WO2023071474A1 - 一种光波导装置及其制造方法 - Google Patents

一种光波导装置及其制造方法 Download PDF

Info

Publication number
WO2023071474A1
WO2023071474A1 PCT/CN2022/114732 CN2022114732W WO2023071474A1 WO 2023071474 A1 WO2023071474 A1 WO 2023071474A1 CN 2022114732 W CN2022114732 W CN 2022114732W WO 2023071474 A1 WO2023071474 A1 WO 2023071474A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
waveguide substrate
image
grating
waveguide
Prior art date
Application number
PCT/CN2022/114732
Other languages
English (en)
French (fr)
Inventor
张雅琴
黄河
楼歆晔
林涛
Original Assignee
上海鲲游科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海鲲游科技有限公司 filed Critical 上海鲲游科技有限公司
Priority to CN202280002826.4A priority Critical patent/CN116964511A/zh
Publication of WO2023071474A1 publication Critical patent/WO2023071474A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the invention relates to the field of augmented reality technology, in particular to an optical waveguide device and its method and equipment.
  • augmented reality is to project the pixels on the micro-projector into the human eye through the optical combiner, and at the same time see the real world through the optical combiner.
  • the virtual content provided by the micro-projector and the real environment are superimposed on the same screen or space in real time to exist simultaneously, so that users can obtain the experience of combining virtual and reality. Therefore, one of the design requirements of the optical combiner is that it cannot block the front line of sight and has a high transmittance.
  • optical waveguides are currently the best augmented reality solution and have excellent development potential.
  • an optical waveguide is a thin and transparent glass substrate (the thickness of which is generally on the order of several millimeters or submillimeters), so that light travels through total reflection back and forth between the upper and lower surfaces of the glass substrate, that is, when the refractive index of the transmission medium When the refractive index is greater than the surrounding medium and the angle of incidence in the waveguide is greater than the critical angle for total reflection, light can be totally reflected within the optical waveguide for leak-free transmission. In this way, after the image light from the projector is coupled into the optical waveguide, the image light continues to propagate in the optical waveguide without loss until it is coupled out by a subsequent structure.
  • waveguides on the market are usually divided into geometric array waveguides and diffractive optical waveguides.
  • the geometric array optical waveguide achieves image output and orbital expansion by stacking array mirrors. Although its image quality and efficiency can reach a high level, it needs to coat and stack multiple semi-reflective and semi-lens surfaces. , cutting, grinding and polishing, resulting in a cumbersome manufacturing process and a low overall yield rate, which is not suitable for industrial mass production.
  • the diffractive optical waveguide mainly includes the surface relief grating waveguide manufactured by photolithography technology and the holographic volume grating waveguide manufactured based on holographic interference technology, although the diffractive optical waveguide will cause rainbow phenomenon and halo in the image due to grating diffraction, and there is an efficiency
  • the diffractive optical waveguide has obvious advantages due to its extremely high degree of design freedom and the mass production brought by nanoimprinting.
  • the existing diffractive optical waveguides can use coupling gratings such as rectangular gratings, sawtooth gratings, or inclined gratings to couple visible light into the waveguide
  • the coupling efficiency of the waveguide is low due to the grating diffraction loss.
  • the in-coupling efficiency of the rectangular grating is no higher than 20%, and the sawtooth grating and the The incoupling efficiency of the tilted grating will not be higher than 40%.
  • the final coupling efficiency of the coupling grating may be lower.
  • An advantage of the present invention is that it provides an optical waveguide device and its method and equipment, which can improve the utilization efficiency of light energy while ensuring mass production.
  • Another advantage of the present invention is to provide an optical waveguide device and its method and equipment, wherein, in an embodiment of the present invention, the optical waveguide device can achieve a balance between light energy utilization efficiency and mass production, It is convenient to expand its commercial utilization value.
  • Another advantage of the present invention is to provide an optical waveguide device and its method and equipment, wherein, in an embodiment of the present invention, the optical waveguide device can couple light into the waveguide substrate through reflection or refraction, In order to greatly improve the coupling efficiency, thereby greatly improving the utilization efficiency of light energy.
  • Another advantage of the present invention is to provide an optical waveguide device and its method and device, wherein, in an embodiment of the present invention, the optical waveguide device can realize high-brightness images without configuring a high-power projection light engine display, so as to avoid increasing the heat dissipation burden of the projection light engine.
  • Another advantage of the present invention is that it provides an optical waveguide device and its method and equipment, wherein, in an embodiment of the present invention, the optical waveguide device can realize the incoupling of light only by using the inclined side surface, which can not only improve The coupling efficiency of light can be improved, and the volume and weight of the optical waveguide can be further reduced to meet the current development trend of miniaturization and thinning.
  • Another advantage of the present invention is to provide an optical waveguide device and its method and apparatus, wherein in order to achieve the above objects, no expensive materials or complex structures need to be used in the present invention. Therefore, the present invention successfully and effectively provides a solution that not only provides an optical waveguide device, method and apparatus thereof, but also increases the practicality and reliability of said optical waveguide apparatus, method and apparatus thereof.
  • Another advantage of the present invention is to provide an optical waveguide device and its method and device, wherein the projection light engine of the augmented reality device is implemented as a laser beam scanning light engine, which can compensate for the red, green, and blue light rays caused by the light Due to the influence of dispersion and distortion caused by the waveguide grating diffraction of the waveguide device, the three-color images projected by the laser beam scanning optical machine can be normally overlapped and displayed.
  • the projection light engine of the augmented reality device is implemented as a laser beam scanning light engine, which can compensate for the red, green, and blue light rays caused by the light Due to the influence of dispersion and distortion caused by the waveguide grating diffraction of the waveguide device, the three-color images projected by the laser beam scanning optical machine can be normally overlapped and displayed.
  • an optical waveguide device including:
  • a waveguide substrate wherein the waveguide substrate has a first surface and a second surface parallel to each other;
  • a light coupling mechanism wherein the light coupling mechanism is arranged on the waveguide substrate, and the light coupling mechanism has a functional surface inclined relative to the first surface of the waveguide substrate for passing coupling light into the waveguide substrate by means of reflection or refraction, so that the light is transmitted between the first surface and the second surface of the waveguide substrate with total reflection;
  • a grating working mechanism wherein the grating working mechanism is formed on the waveguide substrate, and is used to diffusely couple the light out of the waveguide substrate by way of diffraction.
  • the waveguide substrate further has an inclined side, and there is a preset angle between the inclined side and the first surface, wherein the inclined side of the waveguide substrate is implemented is the functional surface of the light coupling mechanism.
  • the inclined side surface of the waveguide substrate is used to face the projection light engine, so that the image light projected through the projection light engine is refracted at the inclined side surface of the waveguide substrate to be coupled into the waveguide substrate.
  • the light coupling mechanism includes an anti-reflection film, wherein the anti-reflection film is disposed on the inclined side surface of the waveguide substrate.
  • the preset included angle satisfies the following conditions:
  • the light coupling mechanism is implemented as a reflective element, wherein the reflective element is correspondingly arranged on the inclined side surface of the waveguide substrate, and the first A surface is used to face the projection light engine, so that the image light projected by the projection light engine is reflected at the inclined side of the waveguide substrate to be coupled into the waveguide substrate.
  • the reflective element includes a reflective film, wherein the reflective film is disposed on the inclined side surface of the waveguide substrate.
  • the reflective element further includes a prism, wherein the reflective film is coated on the slope of the prism, and the slope of the prism is correspondingly bonded to the waveguide substrate the sloped sides.
  • the first side of the prism intersects the second surface of the waveguide substrate in parallel, and the second side of the prism perpendicularly intersects the first surface of the waveguide substrate. a surface.
  • the light incoupling mechanism is implemented as a refracting prism, wherein the refracting prism has an incoupling side surface and a slope extending obliquely relative to the incoupling side surface, wherein the refracting prism
  • the slope of the prism is correspondingly bonded to the second surface of the waveguide substrate, and the incoupling side surface of the refracting prism serves as the functional surface of the light incoupling mechanism.
  • the grating working mechanism is implemented as a two-dimensional grating, wherein the two-dimensional grating is formed on the first surface or the second surface of the waveguide substrate for The light transmitted in the waveguide substrate is diffracted so that the light is coupled out of the waveguide substrate in a two-dimensional diffuse manner.
  • the grating working mechanism is composed of a one-dimensional inflection grating and a one-dimensional outcoupling grating, wherein the one-dimensional inflection grating is formed on the first surface or the first surface of the waveguide substrate.
  • the two surfaces are used to change the direction of the light propagating in the waveguide substrate by means of diffraction, and first diffuse the light along one direction, wherein the one-dimensional outcoupling grating is correspondingly formed on the waveguide
  • the first surface or the second surface of the substrate is used to diffuse the light deflected by the one-dimensional folding grating in another direction and couple it out of the waveguide substrate.
  • the grating working mechanism is implemented as a one-dimensional outcoupling grating, wherein the one-dimensional outcoupling grating has a one-dimensional diffusion path, and the functional surface of the light incoupling mechanism is along Extending in a direction perpendicular to the one-dimensional diffusion path, it is used to diffuse the light coupled in through the light coupling mechanism along the one-dimensional diffusion path and couple it out of the waveguide substrate.
  • an embodiment of the present application further provides a method for manufacturing an optical waveguide device, including steps:
  • the master has a lenticular structure to be transferred corresponding to the lenticular working mechanism
  • a light coupling mechanism is arranged on the waveguide substrate, wherein the light coupling mechanism has a functional surface inclined relative to the surface of the waveguide substrate, and is used to couple light into the waveguide substrate by means of refraction or reflection, and the grating
  • the working mechanism is used to diffusively couple the light out of the waveguide substrate by way of diffraction.
  • an inclined surface is cut out from the side of the waveguide substrate to serve as the functional surface of the light coupling mechanism.
  • the present invention further provides an augmented reality device, which includes:
  • An optical waveguide device wherein the projection light engine and the optical waveguide device are correspondingly arranged on the device main body, so that the image light provided by the projection light engine is coupled into the optical waveguide by means of reflection or refraction device and couple out the optical waveguide device through diffraction, so that the user's eyes can receive and see the corresponding image.
  • the optical waveguide device includes:
  • a waveguide substrate wherein the waveguide substrate has a first surface and a second surface parallel to each other;
  • a light coupling mechanism wherein the light coupling mechanism is arranged on the waveguide substrate, and the light coupling mechanism has a functional surface inclined relative to the first surface of the waveguide substrate for passing coupling light into the waveguide substrate by means of reflection or refraction, so that the light is transmitted between the first surface and the second surface of the waveguide substrate with total reflection;
  • grating working mechanism is formed on the waveguide substrate for diffusely coupling the light out of the waveguide substrate by way of diffraction
  • the projection light engine includes a laser beam scanning optical machine, and when the image source includes a plurality of monochrome images of different colors, the laser beam scanning optical machine is used to modulate and project images of different colors.
  • the modulation is used to compensate the dispersion and distortion caused by the diffraction of the monochromatic image light of different colors through the grating working mechanism.
  • the laser beam scanning optical machine is used to project monochromatic image lights with different colors in different angles, so that when the monochromatic image lights of different colors are transmitted through the optical waveguide device and exit, Realize overlapping display of monochrome images of different colors.
  • the laser beam scanning optical machine is used to scan each image pixel in a monochromatic image of different colors in different angles to project corresponding image light.
  • the present invention further provides
  • a calibration method for a laser beam scanning optical machine for an optical waveguide device characterized in that the calibration method includes the steps of:
  • the optical waveguide device couples in light by means of reflection or refraction and couples out light by way of diffraction; when the multiple monochrome images of different colors are superimposed and displayed, they form a color image; the adjustment of the scanning angle is used to The dispersion and distortion caused by the diffraction of the image lights of different colors are compensated.
  • the present invention further provides a method for displaying images on an augmented reality device, the augmented reality device comprising a projection light engine implemented as a laser beam scanning optical machine and an optical waveguide device, the optical waveguide
  • the augmented reality device comprising a projection light engine implemented as a laser beam scanning optical machine and an optical waveguide device, the optical waveguide
  • the device is a hybrid optical waveguide device, the hybrid optical waveguide device couples in light by means of reflection or refraction and couples out light by means of diffraction, and is characterized in that the method for displaying an image includes the steps of:
  • the laser beam scanning optical machine projects the image light corresponding to each monochrome image according to the scanning angles corresponding to the monochrome images of different colors respectively, and the image light is coupled into the optical waveguide device through reflection or refraction and is transmitted through the light The total reflection in the waveguide device is transmitted to the grating working mechanism and diffracted out of the optical waveguide device for imaging;
  • the scanning angles corresponding to the monochrome images of different colors modulate the projection of the image light to compensate for the dispersion and distortion caused by the diffraction of the image lights of different colors.
  • the image light projected by the laser beam scanning optical machine is reflected or refracted by a reflective film, then coupled into the optical waveguide device, totally reflected, transmitted to the grating working mechanism, and diffracted out of the optical waveguide device After displaying the image.
  • the image light projected by the laser beam scanning optical machine is refracted by a refracting prism, coupled into the optical waveguide device, totally reflected and diffracted out of the optical waveguide device to display an image.
  • the light coupled into the optical waveguide device is coupled out of the optical waveguide device through a two-dimensional grating.
  • the light coupled into the optical waveguide device is coupled out of the optical waveguide device through one or more one-dimensional outcoupling gratings.
  • the light coupled into the optical waveguide device changes the diffusion angle of the light through a turning grating and couples the light out of the optical waveguide device through a one-dimensional outcoupling grating.
  • FIG. 1 is a schematic perspective view of an optical waveguide device according to an embodiment of the present invention.
  • Fig. 2 shows a schematic diagram of the optical path of the optical waveguide device according to the above embodiment of the present invention.
