WO2022252123A1 - 一种投影装置、投影方法、抬头显示系统和车辆 - Google Patents

一种投影装置、投影方法、抬头显示系统和车辆 Download PDF

Info

Publication number
WO2022252123A1
WO2022252123A1 PCT/CN2021/097729 CN2021097729W WO2022252123A1 WO 2022252123 A1 WO2022252123 A1 WO 2022252123A1 CN 2021097729 W CN2021097729 W CN 2021097729W WO 2022252123 A1 WO2022252123 A1 WO 2022252123A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
light
diffusion sheet
scanning
projection
Prior art date
Application number
PCT/CN2021/097729
Other languages
English (en)
French (fr)
Inventor
林君翰
徐彧
于海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/097729 priority Critical patent/WO2022252123A1/zh
Priority to CN202180001764.0A priority patent/CN114365481B/zh
Publication of WO2022252123A1 publication Critical patent/WO2022252123A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the invention relates to the field of smart cars, in particular to a projection device, a projection method, a head-up display system and a vehicle.
  • the image generation module (Picture Generating Unit, PGU) can be applied in different devices such as virtual reality (Virtual Reality, VR), augmented reality (Augmented Reality, AR) equipment, and head-up display (Head-up Display, HUD). Projects an image that can be observed by the human eye.
  • virtual reality Virtual Reality
  • AR Augmented Reality
  • HUD Head-up Display
  • Existing PGU schemes include: 1. Thin film transistor liquid crystal display (Thin film transistor liquid crystal display, TFT LCD) is irradiated with a white light beam emitted by a light-emitting diode (LED) to realize projection; White light beam, the white light beam passes through the high-speed rotating red green blue (RGB) three-color lens to form RGB three-color light, and the RGB three-color light is reflected by the digital micromirror device (Digital Micromirror Device, DMD) and then projected through the lens; 3. Laser beam scanning projection (Laser Beam Scanning, LBS) formed by RGB laser, micro-electromechanical system (Micro-electromechanical System, MEMS) and diffuser (Diffuser).
  • TFT LCD Thin film transistor liquid crystal display
  • LED light-emitting diode
  • LBS uses laser as the display light source, and drives the vibrating mirror to rotate through MEMS After reflection, the laser light is scanned back and forth on the diffusion sheet to form an image.
  • LBS has the advantages of low power, high brightness, high contrast, and large field of view, and can be applied to AR-HUD technology.
  • the PGU in the form of LBS requires the laser to scan back and forth on the diffuser sheet line by line to form an image. Due to the volatility of light, it will cause interference between the light waves irradiated on two adjacent rows on the diffusion sheet. When the peaks and troughs meet, they will superimpose each other to form a stable distribution of strong (bright) and weak (dark). The brightness of the superimposed area of peaks and peaks will be enhanced, and the brightness of the superimposed area of troughs and troughs will be reduced, which will cause bright and dark stripes in the image formed by scanning, which affects the quality of the image.
  • the invention provides a projection device, a projection method, a head-up display system and a vehicle, which can reduce the influence of interference fringes on the projection image quality and improve the imaging quality.
  • the first aspect of the present application provides a projection device, including: a light source module, the light source module is used to generate the first light beam and the second light beam; a diffusion sheet, the diffusion sheet contains a plurality of micro-lenses; The beam and the second beam are projected onto the diffuser, and the first beam and the second beam are scanned on the diffuser; wherein, the first beam and the second beam form a first distance on the diffuser, and the first beam and the second beam are projected simultaneously to the same microlens.
  • double-line scanning can be realized by scanning the diffusion sheet with the first light beam and the second light beam at the same time, thereby increasing the scanning density. Since the intensity distribution formed by the interference phenomenon will change with the distance between the two beams, the first beam and the second beam keep the first distance on the diffuser for scanning, which can make the intensity of the light waves of the two beams interfere The weak distribution can be kept consistent, which makes the interference fringes more uniform and improves the imaging quality.
  • the simultaneous scanning of the first light beam and the second light beam is used to realize double-line scanning, without replacing MEMS with higher performance, thereby reducing the cost of double-line scanning. At the same time, it is also possible to avoid the limitation of the MEMS on the improvement of the resolution of the image.
  • the first light beam and the second light beam irradiate the diffusion sheet at an acute angle. Due to the small size of the microlenses, the first distance can be adjusted by adjusting the angle between the first light beam and the second light beam, so that the first distance is small enough to be projected on the same microlens at the same time. At the same time, by adjusting the first distance, the intensity distribution of light wave interference can also be adjusted. In this way, the interference fringes that appear during double-line scanning can be adjusted.
  • the light source module includes: a light combination unit configured to combine red, green, and blue laser beams into one combined laser beam.
  • a synthetic laser beam of any color can be generated by adjusting the red, green, and blue three-color laser beams.
  • the light source module includes: a beam splitter, configured to form the first light beam and the second light beam by splitting light.
  • a synthetic laser beam can be divided into two beams through the beam splitter, so that the colors of the two beams can be kept consistent, and the imaging effect is prevented from being out of sync between the colors of the beams.
  • light intensities of the first light beam and the second light beam are equal.
  • the brightness of the two light beams can be made the same, so that the light waves of two adjacent lines of light beams can be superimposed more uniformly, further reducing the contrast between bright and dark fringes, thereby improving the imaging quality.
  • the light source module includes: a first light-combining unit and a second light-combining unit, and the first light-combining unit and the second light-combining unit are respectively used to combine the three colors of red, green and blue
  • the laser beam synthesizes the first beam and the second beam. Therefore, the first light beam and the second light beam can be generated respectively by arranging two light combining units, and the scanning and imaging of the first and second light beams generated separately can cause superposition of the light beams to improve the brightness of the scanning and imaging. Thus, the imaging effect is improved.
  • the first light beam and the second light beam can also be adjusted independently, so that the first light beam and the second light beam can be adjusted separately according to needs to improve the imaging quality.
  • the light source module further includes: a reflector, which reflects the first light beam and/or the second light beam, so that the first light beam and the second light beam irradiate the diffusion sheet at an acute angle. Therefore, the angle between the light beams can be adjusted by adjusting the reflector, and then the first distance can be adjusted, so as to adjust the light wave interference between two adjacent lines of light beams, so as to achieve the best imaging quality.
  • a plurality of microlenses are arranged in a regular arrangement on the diffusion sheet; the light beam scans each of the plurality of microlenses once along a scanning track in one scanning period. Therefore, it is convenient for the first light beam and the second light beam to scan the plurality of microlenses sequentially, so as to form a complete image.
  • the first light beam and the second light beam coincide in the column direction of the irradiation area on the diffusion sheet.
  • the first light beam and the second light beam can be irradiated onto the same microlens at the same time during scanning, thereby avoiding the formation of pixels of different colors on the same microlens and affecting the imaging quality.
  • the first pitch is 0.3-0.7 times the size of the microlens in the column direction.
  • the first distance is less than 0.3 times the size of the microlens in the column direction, thereby causing the first light beam and the second light beam on the same row of microlenses to be too close, and the distance between the first light beam and the second light beam on the adjacent line of microlenses to be too close. Either the first beam or the second beam is too far away.
  • the first distance is greater than 0.7 times the size of the microlens in the column direction, thereby causing the distance between the first light beam and the second light beam on the same row of microlenses to be too far away from the first light beam or the second light beam on the adjacent line of microlenses.
  • the second beam is too close.
  • the distance between the first light beam and the second light beam on each row of microlenses can be made similar.
  • the complementarity between the dark fringe at the trough and the adjacent bright fringe at the peak can be made more uniform, so that the width and contrast of the bright and dark fringes are more uniform, thereby improving the imaging quality.
  • the first pitch is 0.5 times the size of the microlens in the column direction.
  • the distance between the first light beam and the second light beam on each row of microlenses can be made the same.
  • the complementarity between the dark fringe at the trough and the adjacent bright fringe at the peak can be made more uniform, so that the width and contrast of the bright and dark fringes are more uniform, thereby improving the imaging quality.
  • the light source module is further configured to generate an Nth light beam, where N is a positive integer greater than or equal to 3.
  • N is a positive integer greater than or equal to 3.
  • the first beam, the second beam and the Nth beam can be scanned on the diffusion sheet at the same time, and the first beam, the second beam and the Nth beam can be irradiated on a microlens at the same time, so that multi-line scanning can be realized so that when the light waves of two adjacent rows of light beams are superimposed, the complementarity between the dark stripes at the trough and the adjacent bright stripes at the crest is more sufficient, so that the bright and dark stripes can be further lightened and thinned, Reduces the contrast between light and dark stripes, thereby improving image quality.
  • the number of pixels in scanning imaging can be increased by increasing the number of light beams, thereby improving the resolution of the image.
  • the first distance between two adjacent light beams is equal to 3/5N ⁇ 7/5N times the size of the microlens.
  • the plurality of light beams can be evenly distributed, thereby reducing the inconsistency of the interference fringes of two adjacent lines of light waves caused by uneven distribution, and improving the imaging quality.
  • the second aspect of the present application provides a projection method.
  • the projection method is applied to a projection device, including: generating a first light beam and a second light beam; projecting the first light beam and the second light beam to a diffusion sheet containing a plurality of microlenses, and making the The first light beam and the second light beam scan on the diffusion sheet; the first light beam and the second light beam form a first distance on the diffusion sheet, and the first light beam and the second light beam project onto the same microlens at the same time.
  • the first light beam and the second light beam irradiate the diffusion sheet at an acute angle.
  • the first light beam and the second light beam are formed by using a beam splitter.
  • light intensities of the first light beam and the second light beam are equal.
  • the first light combining unit and the second light combining unit are respectively used to combine red, green and blue three-color laser beams into a first light beam and a second light beam.
  • the first light beam and/or the second light beam are reflected by a mirror, so that the first light beam and the second light beam irradiate the diffusion sheet at an acute angle.
  • a plurality of microlenses are arranged in a regular arrangement on the diffusion sheet; the light beam scans each of the plurality of microlenses once along a scanning track in one scanning period.
  • the first light beam and the second light beam coincide in the column direction of the irradiation area on the diffusion sheet.
  • the first pitch is 0.3-0.7 times the size of the microlens in the column direction.
  • the first pitch is 0.5 times the size of the microlens in the column direction.
  • the light source module is further configured to generate the Nth light beam.
  • the first distance between two adjacent light beams is equal to 3/5N-7/5N times the size of the microlens.
