及
电机1000。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接、装配、配合等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
PG调速电机具有磁场感应器件,其调速原理是通过磁场感应器件感应磁环的磁场变化信号,并输出相应的信号给控制板,调整输给PG电机的工作电压进行转速的自动控制。传统的PG调速电机,其磁环安装在转子轴承位置附近,磁环占用的轴向空间较大,在一定的安装尺寸限制的条件下,无法提高电机的功率密度。相关技术中,将转子磁环安装在转子铁芯上,节省轴向空间,但转子的磁场影响磁环的磁场分布, 因此,采用适当的方法降低转子的磁场对磁环的磁场信号的干扰显得尤为重要。为此,本发明提供了一种转子,其可以降低转子的磁场对磁环的磁场信号的干扰。本发明还提供了一种具有上述转子的电机以及具有上述电机的家用电器。
参照图1至图3,本发明第一方面实施例的转子,应用于电机,转子包括转轴100、铁芯200、端环300、磁体400和屏蔽部件500。铁芯200绕设于转轴100的外周壁上而与转轴100固定连接,其内部设置有安装槽,安装槽内可以安装有导电部件210,导电部件210可以是铸铝或者是铸铜,导电部件210在电机的定子变化的磁场作用下产生感应电流,导电部件210变化的感应电流产生转子的磁场,此时的转子结构因类似鼠笼,因此此类转子通常称为鼠笼式转子。
铁芯200沿转子的轴向的两端分别设置有端环300,其中一个端环300远离铁芯200的端部设置有凹槽310,凹槽310可以是圆环槽或者方形槽或是其他形状的结构。端环300和导电部件210一样,其也可以为铸铝或铸铜制成,其可以与导电部件210为一体结构,比如,端环300和导电部件210可以通过浇筑的方式一体成型于铁芯200上。磁体400安装于凹槽310内,用于配合磁场感应装置600以检测转子的转速。具体的,磁场感应装置600包括霍尔传感器610和电路板620,霍尔传感器610连接于电路板620,电路板620可安装于电机的外壳。需要说明的是,霍尔传感器610也可以采用其他磁场感应器件进行代替,在此不再具体限定。
磁体400随着转子转动,从而产生变化的磁场,霍尔传感器610通过检测磁体400的磁场变化,从而可以获知转子的转速信息。
屏蔽部件500由导磁材料制成,导磁材料可以是工程纯铁、导磁不锈钢、低碳钢或是其他材料。具体的,屏蔽部件500安装于凹槽310的底部,磁体400安装于凹槽310内且位于屏蔽部件500的上方。
参照图2,该转子通过在端环300设置有凹槽310,磁体400安装于凹槽310,从而可以减少磁体400对电机的轴向空间的占用,有利于提高电机的输出功率和带载能力,另外通过在凹槽310内安装有导磁材料制成的屏蔽部件500,由于屏蔽部件500的磁导率远大于空气的磁导率,因此穿过凹槽310的转子磁场的磁力线将会更多地经过屏蔽部件500从而形成闭合回路,进而减少转子磁场的磁力线经过空气形成的闭合回路,从而降低转子的磁场对磁体400的磁场的影响,减少谐波对霍尔传感器610的干扰,有利于提高霍尔传感器610对磁体400磁场的检测精度,从而有利于提高电机调速的精度。
参照图2、图4和图5,可以理解的是,屏蔽部件500沿转子的轴向的两端分别设置有第一表面510和第二表面520,其中第一表面510相对第二表面520靠近磁体400,第一表面510设置有沿转子的径向间隔分布的第一内轮廓线511和第一外轮廓线512,第一内轮廓线511与第一外轮廓线512均为闭合曲线,且第一内轮廓线511与第一外轮廓线512围设形成封闭面从而构成第一表面510。该封闭面为平面,其形状可以根据实际需要而具体设置,比如,其可以是椭圆环状或圆环状或是其他形状。
参照图2、图6和图7,凹槽310沿转子的径向间隔设置有第一槽壁311和第二槽壁312,第一槽壁311相对第二槽壁312靠近转子的轴心线,第一槽壁311和第二槽壁312即为凹槽310的两个内侧壁。第一内轮廓线511与第一槽壁311之间的距离为d11,当第一内轮廓线511与第一槽壁311之间的距离恒定时,此 时d11是一个恒定的值,当第一内轮廓线511与第一槽壁311之间的距离在各处并不恒定时,此时d11是一个在一定数值范围内变化的值。第一外轮廓线512与第二槽壁312之间的距离为d12。类似的,当第一外轮廓线512与第二槽壁312之间的距离恒定时,此时d12是一个固定的值,当第一外轮廓线512与第二槽壁312之间的距离在各处并不恒定时,此时d12是一个在一定数值范围内变化的值。d11和d12满足以下关系:max(d11,d12)≤2mm,即d11和d12两者中较大的一个的值小于或等于2mm,即d11和d12均小于或等于2mm。参照图9,当屏蔽部件500的第一表面510与凹槽310的内侧壁之间存在气隙时,转子的磁力线经过气隙后再经屏蔽部件500形成闭合回路,由于回路中存在气隙,而气隙的距离较大时磁路的磁导率下降较为明显,因此通过限定第一表面510的内轮廓线和外轮廓线与凹槽310的两个内侧壁之间的气隙距离,使得回路的合成磁导率的下降值较小,从而使得转子磁场的磁力线可以更多地经过屏蔽部件500形成闭合回路,进而减少转子磁场的磁力线经过空气形成的闭合回路,从而使得转子的磁场进入磁体400的磁场的量处于相对较低的水平,进一步降低转子的磁场对磁体400的磁场的影响。