  • Fig. 3 shows a schematic diagram of the coupling-in principle of the optical waveguide device according to the above-mentioned embodiment of the present invention.
  • Fig. 4 shows a first modified implementation of the optical waveguide device according to the above-mentioned embodiments of the present invention.
  • Fig. 5 shows a second modified implementation of the optical waveguide device according to the above-mentioned embodiments of the present invention.
  • Fig. 6 shows a third variant implementation of the optical waveguide device according to the above-mentioned embodiments of the present invention.
  • Fig. 7 shows a fourth variant implementation of the optical waveguide device according to the above-mentioned embodiments of the present invention.
  • FIG. 8 is a schematic structural diagram of an augmented reality device according to an embodiment of the present application, which is implemented as AR glasses configured with an optical waveguide device.
  • Fig. 9 is a schematic structural diagram of another augmented reality device according to an embodiment of the present application, which is implemented as an AR-HUD configured with an optical waveguide device.
  • FIG. 10 is a schematic flowchart of a manufacturing method of an integrated optical waveguide device according to an embodiment of the present application.
  • Fig. 11 is a schematic diagram illustrating a calibration process of a projection light engine of an augmented reality device according to the above-mentioned embodiment of the present invention.
  • Fig. 12 shows the uncorrected dispersion and K-domain diagram before distortion of the projection light engine of the augmented reality device according to the above-mentioned embodiment of the present invention.
  • Fig. 13 shows the projected image of the projection light engine of the augmented reality device according to the above-mentioned embodiment of the present invention before being calibrated.
  • Fig. 14 shows the image displayed after the light projected by the projection light engine of the augmented reality device according to the above-mentioned embodiment of the present invention is not calibrated and passes through the optical waveguide device.
  • Fig. 15 shows a K-domain diagram after correcting dispersion and distortion of the projection light engine of the augmented reality device according to the above-mentioned embodiment of the present invention.
  • Fig. 16 shows a calibrated projection image of the projection light engine of the augmented reality device according to the above-mentioned embodiment of the present invention.
  • Fig. 17 shows an image displayed after the light projected by the projection light engine of the augmented reality device according to the above-mentioned embodiment of the present invention is calibrated and passes through the optical waveguide device.
  • the term "a” in the claims and the specification should be understood as “one or more”, that is, in one embodiment, the number of an element may be one, while in another embodiment, the number of the element Can be multiple. Unless it is clearly indicated in the disclosure of the present invention that there is only one element, the term “a” cannot be understood as unique or single, and the term “a” cannot be understood as a limitation on the number.
  • the present invention provides an optical waveguide device, which can improve light energy utilization efficiency while ensuring mass production, so as to achieve a better balance between product performance and mass production.
  • an optical waveguide device according to an embodiment of the present application is illustrated, wherein the optical waveguide device 1 is used to transmit the image light projected through the projection light engine 2 to the user's eyes, and the external ambient light It can pass through the optical waveguide device 1 to be incident into the eyes of the user, so that the user can obtain an augmented reality experience.
  • the optical waveguide device 1 may include a waveguide substrate 10 , an optical coupling mechanism 20 and a grating working mechanism 30 .
  • the waveguide substrate 10 has a first surface 11 and a second surface 12 parallel to each other.
  • the light coupling mechanism 20 is arranged on the waveguide substrate 10, and the light coupling mechanism 20 has a functional surface 200 inclined relative to the first surface 11 of the waveguide substrate 10, for coupling light into the waveguide substrate by means of reflection or refraction. 10 , so that the light is transmitted between the first surface 11 and the second surface 12 of the waveguide substrate 10 with total reflection.
  • the grating working mechanism 30 is formed on the waveguide substrate 10 , and is used to diffusively couple the light out of the waveguide substrate 10 by way of diffraction.
  • the light coupling mechanism 20 of the optical waveguide device 1 couples light into the waveguide substrate 10 through reflection or refraction, so as to greatly improve the light energy coupling efficiency and improve product performance, and the optical waveguide device 1
  • the grating outcoupling mechanism 30 can retain the advantages of mass production of the diffractive optical waveguide. Therefore, the optical waveguide device 1 of the present application can improve the utilization efficiency of light energy while ensuring mass production, thereby better realizing product performance and availability. The balance between mass production.
  • the waveguide substrate 10 further has an inclined side 13, and there is a preset angle ⁇ 0 between the inclined side 13 and the first surface 11.
  • the inclined side 13 of the waveguide substrate 10 is used to face the projection light engine 2, so that the image light projected by the projection light engine 2 first refracts at the inclined side 13 of the waveguide substrate 10, and then refracts on the first surface of the waveguide substrate 10 Total reflection occurs at 11 , so that the image light is transmitted between the first surface 11 and the second surface 12 of the waveguide substrate 10 with total reflection.
  • the waveguide substrate 10 can also be, but not limited to, be made of a light-transmitting resin material or a light-transmitting polymer material.
  • the inclined side 13 of the waveguide substrate 10 can be obtained by cutting the side of the waveguide substrate 10, that is, the side of the waveguide substrate 10 is cut out with an inclined surface as the functional surface 200 of the light coupling mechanism 20 In this way, the image light projected by the projection light engine 2 is refracted at the functional surface 200 of the light coupling mechanism 20 to be coupled into the waveguide substrate 10, so that the coupling of the light coupling mechanism 20 of the optical waveguide device 1 of the present application Efficiency can be as high as 95%.
  • the light coupling mechanism 20 may include an anti-reflection film 21, wherein the anti-reflection film 21 is provided on the inclined side 13 of the waveguide substrate 10 to reduce the reflection of the image light on the waveguide substrate 10.
  • the reflection of the inclined side surface 13 increases the transmittance of the functional surface 200 of the light coupling mechanism 20 , which helps to further improve the coupling efficiency of the light coupling mechanism 20 of the optical waveguide device 1 .
  • the anti-reflection film 21 can be provided on the inclined side surface 13 of the waveguide substrate 10 by means such as coating or bonding, but not limited thereto.
  • the grating working mechanism 30 of the optical waveguide device 1 can be implemented as, but not limited to, a two-dimensional grating 31, wherein the two-dimensional grating 31 is formed on the surface of the waveguide substrate 10.
  • the second surface 12 is used for diffracting the image light transmitted in the waveguide substrate 10 , so that the image light transmitted in the waveguide substrate 10 is coupled out of the waveguide substrate 10 in a two-dimensional diffuse manner.
  • the two-dimensional grating 31 diffracts the image light into different diffraction orders In this way, the diffracted light of a certain diffraction order is coupled out to enter the user's eyes, while the diffracted light of other diffraction orders will continue to transmit in the waveguide substrate 10 along different propagation directions with total reflection, so as to meet again
  • the two-dimensional grating 31 is continuously diffracted, so that the image light is coupled out of the waveguide substrate 10 in a two-dimensional diffuse manner.
  • the two-dimensional grating 31 may also be formed on the first surface 11 of the waveguide substrate 10 , which will not be repeated in the present application.
  • the two-dimensional grating 31 may, but is not limited to, be implemented as a relief grating or a holographic volume grating.
  • the preset included angle ⁇ 0 between the inclined side 13 and the first surface 11 is an acute angle, so that the projection light engine 2 is located on a side adjacent to the second surface 12 of the waveguide substrate 10 .
  • the image light is coupled out from the second surface 12 of the waveguide substrate 10 to be incident into the user's eyes, so the projection light engine 2 and the user's eyes are located on the same side of the light waveguide device 1, so that the projection light engine 2 and the light waveguide device 1 can be combined together
  • the glasses are configured as AR glasses, so that the projection light engine 2 is placed at the temple of the AR glasses.
  • the two-dimensional grating 31 can also be formed on the first surface 11 of the waveguide substrate 10, so that the image light is coupled out from the first surface 11 of the waveguide substrate 10 to be incident on the The eyes of the user, and thus the projection light engine 2 and the eyes of the user are located on opposite sides of the optical waveguide device 1 .
  • both the light coupling mechanism 20 and the grating working mechanism 30 in the optical waveguide device 1 of the present application may have other different structural forms, or be combined with the waveguide substrate 10 in other ways.
  • the optical waveguide device 1 of the above-mentioned embodiments of the present application may have various variant implementations, all of which can better achieve a balance between product performance and mass production.
  • Fig. 4 shows a first variant implementation of the optical waveguide device 1 according to the above-mentioned embodiments of the present application.
  • the difference of the optical waveguide device 1 according to the first variant embodiment of the present application is that the light coupling mechanism 20 can be implemented as a reflective element 22, wherein the reflective The elements 22 are correspondingly arranged on the inclined side surface 13 of the waveguide substrate 10, and the first surface 11 of the waveguide substrate 10 is used to face the projection light engine 2, so that the image light projected by the projection light engine 2 first passes through the first surface 11 of the waveguide substrate 10.
  • a surface 11 is incident to the inclined side 13 of the waveguide substrate 10, and then reflected back to the first surface 11 of the waveguide substrate 10 by the reflective element 22, and total reflection occurs at the first surface 11 of the waveguide substrate 10, so that the waveguide
  • the image light is transmitted between the first surface 11 and the second surface 12 of the substrate 10 through total reflection.
  • the reflective element 22 may include a reflective film 221, wherein the reflective film 221 is disposed on the inclined side surface 13 of the waveguide substrate 10 for reflecting the image light so that the incident light from the first surface 11 The image light is reflected back to the first surface 11 of the waveguide substrate 10 , which can still improve the coupling efficiency of the light coupling mechanism 20 of the optical waveguide device 1 .
  • the anti-reflection film 21 in the above-mentioned embodiment is replaced by a reflective film 221 so as to couple image light into the waveguide substrate 10 by reflection.
  • the reflective element 22 can also be embodied as a reflective mirror coated with a reflective coating.
  • the reflective element 22 may further include a prism 222 with an inclined surface 2221, wherein the reflective film 221 is coated on the inclined surface 2221 of the prism 222, and the inclined surface 2221 of the prism 222 is correspondingly bonded.
  • the reflective film 221 is located between the inclined surface 2221 of the prism 222 and the inclined side 13 of the waveguide substrate 10 to protect the reflective film 221 .
  • the slope 2221 of the prism 222 is implemented as the functional surface 200 of the light coupling mechanism 20 .
  • the reflective element 22 may not include the prism 222 , and the reflective film 221 may also be directly provided on the inclined side surface 13 of the waveguide substrate 10 by means such as coating or bonding.
  • the prism 222 of the reflective element 22 further has a first side 2222 and a second side 2223 , wherein when the inclined surface 2221 of the prism 222 is correspondingly attached to the inclined side of the waveguide substrate 10 At 13 o'clock, the first side 2222 of the prism 222 intersects the second surface 12 of the waveguide substrate 10 in parallel, and the second side 2223 of the prism 222 intersects the first surface 11 of the waveguide substrate 10 perpendicularly, so as to form a rectangular structure
  • the optical waveguide device 1 helps to be used as a display lens in AR glasses.
  • Fig. 5 shows a second modified implementation of the optical waveguide device 1 according to the above-mentioned embodiments of the present application.
  • the difference of the optical waveguide device 1 according to the second variant embodiment of the present application is that: the light coupling mechanism 20 can also be implemented as a refracting prism 23 only,
  • the refracting prism 23 has a coupling side 231 and a slope 232 extending obliquely relative to the coupling side 231, wherein the slope 232 of the refracting prism 23 is correspondingly bonded to the second surface 12 of the waveguide substrate 10, and the refracting prism
  • the in-coupling side 231 of 23 serves as the functional surface 200 of the light in-coupling mechanism 20, and is used to correspond to the projection light engine 2, so that the image light projected by the projection light engine 2 is firstly refracted at the in-coupling side 231 of the refracting prism 23.
  • the waveguide substrate 10 may have a rectangular structure, that is, the waveguide substrate 10 has vertical sides, and there is no need to set the inclined side surfaces 13 .
  • the slope 232 of the refracting prism 23 is correspondingly glued to the second surface 12 of the waveguide substrate 10 . It can be understood that the refractive index of the refracting prism 23 may be the same as or different from that of the waveguide substrate 10 , and the specific conditions for achieving total reflection shall prevail.
  • the incoupling side 231 of the refracting prism 23 is used to be perpendicular to the projection path of the projection light engine 2, so that the image light projected by the projection light engine 2 is vertically incident on the incoupling side 231 of the refracting prism 23 to maximize Minimizing the reflection of the image light by the in-coupling side surface 231 of the refracting prism 23 helps to improve the in-coupling efficiency of the light in-coupling mechanism 20 .
  • the direction of propagation of the coupled image light is towards away from the optical coupler.
  • the propagation direction of the coupled-in image light is from the second side 2223 of the prism 222 to the direction of the first side 2222 of the prism 222 .
  • Fig. 6 shows a third modified implementation of the optical waveguide device 1 according to the above-mentioned embodiments of the present application.
  • the difference of the optical waveguide device 1 according to the third variant embodiment of the present application is that the grating working mechanism 30 can be composed of a one-dimensional turning grating 32 and a One-dimensional outcoupling grating 33, wherein one-dimensional inflection grating 32 is formed on the first surface 11 or the second surface 12 of waveguide substrate 10, and is used to change the image light coupled in through refracting prism 23 in waveguide substrate 10 through diffraction.
  • the one-dimensional outcoupling grating 33 is correspondingly formed on the second surface 12 of the waveguide substrate 10, and is used to diffuse the image light after turning in another direction And coupled out the waveguide substrate 10 .
  • the one-dimensional outcoupling grating 33 may also be formed on the first surface 11 of the waveguide substrate 10 , which will not be repeated in this application.
  • the refracting prism 23 is located at the upper left corner of the waveguide substrate 10, wherein the one-dimensional refracting grating 32 is located on the right side of the prism 222, and the one-dimensional refracting grating 32 corresponds to the other side of the refracting prism 23, Wherein the one-dimensional outcoupling grating 33 is located below the one-dimensional inflection grating 32 .
  • the coupled image light will be totally reflected from left to right in the waveguide substrate 10 and transmitted to the one-dimensional
  • the deflection grating 32 is diffracted, so that a part of the image light continues to transmit from left to right with total reflection to encounter the one-dimensional deflection grating 32 again and is diffracted, and another part of the image light is deflected to be diffracted by the above It is totally reflected downward and transmitted to the one-dimensional outcoupling grating 33 to be diffracted, so as to be coupled out of the waveguide substrate 10 .
