WO2022252270A1 - 显示面板及其制备方法 - Google Patents

显示面板及其制备方法 Download PDF

Info

Publication number
WO2022252270A1
WO2022252270A1 PCT/CN2021/099128 CN2021099128W WO2022252270A1 WO 2022252270 A1 WO2022252270 A1 WO 2022252270A1 CN 2021099128 W CN2021099128 W CN 2021099128W WO 2022252270 A1 WO2022252270 A1 WO 2022252270A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible substrate
display panel
buffer layer
under
layer
Prior art date
Application number
PCT/CN2021/099128
Other languages
English (en)
French (fr)
Inventor
宋辉
Original Assignee
武汉华星光电技术有限公司
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司, 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US17/440,169 priority Critical patent/US20240040855A1/en
Publication of WO2022252270A1 publication Critical patent/WO2022252270A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of display technology, in particular to a display panel and a manufacturing method thereof.
  • under-display camera OLED display panels usually include a double-layer flexible substrate.
  • a commonly used flexible substrate material is polyimide (Polyimide, PI).
  • PI polyimide
  • the PI material is usually light yellow.
  • the PI material is not conducive to the light from the external environment entering the camera, resulting in poor imaging effect of the camera.
  • the present application provides a display panel and a preparation method thereof, so as to solve the problems of less light input and poor imaging effect of the under-screen camera of the existing display panel.
  • the display panel provided by the present application includes adjacent under-screen camera areas and non-screen camera areas, and the display panel includes:
  • the first flexible substrate has a first surface and a second surface oppositely arranged, the first surface is provided with a groove, and the groove is located in the imaging area under the screen;
  • a second flexible substrate located on a side of the first buffer layer away from the first flexible substrate
  • the second buffer layer is located on the side of the second flexible substrate away from the first buffer layer.
  • the second flexible substrate includes an opening, and the opening is located on a side of the second flexible substrate away from the first buffer layer, wherein the groove and the opening The hole corresponds to the setting.
  • the opening runs through the second flexible substrate, and the second buffer layer is connected to the first buffer layer through the opening.
  • the cross-sectional area of the opening in the direction perpendicular to the thickness of the second flexible substrate is greater than or equal to the cross-sectional area of the groove in the direction perpendicular to the thickness of the first flexible substrate area.
  • the first flexible substrate includes a plurality of grooves, and the plurality of grooves are disposed in the under-screen imaging area.
  • the groove is an annular groove, and a plurality of the annular grooves are arranged concentrically.
  • the cross-sectional width of the groove in the thickness direction of the first flexible substrate is between 10 microns and 20 microns.
  • the distance between the adjacent grooves is between 5 microns and 20 microns.
  • the display panel further includes a light emitting device layer located on a side of the second buffer layer away from the second flexible substrate; the light emitting device layer includes a plurality of pixels, A plurality of the pixels are distributed in the under-screen imaging area and the non-under-screen imaging area, wherein,
  • the pixel arrangement density of the under-screen imaging area is smaller than the pixel arrangement density of the non-under-screen imaging area.
  • the display panel further includes a driving circuit layer, the driving circuit layer is located between the light emitting device layer and the second buffer layer, and the driving circuit layer is used to control the pixel to emit light;
  • the driving circuit layer includes a plurality of thin film transistors, and the thin film transistors correspond to the pixels one by one, wherein,
  • the thin film transistors connected to the pixels in the under-screen imaging area are located in the non-under-screen imaging area.
  • the signal wires in the driving circuit layer are transparent wires.
  • the display panel further includes a blocking member, the blocking member is located on the side of the second buffer layer away from the second flexible substrate, and the blocking member is located in the under-screen imaging area and the non-screen camera area.
  • the material of the first flexible substrate and the second flexible substrate is a transparent polyimide material or a transparent polyester material.
  • the material of the first buffer layer and the second buffer layer is silicon oxide.
  • the thickness of the first flexible substrate and the second flexible substrate is between 6 microns and 12 microns.
  • the thickness of the first buffer layer and the second buffer layer is between 100 nm and 600 nm.
  • the depth of the groove is between 1 micron and 3 microns.
  • the openings have a depth between 1 micron and 6 microns.
  • the embodiment of the present application also provides a method for preparing a display panel, including:
  • a groove is formed on the first surface, and the groove is located in the under-screen imaging area of the display panel;
  • a second buffer layer is formed on the second flexible substrate.
  • the step of forming grooves on the first surface includes:
  • the barrier layer is removed.
  • An embodiment of the present application provides a display panel.
  • the display panel has an under-screen camera area and a non-under-screen camera area adjacently arranged.
  • the display panel includes a first flexible substrate, a first buffer layer, a second flexible substrate and a second buffer layer.
  • the first flexible substrate has a first surface and a second surface oppositely disposed. The first surface is provided with grooves. The groove is located in the camera area under the screen.
  • the first buffer layer is located on the first surface.
  • the second flexible substrate is located on a side of the first buffer layer away from the first flexible substrate.
  • the second buffer layer is located on a side of the second flexible substrate away from the first buffer layer.
  • the thickness of the flexible substrate in the under-screen imaging area is reduced, the light transmittance of the under-screen imaging area is improved, and the under-screen imaging area is improved.
  • the imaging effect of the camera is improved.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • Fig. 2 is a schematic cross-sectional structure diagram along the line AA' of the first embodiment of the display panel provided in the embodiment of the present application.
  • Fig. 3 is a schematic cross-sectional structure diagram along the line AA' of the second embodiment of the display panel provided by the embodiment of the present application.
  • Fig. 4 is a schematic cross-sectional structure diagram along the line AA' of the third embodiment of the display panel provided by the embodiment of the present application.
  • Fig. 5 is a schematic cross-sectional structure diagram along line AA' of a fourth implementation manner of a display panel provided in an embodiment of the present application.
  • Fig. 6 is a schematic cross-sectional structure diagram along line AA' of a fifth implementation manner of a display panel provided in an embodiment of the present application.
  • FIG. 7 is a partially enlarged view at point P of the display panel of FIG. 6 .
  • FIG. 8 is a schematic structural diagram of a first implementation manner of a first flexible substrate provided in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a second implementation manner of the first flexible substrate provided in the embodiment of the present application.
  • FIG. 10 is a flowchart of a method for manufacturing a display panel provided by an embodiment of the present application.
  • FIG. 11 is a flow chart of forming grooves on the first surface of the first flexible substrate provided by the embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of forming grooves on the first surface of the first flexible substrate provided by the embodiment of the present application.
  • serial numbers such as [first] and [second] mentioned in this application do not represent any order, quantity or importance, but are only used to distinguish different parts.
  • the directional terms such as [upper], [lower], [left] and [right] mentioned in this application are only directions referring to the attached drawings.