  • the third aspect of the present application provides a controller, the controller is used to control any possible implementation form of the projection device in the first aspect, the controller controls the first light beam and the second light beam to form a first distance between the irradiation areas on the diffusion sheet, The first distance is set so that the first light beam and the second light beam are simultaneously projected onto the same microlens.
  • a fourth aspect of the present application provides a head-up display system, including the first aspect and the projection device in any possible implementation manner of the first aspect.
  • the fourth aspect further includes: an optical element, and after the projection device projects an image onto the optical element, the image enters human eyes.
  • the driver can project images into human eyes through refraction and/or reflection through optical elements such as windshields and reflective films.
  • the virtual image may include information required for driving the vehicle, so that the driver can understand the information required for driving the vehicle while looking up. Avoid looking down at the instrument panel or the central control screen, which may cause driving risks due to failure to take into account the road conditions.
  • the fifth aspect of the present application provides a vehicle, including: the first aspect of the present application embodiment and the projection device in any possible implementation of the first aspect; or, the fourth aspect of the present application embodiment and any one of the fourth aspect A head-up display system in one possible implementation.
  • the sixth aspect of the present application provides a computing device, including at least one processor and at least one memory, the memory stores program instructions, and when the program instructions are executed by at least one processor, at least one processor executes the second aspect of the embodiment of the present application And the projection method in any possible implementation manner of the second aspect.
  • the seventh aspect of the present application provides a computer-readable storage medium on which program instructions are stored.
  • the program instructions are executed by a computer
  • the computer executes the second aspect of the embodiment of the present application and any possible implementation of the second aspect. projection method.
  • Fig. 1 is a scanning schematic diagram when a PGU in the form of LBS performs scanning imaging
  • Fig. 2 is a schematic diagram of a light beam scanning on a diffusion sheet to form an image
  • FIG. 3 is a schematic diagram of scanning when a PGU performs dual-line scanning imaging
  • Fig. 4 is a schematic diagram of yet another light beam scanning on a diffusion sheet to form an image
  • Fig. 5a is a schematic diagram of an application scenario involved in a projection device provided by an embodiment of the present application.
  • Fig. 5b is a schematic diagram of another perspective of an application scene involved in a projection device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a projection device projecting an image into the driver's eyes according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of scanning when a projection device provided in an embodiment of the present application performs scanning imaging
  • Fig. 8 is a schematic diagram of a scanning of a first light beam and a second light beam on a diffusion sheet provided by an embodiment of the present application;
  • FIG. 9 is a schematic diagram of an arrangement of microlenses on a diffusion sheet provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of scanning when a projection device provided in an embodiment of the present application performs scanning imaging
  • FIG. 11 is a schematic diagram of scanning when a projection device provided in an embodiment of the present application performs scanning imaging
  • FIG. 12 is a flowchart of a projection method provided by an embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of a computing device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of scanning when a PGU in the form of LBS performs scanning imaging.
  • the light beam (the light beam includes the meaning of light, light beam, etc.) S is reflected by the vibrating mirror 210 onto the diffusion sheet 300, and the vibrating mirror 210 swings to make the light beam S travel back and forth along the scanning track M on the diffusion sheet 300. status scan.
  • FIG. 2 is a schematic diagram of a light beam scanning on a diffusion sheet to form an image, which shows that the light beam S in FIG. 1 scans on the diffusion sheet 300 to form an image.
  • the left side of FIG. 2 is a schematic diagram of the side structure of the diffuser 300 .
  • the diffuser 300 is provided with several microlenses 310 , and a light beam S irradiated on one of the microlenses 310 can form a pixel.
  • the light beam S scans each microlens 310 once in a scanning period along the scanning track M, and finally a complete image as shown on the right side of FIG. 2 is formed by several pixels.
  • Fig. 3 is a schematic diagram of scanning when a PGU performs double-line scanning imaging
  • Fig. 4 is a schematic diagram of another image formed by scanning the light beam S on the diffusion sheet 300, which shows that the light beam S in Fig. 3 is scanned on the diffusion sheet 300 Scan to form an image.
  • FIG. 3 and FIG. 4 in order to increase the scanning density of the light beam S and realize double-line scanning, it is necessary for the light beam S to scan a microlens 310 twice in one scanning period. As shown in the waveform diagram in the middle of FIG.
  • the light waves of two adjacent rows of light beams S will be superimposed, and the dark fringe at the trough will be complementary to the adjacent bright fringe at the crest.
  • the bright and dark stripes can be made lighter and thinner, and the contrast between the bright and dark stripes can be reduced, thereby improving the quality of the formed image.
  • the oscillating speed of the vibrating mirror 210 is limited by its performance and can only be adjusted within a certain range, the number of times the light beam S scans the microlens 310 in one scanning cycle is limited, thereby limiting the number of pixels of the obtained image , so that the resolution of the image can no longer be improved; in addition, as shown in Figure 3, the distribution of the middle area of the scanning track M is not uniform compared with the areas on both sides, that is, when the beam scans along the scanning track M, the beam is between two adjacent lines. The distance between them is not fixed. As a result, the interference fringes of the light beam S in the middle area and the two side areas will be inconsistent, which will further affect the quality of the formed image.
  • the embodiment of the present application provides a projection device 10, which can get rid of the limitation of the resolution of the vibrating mirror 210 when realizing double-line scanning, and can also keep the interference fringes in the middle area of the image consistent with the areas on both sides. Reduce the influence of interference fringes on image quality, thereby improving the quality of formed images.
  • Fig. 5a is a schematic diagram of an application scene involved in a projection device 10 provided in an embodiment of the present application
  • Fig. 5b is a schematic diagram of another perspective of an application scene involved in a projection device 10 provided in an embodiment of the present application
  • Fig. 6 It shows a principle diagram of projecting an image into the eyes of a driver by a projection device 10 provided in an embodiment of the present application, which shows that the projection device 10 in Fig. 5a and Fig. Able to see virtual images.
  • the application scenario is that the driver drives a vehicle 1 with a HUD
  • the HUD can have a projection device 10 and an optical element 20
  • the projection device 10 can project images
  • the optical element 20 can include The front windshield of the vehicle 1, or a reflective film attached to the front windshield, or separately arranged on the screen in the cockpit of the car.
  • the optical element 20 can reflect and/or refract the image projected by the projection device 10 and project it into the eyes of the driver.
  • the driver looks out of the car through the front windshield, he can see a virtual image with a certain depth of field (that is, the distance of the clear image presented in the range before and after the image focus).
  • the content of the virtual image may include road indication information, engine speed information of the vehicle 1, battery information, mileage information, speed information, navigation information, audio-visual entertainment system information, etc., so that the driver does not need to shift his sight when driving the vehicle 1.
  • Information necessary to drive the vehicle 1 can be known. Avoid driving risks caused by the driver not being able to take into account the road conditions, such as looking down at the instrument panel or the information on the central control screen when the driver is driving the vehicle 1 .
  • the vehicle 1 in the embodiment of the present application is illustrated by taking an automobile as an example, which should not be regarded as a limitation to the embodiment of the present application.
  • the vehicle 1 may be a traditional fuel vehicle, or a new energy vehicle such as a pure electric vehicle or a hybrid vehicle.
  • the vehicle 1 can be any one of different types of automobiles such as a car, a truck, a passenger car, and a sport utility vehicle (SUV), or it can also be a land vehicle carrying people or goods such as a tricycle, motorcycle, or train. transport device.
  • the projection device of the present application may also be applied to other types of vehicles such as airplanes and ships.
  • FIG. 7 is a schematic diagram of a scanning imaging of a projection device 10 provided in an embodiment of the present application
  • FIG. 8 is a scanning diagram of a first light beam S1 and a second light beam S2 on a diffuser 300 provided in an embodiment of the present application.
  • the projection device 10 includes: a light source module 100 for providing the first light beam S1 and the second light beam S2, and a diffusion sheet 300 including a plurality of microlenses for combining the first light beam S1 and the second light beam S2.
  • the two light beams S2 are projected to the projection module 200 for scanning by the diffuser 300 .
  • the first distance d between the irradiation areas of the first light beam S1 and the second light beam S2 on the diffusion sheet 300 (that is, the distance between the center points of the first light beam S1 and the second light beam S2 on the diffusion sheet 300 ), the first The distance d is set so that the first light beam and the second light beam are projected onto the same microlens 310 at the same time. In this way, double-line scanning can be realized.
  • the first beam and the second beam keep the first distance d when scanning on the diffusion sheet, the light wave interference between the middle area of the image formed by scanning and the areas on both sides can be kept consistent, and the interference can be made The stripes are more uniform and the imaging quality is improved.
  • the light source module 100 includes a light combination unit 110 , a beam splitter 120 and a reflection mirror 130 .
  • the light combination unit 110 includes three lasers 111r, 111g, 111b arranged side by side, and the lasers 111r, 111g, 111b may be laser diodes or other laser generating devices.
  • the three lasers 111r, 111g, and 111b can emit laser beams of red, blue, and green light wavelengths respectively, and collimating lenses 112r, 112g, and 112b are respectively arranged on the optical paths of the red, blue, and green laser beams to collimate
  • the lenses 112r, 112g, and 112b can respectively collimate the red, blue, and green laser beams and output the beams.
  • Three dichroic mirrors 113r, 113g, 113b are arranged on the optical path of the red, blue, and green laser beams collimated by collimating lenses 112r, 112g, 112b, and these three dichroic mirrors 113r, 113g, 113b are along the They are arranged side by side in a direction perpendicular to the direction in which the red, blue and green laser beams are emitted from the collimator lenses 112r, 112g and 112b.
  • the dichroic mirrors 113r, 113g, and 113b have characteristics of being able to completely reflect light of a certain wavelength and completely transmit light of other wavelengths.
  • total reflection and total transmission are not limited to 100% reflection and transmission, but can be understood as being capable of reflecting and refracting most of, for example, 95% or more light.
  • the three dichroic mirrors 113r, 113g, 113b are set to be able to reflect the laser beams of corresponding colors and transmit the laser beams of other colors.
  • the dichroic mirror 113b reflects blue laser beams and transmits laser beams of other colors.
  • the angles of the three dichroic mirrors 113r, 113g, and 113b can be set so that the red, blue, and green laser beams are reflected on the dichroic mirrors 113r, 113g, and 113b to overlap to form a synthetic laser beam.
  • three dichroic mirrors 113r, 113g, 113b are set to form an angle of 45° with the red, blue, and green laser beams emitted from collimating lenses 112r, 112g, and 112b respectively, which can make red, blue, and green
  • the angle between the incident direction and the outgoing direction of the three-color laser beams on the dichroic mirrors 113r, 113g, and 113b is 90°, so that the red, blue, and green laser beams can be reflected and overlapped to form a composite laser beam.