  • the image light coupled in is transmitted laterally to the one-dimensional refraction grating 32 in the waveguide substrate 10; then, the one-dimensional refraction grating 32 diffracts the laterally transmitted image light , so that a part of the image light is still transmitted transversely to be diffracted by the one-dimensional deflection grating 32 again, and another part of the image light is transmitted longitudinally to the one-dimensional outcoupling grating 33; finally, the one-dimensional outcoupling grating 33 passes through the diffraction longitudinal The transmitted image light, so that a part of the image light continues to be transmitted longitudinally to be diffracted by the one-dimensional outcoupling grating 33 again, and another part of the image light is coupled out of the waveguide substrate 10, thereby realizing two-dimensional diffusion of the image light
  • the ground is coupled out of the waveguide substrate 10 .
  • the exit pupil of the projection light engine 2 is usually small, so that the optical waveguide device 1 continuously transmits the projected image light through the grating working mechanism 30.
  • the exit pupil is replicated and coupled out in two dimensions to obtain a sufficiently large eyebox in two dimensions for viewing by the user.
  • the grating working mechanism 30 may only have the function of replicating and coupling out the exit pupil in one dimension, and the projection light engine 2 has a larger exit pupil in another dimension.
  • the functional surface 200 of the light coupling mechanism 20 of the optical waveguide device 1 needs to match the size of the exit pupil of the projection light engine 2, so as to couple the image light projected by the projection light engine 2 into the waveguide substrate 10 correspondingly. .
  • Fig. 7 shows a fourth variant implementation of the optical waveguide device 1 according to the above-mentioned embodiments of the present application.
  • the difference of the optical waveguide device 1 according to the fourth variant embodiment of the present application is that the grating working mechanism 30 only includes a one-dimensional outcoupling grating 33, And the one-dimensional outcoupling grating 33 has a one-dimensional diffusion path 330 for diffusing and outcoupling the image light along the one-dimensional diffusion path 330;
  • the direction of the one-dimensional diffusion path 330 extends, and the exit pupil of the projection light engine 2 covers the entire functional surface 200 of the light coupling mechanism 20, so that the optical waveguide device 1 can still diffuse the image light coupled in through the light coupling mechanism 20
  • the ground is coupled out of the waveguide substrate 10 in order to obtain a sufficiently large eyebox in two dimensions for easy viewing by the user.
  • the refracting prism 23 extends laterally, wherein the one-dimensional outcoupling grating 33 is located below the refracting prism 23 , and the one-dimensional diffusion path 330 of the one-dimensional outcoupling grating 33 is vertically arranged.
  • the projection light engine 2 is set correspondingly so that the lateral exit pupil of the projection light engine 2 matches the in-coupling side surface 231 of the refracting prism 23, that is, the lateral exit pupil of the projection light engine 2 can be larger than its longitudinal exit pupil.
  • the pupil enables the projected image light to laterally cover the incoupling side surface 231 of the refracting prism 23, so that an eye box with a certain size in two dimensions can be obtained.
  • the types of the one-dimensional inflection grating 32 and the one-dimensional outcoupling grating 33 can be adjusted according to specific circumstances, for example, but not limited to, they can be implemented as surface relief gratings, which can be processed and formed on surface of the waveguide substrate 10 .
  • the one-dimensional inflection grating 32 and the one-dimensional outcoupling grating 33 can also be implemented as holographic gratings, so as to form periodic light and dark stripes in the material through holographic exposure.
  • the present application further provides an augmented reality device 4, wherein the augmented reality device 4 may include a projection light engine 2, a device main body 40 and an optical waveguide The device 1, wherein the projection light engine 2 and the optical waveguide device 1 are correspondingly arranged on the device main body 40, so that the image light provided by the projection light engine 2 is coupled into the waveguide substrate 10 by the light coupling mechanism 20 of the optical waveguide device 1, and After being totally reflected in the waveguide substrate 10 and propagating to the grating working mechanism 30 , it is diffusely coupled out of the waveguide substrate 10 by the grating working mechanism 30 and received by the user's eyes to see the corresponding image.
  • the augmented reality device 4 may include a projection light engine 2, a device main body 40 and an optical waveguide The device 1, wherein the projection light engine 2 and the optical waveguide device 1 are correspondingly arranged on the device main body 40, so that the image light provided by the projection light engine 2 is coupled into the waveguide substrate 10 by the light coupling mechanism 20 of the optical waveguide device 1, and
  • the device body 40 of the augmented reality device 4 may be implemented as a spectacle frame 41, which includes a beam portion 411 and a pair of temple portions 412, wherein the temple portion 412 respectively extending backward from the left and right sides of the beam portion 411 to form the device main body 40 having a spectacle frame structure.
  • the optical waveguide device 1 is disposed on the beam portion 411 as a spectacle lens for near-eye display.
  • the functional surface 200 of the light coupling mechanism 20 in the optical waveguide device 1 corresponds to the beam part 411 of the spectacle frame 41; at this time, the projection light engine 2 is installed on the beam of the spectacle frame 41 part 411, so that when the user wears the augmented reality device 4, the projection light engine 2 is correspondingly located near the forehead of the user, which helps to reserve a larger installation space for the projection light engine 2.
  • the augmented reality device 4 may also be implemented as a head-up display (HUD).
  • HUD head-up display
  • the AR-HUD precisely combines the image information with the actual traffic conditions through the specially designed internal optical system, and projects the tire pressure, speed, rotational speed and other information to the front windshield and reflects it to form a virtual image in the distance to enter the human eye. , so that the user can observe the prompt information integrated with the actual road conditions through the display area of the front windshield.
  • the AR-HUD is compact and thin, it can greatly save the installation space in the car. Therefore, the AR-HUD is more intuitive for the user, and through Combined with the real road condition information, some information such as virtual arrows will appear in real time to intuitively guide the driver forward, so as to avoid crossing the intersection and distracting the driver's attention during driving.
  • FIG. 9 shows a modified implementation of the augmented reality device 4 according to the above-mentioned embodiment of the present application, wherein the device body 40 of the augmented reality device 4 is implemented as a windshield 42, and the optical waveguide device 1 Correspondingly arranged on the inner side of the windshield 42, so that the image light projected by the projection light engine 2 is projected to the windshield 42 after being transmitted through the optical waveguide device 1, and reflected inwardly through the windshield 42 to enter Into the eyes, so that users can see virtual images at a longer distance.
  • the device body 40 of the augmented reality device 4 is implemented as a windshield 42
  • the optical waveguide device 1 Correspondingly arranged on the inner side of the windshield 42, so that the image light projected by the projection light engine 2 is projected to the windshield 42 after being transmitted through the optical waveguide device 1, and reflected inwardly through the windshield 42 to enter Into the eyes, so that users can see virtual images at a longer distance.
  • the windshield 42 in the augmented reality device 4 can be implemented as, but not limited to, the front windshield of vehicles such as airplanes and automobiles, so that the augmented reality device 4 is implemented as an AR-HUD.
  • the optical waveguide device 1 in the AR-HUD of the present application couples the image light projected by the projection light engine 2 into the waveguide substrate 10 through the reflection or refraction of the light coupling mechanism 20, and The coupled-in image light is diffusely coupled out of the waveguide substrate 10 through the diffraction of the grating working mechanism 30 , so as to improve light energy utilization efficiency on the basis of ensuring mass production.
  • the projection of the projection light engine has to be greatly increased The power makes it difficult for the projection light engine to dissipate heat due to its high power.
  • the augmented reality device 4 of the present application can form a high-contrast and high-quality virtual image in front of the windshield 42 for viewing by the user only by using the projection light engine 2 with low power.
  • an embodiment of the present application further provides a method for manufacturing an optical waveguide device, which may include steps:
  • the motherboard in the step S110 of the manufacturing method of the optical waveguide device of the present application, can be fabricated by photolithography.
  • photolithographic processing methods may include, but are not limited to, laser direct writing, electron beam direct writing, mask photolithography, and two-beam interference exposure.
  • the optical waveguide device provided in this application is a hybrid optical waveguide device.
  • the hybrid here refers to the mixture of geometric and diffraction methods. Specifically, the light emitted by the projection light engine is reflected or refracted through the optical coupling mechanism. The light is coupled into the waveguide substrate, and then the light passes through the grating working mechanism in the waveguide substrate for pupil expansion and outcoupling. Since the sum of the diffraction vectors diffracted by the light during the whole propagation process is no longer zero, dispersion and distortion will occur when the light is coupled out from the waveguide substrate.
  • Figure 12 shows the K-domain diagram of the color projection light diffracted from the optical waveguide device.
  • the projection light engine 2 When the projection image shown in Figure 13 is projected by the projection light engine 2, the resulting display image is shown in Figure 14. Different colors Images are separated, and images of the same color will also be distorted due to diffraction, so the projection light engine 2 needs to be calibrated to reduce or eliminate the above-mentioned dispersion and distortion. That is to say, when the image source includes multiple monochrome images of different colors, the projection light engine needs to modulate the monochrome images of different colors before projecting. The modulation is used to compensate the monochrome images of different colors. Dispersion and distortion caused by diffraction, so that monochrome images of different colors can be overlapped and displayed.
  • the present invention provides a laser beam scanning optical machine adapted to an optical waveguide device, the laser beam scanning optical machine is used to modulate and project monochromatic image light of different colors, and the modulation is used to compensate the monochromatic image light of different colors The dispersion and distortion caused by the diffraction of the image light by the grating working mechanism.
  • the projection light engine 2 of the augmented reality device 4 can be implemented as a laser beam scanning optical machine, which can compensate the dispersion and distortion of the monochromatic light caused by the diffraction of the waveguide grating of the grating working mechanism 30 of the optical waveguide device 1, so that the laser beam
  • the monochrome images of different colors projected by the scanning light machine can be displayed in normal overlap.
  • Laser scanning projection display technology relies on the characteristics of good collimation and directionality of laser beams, uses scanning devices such as rotating mirrors or vibrating mirrors to scan laser beams to corresponding positions at high speed, and uses the persistence of human vision to form a complete surface.
  • the laser beam scanning optical machine may include a laser light source, a light modulator, a beam scanning device, a laser beam combining device and a controller.
  • the image signal is loaded on the optical modulator to control the intensity of the laser beam
  • the synchronization signal is loaded on the scanning device (such as the optical deflector), so that the laser beam scans according to a certain rule to form an image.
  • the laser beam scanning optical machine is used to project monochrome image lights with different colors in different angles, so that when the monochrome image lights of different colors are transmitted and emitted through the optical waveguide device, the monochrome images of different colors can be overlapped and displayed . Furthermore, the laser beam scanning optical machine is used to scan each image pixel in the monochromatic image of different colors in different angles to project corresponding image light.
  • the present invention also provides a calibration method for a laser beam scanning optical machine adapted to an optical waveguide device.
  • the calibration method includes the steps of:
  • the optical waveguide device couples in light through reflection or refraction and couples out light through diffraction; multiple monochrome images of different colors are superimposed and displayed as a color image; the adjustment of the scanning angle is used to compensate the image light of different colors Dispersion and distortion caused by diffraction.
  • step (B) includes: when projecting the image light corresponding to each monochrome image, traverse each image pixel of the monochrome image, and adjust the scanning angle of the laser beam scanning optical machine for the image pixels traversed to To make the display position of the traversed image pixel approach the target position, when the traversed image pixel's display position reaches the target position, record the corresponding scanning angle of the traversed image pixel until each image pixel of the monochrome image is recorded The corresponding scanning angle is used to complete the calibration of the monochrome image.
  • the target position in the foregoing embodiment is a theoretical position where there is no dispersion and no distortion occurs.
  • the optical machine images are scanned by laser beams and coupled into the optical waveguide device 1 for image calibration to compensate red, green and blue images respectively.
  • the light rays of the three-color image are affected by dispersion and distortion caused by the diffraction of the waveguide grating of the grating working mechanism 30 of the optical waveguide device 1 , so that the three-color image projected by the laser beam scanning optical machine can be normally overlapped and displayed.
  • image light can be coupled in through reflection or refraction, and image light can be coupled out through diffraction without dispersion and distortion.
  • the calibration process of the laser beam scanning optical machine includes the following steps: divide the calibration image source into monochrome images of different colors, such as RGB three-color images, and perform calibration respectively.
  • monochrome images of different colors such as RGB three-color images
  • the optical machine can directly call the driving conditions for image pixel calibration, and couple it into the optical waveguide device 1 to obtain the final image with dispersion and distortion compensation.
  • the present invention also provides a method for displaying images on an augmented reality device.
  • the augmented reality device includes a projection light engine implemented as a laser beam scanning optical machine and an optical waveguide device, the optical waveguide device is a hybrid optical waveguide device, and the hybrid optical waveguide device Light is coupled in by reflection or refraction and light is coupled out by diffraction, wherein the method for displaying an image comprises the steps of:
  • the laser beam scanning optical machine projects the image light corresponding to each monochrome image according to the scanning angles corresponding to the monochrome images of different colors.
  • the image light is coupled into the optical waveguide device through reflection or refraction, and is transmitted to the grating through total reflection in the optical waveguide device.
  • the working mechanism diffracts out the optical waveguide device and forms an image;
  • the scanning angles corresponding to the monochrome images of different colors modulate the projection of the image light, which is used to compensate the dispersion and distortion caused by the diffraction of the image light of different colors.
  • FIG 15 is the K-domain diagram of the color projection light coupled out from the optical waveguide device after the laser beam scanning optical machine is calibrated
  • Figure 16 is the projected image of the laser beam scanning device after calibration
  • the different color images in the projected image of the calibrated laser beam scanning device are separated and distorted, and the displayed image obtained after it propagates in the optical waveguide device and is coupled out by grating diffraction is shown in Figure 17.
  • the three-color image is displayed The images are superimposed to form white light, that is, the three colors can be superimposed and displayed. It can be seen that the separation of the projected image of the calibrated laser beam scanning device is used to compensate the image dispersion and distortion caused by grating diffraction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光波导装置(1)及其制造方法。光波导装置(1)包括:一波导基板(10),其中波导基板(10)具有相互平行的一第一表面(11)和一第二表面(12);一光耦入机构(20),其中光耦入机构(20)被设置于波导基板(10),并且光耦入机构(20)具有相对于波导基板(10)的第一表面(11)倾斜的一功能面(200),用于通过反射或折射的方式将光线耦入波导基板(10),以使光线在波导基板(10)的第一表面(11)和第二表面(12)之间全反射地传输;以及一光栅工作机构(30),其中光栅工作机构(30)被形成于波导基板(10),用于通过衍射的方式将光线扩散地耦出波导基板(10),以便在保证量产化的同时,提高光能利用效率。

