WO2020216208A1 - 一种显示基板及其制作方法、显示装置 - Google Patents

一种显示基板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2020216208A1
WO2020216208A1 PCT/CN2020/085832 CN2020085832W WO2020216208A1 WO 2020216208 A1 WO2020216208 A1 WO 2020216208A1 CN 2020085832 W CN2020085832 W CN 2020085832W WO 2020216208 A1 WO2020216208 A1 WO 2020216208A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
functional
pattern
layer
compensation
Prior art date
Application number
PCT/CN2020/085832
Other languages
English (en)
French (fr)
Inventor
张元其
嵇凤丽
吴建鹏
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/982,370 priority Critical patent/US11522030B2/en
Publication of WO2020216208A1 publication Critical patent/WO2020216208A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display substrate, a manufacturing method thereof, and a display device.
  • OLED display panels have received widespread attention for their advantages in response speed, high contrast, wide viewing angle, and low energy consumption. And with the continuous development of OLED display technology, people have higher and higher requirements for the color display effect of OLED display panels. However, most of the OLED display panels in related technologies have the problem of poor color shift symmetry, and color shift symmetry. Inferiority will have an impact on the display effect of the display panel, thereby resulting in a poor user experience.
  • the present disclosure provides a display substrate, including a base, a functional pattern arranged on one side of the base, and a flat layer arranged on the side of the functional pattern facing away from the base; the flat layer includes a first part and a second The second part, wherein the orthographic projection of the first part on the substrate coincides with the orthographic projection of the functional graphics on the substrate, and the orthographic projection of the second part on the substrate coincides with the functional graphics on the substrate.
  • the orthographic projections on the substrate do not overlap. In the direction perpendicular to the substrate, the height of the surface of the first part away from the substrate is the same as the height of the surface of the second part away from the substrate.
  • it further includes a compensation function pattern insulated from the function pattern;
  • the orthographic projection of the functional graphic on the substrate and the orthographic projection of the compensation functional graphic on the substrate are complementary.
  • the functional graphics and the compensation functional graphics are located on the same layer, and the compensation functional graphics are covered by the second portion of the flat layer; in a direction perpendicular to the substrate, the compensation functional graphics
  • the thickness of is the same as the thickness of the functional graphic.
  • the compensation function graphic is located on a side of the functional graphic away from the substrate, and the flat layer is located on a side of the compensation function graphic away from the substrate;
  • the display substrate further includes:
  • a compensation flat layer located between the compensation functional pattern and the functional pattern
  • the sum of the thickness of the functional pattern, the compensation flat layer, and the flat layer and the sum of the thickness of the compensation flat layer, the compensation functional pattern, and the flat layer equal.
  • the display substrate further includes an anode layer, and the anode layer is located on a surface of the flat layer facing away from the base.
  • the surface of the first part of the flat layer away from the substrate and the surface of the second part of the flat layer away from the substrate are flush, and the first part of the flat layer is away from the surface of the substrate and the surface of the substrate.
  • the surface of the second part of the flat layer away from the substrate forms a plane.
  • the sum of the thickness of the first part of the flat layer and the thickness of the functional pattern is equal to the thickness of the second part of the flat layer.
  • the functional graph includes a plurality of sub-functional graphs, and the orthographic projection of the second part of the flat layer on the substrate is located between the orthographic projections of adjacent sub-functional graphs on the substrate.
  • the functional graph includes a plurality of sub-functional graphs, the orthographic projection of the compensation functional graph on the substrate is located between the orthographic projections of adjacent sub-functional graphs on the substrate, and the The orthographic projection of the compensation function pattern on the substrate coincides with the orthographic projection of the second part of the flat layer on the substrate.
  • the supplementary flat layer includes a first part and a second part, and the orthographic projection of the first part of the supplementary flat layer on the substrate coincides with the orthographic projection of the first part of the flat layer on the substrate ,
  • the orthographic projection of the second part of the supplementary flat layer on the substrate coincides with the orthographic projection of the second part of the flat layer on the substrate.
  • the sum of the thickness of the first part of the flat layer, the first part of the supplementary flat layer and the functional pattern is equal to the second part of the flat layer, The sum of the thickness of the second part of the complementary flat layer and the compensation function pattern.
  • the present disclosure also provides a display device including the above-mentioned display substrate.
  • the present disclosure also provides a manufacturing method of a display substrate for manufacturing the above-mentioned display substrate, and the manufacturing method includes:
  • a flat layer is fabricated on the side of the functional graphics facing away from the substrate.
  • the flat layer includes a first part and a second part, wherein the orthographic projection of the first part on the substrate and the functional graphics on the The orthographic projection on the substrate overlaps, the orthographic projection of the second part on the substrate and the orthographic projection of the functional graphics on the substrate do not overlap, and in the direction perpendicular to the substrate, the first part
  • the height of the surface away from the substrate is the same as the height of the surface of the second part away from the substrate.
  • the step of making functional graphics on the substrate specifically includes:
  • a functional pattern and a compensation functional pattern insulated from the functional pattern are made, and the orthographic projection of the functional pattern and the compensation functional pattern on the substrate is complementary.
  • the steps of making the functional graph and the compensation functional graph specifically include:
  • a first mask including a light-transmitting area and a light-shielding area to pattern the functional film layer to form the functional pattern
  • an insulating film layer is formed of an insulating material
  • a second mask including a light-transmitting area and a light-shielding area is used to pattern the insulating film layer to form the compensation function pattern.
  • the function pattern and the compensation function pattern are located on the same layer, and the compensation function The pattern is covered by the second part of the flat layer; in a direction perpendicular to the substrate, the thickness of the compensation functional pattern is the same as the thickness of the functional pattern;
  • the orthographic projection of the light-transmitting area of the second mask on the substrate is the same as that of the first mask.
  • the orthographic projection of the shading area of the mask on the substrate overlaps, and the orthographic projection of the shading area of the second mask on the substrate and the light-transmitting area of the first mask on the substrate The orthographic projections overlap.
  • the steps of making the functional graph and the compensation functional graph specifically include:
  • a first mask including a light-transmitting area and a light-shielding area to pattern the functional film layer to form the functional pattern
  • the orthographic projection of the light-transmitting area of the second mask on the substrate is the same as that of the first mask.
  • the orthographic projection of the shading area of the mask on the substrate overlaps, and the orthographic projection of the shading area of the second mask on the substrate and the light-transmitting area of the first mask on the substrate The orthographic projections overlap;
  • the step of fabricating a flat layer on the side of the functional graphics facing away from the substrate specifically includes:
  • the flat layer is made on the side of the compensation functional pattern facing away from the substrate. In a direction perpendicular to the substrate, the sum of the thickness of the functional pattern, the compensation flat layer and the flat layer is The sum of the thickness of the compensation flat layer, the compensation function pattern and the flat layer is equal.
  • the manufacturing method further includes:
  • An anode layer is formed on the surface of the flat layer facing away from the substrate.
  • the step of manufacturing the flat layer specifically includes:
  • a flat material film is formed.
  • the flat material film includes a first part covering the functional pattern and a second part not covering the functional pattern. In a direction perpendicular to the substrate, the first part of the flat material film is far away.
  • the height of the surface of the substrate is the same as the height of the second part of the flat material film away from the surface of the substrate;
  • a target mask is made;
  • the target mask includes a target light-shielding area and a target light-transmitting area.
  • the target mask exposes the cured flat material film, and the exposure depth corresponding to the target light-transmitting area in a direction perpendicular to the substrate is equal to the difference;
  • the target mask to expose the cured flat material film to form a flat material film full retention area and a flat material film semi-reserved area, wherein the flat material film semi-reserved area corresponds to the flat layer covering the area In the area where the part of the functional graphic is located, the area completely reserved by the flat material film corresponds to the other area except the area where the part where the flat layer covers the functional graphic;
  • a developer is used to remove the flat material film in the semi-reserved area of the flat material film to form the flat layer.
  • FIG. 1 is a schematic diagram of a flat layer formed on a functional pattern in the related art
  • FIG. 2 is a schematic diagram of a flat layer formed on a functional pattern in an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of the function graphics and the compensation function graphics provided by the embodiments of the disclosure in the same layer;
  • FIG. 4 is a schematic diagram of different layers of functional graphics and compensation functional graphics provided by the embodiments of the disclosure.
  • FIG. 5 is a schematic top view of a functional graph provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic top view of a compensation function graph provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of the process of making functional graphics and compensation functional graphics arranged in different layers according to an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of a process for fabricating a flat layer according to an embodiment of the disclosure.
  • the structure of an OLED display panel mainly includes: a thin film transistor array layer that drives each sub-pixel unit in the OLED display panel to display; a flat layer (thickness generally between 1.0 ⁇ m and 3.0 ⁇ m) arranged on the thin film transistor array layer Between); a plurality of anode patterns disposed on the surface of the flat layer facing away from the thin film transistor array layer, and the plurality of anode patterns are connected to the plurality of thin film transistors included in the thin film transistor array layer in a one-to-one correspondence (specifically, through the flat layer It also includes a pixel defining layer arranged on the side of the anode layer facing away from the flat layer.
  • the pixel defining layer defines an opening corresponding to the anode pattern one-to-one, and each opening is formed Sub-pixel unit; a cathode layer is also provided on the surface of the sub-pixel unit facing away from the anode pattern.
  • the OLED display panel of the above structure realizes the display function, it can provide driving signals to the cathode layer, and provide driving signals to the corresponding anode patterns through the thin film transistors in the thin film transistor array layer, so that a driving signal is formed between the anode layer and the cathode layer.
  • the electric field then drives the sub-pixel unit located between the anode pattern and the cathode layer to emit light, so as to realize the display function of the OLED display panel.
  • the inventors of the present disclosure have discovered through research that since the sub-pixel unit is made on the anode pattern, when the anode pattern is used to form the surface of the sub-pixel unit is not flat, it is easy for the viewer to view the display panel in different directions. At this time, there will be more serious color inconsistencies, which will cause color casts in different directions, that is, poor color cast symmetry. Further, since the anode pattern is made on the flat layer, the flatness of the surface of the flat layer used for making the anode pattern determines the flatness of the surface of the anode pattern for forming the sub-pixel unit.
  • the inventor of the present disclosure has further researched and found that when actually fabricating the flat layer, a flat material film is formed first, and the flat material film has a higher flatness on the surface facing the thin film transistor array layer, and then the flat material film Curing to form a flat layer, and since some parts of the thin film transistor array layer covered by the flat layer have metal traces and some have no metal traces, the flat material film is at different positions corresponding to the thin film transistor array layer , The thickness is different in the direction perpendicular to the display panel, which results in that when the flat material film is cured, the part of the flat material film that covers the metal traces and the part that does not cover the metal traces are in the direction perpendicular to the display panel. The shrinkage is inconsistent.
  • the part of the flat material film covering the metal trace is thinner in the direction perpendicular to the display panel, and the shrinkage in the direction perpendicular to the display panel during curing is small, while the flat material film does not
  • the part covering the metal traces is thicker in the direction perpendicular to the display panel, and shrinks in the direction perpendicular to the display panel during curing. Therefore, in the direction perpendicular to the display panel, the cured flatness is formed.
  • the part of the layer (A in Figure 1) that covers the metal traces is higher than the part that does not cover the metal traces, so that when forming an anode that covers both the covered metal traces and the uncovered metal traces in the flat layer
  • the pattern, the sub-pixel unit and the cathode layer located above the anode pattern, the anode pattern, the sub-pixel unit and the cathode layer located above the anode pattern are not flat, resulting in a problem of poor symmetry.
  • an embodiment of the present disclosure provides a display substrate, including a base 5, a functional pattern 1 arranged on the side of the base 5, and a functional pattern 1 on the side facing away from the base 5
  • the orthographic projection of the functional pattern 1 on the substrate 5 does not overlap.
  • the height of the surface of the first part B21 away from the substrate 5 is the same as the height of the surface of the second part B2 away from the substrate 5.