  • Positional terms such as [one side] and [the other side] mentioned in this application are only used to distinguish different parts. Therefore, the used serial numbers, directional terms and positional relational terms are used to illustrate and understand the present application, but not to limit the present application.
  • the first feature on the [side], [upper] or [lower] of the second feature may include direct contact between the first and second features; it may also include the first and The second features are not in direct contact but through another feature between them.
  • the same reference numerals refer to the same elements. Since the size and thickness of each component illustrated in the drawings are shown for convenience of explanation, the present disclosure is not necessarily limited to the illustrated size and thickness of each component.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • Fig. 2 is a schematic cross-sectional structure diagram along the line AA' of the first embodiment of the display panel provided in the embodiment of the present application.
  • the display panel 100 includes an under-screen imaging area 110 and a non-under-screen imaging area 120 .
  • the off-screen imaging area 110 and the non-off-screen imaging area 120 are set adjacently.
  • the under-screen camera area 110 refers to the area of the display panel 100 where the camera is placed.
  • the non-screen imaging area 120 refers to the area of the display panel 100 other than the under-screen imaging area 110 .
  • the camera (not shown in the figure) is located in the camera area 110 under the screen, and the camera is set on the side of the display panel 100 away from the light-emitting surface.
  • the display panel 100 includes a first flexible substrate 10 , a first buffer layer 20 , a second flexible substrate 30 and a second buffer layer 40 .
  • the first flexible substrate 10 has a first surface 10a and a second surface 10b disposed opposite to each other.
  • the first surface 10 a of the first flexible substrate 10 is provided with grooves 11 .
  • the groove 11 is located in the under-screen imaging area 110 of the display panel 100 .
  • a camera (not shown in the figure) is provided in the under-screen imaging area 110 of the second surface 10 b of the first flexible substrate 10 .
  • the first buffer layer 20 is located on the first surface 10 a of the first flexible substrate 10 .
  • the first buffer layer 20 covers the groove 11 , that is, the side of the first buffer layer 20 close to the first flexible substrate 10 has an extension (not marked in the figure), and the extension extends into the groove 11 .
  • the second flexible substrate 30 is located on a side of the first buffer layer 20 away from the first flexible substrate 10 .
  • the second buffer layer 40 is located on a side of the second flexible substrate 30 away from the first buffer layer 20 .
  • first surface 10 a may be the upper surface of the first flexible substrate 10
  • second surface 10 b may be the lower surface of the first flexible substrate 10
  • first surface 10 a may also be the lower surface of the first flexible substrate 10
  • second surface 10 b may be the upper surface of the first flexible substrate 10
  • first surface 10 a is the upper surface of the first flexible substrate 10
  • second surface 10 b is the lower surface of the first flexible substrate 10 .
  • the thickness of the first flexible substrate 10 and the second flexible substrate 30 is 6 microns to 12 microns.
  • the thickness of the first flexible substrate 10 and the second flexible substrate 30 may be 6 microns, 8 microns, 9 microns, 10 microns or 12 microns.
  • the thicknesses of the first flexible substrate 10 and the second flexible substrate 30 may be the same or different.
  • the thickness of the first buffer layer 20 and the second buffer layer 40 is 100 nm to 600 nm. Specifically, the thickness of the first buffer layer 20 and the second buffer layer 40 may be 100 nm, 200 nm, 300 nm, 400 nm, 500 nm or 600 nm. The thicknesses of the first buffer layer 20 and the second buffer layer 40 may be the same or different.
  • the groove 11 has a depth of 1 micron to 3 microns. Specifically, the depth of the groove 11 can be 1 micron, 1.5 micron, 2 micron, 2.5 micron or 3 micron.
  • grooves 11 are provided in the under-screen imaging area 110 of the first flexible substrate 10 of the display panel 100, thereby reducing the thickness of the flexible substrate in the under-screen imaging area 110, which is conducive to the penetration of ambient light through the display panel, increasing the The amount of light entering the camera under the screen improves the imaging effect of the camera under the screen.
  • the display panel 100 also includes a driving circuit layer 50 and a light emitting device layer 60 .
  • the driving circuit layer 50 and the light emitting device layer 60 are located on a side of the second buffer layer 40 away from the second flexible substrate 30 .
  • the driving circuit layer 50 is located between the light emitting device layer 60 and the second buffer layer 40 .
  • the light emitting device layer 60 is located on a side of the driving circuit layer 50 away from the second buffer layer 40 .
  • the light emitting device layer 60 includes a plurality of pixels 61 .
  • a plurality of pixels 61 are distributed in the under-screen imaging area 110 and the non-under-screen imaging area 120 of the display panel 100 , wherein the pixel arrangement density of the under-screen imaging area 110 is smaller than that of the non-under-screen imaging area 120 .
  • the light transmittance of the under-screen imaging area 110 of the display panel 100 can be further improved, and the under-screen camera can be increased.
  • the amount of light entering further improves the imaging effect of the camera under the screen.
  • the driving circuit layer 50 is used to control the pixels 61 of the light emitting device layer 60 to emit light.
  • the driving circuit layer 50 includes a plurality of thin film transistors 51 corresponding to the pixels 61 one by one.
  • the thin film transistor 51 connected to the pixel 61 of the under-screen imaging area 110 is located in the non-under-screen imaging area 120 .
  • the driving circuit layer 50 includes thin film transistors 51 and signal wires, and the materials of the thin film transistors 51 and signal wires are generally metal or semiconductor materials. Metal or semiconductor materials have a strong reflection of light, thereby affecting the light transmittance of the display panel 100 .
  • the thin film transistor 51 connected to the pixel 61 of the under-screen imaging area 110 is arranged in a non-under-screen area, which reduces the reflection of the metal or semiconductor material in the under-screen imaging area 110 on ambient light, and can further improve the performance of the display panel 100.
  • the light transmittance of the camera area 110 under the screen increases the amount of light entering the camera under the screen.
  • the signal traces in the driving circuit layer 50 may be transparent wires.
  • the transparent wires can further reduce the reflection of ambient light by the metal or semiconductor material in the under-screen camera area 110 and increase the amount of light entering the under-screen camera.
  • FIG. 3 is a schematic cross-sectional structure diagram along the line AA' of the second embodiment of the display panel provided in the embodiment of the present application.
  • the display panel 100 shown in FIG. 3 further includes a blocking member 70, which is located on the side of the second buffer layer 40 away from the second flexible substrate 30, and the blocking member 70 is located in the imaging area under the screen. 110 and the non-screen camera area 120.
  • the blocking member 70 by setting the blocking member 70 between the under-screen imaging area 110 and the non-under-screen imaging area 120 of the display panel 100, during the subsequent packaging process of the display panel 100, the displayed under-screen imaging area 110 can be laser-treated. Part of the light-blocking film layer is removed to ensure that the amount of light entering the camera under the screen is improved. However, removing part of the light-shielding film layer will easily cause water and oxygen to easily invade the non-under-screen imaging area 120 . Therefore, in the present application, a blocking member 70 is set between the under-screen imaging area 110 and the non-under-screen imaging area 120 on the display panel 100, which can ensure the packaging effect of the display panel 100 while increasing the light intake of the under-screen camera, and avoid external water. Oxygen enters into the non-under-screen imaging area 120 to ensure the service life of the display panel 100 .