参照图4和图5,可以理解的是,类似的,第二表面520设置有沿转子的径向间隔分布的第二内轮廓线521和第二外轮廓线522,第二内轮廓线521与第二外轮廓线522均为闭合曲线,且第二内轮廓线521与第二外轮廓线522围设形成封闭面从而构成第二表面520。该封闭面为平面,其形状可以根据实际需要而具体设置,比如,其可以是椭圆环状或圆环状或是其他形状。
参照图2、图5和图7,具体的,第二内轮廓线521与第一槽壁311之间的距离为d21,当第二内轮廓线521与第一槽壁311之间的距离恒定时,此时d21是一个固定的值,当第二内轮廓线521与第一槽壁311之间的距离在各处并不恒定时,此时d21是一个在一定数值范围内变化的值。第二外轮廓线522与第二槽壁312之间的距离为d12。类似的,当第二外轮廓线522与第二槽壁312之间的距离恒定时,此时d22是一个固定的值,当第二外轮廓线522与第二槽壁312之间的距离在各处并不恒定时,此时d22是一个在一定数值范围内变化的值。d21和d22满足以下关系:max(d21,d22)≤2mm,即d21和d22两者中较大的一个的值小于或等于2mm,即d21和d22均不大于2mm。参照图9,当屏蔽部件500的第二表面520与凹槽310的内侧壁之间存在气隙时,转子的磁力线经过气隙后再经屏蔽部件500形成闭合回路,此时由于回路中存在气隙,而气隙的距离较大时磁路的磁导率下降较为明显,因此通过限定第二表面520的内轮廓线和外轮廓线与凹槽310的两个内侧壁之间的气隙距离,使得回路的合成磁导率下降值较小,从而使得转子磁场的磁力线可以更多地经过屏蔽部件500形成闭合回路,进而减少转子磁场的磁力线经过空气形成的闭合回路,从而使得转子的磁场进入磁体400的磁场的量处于相对较低的水平,进一步降低转子的磁场对磁体400的磁场的影响。
参照图9,可以理解的是,上述的d11、d12、d21和d22中,当最大者的值不大于2mm时,此时转子的磁力线经过气隙后再经屏蔽部件500形成的闭合回路的合成磁导率下降值较小,有利于提高屏蔽部件500对转子磁场的屏蔽作用,从而提高霍尔传感器610对磁体400的磁场的检测精度。
参照图2,可以理解的是,第一内轮廓线511与第二内轮廓线521之间的距离为h1,当第一内轮廓线511与第二内轮廓线521之间的距离恒定时,此时h1是一个固定的值,当第一内轮廓线511与第二内轮廓 线521之间的距离在各处并不恒定时,此时h1是一个在一定数值范围内变化的值。第一外轮廓线512与第二外轮廓线522之间的距离为h2,类似的,当第一外轮廓线512与第二外轮廓线522之间的距离恒定时,此时h2是一个固定的值,当第一外轮廓线512与第二外轮廓线522之间的距离在各处并不恒定时,此时h2是一个在一定数值范围内变化的值。h1和h2满足以下关系:mi n(h1,h2)≥0.2mm,即h1和h2中最小的一个为h,h大于或等于0.2mm,即h1和h2均不小于0.2mm,从而使得屏蔽部件500的厚度不小于一定的数值。参照图10,当屏蔽部件500厚度减小时,转子的磁场进入屏蔽部件500时,其磁导率降低,甚至,屏蔽部件500发生饱和,磁导率下降更为明显,因此,通过限定屏蔽部件500的厚度,使得屏蔽部件500的磁导率下降处在较低水平,从而使得转子大部分的磁力线可以经过屏蔽部件500,从而降低对磁体400的磁场的影响。
参照图6,可以理解的是,端环300的端部设置有第一凸起部320和第二凸起部330,第一凸起部320和第二凸起部330沿径向间隔分布,第一凸起部320和第二凸起部330之间构成凹槽310,凹槽310可以是圆环槽或者椭圆环槽或者多边形槽或者是其他形状的槽结构,可以根据实际需要而具体设置。具体的,第一凸起部320包括第一上表面、第一下表面、第一内侧面和第一外侧面,第一上表面沿转子的径向间隔分布有第一上表面内轮廓线和第一上表面外轮廓线,第一上表面内轮廓线和第一上表面外轮廓线均为闭合曲线,且第一上表面内轮廓线和第一上表面外轮廓线围设形成封闭面从而构成第一上表面,第一上表面可以是圆环状或椭圆状或是花瓣状等形状。