Description

[根据细则37.2由ISA制定的发明名称] 一种光波导装置及其制造方法 技术领域
本发明涉及增强现实技术领域,特别是涉及光波导装置及其方法和设备。
背景技术
增强现实作为一种将虚拟世界信息与真实世界信息“无缝”集成的技术,是将微型投影仪上的像素通过光学组合器投射到人眼中,并同时透过光学组合器看到真实世界,即将通过微型投影仪提供的虚拟内容与真实环境实时地叠加到了同一个画面或空间以同时存在,使用户获得虚拟与现实融合的体验。因此,该光学组合器的设计要求之一就是不能遮挡前方视线,具有较高的透过率。
目前市场上比较成熟的增强现实技术主要分为棱镜方案、自由曲面方案、Bird Bath方案以及光波导方案等。但从光学效果、外观形态和量产前景来说,光波导是目前最佳的增强现实方案,具有极好的发展潜力。众所周知,光波导的基础是轻薄透明的玻璃基底(其厚度一般在几毫米或亚毫米级别),使得光通过在该玻璃基底的上下表面之间来回全反射以前进,即当传输介质的折射率大于周围介质的折射率且在波导中的入射角大于全反射临界角时,光可以在该光波导内发生全反射以进行无泄漏地传输。这样,来自投影仪的图像光被耦入该光波导后,图像光就在该光波导内继续无损地传播,直至被后续结构耦出。
目前,市面上的波导通常被分为几何阵列波导和衍射光波导。该几何阵列光波导通过阵列反射镜堆叠来实现图像的输出和动眼眶的扩大,虽然其图像质量和效率可以达到较高的水准,但却需要对多个半反半透镜面镀膜并进行叠合、切割、研磨以及抛光,导致其制造工艺流程繁冗,且总体良率较低,不适合工业上的批量化生产。该衍射光波导则主要有利用光刻技术制造的表面浮雕光栅波导和基于全息干涉技术制造的全息体光栅波导,虽然该衍射光波导会因光栅衍射而导致图像有彩虹现象和光晕,且存在效率偏低等问题,但在生产工艺方面,该衍射光波导因具有极高的设计自由度和由纳米压印加工带来的可量产性,而具有明显的优势。
然而,现有的衍射光波导虽然能够采用诸如矩形光栅、锯齿光栅或倾斜光栅 等耦入光栅将可见光耦入波导,但却会因光栅衍射损失而导致波导耦入效率偏低。例如,当该耦入光栅的光栅周期范围为200nm至1um,并以一定角度范围入射的光被该耦入光栅衍射时,该矩形光栅的耦入效率不高于20%,该锯齿光栅和该倾斜光栅的耦入效率均不会高于40%。此外,由于考虑到实际工艺制作过程中的可量产性,还需要对该耦入光栅的结构形貌做一定的限制,因此该耦入光栅的最终耦入效率可能会更低。
发明内容
本发明的一优势在于提供了光波导装置及其方法和设备,其能够在保证量产化的同时,提高光能利用效率。
本发明的另一优势在于提供了光波导装置及其方法和设备,其中,在本发明的一实施例中,所述光波导装置能够实现光能利用效率和可量产性之间的平衡,便于拓展其商业化利用价值。
本发明的另一优势在于提供了光波导装置及其方法和设备,其中,在本发明的一实施例中,所述光波导装置能够通过反射或折射的方式将光耦入至波导基板内,以大幅地提高耦入效率,进而大幅地提高光能利用效率。
本发明的另一优势在于提供了光波导装置及其方法和设备,其中,在本发明的一实施例中,所述光波导装置无需配置高功率的投影光引擎,就能够实现高亮度的图像显示,以避免增大所述投影光引擎的散热负担。
本发明的另一优势在于提供了光波导装置及其方法和设备,其中,在本发明的一实施例中,所述光波导装置能够仅利用倾斜侧面就能够实现光线的耦入,不仅能够提高光的耦入效率,而且还能够进一步减小光波导的体积和重量,以便符合当下小型化、轻薄化的发展潮流。
本发明的另一优势在于提供了光波导装置及其方法和设备,其中为了达到上述目的,在本发明中不需要采用昂贵的材料或复杂的结构。因此,本发明成功和有效地提供一解决方案,不只提供光波导装置及其方法和设备,同时还增加了所述光波导装置及其方法和设备的实用性和可靠性。
本发明的另一优势在于提供了光波导装置及其方法和设备,其中增强现实设备的投影光引擎实施为激光束扫描光机,其能够补偿红、绿、蓝三色的光线由所述光波导装置的波导光栅衍射引起的色散、畸变影响,从而使所述激光束扫描光 机投射的三色图像能够正常的重合显示。
为了实现上述至少一优势或其他优势和目的,本发明提供了光波导装置,包括:
一波导基板,其中所述波导基板具有相互平行的一第一表面和一第二表面;
一光耦入机构,其中所述光耦入机构被设置于所述波导基板,并且所述光耦入机构具有相对于所述波导基板的所述第一表面倾斜的一功能面,用于通过反射或折射的方式将光线耦入所述波导基板,以使该光线在所述波导基板的所述第一表面和所述第二表面之间全反射地传输;以及
一光栅工作机构,其中所述光栅工作机构被形成于所述波导基板,用于通过衍射的方式将该光线扩散地耦出所述波导基板。
根据本申请的一实施例,所述波导基板进一步具有一倾斜侧面,并且所述倾斜侧面与所述第一表面之间具有一预设夹角,其中所述波导基板的所述倾斜侧面被实施为所述光耦入机构的所述功能面。
根据本申请的一实施例,所述波导基板的所述倾斜侧面用于面向投影光引擎,使得经由该投影光引擎投射的图像光线在所述波导基板的所述倾斜侧面处发生折射以耦入所述波导基板。
根据本申请的一实施例,所述光耦入机构包括一增透膜,其中所述增透膜被设于所述波导基板的所述倾斜侧面。
根据本申请的一实施例,所述预设夹角满足以下条件:
Figure PCTCN2022114732-appb-000001
其中,n为所述波导基板的折射率;θ 0为所述预设夹角;θ为图像光线与所述第一表面的法线之间的夹角。
根据本申请的一实施例,所述光耦入机构被实施为一反射元件,其中所述反射元件被对应地设置于所述波导基板的所述倾斜侧面,并且所述波导基板的所述第一表面用于面向投影光引擎,使得经由该投影光引擎投射的图像光线在所述波导基板的所述倾斜侧面处发生反射以耦入所述波导基板。
根据本申请的一实施例,所述反射元件包括一反射膜,其中所述反射膜被设于所述波导基板的所述倾斜侧面。
根据本申请的一实施例,所述反射元件进一步包括一棱镜,其中所述反射膜 被镀于所述棱镜的斜面,并且所述棱镜的所述斜面被对应地贴合于所述波导基板的所述倾斜侧面。
根据本申请的一实施例,所述棱镜的第一侧面平行地相交于所述波导基板的所述第二表面,并且所述棱镜的第二侧面垂直地相交于所述波导基板的所述第一表面。
根据本申请的一实施例,所述光耦入机构被实施为一折射棱镜,其中所述折射棱镜具有一耦入侧面和相对于所述耦入侧面倾斜地延伸的一斜面,其中所述折射棱镜的所述斜面被对应地贴合于所述波导基板的所述第二表面,并且所述折射棱镜的所述耦入侧面作为所述光耦入机构的所述功能面。
根据本申请的一实施例,所述光栅工作机构被实施为二维光栅,其中所述二维光栅被形成于所述波导基板的所述第一表面或所述第二表面,用于对在所述波导基板内传输的该光线进行衍射,以使该光线二维扩散地耦出所述波导基板。
根据本申请的一实施例,所述光栅工作机构由一维转折光栅和一维耦出光栅组成,其中所述一维转折光栅被形成于所述波导基板的所述第一表面或所述第二表面,用于通过衍射的方式改变该光线在所述波导基板内传播的方向,并将该光线先沿着一个方向进行扩散,其中所述一维耦出光栅被对应地形成于所述波导基板的所述第一表面或所述第二表面,用于将经由所述一维转折光栅转向后的该光线沿另一个方向扩散并耦出所述波导基板。
根据本申请的一实施例,所述光栅工作机构被实施为一维耦出光栅,其中所述一维耦出光栅具有一维扩散路径,并且所述光耦入机构的所述功能面沿着垂直于所述一维扩散路径的方向延伸,用于使经由所述光耦入机构耦入的该光线沿着所述一维扩散路径扩散并耦出所述波导基板。
根据本申请的另一方面,本申请的一实施例进一步提供了光波导装置的制造方法,包括步骤:
制作母板,其中该母板具有与光栅工作机构相对应的待转印的光栅结构;和
通过纳米压印方式,利用该母板在波导基板的表面加工形成该光栅工作机构;以及
设置一光耦入机构于该波导基板,其中该光耦入机构具有相对于该波导基板的表面倾斜的一功能面,用于通过折射或反射的方式将光线耦入该波导基板,并且该光栅工作机构用于通过衍射的方式将该光线扩散地耦出该波导基板。
根据本申请的一实施例,该波导基板的侧边被切出一倾斜面,以作为该光耦入机构的该功能面。
根据本申请的另一方面,本发明进一步提供一种增强现实设备,其包括:
一设置主体;
一投影光引擎;以及
一光波导装置,其中所述投影光引擎和所述光波导装置被对应地设置于所述设备主体,使得经由所述投影光引擎提供的图像光线通过反射或折射的方式耦入所述光波导装置并且通过衍射的方式耦出所述光波导装置,从而使用户眼睛接收以看到对应的图像。
根据本申请的一实施例,所述光波导装置包括:
一波导基板,其中所述波导基板具有相互平行的一第一表面和一第二表面;
一光耦入机构,其中所述光耦入机构被设置于所述波导基板,并且所述光耦入机构具有相对于所述波导基板的所述第一表面倾斜的一功能面,用于通过反射或折射的方式将光线耦入所述波导基板,以使该光线在所述波导基板的所述第一表面和所述第二表面之间全反射地传输;以及
一光栅工作机构,其中所述光栅工作机构被形成于所述波导基板,用于通过衍射的方式将该光线扩散地耦出所述波导基板
根据本申请的一实施例,所述投影光引擎包括一激光束扫描光机,在图像源包括多个不同颜色的单色图像时,所述激光束扫描光机用于调制并投射不同颜色的单色图像光,所述调制用于补偿所述不同颜色的单色图像光经所述光栅工作机构衍射引起的色散与畸变。
根据本申请的一些实施例,所述激光束扫描光机用于分角度地投射具有不同颜色的单色图像光,以使不同颜色的单色图像光经由所述光波导装置传输并出射时,实现不同颜色的单色图像重合显示。
根据本申请的一些实施例,所述激光束扫描光机用于分角度地扫描不同颜色的单色图像中各图像像素以投射相应的图像光。根据本申请的另一方面,本发明进一步提供
一种用于光波导装置的激光束扫描光机的标定方法,其特征在于,所述标定方法包括步骤:
(A)通过所述激光束扫描光机分别投射多个不同颜色的单色图像所对应的 图像光,所述图像光分别经过所述光波导装置后成像显示;以及
(B)在投射所述多个不同颜色的单色图像的图像光中任一颜色的图像光时,调整所述激光束扫描光机的扫描角度以使该图像光所对应单色图像的显示位置趋于目标位置,在该图像光所对应单色图像的显示位置达到目标位置时,记录该图像光所对应单色图像中各图像像素相应的扫描角度;
其中,所述光波导装置通过反射或者折射的方式耦入光线并通过衍射的方式耦出光线;所述多个不同颜色的单色图像重合显示时为彩色图像;所述扫描角度的调整用于补偿所述不同颜色的图像光经衍射引起的色散与畸变。
根据本申请的另一方面,本发明进一步提供一种增强现实设备显示图像的方法,所述增强现实设备包括实施为激光束扫描光机的一投影光引擎和一光波导装置,所述光波导装置是混合光波导装置,所述混合光波导装置通过反射或折射的方式耦入光线和通过衍射的方式耦出光线,其特征在于,所述显示图像的方法包括步骤:
所述激光束扫描光机分别按照不同颜色的单色图像各自对应的扫描角度投射各单色图像对应的图像光,所述图像光经反射或折射耦入所述光波导装置并在所述光波导装置中全反射传输至光栅工作机构并衍射出所述光波导装置后成像;
其中,所述不同颜色的单色图像各自对应的扫描角度对图像光的投射调制,用于补偿不同颜色的图像光经衍射引起的色散与畸变。
根据本申请的一实施例,所述激光束扫描光机投射的图像光经一反射膜反射或折射后耦入所述光波导装置中全反射传输至光栅工作机构并衍射出所述光波导装置后显示图像。
根据本申请的一实施例,所述激光束扫描光机投射的图像光经折射棱镜折射后耦入所述光波导装置中全反射并衍射出所述光波导装置后显示图像。
根据本申请的一实施例,耦入所述光波导装置的光线通过一个二维光栅将光线耦出所述光波导装置。
根据本申请的一实施例,耦入所述光波导装置的光线通过一个或多个一维耦出光栅将光线耦出所述光波导装置。
根据本申请的一实施例耦入所述光波导装置的光线通过一个转折光栅改变光线扩散角度以及通过一个一维耦出光栅将光线耦出所述光波导装置。
通过对随后的描述和附图的理解,本发明进一步的目的和优势将得以充分体现。
本发明的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
图1是根据本发明的一实施例的光波导装置的立体示意图。
图2示出了根据本发明的上述实施例的所述光波导装置的光路示意图。
图3示出了根据本发明的上述实施例的所述光波导装置的耦入原理示意图。
图4示出了根据本发明的上述实施例的所述光波导装置的第一变形实施方式。
图5示出了根据本发明的上述实施例的所述光波导装置的第二变形实施方式。
图6示出了根据本发明的上述实施例的所述光波导装置的第三变形实施方式。
图7示出了根据本发明的上述实施例的所述光波导装置的第四变形实施方式。
图8是根据本申请的一实施例的一增强现实设备的结构示意图,其被实施为配置有光波导装置的AR眼镜。
图9是根据本申请的一实施例的另一增强现实设备的结构示意图,其被实施为配置有光波导装置的AR-HUD。
图10是根据本申请的一实施例的集成化光波导装置的制造方法的流程示意图。
图11示意根据本发明的上述实施例的增强现实设备的投影光引擎的标定过程的示意图。