  • the display panel 100 is provided with a through hole 31 in the non-screen imaging area 120 of the second flexible substrate 30, so that the first buffer layer 20 and the second buffer layer 20 in the non-screen imaging area 120
  • the two buffer layers 40 are connected.
  • the material of the first buffer layer 20 and the buffer layer is silicon oxide.
  • the film layer formed by silicon oxide is usually a transparent and dense film layer, which can transmit light and isolate water and oxygen.
  • water vapor can be further prevented from passing through the first buffer layer 20 and the second flexible substrate.
  • the gap between the substrates 30 and the gap between the second flexible substrate 30 and the second buffer layer 40 enters the non-screen imaging area 120 of the display panel 100, which can improve the packaging effect of the display panel 100 and extend the lifetime of the display panel 100. service life.
  • FIG. 4 is a schematic cross-sectional structure diagram along the line AA' of the third embodiment of the display panel provided in the embodiment of the present application.
  • the second flexible substrate 30 of the display panel 100 shown in FIG. 4 includes an opening 32 located on a side of the second flexible substrate 30 away from the first buffer layer 20 .
  • the second buffer layer 40 covers the opening 32 , that is, the side of the second buffer layer 40 close to the second flexible substrate 30 has an extension (not marked in the figure), and the extension extends into the opening 32 .
  • the groove 11 and the opening 32 are provided correspondingly.
  • openings 32 have a depth of 1 micron to 6 microns. Specifically, the depth of the opening 32 may be 1 micron, 2 microns, 3 microns, 4 microns, 5 microns or 6 microns.
  • the thickness of the flexible substrate of the imaging area 110 under the screen can be further reduced.
  • the light transmittance of the camera area 110 under the screen is increased, and the imaging effect of the camera under the screen is improved.
  • the cross-sectional width d2 of the opening 32 in the direction perpendicular to the thickness of the second flexible substrate 30 is larger than the cross-sectional width d1 of the groove 11 in the direction perpendicular to the thickness of the first flexible substrate 10 . Therefore, under the premise that the groove 11 and the opening 32 are arranged correspondingly, the cross-sectional area of the opening 32 in the direction perpendicular to the thickness of the second flexible substrate 30 is larger than the thickness of the groove 11 perpendicular to the thickness of the first flexible substrate 10 cross-sectional area in the direction.
  • the cross-sectional width d2 of the opening 32 in the direction perpendicular to the thickness of the second flexible substrate 30 may be equal to the cross-sectional width d1 of the groove 11 in the direction perpendicular to the thickness of the first flexible substrate 10 . That is, the cross-sectional area of the opening 32 in the direction perpendicular to the thickness of the second flexible substrate 30 is equal to the cross-sectional area of the groove 11 in the direction perpendicular to the thickness of the first flexible substrate 10
  • the screen by setting the cross-sectional area of the opening 32 in the direction perpendicular to the thickness of the second flexible substrate 30 to be greater than or equal to the cross-sectional area of the groove 11 in the direction perpendicular to the thickness of the first flexible substrate 10, the screen can be further increased.
  • the amount of light entering the under-screen camera is conducive to improving the imaging effect of the under-screen camera.
  • FIG. 5 is a schematic cross-sectional structure diagram along line AA' of a fourth implementation manner of a display panel provided in an embodiment of the present application.
  • the opening 32 of the display panel 100 shown in FIG. 5 runs through the second flexible substrate 30 .
  • the second buffer layer 40 is connected to the first buffer layer 20 through the opening 32 .
  • the thickness of the flexible substrate of the under-screen imaging area 110 can be further reduced, the light transmittance of the under-screen imaging area 110 can be increased, and the imaging effect of the under-screen camera can be improved.
  • FIG. 6 is a schematic cross-sectional structure diagram along line AA' of a fifth implementation manner of a display panel provided in an embodiment of the present application.
  • the first flexible substrate 10 of the display panel shown in FIG. 6 includes a plurality of grooves 11 , and the plurality of grooves 11 are arranged in the under-screen imaging area 110 .
  • the light transmittance of the under-screen imaging area 110 can be further improved, and the amount of light entering the under-screen imaging can be increased.
  • FIG. 6 takes three grooves 11 as an example, but this is not intended to limit the embodiment of the present application.
  • the second flexible substrate 30 of the display panel 100 includes a plurality of openings 32, the plurality of openings 32 are disposed in the under-screen imaging area 110, and the plurality of openings 32 correspond to the plurality of grooves 11 set up.
  • a plurality of grooves 11 are arranged in the under-screen imaging area 110 of the first flexible substrate 10, and a plurality of openings 32 are arranged in the second flexible substrate 30, and the plurality of openings 32 are arranged correspondingly to the plurality of grooves 11.
  • the light transmittance of the under-screen imaging area 110 can be further improved, and the amount of light entering the under-screen imaging can be increased.
  • FIG. 7 is a partial enlarged view of the region P in FIG. 6 .
  • the cross-sectional width d1 of the groove 11 in the direction perpendicular to the thickness of the first flexible substrate 10 and the opening 32 is 10 ⁇ m to 20 ⁇ m.
  • d1 and d2 may be 10 microns, 12 microns, 14 microns, 15 microns, 16 microns, 18 microns or 20 microns.
  • the value of d2 may be greater than or equal to the value of d1.
  • the distance w1 between adjacent grooves 11 or the distance w2 between adjacent openings 32 may be 5 microns to 20 microns. Specifically, w1 and w2 may be 5 microns, 8 microns, 10 microns, 12 microns, 15 microns, 18 microns or 20 microns.
  • FIG. 8 is a schematic structural diagram of a first implementation manner of the first flexible substrate provided in the embodiment of the present application.
  • the first flexible substrate 10 includes a plurality of grooves 11 , and the plurality of grooves 11 are arranged in the under-screen imaging area 110 .
  • the cross-sectional pattern of the groove 11 in the direction perpendicular to the thickness of the first flexible substrate 10 is circular.
  • the cross-sectional pattern of the groove 11 in the direction perpendicular to the thickness of the first flexible substrate 10 may be ellipse, triangle, quadrangle, polygon or other irregular shapes.
  • the groove 11 in the present application takes a circular cross-sectional pattern as an example, but this is not a limitation to the present application.
  • the cross-sectional patterns of the plurality of openings 32 in the direction perpendicular to the thickness of the second flexible substrate 30 are consistent with the grooves 11
  • the cross-sectional patterns in the direction perpendicular to the thickness of the first flexible substrate 10 are the same.
  • FIG. 9 is a schematic structural diagram of a second implementation manner of the first flexible substrate provided in the embodiment of the present application.
  • the difference from FIG. 8 is that the groove 11 is an annular groove 11, and a plurality of annular grooves 11 are arranged concentrically.
  • An embodiment of the present application provides a display panel.
  • the display panel has an under-screen camera area and a non-under-screen camera area adjacently arranged.
  • the display panel includes a first flexible substrate, a first buffer layer, a second flexible substrate and a second buffer layer.
  • the first flexible substrate has a first surface and a second surface oppositely disposed.
  • the first surface of the first flexible substrate is provided with grooves. The groove is located in the camera area under the screen.
  • the first buffer layer is located on the first surface of the first flexible substrate.