类似的,第二凸起部330包括第二上表面、第二下表面、第二内侧面和第二外侧面,第二上表面沿转子的径向间隔分布有第二上表面内轮廓线和第二上表面外轮廓线,第二上表面内轮廓线和第二上表面外轮廓线均为闭合曲线,且第二上表面内轮廓线和第二上表面外轮廓线围设形成封闭面从而构成第二上表面,第二上表面可以是圆环状或椭圆状或是花瓣状等形状。其中,第一内侧面构成第一槽壁311,第二内侧面构成第二槽壁312。转子转动时,第一凸起部320和第二凸起部330存在激励电流,其周围存在磁场,该磁场的磁力线经凹槽310的气隙形成闭合回路,当凹槽310内存在导磁材料制成的屏蔽部件500时,该磁场很大一部分的磁力线将经过屏蔽部件500形成闭合回路,从而减少该磁场的磁力线经过空气形成的闭合回路,即减少该磁场进入磁体400的磁场的量,从而降低谐波对霍尔传感器610的干扰。可以理解的是,凹槽310为环形槽,环形槽绕转子的轴心线设置,具体的,环形槽的首尾端连通,磁体400与凹槽310形状匹配,也为首尾端连接的环形磁体400,从而有利于提高磁体400的磁场,从而提高传感器对磁体400磁场的检测的精度。
参照图6,上述实施例中,凹槽310进一步设置为圆环槽的形状,圆环槽的几何中心位于转子的轴心线上,磁体400也呈与凹槽310匹配的圆环状,此时磁体400的磁场分布更为均匀,进一步有利于提高霍尔传感器610对磁体400的磁场的检测精度。
可以理解的是,磁体400背离屏蔽部件500的一端凸出于端环300的上表面,即沿转子的轴向,磁体400的上表面与霍尔传感器610的感应面611的距离小于第一凸起部320的第一上表面与感应面611的距离,同时也小于第二凸起部320的第二上表面与感应面611的距离。因此,霍尔传感器610感受到的磁体400的磁场强度大,使霍尔传感器610能够更准确地检测磁体400的磁场变化。而且,霍尔传感器610感受到 的第一凸起部320的磁场和第二凸起部330的磁场强度小,从而能够减少第一凸起部320的磁场和第二凸起部330的磁场对磁体400的磁场的影响,进一步提高霍尔传感器610对磁体400的磁场的检测精度。当然,在实际生产中,磁体400的上表面也可以与端环300的上表面平齐设置。
参见图11至图21,本发明实施例提供的电机1000,通过将磁体200安装在铁芯110上,可节省电机1000的轴向空间,有利于提高电机1000的输出功率和带载能力;且降低电机1000的磁场对磁体200的磁场的影响,从而有效减小电机1000的磁场的干扰,使感应面311能够准确检测磁体200的磁场变化,有利于电机1000调节转速更精准,更实用可靠。
参考图11至图18描述本发明实施例的电机1000,该电机1000为PG调速电机1000,适用于家用电器。下面以具体示例对电机1000进行说明。电机1000包括转子和定子组件(附图未示出),其中,转子具体结构可参见以上描述,在此不再赘述。
可以理解的是,电机1000的内部设置有磁感应装置300,该磁感应装置300用于检测磁体200的磁场,如图11和12所示,在转轴120的轴向上,磁感应装置300位于磁体200的上方,通过磁感应装置300能够感应磁体200的磁场的变化,根据磁体200磁场的变化信号可以获知铁芯110的转速,从而能够对电机1000实现转速的调节。其中,磁感应装置300可与外壳连接,附图未示出磁感应装置300的具体连接结构。铁芯110沿轴向的两端分别连接端环130,在其中一个端环130上安装磁感应装置300,端环130嵌入到铁芯110内部,使端环130连接结构更加可靠。
考虑到当电机1000运行时,在电机1000的内部空间会存在着磁场,这个磁场由定子组件和转子组件的电流产生,理解为电机1000的磁场。可理解到,磁体200所产生的磁场位于电机1000的内部,磁体200的磁场与电机1000的磁场会出现重叠,使磁体200的磁场分布受到影响,这样磁感应装置300在检测磁体200的磁场时,电机1000的磁场会造成干扰,从而降低磁感应装置300的检测精度,因此,实施例中将磁感应装置300与磁体200的安装结构进行优化,降低电机1000的磁场对磁体200的磁场信号的干扰。
可以理解的是,磁感应装置300的工作原理是通过检测感应面311上的磁场强度,将磁信号转换为电信号。磁感应装置300仅对垂直于感应面311的表面的磁感应强度敏感,即磁场的磁感线需要与感应面311垂直,从而能够准确检测出被测磁场磁感应强度。根据磁通量的定义,在磁感应强度为B的匀强磁场中,有一个面积为S且与磁场方向垂直的平面,磁感应强度B与面积S的乘积,叫做穿过这个平面的磁通量,磁感应装置300的感应面311可理解为与磁场方向垂直的平面。
本发明的实施例中,将磁感应装置300的感应面311设置朝向磁体200,且感应面311与转轴120的轴向垂直设置,如图12和3所示,感应面311朝下且与磁体200的上表面210相对应,磁体200的磁场方向能够垂直于感应面311,从而使感应面311能够沿轴向检测磁体200的磁场。