  • the three lasers 111r, 111g, and 111b can emit red, blue, and green laser beams with different brightnesses, thereby controlling the red, blue, and green laser beams.
  • the three lasers 111r, 111g, and 111b can emit red, blue, and green laser beams with different brightnesses, thereby controlling the red, blue, and green laser beams.
  • the three lasers 111r, 111g, and 111b can emit red, blue, and green laser beams with different brightnesses, thereby controlling the red, blue, and green laser beams.
  • a synthetic laser beam of any color can be controlled by controlling the three lasers 111r, 111g, and 111b.
  • a spectroscope 120 is arranged on the optical path of the synthetic laser beam. After the synthetic laser beam irradiates the spectroscope 120, the synthetic laser beam with a part of the light intensity (luminous intensity of the light source in a given direction) is transmitted on the spectroscope 120 to form a first One light beam S1, another part of the synthetic laser beam with light intensity is reflected to form a second light beam S2. Since the first light beam S1 and the second light beam S2 are formed by the same synthetic laser beam, the colors of the first light beam S1 and the second light beam S2 can be consistent.
  • a reflector 130 is arranged on the optical path of the second light beam S2, and after being reflected by the reflector 130, the second light beam S2 and the first light beam S1 are directed to the vibrating mirror 210 at an angle ⁇ , and the angle ⁇ is the first light beam S1 and the second light beam S2
  • the angle ⁇ can be set as an acute angle, so that the first light beam S1 and the second light beam S2 are irradiated on the same position on the vibrating mirror 210 and then reflected.
  • the projection module 200 includes a vibrating mirror 210 and MEMS (not shown in FIG. 7 ).
  • the vibrating mirror 210 is in the shape of a plate.
  • the first light beam S1 and the second light beam S2 emitted by the light source module 100 are emitted to the vibrating mirror 210 at an angle of ⁇ and then reflected to the diffuser 300 .
  • the vibrating mirror 210 is controlled by MEMS, so that the vibrating mirror 210 can swing on two different axes, for example, on two mutually perpendicular axes.
  • the two shafts swing at different speeds and directions, the fast shaft is called the fast shaft, and the slow shaft is called the slow shaft.
  • the fast axis swing makes the reflected first light beam S1 and the second light beam S2 perform "row scanning” on the diffuser 300
  • the slow axis swing makes the reflected first light beam S1 and the second light beam S2 perform "column scanning” on the lens. ", that is, after the "row scanning" of one row is completed, the first beam S1 and the second beam S2 can enter the next row, so that the first beam S1 and the second beam S2 can continue to "row scan" in the next row.
  • the fast axis and the slow axis vibrate at the first speed and the second speed respectively at the same time, such as at a constant speed, so that "row scanning" and “column scanning” are performed simultaneously, so that the first light beam S1 and the second light beam S2 come on the diffusion sheet 300
  • Linear scanning is performed to form the first scanning track M1 and the second scanning track M2 respectively.
  • the first speed is greater than the second speed
  • the slow axis completes one swing
  • the fast axis completes several swings, that is, every time a "column scan” is completed, several "row scans" are scanned once for all rows, so That is to complete a scan cycle.
  • “Row” and “column” can be “row” direction horizontally and “column” direction vertically; they can also be “column” direction horizontally and “row” direction vertically; or other “row” that can go back and forth " and “column” scan in both directions.
  • FIG. 9 is a schematic diagram of an arrangement of microlenses 31 on a diffusion sheet 300 according to an embodiment of the present application, which shows a possible arrangement of microlenses 310 in FIG. 8 .
  • the surface of the diffuser 300 has several regularly arranged microlenses 310, and the arrangement of the microlenses 310 can be arranged in a rectangular array as shown in (a) in Figure 9, that is, the microlenses 310 are arranged in a row Arranged in two directions, the row direction and the column direction, and the row direction and the column direction are perpendicular to each other. Or it can be arranged in a rhombus array as shown in (b) in FIG.
  • the microlenses 310 are staggered by a certain distance from the microlenses 310 corresponding to the upper row and the lower row. Or other suitable regular arrangements.
  • the microlens 310 may be a circular, polygonal or other convex or concave lens.
  • the first light beam S1 and the second light beam S2 scan along the first scanning track M1 and the second scanning track M2 on the diffusion sheet 300, they will perform "row scanning” along the row direction of the microlenses 310 arranged in a rectangular array, for example, A "column scan” is performed in the column direction.
  • the first light beam S1 and the second light beam S2 will perform "row scanning” along a row of microlenses 310 , and after completing one "row scanning", they will enter the adjacent row of microlenses 310 for "row scanning" of the next row.
  • the size of the microlens 310 is greater than the size of the irradiation area formed by the first light beam S1 and the second light beam S2 irradiating on the diffusion sheet 300.
  • the microlens 310 can Control the light to diffuse according to a predetermined angle, and change the propagation direction of the light path.
  • a first light beam S1 and a second light beam S2 pass through a microlens 310 and project outward to form a pixel respectively.
  • the first light beam S1 and the second light beam S2 follow the first scanning track M1 and the second scanning track M2 Scanning completes a scanning cycle, and an image composed of several pixels can be formed.
  • the first light beam S1 and the second light beam S2 scan on the diffusion sheet 300 at the same time, they can simultaneously scan the microlenses 310 in the same row, thereby realizing double-row scanning.
  • the number of pixels of the image formed by the double-line scanning is twice that of the single-line scanning, thereby improving the resolution of the image and further improving the imaging quality.
  • the first beam S1 and the second beam S2 are simultaneously scanned to realize double-line scanning, the first beam S1 and the second beam S2 always maintain a first distance d, so that the first scanning track M1 and the second scanning track M2 is always in a parallel state, so that the density between the center position and the two side positions of the first scanning track M1 and the second scanning track M2 can be made more uniform, thereby making the distribution of interference fringes generated when light waves interfere more uniform , which improves the image quality.
  • the distance in the column direction between the central point of the irradiation area where the first light beam S1 and the second light beam S2 are projected onto the diffusion sheet 300 is the first distance d, that is, the first light beam S1 and the second light beam S2 are at
  • the offset distance between the first scanning track M1 and the scanning track M2 formed by scanning on the diffusion sheet 300 in the column direction is the first distance d.
  • the first distance d between the centers of the first light beam S1 and the second light beam S2 projected onto the diffusion sheet 300 is smaller than the dimension D of the microlens 310 in the column direction.
  • the first light beam S1 and the second light beam S2 can be irradiated on the same row of microlenses 310 at the same time when performing row scanning, avoiding the influence of generating pixels on the adjacent row of microlenses 310, thereby improving image quality.
  • the gap is considered to be contained within the dimension D of the microlens 310 in the column direction.
  • the distance between the point where the vibrating mirror 210 reflects the first light beam S1 and the second light beam S2 and the diffusion sheet 300 is L
  • the first light beam S1 or the second light beam S2 scans on the diffusion sheet 300
  • the diffusion sheet 300 is approximately vertical
  • the angle ⁇ between the first light beam S1 and the second light beam S2 the angle ⁇ between the first light beam S1 and the second light beam S2 ⁇ arctan(D/L), so that the first light beam S1 and the second light beam S2
  • the first distance d between the center points of the two light beams S2 projected onto the diffuser 300 is smaller than the dimension D of the microlens 310 in the column direction.
  • the distance between the vibrating mirror 210 and the diffusion sheet 300 is L ⁇ D/tan ⁇ , so that the first light beam S1 and the second light beam S2 are projected onto
  • the first distance d between the center points on the diffusion sheet 300 is smaller than the dimension D of the microlenses 310 in the column direction.
  • the first distance d between the center points of the first light beam S1 and the second light beam S2 projected onto the diffusion sheet 300 can be set to be 0.3-0.7 times the size D of the microlens 310 in the column direction.
  • the distance d between the first light beam S1 and the second light beam S2 on the same row of microlenses 310 is too close because the first distance d is less than 0.3D, which is different from the first light beam S1 or the second light beam S2 on the adjacent row of microlenses 310.
  • the distance of the second light beam S2 is too far.
  • the first distance d is greater than 0.7D, thereby causing the distance between the first light beam S1 and the second light beam S2 on the same row of microlenses 310 to be too far away from that of the first light beam S1 or the second light beam S1 on an adjacent row of microlenses 310. Beam S2 is too close. Setting the first distance d to 0.3D ⁇ 0.7D can make the distance between the first light beam S1 and the second light beam S2 on each row of microlenses approximately equal.
  • the distribution of the scanning track M1 and the scanning track M2 on the diffusion sheet 300 can be made more uniform, and when the light waves are superimposed, the complementarity between the dark lines at the trough and the adjacent bright lines at the peak can be made more uniform. Therefore, the width and contrast of the bright and dark fringes are more uniform, thereby reducing the influence of the inconsistency of the interference fringes caused by the different densities of the scanning tracks on the imaging effect.
  • the first distance d between the center points of the first light beam S1 and the second light beam S2 projected onto the diffusion sheet 300 can be set to be 0.5 times the size D of the microlens 310 in the column direction.
  • the distance between the first light beam S1 and the second light beam S2 on each row of microlenses can be made equal.
  • the distribution of the scanning track M1 and the scanning track M2 on the diffusion sheet 300 can be made more uniform, and when the light waves are superimposed, the complementarity between the dark lines at the trough and the adjacent bright lines at the peak can be made more uniform. Therefore, the width and contrast of the bright and dark fringes are more uniform, thereby reducing the influence of the inconsistency of the interference fringes caused by the different densities of the scanning tracks on the imaging effect.
  • the central points of the first light beam S1 and the second light beam S2 projected onto the diffusion sheet 300 coincide in the column direction of the microlenses 310 . This prevents the first light beam S1 and the second light beam S2 from being irradiated on different microlenses 310 during "line scanning", thereby preventing pixel misalignment caused by the first light beam S1 and the second light beam S2 irradiating the microlens 310 from affecting image quality.
  • the light intensity of the first light beam S1 and the second light beam S2 are equal. It can be understood that the first light beam S1 and the second light beam S2 each contain about 50% of the light intensity of the combined laser beam, for example, the first light beam S1 and the second light beam S2 each contain about 48% and 52% of the light intensity of the combined laser beam, or other similar values. Alternatively, the loss of the combined laser beam during projection and reflection can also be considered, and both the first light beam S1 and the second light beam S2 only contain less than 50% of the light intensity of the combined laser beam.
  • the light intensities of the first light beam S1 and the second light beam S2 are equal, so that the brightness of the first light beam S1 and the second light beam S2 are the same, so that the first scanning track M1 and the second scanning track M1 on the same row of microlenses on the diffusion sheet 300
  • the brightness of the light between M2 is the same, which makes the complementarity between the bright and dark stripes more uniform, helps to make the bright and dark stripes lighter and thinner, and reduces the contrast between the bright and dark stripes, thereby improving the image quality.
  • the number of spectroscopic mirrors 120 can also be increased to generate the third, fourth, and Nth light beams, so that multiple light beams can be irradiated on a microlens 310 at the same time to realize multi-line scanning, thereby further making phase