  • the second flexible substrate is located on a side of the first buffer layer away from the first flexible substrate.
  • the second buffer layer is located on a side of the second flexible substrate away from the first buffer layer.
  • the thickness of the flexible substrate in the under-screen imaging area is reduced, the light transmittance of the under-screen imaging area is improved, and the under-screen imaging area is improved.
  • the imaging effect of the camera is improved.
  • FIG. 10 is a flowchart of a method for manufacturing a display panel provided by an embodiment of the present application.
  • the preparation method of the display panel specifically includes the following steps:
  • Step B10 providing a first flexible substrate, the first flexible substrate has a first surface and a second surface opposite to each other.
  • the material of the first flexible substrate may be a transparent polyimide material (Colorless Polymide, CPI).
  • CPI Cosmetic Polymide
  • the structure of polyimide molecules can be optimized by introducing groups such as fluorine-containing groups, alicyclic structures, and sulfone groups into the molecular structure of polyimide (PI), reducing the molecular weight of polyimide.
  • the internal and intermolecular forces reduce the formation of charge transfer complexes (CTC), thereby preparing a colorless, transparent and high temperature resistant polyimide film (CPI).
  • the material of the first flexible substrate may also be a transparent polyester material, such as polyethylene terephthalate (Polyethylene Terephthalate, PET).
  • a transparent polyester material such as polyethylene terephthalate (Polyethylene Terephthalate, PET).
  • the first flexible substrate of the present application uses a transparent polyimide material or a polyester material, which facilitates light from the external environment to pass through the display panel.
  • Step B20 forming a groove on the first surface, the groove is located in the under-screen imaging area of the display panel.
  • FIG. 11 is a flow chart of forming grooves on the first surface of the first flexible substrate provided by the embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of forming grooves on the first surface of the first flexible substrate provided by the embodiment of the present application.
  • the step of forming the groove on the first surface of the first flexible substrate comprises:
  • Step B21 forming a barrier layer on the first flexible substrate.
  • the barrier layer can be formed by processes such as electrochemical deposition or chemical vapor deposition. As shown in (A) structure of FIG. 12 , the barrier layer 80 covers the first flexible substrate 10 .
  • the material of the barrier layer 80 may be transparent conductive oxide (IZO) or indium tin oxide (ITO).
  • Step B22 forming a photoresist layer with a predetermined pattern on the barrier layer.
  • a photoresist layer 90 with a predetermined pattern is formed on the barrier layer.
  • a photoresist is coated on the barrier layer to form a photoresist layer 90 , and the photoresist layer 90 covers the barrier layer 80 .
  • an exposure machine combined with a mask can be used to perform partial light treatment on the photoresist layer 90 .
  • the mask board is preset with corresponding patterns.
  • the mask plate is disposed between the light source and the photoresist layer 90 .
  • the patterns on the mask block the light, so that part of the light from the light source is irradiated onto the photoresist layer 90 .
  • the photoresist layer 90 after partial illumination treatment is placed into a developing solution for development treatment.
  • the chemical properties of the photoresist layer irradiated by the light change, so that the developer can remove a part of the photoresist, thereby forming a photoresist with a preset pattern Layer 90.
  • Step B23 Etching the barrier layer to expose the barrier layer to the first flexible substrate.
  • the barrier layer 80 is etched using a wet etching method. Specifically, the barrier layer is etched using a transparent conductive oxide etchant or an indium tin oxide etchant. Since the photoresist layer 90 has a predetermined pattern, a part of the barrier layer 80 is exposed. The transparent conductive oxide etchant or ITO etchant etches the exposed barrier layer 80 so that the barrier layer 80 exposes the first flexible substrate 10 .
  • the etched pattern of the barrier layer 80 is as shown in FIG. 12(C).
  • Step B24 removing the photoresist layer with the preset pattern.
  • the photoresist layer 90 above the blocking layer 80 is removed by using a photoresist layer stripping solution, so as to obtain the structure shown in FIG. 12(D).
  • Step B25 Etching the first flexible substrate to form grooves.
  • the first flexible substrate 10 may be etched using a dry etching process. Specifically, the barrier layer 80 after etching has a preset pattern. The surface of the first flexible substrate 10 not covered with the barrier layer 80 is exposed. The first flexible substrate 10 is etched by oxygen gas (O 2 ), thereby forming the groove 11 . The etched pattern of the first flexible substrate 10 is as shown in FIG. 12(E).
  • Step B26 removing the blocking layer.
  • the barrier layer 80 can be removed by using a transparent conductive oxide etchant or an indium tin oxide etchant to obtain the structure shown in FIG. 12(F ).
  • Step B30 forming a first buffer layer on the first surface.
  • the first buffer layer can be formed by chemical vapor deposition.
  • the first buffer layer covers the groove.
  • the material of the first buffer layer may be silicon oxide. Silicon oxide is a colorless and transparent material, which is conducive to the transmission of light.
  • the first buffer layer is formed as a high-density silicon oxide film. High-density silicon oxide can effectively block water and oxygen, thereby reducing the impact of water and oxygen on the display panel, which is beneficial to prolonging the service life of the display panel.
  • Step B40 forming a second flexible substrate on the first buffer layer.
  • the steps of forming the second flexible substrate are the same as the steps of forming the first flexible substrate, and will not be repeated here.
  • openings are formed on the side of the second buffer layer away from the first flexible substrate. Grooves and openings are arranged correspondingly.
  • step of forming the opening is the same as the step of forming the groove, and will not be repeated here.
  • Step B50 forming a second buffer layer on the second flexible substrate.
  • Both the first buffer layer and the second buffer layer are high-density silicon oxide films.
  • the double-layer high-density silicon oxide film can further improve the performance of the display panel in isolating water and oxygen, thereby reducing the influence of water and oxygen on the display panel, and is beneficial to prolonging the service life of the display panel.
  • a driving circuit layer and a light emitting device layer may be formed on the second buffer layer, so that the display panel has a display function.
  • a touch layer or other functional film layers can be formed on the surface of the display panel, so that the display panel has a touch function or other functions.
  • An embodiment of the present application provides a method for manufacturing a display panel, and the prepared display panel adopts a structure of a double-layer flexible substrate combined with a double-layer buffer layer.
  • the double-layer buffer layer is a dense film layer, which can improve the performance of the display panel in isolating water and oxygen, thereby reducing the impact of water and oxygen on the display panel, and is beneficial to prolonging the service life of the display panel.
  • the preparation method of the display panel provided by the present application sets grooves in the under-screen imaging area of the first flexible substrate of the display panel, which reduces the thickness of the flexible substrate in the under-screen imaging area and improves the under-screen imaging area of the display panel.
  • the light transmittance of the camera area improves the imaging effect of the camera under the display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(100)及其制备方法,显示面板(100)具有相邻设置的屏下摄像区(110)和非屏下摄像区(120),显示面板(100)包括第一柔性衬底(10)、第一缓冲层(20)、第二柔性衬底(30)和第二缓冲层(40),第一柔性衬底(10)具有相对设置的第一面(10a)和第二面(10b),第一面(10a)设置有凹槽(11),凹槽(11)位于屏下摄像区(110),第一缓冲层(20)位于第一柔性衬底(10)的第一面(10a),第二柔性衬底(30)位于第一缓冲层(20)远离第一柔性衬底(10)的一侧,第二缓冲层(40)位于第二柔性衬底(30)远离第一缓冲层(20)的一侧,显示面板(100)有利于提高屏下摄像区(110)的光线透过率,改善屏下摄像头的成像效果。