需要说明的是,磁体200的磁场是分布在磁体200的周围,以磁感线的形式来描述的话,磁感线从N极出发到S极的方向,在磁体200内部是由S极到N极,形成封闭的磁感线。磁体200的磁场方向能够垂直于感应面311,可理解为在感应面311与磁体200的上表面210之间的距离内,磁体200磁场的磁感线大致沿轴向方向分布且垂直于感应面311,从而使磁感应装置300能够准确检测磁体200的磁场变化。
可以理解的是,磁体200的磁极沿周向分布,每个磁极的磁感线垂直于磁体200的上表面210,且靠近上表面210的磁感应强度较高,磁通量也较大,感应面311能够感应到每个磁极的磁通量,使磁感应装置300能够准确获取在铁芯110转动过程中磁体200的磁场变化信号,有效降低电机1000的磁场对磁体200的磁场的影响,从而减小电机1000的磁场的干扰,提高磁感应装置300检测精度,有利于电机1000调节转速更精准。
参见图11、12、13和14所示,实施例的磁感应装置300通过霍尔传感器310检测磁体200的磁场及其变化,霍尔传感器310连接在电路板320上,电路板320安装位于转轴120的一侧,电路板320可与外壳连接,使霍尔传感器310位于磁体200沿轴向的上方。其中,霍尔传感器310朝向磁体200的平面为感应面311,感应面311与轴向垂直。磁体200随着铁芯110的转动过程中,磁体200的磁场垂直于感应面311,通过感应面311能够感应磁体200的磁场变化信号,并将该信号发送给电机1000的控制电路,然后通过可控硅的导通角度来调整供给电机1000的工作电压,从而实现转速的自动控制。霍尔传感器310具有结构牢固、体积小、重量轻、寿命长、安装方便等优点,具体不再赘述。
参见图15和16所示,磁体200大致呈环状,磁体200包括有上表面210、下表面220、外侧面240和内侧面230,磁体200由上表面210、下表面220、外侧面240和内侧面230围设形成,磁体200安装在凹槽131内,其中磁体200朝向霍尔传感器310的面为磁体200的上表面210,上表面210为平面,磁体200的下表面220与凹槽131的底面贴合。可理解到,磁体200不限于实施例所示的环状结构,通过上表面210、下表面220、外侧面240和内侧面230配合可限定出不同形状的磁体200,例如,磁体200可以呈椭圆形、花瓣形状等,凹槽131与磁体200的形状匹配,使磁体200能够牢固地安装在凹槽131中。
参见图15所示,磁体200的上表面210具有外轮廓线211和内轮廓线212,外轮廓线211可理解为磁体200沿铁芯110的径向的外侧轮廓曲线,内轮廓线212可理解为磁体200沿铁芯110的径向的内侧轮廓曲线,通过外轮廓线211和内轮廓线212配合限定出上表面210,该上表面210为封闭面。磁体200的磁极沿上表面210的周向分布,这样霍尔传感器310的感应面311能够感应到每个磁极的磁通量,本实施例中磁体200的磁极数量大于两个且为偶数。
可理解到,上表面210根据外轮廓线211和内轮廓线212的形状来限定出相应的形状,例如,外轮廓线211为波浪形状的曲线,内轮廓线212为圆形,则外轮廓线211和内轮廓线212围设形成大致呈花瓣形状的上表面210。又如,外轮廓线211可为齿形的曲线,内轮廓线212为圆形,则外轮廓线211和内轮廓线212围设形成大致呈齿轮形状的上表面210。具体的,可根据产品实际要求来设定磁体200的形状,此处不再赘述。
参见图15所示,在一些实施例中,外轮廓线211和内轮廓线212均为圆形曲线,从而形成圆环形状的上表面210,磁体200的下表面220也为圆环形状,磁体200的磁场的磁感应强度分布均匀。需要说明的是,磁体200可采用充磁方式形成磁极,磁体200的上表面210为充磁面,充磁面磁感应强度足够大,保证充磁面的磁感应线能够垂直于感应面311,使感应面311准确感应到磁场的变化,减小电机1000的磁场对磁体200的磁场分布的影响。
可以理解的是,铁芯110沿圆周方向分布有转子槽,将转子导电部件填充在转子槽形成导体,端环130与转子导电部件相连接,附图未示出转子槽和转子导电部件。电机1000的磁极分N极和S极,一般磁极数是成对出现,因此,电机1000的极数可理解为电机1000的极对数。本实施例中,电机1000的极数为2p1,2p1为偶数,满足2≤2p1≤6,例如,2p1为6时,表示铁芯110具有6个磁极,即此电机1000有3对磁极。磁体200的极数为2p2,2p2为偶数,满足2≤2p2≤12,达到PG电机1000的性能要求。
需要说明的是,电机1000的极数与磁体200的极数可以相等,也可以不相等,根据信号波动原理,当电机1000的极数与磁体200的极数不等时,两个信号叠加产生的波动不同。本发明实施例通过将霍尔传感器310与磁体200的安装结构进行进一步优化,降低霍尔传感器310感应的信号的频率波动,从而有效降低电机1000的磁场对磁体200的磁场信号的干扰。