图12示意根据本发明的上述实施例的增强现实设备的投影光引擎的未矫正色散、畸变前的K域图。
图13示意根据本发明的上述实施例的增强现实设备的投影光引擎未标定前的投射图像。
图14示意根据本发明的上述实施例的增强现实设备的投影光引擎未标定前 投射的光经过所述光波导装置后显示的图像。
图15示意根据本发明的上述实施例的增强现实设备的投影光引擎的矫正色散、畸变后的K域图。
图16示意根据本发明的上述实施例的增强现实设备的投影光引擎标定后的投射图像。
图17示意根据本发明的上述实施例的增强现实设备的投影光引擎标定后投射的光经过所述光波导装置后显示的图像。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
在本发明中,权利要求和说明书中术语“一”应理解为“一个或多个”,即在一个实施例,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个。除非在本发明的揭露中明确示意该元件的数量只有一个,否则术语“一”并不能理解为唯一或单一,术语“一”不能理解为对数量的限制。
在本发明的描述中,需要理解的是,属于“第一”、“第二”等仅用于描述目的,而不能理解为指示或者暗示相对重要性。本发明的描述中,需要说明的是,除非另有明确的规定和限定,属于“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接或者一体地连接;可以是机械连接,也可以是电连接;可以是直接连接,也可以是通过媒介间接连结。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
近年来,随着增强现实技术的飞速发展,能够实现增强现实的设备或装置也越来越受到人们的欢迎和使用。然而,现有的几何光波导虽然能够使图像质量和光能利用效率达到较高的水准,但因其制造工艺流程繁冗且总体良率较低而不能实现量产化,而现有的衍射光波导虽然能够实现量产化,但因采用光栅耦入而导致光能耦入效率较低,难以满足AR产品对图像对比度、亮度等的高质量要求。因此,为了解决上述问题,本发明提供了一种光波导装置,其能够在保证量产化的同时,提高光能利用效率,以较好地实现产品性能和可量产性之间的平衡。
参考附图1至图3所示,根据本申请的一实施例的光波导装置被阐明,其中光波导装置1用于将经由投影光引擎2投射的图像光线传输至用户眼中,并且外部环境光线能够透过光波导装置1以入射至该用户眼中,使得用户获得增强现实体验。
具体地,如图1和图2所示,光波导装置1可以包括一波导基板10、一光耦入机构20以及一光栅工作机构30。波导基板10具有相互平行的一第一表面11和一第二表面12。光耦入机构20被设置于波导基板10,并且光耦入机构20具有相对于波导基板10的第一表面11倾斜的一功能面200,用于通过反射或折射的方式将光线耦入波导基板10,以使该光线在波导基板10的第一表面11和第二表面12之间全反射地传输。光栅工作机构30被形成于波导基板10,用于通过衍射的方式将该光线扩散地耦出波导基板10。
值得注意的是,由于光波导装置1的光耦入机构20通过反射或折射的方式将光线耦入波导基板10,以大幅地提高光能耦入效率,提升产品性能,并且光波导装置1的光栅耦出机构30又能保留衍射光波导可量产性的优势,因此本申请的光波导装置1能够在保证量产化的同时,提高光能利用效率,从而较好地实现产品性能和可量产性之间的平衡。
更具体地,如图1和图2所示,根据本申请的上述实施例,波导基板10进一步具有一倾斜侧面13,并且倾斜侧面13与第一表面11之间具有一预设夹角θ 0,其中波导基板10的倾斜侧面13用于面向投影光引擎2,使得经由投影光引擎2投射的图像光线先在波导基板10的倾斜侧面13处发生折射后,再在波导基板10的第一表面11处发生全反射,从而在波导基板10的第一表面11和第二表面12之间全反射地传输该图像光线。
换言之,在本申请的上述实施例中,如图2所示,波导基板10的倾斜侧面13被实施为光耦入机构20的功能面200,使得光耦入机构20的功能面200被实施为一折射面。这样,经由投影光引擎2投射的该图像光线通过光耦入机构20的功能面200的折射以被耦入波导基板10;之后,被耦入波导基板10的该图像光线在波导基板10的第一表面11和第二表面12之间来回全反射以传输至光栅耦出机构30;最后,该图像光线通过光栅耦出机构30的衍射以被耦出波导基板10而入射至用户眼中,使得用户能够观看到与该图像光线对应的虚像。可以理解的是,波导基板10也可以但不限于被实施为由透光树脂材料或透光高分子材料等制成。
值得注意的是,如图3所示,当视场角为θ的图像光线从空气中入射至波导基板10的倾斜侧面13时,该图像光线的入射角θ 1=θ-θ 0;并且在倾斜侧面13处经折射率为n的波导基板10折射后,该图像光线的折射角θ 2满足折射定律n*sinθ 2=sinθ 1;而后以角度θ’在波导基板10内全反射,其中θ’=θ 02,则角度θ’需要满足全反射条件,即n*sinθ'>1。因此,为了确保在波导基板10的倾斜侧面13处折射后的图像光线能够在波导基板10的第一表面11处发生全反射,则满足以下条件:
Figure PCTCN2022114732-appb-000002
其中:n为波导基板10的折射率;θ 0倾斜侧面13与第一表面11之间的夹角;θ为图像光线与第一表面11的法线之间的夹角。
示例性地,波导基板10的倾斜侧面13可以通过切割波导基板10的侧边而获得,也就是说,波导基板10的侧边被切出一倾斜面以作为光耦入机构20的功能面200,这样经由投影光引擎2投射的该图像光线在光耦入机构20的功能面200处发生折射以被耦入波导基板10,使得本申请的光波导装置1的光耦入机构 20的耦入效率可高达95%以上。
优选地,如图2所示,光耦入机构20可以包括一增透膜21,其中增透膜21被设于波导基板10的倾斜侧面13,用于减小该图像光线在波导基板10的倾斜侧面13的反射,以增加光耦入机构20的功能面200的透射性,有助于进一步提高光波导装置1的光耦入机构20的耦入效率。可以理解的是,增透膜21可以但不限于通过诸如镀膜或粘接的方式被设于波导基板10的倾斜侧面13。
根据本申请的上述实施例,如图1和图2所示,光波导装置1的光栅工作机构30可以但不限于被实施为二维光栅31,其中二维光栅31被形成于波导基板10的第二表面12,用于对在波导基板10内传输的该图像光线进行衍射,使得在波导基板10内传输的该图像光线二维扩散地耦出波导基板10。可以理解的是,当在波导基板10内传输的该图像光线在波导基板10的第二表面12处遇到二维光栅31时,二维光栅31将该图像光线衍射成不同衍射级次的衍射光,这样某一衍射级次的衍射光耦出以入射至用户眼中,而其他衍射级次的衍射光则会在波导基板10内沿着不同的传播方向继续全反射地传输,以再次遇到二维光栅31时被继续衍射,从而实现将图像光线二维扩散地耦出波导基板10。当然,在本申请的其他示例中,二维光栅31也可以被形成于波导基板10的第一表面11,本申请对此不再赘述。
此外,二维光栅31可以但不限于被实施为浮雕光栅或全息体光栅。
优选地,如图2所示,倾斜侧面13与第一表面11之间具有的预设夹角θ 0为锐角,使得投影光引擎2位于邻近波导基板10的第二表面12的一侧。而图像光线又从波导基板10的第二表面12被耦出以入射至用户眼中,因此投影光引擎2和用户眼睛位于光波导装置1的同一侧,便于将投影光引擎2和光波导装置1以眼镜的方式配置成AR眼镜,使得投影光引擎2置于AR眼镜的镜腿处。可以理解的是,在本申请的其他示例中,二维光栅31也可以被形成于波导基板10的第一表面11,使得图像光线又从波导基板10的第一表面11被耦出以入射至用户眼中,进而投影光引擎2和用户眼睛位于光波导装置1的相对侧。
值得注意的是,本申请的光波导装置1中的光耦入机构20和光栅工作机构30均可以具有其他不同的结构形态,或者以其他方式与波导基板10相结合。换言之,本申请的上述实施例的光波导装置1可以具有各种变形实施方式,均能够较好地实现产品性能和可量产性之间的平衡。
示例性地,附图4示出了根据本申请的上述实施例的光波导装置1的第一变形实施方式。具体地,相比于根据本申请的上述实施例,根据本申请的第一变形实施方式的光波导装置1的不同之处在于:光耦入机构20可以被实施为一反射元件22,其中反射元件22被对应地设置于波导基板10的倾斜侧面13,并且波导基板10的第一表面11用于面向投影光引擎2,使得经由投影光引擎2投射的图像光线先透过波导基板10的第一表面11以入射至波导基板10的倾斜侧面13,再在被反射元件22反射回波导基板10的第一表面11后,而在波导基板10的第一表面11处发生全反射,从而在波导基板10的第一表面11和第二表面12之间全反射地传输该图像光线。
优选地,如图4所示,反射元件22可以包括一反射膜221,其中反射膜221被设于波导基板10的倾斜侧面13,用于反射该图像光线,使得从第一表面11入射的该图像光线被反射回波导基板10的第一表面11,仍能够提高光波导装置1的光耦入机构20的耦入效率。可以理解的是,本申请的第一变形实施方式的光波导装置1是以反射膜221替代上述实施例中的增透膜21,以便通过反射的方式将图像光线耦入波导基板10。此外,反射元件22还可以被实施为镀有反射涂层的反射镜。
更优选地,如图4所示,反射元件22可以进一步包括具有一斜面2221的一棱镜222,其中反射膜221被镀设于棱镜222的斜面2221,并且棱镜222的斜面2221被对应地贴合于波导基板10的倾斜侧面13,使得反射膜221位于棱镜222的斜面2221和波导基板10的倾斜侧面13之间,以便保护反射膜221。此时,棱镜222的斜面2221被实施为光耦入机构20的功能面200。当然,在本申请的其他示例中,反射元件22也可以不包括棱镜222,而反射膜221也可以但不限于通过诸如镀膜或粘接的方式直接被设于波导基板10的倾斜侧面13。
最优选地,如图4所示,反射元件22的棱镜222还进一步具有一第一侧面2222和一第二侧面2223,其中当棱镜222的斜面2221被对应地贴合于波导基板10的倾斜侧面13时,棱镜222的第一侧面2222平行地相交于波导基板10的第二表面12,并且棱镜222的第二侧面2223垂直地相交于波导基板10的第一表面11,以形成具有矩形结构的光波导装置1,有助于在AR眼镜中作为显示镜片使用。
附图5示出了根据本申请的上述实施例的光波导装置1的第二变形实施方 式。具体地,相比于根据本申请的上述实施例,根据本申请的第二变形实施方式的光波导装置1的不同之处在于:光耦入机构20还可以只被实施为一折射棱镜23,其中折射棱镜23具有一耦入侧面231和相对于耦入侧面231倾斜地延伸的一斜面232,其中折射棱镜23的斜面232被对应地贴合于波导基板10的第二表面12,并且折射棱镜23的耦入侧面231作为光耦入机构20的功能面200,用于对应于投影光引擎2,使得经由投影光引擎2投射的图像光线先在折射棱镜23的耦入侧面231处发生折射后,再透过折射棱镜23的斜面232和波导基板10的第二表面12以传播至波导基板10的第一表面11,进而在波导基板10的第一表面11出发生全反射,从而在波导基板10的第一表面11和第二表面12之间全反射地传输该图像光线。可以理解的是,在本申请的这个变形实施方式中,波导基板10可以具有矩形结构,即波导基板10具备垂直侧面,而无需设置倾斜侧面13。
优选地,折射棱镜23的斜面232被对应地胶合于波导基板10的第二表面12。可以理解的是,折射棱镜23的折射率可以与波导基板10的折射率相同,也可以不同,具体应以实现全反射条件为准。
更优选地,折射棱镜23的耦入侧面231用于垂直于投影光引擎2的投射路径,使得经由投影光引擎2投射的该图像光线垂直地入射至折射棱镜23的耦入侧面231,以最大限度地减少折射棱镜23的耦入侧面231对该图像光线的反射,有助于提高光耦入机构20的耦入效率。
值得注意的是,光耦入机构20无论是通过折射的方式,还是通过反射的方式,将该图像光线耦入波导基板10之后,被耦入的该图像光线的传播方向都是朝向远离光耦入机构20的功能面200的方向。例如,在本申请的上述第一变形实施方式中,被耦入的该图像光线的传播方向是由棱镜222的第二侧面2223指向棱镜222的第一侧面2222的方向。
附图6示出了根据本申请的上述实施例的光波导装置1的第三变形实施方式。具体地,相比于根据本申请的上述第二变形实施方式,根据本申请的第三变形实施方式的光波导装置1的不同之处在于:光栅工作机构30可以由一维转折光栅32和一维耦出光栅33组成,其中一维转折光栅32被形成于波导基板10的第一表面11或第二表面12,用于通过衍射改变经由折射棱镜23耦入的该图像光线在波导基板10内传播的方向,并将该图像光线沿一个方向进行扩散,其 中一维耦出光栅33被对应地形成于波导基板10的第二表面12,用于将转向后的该图像光线沿另一个方向扩散并耦出波导基板10。当然,在本申请的其他示例中,一维耦出光栅33也可以被形成于波导基板10的第一表面11,本申请对此不再赘述。