  • the light waves of two adjacent lines of light beams are superimposed, so that the dark stripes at the trough and the bright stripes at the crest are complementary, so that the bright and dark stripes can become lighter and thinner, and the contrast between the bright and dark stripes is further reduced.
  • multi-line scanning can further increase the number of pixels, thereby improving the resolution of the image formed by scanning.
  • the first distance d between the center points projected on the diffusion sheet 300 by the first light beam S1 and the second light beam S2 can be set to be 3/5N-7/5N of the size D of the microlens 310 in the column direction times.
  • the distance between adjacent beams irradiated on the diffusion sheet can be roughly equal, and multiple beams can be evenly distributed, thereby reducing the inconsistency of two adjacent lines of light wave interference fringes caused by uneven distribution, and improving image quality.
  • angles between the multiple light beams can also be adjusted so that the offset distance between two adjacent scanning tracks along the column direction of the microlens 310 is D/N. Therefore, the distribution of the scanning tracks on the diffusion sheet 300 can be made more uniform, thereby reducing the influence of the inconsistency of the interference fringes caused by the different densities of the scanning tracks on the imaging effect.
  • the reflector 130 can also be one or more arranged on the optical path of the first light beam S1 and/or the second light beam S2, so as to adapt to different positional relationships between the light source module 100 and the vibrating mirror 210 .
  • the present application also provides another possible embodiment of the projection device 40 , and the specific structure of the other projection device 40 will be described in detail below with reference to the accompanying drawings.
  • FIG. 10 is a schematic diagram of scanning when a projection device 40 provided in an embodiment of the present application performs scanning imaging.
  • the difference between the projection device 40 and the projection device 10 is that the structure and form of the light source module 400 that generates the first light beam S3 and the second light beam S4 in the projection device 40 are different from those of the projection device 10, specifically:
  • the light source module 400 includes two light combining units 110 (ie, a first light combining unit and a second light combining unit).
  • the structures of the two light combining units 110 may be the same or different, which is not limited in this embodiment of the present application.
  • the two light combining units 110 respectively form a synthetic laser beam, and the two synthetic laser beams are parallel to each other and become the first beam S3 and the second beam S4 respectively.
  • the vibrating mirror 210 is located on the optical path of the first beam S3, and the second beam S3 After being reflected by the mirror 130 , S4 and the first light beam S3 are irradiated at the same position on the vibrating mirror 210 at an angle of ⁇ with the first light beam S3 .
  • the vibrating mirror 210 reflects the first light beam S3 and the second light beam S4 onto the diffuser 300 to perform double-row scanning along the first scanning track M3 and the second scanning track M4 respectively, so as to form an image.
  • the projection device 10 a beam of combined light is divided into the first beam S1 and the second beam S2 , so the brightness of the first beam S1 and the second beam S2 is smaller than the brightness of the synthesized laser beam.
  • the projection device 40 increases the number of light beams by increasing the number of light-combining units 110, so that the brightness of the pixels formed by the light beams projected on the microlens 310 can be improved, and the brightness of the pattern after scanning and imaging can be improved.
  • the first light beam S3 and the second light beam S4 can also be individually adjusted, so that the first light beam S3 and the second light beam S4 can be individually adjusted according to needs to improve the imaging quality.
  • the number of light-combining units 110 can also be increased to generate the third, fourth, and Nth light beams, so that multiple light beams can be irradiated on a microlens 310 at the same time to realize multi-line scanning, thereby further enabling
  • the light waves of two adjacent rows of light beams are superimposed, so that the dark stripes at the trough and the bright stripes at the crest are complementary, so that the bright and dark stripes can be lightened and thinned, and the contrast between the bright and dark stripes can be further reduced , thereby improving the image quality.
  • the present application also provides another possible embodiment of the projection device 50 , and the specific structure of another projection device 50 will be described in detail below with reference to the accompanying drawings.
  • FIG. 11 is a schematic diagram of scanning when a projection device 50 provided in an embodiment of the present application performs scanning imaging.
  • the difference between the projection device 50 and the projection device 40 is that the light source module 500 in the projection device 50 omits the reflector 130 to keep the first light beam S5 and the second light beam S6 parallel.
  • the positional relationship between the two light combining units 110 is changed so that the second light beam S6 passes through the dichroic mirrors 113r, 113g, and 113b in the other light combining unit 110 after being emitted from one light combining unit 110, so that The first light beam S5 and the second light beam S6 are emitted from the light source module 500 in a parallel state.
  • the vibrating mirror 210 is located on the optical path of the first beam S5 and the second beam S6, and the vibrating mirror 210 reflects the first beam S5 and the second beam S6 to the diffusion sheet 300 for scanning, forming the first scanning track M5 and the second scanning track M5 respectively. Track M6.
  • the distance between the first light beam S5 and the second light beam S6 emitted by the light source module 500 can be made very small, so that the first light beam S5 and the second light beam S6 are projected onto the
  • the distance d between the central points on the diffusion sheet 300 is smaller than the size D of the microlens 310 in the column direction, so that when the first light beam S5 and the second light beam S6 are scanned on the diffusion sheet 300, the microlenses 310 in the same row can Scanning is performed on the screen, thereby realizing the formation of an image by double-line scanning.
  • the dark stripes at the trough and the adjacent bright stripes at the crest are complementary, so that the bright and dark stripes can become lighter and thinner, and the gap between the bright and dark stripes can be reduced. Contrast, thereby improving image quality.
  • the embodiment of the present application also provides a head-up display system, which can be installed on the vehicle 1, including any projection device 10, 40, 50 possible embodiments, the projection device 10, 40, 50 projects an image, and after the image is refracted and/or reflected by the optical element 20, it finally enters the driver's eyes, so that the driver looks through the front windshield.
  • a virtual image with a certain depth of field can be seen outside the car.
  • projection device 10 projection device 40, and projection device 50 can also be installed in VR or AR head-mounted display devices, mobile phones, tablet computers, notebook computers, media players (such as projectors), etc. that have projection requirements. devices to project images visible to the human eye.
  • VR or AR head-mounted display devices mobile phones, tablet computers, notebook computers, media players (such as projectors), etc. that have projection requirements. devices to project images visible to the human eye.
  • the embodiment of the present application also provides a vehicle.
  • the vehicle also includes the above-mentioned Any possible embodiment of the projection device 10, the projection device 40 or the projection device 50, the projection device 10, 40, 50 projects an image, and after the image is refracted and/or reflected by the optical element 20, it finally enters the driver's eyes, When the driver looks out of the car through the front windshield, he can see a virtual image with a certain depth of field outside the car.
  • the embodiment of the present application also provides a projection method.
  • the specific steps of the projection method in the embodiment of the present application will be described in detail below with reference to the accompanying drawings.
  • FIG. 12 is a flowchart of a projection method 600 provided by an embodiment of the present application.
  • the projection method 600 can be implemented in the projection device 10, the projection device 40, and the projection device 50. As shown in FIG. 12, the projection method 600 includes:
  • Step S610 generating a first light beam and a second light beam.
  • Step S620 projecting the first light beam and the second light beam onto the diffusion sheet including a plurality of micro lenses, and scanning the first light beam and the second light beam on the diffusion sheet.
  • Step S630 controlling the first light beam and the second light beam to form a first distance on the diffusion sheet, and projecting the first light beam and the second light beam onto the same microlens at the same time.
  • first light beam and the second light beam are formed by a beam splitter.
  • the two light combining units are respectively used to combine red, green and blue three-color laser beams into a first light beam and a second light beam.
  • the light intensity of the first light beam is equal to that of the second light beam.
  • first light beam and the second light beam irradiate the diffusion sheet at an acute angle.
  • first light beam and/or the second light beam are reflected by the mirror, so that the first light beam and the second light beam irradiate the diffusion sheet at an acute angle.
  • the first pitch is 0.3 ⁇ 0.7 times of the dimension D of the microlens in the column direction.
  • FIG. 13 is a schematic structural diagram of a computing device 1500 provided by an embodiment of the present application.
  • the computing device 1500 includes: a processor 1510 , a memory 1520 , a communication interface 1530 , and a bus 1540 .
  • the communication interface 1530 in the computing device 1500 shown in FIG. 13 can be used to communicate with other devices.
  • the processor 1510 may be connected to the memory 1520 .
  • the memory 1520 can be used to store the program codes and data. Therefore, the memory 1520 may be a storage unit inside the processor 1510, or an external storage unit independent of the processor 1510, or may include a storage unit inside the processor 1510 and an external storage unit independent of the processor 1510. part.
  • computing device 1500 may further include a bus 1540 .
  • the memory 1520 and the communication interface 1530 may be connected to the processor 1510 through the bus 1540 .
  • the bus 1540 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus or the like.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 1540 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one line is used in FIG. 15 , but it does not mean that there is only one bus or one type of bus.
  • the processor 1510 may be a central processing unit (central processing unit, CPU).
  • the processor can also be other general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (application specific integrated circuits, ASICs), off-the-shelf programmable gate arrays (field programmable gate arrays, FPGAs) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the processor 1510 uses one or more integrated circuits for executing related programs, so as to implement the technical solutions provided by the embodiments of the present application.
  • the memory 1520 may include read-only memory and random-access memory, and provides instructions and data to the processor 1510 .
  • a portion of processor 1510 may also include non-volatile random access memory.
  • processor 1510 may also store device type information.
  • the processor 1510 executes computer-implemented instructions in the memory 1520 to perform the operation steps of the above method.
  • the computing device 1500 may correspond to a corresponding body executing the methods according to the various embodiments of the present application, and the above-mentioned and other operations and/or functions of the modules in the computing device 1500 are for realizing the present invention For the sake of brevity, the corresponding processes of the methods in the embodiments are not repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored.
  • a computer program When the program is executed by a processor, it is used to execute a method for generating a variety of questions.
  • the method includes the methods described in the above-mentioned embodiments. at least one of the options.
  • the computer storage medium in the embodiments of the present application may use any combination of one or more computer-readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of computer-readable storage media include: electrical connection with one or more wires, portable computer disk, hard disk, RAM, ROM, erasable programmable read-only memory, optical fiber, Portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the foregoing.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