可以理解的是,磁体200的上表面210的面积为S,上表面210的磁感应强度峰值为Br,根据磁通量的计算公式,可以得知磁体200上表面210的磁通量为Br·S,即磁感应强度峰值Br与面积的乘积。在转轴120的轴向方向上,磁体200的上表面210与霍尔传感器310的感应面311大致平行,上表面210与感应面311之间的距离为d1,当2p1≥2p2时,满足(Br·S)/(2p1·d1 2)≥9.68,即电机1000的极数大于等于磁体200的极数时,(Br·S)/(2p1·d1 2)的取值需要大于等于9.68,从而起到降低电机1000的磁场对磁体200的磁场信号干扰的作用。
需要说明的是,霍尔传感器310根据霍尔效应原理测量铁芯110的转速,在铁芯110转动时,磁体200也跟随同步转动,受磁体200所产生的磁场的影响,在转动过程中磁场会发生周期性变化,霍尔传感器310输出脉冲信号,其频率和转速成正比,从而实现转速的测量。然而,由于电机1000的磁场的干扰,电机1000的磁场会影响磁体200的磁场的分布,导致通过感应面311的磁场为电机1000的磁场与磁体200的磁场的组合磁场,这样霍尔传感器310所检测的信号会受到电机1000的磁场的频率波动影响,降低转速的测量精度。而且,当电机1000的极数与磁体200的极数不相等时,引入磁场谐波,频率发生波动,使得转速信号失真。
参见图17所示,图17所示为一实施例中频率波动与(Br·S)/(2p1·d1 2)取值的关系坐标图。可以理解到,通过对磁体200的上表面210的磁通量以及上表面210与感应面311的轴向距离进行优化,在满足(Br·S)/(2p1·d1 2)大于等于9.68的情况下,能够使频率波动降低至较低的水平,此时,电机1000的磁场对磁体200的磁场的干扰较小,可忽略电机1000的磁场的影响,霍尔传感器310输出的脉冲信号准确度较高,有利于电机1000调节转速更精准。
相反地,如图17所示,在2p1≥2p2时,且(Br·S)/(2p1·d1 2)的取值小于9.68的情况下,频率波动较大,且(Br·S)/(2p1·d1 2)的取值越小,频率波动越大,转速信号失真越严重。
参见图18所示,图18所示为一实施例中频率波动与(Br·S)/(2p1·d1 2)取值的关系坐标图。当2p1<2p2时,满足(Br·S)/(2p1·d1 2)≥21.51,即电机1000的极数小于磁体200的极数时,(Br·S)/(2p1·d1 2)的取值需要大于等于21.51,从而起到降低电机1000的磁场对磁体200的磁场信号干扰的作用。具体的,在满足(Br·S)/(2p1·d1 2)大于等于21.51的情况下,能够使频率波动降低至较低的水平,此时,电机 1000的磁场对磁体200的磁场的干扰较小,可忽略电机1000的磁场的影响,霍尔传感器310输出的脉冲信号准确度较高,有利于电机1000调节转速更精准。
相反地,如图18所示,在2p1<2p2时,且(Br·S)/(2p1·d1 2)的取值小于21.51的情况下,频率波动较大,且(Br·S)/(2p1·d1 2)的取值越小,频率波动越大,转速信号失真越严重。
可以理解的是,根据霍尔传感器310的工作原理,进入感应面311的磁通量足够大时才触发霍尔传感器310,感应面311与磁体200的距离和磁体200的频率波动息息相关,当距离越大时,磁通密度越弱,当磁场存在一定干扰时,谐波的影响更为明显,进一步增大磁体200的频率波动。其中,磁体200的磁场在上表面210位置的磁感应强度最高,在靠近上表面210的位置,每个磁极的磁感线垂直于上表面210,磁感应强度随着离上表面210越远而逐渐减弱,磁感应线也会朝向不同的方向发散,远离上表面210的磁感应线并非全部与上表面210垂直。
基于此,参见图14所示,实施例对感应面311与上表面210之间的距离d1进一步优化,使d1满足0<d1≤3mm,即感应面311与上表面210之间的距离不大于3mm,例如,感应面311与上表面210之间的距离d1可以是1mm、1.5mm或3mm等,这样保证在上述距离d1内,磁体200的磁场大致沿轴向方向分布且垂直于感应面311,有利于降低谐波的影响,减小频率波动,进而提高霍尔传感器310检测准确度。可理解到,在d1大于3mm的情况下,磁感应线会沿磁场的方向发散,感应面311对非垂直于感应面311的磁场的敏感度降低,且磁感应强度也会降低,谐波的影响更大,增大磁体200的频率波动。