Description

显示面板及其制备方法 技术领域
本申请涉及显示技术领域,具体涉及一种显示面板及其制备方法。
背景技术
随着OLED技术的广泛发展和应用深入,对具有更优视觉体验的高屏占比(甚至全面屏)显示屏的追求已成为当前显示技术发展的潮流之一。为了减少摄像头对屏占比的影响,实现全面屏,不同厂家从不同的角度开发多种解决方案,其中一种改进方案是将前置摄像模组设置在现有的OLED显示面板的后端,即采用屏下摄像头的方式。
目前,设置屏下摄像头OLED显示面板通常包括双层柔性衬底。常用的柔性衬底的材料为聚酰亚胺(Polyimide,PI)。PI材料通常为淡黄色,当显示面板的设置屏下摄像头时,PI材料不利于外界环境的光线进入到摄像头中,导致摄像头的成像效果较差。
技术问题
本申请提供一种显示面板及其制备方法,以解决现有的显示面板的屏下摄像头进光量较少和成像效果较差的问题。
技术解决方案
本申请提供的显示面板,包括相邻设置的屏下摄像区和非屏下摄像区,所述显示面板包括:
第一柔性衬底,具有相对设置的第一面和第二面,所述第一面设置有凹槽, 所述凹槽位于所述屏下摄像区;
第一缓冲层,位于所述第一面上;
第二柔性衬底,位于所述第一缓冲层远离所述第一柔性衬底的一侧;
第二缓冲层,位于所述第二柔性衬底远离所述第一缓冲层的一侧。
在一些实施例中,所述第二柔性衬底包括开孔,所述开孔位于所述第二柔性衬底远离所述第一缓冲层的一侧,其中,所述凹槽和所述开孔对应设置。
在一些实施例中,所述开孔贯穿所述第二柔性衬底,所述第二缓冲层通过所述开孔与所述第一缓冲层连接。
在一些实施例中,所述开孔在垂直于所述第二柔性衬底的厚度方向上的截面面积大于或等于所述凹槽在垂直于所述第一柔性衬底的厚度方向上的截面面积。
在一些实施例中,所述第一柔性衬底包括多个所述凹槽,多个所述凹槽设置在所述屏下摄像区内。
在一些实施例中,所述凹槽为环形凹槽,多个所述环形凹槽同心设置。
在一些实施例中,所述凹槽在所述第一柔性衬底的厚度方向上的截面宽度在10微米至20微米之间。
在一些实施例中,所述相邻凹槽之间的距离在5微米至20微米之间。
在一些实施例中,所述显示面板还包括发光器件层,所述发光器件层位于所述第二缓冲层远离所述第二柔性衬底的一侧;所述发光器件层包括多个像素,多个所述像素分布在所述屏下摄像区和所述非屏下摄像区,其中,
所述屏下摄像区的像素排布密度小于所述非屏下摄像区的像素排布密度。
在一些实施例中,所述显示面板还包括驱动电路层,所述驱动电路层位于所述发光器件层与所述第二缓冲层之间,所述驱动电路层用于控制所述像素发光;所述驱动电路层包括多个薄膜晶体管,所述薄膜晶体管与所述像素一一对应,其中,
连接所述屏下摄像区的像素的薄膜晶体管位于所述非屏下摄像区。
在一些实施例中,所述驱动电路层中的信号走线为透明导线。
在一些实施例中,所述显示面板还包括阻挡件,所述阻挡件位于所述第二缓冲层远离所述第二柔性衬底的一侧,且所述阻挡件位于所述屏下摄像区和所述非屏下摄像区之间。
在一些实施例中,所述第一柔性衬底和所述第二柔性衬底的材料为透明聚酰亚胺材料或透明聚酯材料。
在一些实施例中,所述第一缓冲层和所述第二缓冲层的材料为氧化硅。
在一些实施例中,所述第一柔性衬底和所述第二柔性衬底的厚度在6微米至12微米之间。
在一些实施例中,所述第一缓冲层和所述第二缓冲层的厚度在100纳米至600纳米之间。
在一些实施例中,所述凹槽的深度在1微米至3微米之间。
在一些实施例中,所述开孔的深度在1微米至6微米之间。
本申请实施例还提供一种显示面板的制备方法,包括:
提供第一柔性衬底,所述第一柔性衬底具有相对设置的第一面和第二面;
在所述第一面形成凹槽,所述凹槽位于所述显示面板的屏下摄像区;
在所述第一面上形成第一缓冲层;
在所述第一缓冲层上形成第二柔性衬底;
在所述第二柔性衬底上形成第二缓冲层。
在一些实施例中,所述在所述第一面形成凹槽的步骤包括:
在所述第一柔性衬底上形成阻挡层;
在所述阻挡层上形成具有预设图案的光阻层;
对所述阻挡层进行蚀刻以使所述阻挡层暴露出所述第一柔性衬底;
去除所述具有预设图案的光阻层;
对所述第一柔性衬底进行蚀刻以形成所述凹槽;
去除所述阻挡层。
有益效果
本申请实施例提供一种显示面板。显示面板具有相邻设置的屏下摄像区和非屏下摄像区。显示面板包括第一柔性衬底、第一缓冲层、第二柔性衬底和第二缓冲层。第一柔性衬底具有相对设置的第一面和第二面。第一面设置有凹槽。凹槽位于屏下摄像区。第一缓冲层位于第一面。第二柔性衬底位于第一缓冲层远离第一柔性衬底的一侧。第二缓冲层位于第二柔性衬底远离第一缓冲层的一侧。本申请实施例通过在第一柔性衬底的屏下摄像区域设置凹槽,减薄了屏下摄像区中柔性衬底的厚度,提高了屏下摄像区的光线透过率,改善了屏下摄像头的成像效果。
附图说明
为了更清楚地说明本申请的实施例的技术方案,下面将对本申请的实施例描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅是申请的一些实施例和实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的显示面板的结构示意图。
图2为本申请实施例提供的显示面板第一种实施方式沿AA’线的剖面结构示意图。
图3为本申请实施例提供的显示面板第二种实施方式沿AA’线的剖面结构示意图。
图4为本申请实施例提供的显示面板第三种实施方式沿AA’线的剖面结构示意图。
图5为本申请实施例提供的显示面板第四种实施方式沿AA’线的剖面结构示意图。
图6为本申请实施例提供的显示面板第五种实施方式沿AA’线的剖面结构示意图。
图7为图6的显示面板在P处的局部放大图。
图8为本申请实施例提供的第一柔性衬底的第一种实施方式的结构示意图。
图9为本申请实施例提供的第一柔性衬底的第二种实施方式的结构示意图。
图10为本申请实施例提供的显示面板的制备方法的流程图。
图11为本申请实施例提供的在第一柔性衬底的第一面形成凹槽的流程图。
图12为本申请实施例提供的在第一柔性衬底的第一面形成凹槽的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请所提到的[第一]和[第二]等序号用语并不代表任何顺序、数量或者重要性,只是用于区分不同的部分。本申请所提到的[上]、[下]、[左]和[右]等方向用语仅是参考附加图式的方向。本申请提及的[一侧]和[另一侧]等位置关系用语仅用于区分不同的部分。因此,使用的序号用语、方向用语和位置关系用语是用以说明及理解本申请,而非用以限制本申请。在申请中,除非另有明确的规定和限定,第一特征在第二特征的[一侧]、[上]或[下]可以包括第一和第二特征直接接触;也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。贯穿整个说明书,相同的附图标记表示相同的元件。因为附图所例示的各个组件的尺寸和厚度是为了说明方便表示的,所以本公开未必限于各个组件的所例示的尺寸和厚度。
结合图1和图2,图1为本申请实施例提供的显示面板的结构示意图。图2为本申请实施例提供的显示面板第一种实施方式沿AA’线的剖面结构示意图。
显示面板100包括屏下摄像区110和非屏下摄像区120。屏下摄像区110和非屏下摄像区120相邻设置。屏下摄像区110是指显示面板100放置摄像头的区域。非屏下摄像区120是指显示面板100除屏下摄像区110以外的区域。在本申请中,摄像头(图中未显示)位于屏下摄像区110,且摄像头设置在显示面板100远离出光面的一侧。
显示面板100包括第一柔性衬底10、第一缓冲层20、第二柔性衬底30和第二缓冲层40。第一柔性衬底10具有相对设置的第一面10a和第二面10b。第一柔性衬底10的第一面10a设置有凹槽11。凹槽11位于显示面板100的屏下摄像区110。第一柔性衬底10的第二面10b的屏下摄像区110设置摄像头(图中未显示)。第一缓冲层20位于第一柔性衬底10的第一面10a。第一缓冲层20覆盖凹槽11,即第一缓冲层20靠近第一柔性衬底10的一侧具有一延伸部(图中未标识),延伸部延伸至凹槽11中。第二柔性衬底30位于第一缓冲层20远离第一柔性衬底10的一侧。第二缓冲层40位于第二柔性衬底30远离第一缓冲层20的一侧。