一种投影装置(10),包括:光源模块(100),光源模块(100)用于产生第一光束(S1)与第二光束(S2);扩散片(300),扩散片(300)上包含多个微透镜(310);投射模块(200),投射模块(200)用于将第一光束(S1)及第二光束(S2)投射至扩散片(300),并使第一光束(S1)与第二光束(S2)在扩散片(300)上进行扫描;其中,第一光束(S1)与第二光束(S2)在扩散片(300)上的照射区域间形成第一间距(d),第一间距(d)设定为使第一光束(S1)与第二光束(S2)同时投射到相同的微透镜(310)上。由此,通过第一光束(S1)与第二光束(S2)来同时在扩散片(300)上进行扫描可以实现双行扫描,从而增加了扫描密度。由于干涉现象所形成的强弱分布会随两束光之间的距离发生变化,第一光束(S1)与第二光束(S2)在扩散片(300)上保持第一间距(d)进行扫描,可以使两光束的光波在发生干涉时的强弱分布能保持一致,进而使干涉条纹更加均匀,提高成像质量。该投影装置(10)可用于智能汽车领域,尤其可用于抬头显示系统,减少干涉条纹对成像画质的影响。

Description

一种投影装置、投影方法、抬头显示系统和车辆 技术领域
本发明涉及智能汽车领域,尤其涉及一种投影装置、投影方法、抬头显示系统和车辆。
背景技术
影像生成模块(Picture Generating Unit,PGU)能够应用在虚拟现实(Virtual Reality,VR)、增强现实(Augmented Reality,AR)设备以及抬头显示(Head-up Display,HUD)等不同的设备中,用于投射出人眼可观察到的图像。
现有的PGU方案包括:1、通过发光二极管(Light-emitting diode,LED)发出的白色光束来照射薄膜晶体管液晶显示器(Thin film transistor liquid crystal display,TFT LCD)实现投影;2、通过发光二极管发出白色光束,白色光束穿过高速旋转的红绿蓝(red green blue,RGB)三色透镜形成RGB三色光,RGB三色光经数字微镜设备(Digital Micromirror Device,DMD)反射后通过镜头实现投影;3、由RGB激光、微机电系统(Micro-electromechanical System,MEMS)与扩散片(Diffuser)形成的激光扫描投影(Laser Beam Scanning,LBS),LBS以激光作为显示光源,并通过MEMS驱动振镜转动,使激光经反射后在扩散片上来回进行线状扫描而形成图像。以上PGU方案中,LBS具有低功率、高亮度、高对比度、大视场角等优点,可以应用到AR-HUD技术中。
但是,LBS形式的PGU需要激光在扩散片上来回进行一行一行的线状扫描从而形成图像。由于光具有波动性,因此会使照射在扩散片上相邻两行的光波之间发生干涉现象,波峰及波谷相遇时会相互叠加,形成稳定的强(亮)弱(暗)分布。波峰与波峰叠加区域的亮度会增强,波谷与波谷叠加区域的亮度会降低,进而会使扫描形成的图像产生亮暗条纹,影响了图像的质量。
发明内容
本发明提供一种投影装置、投影方法、抬头显示系统及车辆,可以降低干涉条纹对投影画质的影响,提高成像质量。
本申请第一方面提供一种投影装置,包括:光源模块,光源模块用于生成第一光束与第二光束;扩散片,扩散片上包含多个微透镜;投射模块,投射模块用于将第一光束及第二光束投射至扩散片,并使第一光束与第二光束在扩散片上扫描;其中,第一光束和第二光束在扩散片上形成第一间距,第一光束和第二光束同时投射到相同的微透镜上。
由此,通过第一光束与第二光束同时在扩散片上进行扫描可以实现双行扫描,从而增加了扫描密度。由于干涉现象所形成的强弱分布会随两束光之间的距离发生变化,第一光束和第二光束在扩散片上保持第一间距进行扫描,可以使两光束的光波在发生干涉时的强弱分布能保持一致,进而使干涉条纹更加均匀,提高成像质量。 另外,通过第一光束与第二光束来同时进行扫描以实现双行扫描,无须更换更高性能的MEMS,由此还可以降低双行扫描的成本。同时,也可以避免MEMS对图像的分辨率的提升产生限制。
作为第一方面一种可能的实现方式,第一光束与第二光束以呈锐角的状态照射扩散片。由于微透镜的尺寸较小,可以通过调节第一光束与第二光束之间的角度,实现对第一间距的调节,以使第一间距足够小从而能够同时投射到相同的微透镜上。同时,通过调节第一间距还可以调节光波干涉时的强弱分布。由此可以对双行扫描时出现的干涉条纹进行调节。
作为第一方面一种可能的实现方式,光源模块包括:合光单元,合光单元用于将红色、绿色、蓝色三色激光束合成一束合成激光束。由此,可以通过调节红色、绿色、蓝色三色激光束生成任意颜色的合成激光束。
作为第一方面一种可能的实现方式,光源模块包括:分光镜,用于通过分光而形成第一光束与第二光束。由此,可以通过分光镜将一束合成激光束分成两束光束,使两束光束的颜色能够保持一致,避免了光束之间颜色不同步而影响成像效果。
作为第一方面一种可能的实现方式,第一光束与第二光束的光强度相等。由此可以使两光束的亮度相同,从而使相邻两行光束的光波在叠加时更加均匀,进一步降低了亮暗条纹之间的对比度,从而提高了成像质量。
作为第一方面一种可能的实现方式,光源模块包括:第一合光单元和第二合光单元,第一合光单元和第二合光单元分别用于将红色、绿色、蓝色三色激光束合成第一光束及第二光束。由此,通过设置两个合光单元可以分别产生第一光束与第二光束,通过单独生成的第一光束与第二光束进行扫描成像可以使各光束之间产生叠加,提高扫描成像的亮度,从而提高了成像效果。同时,第一光束与第二光束还可以单独调节,从而能够根据需要对第一光束与第二光束进行单独调节以提高成像质量。
作为第一方面一种可能的实现方式,光源模块还包括:反射镜,反射镜反射第一光束和/或第二光束,使第一光束与第二光束以呈锐角的状态照射扩散片。由此可以通过调节反射镜来调节光束之间的角度,进而实现对第一间距的调节,从而对相邻两行的光束的光波干涉进行调节,以使成像质量达到最佳效果。
作为第一方面一种可能的实现方式,扩散片上以规则排列形式设置有多个微透镜;一个扫描周期内光束沿扫描轨迹在多个微透镜上各扫描一次。由此,便于第一光束与第二光束依次对多个微透镜进行扫描,从而形成完整图像。
作为第一方面一种可能的实现方式,第一光束和第二光束在扩散片上的照射区域的列方向上重合。由此,可以保证第一光束和第二光束在扫描时能够同时照射到同一微透镜上,从而避免同一微透镜上形成不同颜色的像素点,影响成像质量。
作为第一方面一种可能的实现方式,第一间距为微透镜在列方向上的尺寸的0.3~0.7倍。由此,可以避免第一间距因为小于微透镜在列方向上的尺寸的0.3倍,从而造成同一行微透镜上的第一光束与第二光束距离过近,与相邻一行微透镜上的第一光束或第二光束距离过远。可以避免第一间距因为大于微透镜在列方向上的尺寸的0.7倍,从而造成同一行微透镜上的第一光束与第二光束距离过远,与相邻一行微透镜上的第一光束或第二光束距离过近。可以使各行微透镜上的第一光束与第二光束之 间的距离相近。由此,在光波发生叠加时,可使位于波谷的暗纹与相邻的位于波峰的亮纹之间的互补更加均匀,从而使亮暗条纹的宽度、对比度更加均匀,从而提高成像质量。
作为第一方面一种可能的实现方式,第一间距为微透镜在列方向上的尺寸的0.5倍。由此,可以使各行微透镜上的第一光束与第二光束之间的距离相同。在光波发生叠加时,可使位于波谷的暗纹与相邻的位于波峰的亮纹之间的互补更加均匀,从而使亮暗条纹的宽度、对比度更加均匀,从而提高成像质量。
作为第一方面一种可能的实现方式,光源模块还用于产生第N光束,其中,N为大于或等于3的正整数。由此,可以通过第一光束、第二光束以及第N光束同时在扩散片上进行扫描,并且第一光束、第二光束以及第N光束能够同时照射在一个微透镜上,从而能够实现多行扫描,以使相邻两行的光束的光波发生叠加时,使位于波谷的暗纹与相邻的位于波峰的亮纹之间的互补更加充分,从而使亮暗条纹能够进一步变淡、变细,降低亮暗条纹之间的对比度,从而提高成像质量。同时,还可以通过增加光束的数量来增加扫描成像时的像素数量,从而提高图像的分辨率。
作为第一方面一种可能的实现方式,相邻两光束间的第一间距等于微透镜的尺寸的3/5N~7/5N倍。由此可以使多个光束能够均匀分布,从而减少了因分布不均因而产生的相邻两行光波干涉条纹不一致的情况,提升了成像的质量。
本申请第二方面提供一种投影方法,投影方法应用于投影装置,包括:生成第一光束与第二光束;将第一光束与第二光束投射至包含多个微透镜的扩散片,并使第一光束与第二光束在扩散片上扫描;第一光束与第二光束在扩散片上形成第一间距,且第一光束和第二光束同时投射到相同的微透镜上。
作为第二方面一种可能的实现方式,第一光束与第二光束以呈锐角的状态照射扩散片。
作为第二方面一种可能的实现方式,通过分光镜形成第一光束与第二光束。
作为第二方面一种可能的实现方式,第一光束与第二光束的光强度相等。
作为第二方面一种可能的实现方式,通过第一合光单元和第二合光单元分别用于将红色、绿色、蓝色三色激光束合成第一光束和第二光束。
作为第二方面一种可能的实现方式,通过反射镜反射第一光束和/或第二光束,使第一光束与第二光束以呈锐角的状态照射扩散片。
作为第二方面一种可能的实现方式,扩散片上以规则排列形式设置有多个微透镜;一个扫描周期内光束沿扫描轨迹在多个微透镜上各扫描一次。
作为第二方面一种可能的实现方式,第一光束和第二光束在扩散片上的照射区域的列方向上重合。
作为第二方面一种可能的实现方式,第一间距为微透镜在列方向上的尺寸的0.3~0.7倍。
作为第二方面一种可能的实现方式,第一间距为微透镜在列方向上的尺寸的0.5倍。
作为第二方面一种可能的实现方式,光源模块还用于产生第N光束。
作为第二方面一种可能的实现方式,相邻两光束间的第一间距等于微透镜 的尺寸的3/5N~7/5N倍。
本申请第三方面提供一种控制器,控制器用于控制第一方面中投影装置任一可能的实现形式,控制器控制第一光束和第二光束在扩散片上的照射区域间形成第一间距,第一间距设定为使第一光束和第二光束同时投射到相同的微透镜上。
本申请第四方面提供一种抬头显示系统,包括如第一方面及第一方面任一种可能的实现方式中的投影装置。
作为第四方面一种可能的实现方式,还包括:光学元件,投影装置将图像投射到光学元件后,图像进入人眼。由此可以使驾驶员能够透过挡风玻璃、反射膜等光学元件,将图像通过折射和/或反射等方式投射到人眼中。从而使驾驶员望向车外时能够看到具有一定景深的虚像。该虚像可以包括驾驶车辆所需的信息,从而使驾驶员在驾驶车辆时,能够在抬头状态下了解驾驶车辆所需的信息。避免低头查看仪表盘或者中控屏,由此无法顾及路况而可能引发的驾驶风险。
本申请第五方面提供一种车辆,包括:本申请实施例第一方面及第一方面任一种可能的实现方式中的投影装置;或者,本申请实施例第四方面及第四方面任一种可能的实现方式中的抬头显示系统。
本申请第六方面提供一种计算设备,包括至少一个处理器和至少一个存储器,存储器存储有程序指令,程序指令当被至少一个处理器执行时使得至少一个处理器执行本申请实施例第二方面及第二方面任一种可能的实现方式中的投影方法。
本申请第七方面提供一种计算机可读存储介质,其上存储有程序指令,程序指令当被计算机执行时使得计算机执行本申请实施例第二方面及第二方面任一种可能的实现方式中的投影方法。
本发明的这些和其它方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
以下参照附图来进一步说明本发明的各个特征和各个特征之间的联系。附图均为示例性的,一些特征并不以实际比例示出,并且一些附图中可能省略了本申请所涉及领域的惯常的且对于本申请非必要的特征,或是额外示出了对于本申请非必要的特征,附图所示的各个特征的组合并不用以限制本申请。另外,在本说明书全文中,相同的附图标记所指代的内容也是相同的。具体的附图说明如下:
图1为一种LBS形式的PGU进行扫描成像时的扫描示意图;
图2为一种光束在扩散片上扫描形成图像的示意图;
图3为一种PGU进行双行扫描成像时的扫描示意图;
图4为又一种光束在扩散片上扫描形成图像的示意图;
图5a为本申请实施例提供的一种投影装置所涉及的应用场景的示意图;
图5b为本申请实施例提供的一种投影装置所涉及的应用场景的另一视角的示意图;
图6为本申请实施例提供的一种投影装置将图像投射到驾驶员眼中的原理图;
图7为本申请实施例提供的一种投影装置进行扫描成像时的扫描示意图;
图8为本申请实施例提供的一种第一光束、第二光束在扩散片上进行扫描的示意图;
图9为本申请实施例提供的一种扩散片上的微透镜排列示意图;
图10为本申请实施例提供的一种投影装置进行扫描成像时的扫描示意图;
图11为本申请实施例提供的一种投影装置进行扫描成像时的扫描示意图;
图12为本申请实施例提供的一种投影方法的流程图;
图13是本申请实施例提供的一种计算设备的结构性示意性图。
具体实施方式
说明书和权利要求书中的词语“第一、第二、第三”等类似用语,仅用于区别类似的对象,不代表针对对象的特定排序,可以理解地,在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本申请实施例能够以除了在这里图示或描述的以外的顺序实施。