示例性地,如图6所示,折射棱镜23位于波导基板10的左上角,其中一维转折光栅32位于棱镜222的右侧,并且一维转折光栅32对应于折射棱镜23的另一侧面,其中一维耦出光栅33位于一维转折光栅32的下方。这样,经由为投影光引擎2投射的图像光线在经由折射棱镜23折射以耦入波导基板10之后,被耦入的该图像光线将在波导基板10内由左向右全反射地传输至一维转折光栅32而被衍射,使得该图像光线中的一部分继续由左向右全反射地传输以再次遇到一维转折光栅32而被衍射,并且该图像光线中的另一部分则被转折以由上向下全反射地传输至一维耦出光栅33而被衍射,以耦出波导基板10。
换言之,在本申请的这个变形实施方式中,首先,被耦入的该图像光线在波导基板10内横向地传输至一维转折光栅32;接着,一维转折光栅32通过衍射横向传输的图像光线,使得图像光线中的一部分仍横向地传输以再次被一维转折光栅32衍射,并且图像光线中的另一部分纵向地传输至一维耦出光栅33;最后,一维耦出光栅33通过衍射纵向传输的图像光线,使得该图像光线中的一部分继续纵向地传输以再次被一维耦出光栅33衍射,并且该图像光线中的另一部分被耦出波导基板10,从而实现将图像光线二维扩散地耦出波导基板10。
值得注意的是,在本申请的上述实施例和各种变形实施方式中,投影光引擎2的出瞳通常较小,使得光波导装置1均是通过光栅工作机构30将所投射的图像光线不断在两个维度进行出瞳复制并耦出,以便在二维方向上获得足够大的眼盒(eyebox),便于用户观看。然而,在本申请的其他示例中,光栅工作机构30也可以只具备在一维方向上复制出瞳并耦出的功能,并且投影光引擎2在另一维方向上具有较大的出瞳,以确保在二维方向上仍能够获得足够大的眼盒。此时,光波导装置1的光耦入机构20的功能面200就需要与投影光引擎2的出瞳大小相匹配,以便将经由投影光引擎2所投射的图像光线对应地耦入波导基板10。
示例性地,附图7示出了根据本申请的上述实施例的光波导装置1的第四变形实施方式。具体地,相比于根据本申请的上述第三变形实施方式,根据本申请 的第四变形实施方式的光波导装置1的不同之处在于:光栅工作机构30仅包括一维耦出光栅33,并且一维耦出光栅33具有一维扩散路径330,用于沿着一维扩散路径330扩散并耦出图像光线;其中光耦入机构20中功能面200沿着垂直于一维耦出光栅33的一维扩散路径330的方向延伸,并且投影光引擎2的出瞳覆盖光耦入机构20的整个功能面200,使得光波导装置1仍能够将经由光耦入机构20耦入的图像光线扩散地耦出波导基板10,以便在二维方向上获得足够大的眼盒(eyebox),便于用户观看。
例如,如图7所示,折射棱镜23横向地延伸,其中一维耦出光栅33位于折射棱镜23的下方,并且一维耦出光栅33的一维扩散路径330呈纵向布置。此时,投影光引擎2被对应地设置,使得投影光引擎2的横向出瞳与折射棱镜23的耦入侧面231相匹配,也就是说,投影光引擎2的横向出瞳可以大于其纵向出瞳,使得所投射的图像光线能够横向地覆盖折射棱镜23的耦入侧面231,如此便可获得在二维方向均有一定大小的眼盒。
值得注意的是,一维转折光栅32和一维耦出光栅33的类型可以根据具体情况需求进行调整,例如可以但不限于被实施为表面浮雕光栅,以通过纳米压印等技术被加工形成于波导基板10的表面。当然,在本申请的其他示例中,一维转折光栅32和一维耦出光栅33也可以被实施为全息光栅,以通过全息曝光在材料内形成周期性的明暗相间的条纹等。
根据本申请的另一方面,如图8和图9所示,本申请进一步提供了一种增强现实设备4,其中增强现实设备4可以包括一投影光引擎2、一设备主体40以及一光波导装置1,其中投影光引擎2和光波导装置1被对应地设置于设备主体40,使得经由投影光引擎2提供的图像光线被光波导装置1的光耦入机构20耦入进波导基板10,并在波导基板10内全反射地传播至光栅工作机构30后,被光栅工作机构30扩散地耦出波导基板10而被用户眼睛接收以看到对应的图像。
在本申请的一示例中,如图8所示,增强现实设备4的设备主体40可以被实施为一眼镜架41,其包括一横梁部411和一对镜腿部412,其中镜腿部412分别从横梁部411的左右两侧向后延伸,以形成具有眼镜架结构的设备主体40。光波导装置1被设置于横梁部411,以作为用于近眼显示的眼镜镜片。
示例性地,如图8所示,光波导装置1中的光耦入机构20的功能面200对应于眼镜架41的横梁部411;此时,投影光引擎2被安装于眼镜架41的横梁部 411,使得当用户佩戴增强现实设备4时,投影光引擎2对应地位于用户的额头附近,有助于为投影光引擎2预留更大的安装空间。
值得注意的是,增强现实设备4除了被实施为AR眼镜之外,增强现实设备4还可以被实施为平视显示器(HUD)。众所周知,HUD是光波导的另外一个极具前景的应用,特别是车载HUD能够使车主在驾驶行车时,无需低头就能够查看汽车相关信息,眼睛视线不需要在路况和显示器之间来回切换,以保证驾驶的安全性和舒适性。而AR-HUD是通过内部特殊设计的光学系统将图像信息精确地结合于实际交通路况中,将胎压、速度、转速等信息投射到前挡风玻璃后反射形成远处的虚像以进入人眼,使得用户通过前挡风玻璃的显示区域就可以观察到与实际路况融合的提示信息。此外,与目前市场上通用的W-HUD相比,由于AR-HUD的结构紧凑轻薄,能够大幅地节省车内安装空间,因此AR-HUD对于用户而言,具有更大的直观性,并通过结合现实路况信息,实时地出现一些虚拟箭头等信息来直观地引导驾驶员前进,从而避免在驾驶中出现开过路口和分散驾驶员注意力的情况。
具体地,附图9示出了根据本申请的上述实施例的增强现实设备4的一个变形实施方式,其中增强现实设备4的设备主体40被实施为一挡风玻璃42,并且光波导装置1被对应地设置于挡风玻璃42的内侧,使得经由投影光引擎2投射的图像光线在经由光波导装置1的传输后,投射至挡风玻璃42,并经由挡风玻璃42向内反射以进入入眼,使得用户能够看到较远距离外的虚像。可以理解的是,在本申请的这个变形实施方式中,增强现实设备4中的挡风玻璃42可以但不限于被实施为诸如飞机、汽车等运输工具的前挡风玻璃,以使增强现实设备4被实施为AR-HUD。
值得注意的是,与上述AR眼镜一样,本申请的AR-HUD中的光波导装置1通过光耦入机构20的反射或折射将经由投影光引擎2投射的图像光线耦入波导基板10,并通过光栅工作机构30的衍射将被耦入的图像光线扩散地耦出波导基板10,以便在确保可量产性的基础上,提高光能利用效率。而不至于像配置有普通衍射光波导的车载HUD那样,为了弥补光能利用率较低以在足够大的眼盒内提供强度较大的图像光线,不得不大幅地增大投影光引擎的投射功率,导致投影光引擎因功率较大而难以散热。换言之,本申请的增强现实设备4只需要使用功率较小的投影光引擎2,就能够在挡风玻璃42前形成高对比度和高质量的虚像, 供用户观看。
根据本申请的另一方面,如图10所示,本申请的一实施例进一步提供了一种光波导装置的制造方法,可以包括步骤:
S110:制作母板,其中母板具有与光栅工作机构30相对应的待转印的光栅结构;
S120:通过纳米压印方法,利用母板在波导基板10的表面加工形成光栅工作机构30;以及
S130:设置一光耦入机构20于波导基板10,其中光耦入机构20用于通过折射或反射的方式将光线耦入波导基板10,并且光栅工作机构30用于通过衍射的方式将该光线扩散地耦出波导基板10。
值得注意的是,根据本申请的上述实施例,在本申请的光波导装置的制造方法的步骤S110中,母板可以采用光刻加工的方法被制作而成。例如,光刻加工方法可以但不限于包括激光直写法、电子束直写法、掩膜光刻法以及双光束干涉曝光法等等。
需要说明的是,本申请提供的光波导装置为混合光波导装置,这里的混合是指几何方式和衍射方式的混合,具体地投影光引擎出射的光线通过光耦入机构采用反射或者折射的方式耦入波导基板,然后光线在波导基板内经过光栅工作机构进行扩瞳和耦出。由于,光线在整个传播过程中所经过衍射的衍射矢量之和不再为零,这样光线从波导基板耦出时则会发生色散和畸变。图12中示意的是彩色投射光从光波导装置衍射耦出的K域图,当图13中所示的投射图像被投影光引擎2投影时,得到的显示图像如图14所示,不同颜色图像是分离的,同一个颜色的图像也会由于衍射产生畸变,因此需要对投影光引擎2进行标定以减少或消除上述色散和畸变。也就是说,在图像源包括多个不同颜色的单色图像时,投影光引擎需要对不同颜色的单色图像光调制后投射,该调制用于补偿不同颜色的单色图像光经光栅工作机构衍射引起的色散与畸变,从而实现不同颜色的单色图像重合显示。
可实施地,本发明提供一种适配光波导装置的激光束扫描光机,该激光束扫描光机用于调制并投射不同颜色的单色图像光,该调制用于补偿不同颜色的单色图像光经光栅工作机构衍射引起的色散与畸变。
增强现实设备4的投影光引擎2可实施为一激光束扫描光机,其能够补偿单 色光线由光波导装置1的光栅工作机构30的波导光栅衍射引起的色散、畸变影响,从而使激光束扫描光机投射的不同颜色的单色图像能够正常的重合显示。
激光扫描投影显示技术是凭借激光束准直性和方向性好的特点,利用扫描器件如转镜或振镜将激光束高速扫描到相应位置,利用人眼视觉暂留效应形成完整的面。激光束扫描光机可以包括激光光源、光调制器、光束扫描器件、激光合束装装置以及控制器。图像信号加载到光调制器上,控制激光束的强度,同步信号加载到扫描器件(如光偏转器)上,使激光束按一定的规律扫描形成图像。
具体地,激光束扫描光机用于分角度地投射具有不同颜色的单色图像光,以使不同颜色的单色图像光经由光波导装置传输并出射时,实现不同颜色的单色图像重合显示。更进一步地,该激光束扫描光机用于分角度地扫描不同颜色的单色图像中各图像像素以投射相应的图像光。
本发明还提供了一种适配光波导装置的激光束扫描光机的标定方法,该标定方法包括步骤:
(A)通过激光束扫描光机分别投射多个不同颜色的单色图像所对应的图像光,图像光分别经过光波导装置后成像显示;以及
(B)在投射多个不同颜色的单色图像的图像光中任一颜色的图像光时,调整激光束扫描光机的扫描角度以使该图像光所对应单色图像的显示位置趋于目标位置,在该图像光所对应单色图像的显示位置达到目标位置时,记录该图像光所对应单色图像中各图像像素相应的扫描角度;
其中,光波导装置通过反射或者折射的方式耦入光线并通过衍射的方式耦出光线;多个不同颜色的单色图像重合显示时为彩色图像;扫描角度的调整用于补偿不同颜色的图像光经衍射引起的色散与畸变。
可实施地,步骤(B),包括:在投射每个单色图像对应的图像光时,遍历该单色图像的各图像像素,对于遍历至的图像像素,调整激光束扫描光机的扫描角度以使遍历到的图像像素的显示位置趋于目标位置,在遍历至的图像像素的显示位置到达目标位置时,记录遍历至的图像像素相应的扫描角度,直至记录该单色图像的各图像像素相应的扫描角度,以完成该单色图像的标定。
可以理解,上述实施例中的目标位置即理论上没有色散不产生畸变的位置。
参考图11,在多个不同颜色的单色图像包括红色图像、绿色图像以及蓝色图像时,通过激光束扫描光机图像耦入光波导装置1后进行图像标定,分别补偿 红、绿、蓝三色图像的光线由光波导装置1的光栅工作机构30的波导光栅衍射引起的色散、畸变影响,使激光束扫描光机投射的三色图像能够正常的重合显示。本发明通过为混合光波导装置适配激光束扫描光机,可以实现通过反射或折射的方式将图像光线耦入,通过衍射的方式将图像光线耦出,而不产生色散和畸变。
更具体地,激光束扫描光机的标定过程包括如下步骤:将标定图像源分成不同颜色的单色图像如RGB三色图像,分别进行标定。通过改变激光束扫描光机投射的图像像素的角度,实时观察经过光波导装置1后显示的图像像素位置,通过不断扫描改变像素对应角度,最终逼近波导显示的像素位置,固化该像素的扫描角度(驱动条件),完成像素标定。如此重复,以实现所有像素,以及三色图像的标定。完成标定后,光机可以直接调用图像像素标定的驱动条件,耦入光波导装置1即可得到色散、畸变补偿的最终图像。
本发明还提供了一种增强现实设备显示图像的方法,增强现实设备包括实施为激光束扫描光机的一投影光引擎和一光波导装置,光波导装置是混合光波导装置,混合光波导装置通过反射或折射的方式耦入光线和通过衍射的方式耦出光线,其特征在于,显示图像的方法包括步骤:
激光束扫描光机分别按照不同颜色的单色图像各自对应的扫描角度投射各单色图像对应的图像光,图像光经反射或折射耦入光波导装置并在光波导装置中全反射传输至光栅工作机构并衍射出光波导装置后成像;
其中,不同颜色的单色图像各自对应的扫描角度对图像光的投射调制,用于补偿不同颜色的图像光经衍射引起的色散与畸变。
如图15中示意的是激光束扫描光机经标定以后彩色投射光从光波导装置耦出的K域图,图16中所示的是标定后的激光束扫描装置的投射图像,可以看到标定后的激光束扫描装置的投射图像中不同颜色图像是分离的且有畸变,其在光波导装置中传播后经光栅衍射耦出后得到的显示图像如图17所示,三色图像在显示图像中重合而形成白色光,即三种颜色可以重合显示。可见,标定后的激光束扫描装置的投射图像的分离用于补偿光栅衍射造成的图像色散和畸变。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (36)