可以理解的是,第一面10a可以为第一柔性衬底10的上表面,第二面10b可以为第一柔性衬底10的下表面。当然,第一面10a也可以为第一柔性衬底10的下表面,第二面10b可以为第一柔性衬底10的上表面。在本申请中不做特殊说明的情况下,默认第一面10a为第一柔性衬底10的上表面,第二面10b为第一柔性衬底10的下表面。
在一些实施方式中,第一柔性衬底10和第二柔性衬底30的厚度为6微米至12微米。具体的,第一柔性衬底10和第二柔性衬底30的厚度可以为6微米、8微米、9微米、10微米或12微米。第一柔性衬底10和第二柔性衬底30的厚度可以相同,也可以不相同。
在一些实施方式中,第一缓冲层20和第二缓冲层40的厚度为100纳米至600纳米。具体的、第一缓冲层20和第二缓冲层40的厚度可以为100纳米、200纳米、300纳米、400纳米、500纳米或600纳米。第一缓冲层20和第二缓冲层40的厚度可以相同,也可以不相同。
在一些实施方式中,凹槽11的深度为1微米至3微米。具体的,凹槽11的深度可以为1微米、1.5微米、2微米、2.5微米或3微米。
本申请通过在显示面板100的第一柔性衬底10的屏下摄像区110设置凹槽11,从而减薄了屏下摄像区110柔性衬底的厚度,有利于环境光线透过显示面板,增加屏下摄像头的进光量,提高屏下摄像头的成像效果。
显示面板100还包括驱动电路层50和发光器件层60。驱动电路层50和发光器件层60位于第二缓冲层40远离第二柔性衬底30的一侧。驱动电路层50位于发光器件层60和第二缓冲层40之间。发光器件层60位于驱动电路层50远离第二缓冲层40的一侧。
发光器件层60包括多个像素61。多个像素61分布在显示面板100的屏下摄像区110和非屏下摄像区120,其中,屏下摄像区110的像素排布密度小于非屏下摄像区120的像素排布密度。
本申请通过设置屏下摄像区110的像素的排布密度小于非屏下摄像区120的像素排布密度,可以进一步提高显示面板100屏下摄像区110的光线透过率,增加屏下摄像头的进光量,进一步提高屏下摄像头的成像效果。
驱动电路层50用于控制发光器件层60的像素61发光。驱动电路层50包括多个薄膜晶体管51,薄膜晶体管51与像素61一一对应。连接屏下摄像区110的像素61的薄膜晶体管51位于非屏下摄像区120。
驱动电路层50包括薄膜晶体管51和信号走线,薄膜晶体管51和信号走线的材料通常为金属或半导体材料。金属或半导体材料对光线有较强的反射,从而影响显示面板100的光线透过率。本申请通过将连接屏下摄像区110的像素61的薄膜晶体管51设置在非屏下区域,减少了屏下摄像区110中的金属或半导体材料对环境光线的反射,可以进一步提高显示面板100中屏下摄像区110的光线透过率,增加屏下摄像头的进光量。
在一些实施方式中,驱动电路层50中的信号走线可以选用透明导线。透明导线可以进一步减少屏下摄像区110中的金属或半导体材料对环境光线的反射,增加屏下摄像头的进光量。
如图3所示,图3为本申请实施例提供的显示面板第二种实施方式沿AA’线的剖面结构示意图。
与图2不同的是,图3所示的显示面板100还包括阻挡件70,阻挡件70位于第二缓冲层40远离第二柔性衬底30的一侧,且阻挡件70位于屏下摄像区110和非屏下摄像区120之间。
本申请通过在显示面板100的屏下摄像区110和非屏下摄像区120之间设置阻挡件70,在显示面板100后续封装的过程中,显示的屏下摄像区110可以通过激光镭射等方式去除部分挡光膜层,保证提高了屏下摄像头的进光量。然而,去除部分挡光膜层会容易导致水氧易入侵非屏下摄像区120。因此本申请在显示面板100在屏下摄像区110和非屏下摄像区120之间设置阻挡件70,可以在提高屏下摄像头的进光量的同时保证显示面板100的封装效果,避免外界的水氧进入到非屏下摄像区120中,保证了显示面板100的使用寿命。
如图3所示,在一些实施方式中,显示面板100在第二柔性衬底30的非屏下摄像区120设置通孔31,使得非屏下摄像区120中的第一缓冲层20和第二缓冲层40连接。第一缓冲层20和缓冲层的材料为氧化硅。氧化硅形成的膜层通常为透明的、致密的膜层,可以起到透光以及隔绝水氧的效果。本申请通过在第二柔性衬底30的非屏下摄像区120设置通孔31,使得第一缓冲层20和第二缓冲层40连接,可以进一步避免水汽通过第一缓冲层20与第二柔性衬底30之间缝隙以及第二柔性衬底30与第二缓冲层40之间缝隙进入到显示面板100的非屏下摄像区120内,可以提高显示面板100的封装效果,延长显示面板100的使用寿命。
如图4所示,图4为本申请实施例提供的显示面板第三种实施方式沿AA’线的剖面结构示意图。
与图2不同的是,图4所示的显示面板100的第二柔性衬底30包括开孔32,开孔32位于第二柔性衬底30远离第一缓冲层20的一侧。第二缓冲层40覆盖开孔32,即第二缓冲层40靠近第二柔性衬底30的一侧具有一延伸部(图中未标识),延伸部延伸至开孔32中。其中,凹槽11和开孔32对应设置。
在一些实施方式中,开孔32的深度为1微米至6微米。具体的,开孔32的深度可以为1微米、2微米、3微米、4微米、5微米或6微米。
本申请通过在第一缓冲层20设置凹槽11和第二缓冲层40设置开孔32,且凹槽11和开孔32对应设置,可以进一步减薄屏下摄像区110柔性衬底的厚度,提高屏下摄像区110的光线透过率,改善屏下摄像头的成像效果。
如图4所示,开孔32在垂直于第二柔性衬底30的厚度方向上的截面宽度d2大于凹槽11在垂直于第一柔性衬底10的厚度方向上的截面宽度d1。因此,在凹槽11和开孔32对应设置的前提下,开孔32在垂直于第二柔性衬底30的厚度方向上的截面面积大于凹槽11在垂直于第一柔性衬底10的厚度方向上的截面面积。
可以理解的是,可以设置开孔32在垂直于第二柔性衬底30的厚度方向上的截面宽度d2等于凹槽11在垂直于第一柔性衬底10的厚度方向上的截面宽度d1。即,开孔32在垂直于第二柔性衬底30的厚度方向上的截面面积等于凹槽11在垂直于第一柔性衬底10的厚度方向上的截面面积
本申请通过设置开孔32在垂直于第二柔性衬底30的厚度方向上的截面面积大于或等于凹槽11在垂直于第一柔性衬底10的厚度方向上的截面面积,可以进一步增加屏下摄像头的进光量,有利于改善屏下摄像头的成像效果。
如图5所示,图5为本申请实施例提供的显示面板第四种实施方式沿AA’线的剖面结构示意图。
与图4不同的是,图5所示的显示面板100的开孔32贯穿第二柔性衬底30。第二缓冲层40通过开孔32与第一缓冲层20连接。
本申请通过设置开孔32贯穿第二柔性衬底30,可以进一步减薄屏下摄像区110柔性衬底的厚度,提高屏下摄像区110的光线透过率,改善屏下摄像头的成像效果。
如图6所示,图6为本申请实施例提供的显示面板第五种实施方式沿AA’线的剖面结构示意图。
与图5不同的是,图6所示的显示面板的第一柔性衬底10包括多个凹槽11,多个凹槽11设置在屏下摄像区110内。
本申请通过在第一柔性衬底10的屏下摄像区110设置多个凹槽11,可以进一步提高屏下摄像区110的光线透过率,提高屏下摄像的进光量。
可以理解的是,本申请提及的多个凹槽11是指2个或2个以上的凹槽11。图6以3个凹槽11为例,但不作为对本申请实施例的限制。
在一些实施方式中,显示面板100的第二柔性衬底30包括多个开孔32,多个开孔32设置在屏下摄像区110内,且多个开孔32与多个凹槽11对应设置。
本申请通过在第一柔性衬底10的屏下摄像区110设置多个凹槽11,在第二柔性衬底30设置多个开孔32,多个开孔32与多个凹槽11对应设置,可以进一步提高屏下摄像区110的光线透过率,提高屏下摄像的进光量。