参见图14所示,在一些实施例,在铁芯110的径向方向上,上表面210具有一定的宽度,沿外轮廓线211与内轮廓线212之间的方向可理解为上表面210的宽度方向,经过外轮廓线211与内轮廓线212之间的中心点的曲线为上表面210的中线213,中线213也可理解为上表面210沿宽度方向的中心线。中心线与感应面311的几何中心之间的径向距离为d2,上表面210的宽度为d3,d2与d3满足0≤d2≤1/4·d3,进一步优化感应面311与磁体200之间的结构,能够使频率波动处在较低水平。当上表面210的中线213与感应面311的几何中心偏差较大时,导致进入感应面311的磁场不对称,磁场波形发生畸变,频率波动更加严重。
以圆环形状的磁体200为例,在霍尔传感器310的磁体200的位置相对固定的情况下,上表面210的中线213与感应面311的几何中心可以重合或偏差较小,可以使频率波动保持在较低水平;且在满足d1小于3mm的情况下,进一步降低频率波动的影响,更加实用可靠。
参见图19和图20所示,图19为本发明一种实施例的电机1000的结构示意图,图20为本发明一种实施例的电机1000的局部剖视示意图。可以理解的是,实施例的电机1000为塑封电机,定子组件与磁感应装置300一体塑封成型,在定子组件的外侧形成塑封外壳,这样定子组件通过塑封形成塑封定子400。如图20所示,塑封外壳由塑封体410注塑成型,塑封体410包裹在霍尔传感器310和电路板320的外侧,使霍尔传感器310和电路板320的安装结构更加稳定,有利于提高霍尔传感器310的安装精度,从而提高了霍尔传感器310的检测准确性,也提高了电机1000的稳定性,而且通过将定子组件与磁感应装置300塑封成一体,有利于减少电机1000的轴向尺寸。
参见图20所示,可以理解的是,电机1000还包括有第一端盖500和第二端盖600,第一端盖500和第二端盖600分别位于塑封外壳沿铁芯110的轴向的两端,第一端盖500和第二端盖600上均安装有轴承,转轴120的两端分别转动连接于两个轴承,从而使转子实现稳定的转动。
本实施例中,第一端盖500与塑封定子400的一端一体塑封成型,使塑封定子400的一端为封闭且另一端为开口的结构,转子可通过开口安装到塑封定子400的内腔,第二端盖600用于封盖开口。其中,第二端盖600可以与塑封定子400的内壁面420过盈配合,从而实现第二端盖600与塑封定子400的连接。采用上述结构能够进一步减少第二端盖600占用塑封定子400的轴向空间,有利于降低电机1000的整体体积。
可以理解的是,第二端盖600和磁体200分别位于转子沿铁芯110的轴向的两端,磁感应装置300与第一端盖500位于铁芯110的相同一侧,且磁感应装置300、第一端盖500与定子组件一体塑封成型,使得塑封电机1000的内部结构布置更加合理,结构更加可靠,装配更加高效。
需要说明的是,第二端盖600还可以通过粘接、卡接等方式与塑封定子400定位连接,从而实现第二端盖600的固定连接,具体方式在此不再具体限定。
在一些实施例,定子组件包括定子铁芯,定子铁芯呈圆环形状,可通过在定子铁芯的外侧注塑形成外壳,即定子铁芯与外壳一体成型,铁芯110可转动地装配在定子铁芯的内侧,定子铁芯与铁芯110之间设置形成气隙,从而组成电机1000,结构稳定可靠。其中,气隙是定子铁芯与铁芯110之间的空隙,根据电机1000的实际使用要求设置气隙的大小,定子铁芯包括轭部和环绕轭部间隔设置的多个齿部,齿部沿定子铁芯的圆周均匀分布,齿部上绕制线圈形成绕组,此处不再赘述。
本发明实施例还提供的家用电器(附图未示出),该家用电器可以是空调器、风扇等,例如,以空调器为示例,空调器的室内机采用上述实施例的电机1000驱动风轮转动,实现室内机的送风。由于空调器采用了上述实施例的电机1000的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再赘述。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (23)

  1. 转子,包括:
    转轴;
    铁芯,绕设于所述转轴的外周壁;
    端环,设置于所述铁芯沿所述转子的轴向的一端,所述端环远离所述铁芯的端部设置有凹槽;以及
    磁体,安装于所述凹槽。
  2. 根据权利要求1所述的转子,还包括屏蔽部件,所述屏蔽部件由导磁材料制成,并安装于所述凹槽内且位于所述磁体朝向所述铁芯的一侧。
  3. 根据权利要求2所述的转子,其中,所述屏蔽部件沿所述转子的轴向靠近所述磁体的一端具有第一表面,所述第一表面设置有第一内轮廓线和第一外轮廓线,所述第一内轮廓线与所述第一外轮廓线均为闭合曲线且围设形成封闭面。
  4. 根据权利要求3所述的转子,其中,所述凹槽沿所述转子的径向间隔设置有第一槽壁和第二槽壁,所述第一槽壁相对所述第二槽壁靠近所述转子的轴心线,所述第一内轮廓线与所述第一槽壁之间的距离为d11,所述第一外轮廓线与所述第二槽壁之间的距离为d12,所述d11和所述d12满足以下关系:max(d11,d12)≤2mm。