  1. 光波导装置,其特征在于,包括:
    一波导基板,其中所述波导基板具有相互平行的一第一表面和一第二表面;
    一光耦入机构,其中所述光耦入机构被设置于所述波导基板,并且所述光耦入机构具有相对于所述波导基板的所述第一表面倾斜的一功能面,用于通过反射或折射的方式将光线耦入所述波导基板,以使该光线在所述波导基板的所述第一表面和所述第二表面之间全反射地传输;以及
    一光栅工作机构,其中所述光栅工作机构被形成于所述波导基板,用于通过衍射的方式将该光线扩散地耦出所述波导基板。
  2. 如权利要求1所述的光波导装置,其中,所述波导基板进一步具有一倾斜侧面,并且所述倾斜侧面与所述第一表面之间具有一预设夹角,其中所述波导基板的所述倾斜侧面被实施为所述光耦入机构的所述功能面。
  3. 如权利要求2所述的光波导装置,其中,所述波导基板的所述倾斜侧面用于面向投影光引擎,使得经由该投影光引擎投射的图像光线在所述波导基板的所述倾斜侧面处发生折射以耦入所述波导基板。
  4. 如权利要求3所述的光波导装置,其中,所述光耦入机构包括一增透膜,其中所述增透膜被设于所述波导基板的所述倾斜侧面。
  5. 如权利要求3所述的光波导装置,其中,所述预设夹角满足以下条件:
    Figure PCTCN2022114732-appb-100001
    其中,n为所述波导基板的折射率;θ 0为所述预设夹角;θ为图像光线与所述第一表面的法线之间的夹角。
  6. 如权利要求2所述的光波导装置,其中,所述光耦入机构被实施为一反射元件,其中所述反射元件被对应地设置于所述波导基板的所述倾斜侧面,并且 所述波导基板的所述第一表面用于面向投影光引擎,使得经由该投影光引擎投射的图像光线在所述波导基板的所述倾斜侧面处发生反射以耦入所述波导基板。
  7. 如权利要求6所述的光波导装置,其中,所述反射元件包括一反射膜,其中所述反射膜被设于所述波导基板的所述倾斜侧面。
  8. 如权利要求7所述的光波导装置,其中,所述反射元件进一步包括一棱镜,其中所述反射膜被镀于所述棱镜的斜面,并且所述棱镜的所述斜面被对应地贴合于所述波导基板的所述倾斜侧面。
  9. 如权利要求8所述的光波导装置,其中,所述棱镜的第一侧面平行地相交于所述波导基板的所述第二表面,并且所述棱镜的第二侧面垂直地相交于所述波导基板的所述第一表面。
  10. 如权利要求1所述的光波导装置,其中,所述光耦入机构被实施为一折射棱镜,其中所述折射棱镜具有一耦入侧面和相对于所述耦入侧面倾斜地延伸的一斜面,其中所述折射棱镜的所述斜面被对应地贴合于所述波导基板的所述第二表面,并且所述折射棱镜的所述耦入侧面作为所述光耦入机构的所述功能面。
  11. 如权利要求1至10中任一所述的光波导装置,其中,所述光栅工作机构被实施为二维光栅,其中所述二维光栅被形成于所述波导基板的所述第一表面或所述第二表面,用于对在所述波导基板内传输的该光线进行衍射,以使该光线二维扩散地耦出所述波导基板。
  12. 如权利要求1至10中任一所述的光波导装置,其中,所述光栅工作机构由一维转折光栅和一维耦出光栅组成,其中所述一维转折光栅被形成于所述波导基板的所述第一表面或所述第二表面,用于通过衍射的方式改变该光线在所述波导基板内传播的方向,并将该光线先沿着一个方向进行扩散,其中所述一维耦出光栅被对应地形成于所述波导基板的所述第一表面或所述第二表面,用于将经由所述一维转折光栅转向后的该光线沿另一个方向扩散并耦出所述波导基板。
  13. 如权利要求1至10中任一所述的光波导装置,其中,所述光栅工作机构被实施为一维耦出光栅,其中所述一维耦出光栅具有一维扩散路径,并且所述光耦入机构的所述功能面沿着垂直于所述一维扩散路径的方向延伸,用于使经由所述光耦入机构耦入的该光线沿着所述一维扩散路径扩散并耦出所述波导基板。
  14. 光波导装置的制造方法,其特征在于,包括步骤:
    制作母板,其中该母板具有与光栅工作机构相对应的待转印的光栅结构;和通过纳米压印方式,利用该母板在波导基板的表面加工形成该光栅工作机构;以及
    设置一光耦入机构于该波导基板,其中该光耦入机构具有相对于该波导基板的表面倾斜的一功能面,用于通过折射或反射的方式将光线耦入该波导基板,并且该光栅工作机构用于通过衍射的方式将该光线扩散地耦出该波导基板。
  15. 如权利要求14所述的光波导装置的制造方法,其中,该波导基板的侧边被切出一倾斜面,以作为该光耦入机构的该功能面。
  16. 增强现实设备,其特征在于,包括:
    一设置主体;
    一投影光引擎;以及
    一光波导装置,其中所述投影光引擎和所述光波导装置被对应地设置于所述设备主体,使得经由所述投影光引擎提供的图像光线通过反射或折射的方式耦入所述光波导装置并且通过衍射的方式耦出所述光波导装置,从而使用户眼睛接收以看到对应的图像。
  17. 如权利要求16所述的增强现实设备,其中所述光波导装置包括:
    一波导基板,其中所述波导基板具有相互平行的一第一表面和一第二表面;
    一光耦入机构,其中所述光耦入机构被设置于所述波导基板,并且所述光耦入机构具有相对于所述波导基板的所述第一表面倾斜的一功能面,用于通过反射或折射的方式将光线耦入所述波导基板,以使该光线在所述波导基板的所述第一 表面和所述第二表面之间全反射地传输;以及
    一光栅工作机构,其中所述光栅工作机构被形成于所述波导基板,用于通过衍射的方式将该光线扩散地耦出所述波导基板。
  18. 如权利要求17所述的增强现实设备,其中,所述波导基板进一步具有一倾斜侧面,并且所述倾斜侧面与所述第一表面之间具有一预设夹角,其中所述波导基板的所述倾斜侧面被实施为所述光耦入机构的所述功能面。
  19. 如权利要求18所述的增强现实设备,其中,所述波导基板的所述倾斜侧面用于面向投影光引擎,使得经由该投影光引擎投射的图像光线在所述波导基板的所述倾斜侧面处发生折射以耦入所述波导基板。
  20. 如权利要求19所述的增强现实设备,其中,所述光耦入机构包括一增透膜,其中所述增透膜被设于所述波导基板的所述倾斜侧面。
  21. 如权利要求19所述的增强现实设备,其中,所述预设夹角满足以下条件:
    Figure PCTCN2022114732-appb-100002
    其中,n为所述波导基板的折射率;θ 0为所述预设夹角;θ为图像光线与所述第一表面的法线之间的夹角。
  22. 如权利要求18所述的增强现实设备,其中,所述光耦入机构被实施为一反射元件,其中所述反射元件被对应地设置于所述波导基板的所述倾斜侧面,并且所述波导基板的所述第一表面用于面向投影光引擎,使得经由该投影光引擎投射的图像光线在所述波导基板的所述倾斜侧面处发生反射以耦入所述波导基板。
  23. 如权利要求22所述的增强现实设备,其中,所述反射元件包括一反射膜,其中所述反射膜被设于所述波导基板的所述倾斜侧面。
  24. 如权利要求23所述的增强现实设备,其中,所述反射元件进一步包括一棱镜,其中所述反射膜被镀于所述棱镜的斜面,并且所述棱镜的所述斜面被对应地贴合于所述波导基板的所述倾斜侧面。
  25. 如权利要求24所述的增强现实设备,其中,所述棱镜的第一侧面平行地相交于所述波导基板的所述第二表面,并且所述棱镜的第二侧面垂直地相交于所述波导基板的所述第一表面。
  26. 如权利要求17所述的增强现实设备,其中,所述光耦入机构被实施为一折射棱镜,其中所述折射棱镜具有一耦入侧面和相对于所述耦入侧面倾斜地延伸的一斜面,其中所述折射棱镜的所述斜面被对应地贴合于所述波导基板的所述第二表面,并且所述折射棱镜的所述耦入侧面作为所述光耦入机构的所述功能面。
  27. 如权利要求17至26中任一所述的增强现实设备,其中,所述光栅工作机构被实施为二维光栅,其中所述二维光栅被形成于所述波导基板的所述第一表面或所述第二表面,用于对在所述波导基板内传输的该光线进行衍射,以使该光线二维扩散地耦出所述波导基板。
  28. 如权利要求17至26中任一所述的增强现实设备,其中,所述光栅工作机构由一维转折光栅和一维耦出光栅组成,其中所述一维转折光栅被形成于所述波导基板的所述第一表面或所述第二表面,用于通过衍射的方式改变该光线在所述波导基板内传播的方向,并将该光线先沿着一个方向进行扩散,其中所述一维耦出光栅被对应地形成于所述波导基板的所述第一表面或所述第二表面,用于将经由所述一维转折光栅转向后的该光线沿另一个方向扩散并耦出所述波导基板。
  29. 如权利要求17至26中任一所述的增强现实设备,其中,所述光栅工作机构被实施为一维耦出光栅,其中所述一维耦出光栅具有一维扩散路径,并且所述光耦入机构的所述功能面沿着垂直于所述一维扩散路径的方向延伸,用于使经 由所述光耦入机构耦入的该光线沿着所述一维扩散路径扩散并耦出所述波导基板。
  30. 如权利要求17至26中任一所述的增强现实设备,其中,所述投影光引擎包括一激光束扫描光机,在图像源包括多个不同颜色的单色图像时,所述激光束扫描光机用于调制并投射不同颜色的单色图像光,所述调制用于补偿所述不同颜色的单色图像光经所述光栅工作机构衍射引起的色散与畸变。
  31. 如权利要求30述的增强现实设备,其中,所述激光束扫描光机用于分角度地投射具有不同颜色的单色图像光,以使不同颜色的单色图像光经由所述光波导装置传输并出射时,实现不同颜色的单色图像重合显示。
  32. 如权利要求31所述的增强现实设备,其中,所述激光束扫描光机用于分角度地扫描不同颜色的单色图像中各图像像素以投射相应的图像光。
  33. 如权利要求17至26中任一所述的增强现实设备,其中,所述设备主体是眼镜或车辆的挡风玻璃。
  34. 一种用于光波导装置的激光束扫描光机的标定方法,其特征在于,所述标定方法包括步骤:
    (A)通过所述激光束扫描光机分别投射多个不同颜色的单色图像所对应的图像光,所述图像光分别经过所述光波导装置后成像显示;以及
    (B)在投射所述多个不同颜色的单色图像的图像光中任一颜色的图像光时,调整所述激光束扫描光机的扫描角度以使该图像光所对应单色图像的显示位置趋于目标位置,在该图像光所对应单色图像的显示位置达到目标位置时,记录该图像光所对应单色图像中各图像像素相应的扫描角度;
    其中,所述光波导装置通过反射或者折射的方式耦入光线并通过衍射的方式耦出光线;所述多个不同颜色的单色图像重合显示时为彩色图像;所述扫描角度的调整用于补偿所述不同颜色的图像光经衍射引起的色散与畸变。
  35. 根据权利要求34所述的标定方法,其特征在于,所述在投射所述多个不同颜色的单色图像的图像光中任一颜色的图像光时,调整所述激光束扫描光机的扫描角度以使该图像光所对应单色图像的显示位置趋于目标位置,在该图像光所对应单色图像的显示位置达到目标位置时,记录该图像光所对应单色图像中各图像像素相应的扫描角度,包括:
    在投射每个单色图像对应的图像光时,遍历该单色图像的各图像像素,对于遍历至的图像像素,调整所述激光束扫描光机的扫描角度以使遍历到的图像像素的显示位置趋于目标位置,在遍历至的图像像素的显示位置到达目标位置时,记录遍历至的图像像素相应的扫描角度,直至记录该单色图像的各图像像素相应的扫描角度,以完成该单色图像的标定。
  36. 一种增强现实设备显示图像的方法,所述增强现实设备包括实施为激光束扫描光机的一投影光引擎和一光波导装置,所述光波导装置是混合光波导装置,所述混合光波导装置通过反射或折射的方式耦入光线和通过衍射的方式耦出光线,其特征在于,所述显示图像的方法包括步骤:
    所述激光束扫描光机分别按照不同颜色的单色图像各自对应的扫描角度投射各单色图像对应的图像光,所述图像光经反射或折射耦入所述光波导装置并在所述光波导装置中全反射传输至光栅工作机构并衍射出所述光波导装置后成像;
    其中,所述不同颜色的单色图像各自对应的扫描角度对图像光的投射调制,用于补偿不同颜色的图像光经衍射引起的色散与畸变。
PCT/CN2022/114732 2021-10-27 2022-08-25 一种光波导装置及其制造方法 WO2023071474A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280002826.4A CN116964511A (zh) 2021-10-27 2022-08-25 光波导装置及其方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111252941.0 2021-10-27
CN202111252941.0A CN116027475A (zh) 2021-10-27 2021-10-27 光波导装置及其制造方法