说明书和权利要求书中使用的术语“包括”不应解释为限制于其后列出的内容;它不排除其它的元件。因此,其应当诠释为指定所提到的所述特征、整体或部件的存在,但并不排除存在或添加一个或更多其它特征、整体或部件及其组群。
本说明书中提到的“一个实施例”或“实施例”意味着与该实施例结合描述的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在本说明书各处出现的用语“在一个实施例中”或“在实施例中”并不一定都指同一实施例,但可以指同一实施例。此外,在一个或多个实施例中,能够以任何适当的方式组合各特定特征、结构或特性,如从本公开对本领域的普通技术人员显而易见的那样。
图1为一种LBS形式的PGU进行扫描成像时的扫描示意图。如图1所示,光束(光束包含有光线、光柱等含义)S由振镜210反射到扩散片300上,振镜210摆动,使光束S在扩散片300上沿扫描轨迹M进行来回的线状扫描。
图2为一种光束在扩散片上扫描形成图像的示意图,其示出了图1中的光束S在扩散片300上扫描形成图像。图2左侧为扩散片300的侧面结构示意图,扩散片300上设置有若干微透镜310,光束S照射到一个微透镜310上可以形成一个像素点。光束S沿扫描轨迹M在一个扫描周期内对每个微透镜310扫描一次,最终由若干个像素点形成如图2中右侧所示的完整图像。
上述PGU进行扫描成像时,如图2中间的波形图所示,由于光具有波动性,会使照射在扩散片300上相邻两行的光束S之间的光发生干涉现象,即光波动时的波峰及波谷相遇时会相互叠加,进而形成稳定的强弱分布。波峰与波峰叠加区域的亮度会增强,波谷与波谷叠加区域的亮度会降低。由此,会使扫描形成的图像产生如图2右侧图像中所示的亮暗条纹,进而严重影响了PGU投射的图像的质量。
为了减轻亮暗条纹对图像的影响,一种方案为通过改变振镜210的摆动速度从而增加光束S的扫描密度,以进行双行扫描。图3为一种PGU进行双行扫描成像时的扫描示意图;图4为又一种光束S在扩散片300上扫描形成的图像的示意图,其示出了图3中的光束S在扩散片300上扫描形成图像。如图3、图4所示,为了增加光束S的扫描密度,实现双行扫描,需要光束S在一个扫描周期内对一个微透镜 310扫描两次。如图4中间的波形图所示,相邻两行的光束S的光波会发生叠加,位于波谷的暗纹会与相邻的位于波峰的亮纹进行互补。由此,如图4右侧部分扫描形成的图像所示,可以使亮暗条纹变淡、变细,降低亮暗条纹之间的对比度,从而提高形成图像的质量。
但是,在上述方案中,要实现双行扫描,就需要改变振镜210的摆动速度,例如,通过增加振镜210的摆动速度来实现双行扫描,即驱动光束S扫描一行微透镜310的速度为原来的两倍,从而能够对同一个微透镜扫描两次。但是,由于振镜210的摆动速度受到性能的限制而只能在一定范围内调整,因此会限制光束S在一个扫描周期内扫描微透镜310的次数,进而限制了所获得的图像的像素点数量,使图像的分辨率无法再提高;另外,如图3所示,扫描轨迹M中间区域较两侧区域的分布并不均匀,即光束在沿扫描轨迹M扫描时,光束在相邻两行之间的距离是不固定的。由此,光束S在中间区域与两侧区域的干涉条纹会出现不一致的现象,进而会影响形成图像的质量。
为了解决上述问题,本申请实施例提供了一种投影装置10,在实现双行扫描时可以摆脱振镜210对分辨率的限制,还可以使图像中间区域与两侧区域的干涉条纹保持一致,降低干涉条纹对画质的影响,从而提高形成图像的质量。
图5a为本申请实施例提供的一种投影装置10所涉及的应用场景的示意图;图5b为本申请实施例提供的一种投影装置10所涉及的应用场景的另一视角的示意图;图6示出了本申请实施例提供的一种投影装置10将图像投射到驾驶员眼中的原理图,其示出了图5a、图5b中的投影装置10将图像投射到驾驶员眼中,使驾驶员能够看到虚像。如图5a、图5b、图6所示,该应用场景为驾驶员驾驶一辆具有HUD的车辆1,HUD可以具有投影装置10以及光学元件20,投影装置10可以投射图像,光学元件20可以包括车辆1的前挡风玻璃,或者贴附在前挡风玻璃上的反射膜,又或者单独设置于汽车座舱内屏幕。光学元件20可以将投影装置10投射出的图像进行反射和/或折射后投射到驾驶员的眼中。当驾驶员透过前挡风玻璃望向车外时,能够看到具有一定景深(即图像焦点前后的范围内所呈现的清晰图像的距离)的虚像。该虚像的内容可以包括道路指示信息、车辆1的发动机转速信息、电量信息、续航里程信息、速度信息、导航信息、影音娱乐系统信息等,从而使驾驶员在驾驶车辆1时不需要转移视线就能够了解驾驶车辆1所需的信息。避免驾驶员驾驶车辆1时,例如低头查看仪表盘或者中控屏信息,可能导致无法顾及路况而引发的驾驶风险。
本申请实施例中的车辆1皆以汽车为例进行示例性的说明,不应视为对本申请实施例的限制。车辆1可以是传统的燃油汽车,也可以是纯电动汽车、混动汽车等新能源汽车。车辆1可以是轿车、货车、客运客车、运动型多用途汽车(sport utility vehicle,SUV)等不同类型汽车中的任意一种,还可以是三轮车、摩托车、火车等载人或者载货的陆地运输装置。或者,本申请的投影装置还可以应用于飞机、船舶等其他类型的交通工具中。
下面结合附图,对本申请实施例提供的投影装置10的具体结构进行详细的描述。
图7为本申请实施例提供的一种投影装置10进行扫描成像时的扫描示意 图;图8为本申请实施例提供的一种第一光束S1、第二光束S2在扩散片300上进行扫描的示意图,其示出了图7中的第一光束S1、第二光束S2在扩散片300上进行扫描。如图7、图8所示,投影装置10包括:用于提供第一光束S1与第二光束S2的光源模块100,包含多个微透镜的扩散片300,用于将第一光束S1与第二光束S2投射至扩散片300进行扫描的投射模块200。第一光束S1与第二光束S2在扩散片300上的照射区域间形成第一间距d(即第一光束S1与第二光束S2照射在扩散片300上中心点之间的距离),第一间距d设定为使第一光束与第二光束同时投射到相同的微透镜310上。由此可以实现双行扫描,同时,由于第一光束与第二光束在扩散片上扫描时保持第一间距d,可以使扫描形成图像的中间区域与两侧区域的光波干涉保持一致,可以使干涉条纹更均匀,提高成像质量。
其中,光源模块100包括合光单元110、分光镜120以及反射镜130。合光单元110包括三个并排设置的激光器111r、111g、111b,激光器111r、111g、111b可以是激光二极管或者其他激光发生装置。三个激光器111r、111g、111b分别能够发出红色、蓝色、绿色光波波长的激光光束,在红、蓝、绿三色激光光束的光路上分别设置有准直透镜112r、112g、112b,准直透镜112r、112g、112b可以分别对红色、蓝色与绿色的激光光束进行校准并输出射束。经准直透镜112r、112g、112b校准后的红、蓝、绿三色激光光束的光路上设置有三个二向色镜113r、113g、113b,这三个二向色镜113r、113g、113b沿着与红、蓝、绿三色激光光束从准直透镜112r、112g、112b射出的方向所垂直的方向并排设置。二向色镜113r、113g、113b具有能够对一定波长的光完全反射,并能够对其他波长的光完全透射的特性。此处完全反射与完全透射并非限定为100%的反射与透射,可以理解为能够将大部分,例如95%或其他数值以上的光进行反射与折射。依据二向色镜113r、113g、113b的这一特性,将三个二向色镜113r、113g、113b设定为能够将与其相对应颜色的激光光束反射,对于其他颜色的激光光束透射。例如,二向色镜113b反射蓝色激光光束,透射其他颜色的激光光束。三个二向色镜113r、113g、113b的角度可以设定为可以使红、蓝、绿三色激光光束在二向色镜113r、113g、113b上反射后重合形成一束合成激光束。例如:三个二向色镜113r、113g、113b设定为分别与从准直透镜112r、112g、112b射出的红、蓝、绿三色激光光束呈45°角,可以使红、蓝、绿三色激光光束在二向色镜113r、113g、113b上的入射方向与出射方向之间呈90°角,从而能够使红、蓝、绿三色激光光束反射后重合形成一束合成激光束。通过对三个激光器111r、111g、111b进行控制,可以使三个激光器111r、111g、111b能够发出不同亮度的红色、蓝色、绿色激光光束,由此,可以控制红色、蓝色、绿色激光光束重合形成任意颜色的合成激光束。
在合成激光束的光路上设置有分光镜120,合成激光束照射到分光镜120后,使部分光强度(光源在给定方向上的发光强度)的合成激光束在分光镜120上透射形成第一光束S1,另外一部分光强度的合成激光束发生反射形成第二光束S2。由于第一光束S1、第二光束S2是由同一合成激光束形成的,因此第一光束S1、第二光束S2的颜色可以保持一致。在第二光束S2的光路上设置有反射镜130,第二光束S2经反射镜130反射后与第一光束S1以θ角射向振镜210,θ角为第一光束S1和第二光束S2的夹角,θ角可以设置为锐角,使第一光束S1与第二光束S2照射在振镜210 上的同一位置后反射。
投射模块200包括振镜210以及MEMS(图7中未示出)。振镜210呈板状,由光源模块100发出的第一光束S1与第二光束S2以θ角发射到振镜210后被反射到扩散片300上。振镜210由MEMS进行控制,使振镜210能够在两个不同的轴上,例如,在两个相互垂直的轴上摆动。两个轴摆动的速度与方向不同,摆动速度快的轴为快轴,摆动速度慢的轴为慢轴。快轴摆动使反射后的第一光束S1与第二光束S2在扩散片300上进行“行扫描”,慢轴摆动使反射后的第一光束S1与第二光束S2在透镜上进行“列扫描”,即完成一行的“行扫描”后能够使第一光束S1与第二光束S2进入下一行,以使第一光束S1与第二光束S2能够在下一行继续进行“行扫描”。快轴与慢轴分别以第一速度和第二速度,同时进行例如匀速的摆动,使“行扫描”与“列扫描”同时进行,使第一光束S1与第二光束S2在扩散片300上来回进行线状扫描从而分别形成第一扫描轨迹M1与第二扫描轨迹M2。其中,第一速度大于第二速度,慢轴完成一次摆动,快轴会完成若干次摆动,即每完成一次“列扫描”即可完成若干次“行扫描”对所有的行各扫描一次,如此即为完成一个扫描周期。
进一步地,上述“行”与“列”不应视为对快轴与慢轴扫描方向的限制。“行”与“列”可以是水平为“行”方向,竖直为“列”方向;也可以是水平为“列”方向,竖直为“行”方向;或者其他能够进行来回的“行”与“列”扫描的两个方向。
进一步地,图7中的扩散片300相对于光源模块100以及振镜210的位置及角度并非实际的位置及角度,仅为了更好地展示了扩散片300上的第一扫描轨迹M1以及第二扫描轨迹M2。因此,图7中的扩散片300相对于光源模块100以及振镜210的位置及角度不应视为对本申请投影装置10的限制。
图9为本申请实施例提供的一种扩散片300上的微透镜31排列示意图,其示出了图8中的微透镜310可能的排列方式。如图9所示,扩散片300的表面具有若干规则排列的微透镜310,微透镜310的排列方式可以是如图9中(a)所示的呈矩形阵列排布,即微透镜310按照行方向及列方向两个方向排布,行方向与列方向呈垂直状态。或者可以是如图9中(b)所示的呈菱形阵列排布,即微透镜310按照行方向及列方向两个方向排布,行方向与列方向呈一定的角度(非90°),微透镜310与上一行及下一行相对应的微透镜310错开一定的距离。又或者是其他合适的规则排列形式。
微透镜310可以是圆形、多边形或其他形状的凸透镜或凹透镜。第一光束S1与第二光束S2在扩散片300上沿第一扫描轨迹M1与第二扫描轨迹M2进行扫描时,会沿例如矩形阵列排布的微透镜310的行方向进行“行扫描”,沿列方向进行“列扫描”。具体地,第一光束S1与第二光束S2会沿一行微透镜310进行“行扫描”,完成一次“行扫描”后会进入相邻一行的微透镜310进行下一行的“行扫描”。微透镜310的尺寸大于第一光束S1及第二光束S2照射到扩散片300上形成的照射区域的尺寸,当第一光束S1或第二光束S2照射到微透镜310上后,微透镜310可以控制光线按照预定的角度进行扩散,改变光路的传播方向。一束第一光束S1与一束第二光束S2透过一个微透镜310会分别向外投射形成一个像素点,第一光束S1与第二光束S2沿第一扫描轨迹M1与第二扫描轨迹M2扫描完成一个扫描周期,可以形成由若干 个像素点组成的图像。由此,第一光束S1、第二光束S2同时在扩散片300上进行扫描时,能够同时对同一行的微透镜310进行扫描,从而实现双行扫描。双行扫描形成的图像的像素点的数量为单行扫描的两倍,由此可以提高图像的分辨率,进一步提高了成像质量。同时,由于通过第一光束S1与第二光束S2来同时进行扫描以实现双行扫描,第一光束S1与第二光束S2始终保持第一间距d,使得第一扫描轨迹M1与第二扫描轨迹M2始终处于平行状态,由此,可以使第一扫描轨迹M1与第二扫描轨迹M2在中心位置与两侧位置之间的密度更加均匀,进而使光波发生干涉时产生的干涉条纹的分布更加均匀,提高了成像质量。
进一步地,第一光束S1与第二光束S2投射到扩散片300上的照射区域中心点之间在列方向的距离为第一间距d,也就是说,第一光束S1与第二光束S2在扩散片300上扫描形成的第一扫描轨迹M1与扫描轨迹M2在列方向偏移的距离为第一间距d。第一光束S1与第二光束S2投射到扩散片300上的中心点之间的第一间距d小于微透镜310在列方向的尺寸D。由此可以使第一光束S1、第二光束S2进行行扫描时能够同时照射在同一行的微透镜310上,避免照射到相邻一行微透镜310上生成像素点所产生的影响,从而提高了成像质量。