结合图6和图7,图7为图6在P区域的局部放大图。
当第一柔性衬底10设置多个凹槽11以及第二柔性设置有多个开孔32时,凹槽11在垂直于第一柔性衬底10的厚度方向上的截面宽度d1和开孔32在垂直于第二柔性衬底30的厚度方向上的截面宽度d2为10微米至20微米。具体的,d1和d2可以为10微米、12微米、14微米、15微米、16微米、18微米或20微米。d2的值可以大于或等于d1的值。相邻凹槽11之间的距离w1或相邻开孔32之间的距离w2可以为5微米至20微米。具体的,w1和w2可以为5微米、8微米、10微米、12微米、15微米、18微米或20微米。
结合图6和图8,图8为本申请实施例提供的第一柔性衬底的第一种实施方式的结构示意图。如图6和图8所示,第一柔性衬底10包括多个凹槽11,多个凹槽11设置在屏下摄像区110内。凹槽11在垂直于第一柔性衬底10的厚度方向上的截面图案为圆形。
可以理解的是,凹槽11在垂直于第一柔性衬底10的厚度方向上的截面图案可以为椭圆形、三角形、四边形、多边形或其他不规则形状。本申请的凹槽11以其截面图案为圆形为例,但不作为对本申请的限制。
可以理解的是,当显示面板100的第二柔性衬底30上包括多个开孔32时,多个开孔32在垂直于第二柔性衬底30的厚度方向上的截面图案与凹槽11在垂直于第一柔性衬底10的厚度方向上的截面图案相同。
结合图6和图9,图9为本申请实施例提供的第一柔性衬底的第二种实施方式的结构示意图。与图8不同的是,凹槽11为环形凹槽11,多个环形凹槽11同心设置。
本申请实施例提供一种显示面板。显示面板具有相邻设置的屏下摄像区和非屏下摄像区。显示面板包括第一柔性衬底、第一缓冲层、第二柔性衬底和第二缓冲层。第一柔性衬底具有相对设置的第一面和第二面。第一柔性衬底的第一面设置有凹槽。凹槽位于屏下摄像区。第一缓冲层位于第一柔性衬底的第一面。第二柔性衬底位于第一缓冲层远离第一柔性衬底的一侧。第二缓冲层位于第二柔性衬底远离第一缓冲层的一侧。本申请实施例通过在第一柔性衬底的屏下摄像区域设置凹槽,减薄了屏下摄像区中柔性衬底的厚度,提高了屏下摄像区的光线透过率,改善了屏下摄像头的成像效果。
相应地,本申请实施例还提供一种显示面板的制备方法。如图10所示,图10为本申请实施例提供的显示面板的制备方法的流程图。显示面板的制备方法具体包括以下步骤:
步骤B10:提供第一柔性衬底,第一柔性衬底具有相对设置的第一面和第二面。
第一柔性衬底的材料可以为透明聚酰亚胺材料Colorless Polymide,CPI)。具体的,可以通过在聚酰亚胺(PI)分子结构中引入含氟基团、脂环结构、含砜基等基团对聚酰亚胺分子的结构进行优化,降低聚酰亚胺的分子内和分子间作用力,减少电荷转移络合物(CTC)的形成,从而制备出无色透明且耐高温的聚酰亚胺薄膜(CPI)。
在一些实施方式中,第一柔性衬底的材料也可以为透明聚酯材料,比如聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET)。
传统的柔性衬底材料通常为淡黄色。当显示面板的设置屏下摄像头时,传统的柔性衬底材料不利于外界环境的光线进入到摄像头中。本申请的第一柔性衬底使用透明聚酰亚胺材料或聚酯材料,有利于外界环境的光线透过显示面板。
步骤B20:在第一面形成凹槽,凹槽位于显示面板的屏下摄像区。
结合图11和图12。图11为本申请实施例提供的在第一柔性衬底的第一面形成凹槽的流程图。图12为本申请实施例提供的在第一柔性衬底的第一面形成凹槽的结构示意图。
在第一柔性衬底的第一面形成凹槽的步骤包括:
步骤B21:在第一柔性衬底上形成阻挡层。
可以通过电化学沉积或化学气相沉积等工艺形成阻挡层。如图12的(A)结构所示,阻挡层80覆盖第一柔性衬底10。阻挡层80的材料可以为透明导电氧化物(IZO)或氧化铟锡(ITO)。
步骤B22:在阻挡层上形成具有预设图案的光阻层。
如图12的(B)结构所示,在形成阻挡层80后,在阻挡层上形成具有预设图案的光阻层90。
具体的,在阻挡层上涂覆光刻胶以形成光阻层90,光阻层90覆盖阻挡层80。在形成一光阻层后,可以使用一曝光机结合一掩模板对光阻层90进行局部光照处理。掩模板预先设置相应的图案。掩模板设置在光源与光阻层90之间。在进行光照处理时,掩模板上的图案对光线进行遮挡,使得光源中的部分光线照射至光阻层90上。将局部光照处理后的光阻层90放置进显影液中进行显影处理。在通过掩模板对光阻层进行局部光照处理的过程中,被光照射的光阻层的化学性质发生变化,从而显影液可以去除光刻胶中的一部分,从而形成具有预设图案的光阻层90。
步骤B23:对阻挡层进行蚀刻以使阻挡层暴露出第一柔性衬底。
采用湿蚀刻方法对阻挡层80进行蚀刻。具体的,采用透明导电氧化物蚀刻液或氧化铟锡蚀刻液对阻挡层进行蚀刻。由于光阻层90具有预设图案,从而暴露出部分阻挡层80。透明导电氧化物蚀刻液或氧化铟锡蚀刻液对暴露的阻挡层80的进行蚀刻,以使阻挡层80暴露出第一柔性衬底10。阻挡层80蚀刻完成的图案如图12(C)的结构。
步骤B24:去除具有预设图案的光阻层。
具体的,使用光阻层剥离液去除阻挡层80上方的光阻层90,从而得到如图12(D)的结构。
步骤B25:对第一柔性衬底进行蚀刻以形成凹槽。
可以采用干法蚀刻的工艺对第一柔性衬底10进行蚀刻。具体的,蚀刻处理后的阻挡层80具有预设图案。未覆盖阻挡层80的第一柔性衬底10的表面裸露出来。通过氧气(O 2)对第一柔性衬底10进行蚀刻,从而形成凹槽11。第一柔性衬底10蚀刻完成的图案如图12(E)的结构。
步骤B26:去除阻挡层。
在第一柔性衬底10形成凹槽11后,可以通过透明导电氧化物蚀刻液或氧化铟锡蚀刻液去除阻挡层80,得到如图12(F)的结构。
步骤B30:在第一面上形成第一缓冲层。
在第一柔性衬底蚀刻完成后,可以采用化学气相沉积的方法形成第一缓冲层。第一缓冲层覆盖凹槽。第一缓冲层的材料可以为氧化硅。氧化硅为无色透明材料,有利于光线的透过。形成第一缓冲层为高致密性的氧化硅薄膜。高致密性的氧化硅可以有效地阻隔水氧,从而减少水氧对显示面板影响,有利于延长显示面板的使用寿命。
步骤B40:在第一缓冲层上形成第二柔性衬底。
形成第二柔性衬底的步骤与形成第一柔性衬底的步骤相同,在此不再累述。
在一些实施方式中,在形成第二缓冲层后,在第二缓冲层远离第一柔性衬底的一侧形成开孔。凹槽和开孔对应设置。
可以理解的是,形成开孔的步骤与形成凹槽的步骤相同,在此不再累述。
步骤B50:在第二柔性衬底上形成第二缓冲层。
形成第二缓冲层的步骤与形成第一缓冲层的步骤相同,在此不再累述。第一缓冲层和第二缓冲层均为高致密性的氧化硅薄膜。双层的高致密性的氧化硅薄膜可以进一步提高显示面板隔绝水氧的性能,从而减少水氧对显示面板影响,有利于延长显示面板的使用寿命。
在一些实施方式中,在形成第二缓冲层后,可以在第二缓冲层上形成驱动电路层和发光器件层,从而使得显示面板具显示功能。
可以理解的是,在形成封装层后,可以在显示面板的表面形成触控层或其他功能膜层,从而使得显示面板具有触控功能或其他功能。
本申请实施例提供一种显示面板的制备方法,制备得到的显示面板采用双层柔性衬底结合双层缓冲层的结构。双层的缓冲层均为致密的膜层,可以提高显示面板隔绝水氧的性能,从而减少水氧对显示面板影响,有利于延长显示面板的使用寿命。同时,本申请提供的显示面板的制备方法在显示面板的第一柔性衬底的屏下摄像区域设置凹槽,减薄了屏下摄像区中柔性衬底的厚度,提高了显示面板中屏下摄像区的光线透过率,改善了显示面板的屏下摄像头的成像效果。
综上所述,虽然本申请实施例的详细介绍如上,但上述实施例并非用以限制本申请,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例的技术方案的范围。