  • the surface of the first part B1 of the flat layer 2 away from the substrate is flush with the surface of the second part B2 of the flat layer away from the substrate, and the first part B1 of the flat layer is away from the substrate.
  • the surface of and the surface of the second portion B2 of the flat layer away from the substrate constitute a plane.
  • the sum of the thickness of the first part B1 of the flat layer and the thickness of the functional pattern 1 is equal to the thickness of the second part B2 of the flat layer.
  • the functional graphic 1 includes a plurality of sub-functional graphics 1', and the orthographic projection of the second portion B2 of the flat layer on the substrate is located on the adjacent sub-functional graphics 1'on the substrate Between the orthographic projections.
  • a thin film transistor array layer may be fabricated on the substrate 5 first.
  • the thin film transistor array layer includes a plurality of thin film transistors distributed in an array, and each thin film transistor includes a gate, Functional patterns such as active layer, source and drain metal layers, and insulating layers arranged between the gate and active layer, and between the active layer and source and drain metal layers, including the gate, active layer and source and drain metal layers They are all independent patterns, and the insulating layer is a whole layer of film.
  • the surface of the fabricated thin film transistor array layer facing away from the substrate 5 is uneven, and in the direction perpendicular to the substrate 5, there is a part of the functional pattern 1 The height of is higher than the height of the part without functional figure 1.
  • a flat layer 2 is fabricated on the surface of the thin film transistor array layer facing away from the substrate 5.
  • the flat layer 2 produced includes a first part and a second part.
  • the orthographic projection of the first part on the substrate 5 is the same as The orthographic projection of the functional pattern 1 on the substrate 5 overlaps (that is, the functional pattern 1 is covered), and the orthographic projection of the second part on the substrate 5 does not overlap with the orthographic projection of the functional pattern 1 on the substrate 5 (that is, the functional pattern 1 is not covered)
  • the height of the surface of the first part away from the substrate 5 and the height of the surface of the second part away from the substrate 5 are the same.
  • an anode layer can be fabricated on the surface of the planarization layer 2 facing away from the substrate 5, and a sub-pixel unit, a cathode layer, etc. can be further fabricated on the surface of the anode layer facing away from the substrate 5.
  • a flat layer 2 is provided on the side of the functional pattern 1 facing away from the base 5, and the flat layer 2 includes a covering function.
  • the surface for forming the anode layer in the flat layer 2 formed on the functional pattern 1 has high flatness, so that when the anode layer is formed on the flat layer 2, the anode can be guaranteed
  • the layer has a high flatness, thereby ensuring that the sub-pixel unit and the cathode layer fabricated on the anode layer have a high flatness, thereby well solving the problem of poor color shift symmetry and ensuring the display panel The display effect.
  • the display substrate provided by the above embodiments further includes: a compensation function pattern 3 insulated from the function pattern 1, an orthographic projection of the function pattern 1 on the substrate 5 and the compensation function pattern 3
  • the orthographic projection on the substrate 5 is complementary.
  • the compensation function graphics 3 set on the display substrate can be set in the same layer as the function graphics 1 (as shown in FIG. 3) or in different layers (as shown in FIG. 4), and the material of the compensation function graphics 3 can also be set. According to actual needs, it only needs to be insulated from the functional pattern 1 and the orthographic projection of the compensation functional pattern 3 on the substrate 5 can be complementary to the orthographic projection of the functional pattern 1 on the substrate 5. It should be noted that, as shown in FIGS.
  • the orthographic projection of the compensation functional pattern 3 on the substrate 5 and the orthographic projection of the functional pattern 1 on the substrate 5 complement each other, which means: the orthographic projection of the compensation functional pattern 3 on the substrate 5
  • the orthographic projection of the functional pattern 1 on the substrate 5 can form a complete plane with no gap in between.
  • the above-mentioned compensation function pattern 3 is provided in the display substrate, so that the compensation function pattern 3 can compensate for the step difference generated by the function pattern 1 in the display substrate, so that the surface of the film layer used to form the flat layer 2 in the display substrate has a relatively flat surface.
  • the parts of the flat material film at different positions have the same thickness in the direction perpendicular to the substrate 5, and have the same shrinkage during curing, which ensures the flatness of the formation.
  • the surface of the layer 2 facing away from the substrate 5 has a higher flatness, which is more conducive to improving the problem of poor color shift symmetry.
  • the functional pattern 1 and the compensation functional pattern 3 are located on the same layer, and the compensation functional pattern 3 is covered by the second part of the flat layer 2. In the direction perpendicular to the substrate 5, the compensation function The thickness of the pattern 3 is the same as the thickness of the functional pattern 1.
  • the compensation function pattern is set in the same layer as the function pattern 1, and is set in a direction perpendicular to the substrate 5.
  • the thickness of the compensation function pattern 3 is the same as the thickness of the function pattern 1, and the compensation function pattern 3 can be flattened by the layer 2.
  • the second part of the coverage not only well compensates for the step difference generated by the functional pattern 1, but also ensures the surface flatness of the subsequent flat layer 2 without increasing the thickness of the display substrate, which is more conducive to the thinning of the display substrate . It is worth noting that when the compensation function pattern and the function pattern 1 are set in the same layer, the compensation function pattern can be made into an insulating pattern to avoid short-circuits and other defects between the compensation function pattern and the function pattern 1.
  • the compensation function pattern 3 is located on the side of the function pattern 1 away from the base 5, and the flat layer 2 is located on the side of the compensation function pattern 3 away from the base 5; the display substrate further includes: In the direction of the substrate 5, the compensation flat layer 4 located between the compensation functional pattern 3 and the functional pattern 1; in the direction perpendicular to the substrate 5, the sum of the thickness of the functional pattern 1, the compensation flat layer 4 and the flat layer 2 and the compensation The total thickness of the flat layer 4, the compensation function pattern 3 and the flat layer 2 is equal.
  • the supplementary flat layer includes a first part C1 and a second part, and the orthographic projection of the first part C1 of the supplementary flat layer on the substrate is different from the first part B1 of the flat layer on the substrate.
  • the orthographic projections coincide, and the orthographic projection of the second portion C2 of the supplementary flat layer on the substrate coincides with the orthographic projection of the second portion B2 of the flat layer on the substrate.
  • the sum of the thickness of the first part B1 of the flat layer, the first part C1 of the supplementary flat layer and the functional pattern 1 is equal to the second part of the flat layer.
  • the compensation function pattern 3 provided by the above-mentioned embodiment may include a conductive pattern arranged in a different layer from the function pattern 1.
  • the compensation function pattern 3 and the function pattern 1 may be arranged in a direction perpendicular to the substrate 5.
  • a compensation flat layer 4 is provided therebetween, and the compensation flat layer 4 may be an insulating layer to ensure that the functional pattern 1 and the compensation functional pattern 3 are insulated from each other, thereby ensuring the reliability of the display substrate.
  • it can be arranged in a direction perpendicular to the substrate 5.
  • the sum of the thickness of the functional pattern 1, the compensation flat layer 4 and the flat layer 2 (the thickness corresponding to the part D1 in Figure 4) is the same as the compensation flat layer 4 and the compensation functional pattern 3.
  • the set compensation function pattern 3 can well compensate for the step difference generated by the function pattern 1, so that the subsequent formation in the function pattern 1 and
  • the flat layer 2 on the side of the compensation function pattern 3 facing away from the substrate 5 has a higher flatness, which is more conducive to improving the problem of poor color shift symmetry.
  • the compensation flat layer 4 and the flat layer 2 are made of the same material, and when the compensation flat layer 4 and the flat layer 2 are made, in the direction perpendicular to the substrate 5, the one made is used to form the compensation flat layer
  • the maximum thickness of the compensation flat material film of 4 is the same as the maximum thickness of the flat material film produced for forming the flat layer 2.
  • the same material as the flat layer 2 can be used to make a compensation flat material film on the side of the functional pattern 1 facing away from the substrate 5, and then the compensation flat material film is cured to form a compensation flat layer 4.
  • the maximum thickness of the flat material film is the same as the maximum thickness of the compensation flat material film, and then the flat material film is cured to form a flat layer 2.
  • the maximum thickness of the flat material film is set to be the same as the maximum thickness of the compensation flat material film, when the flat material film is cured to form the flat layer 2 and the compensation flat material film is cured to form the compensation flat layer 4,
  • the shrinkage of the flat material film is complementary to the shrinkage of the compensation flat material film, thereby ensuring that the surface of the formed flat layer 2 has a higher flatness, which is more conducive to improving the problem of poor color shift symmetry.
  • the amount of shrinkage of the flat material film and the amount of shrinkage of the compensation flat material film complement each other means: the amount of shrinkage when the flat material film covers the compensation flat layer 4 is partially cured, and the compensation flat material film covers the part of the functional pattern 1 is cured
  • the shrinkage is the same when the flat material film does not cover the part of the compensation flat layer 4 when cured, and the shrinkage when the part of the flat material film does not cover the functional pattern 1 is cured.
  • the display substrate provided in the above embodiments further includes an anode layer, and the anode layer is located on the surface of the flat layer 2 facing away from the base.
  • the surface of the flat layer 2 used to form the anode layer in the display substrate has a high flatness, when the anode layer is made on the flat layer 2, it can ensure that the anode layer has a high flatness, thereby ensuring that the anode Both the sub-pixel unit and the cathode layer on the layer have high flatness, thereby well solving the problem of poor color shift symmetry and ensuring the display effect of the display panel.
  • the embodiments of the present disclosure also provide a display device, including the display substrate provided in the above-mentioned embodiments.
  • the surface for forming the anode layer in the flat layer 2 formed on the functional pattern 1 has a relatively high flatness, it is possible to ensure that the anode layer is formed on the flat layer 2
  • the layer has a high flatness, which further solves the problem of poor color shift symmetry. Therefore, the display device provided by the embodiments of the present disclosure can also avoid the color shift symmetry when the display substrate provided in the above-mentioned embodiment is included. The performance is poor, so that the display device can achieve a better display effect.
  • the display device may be any product or component with a display function, such as a TV, a monitor, a digital photo frame, a mobile phone, a tablet computer, etc.
  • the embodiments of the present disclosure also provide a manufacturing method of a display substrate, which is used to manufacture the display substrate provided in the above embodiment, and the manufacturing method includes:
  • a flat layer is made on the side of the functional graphics facing away from the substrate 5.
  • the flat layer includes a first part and a second part.
  • the orthographic projection of the first part on the substrate 5 coincides with the orthographic projection of the functional graphics on the substrate 5, and the second part is The orthographic projection on the substrate 5 and the orthographic projection of the functional graphics on the substrate 5 do not overlap.
  • the height of the surface of the first part away from the substrate 5 is the same as the height of the surface of the second part away from the substrate 5.
  • the base 5 when manufacturing the above-mentioned display substrate, there are various types of the base 5 that can be used. For example, a glass base is used to make the display substrate. After determining the type of substrate 5 to be used, a thin film transistor array layer is fabricated on the provided substrate 5.
  • the thin film transistor array layer includes a plurality of thin film transistors distributed in an array, and each thin film transistor includes a gate, an active layer, Functional patterns such as source and drain metal layers, and insulating layers arranged between the gate and the active layer, and between the active layer and the source and drain metal layers; then a flat layer is made on the surface of the thin film transistor array layer facing away from the substrate 5,
  • the fabricated flat layer includes a first part and a second part, wherein the orthographic projection of the first part on the substrate 5 coincides with the orthographic projection of the functional graphics on the substrate 5 (that is, covering the functional graphics), and the orthographic projection of the second part on the substrate 5 The projection and the orthographic projection of the functional graphics on the substrate 5 do not overlap (that is, the functional graphics are not covered).
  • the display substrate When using the manufacturing method provided by the embodiments of the present disclosure to manufacture the display substrate, firstly make a functional pattern on the base 5, and then make a flat layer on the side of the functional pattern facing away from the base 5.