需要说明的是,规则排列的微透镜之间通常会设置有一定的间隙,该间隙相对于微透镜的尺寸较小。因此,为了便于理解,将该间隙视为包含在微透镜310在列方向的尺寸D之内。
设振镜210对第一光束S1与第二光束S2进行反射的点与扩散片300之间的距离为L,由于第一光束S1或第二光束S2在扩散片300上扫描时,与扩散片300近似于垂直,因此,第一光束S1与第二光束S2之间的角度θ与第一间距d之间的关系可视为tanθ=d/L,即第一间距d=Ltanθ。由于θ为锐角,因此L及θ与d的值呈正比。因此可以通过调节第一光束S1与第二光束S2之间的角度θ,使第一光束S1与第二光束S2之间的角度θ<arctan(D/L),从而使第一光束S1与第二光束S2投射到扩散片300上的中心点之间的第一间距d小于微透镜310在列方向的尺寸D。或者,通过调节振镜210与扩散片300之间的距离为L,使振镜210与扩散片300之间的距离为L<D/tanθ,从而使第一光束S1与第二光束S2投射到扩散片300上的中心点之间的第一间距d小于微透镜310在列方向的尺寸D。
进一步地,可以将第一光束S1与第二光束S2投射到扩散片300上的中心点之间的第一间距d设定为微透镜310在列方向的尺寸D的0.3~0.7倍。由此,可以避免第一间距d因为小于0.3D,从而造成同一行微透镜310上的第一光束S1与第二光束S2距离过近,与相邻一行微透镜310上的第一光束S1或第二光束S2距离过远。并且可以避免第一间距d因为大于0.7D,从而造成同一行微透镜310上的第一光束S1与第二光束S2距离过远,与相邻一行微透镜310上的第一光束S1或第二光束S2距离过近。将第一间距d设定为0.3D~0.7D,可以使各行微透镜上的第一光束S1与第二光束S2之间的距离大致相等。由此,可以使扩散片300上扫描轨迹M1与扫描轨迹M2的分布更加均匀,在光波发生叠加时,可使位于波谷的暗纹与相邻的位于波峰的亮纹之间的互补更加均匀,从而使亮暗条纹的宽度、对比度更加均匀,从而降低因扫描轨迹的密度不同而产生的干涉条纹不一致对成像效果的影响。
进一步地,可以将第一光束S1与第二光束S2投射到扩散片300上的中心点之间的第一间距d设定为微透镜310在列方向的尺寸D的0.5倍。可以使各行微透镜上的第一光束S1与第二光束S2之间的距离相等。由此,可以使扩散片300上扫描轨迹M1与扫描轨迹M2的分布更加均匀,在光波发生叠加时,可使位于波谷的暗纹与相邻的位于波峰的亮纹之间的互补更加均匀,从而使亮暗条纹的宽度、对比度更加均匀,从而降低因扫描轨迹的密度不同而产生的干涉条纹不一致对成像效果的影响。
进一步地,第一光束S1与第二光束S2投射到扩散片300上的中心点在微透镜310的列方向上重合。从而避免“行扫描”时第一光束S1与第二光束S2照射在不同的微透镜310上,进而防止第一光束S1与第二光束S2照射微透镜310产生的像素发生错位,影响图像质量。
进一步地,第一光束S1与第二光束S2的光强度相等。可以理解为第一光束S1与第二光束S2各包含合成激光束大约50%的光强度,例如第一光束S1与第二光束S2各包含合成激光束大约48%与52%的光强度,或其他相近的数值。或者,还可以考虑合成激光束在投射与反射时的损耗,第一光束S1与第二光束S2均只包含合成激光束小于50%的光强度。第一光束S1与第二光束S2的光强度相等,使得第一光束S1、第二光束S2的亮度相同,从而使扩散片300上同一行微透镜上的第一扫描轨迹M1与第二扫描轨迹M2之间的光的亮度相同,进而使亮纹与暗纹之间的互补更加均匀,有助于使亮暗条纹变淡、变细,降低亮暗条纹之间的对比度,从而提高成像质量。
进一步地,同样的原理,还可以增加分光镜120的数量,从而产生第三、第四、第N光束,使多个光束同时照射到一个微透镜310上以实现多行扫描,从而进一步使相邻两行的光束的光波进行叠加,使位于波谷的暗纹与位于波峰的亮纹之间进行互补,从而进一步使亮暗条纹能够变淡、变细,进一步降低亮暗条纹之间的对比度,从而提高成像质量。同时,进行多行扫描还可以进一步增加像素点的数量,从而提高扫描形成图像的分辨率。
进一步地,可以将第一光束S1与第二光束S2投射到扩散片300上的中心点之间的第一间距d设定为微透镜310在列方向的尺寸D的3/5N~7/5N倍。由此可以使照射在扩散片上的相邻光束之间的距离大致相等,可以使多个光束能够均匀分布,从而减少了因分布不均因而产生的相邻两行光波干涉条纹不一致的情况,提升了成像的质量。
进一步地,还可以调整多个光束之间的角度,以使相邻两扫描轨迹之间沿微透镜310的列方向偏移的距离为D/N。从而可以使扩散片300上扫描轨迹的分布更加均匀,从而降低因扫描轨迹的密度不同而产生的干涉条纹不一致对成像效果的影响。
进一步地,所述反射镜130还可以是设置在第一光束S1和/或第二光束S2的光路上的一个或多个,从而适应光源模块100与振镜210之间不同的位置关系。
本申请还提供了另一种投影装置40可能的实施例,下面结合附图,对另一种投影装置40的具体结构进行详细的描述。
图10为本申请实施例提供的一种投影装置40进行扫描成像时的扫描示意图。如图10所示,投影装置40与投影装置10相比,不同点在于投影装置40中产 生第一光束S3与第二光束S4的光源模块400的结构及形式与投影装置10不同,具体为:
光源模块400包括两个合光单元110(即第一合光单元与第二合光单元),两个合光单元110的结构可以相同也可以不同,本申请实施例对此不做限定。两个合光单元110分别形成一束合成激光束,两束合成激光束之间平行,分别成为第一光束S3与第二光束S4,振镜210位于第一光束S3的光路上,第二光束S4经反射镜130的反射后与第一光束S3呈θ角照射在振镜210上同一位置。振镜210将第一光束S3与第二光束S4反射到扩散片300上分别沿第一扫描轨迹M3及第二扫描轨迹M4进行双行扫描,以形成图像。
投影装置10中通过将一束合光分成第一光束S1与第二光束S2,因此第一光束S1与第二光束S2的亮度要小于合成激光束的亮度。与投影装置10相比,投影装置40中通过增加合光单元110的数量来增加光束的数量,从而能够提高光束投射到微透镜310上形成的像素的亮度,进而提高了扫描成像后的图案亮度。同时,第一光束S3与第二光束S4还可以实现单独调节,从而能够根据需要对第一光束S3与第二光束S4进行单独调节以提高成像质量。
进一步地,同样的原理,还可以增加合光单元110的数量,从而产生第三、第四、第N光束,使多个光束同时照射到一个微透镜310上以实现多行扫描,从而进一步使相邻两行的光束的光波进行叠加,使位于波谷的暗纹与位于波峰的亮纹之间进行互补,从而进一步使亮暗条纹能够变淡、变细,进一步降低亮暗条纹之间的对比度,从而提高成像质量。
本申请还提供了又一种投影装置50可能的实施例,下面结合附图,对另一种投影装置50的具体结构进行详细的描述。
图11为本申请实施例提供的一种投影装置50进行扫描成像时的扫描示意图。如图11所示,投影装置50与投影装置40相比,不同点在于投影装置50中的光源模块500省去了反射镜130,使第一光束S5与第二光束S6之间保持平行。同时改变了两个合光单元110之间的位置关系,使第二光束S6由一个合光单元110射出后,穿过另一个合光单元110中的二向色镜113r、113g、113b,以使第一光束S5与第二光束S6以平行状态由光源模块500射出。振镜210位于第一光束S5与第二光束S6的光路上,振镜210将第一光束S5与第二光束S6反射到扩散片300上进行扫描,分别形成第一扫描轨迹M5与第二扫描轨迹M6。通过调整两个合光单元110之间的位置关系,可以使光源模块500发出的第一光束S5与第二光束S6之间的距离非常小,以使第一光束S5、第二光束S6投射到扩散片300上的中心点之间的距离d小于微透镜310在列方向的尺寸D,以使第一光束S5与第二光束S6在扩散片300上进行扫描时,能够在同一行微透镜310上进行扫描,从而实现了通过双行扫描形成图像。以使相邻两行的光束的光波发生叠加,使位于波谷的暗纹与相邻的位于波峰的亮纹进行互补,从而使亮暗条纹能够变淡、变细,降低亮暗条纹之间的对比度,从而提高成像质量。
基于上述投影装置10、投影装置40、投影装置50,本申请实施例还提供了一种抬头显示系统,该抬头显示系统可以设置在车辆1上,包括上述提到的任意一 种投影装置10、40、50可能的实施例,由投影装置10、40、50投射出图像,图像经光学元件20折射和/或反射后,最终进入驾驶员的眼睛,使驾驶员透过前挡风玻璃望向车外时,能够在车外看到具有一定景深的虚像。
进一步地,上述投影装置10、投影装置40、投影装置50,还可以设置在VR或AR的头戴显示设备、手机、平板电脑、笔记本电脑、媒体播放器(例如投影仪)等有投影需求的设备上,以能投射出人眼可见的图像。
基于上述投影装置10、投影装置40、投影装置50,本申请实施例还提供了一种车辆,除了诸如发动机或电动机、车轮、方向盘、变速器这样的常用部件之外,车辆还包括上述提到的任意一种投影装置10、投影装置40或投影装置50可能的实施例,由投影装置10、40、50投射出图像,图像经光学元件20折射和/或反射后,最终进入驾驶员的眼睛,使驾驶员透过前挡风玻璃望向车外时,能够在车外看到具有一定景深的虚像。
本申请实施例还提供了一种投影方法,下面结合附图,对本申请实施例中的投影方法的具体步骤进行详细的描述。
图12为本申请实施例提供的一种投影方法600的流程图。该投影方法600可以在投影装置10、投影装置40、投影装置50中实现,如图12所示,投影方法600包括:
步骤S610,生成第一光束与第二光束。
步骤S620,将第一光束及第二光束投射至包含多个微透镜的扩散片,并使第一光束与第二光束在扩散片上扫描。
步骤S630,控制第一光束和第二光束在扩散片上形成第一间距,且第一光束和第二光束同时投射到相同的微透镜上。
进一步地,通过分光镜形成第一光束与第二光束。
进一步地,通过两个合光单元分别用于将红色、绿色、蓝色三色激光束合成第一光束及第二光束。
进一步地,第一光束与第二光束的光强度相等。
进一步地,第一光束与第二光束以呈锐角的状态照射扩散片。
进一步地,通过反射镜反射第一光束和/或第二光束,使第一光束与第二光束以呈锐角的状态照射扩散片。
进一步地,第一间距为微透镜在列方向上的尺寸D的0.3~0.7倍。
本申请还提供一种计算设备。图13是本申请实施例提供的一种计算设备1500的结构性示意性图。该计算设备1500包括:处理器1510、存储器1520、通信接口1530、总线1540。
应理解,图13所示的计算设备1500中的通信接口1530可以用于与其他设备之间进行通信。
其中,该处理器1510可以与存储器1520连接。该存储器1520可以用于存储该程序代码和数据。因此,该存储器1520可以是处理器1510内部的存储单元,也可以是与处理器1510独立的外部存储单元,还可以是包括处理器1510内部的存储单元和与处理器1510独立的外部存储单元的部件。
可选的,计算设备1500还可以包括总线1540。其中,存储器1520、通信接口1530可以通过总线1540与处理器1510连接。总线1540可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线1540可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。
应理解,在本申请实施例中,该处理器1510可以采用中央处理单元(central processing unit,CPU)。该处理器还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。或者该处理器1510采用一个或多个集成电路,用于执行相关程序,以实现本申请实施例所提供的技术方案。
该存储器1520可以包括只读存储器和随机存取存储器,并向处理器1510提供指令和数据。处理器1510的一部分还可以包括非易失性随机存取存储器。例如,处理器1510还可以存储设备类型的信息。
在计算设备1500运行时,所述处理器1510执行所述存储器1520中的计算机执行指令执行上述方法的操作步骤。
应理解,根据本申请实施例的计算设备1500可以对应于执行根据本申请各实施例的方法中的相应主体,并且计算设备1500中的各个模块的上述和其它操作和/或功能分别为了实现本实施例各方法的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时用于执行一种多样化问题生成方法,该方法包括上述各个实施例所描述的方案中的至少之一。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于,电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、RAM、ROM、可擦式可编程只读存储器、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
注意,上述仅为本申请的较佳实施例及所运用的技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明的构思的情况下,还可以包括更多其他等效实施例,均属于本发明的保护范畴。