Claims (20)

  1. 一种显示面板,其中,包括相邻设置的屏下摄像区和非屏下摄像区,所述显示面板包括:
    第一柔性衬底,具有相对设置的第一面和第二面,所述第一面设置有凹槽, 所述凹槽位于所述屏下摄像区;
    第一缓冲层,位于所述第一面上;
    第二柔性衬底,位于所述第一缓冲层远离所述第一柔性衬底的一侧;
    第二缓冲层,位于所述第二柔性衬底远离所述第一缓冲层的一侧。
  2. 根据权利要求1所述的显示面板,其中,所述第二柔性衬底包括开孔,所述开孔位于所述第二柔性衬底远离所述第一缓冲层的一侧,其中,所述凹槽和所述开孔对应设置。
  3. 根据权利要求2所述的显示面板,其中,所述开孔贯穿所述第二柔性衬底,所述第二缓冲层通过所述开孔与所述第一缓冲层连接。
  4. 根据权利要求2所述的显示面板,其中,所述开孔在垂直于所述第二柔性衬底的厚度方向上的截面面积大于或等于所述凹槽在垂直于所述第一柔性衬底的厚度方向上的截面面积。
  5. 根据权利要求1所述的显示面板,其中,所述第一柔性衬底包括多个所述凹槽,多个所述凹槽设置在所述屏下摄像区内。
  6. 根据权利要求5所述的显示面板,其中,所述凹槽为环形凹槽,多个所述环形凹槽同心设置。
  7. 根据权利要求5所述的显示面板,其中,所述凹槽在所述第一柔性衬底的厚度方向上的截面宽度在10微米至20微米之间。
  8. 根据权利要求5所述的显示面板,其中,所述相邻凹槽之间的距离在5微米至20微米之间。
  9. 根据权利要求1所述的显示面板,其中,所述显示面板还包括发光器件层,所述发光器件层位于所述第二缓冲层远离所述第二柔性衬底的一侧;所述发光器件层包括多个像素,多个所述像素分布在所述屏下摄像区和所述非屏下摄像区,其中,
    所述屏下摄像区的像素排布密度小于所述非屏下摄像区的像素排布密度。
  10. 根据权利要求9所述的显示面板,其中,所述显示面板还包括驱动电路层,所述驱动电路层位于所述发光器件层与所述第二缓冲层之间,所述驱动电路层用于控制所述像素发光;所述驱动电路层包括多个薄膜晶体管,所述薄膜晶体管与所述像素一一对应,其中,
    连接所述屏下摄像区的像素的薄膜晶体管位于所述非屏下摄像区。
  11. 根据权利要求10所述的显示面板,其中,所述驱动电路层中的信号走线为透明导线。
  12. 根据权利要求1所述的显示面板,其中,所述显示面板还包括阻挡件,所述阻挡件位于所述第二缓冲层远离所述第二柔性衬底的一侧,且所述阻挡件位于所述屏下摄像区和所述非屏下摄像区之间。
  13. 根据权利要求1所述的显示面板,其中,所述第一柔性衬底和所述第二柔性衬底的材料为透明聚酰亚胺材料或透明聚酯材料。
  14. 根据权利要求1所述的显示面板,其中,所述第一缓冲层和所述第二缓冲层的材料为氧化硅。
  15. 根据权利要求1所述的显示面板,其中,所述第一柔性衬底和所述第二柔性衬底的厚度在6微米至12微米之间。
  16. 根据权利要求1所述的显示面板,其中,所述第一缓冲层和所述第二缓冲层的厚度在100纳米至600纳米之间。
  17. 根据权利要求1所述的显示面板,其中,所述凹槽的深度在1微米至3微米之间。
  18. 根据权利要求2所述的显示面板,其中,所述开孔的深度在1微米至6微米之间。
  19. 一种显示面板的制备方法,其中,包括:
    提供第一柔性衬底,所述第一柔性衬底具有相对设置的第一面和第二面;
    在所述第一面形成凹槽,所述凹槽位于所述显示面板的屏下摄像区;
    在所述第一面上形成第一缓冲层;
    在所述第一缓冲层上形成第二柔性衬底;
    在所述第二柔性衬底上形成第二缓冲层。
  20. 根据权利要求19所述的显示面板的制备方法,其中,所述在所述第一面形成凹槽的步骤包括:
    在所述第一柔性衬底上形成阻挡层;
    在所述阻挡层上形成具有预设图案的光阻层;
    对所述阻挡层进行蚀刻以使所述阻挡层暴露出所述第一柔性衬底;
    去除所述具有预设图案的光阻层;
    对所述第一柔性衬底进行蚀刻以形成所述凹槽;
    去除所述阻挡层。
PCT/CN2021/099128 2021-05-31 2021-06-09 显示面板及其制备方法 WO2022252270A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/440,169 US20240040855A1 (en) 2021-05-31 2021-06-09 Display panel and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110597963.4 2021-05-31
CN202110597963.4A CN113328046A (zh) 2021-05-31 2021-05-31 显示面板及其制备方法

Publications (1)

Publication Number Publication Date
WO2022252270A1 true WO2022252270A1 (zh) 2022-12-08

Family

ID=77422567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099128 WO2022252270A1 (zh) 2021-05-31 2021-06-09 显示面板及其制备方法

Country Status (3)

Country Link
US (1) US20240040855A1 (zh)
CN (1) CN113328046A (zh)
WO (1) WO2022252270A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115942839A (zh) * 2021-09-30 2023-04-07 华为技术有限公司 显示面板及电子设备
CN114582802A (zh) * 2022-02-14 2022-06-03 深圳市华星光电半导体显示技术有限公司 显示面板的制作方法、显示面板以及移动终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164680A1 (ko) * 2016-03-24 2017-09-28 삼성전자주식회사 디스플레이를 가진 전자 장치
CN107946341A (zh) * 2017-11-10 2018-04-20 上海天马微电子有限公司 显示装置和显示装置的制造方法
CN110350001A (zh) * 2019-06-20 2019-10-18 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN110391254A (zh) * 2019-07-16 2019-10-29 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法、显示装置
CN110619818A (zh) * 2019-08-27 2019-12-27 武汉华星光电半导体显示技术有限公司 一种显示面板及其制作方法
WO2020158962A1 (ko) * 2019-01-28 2020-08-06 엘지전자 주식회사 디스플레이 모듈 및 이동 단말기
JP2020160304A (ja) * 2019-03-27 2020-10-01 株式会社ジャパンディスプレイ 表示装置
CN111755493A (zh) * 2020-06-28 2020-10-09 武汉华星光电半导体显示技术有限公司 屏下摄像头的oled显示面板及其制备方法及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110783347A (zh) * 2019-10-12 2020-02-11 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN111029385A (zh) * 2019-12-19 2020-04-17 武汉华星光电半导体显示技术有限公司 Oled显示面板及显示装置
CN211207024U (zh) * 2020-01-19 2020-08-07 京东方科技集团股份有限公司 一种阵列基板、显示面板和显示装置
CN112086492B (zh) * 2020-09-10 2022-09-27 武汉华星光电半导体显示技术有限公司 一种显示面板及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164680A1 (ko) * 2016-03-24 2017-09-28 삼성전자주식회사 디스플레이를 가진 전자 장치
CN107946341A (zh) * 2017-11-10 2018-04-20 上海天马微电子有限公司 显示装置和显示装置的制造方法
WO2020158962A1 (ko) * 2019-01-28 2020-08-06 엘지전자 주식회사 디스플레이 모듈 및 이동 단말기
JP2020160304A (ja) * 2019-03-27 2020-10-01 株式会社ジャパンディスプレイ 表示装置
CN110350001A (zh) * 2019-06-20 2019-10-18 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN110391254A (zh) * 2019-07-16 2019-10-29 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法、显示装置
CN110619818A (zh) * 2019-08-27 2019-12-27 武汉华星光电半导体显示技术有限公司 一种显示面板及其制作方法
CN111755493A (zh) * 2020-06-28 2020-10-09 武汉华星光电半导体显示技术有限公司 屏下摄像头的oled显示面板及其制备方法及显示装置

Also Published As

Publication number Publication date
CN113328046A (zh) 2021-08-31
US20240040855A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
WO2021169944A1 (zh) 阵列基板、其制作方法、显示面板及显示装置
US11335870B2 (en) Display substrate and preparation method thereof, and display device
WO2022252270A1 (zh) 显示面板及其制备方法
WO2022111094A1 (zh) 显示基板及其制备方法、显示装置
WO2020216208A1 (zh) 一种显示基板及其制作方法、显示装置
CN111785760B (zh) 一种显示基板及其制备方法、显示装置
CN104020902B (zh) 一种触摸屏及显示装置
CN108807470B (zh) 触控显示屏的制作方法
US20220199959A1 (en) Display panel and formation method thereof, and display apparatus
TWI738533B (zh) 顯示面板及其製作方法
WO2022111122A1 (zh) 显示面板的制备方法、显示面板和显示装置
WO2019114332A1 (zh) 阵列基板、显示装置以及阵列基板的制造方法
WO2021226750A1 (zh) 显示基板、显示面板、显示装置及显示面板的制造方法
WO2021196362A1 (zh) 低温多晶硅显示面板及其制作方法、液晶显示装置
WO2023202584A1 (zh) 显示面板、显示面板的制造方法以及显示装置
WO2021195973A1 (zh) 显示面板及其制作方法、显示装置
WO2020191661A1 (zh) 显示基板、显示装置、掩模板和制造方法
WO2024017343A1 (zh) 显示面板及其制作方法、显示装置
WO2022095259A1 (zh) 显示面板及显示装置
US11903253B2 (en) Display substrate including a retaining wall in a frame area and display device having the same
TW202401870A (zh) 顯示面板、顯示面板製造方法以及顯示裝置
WO2022174443A1 (zh) 一种显示面板、显示装置和显示面板的制作方法
WO2023115465A1 (zh) 显示面板及显示模组、移动终端
CN211207024U (zh) 一种阵列基板、显示面板和显示装置
WO2021248453A1 (zh) 显示面板及其制作方法和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17440169

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943629

Country of ref document: EP

Kind code of ref document: A1