  • the made flat layer includes the first layer covering the functional pattern.
  • the surface of the flat layer used to form the anode layer has a high flatness, so that when the anode layer is continuously made on the flat layer, the anode layer can be guaranteed to have a high flatness, thereby ensuring Both the sub-pixel unit and the cathode layer fabricated on the anode layer have high flatness, thereby well solving the problem of poor color shift symmetry and ensuring the display effect of the display panel.
  • the step of making a functional pattern 1 on a substrate 5 specifically includes: making a functional pattern 1 and a compensation functional pattern 3 insulated from the functional pattern 1.
  • the functional pattern 1 and the orthographic projection of the compensation function pattern 3 on the substrate 5 are complementary.
  • the compensation function graphics 3 made on the display substrate can be set in the same layer as the function graphics 1 (as shown in FIG. 3) or in different layers (as shown in FIG. 4), and the material of the compensation function graphics 3 can also be According to actual needs, it only needs to be insulated from the functional pattern 1 and the orthographic projection of the compensation functional pattern 3 on the substrate 5 can be complementary to the orthographic projection of the functional pattern 1 on the substrate 5.
  • the above-mentioned compensation function pattern 3 is produced in the display substrate, so that the compensation function pattern 3 can compensate the step difference generated by the function pattern 1 in the display substrate, so that the display substrate is used to form the flat layer 2
  • the surface of the film layer has a high degree of flatness, so that when the flat material film is cured to form the flat layer 2, the parts of the flat material film at different positions have the same thickness in the direction perpendicular to the substrate 5, and have the same thickness during curing.
  • the amount of shrinkage ensures that the surface of the formed flat layer 2 facing away from the substrate 5 has a higher flatness, which is more conducive to improving the problem of poor color shift symmetry.
  • the steps of making the functional graph 1 and the compensation functional graph 3 specifically include:
  • a first mask including a light-transmitting area and a light-shielding area to pattern the functional film layer to form a functional pattern 1;
  • an insulating film layer is formed of insulating material
  • the insulating film layer is patterned to form a compensation function pattern 3.
  • the function pattern 1 and the compensation function pattern 3 are on the same layer, and the compensation function pattern 3 is flattened by the flat layer 2.
  • the second part covers; in the direction perpendicular to the substrate 5, the thickness of the compensation functional pattern 3 is the same as the thickness of the functional pattern 1;
  • the orthographic projection of the light-transmitting area of the second mask on the substrate 5 and the light-shielding area of the first mask on the substrate 5 overlaps, and the orthographic projection of the light-shielding area of the second mask on the substrate 5 overlaps the orthographic projection of the light-transmitting area of the first mask on the substrate 5.
  • a functional film layer is formed by a sputtering process using a metal conductive material first, and then a photoresist layer is fabricated on the functional film layer, and a first mask including a light-transmitting area and a light-shielding area is used to align the photoresist layer
  • Exposure is performed to form a photoresist reserved area and a photoresist removal area, where the photoresist reserved area corresponds to the area where the functional pattern 1 is located, and the photoresist removal area corresponds to other areas except the area where the functional pattern 1 is located,
  • use a developer to develop the exposed photoresist layer to remove the photoresist layer in the photoresist removal area, and then use the photoresist layer in the photoresist reserved area as a mask to
  • the functional film layer in the removed area is etched to remove the functional film layer located in the photoresist removal area, and finally the photoresist layer located in the photoresist reserved area is stripped to form the functional
  • an insulating film layer is formed on the side of the functional pattern 1 facing away from the substrate 5, and the insulating film layer is exposed using a second mask including a light-transmitting area and a light-shielding area , Forming an insulating film layer retention area and an insulating film layer removal area, where the insulating film layer removal area corresponds to the area where the functional pattern 1 is located, and the insulating film layer retention area corresponds to the area where the compensation functional pattern 3 is located, and then the exposed insulating film is treated with a developer The layer is developed to remove the insulating film layer located in the insulating film layer removal area to form a compensation function pattern.
  • a second mask including a light-transmitting area and a light-shielding area
  • the compensation function pattern and the function pattern 1 are made on the same layer and arranged in a direction perpendicular to the substrate 5.
  • the thickness of the compensation function pattern 3 is the same as the thickness of the function pattern 1, and the compensation function pattern 3 can be flattened by the layer 2
  • the second part of the coverage not only well compensates for the step difference generated by the functional pattern 1 and ensures the surface flatness of the subsequently formed flat layer 2 but also does not increase the thickness of the display substrate, which is more conducive to the thinning of the display substrate. It is worth noting that when the compensation function pattern and the function pattern 1 are arranged in the same layer, the compensation function pattern is made into an insulating pattern, which can avoid defects such as short circuit between the compensation function pattern and the function pattern 1.
  • the orthographic projection of the light-transmitting area of the second mask on the substrate 5 is the same as the light-shielding area of the first mask.
  • the orthographic projections on the substrate 5 overlap, and the orthographic projection of the light-shielding area of the second mask on the substrate 5 overlaps the orthographic projection of the light-transmitting area of the first mask on the substrate 5; thus, the first mask is used
  • the orthographic projection of the functional pattern 1 on the substrate 5 is complementary to the orthographic projection of the insulating pattern on the substrate 5.
  • the steps of making the functional graph 1 and the compensation functional graph 3 specifically include:
  • a first mask including a light-transmitting area and a light-shielding area to pattern the functional film layer to form a functional pattern 1;
  • a compensation flat layer 4 is formed on the side of the functional pattern 1 facing away from the substrate;
  • the orthographic projection of the light-transmitting area of the second mask on the substrate 5 and the light-shielding area of the first mask on the substrate 5 overlaps, and the orthographic projection of the light-shielding area of the second mask on the substrate 5 overlaps the orthographic projection of the light-transmitting area of the first mask on the substrate 5;
  • the step of fabricating the flat layer 2 on the side of the functional pattern 1 facing away from the substrate 5 specifically includes:
  • the flat layer 2 is made on the side of the compensation flat layer 4 facing away from the substrate 5. In the direction perpendicular to the substrate 5, the sum of the thickness of the functional pattern 1, the compensation flat layer 4 and the flat layer 2 and the compensation flat layer 4, the compensation function The sum of the thickness of the pattern 3 and the flat layer 2 is equal.
  • a functional film layer is formed by a sputtering process using a metal conductive material first, and then a photoresist layer is fabricated on the functional film layer, and a first mask including a light-transmitting area and a light-shielding area is used to align the photoresist layer
  • Exposure is performed to form a photoresist reserved area and a photoresist removal area, where the photoresist reserved area corresponds to the area where the functional pattern 1 is located, and the photoresist removal area corresponds to other areas except the area where the functional pattern 1 is located,
  • use a developer to develop the exposed photoresist layer to remove the photoresist layer in the photoresist removal area, and then use the photoresist layer in the photoresist reserved area as a mask to
  • the functional film layer in the removed area is etched to remove the functional film layer located in the photoresist removal area, and finally the photoresist layer located in the photoresist reserved area is stripped to form the functional
  • a compensation flat layer 4 is formed on the side of the functional pattern 1 facing away from the substrate 5, and a metallic conductive material is used to form a compensation function film layer on the side of the compensation flat layer 4 facing away from the substrate 5 through a sputtering process.
  • a photoresist layer is made on the layer, and the photoresist layer is exposed by a second mask including a light-transmitting area and a light-shielding area to form a photoresist retention area and a photoresist removal area, wherein the photoresist retention area is The area where the compensation function pattern 3 is located corresponds, and the photoresist removal area corresponds to other areas except the area where the compensation function pattern 3 is located.
  • the exposed photoresist layer is developed with a developer to remove the photoresist.
  • the photoresist layer in the area is removed, and then the photoresist layer in the photoresist reserved area is used as a mask to etch the compensation function film located in the photoresist removal area to compensate for the photoresist removal area
  • the functional film layer is removed, and finally the photoresist layer located in the photoresist reserved area is stripped to form the compensation function pattern 3.
  • the flat layer 2 is made on the side of the compensation function pattern 3 facing away from the substrate 5. It is worth noting that in the direction perpendicular to the substrate 5, the sum of the thickness of the functional pattern 1, the compensation flat layer 4, and the flat layer 2 is equal to the sum of the thickness of the compensation flat layer 4, the compensation functional pattern 3, and the flat layer 2.
  • the orthographic projection of the light-transmitting area of the second mask on the substrate 5 is the same as the light-shielding area of the first mask.
  • the orthographic projections on the substrate 5 overlap, and the orthographic projection of the light-shielding area of the second mask on the substrate 5 overlaps the orthographic projection of the light-transmitting area of the first mask on the substrate 5; thus, the first mask is used
  • the orthographic projection of the functional pattern 1 on the substrate 5 and the orthographic projection of the compensation functional pattern 3 on the substrate 5 are complementary.
  • the compensation flat layer 4 when manufacturing the compensation functional pattern 3 arranged in a different layer from the functional pattern 1, the compensation flat layer 4 can be made in the direction perpendicular to the substrate 5 between the compensation functional pattern 3 and the functional pattern 1.
  • the compensation flat layer 4 can be selected as an insulating layer to ensure that the functional pattern 1 and the compensation functional pattern 3 are insulated from each other, thereby ensuring the reliability of the display substrate. Moreover, it can be arranged in a direction perpendicular to the substrate 5.
  • the sum of the thickness of the functional pattern 1, the compensation flat layer 4 and the flat layer 2 (the thickness corresponding to the part D1 in Figure 4) is the same as the compensation flat layer 4 and the compensation functional pattern 3.
  • the set compensation function pattern 3 can well compensate for the step difference generated by the function pattern 1, so that the subsequent formation in the function pattern 1 and
  • the flat layer 2 on the side of the compensation functional pattern 3 facing away from the substrate 5 has a higher flatness, which is more conducive to improving the problem of poor color shift symmetry.
  • the same material as the flat layer 2 can be used to make the compensation flat layer 4, and when the compensation flat layer 4 and the flat layer 2 are made, in the direction perpendicular to the substrate 5, the one made is used to form the compensation flat layer
  • the maximum thickness of the compensation flat material film of 4 is the same as the maximum thickness of the flat material film produced for forming the flat layer 2.
  • the same material as the flat layer 2 can be used to make a compensation flat material film on the side of the functional pattern 1 facing away from the substrate 5, and then the compensation flat material film is cured to form a compensation flat layer 4.
  • the maximum thickness of the flat material film is the same as the maximum thickness of the compensation flat material film, and then the flat material film is cured to form a flat layer 2.
  • the maximum thickness of the flat material film is set to be the same as the maximum thickness of the compensation flat material film, when the flat material film is cured to form the flat layer 2 and the compensation flat material film is cured to form the compensation flat layer 4,
  • the shrinkage of the flat material film is complementary to the shrinkage of the compensation flat material film, thereby ensuring that the surface of the formed flat layer 2 has a higher flatness, which is more conducive to improving the problem of poor color shift symmetry.
  • the amount of shrinkage of the flat material film and the amount of shrinkage of the compensation flat material film complement each other means: the amount of shrinkage when the flat material film covers the compensation flat layer 4 is partially cured, and the compensation flat material film covers the part of the functional pattern 1 is cured
  • the shrinkage is the same when the flat material film does not cover the part of the compensation flat layer 4 when cured, and the shrinkage when the part of the flat material film does not cover the functional pattern 1 is cured.
  • the manufacturing method provided in the foregoing embodiments further includes: manufacturing an anode layer on the surface of the flat layer 2 that faces away from the substrate 5.
  • the surface of the flat layer 2 used to form the anode layer in the display substrate has a high flatness, when the anode layer is made on the flat layer 2, it can ensure that the anode layer has a high flatness, thereby ensuring that the anode Both the sub-pixel unit and the cathode layer on the layer have high flatness, thereby well solving the problem of poor color shift symmetry and ensuring the display effect of the display panel.