  5. 根据权利要求4所述的转子,其中,所述屏蔽部件沿所述转子的轴向背离所述磁体的一端具有第二表面,所述第二表面设置有第二内轮廓线和第二外轮廓线,所述第二内轮廓线与所述第二外轮廓线均为闭合曲线且围设形成封闭面。
  6. 根据权利要求5所述的转子,其中,所述第二内轮廓线与所述第一槽壁之间的距离为d21,所述第二外轮廓线与所述第二槽壁之间的距离为d22,所述d21和所述d22满足以下关系:max(d21,d22)≤2mm。
  7. 根据权利要求5所述的转子,其中,所述第一内轮廓线与所述第二内轮廓线之间的距离为h1,所述第一外轮廓线与所述第二外轮廓线之间的距离为h2,所述h1和所述h2满足以下关系:min(h1,h2)≥0.2mm。
  8. 根据权利要求1至7任一项所述的转子,其中,所述端环设置有两个,两个所述端环位于所述铁芯沿所述转子的轴向的两端,其中一个所述端环背离所述铁芯的端部沿所述转子的径向间隔设置有第一凸起部和第二凸起部,所述第一凸起部和所述第二凸起部之间构成所述凹槽。
  9. 根据权利要求8所述的转子,其中,所述磁体的表面凸出于所述第一凸起部的表面和所述第二凸起部的表面。
  10. 根据权利要求8所述的转子,其中,所述凹槽为环形槽,所述环形槽绕所述转子的轴心线设置。
  11. 根据权利要求10所述的转子,其中,所述凹槽为圆环槽,所述圆环槽的几何中心位于所述转子的轴心线。
  12. 一种电机,包括:
    根据权利要求1至11任一项所述的转子;以及
    磁感应装置,所述磁感应装置设有用于检测磁场变化的感应面,所述感应面朝向所述磁体且垂直于所述转轴的轴向设置,使所述感应面沿所述转轴的轴向检测所述磁体的磁场。
  13. 根据权利要求12所述的电机,其中,所述电机的极数为2p1,所述磁体的极数为2p2,满足2≤2p1≤6且2≤2p2≤12。
  14. 根据权利要求13所述的电机,其中,所述磁体朝向所述感应面的表面为上表面,所述上表面的面积为S,所述上表面的磁感应强度峰值为Br,所述磁体与所述感应面之间沿所述转轴的轴向的距离为d1,当2p1≥2p2时,满足(Br·S)/(2p1·d1 2)≥9.68。
  15. 根据权利要求14所述的电机,其中,当2p1<2p2时,满足(Br·S)/(2p1·d1 2)≥21.51。
  16. 根据权利要求12至15任一项所述的电机,其中,所述磁体与所述感应面之间沿所述转轴的轴向的距离为d1,满足0<d1≤3mm。
  17. 根据权利要求12所述的电机,其中,所述磁体朝向所述感应面的表面为上表面,在所述铁芯的径向上,所述上表面包括外轮廓线和内轮廓线,所述外轮廓线与所述内轮廓线均为曲线且围设形成封闭面。
  18. 根据权利要求17所述的电机,其中,在所述铁芯的径向上,所述外轮廓线与所述内轮廓线之间设有中线,所述中线与所述感应面的几何中心的距离为d2,所述上表面的宽度为d3,所述d2与所述d3满足0≤d2≤1/4·d3。
  19. 根据权利要求17所述的电机,其中,所述外轮廓线和所述内轮廓线均为圆形,所述外轮廓线与所述内轮廓线围设形成环形面。
  20. 根据权利要求12所述的电机,还包括定子组件,所述定子组件与所述磁感应装置塑封成型。
  21. 根据权利要求20所述的电机,还包括与所述定子组件定位安装的端盖,所述端盖和所述磁体分别位于所述转子组件沿所述铁芯的轴向的两端。
  22. 根据权利要求12所述的电机,其中,所述磁感应装置包括霍尔传感器和电路板,所述霍尔传感器与所述电路板连接,所述霍尔传感器设有所述感应面。
  23. 一种家用电器,包括如权利要求12至22任意一项所述的电机。
PCT/CN2021/120335 2021-06-01 2021-09-24 转子、电机及家用电器 WO2022252446A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110608765.3 2021-06-01
CN202110610133.0A CN113300542B (zh) 2021-06-01 2021-06-01 转子、电机及家用电器
CN202110610133.0 2021-06-01
CN202110608765.3A CN113258727B (zh) 2021-06-01 2021-06-01 电机及家用电器

Publications (1)

Publication Number Publication Date
WO2022252446A1 true WO2022252446A1 (zh) 2022-12-08

Family