Claims (19)

  1. 一种投影装置,其特征在于,包括:
    光源模块,所述光源模块用于生成第一光束与第二光束;
    扩散片,所述扩散片上包含多个微透镜;
    投射模块,所述投射模块用于将所述第一光束及所述第二光束投射至所述扩散片,并使所述第一光束与所述第二光束在所述扩散片上扫描;
    其中,所述第一光束和所述第二光束在所述扩散片上形成第一间距,且所述第一光束和所述第二光束同时投射到相同的所述微透镜上。
  2. 根据权利要求1所述的投影装置,其特征在于,所述光源模块包括:
    分光镜,用于形成所述第一光束与所述第二光束。
  3. 根据权利要求1所述的投影装置,其特征在于,所述光源模块包括:
    第一合光单元和第二合光单元,所述第一合光单元和第二合光单元分别用于将红色、绿色、蓝色三色激光束合成所述第一光束及所述第二光束。
  4. 根据权利要求1-3任一项所述的投影装置,其特征在于,所述第一光束与所述第二光束的光强度相等。
  5. 根据权利要求1-4任一项所述的投影装置,其特征在于,所述第一光束与所述第二光束以呈锐角的状态照射所述扩散片。
  6. 根据权利要求1-5任一项所述的投影装置,其特征在于,所述光源模块还包括:
    反射镜,所述反射镜反射所述第一光束和/或所述第二光束,使所述第一光束与所述第二光束以呈所述锐角的状态照射所述扩散片。
  7. 根据权利要求1-6任一项所述的投影装置,其特征在于,
    所述第一间距为所述微透镜在列方向上的尺寸的0.3~0.7倍。
  8. 一种投影方法,其特征在于,所述投影方法应用于投影装置,包括:
    生成第一光束与第二光束;
    将所述第一光束及所述第二光束投射至包含多个微透镜的扩散片,并使所述第一光束与所述第二光束在所述扩散片上扫描;
    所述第一光束和所述第二光束在所述扩散片上形成第一间距,且所述第一光束和所述第二光束同时投射到相同的所述微透镜上。
  9. 根据权利要求8所述的投影方法,其特征在于,
    通过分光镜形成所述第一光束与所述第二光束。
  10. 根据权利要求8所述的投影方法,其特征在于,
    通过第一合光单元和第二合光单元分别用于将红色、绿色、蓝色三色激光束合成所述第一光束和所述第二光束。
  11. 根据权利要求8-10任一项所述的投影方法,其特征在于,所述第一光束与所述第二光束的光强度相等。
  12. 根据权利要求8-11任一项所述的投影方法,其特征在于,所述第一光束与所述第二光束以呈锐角的状态照射所述扩散片。
  13. 根据权利要求8-12任一所述的投影方法,其特征在于,通过反射镜反射所述第一光束和/或所述第二光束,使所述第一光束和所述第二光束以呈所述锐角的状态照射所述扩散片。
  14. 根据权利要求13所述的投影方法,其特征在于,
    所述第一间距为所述微透镜在列方向上的尺寸的0.3~0.7倍。
  15. 一种抬头显示系统,其特征在于,包括如权利要求1-7任一项所述的投影装置。
  16. 根据权利要求15所述的抬头显示系统,其特征在于,所述抬头显示系统还包括:
    光学元件,所述投影装置将图像投射到所述光学元件后,所述图像进入人眼。
  17. 一种车辆,其特征在于,包括如权利要求1-7任一项所述的投影装置;或者,如权利要求15或16所述的抬头显示系统。
  18. 一种计算设备,其特征在于,包括至少一个处理器和至少一个存储器,所述存储器存储有程序指令,所述程序指令当被所述至少一个处理器执行时使得所述至少一个处理器执行如权利要求8-14任一项所述的方法。
  19. 一种计算机可读存储介质,其上存储有程序指令,其特征在于,所述程序指令当被计算机执行时使得所述计算机执行如权利要求8-14任一所述的方法。
PCT/CN2021/097729 2021-06-01 2021-06-01 一种投影装置、投影方法、抬头显示系统和车辆 WO2022252123A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/097729 WO2022252123A1 (zh) 2021-06-01 2021-06-01 一种投影装置、投影方法、抬头显示系统和车辆
CN202180001764.0A CN114365481B (zh) 2021-06-01 2021-06-01 一种投影装置、投影方法、抬头显示系统和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097729 WO2022252123A1 (zh) 2021-06-01 2021-06-01 一种投影装置、投影方法、抬头显示系统和车辆

Publications (1)

Publication Number Publication Date
WO2022252123A1 true WO2022252123A1 (zh) 2022-12-08

Family

ID=81105509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097729 WO2022252123A1 (zh) 2021-06-01 2021-06-01 一种投影装置、投影方法、抬头显示系统和车辆

Country Status (2)

Country Link
CN (1) CN114365481B (zh)
WO (1) WO2022252123A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115469461B (zh) * 2022-11-02 2023-05-26 苏州龙马璞芯芯片科技有限公司 一种抬头显示模组及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566391A (zh) * 2012-02-16 2012-07-11 中国科学院上海光学精密机械研究所 基于柱面镜聚焦的全息扫描高密度光栅的制备装置
CN106933014A (zh) * 2010-09-07 2017-07-07 大日本印刷株式会社 光学模块
CN107450191A (zh) * 2017-09-26 2017-12-08 山西大学 一种消散斑激光背光电视的光学系统
CN110221430A (zh) * 2018-03-02 2019-09-10 蒋晶 Hud系统和多屏拼接式衍射显示系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199933B2 (en) * 2005-05-17 2007-04-03 Symbol Technologies, Inc. Image projection screen with reduced speckle noise
JP6270674B2 (ja) * 2014-02-27 2018-01-31 シチズン時計株式会社 投影装置
JP2017097268A (ja) * 2015-11-27 2017-06-01 株式会社リコー 画像表示装置および車両
WO2018003589A1 (ja) * 2016-06-27 2018-01-04 日本精機株式会社 ヘッドアップディスプレイ装置
CN106226984A (zh) * 2016-09-07 2016-12-14 海信集团有限公司 一种激光光源、激光投影设备
CN108152959B (zh) * 2018-01-02 2020-08-07 京东方科技集团股份有限公司 车载抬头显示系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106933014A (zh) * 2010-09-07 2017-07-07 大日本印刷株式会社 光学模块
CN102566391A (zh) * 2012-02-16 2012-07-11 中国科学院上海光学精密机械研究所 基于柱面镜聚焦的全息扫描高密度光栅的制备装置
CN107450191A (zh) * 2017-09-26 2017-12-08 山西大学 一种消散斑激光背光电视的光学系统
CN110221430A (zh) * 2018-03-02 2019-09-10 蒋晶 Hud系统和多屏拼接式衍射显示系统

Also Published As

Publication number Publication date
CN114365481A (zh) 2022-04-15
CN114365481B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
CN105874358B (zh) 透射型屏幕及使用了它的图像显示装置
JP5742263B2 (ja) 虚像表示装置
US10534112B2 (en) Microlens array, image display apparatus, object apparatus, and mold
US9551868B2 (en) Scanning-type projection device
CN113741036A (zh) 车载抬头显示器
JP2014202835A (ja) 照明装置及び画像表示装置
WO2020225963A1 (ja) 虚像表示装置
WO2022252123A1 (zh) 一种投影装置、投影方法、抬头显示系统和车辆
CN110456430A (zh) 多焦点菲涅尔透镜阵列及具有该阵列的多视显示装置
TW202319807A (zh) 圖像生成單元及其抬頭顯示器
CN110297324B (zh) 显示装置和交通工具
CN216595734U (zh) 车载抬头显示器
CN116256916A (zh) 光机、显示设备及交通工具
CN115097636B (zh) 一种平视显示器
WO2023071474A1 (zh) 一种光波导装置及其制造方法
JP6387230B2 (ja) 車両用計器クラスター
JP4255354B2 (ja) 車両用表示器
JP2017227681A (ja) ヘッドアップディスプレイ装置
JP2021089322A (ja) 虚像表示装置
JP2021060564A (ja) 虚像表示装置及び表示制御装置
US12019237B2 (en) Display device, vehicle-mounted display system, vehicle and manufacturing method of holographic lens
CN216622850U (zh) 多深度抬头显示系统及车载系统
CN219417941U (zh) 光机、显示设备及交通工具
US20240133538A1 (en) Multicolor light mixing module
JP6787354B2 (ja) 虚像表示装置、照明用光学素子、照明用バックライト及び表示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943492

Country of ref document: EP

Kind code of ref document: A1