  • the steps of fabricating the flat layer 2 provided by the above embodiments may also specifically include:
  • a flat material film is formed.
  • the flat material film includes a first part covering the functional pattern 1 and a second part not covering the functional pattern 1.
  • the sum of the height of the first part and the functional pattern 1 is the same as the first part.
  • the height of the two parts is the same;
  • the target mask 7 is fabricated; the target mask 7 includes a target light-shielding area 71 and a target light-transmitting area 72.
  • the target mask 7 exposes the cured flat material film (6' in FIG. 8), and the exposure depth corresponding to the target light-transmitting area 72 in the direction perpendicular to the substrate is equal to the difference;
  • the target mask 7 to expose the cured flat material film (6' in Figure 8) to form a flat material film full retention area and a flat material film semi-reserved area, where the flat material film semi-reserved area corresponds to the flat layer 2
  • the area where the part covering the functional pattern 1 is located, and the completely reserved area of the flat material film corresponds to other areas except the area where the part where the flat layer 2 covers the functional pattern 1;
  • the flat material film part located in the semi-reserved area of the flat material film is removed to form the flat layer 2.
  • the difference between the respective shrinkage amounts of the first part and the second part of the flat material film in the direction perpendicular to the substrate 5 during curing For example, you can first A flat material film is directly formed on the functional pattern 1, and then the flat material film is cured to form a test flat layer 2.
  • the test flat layer 2 covers the part of the functional pattern 1 facing away from the surface of the substrate 5 in the direction perpendicular to the substrate 5.
  • a height, and the second height of the surface of the test flat layer 2 not covering the functional pattern 1 facing away from the substrate 5 in the direction perpendicular to the substrate 5.
  • the difference between the first height and the second height can be The difference between the shrinkage of the first part and the second part of the material film during curing.
  • a target mask is made according to the difference, the target mask includes a target light-shielding area and a target light-transmitting area, and the cured flat material film (6' in FIG. 8) is exposed through the target mask 7 In the direction perpendicular to the substrate, the exposure depth corresponding to the target light-transmitting area 72 is equal to the difference between the respective shrinkages of the first part and the second part of the flat material film during curing.
  • a flat material film 6 is first formed.
  • the flat material film 6 includes a first part covering the functional pattern 1 and a second part not covering the functional pattern 1, which is perpendicular to In the direction of the substrate 5, the height of the first part of the flat material film 6 away from the surface of the substrate 5 is the same as the height of the second part of the flat material film away from the surface of the substrate 5; then the flat material film 6 is cured to obtain a cured flat Material film (6' in Figure 8); then use the target mask 7 to expose the cured flat material film to form a flat material film full retention area and a flat material film semi-reserved area, where the flat material film semi-reserved area Corresponding to the area where the flat layer 2 covers the part of the functional pattern 1, the completely reserved area of the flat material film corresponds to other areas except the area where the part of the flat layer 2 covers the functional pattern 1; finally, the developer is used to locate the flat material film The flat material film in the semi-re
  • the difference between the respective shrinkage amounts of the first part and the second part of the flat material film 6 obtained in advance during curing can be firstly used.
  • the above-mentioned target mask 7 may also include other light-transmitting areas through which the cured flat material film (6 in FIG. ') During exposure, a complete removal area of the flat material film can be formed.
  • the complete removal area is used to form a via hole that penetrates the flat layer 2.
  • the via hole can be used to connect the anode layer and the corresponding film on the upper and lower sides of the flat layer 2 respectively.
  • the output electrode of the transistor is also include other light-transmitting areas through which the cured flat material film (6 in FIG. ') During exposure, a complete removal area of the flat material film can be formed.
  • the complete removal area is used to form a via hole that penetrates the flat layer 2.
  • the via hole can be used to connect the anode layer and the corresponding film on the upper and lower sides of the flat layer 2 respectively.
  • the output electrode of the transistor is used to connect the anode layer and the corresponding film on the upper and lower sides of the flat layer 2 respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板及其制作方法、显示装置。所述显示基板包括基底(5)、设置在基底(5)一侧的功能图形(1)、以及设置在功能图形(1)背向基底(5)的一侧的平坦层(2),所述平坦层(2)包括第一部分(B1)和第二部分(B2),其中所述第一部分(B1)在所述基底(5)上的正投影与所述功能图形(1)在所述基底(5)上的正投影重合,所述第二部分(B2)在所述基底(5)上的正投影与所述功能图形(1)在所述基底(5)上的正投影不重叠,在垂直于所述基底(5)的方向上,所述第一部分(B1)远离所述基底(5)的表面的高度与所述第二部分(B2)远离所述基底(5)的表面的高度相同。

Description

一种显示基板及其制作方法、显示装置
相关申请的交叉引用
本申请主张在2019年4月24日在中国提交的中国专利申请号No.201910333265.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板及其制作方法、显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)显示面板以其反应速度块、高对比度、广视角、低能耗等优势受到人们的广泛关注。而且随着OLED显示技术的不断发展,人们对OLED显示面板色彩的显示效果要求也越来越高,但是相关技术中的OLED显示面板大多存在色偏对称性较差的问题,而色偏对称性较差会对显示面板的显示效果产生影响,进而导致用户体验较差。
发明内容
本公开提供一种显示基板,包括基底、设置在所述基底一侧的功能图形、以及设置在所述功能图形背向所述基底的一侧的平坦层;所述平坦层包括第一部分和第二部分,其中所述第一部分在所述基底上的正投影与所述功能图形在所述基底上的正投影重合,所述第二部分在所述基底上的正投影与所述功能图形在所述基底上的正投影不重叠,在垂直于所述基底的方向上,所述第一部分远离所述基底的表面的高度与所述第二部分远离所述基底的表面的高度相同。
可选的,还包括与所述功能图形绝缘的补偿功能图形;
所述功能图形在所述基底上的正投影和所述补偿功能图形在所述基底上的正投影互补。
可选的,所述功能图形和所述补偿功能图形位于同一层,且所述补偿功能图形被所述平坦层的第二部分覆盖;在垂直于所述基底的方向上,所述补偿功能图形的厚度与所述功能图形的厚度相同。
可选的,所述补偿功能图形位于所述功能图形远离所述基底的一侧,所述平坦层位于所述补偿功能图形远离所述基底的一侧;
所述显示基板还包括:
在垂直于所述基底的方向上,位于所述补偿功能图形和所述功能图形之间的补偿平坦层;
在垂直于所述基底的方向上,所述功能图形、所述补偿平坦层和所述平坦层的厚度之和与所述补偿平坦层、所述补偿功能图形和所述平坦层的厚度之和相等。
可选的,所述显示基板还包括阳极层,所述阳极层位于所述平坦层背向所述基底的表面。
可选的,所述平坦层的第一部分远离所述基底的表面和所述平坦层的第二部分远离所述基底的表面平齐,所述平坦层的第一部分远离所述基底的表面和所述平坦层的第二部分远离所述基底的表面构成一个平面。
可选的,所述平坦层的第一部分的厚度与所述功能图形的厚度之和等于所述平坦层的第二部分的厚度。
可选的,所述功能图形包括多个子功能图形,所述平坦层的第二部分在所述基底上的正投影位于相邻的所述子功能图形在所述基底上的正投影之间。
可选的,所述功能图形包括多个子功能图形,所述补偿功能图形在所述基底上的正投影位于相邻的所述子功能图形在所述基底上的正投影之间,且所述补偿功能图形在所述基底上的正投影与所述平坦层的第二部分在在所述基底上的正投影重合。
可选的,所述补充平坦层包括第一部分和第二部分,所述补充平坦层的第一部分在所述基底上的正投影与所述平坦层的第一部分在所述基底上的正投影重合,所述补充平坦层的第二部分在所述基底上的正投影与所述平坦层的第二部分在所述基底上的正投影重合。
可选的,在垂直于所述基底的方向上,所述平坦层的第一部分、所述补 充平坦层的第一部分和所述功能图形的厚度之和等于所述平坦层的第二部分、所述补充平坦层的第二部分和所述补偿功能图形的厚度之和。
本公开还提供一种显示装置,包括上述显示基板。
本公开还提供一种显示基板的制作方法,用于制作上述显示基板,所述制作方法包括:
提供一基底;
在所述基底上制作功能图形;
在所述功能图形背向所述基底的一侧制作平坦层,所述平坦层包括第一部分和第二部分,其中所述第一部分在所述基底上的正投影与所述功能图形在所述基底上的正投影重合,所述第二部分在所述基底上的正投影与所述功能图形在所述基底上的正投影不重叠,在垂直于所述基底的方向上,所述第一部分远离所述基底的表面的高度与所述第二部分远离所述基底的表面的高度相同。
可选的,在所述基底上制作功能图形的步骤具体包括:
制作功能图形和与所述功能图形绝缘的补偿功能图形,所述功能图形和所述补偿功能图形在所述基底上的正投影互补。
可选的,制作所述功能图形和所述补偿功能图形的步骤具体包括:
利用金属导电材料形成功能膜层;
利用包括透光区域和遮光区域的第一掩膜板,对所述功能膜层图案化,形成所述功能图形;
在所述功能图形背向所述基底的一侧,利用绝缘材料形成绝缘膜层;
利用包括透光区域和遮光区域的第二掩膜板,对所述绝缘膜层图案化,形成所述补偿功能图形,所述功能图形和所述补偿功能图形位于同一层,且所述补偿功能图形被所述平坦层的第二部分覆盖;在垂直于所述基底的方向上,所述补偿功能图形的厚度与所述功能图形的厚度相同;
在将所述第一掩膜板和所述第二掩膜板层叠设置在所述基底上时,所述第二掩膜板的透光区域在所述基底上的正投影与所述第一掩膜板的遮光区域在所述基底上的正投影重叠,所述第二掩膜板的遮光区域在所述基底上的正投影与所述第一掩膜板的透光区域在所述基底上的正投影重叠。
可选的,制作所述功能图形和所述补偿功能图形的步骤具体包括:
利用金属导电材料形成功能膜层;
利用包括透光区域和遮光区域的第一掩膜板,对所述功能膜层图案化,形成所述功能图形;
在所述功能图形背向所述基底的一侧形成补偿平坦层;
利用所述金属导电材料在所述补偿平坦层背向所述基底的一侧形成补偿功能膜层;
利用包括透光区域和遮光区域的第二掩膜板,对所述补偿功能膜层图案化,形成所述补偿功能图形;
在将所述第一掩膜板和所述第二掩膜板层叠设置在所述基底上时,所述第二掩膜板的透光区域在所述基底上的正投影与所述第一掩膜板的遮光区域在所述基底上的正投影重叠,所述第二掩膜板的遮光区域在所述基底上的正投影与所述第一掩膜板的透光区域在所述基底上的正投影重叠;
所述在所述功能图形背向所述基底的一侧制作平坦层的步骤具体包括:
在所述补偿功能图形背向所述基底的一侧制作所述平坦层,在垂直于所述基底的方向上,所述功能图形、所述补偿平坦层和所述平坦层的厚度之和与所述补偿平坦层、所述补偿功能图形和所述平坦层的厚度之和相等。
可选的,所述制作方法还包括:
在所述平坦层背向所述基底的表面制作阳极层。
可选的,制作所述平坦层的步骤具体包括:
形成平坦材料薄膜,所述平坦材料薄膜包括覆盖所述功能图形的第一部分和未覆盖所述功能图形的第二部分,在垂直于所述基底的方向上,所述平坦材料薄膜的第一部分远离所述基底的表面的高度与所述平坦材料薄膜的第二部分远离所述基底的表面的高度相同;
对所述平坦材料薄膜进行固化;
确定在垂直于所述基底的方向上,所述平坦材料薄膜的第一部分和第二部分在固化后各自对应的收缩量之间的差值;
根据所述平坦材料薄膜的第一部分和第二部分在固化后各自对应的收缩量之间的差值,制作目标掩膜板;所述目标掩膜板包括目标遮光区域和目标 透光区域,通过所述目标掩膜板对固化后的所述平坦材料薄膜曝光,在垂直于所述基底的方向上所述目标透光区域对应的曝光深度等于所述差值;
利用所述目标掩膜板对固化后的所述平坦材料薄膜进行曝光,形成平坦材料薄膜全保留区域和平坦材料薄膜半保留区域,其中所述平坦材料薄膜半保留区域对应所述平坦层覆盖所述功能图形的部分所在的区域,所述平坦材料薄膜完全保留区域对应除所述平坦层覆盖所述功能图形的部分所在的区域之外的其它区域;
利用显影液,将位于所述平坦材料薄膜半保留区域的平坦材料薄膜部分去除,形成所述平坦层。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为相关技术中形成在功能图形上的平坦层的示意图;
图2为本公开实施例中形成在功能图形上的平坦层的示意图;
图3为本公开实施例提供的功能图形和补偿功能图形同层设置的示意图;
图4为本公开实施例提供的功能图形和补偿功能图形异层设置的示意图;
图5为本公开实施例提供的功能图形的俯视示意图;
图6为本公开实施例提供的补偿功能图形的俯视示意图;
图7为本公开实施例提供的制作异层设置的功能图形和补偿功能图形的流程示意图。
图8为本公开实施例提供的一种制作平坦层的流程示意图。
具体实施方式
为了进一步说明本公开实施例提供的显示基板及其制作方法、显示装置,下面结合说明书附图进行详细描述。
相关技术中,OLED显示面板的结构主要包括:具有驱动OLED显示面板中各亚像素单元进行显示的薄膜晶体管阵列层;设置在薄膜晶体管阵列层上 的平坦层(厚度一般在1.0μm~3.0μm之间);设置在平坦层背向薄膜晶体管阵列层的表面的多个阳极图形,所述多个阳极图形与薄膜晶体管阵列层中包括的多个薄膜晶体管一一对应连接(具体可通过在平坦层上制作过孔来实现该连接);还包括在阳极层背向平坦层的一侧设置的像素界定层,像素界定层限定出与阳极图形一一对应的开口,且在每个开口中形成有亚像素单元;在亚像素单元背向阳极图形的表面还设置有阴极层。
上述结构的OLED显示面板在实现显示功能时,可向阴极层提供驱动信号,并通过薄膜晶体管阵列层中的薄膜晶体管为对应的阳极图形提供驱动信号,使得在阳极层和阴极层之间形成驱动电场,进而驱动位于阳极图形和阴极层之间亚像素单元发光,实现OLED显示面板的显示功能。
对于相关技术,本公开的发明人经研究发现,由于亚像素单元制作在阳极图形上,因此当阳极图形用于形成亚像素单元的表面不平坦时,容易导致观看者在不同方向上观看显示面板时,会存在较为严重的色彩不一致问题,从而引起不同方向的色偏,即色偏对称性较差。进一步地,由于阳极图形是制作在平坦层上的,因此,平坦层用于制作阳极图形的表面的平坦程度决定了阳极图形用于形成亚像素单元的表面的平坦程度。
基于此本公开的发明人进一步研究发现,在实际制作平坦层时,会先形成平坦材料薄膜,该平坦材料薄膜背向薄膜晶体管阵列层的表面具有较高的平坦度,然后再对平坦材料薄膜进行固化形成平坦层,而由于平坦层所覆盖的薄膜晶体管阵列层中,有的部分具有金属走线,有的部分没有金属走线,因此导致平坦材料薄膜在对应薄膜晶体管阵列层的不同位置处,在垂直于显示面板的方向上厚度不同,进而导致在对平坦材料薄膜进行固化时,平坦材料薄膜中覆盖金属走线的部分和未覆盖金属走线的部分在垂直于显示面板的方向上的收缩量不一致,更详细地说,平坦材料薄膜覆盖金属走线的部分在垂直于显示面板的方向上厚度较薄,固化时在垂直于显示面板的方向上收缩量较小,而平坦材料薄膜未覆盖金属走线的部分在垂直于显示面板的方向上厚度较厚,固化时在垂直于显示面板的方向上收缩量较大,因此,使得在垂直于显示面板的方向上,固化后形成的平坦层(如图1中的A)中覆盖金属走线的部分高于未覆盖金属走线的部分,这样当形成同时覆盖平坦层中覆盖 金属走线的部分和未覆盖金属走线的部分的阳极图形、以及位于该阳极图形上方的亚像素单元和阴极层时,该阳极图形、位于该阳极图形上方的亚像素单元和阴极层均不平坦,从而导致了对称性较差的问题。
基于上述分析过程,如图2所示,本公开实施例提供了一种显示基板,包括基底5、设置在基底5一侧的功能图形1、以及设置在功能图形1背向基底5的一侧的平坦层2;平坦层2包括第一部分B1和第二部分B2,其中第一部分B1在基底5上的正投影与功能图形1在基底5上的正投影重合,第二部分B2在基底5上的正投影与功能图形1在基底5上的正投影不重叠,在垂直于基底5的方向上,第一部分B21远离基底5的表面的高度与第二部分B2远离基底5的表面的高度相同。
可选的,所述平坦层2的第一部分B1远离所述基底的表面和所述平坦层的第二部分B2远离所述基底的表面平齐,所述平坦层的第一部分B1远离所述基底的表面和所述平坦层的第二部分B2远离所述基底的表面构成一个平面。
可选的,所述平坦层的第一部分B1的厚度与所述功能图形1的厚度之和等于所述平坦层的第二部分B2的厚度。
可选的,所述功能图形1包括多个子功能图形1’,所述平坦层的第二部分B2在所述基底上的正投影位于相邻的所述子功能图形1’在所述基底上的正投影之间。
具体地,在制作上述显示基板时,示例性的,可先在基底5上制作薄膜晶体管阵列层,该薄膜晶体管阵列层中包括阵列分布的多个薄膜晶体管,每个薄膜晶体管均包括栅极、有源层、源漏金属层等功能图形,以及设置在栅极与有源层之间、有源层与源漏金属层之间的绝缘层,其中栅极、有源层和源漏金属层均为独立的图形,绝缘层为整层铺设的膜层,因此,所制作的薄膜晶体管阵列层背向基底5的表面凹凸不平,且在垂直于基底5的方向上,具有功能图形1的部分的高度要高于不具有功能图形1的部分的高度。在制作完薄膜晶体管阵列层之后,在薄膜晶体管阵列层背向基底5的表面制作平坦层2,所制作的平坦层2包括第一部分和第二部分,其中第一部分在基底5上的正投影与功能图形1在基底5上的正投影重合(即覆盖功能图形1),第 二部分在基底5上的正投影与功能图形1在基底5上的正投影不重叠(即不覆盖功能图形1),在垂直于基底5的方向上,第一部分远离基底5的表面的高度与第二部分远离基底5的表面的高度相同。可以在制作完平坦层2之后,在平坦层2背向基底5的表面制作阳极层,并进一步在该阳极层背向基底5的表面制作亚像素单元和阴极层等。
根据上述实施例提供的显示基板的具体结构和制作方式可知,本公开实施例提供的显示基板中,在功能图形1背向基底5的一侧设置了平坦层2,该平坦层2包括覆盖功能图形1的第一部分和未覆盖功能图形1的第二部分,且在垂直于基底5的方向上,第一部分远离基底5的表面的高度与第二部分远离基底5的表面的高度相同;因此,本公开实施例提供的显示基板中,形成在功能图形1上的平坦层2中用于形成阳极层的表面具有较高的平坦度,这样在该平坦层2上制作阳极层时,能够保证阳极层具有较高的平坦度,进而保证了制作在阳极层上的亚像素单元和阴极层均具有较高的平坦度,从而很好的解决了色偏对称性较差的问题,保证了显示面板的显示效果。
在一些实施例中,如图3和图4所示,上述实施例提供的显示基板还包括:与功能图形1绝缘的补偿功能图形3,功能图形1在基底5上的正投影和补偿功能图形3在基底5上的正投影互补。
具体地,在显示基板上设置的补偿功能图形3可与功能图形1同层设置(如图3所示)或异层设置(如图4所示),且该补偿功能图形3的材质也可根据实际需要选择,只需满足其与功能图形1绝缘,且补偿功能图形3在基底5上的正投影能够与功能图形1在基底5上的正投影互补即可。需要说明,如图5和图6所示,补偿功能图形3在基底5上的正投影与功能图形1在基底5上的正投影互补指的是:补偿功能图形3在基底5上的正投影与功能图形1在基底5上的正投影能够组成中间不存在空隙的完整的平面。
在显示基板中设置上述补偿功能图形3,使得该补偿功能图形3能够补偿显示基板中由功能图形1产生的段差,从而使得显示基板中用于形成平坦层2的膜层表面具有较高的平坦度,这样在对平坦材料薄膜固化形成平坦层2时,平坦材料薄膜中位于各个不同位置处的部分在垂直于基底5的方向上厚度相同,固化时具有相同的收缩量,保证了形成的平坦层2中背向基底5 的表面具有更高的平坦度,从而更有利于改善色偏对称性较差的问题。
如图3所示,在一些实施例中,功能图形1和补偿功能图形3位于同一层,且补偿功能图形3被平坦层2的第二部分覆盖;在垂直于基底5的方向上,补偿功能图形3的厚度与功能图形1的厚度相同。
具体地,设置补偿功能图形与功能图形1同层设置,并设置在垂直于基底5的方向上,补偿功能图形3的厚度与功能图形1的厚度相同,以及补偿功能图形3能够被平坦层2的第二部分覆盖,不仅很好的补偿了功能图形1产生的段差,保证了后续形成的平坦层2的表面平整度,而且不会增加显示基板的厚度,从而更有利于显示基板的薄型化。值得注意,当将补偿功能图形与功能图形1同层设置时,可将补偿功能图形制作成绝缘图形,以避免补偿功能图形与功能图形1之间发生短路等不良。
如图4所示,在一些实施例中,补偿功能图形3位于功能图形1远离基底5的一侧,平坦层2位于补偿功能图形3远离基底5的一侧;显示基板还包括:在垂直于基底5的方向上,位于补偿功能图形3和功能图形1之间的补偿平坦层4;在垂直于基底5的方向上,功能图形1、补偿平坦层4和平坦层2的厚度之和与补偿平坦层4、补偿功能图形3和平坦层2的厚度之和相等。
可选的,所述补充平坦层包括第一部分C1和第二部分,所述补充平坦层的第一部分C1在所述基底上的正投影与所述平坦层的第一部分B1在所述基底上的正投影重合,所述补充平坦层的第二部分C2在所述基底上的正投影与所述平坦层的第二部分B2在所述基底上的正投影重合。
可选的,在垂直于所述基底的方向上,所述平坦层的第一部分B1、所述补充平坦层的第一部分C1和所述功能图形1的厚度之和等于所述平坦层的第二部分B2、所述补充平坦层的第二部分C2和所述补偿功能图形1的厚度之和。
具体地,上述实施例提供的补偿功能图形3可包括与功能图形1异层设置的导电图形,在这种情况下,可在垂直于基底5的方向上,在补偿功能图形3和功能图形1之间设置补偿平坦层4,该补偿平坦层4可选为绝缘层,以保证功能图形1和补偿功能图形3之间彼此绝缘,从而保证显示基板的信 赖性。而且,可设置在垂直于基底5的方向上,功能图形1、补偿平坦层4和平坦层2的厚度之和(如图4中D1部分对应的厚度)与补偿平坦层4、补偿功能图形3和平坦层2的厚度之和(如图4中D2部分对应的厚度)相等,这样所设置的补偿功能图形3能够很好的补偿由功能图形1产生的段差,使得后续形成在功能图形1和补偿功能图形3背向基底5的一侧的平坦层2具有较高的平整度,从而更有利于改善色偏对称性较差的问题。
进一步地,可设置补偿平坦层4与平坦层2采用相同的材料制作,且在制作补偿平坦层4和平坦层2时,在垂直于基底5的方向上,所制作的用于形成补偿平坦层4的补偿平坦材料薄膜的最大厚度,和所制作的用于形成平坦层2的平坦材料薄膜的最大厚度相同。
具体地,在制作完功能图形1之后,可采用与平坦层2相同的材料在功能图形1背向基底5的一侧制作补偿平坦材料薄膜,然后对该补偿平坦材料薄膜进行固化形成补偿平坦层4,接着在补偿平坦层4背向基底5的一侧制作补偿平坦层4,再在该补偿平坦层4背向基底5的一侧制作平坦材料薄膜,在垂直于基底5的方向上,该平坦材料薄膜的最大厚度与补偿平坦材料薄膜的最大厚度相同,接着对平坦材料薄膜固化形成平坦层2。
值得注意,由于设置了平坦材料薄膜的最大厚度与补偿平坦材料薄膜的最大厚度相同,使得在对平坦材料薄膜固化形成平坦层2时,以及对补偿平坦材料薄膜进行固化形成补偿平坦层4时,平坦材料薄膜的收缩量与补偿平坦材料薄膜的收缩量互补,从而保证了所形成的平坦层2的表面具有较高的平整度,更有利于改善色偏对称性较差的问题。
需要说明,上述平坦材料薄膜的收缩量与补偿平坦材料薄膜的收缩量互补是指:平坦材料薄膜覆盖补偿平坦层4的部分固化时的收缩量,与补偿平坦材料薄膜覆盖功能图形1的部分固化时的收缩量相同,平坦材料薄膜未覆盖补偿平坦层4的部分固化时的收缩量,与补偿平坦材料薄膜未覆盖功能图形1的部分固化时的收缩量相同。
在一些实施例中,上述实施例提供的显示基板还包括阳极层,所述阳极层位于平坦层2背向所述基底的表面。
由于显示基板中平坦层2用于形成阳极层的表面具有较高的平坦度,这 样在该平坦层2上制作阳极层时,能够保证阳极层具有较高的平坦度,进而保证了制作在阳极层上的亚像素单元和阴极层均具有较高的平坦度,从而很好的解决了色偏对称性较差的问题,保证了显示面板的显示效果。
本公开实施例还提供了一种显示装置,包括上述实施例提供的显示基板。
由于上述实施例提供的显示基板中,形成在功能图形1上的平坦层2中用于形成阳极层的表面具有较高的平坦度,使得在该平坦层2上制作阳极层时,能够保证阳极层具有较高的平坦度,进而很好的解决了色偏对称性较差的问题,因此本公开实施例所提供的显示装置在包括上述实施例提供的显示基板时,同样能够避免色偏对称性较差,使得显示装置能够实现更好的显示效果。
需要说明的是,所述显示装置可以为:电视、显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件。
本公开实施例还提供了一种显示基板的制作方法,用于制作上述实施例提供的显示基板,所述制作方法包括:
提供一基底5;
在基底5上制作功能图形;
在功能图形背向基底5的一侧制作平坦层,平坦层包括第一部分和第二部分,其中第一部分在基底5上的正投影与功能图形在基底5上的正投影重合,第二部分在基底5上的正投影与功能图形在基底5上的正投影不重叠,在垂直于基底5的方向上,第一部分远离基底5的表面的高度与第二部分远离基底5的表面的高度相同。
具体地,在制作上述显示基板时,可选用的基底5的类型多种多样,示例性的,选用玻璃基底制作显示基板。在确定要使用的基底5类型后,在提供的基底5上制作薄膜晶体管阵列层,该薄膜晶体管阵列层中包括阵列分布的多个薄膜晶体管,每个薄膜晶体管均包括栅极、有源层、源漏金属层等功能图形,以及设置在栅极与有源层之间、有源层与源漏金属层之间的绝缘层;然后在薄膜晶体管阵列层背向基底5的表面制作平坦层,所制作的平坦层包括第一部分和第二部分,其中第一部分在基底5上的正投影与功能图形在基底5上的正投影重合(即覆盖功能图形),第二部分在基底5上的正投影与功 能图形在基底5上的正投影不重叠(即不覆盖功能图形),在垂直于基底5的方向上,第一部分远离基底5的表面的高度与第二部分远离基底5的表面的高度相同;在制作完平坦层之后,在平坦层背向基底5的表面制作阳极层,并可以进一步在该阳极层背向基底5的表面制作亚像素单元和阴极层等。
采用本公开实施例提供的制作方法制作显示基板时,先在基底5上制作功能图形,然后在该功能图形背向基底5的一侧制作平坦层,所制作的平坦层包括覆盖功能图形的第一部分和未覆盖功能图形的第二部分,且在垂直于基底5的方向上,第一部分远离基底5的表面的高度与第二部分远离基底5的表面的高度相同;因此,采用本公开实施例提供的制作方法制作显示基板中,平坦层用于形成阳极层的表面具有较高的平坦度,这样在该平坦层上继续制作阳极层时,能够保证阳极层具有较高的平坦度,进而保证了制作在阳极层上的亚像素单元和阴极层均具有较高的平坦度,从而很好的解决了色偏对称性较差的问题,保证了显示面板的显示效果。
如图3和图4所示,在一些实施例中,在基底5上制作功能图形1的步骤具体包括:制作功能图形1和与所述功能图形1绝缘的补偿功能图形3,所述功能图形1和所述补偿功能图形3在所述基底5上的正投影互补。
具体地,在显示基板上制作的补偿功能图形3可与功能图形1同层设置(如图3所示)或异层设置(如图4所示),且该补偿功能图形3的材质也可根据实际需要选择,只需满足其与功能图形1绝缘,且补偿功能图形3在基底5上的正投影能够与功能图形1在基底5上的正投影互补即可。
上述实施例提供的制作方法中,在显示基板中制作上述补偿功能图形3,使得该补偿功能图形3能够补偿显示基板中由功能图形1产生的段差,从而使得显示基板中用于形成平坦层2的膜层表面具有较高的平坦度,这样在对平坦材料薄膜固化形成平坦层2时,平坦材料薄膜中位于各个不同位置处的部分在垂直于基底5的方向上厚度相同,固化时具有相同的收缩量,保证了形成的平坦层2中背向基底5的表面具有更高的平坦度,从而更有利于改善色偏对称性较差的问题。
如图3所示,在一些实施例中,上述制作功能图形1和补偿功能图形3的步骤具体包括:
利用金属导电材料形成功能膜层;
利用包括透光区域和遮光区域的第一掩膜板,对功能膜层图案化,形成功能图形1;
在功能图形1背向基底的一侧,利用绝缘材料形成绝缘膜层;
利用包括透光区域和遮光区域的第二掩膜板,对绝缘膜层图案化,形成补偿功能图形3,功能图形1和补偿功能图形3位于同一层,且补偿功能图形3被平坦层2的第二部分覆盖;在垂直于基底5的方向上,补偿功能图形3的厚度与功能图形1的厚度相同;
在将第一掩膜板和第二掩膜板层叠设置在基底5上时,第二掩膜板的透光区域在基底5上的正投影与第一掩膜板的遮光区域在基底5上的正投影重叠,第二掩膜板的遮光区域在基底5上的正投影与第一掩膜板的透光区域在基底5上的正投影重叠。
具体地,先利用金属导电材料,通过溅射工艺形成功能膜层,然后在该功能膜层上制作光刻胶层,利用包括透光区域和遮光区域的第一掩膜板对光刻胶层进行曝光,形成光刻胶保留区域和光刻胶去除区域,其中光刻胶保留区域与功能图形1所在区域对应,光刻胶去除区域与除该功能图形1所在区域之外的其他区域对应,然后利用显影液对曝光后的光刻胶层进行显影,将位于光刻胶去除区域的光刻胶层去除,接着以光刻胶保留区域的光刻胶层为掩膜,对位于光刻胶去除区域的功能膜层进行刻蚀,以将位于光刻胶去除区域的功能膜层去除,最后剥离位于光刻胶保留区域的光刻胶层,形成功能图形1。
利用绝缘材料(示例性的,采用树脂材料),在功能图形1背向基底5的一侧形成绝缘膜层,利用包括透光区域和遮光区域的第二掩膜板,对绝缘膜层进行曝光,形成绝缘膜层保留区域和绝缘膜层去除区域,其中绝缘膜层去除区域对应功能图形1所在区域,绝缘膜层保留区域对应补偿功能图形3所在区域,然后利用显影液对曝光后的绝缘膜层进行显影,将位于绝缘膜层去除区域的绝缘膜层去除,形成补偿功能图形。
上述将补偿功能图形与功能图形1制作在同一层,并设置在垂直于基底5的方向上,补偿功能图形3的厚度与功能图形1的厚度相同,以及补偿功 能图形3能够被平坦层2的第二部分覆盖,不仅很好的补偿了功能图形1产生的段差,保证了后续形成的平坦层2的表面平整度,而且不会增加显示基板的厚度,从而更有利于显示基板的薄型化。值得注意,当将补偿功能图形与功能图形1同层设置时,将补偿功能图形制作成绝缘图形,能够避免补偿功能图形与功能图形1之间发生短路等不良。
需要说明,在将上述第一掩膜板和第二掩膜板层叠设置在基底5上时,第二掩膜板的透光区域在基底5上的正投影与第一掩膜板的遮光区域在基底5上的正投影重叠,第二掩膜板的遮光区域在基底5上的正投影与第一掩膜板的透光区域在基底5上的正投影重叠;从而使得利用第一掩膜板和第二掩膜板制作功能图形1和绝缘图形时,功能图形1在基底5上的正投影与绝缘图形在基底5上的正投影互补。
如图7所示,在一些实施例中,上述制作功能图形1和补偿功能图形3的步骤具体包括:
利用金属导电材料形成功能膜层;
利用包括透光区域和遮光区域的第一掩膜板,对功能膜层图案化,形成功能图形1;
在功能图形1背向基底的一侧形成补偿平坦层4;
利用金属导电材料在补偿平坦层4背向基底5的一侧形成补偿功能膜层;
利用包括透光区域和遮光区域的第二掩膜板,对补偿功能膜层图案化,形成补偿功能图形3;
在将第一掩膜板和第二掩膜板层叠设置在基底5上时,第二掩膜板的透光区域在基底5上的正投影与第一掩膜板的遮光区域在基底5上的正投影重叠,第二掩膜板的遮光区域在基底5上的正投影与第一掩膜板的透光区域在基底5上的正投影重叠;
上述在功能图形1背向基底5的一侧制作平坦层2的步骤具体包括:
在补偿平坦层4背向基底5的一侧制作平坦层2,在垂直于基底5的方向上,功能图形1、补偿平坦层4和平坦层2的厚度之和与补偿平坦层4、补偿功能图形3和平坦层2的厚度之和相等。
具体地,先利用金属导电材料,通过溅射工艺形成功能膜层,然后在该 功能膜层上制作光刻胶层,利用包括透光区域和遮光区域的第一掩膜板对光刻胶层进行曝光,形成光刻胶保留区域和光刻胶去除区域,其中光刻胶保留区域与功能图形1所在区域对应,光刻胶去除区域与除该功能图形1所在区域之外的其他区域对应,然后利用显影液对曝光后的光刻胶层进行显影,将位于光刻胶去除区域的光刻胶层去除,接着以光刻胶保留区域的光刻胶层为掩膜,对位于光刻胶去除区域的功能膜层进行刻蚀,以将位于光刻胶去除区域的功能膜层去除,最后剥离位于光刻胶保留区域的光刻胶层,形成功能图形1。
在功能图形1背向基底5的一侧形成补偿平坦层4,利用金属导电材料,通过溅射工艺在补偿平坦层4背向基底5的一侧形成补偿功能膜层,然后在该补偿功能膜层上制作光刻胶层,利用包括透光区域和遮光区域的第二掩膜板对光刻胶层进行曝光,形成光刻胶保留区域和光刻胶去除区域,其中光刻胶保留区域与补偿功能图形3所在区域对应,光刻胶去除区域与除该补偿功能图形3所在区域之外的其他区域对应,然后利用显影液对曝光后的光刻胶层进行显影,将位于光刻胶去除区域的光刻胶层去除,接着以光刻胶保留区域的光刻胶层为掩膜,对位于光刻胶去除区域的补偿功能膜层进行刻蚀,以将位于光刻胶去除区域的补偿功能膜层去除,最后剥离位于光刻胶保留区域的光刻胶层,形成补偿功能图形3。形成补偿功能图形3之后在补偿功能图形3背向基底5的一侧制作所述平坦层2。值得注意,在垂直于基底5的方向上,功能图形1、补偿平坦层4和平坦层2的厚度之和与补偿平坦层4、补偿功能图形3和平坦层2的厚度之和相等。
需要说明,在将上述第一掩膜板和第二掩膜板层叠设置在基底5上时,第二掩膜板的透光区域在基底5上的正投影与第一掩膜板的遮光区域在基底5上的正投影重叠,第二掩膜板的遮光区域在基底5上的正投影与第一掩膜板的透光区域在基底5上的正投影重叠;从而使得利用第一掩膜板和第二掩膜板制作功能图形1和补偿功能图形3时,功能图形1在基底5上的正投影与补偿功能图形3在基底5上的正投影互补。
采用上述实施例提供的制作方法,制作与功能图形1异层设置的补偿功能图形3时,可在垂直于基底5的方向上,在补偿功能图形3和功能图形1 之间制作补偿平坦层4,该补偿平坦层4可选为绝缘层,以保证功能图形1和补偿功能图形3之间彼此绝缘,从而保证显示基板的信赖性。而且,可设置在垂直于基底5的方向上,功能图形1、补偿平坦层4和平坦层2的厚度之和(如图4中D1部分对应的厚度)与补偿平坦层4、补偿功能图形3和平坦层2的厚度之和(如图4中D2部分对应的厚度)相等,这样所设置的补偿功能图形3能够很好的补偿由功能图形1产生的段差,使得后续形成在功能图形1和补偿功能图形3背向基底5的一侧的平坦层2具有较高的平整度,从而更有利于改善色偏对称性较差的问题。
进一步地,可采用与平坦层2采用相同的材料制作补偿平坦层4,且在制作补偿平坦层4和平坦层2时,在垂直于基底5的方向上,所制作的用于形成补偿平坦层4的补偿平坦材料薄膜的最大厚度,和所制作的用于形成平坦层2的平坦材料薄膜的最大厚度相同。
具体地,在制作完功能图形1之后,可采用与平坦层2相同的材料在功能图形1背向基底5的一侧制作补偿平坦材料薄膜,然后对该补偿平坦材料薄膜进行固化形成补偿平坦层4,接着在补偿平坦层4背向基底5的一侧制作补偿平坦层4,再在该补偿平坦层4背向基底5的一侧制作平坦材料薄膜,在垂直于基底5的方向上,该平坦材料薄膜的最大厚度与补偿平坦材料薄膜的最大厚度相同,接着对平坦材料薄膜固化形成平坦层2。
值得注意,由于设置了平坦材料薄膜的最大厚度与补偿平坦材料薄膜的最大厚度相同,使得在对平坦材料薄膜固化形成平坦层2时,以及对补偿平坦材料薄膜进行固化形成补偿平坦层4时,平坦材料薄膜的收缩量与补偿平坦材料薄膜的收缩量互补,从而保证了所形成的平坦层2的表面具有较高的平整度,更有利于改善色偏对称性较差的问题。
需要说明,上述平坦材料薄膜的收缩量与补偿平坦材料薄膜的收缩量互补是指:平坦材料薄膜覆盖补偿平坦层4的部分固化时的收缩量,与补偿平坦材料薄膜覆盖功能图形1的部分固化时的收缩量相同,平坦材料薄膜未覆盖补偿平坦层4的部分固化时的收缩量,与补偿平坦材料薄膜未覆盖功能图形1的部分固化时的收缩量相同。
在一些实施例中,上述实施例提供的制作方法还包括:在所述平坦层2 背向所述基底5的表面制作阳极层。
由于显示基板中平坦层2用于形成阳极层的表面具有较高的平坦度,这样在该平坦层2上制作阳极层时,能够保证阳极层具有较高的平坦度,进而保证了制作在阳极层上的亚像素单元和阴极层均具有较高的平坦度,从而很好的解决了色偏对称性较差的问题,保证了显示面板的显示效果。
在一些实施例中,如图8所示,上述实施例提供的制作平坦层2的步骤还可以具体包括:
形成平坦材料薄膜,平坦材料薄膜包括覆盖功能图形1的第一部分和未覆盖功能图形1的第二部分,在垂直于基底5的方向上,该第一部分与功能图形1的高度之和与该第二部分的高度相同;
对平坦材料薄膜进行固化;
确定在垂直于基底5的方向上,平坦材料薄膜的第一部分和第二部分在固化后各自对应的收缩量之间的差值;
根据平坦材料薄膜的第一部分和第二部分在固化后各自对应的收缩量之间的差值,制作目标掩膜板7;目标掩膜板7包括目标遮光区域71和目标透光区域72,通过目标掩膜板7对固化后的平坦材料薄膜(图8中的6')曝光,在垂直于基底的方向上目标透光区域72对应的曝光深度等于所述差值;
利用目标掩膜板7对固化后的平坦材料薄膜(图8中的6')进行曝光,形成平坦材料薄膜全保留区域和平坦材料薄膜半保留区域,其中平坦材料薄膜半保留区域对应平坦层2覆盖功能图形1的部分所在的区域,平坦材料薄膜完全保留区域对应除平坦层2覆盖功能图形1的部分所在的区域之外的其它区域;
利用显影液,将位于平坦材料薄膜半保留区域的平坦材料薄膜部分去除,形成平坦层2。
具体地,上述确定在垂直于基底5的方向上,平坦材料薄膜的第一部分和第二部分在固化时各自对应的收缩量之间的差值的方式多种多样,示例性的,可先在功能图形1上直接形成平坦材料薄膜,然后对平坦材料薄膜固化形成测试平坦层2,测量该测试平坦层2覆盖功能图形1的部分背向基底5的表面在垂直于基底5的方向上的第一高度,以及该测试平坦层2未覆盖功 能图形1的部分背向基底5的表面在垂直于基底5的方向上的第二高度,将第一高度和第二高度作差,即可得到平坦材料薄膜的第一部分和第二部分在固化时各自对应的收缩量之间的差值。进一步地,根据该差值制作目标掩膜板,该目标掩膜板包括目标遮光区域和目标透光区域,通过目标掩膜板7对固化后的平坦材料薄膜(图8中的6')曝光,在垂直于基底的方向上目标透光区域72对应的曝光深度等于平坦材料薄膜的第一部分和第二部分在固化时各自对应的收缩量之间的差值。
更详细地说,请参阅图8,在制作平坦层2时,先形成平坦材料薄膜6,平坦材料薄膜6包括覆盖功能图形1的第一部分和未覆盖功能图形1的第二部分,在垂直于基底5的方向上,平坦材料薄膜6的第一部分远离基底5的表面的高度与平坦材料薄膜的第二部分远离基底5的表面的高度相同;然后对平坦材料薄膜6进行固化得到固化后的平坦材料薄膜(图8中的6');再利用目标掩膜板7对固化后的平坦材料薄膜进行曝光,形成平坦材料薄膜全保留区域和平坦材料薄膜半保留区域,其中平坦材料薄膜半保留区域对应平坦层2覆盖功能图形1的部分所在的区域,平坦材料薄膜完全保留区域对应除平坦层2覆盖功能图形1的部分所在的区域之外的其它区域;最后利用显影液,将位于平坦材料薄膜半保留区域的平坦材料薄膜部分去除形成平坦层2。
根据上述内容可知,采用上述实施例提供的制作方法制作平坦层2时,可先根据提前获取的平坦材料薄膜6的第一部分和第二部分在固化时各自对应的收缩量之间的差值,制作目标掩膜板,然后利用该目标掩膜板对固化后的平坦材料薄膜(图8中的6')进行图案化,将固化后的平坦材料薄膜背向基底5的表面的凸出部分去除,使得形成的平坦层2的表面具有较高的平整度,从而更有利于改善色偏对称性较差的问题。
值得注意,上述目标掩膜板7除了包括目标遮光区域71和目标透光区域72外,还可以包括其它透光区域,通过该其它透光区域对固化后的平坦材料薄膜(图8中的6')曝光时,可形成平坦材料薄膜完全去除区域,该完全去除区域用于形成贯穿平坦层2的过孔,该过孔可用于连接分别位于平坦层2上下两侧的阳极层和对应的薄膜晶体管的输出电极。
需要说明,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于方法实施例而言,由于其基本相似于产品实施例,所以描述得比较简单,相关之处参见产品实施例的部分说明即可。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种显示基板,包括基底、设置在所述基底一侧的功能图形、以及设置在所述功能图形背向所述基底的一侧的平坦层;其中,
    所述平坦层包括第一部分和第二部分,其中所述第一部分在所述基底上的正投影与所述功能图形在所述基底上的正投影重合,所述第二部分在所述基底上的正投影与所述功能图形在所述基底上的正投影不重叠,在垂直于所述基底的方向上,所述第一部分远离所述基底的表面的高度与所述第二部分远离所述基底的表面的高度相同。
  2. 根据权利要求1所述的显示基板,还包括与所述功能图形绝缘的补偿功能图形;
    所述功能图形在所述基底上的正投影和所述补偿功能图形在所述基底上的正投影互补。
  3. 根据权利要求2所述的显示基板,其中,所述功能图形和所述补偿功能图形位于同一层,且所述补偿功能图形被所述平坦层的第二部分覆盖;在垂直于所述基底的方向上,所述补偿功能图形的厚度与所述功能图形的厚度相同。
  4. 根据权利要求2所述的显示基板,其中,所述补偿功能图形位于所述功能图形远离所述基底的一侧,所述平坦层位于所述补偿功能图形远离所述基底的一侧;
    所述显示基板还包括:
    在垂直于所述基底的方向上,位于所述补偿功能图形和所述功能图形之间的补偿平坦层;
    在垂直于所述基底的方向上,所述功能图形、所述补偿平坦层和所述平坦层的厚度之和与所述补偿平坦层、所述补偿功能图形和所述平坦层的厚度之和相等。
  5. 根据权利要求1所述的显示基板,还包括阳极层,所述阳极层位于所述平坦层背向所述基底的表面。
  6. 根据权利要求1所述的显示基板,其中,所述平坦层的第一部分远离 所述基底的表面和所述平坦层的第二部分远离所述基底的表面平齐,所述平坦层的第一部分远离所述基底的表面和所述平坦层的第二部分远离所述基底的表面构成一个平面。
  7. 根据权利要求6所述的显示基板,其中,所述平坦层的第一部分的厚度与所述功能图形的厚度之和等于所述平坦层的第二部分的厚度。
  8. 根据权利要求1所述的显示基板,其中,所述功能图形包括多个子功能图形,所述平坦层的第二部分在所述基底上的正投影位于相邻的所述子功能图形在所述基底上的正投影之间。
  9. 根据权利要求2所述的显示基板,其中,所述功能图形包括多个子功能图形,所述补偿功能图形在所述基底上的正投影位于相邻的所述子功能图形在所述基底上的正投影之间,且所述补偿功能图形在所述基底上的正投影与所述平坦层的第二部分在在所述基底上的正投影重合。
  10. 根据权利要求4所述的显示基板,其中,所述补充平坦层包括第一部分和第二部分,所述补充平坦层的第一部分在所述基底上的正投影与所述平坦层的第一部分在所述基底上的正投影重合,所述补充平坦层的第二部分在所述基底上的正投影与所述平坦层的第二部分在所述基底上的正投影重合。
  11. 根据权利要求10所述的显示基板,其中,在垂直于所述基底的方向上,所述平坦层的第一部分、所述补充平坦层的第一部分和所述功能图形的厚度之和等于所述平坦层的第二部分、所述补充平坦层的第二部分和所述补偿功能图形的厚度之和。
  12. 一种显示装置,包括如权利要求1所述的显示基板。
  13. 一种显示基板的制作方法,用于制作如权利要求1所述的显示基板,所述制作方法包括:
    提供基底;
    在所述基底上制作功能图形;
    在所述功能图形背向所述基底的一侧制作平坦层,所述平坦层包括第一部分和第二部分,其中所述第一部分在所述基底上的正投影与所述功能图形在所述基底上的正投影重合,所述第二部分在所述基底上的正投影与所述功能图形在所述基底上的正投影不重叠,在垂直于所述基底的方向上,所述第 一部分远离所述基底的表面的高度与所述第二部分远离所述基底的表面的高度相同。
  14. 根据权利要求13所述的显示基板的制作方法,其中,在所述基底上制作功能图形的步骤具体包括:
    制作功能图形和与所述功能图形绝缘的补偿功能图形,所述功能图形和所述补偿功能图形在所述基底上的正投影互补。
  15. 根据权利要求14所述的显示基板的制作方法,其中,所述制作所述功能图形和所述补偿功能图形的步骤具体包括:
    利用金属导电材料形成功能膜层;
    利用包括透光区域和遮光区域的第一掩膜板,对所述功能膜层图案化,形成所述功能图形;
    在所述功能图形背向所述基底的一侧,利用绝缘材料形成绝缘膜层;
    利用包括透光区域和遮光区域的第二掩膜板,对所述绝缘膜层图案化,形成所述补偿功能图形,所述功能图形和所述补偿功能图形位于同一层,且所述补偿功能图形被所述平坦层的第二部分覆盖;在垂直于所述基底的方向上,所述补偿功能图形的厚度与所述功能图形的厚度相同;
    在将所述第一掩膜板和所述第二掩膜板层叠设置在所述基底上时,所述第二掩膜板的透光区域在所述基底上的正投影与所述第一掩膜板的遮光区域在所述基底上的正投影重叠,所述第二掩膜板的遮光区域在所述基底上的正投影与所述第一掩膜板的透光区域在所述基底上的正投影重叠。
  16. 根据权利要求14所述的显示基板的制作方法,其中,所述制作所述功能图形和所述补偿功能图形的步骤具体包括:
    利用金属导电材料形成功能膜层;
    利用包括透光区域和遮光区域的第一掩膜板,对所述功能膜层图案化,形成所述功能图形;
    在所述功能图形背向所述基底的一侧形成补偿平坦层;
    利用所述金属导电材料在所述补偿平坦层背向所述基底的一侧形成补偿功能膜层;
    利用包括透光区域和遮光区域的第二掩膜板,对所述补偿功能膜层图案 化,形成所述补偿功能图形;
    在将所述第一掩膜板和所述第二掩膜板层叠设置在所述基底上时,所述第二掩膜板的透光区域在所述基底上的正投影与所述第一掩膜板的遮光区域在所述基底上的正投影重叠,所述第二掩膜板的遮光区域在所述基底上的正投影与所述第一掩膜板的透光区域在所述基底上的正投影重叠;
    所述在所述功能图形背向所述基底的一侧制作平坦层的步骤具体包括:
    在所述补偿功能图形背向所述基底的一侧制作所述平坦层,在垂直于所述基底的方向上,所述功能图形、所述补偿平坦层和所述平坦层的厚度之和与所述补偿平坦层、所述补偿功能图形和所述平坦层的厚度之和相等。
  17. 根据权利要求13所述的显示基板的制作方法,还包括:
    在所述平坦层背向所述基底的表面制作阳极层。
  18. 根据权利要求13所述的显示基板的制作方法,其中,所述制作所述平坦层的步骤具体包括:
    形成平坦材料薄膜,所述平坦材料薄膜包括覆盖所述功能图形的第一部分和未覆盖所述功能图形的第二部分,在垂直于所述基底的方向上,所述平坦材料薄膜的第一部分远离所述基底的表面的高度与所述平坦材料薄膜的第二部分远离所述基底的表面的高度相同;
    对所述平坦材料薄膜进行固化;
    确定在垂直于所述基底的方向上,所述平坦材料薄膜的第一部分和第二部分在固化后各自对应的收缩量之间的差值;
    根据所述平坦材料薄膜的第一部分和第二部分在固化后各自对应的收缩量之间的差值,制作目标掩膜板;所述目标掩膜板包括目标遮光区域和目标透光区域,通过所述目标掩膜板对固化后的所述平坦材料薄膜曝光,在垂直于所述基底的方向上所述目标透光区域对应的曝光深度等于所述差值;
    利用所述目标掩膜板对固化后的所述平坦材料薄膜进行曝光,形成平坦材料薄膜全保留区域和平坦材料薄膜半保留区域,其中所述平坦材料薄膜半保留区域对应所述平坦层覆盖所述功能图形的部分所在的区域,所述平坦材料薄膜完全保留区域对应除所述平坦层覆盖所述功能图形的部分所在的区域之外的其它区域;
    利用显影液,将位于所述平坦材料薄膜半保留区域的平坦材料薄膜部分去除,形成所述平坦层。
PCT/CN2020/085832 2019-04-24 2020-04-21 一种显示基板及其制作方法、显示装置 WO2020216208A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/982,370 US11522030B2 (en) 2019-04-24 2020-04-21 Display substrate and display device with compensation pattern and planarization layers, and method of forming the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910333265.6 2019-04-24
CN201910333265.6A CN110021654B (zh) 2019-04-24 2019-04-24 一种显示基板及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2020216208A1 true WO2020216208A1 (zh) 2020-10-29

Family

ID=67192283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085832 WO2020216208A1 (zh) 2019-04-24 2020-04-21 一种显示基板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US11522030B2 (zh)
CN (1) CN110021654B (zh)
WO (1) WO2020216208A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110021654B (zh) * 2019-04-24 2021-11-09 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN110600520A (zh) * 2019-09-19 2019-12-20 昆山工研院新型平板显示技术中心有限公司 一种显示面板及显示装置
CN110610980B (zh) * 2019-10-23 2022-06-03 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN113348558A (zh) * 2019-11-21 2021-09-03 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN111029387A (zh) * 2019-12-20 2020-04-17 京东方科技集团股份有限公司 一种oled基板的制作方法、基板、显示装置和掩模板
US11950466B2 (en) * 2020-08-31 2024-04-02 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate, method of manufacturing the same, and display apparatus
CN114981876A (zh) 2020-12-25 2022-08-30 京东方科技集团股份有限公司 阵列基板和显示设备
CN116830184A (zh) * 2022-01-10 2023-09-29 京东方科技集团股份有限公司 显示基板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100019996A1 (en) * 2008-07-24 2010-01-28 Chun-Gi You Display substrate and method of manufacturing the same
CN103745985A (zh) * 2013-12-27 2014-04-23 京东方科技集团股份有限公司 一种有源矩阵有机发光二极管显示基板、显示装置
US20150001492A1 (en) * 2013-06-26 2015-01-01 Samsung Display Co., Ltd. Thin-film transistor substrate, related light-emitting apparatus, and related manufacturing method
CN106920804A (zh) * 2017-04-28 2017-07-04 厦门天马微电子有限公司 一种阵列基板、其驱动方法、显示面板及显示装置
CN108695370A (zh) * 2018-05-21 2018-10-23 京东方科技集团股份有限公司 Oled基板及制作方法、显示装置
CN110021654A (zh) * 2019-04-24 2019-07-16 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102136275B1 (ko) * 2013-07-22 2020-07-22 삼성디스플레이 주식회사 유기 발광 소자 및 이의 제조 방법
KR102300025B1 (ko) * 2014-10-08 2021-09-09 삼성디스플레이 주식회사 디스플레이 장치
CN104319283B (zh) * 2014-10-27 2016-03-02 京东方科技集团股份有限公司 一种有机电致发光显示器件、其驱动方法及显示装置
CN106298865B (zh) * 2016-11-16 2019-10-18 京东方科技集团股份有限公司 像素排列结构、有机电致发光器件、显示装置、掩模板
CN206564254U (zh) * 2017-03-07 2017-10-17 京东方科技集团股份有限公司 一种oled阵列基板和显示装置
CN106816558B (zh) * 2017-04-14 2019-09-03 京东方科技集团股份有限公司 顶发射有机电致发光显示面板、其制作方法及显示装置
KR102404266B1 (ko) * 2017-08-31 2022-05-30 엘지디스플레이 주식회사 전계발광 표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100019996A1 (en) * 2008-07-24 2010-01-28 Chun-Gi You Display substrate and method of manufacturing the same
US20150001492A1 (en) * 2013-06-26 2015-01-01 Samsung Display Co., Ltd. Thin-film transistor substrate, related light-emitting apparatus, and related manufacturing method
CN103745985A (zh) * 2013-12-27 2014-04-23 京东方科技集团股份有限公司 一种有源矩阵有机发光二极管显示基板、显示装置
CN106920804A (zh) * 2017-04-28 2017-07-04 厦门天马微电子有限公司 一种阵列基板、其驱动方法、显示面板及显示装置
CN108695370A (zh) * 2018-05-21 2018-10-23 京东方科技集团股份有限公司 Oled基板及制作方法、显示装置
CN110021654A (zh) * 2019-04-24 2019-07-16 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置

Also Published As

Publication number Publication date
US20210159292A1 (en) 2021-05-27
US11522030B2 (en) 2022-12-06
CN110021654A (zh) 2019-07-16
CN110021654B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2020216208A1 (zh) 一种显示基板及其制作方法、显示装置
US11088224B2 (en) Display substrate, method for manufacturing the same and display device
WO2019184769A1 (zh) 液晶显示面板、其制作方法及显示装置
US20220158137A1 (en) Organic light-emitting display substrate, method for manufacturing same, display panel, and display device
US7742131B2 (en) Touch panel, color filter substrate and fabricating method thereof
WO2016107039A1 (zh) 阵列基板及其制作方法及显示装置
WO2016141709A1 (zh) 阵列基板及其制作方法、显示装置
WO2019196840A1 (zh) 阵列基板及其制作方法、显示面板和显示装置
WO2018209977A1 (zh) 阵列基板及其制造方法、显示面板和显示装置
TWI579750B (zh) 觸控面板與其製作方法
CN109786434B (zh) 阵列基板、其制备方法、显示面板、装置和像素驱动电路
CN102566148B (zh) 液晶显示面板及其制造方法
WO2020186989A1 (zh) 基板及其制作方法、触控显示装置
CN111785760B (zh) 一种显示基板及其制备方法、显示装置
US20220293692A1 (en) Array substrate, method for manufacturing the same, display panel and display device
WO2017202167A1 (zh) 阵列基板及其制作方法、显示面板和显示装置
US11133488B2 (en) Display substrate, display apparatus, and method of fabricating display substrate having enclosure ring in buffer area
WO2021218413A1 (zh) 掩膜板、显示基板及其制作方法、显示装置
WO2021035534A1 (zh) 显示基板及其制作方法、显示装置
CN110797380A (zh) 显示基板及其制作方法、显示装置
CN203707135U (zh) 一种阵列基板及显示装置
US11622490B2 (en) Method for manufacturing organic light-emitting diode display substrate
US11818920B2 (en) Display panel and manufacturing method thereof, display device
CN111509140B (zh) 显示用基板及其制备方法、显示装置
WO2022226875A1 (zh) 显示基板及其制作方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794628

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20794628

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20794628

Country of ref document: EP

Kind code of ref document: A1