Publications (1)

Publication Number Publication Date
WO2023071474A1 true WO2023071474A1 (zh) 2023-05-04

Family

ID=86071011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114732 WO2023071474A1 (zh) 2021-10-27 2022-08-25 一种光波导装置及其制造方法

Country Status (2)

Country Link
CN (2) CN116027475A (zh)
WO (1) WO2023071474A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117148594A (zh) * 2023-10-31 2023-12-01 深圳市光舟半导体技术有限公司 一种显示组件及ar设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417891A (zh) * 2017-11-03 2020-07-14 卡尔蔡斯耶拿有限公司 光导、成像设备和具有分开的成像通道的hmd
CN211086808U (zh) * 2019-12-18 2020-07-24 深圳奥比中光科技有限公司 一种光波导近眼显示装置和电子设备
CN111474721A (zh) * 2020-05-07 2020-07-31 谷东科技有限公司 波导显示装置和增强现实显示设备
CN111830715A (zh) * 2020-07-28 2020-10-27 谷东科技有限公司 二维扩瞳的波导显示装置和增强现实显示设备
CN112130321A (zh) * 2019-06-24 2020-12-25 成都理想境界科技有限公司 一种波导模组及基于波导的近眼显示模组及设备
CN112415747A (zh) * 2019-08-23 2021-02-26 日立乐金光科技株式会社 导光板、导光板的制造装置、导光板的制造方法、以及使用该导光板的影像显示装置
CN216485802U (zh) * 2021-10-27 2022-05-10 上海鲲游科技有限公司 增强现实设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417891A (zh) * 2017-11-03 2020-07-14 卡尔蔡斯耶拿有限公司 光导、成像设备和具有分开的成像通道的hmd
CN112130321A (zh) * 2019-06-24 2020-12-25 成都理想境界科技有限公司 一种波导模组及基于波导的近眼显示模组及设备
CN112415747A (zh) * 2019-08-23 2021-02-26 日立乐金光科技株式会社 导光板、导光板的制造装置、导光板的制造方法、以及使用该导光板的影像显示装置
CN211086808U (zh) * 2019-12-18 2020-07-24 深圳奥比中光科技有限公司 一种光波导近眼显示装置和电子设备
CN111474721A (zh) * 2020-05-07 2020-07-31 谷东科技有限公司 波导显示装置和增强现实显示设备
CN111830715A (zh) * 2020-07-28 2020-10-27 谷东科技有限公司 二维扩瞳的波导显示装置和增强现实显示设备
CN216485802U (zh) * 2021-10-27 2022-05-10 上海鲲游科技有限公司 增强现实设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117148594A (zh) * 2023-10-31 2023-12-01 深圳市光舟半导体技术有限公司 一种显示组件及ar设备
CN117148594B (zh) * 2023-10-31 2024-01-02 深圳市光舟半导体技术有限公司 一种显示组件及ar设备

Also Published As

Publication number Publication date
CN116964511A (zh) 2023-10-27
CN116027475A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
US11940625B2 (en) Light-guide display with reflector
US20220229294A1 (en) Information display apparatus
US11828938B2 (en) Information display apparatus
US7656585B1 (en) Embedded relay lens for head-up displays or the like
US7724442B2 (en) Substrate-guided optical devices
JP7018922B2 (ja) ヘッドアップディスプレイ装置
JP7195454B2 (ja) 光源装置、それを利用した情報表示システムおよびヘッドアップディスプレイ装置
WO2023071474A1 (zh) 一种光波导装置及其制造方法
JP7021939B2 (ja) 情報表示装置
WO2020026841A1 (ja) 情報表示装置および情報表示方法
WO2020031654A1 (ja) 情報表示装置および情報表示方法
WO2021258960A1 (zh) 基于四维光场的显示系统及其显示方法
CN212160230U (zh) 增强现实显示光学器件、系统、眼镜及hud显示系统
US11327309B2 (en) Virtual image display apparatus
CN216485802U (zh) 增强现实设备
JP7095018B2 (ja) ヘッドアップディスプレイ装置
JP2021036317A (ja) 情報表示装置
CN113448087A (zh) 增强现实显示光学器件、光学系统、眼镜及hud显示系统
US20230011039A1 (en) Display device
CN217982023U (zh) 用于车辆的抬头显示系统和车辆
CN219625814U (zh) 一种抬头显示模组及车辆
US20230011557A1 (en) Display device
JP7375629B2 (ja) 虚像表示装置
US20240061240A1 (en) Air floating video display apparatus and light source
JP2024516357A (ja) 二次元の拡大を伴う導光光学素子を含むディスプレイ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002826.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885373

Country of ref document: EP

Kind code of ref document: A1