ID=84323832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120335 WO2022252446A1 (zh) 2021-06-01 2021-09-24 转子、电机及家用电器

Country Status (1)

Country Link
WO (1) WO2022252446A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187755A (ja) * 2007-01-26 2008-08-14 Mitsuba Corp 電動ポンプ
CN104300708A (zh) * 2014-08-19 2015-01-21 广东威灵电机制造有限公司 电机磁体的安装结构及电机
CN104300707A (zh) * 2014-08-19 2015-01-21 广东威灵电机制造有限公司 电机磁环的安装结构及电机
CN205593542U (zh) * 2016-05-10 2016-09-21 段旭忠 一种霍尔角度传感器
CN113258727A (zh) * 2021-06-01 2021-08-13 广东威灵电机制造有限公司 电机及家用电器
CN113300543A (zh) * 2021-06-01 2021-08-24 广东威灵电机制造有限公司 电机及家用电器
CN113300542A (zh) * 2021-06-01 2021-08-24 广东威灵电机制造有限公司 转子、电机及家用电器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187755A (ja) * 2007-01-26 2008-08-14 Mitsuba Corp 電動ポンプ
CN104300708A (zh) * 2014-08-19 2015-01-21 广东威灵电机制造有限公司 电机磁体的安装结构及电机
CN104300707A (zh) * 2014-08-19 2015-01-21 广东威灵电机制造有限公司 电机磁环的安装结构及电机
CN205593542U (zh) * 2016-05-10 2016-09-21 段旭忠 一种霍尔角度传感器
CN113258727A (zh) * 2021-06-01 2021-08-13 广东威灵电机制造有限公司 电机及家用电器
CN113300543A (zh) * 2021-06-01 2021-08-24 广东威灵电机制造有限公司 电机及家用电器
CN113300542A (zh) * 2021-06-01 2021-08-24 广东威灵电机制造有限公司 转子、电机及家用电器

Similar Documents

Publication Publication Date Title
CN113300542B (zh) 转子、电机及家用电器
WO2011012079A1 (zh) 一种电机
CN102064647B (zh) 一种用于光电跟踪设备多定子弧线电机
CN104124827A (zh) 旋转电机和使用旋转电机的驱动装置
CN104917335A (zh) 一种永磁复合电机
WO2014146338A1 (zh) 一种直流塑封电机结构
CN113258727B (zh) 电机及家用电器
CN110581614B (zh) 一种伺服有限转角力矩电机
CN204794631U (zh) 一种无刷直流电机
JPWO2017046953A1 (ja) ロータ、永久磁石同期モータ、永久磁石同期モータの製造方法、および空気調和機
CN113300543A (zh) 电机及家用电器
WO2022252446A1 (zh) 转子、电机及家用电器
WO2022252460A1 (zh) 转子、电机及家用电器
CN201805337U (zh) 大扭矩微型直流永磁同步伺服电机
CN214707441U (zh) 电机及家用电器
CN214380538U (zh) 一种无刷电动机
CN204706995U (zh) 一种永磁复合电机
CN207664732U (zh) 扭矩执行器
KR20190023243A (ko) 스테이터 및 이를 포함하는 모터
CN209593227U (zh) 一种吊扇用均匀气隙单相无刷电机
KR101396175B1 (ko) 브러시레스 직류모터
CN217055988U (zh) 一种适用于飞轮储能单元的同极式永磁偏置径向磁轴承
CN211698103U (zh) 电机测试可变负载装置
CN111077450B (zh) 电机测试可变负载装置
CN204330808U (zh) 一种测量旋转加速度传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE