WO2022249799A1 - 船舶 - Google Patents

船舶 Download PDF

Info

Publication number
WO2022249799A1
WO2022249799A1 PCT/JP2022/018251 JP2022018251W WO2022249799A1 WO 2022249799 A1 WO2022249799 A1 WO 2022249799A1 JP 2022018251 W JP2022018251 W JP 2022018251W WO 2022249799 A1 WO2022249799 A1 WO 2022249799A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
gas
water
recovered
regeneration tower
Prior art date
Application number
PCT/JP2022/018251
Other languages
English (en)
French (fr)
Inventor
大祐 山田
Original Assignee
三菱造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱造船株式会社 filed Critical 三菱造船株式会社
Priority to CN202280035500.1A priority Critical patent/CN117320957A/zh
Priority to KR1020237039837A priority patent/KR20230173171A/ko
Priority to EP22811073.0A priority patent/EP4353584A1/en
Publication of WO2022249799A1 publication Critical patent/WO2022249799A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • B63B17/0027Tanks for fuel or the like ; Accessories therefor, e.g. tank filler caps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/32Arrangements of propulsion power-unit exhaust uptakes; Funnels peculiar to vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/12Separation of ammonia from gases and vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Definitions

  • Vent posts for discharging combustible gas to the atmosphere outside the ship are provided on ships carrying combustible gas as fuel for ship propulsion and cargo.
  • Patent Document 1 discloses a configuration in which combustible gas remaining in piping of a gas engine driven by combustible gas (gas fuel) is purged with nitrogen gas or the like and released to the atmosphere through a vent post. It is In the above ships, it is being considered to carry ammonia as a gas fuel. Ammonia may not diffuse sufficiently when purged with an inert gas and vented to the atmosphere through a vent post.
  • ammonia reacts more easily with moisture in the air than other combustible gases such as methane gas and butane gas. As a result, it becomes mist-like (droplet-like) ammonia water, and its specific gravity becomes higher than that of the air.
  • Patent Document 2 discloses a recovery device that recovers ammonia from exhaust gas.
  • the recovery device disclosed in Patent Document 2 includes a dissolution tank for dissolving exhaust gas in water, and an ammonia water tank for storing ammonia water formed in the dissolution tank.
  • JP 2013-11332 A Japanese Unexamined Patent Application Publication No. 2008-7378
  • ammonia gas obtained by distilling aqueous ammonia is dehumidified and then liquefied to recover high-purity ammonia. It is returned to the dissolution device of the previous process rather than the ammonia water tank.
  • the dissolution device of the previous process rather than the ammonia water tank.
  • thermal energy is required for regeneration of ammonia.
  • the present disclosure has been made in order to solve the above problems, and enables the recovery of ammonia as ammonia water, and suppresses the discharge of the recovered ammonia to the outside of the ship, while saving energy and suppressing an increase in the size of the hull.
  • the ship according to the present disclosure includes an ammonia recovery unit that absorbs ammonia into water and recovers it as recovered ammonia water, and a regeneration tower that heats the recovered ammonia water and separates the recovered ammonia water into ammonia-removed water and ammonia vapor.
  • a gas-liquid separation unit for separating the ammonia vapor separated in the regeneration tower into ammonia gas and a separated liquid; and a separated liquid reflux unit for refluxing the separated liquid to the regeneration tower.
  • FIG. 1 is a side view of a vessel according to an embodiment of the present disclosure
  • FIG. 1 is a diagram showing a piping system for fuel purging a vessel according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a diagram showing a piping system around a regeneration tower according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a diagram corresponding to FIG. 3 in a modification of the embodiment of the present disclosure
  • FIG. 1 is a side view of a vessel according to an embodiment of the present disclosure;
  • FIG. (Vessel configuration) As shown in FIG. 1, the ship 1 of this embodiment includes a hull 2, an upper structure 4, a combustion device 8, an ammonia tank 10, a piping system 20, a vent post 30, an ammonia recovery section 60, A recovered ammonia water tank 70 is provided.
  • the ship type of the ship 1 is not limited to a specific one.
  • the ship type of the ship 1 can be exemplified by, for example, a liquefied gas carrier, a ferry, a RORO ship, a car carrier, and a passenger ship.
  • the hull 2 has a pair of sides 5A and 5B and a hull 6 that form its outer shell.
  • the shipboard sides 5A, 5B are provided with a pair of shipboard skins forming the starboard and port sides, respectively.
  • the ship's bottom 6 includes a ship's bottom shell plate that connects the sides 5A and 5B.
  • the pair of sides 5A and 5B and the bottom 6 form a U-shaped outer shell of the hull 2 in a cross section perpendicular to the fore-and-aft direction FA.
  • the hull 2 further includes an upper deck 7, which is a through deck arranged on the uppermost layer.
  • the superstructure 4 is formed on this upper deck 7 .
  • a living quarter and the like are provided in the upper structure 4 .
  • a cargo space (not shown) for loading cargo is provided on the bow 3a side in the bow-stern direction FA from the upper structure 4 .
  • the combustion device 8 is a device that generates thermal energy by burning fuel, and is provided inside the hull 2 described above.
  • Examples of the combustion device 8 include an internal combustion engine used as a main engine for propelling the ship 1, an internal combustion engine used as a generator for supplying electricity to the ship, a boiler for generating steam as a working fluid, and the like.
  • the combustion device 8 of the present embodiment uses ammonia (hereinafter referred to as fuel ammonia) as fuel.
  • the ammonia tank 10 stores liquefied ammonia as fuel ammonia.
  • the ammonia tank 10 exemplified in this embodiment is installed on the upper deck 7 on the stern 3b side of the superstructure 4.
  • the ammonia tank 10 is arranged on the upper deck 7 on the stern 3b side of the superstructure 4. not limited to above.
  • a piping system 20 connects the combustion device 8 and the ammonia tank 10 .
  • the piping system 20 supplies fuel ammonia stored in the ammonia tank 10 to the combustion device 8 .
  • the vent post 30 for example, guides gas such as vent gas discharged from the cargo tank above the upper deck 7 and releases it into the atmosphere.
  • the vent post 30 of this embodiment is provided on the upper deck 7 and extends upward from the upper deck 7 .
  • the vent post 30 has a tubular shape extending in the vertical direction Dv and has an open top.
  • the ammonia recovery unit 60 causes water W to absorb the ammonia to be recovered and recovers it as recovered ammonia water.
  • the ammonia recovery section 60 of the present embodiment is arranged on the upper deck 7 on the stern 3b side of the ammonia tank 10 .
  • a so-called scrubber can be used, in which water is injected into a gas containing ammonia so that the water absorbs the ammonia.
  • Water (for example, fresh water) stored in a water tank (not shown) provided in the hull 2 is supplied to the ammonia recovery unit 60 .
  • the ammonia recovery unit 60 is not limited to the above configuration and arrangement as long as it can absorb ammonia into water and recover it as recovered ammonia water.
  • the recovered ammonia water tank 70 stores the recovered ammonia water recovered by the ammonia recovery unit 60 .
  • the recovered ammonia water tank 70 in this embodiment is arranged in the hull 2 below the upper deck 7 where the ammonia recovery section 60 is installed. Note that the recovered ammonia water tank 70 is not limited to the above arrangement as long as it can recover the ammonia recovered by the ammonia recovery unit 60 as recovered ammonia water.
  • FIG. 2 is a diagram showing a piping system for fuel purging of a ship according to an embodiment of the present disclosure.
  • the ship 1 of this embodiment includes an ammonia buffer tank 40 that temporarily stores fuel ammonia supplied from the ammonia tank 10 .
  • the ammonia buffer tank 40 is installed in the middle of the piping system 20 between the ammonia tank 10 and the combustion device 8 .
  • the piping system 20 includes an ammonia fuel supply line 115 (see FIG. 3), a supply pipe 21, a return pipe 22, and on-off valves 23 and 24, which will be described later.
  • An inert gas supply device 50 and an ammonia recovery unit 60 are connected to the piping system 20, respectively.
  • the supply pipe 21 and the return pipe 22 connect the ammonia buffer tank 40 and the combustion device 8, respectively.
  • a supply pipe 21 supplies fuel ammonia from the ammonia buffer tank 40 to the combustion device 8 .
  • the return pipe 22 returns surplus fuel ammonia that has not been used as fuel in the combustion device 8 to the ammonia buffer tank 40 .
  • the supply pipe 21 is provided with an ammonia pressurizing pump 117 and an ammonia heat exchanger 118 (see FIG. 3), which will be described later, but are not shown in FIG.
  • the on-off valve 23 is provided on the supply pipe 21 .
  • the on-off valve 24 is provided on the return pipe 22 . These on-off valves 23 and 24 are always open when the combustion device 8 is in operation. On the other hand, the on-off valves 23 and 24 are closed when the combustion device 8 is stopped. By closing these on-off valves 23 and 24, the flow paths formed inside the supply pipe 21 and the return pipe 22 are blocked.
  • the inert gas supply device 50 performs so-called purging, in which the fuel ammonia in the distribution route R through which the fuel ammonia as the fuel of the combustion device 8 flows is replaced with an inert gas such as nitrogen.
  • the inert gas supply device 50 includes an inert gas supply section 51 , an inert gas supply pipe 52 and an inert gas supply valve 53 .
  • the inert gas for example, an inert gas generated inside the hull 2 by an inert gas generator (not shown), or an inert gas stored in advance in an inert gas tank (not shown) provided in the hull 2 can be used.
  • the inert gas may be any gas that does not chemically react when it comes into contact with the fuel ammonia.
  • the inert gas supply unit 51 supplies inert gas to the inert gas supply pipe 52 .
  • the inert gas supply pipe 52 connects the inert gas supply section 51 and the distribution route R. More specifically, the inert gas supply pipe 52 connects the inert gas supply section 51 and the purge target region 20p of the flow path R.
  • the purge target region 20p in the present embodiment includes the supply pipe 21 closer to the combustion device 8 than the on-off valve 23, the return pipe 22 closer to the combustion device 8 than the on-off valve 24, and the flow path formed in the combustion device 8. is R.
  • the inert gas supply pipe 52 exemplified in this embodiment is connected to the purge target region 20p of the supply pipe 21 in the purge target region 20p.
  • the inert gas supply valve 53 is provided on the inert gas supply pipe 52 .
  • the inert gas supply valve 53 is normally closed to block the supply of inert gas from the inert gas supply unit 51 to the purge target region 20p.
  • the normal time is when the fuel ammonia can be supplied to the combustion device 8, such as when the combustion device 8 is in operation.
  • the on-off valves 23 and 24 are opened, allowing fuel ammonia to be supplied from the ammonia buffer tank 40 to the combustion device 8 through the supply pipe 21, and excess fuel ammonia is discharged from the combustion device 8 to the ammonia buffer tank 40. returned to
  • the inert gas supply valve 53 is opened from the closed state when the combustion device 8 is stopped for an emergency or for a long period of time. In other words, when the fuel ammonia remaining in the purge target region 20p is purged, the closed state is operated to the open state.
  • the on-off valves 23 and 24 are closed, and the supply pipe 21 and the return pipe 22 are blocked. As a result, the supply of fuel ammonia from the ammonia buffer tank 40 to the combustion device 8 is stopped.
  • the inert gas supply valve 53 is opened from the closed state, the inert gas can be supplied from the inert gas supply unit 51 to the purge target region 20p.
  • the vent pipe 38 guides the inert gas supplied by the inert gas supply device 50 and the fuel ammonia remaining in the distribution route R to the outside. Fuel ammonia flows into the vent pipe 38 together with the inert gas, so that the fuel ammonia in the purge target region 20p (distribution route R) is replaced with the inert gas.
  • the vent pipe 38 of this embodiment includes an upstream vent pipe 38A and a downstream vent pipe 38B.
  • the upstream vent pipe 38A connects the purge target region 20p of the recovery pipe 71 (distribution route R) and the ammonia recovery section 60 .
  • the upstream vent pipe 38A illustrated in this embodiment is connected to the return pipe 22 .
  • the downstream vent pipe 38B connects the ammonia recovery section 60 and the vent post 30 . That is, the mixed fluid of the inert gas and the fuel ammonia flows through the upstream vent pipe 38A, and the remaining fluid from which the fuel ammonia is collected by the ammonia recovery unit 60 flows through the downstream vent pipe 38B. becomes.
  • the ammonia recovery unit 60 in this embodiment is connected to a recovered ammonia water tank 70 via a recovery pipe 71 .
  • the recovery pipe 71 is provided with a recovery pipe opening/closing valve 72 .
  • the ammonia water generated in the ammonia recovery unit 60 moves to the recovered ammonia water tank 70 through the recovery pipe 71 when the recovery pipe opening/closing valve 72 is opened.
  • the ammonia water generated by the ammonia recovery unit 60 can flow down to the recovered ammonia water tank 70 by its own weight. It's becoming
  • FIG. 3 is a diagram showing a piping system around a regeneration tower according to an embodiment of the present disclosure.
  • the ship 1 of the present embodiment further includes an exhaust gas economizer 81, a steam generating section 82, a heater section 83, and a recovered ammonia water as a configuration for removing ammonia from the above-described recovered ammonia water.
  • 91 an ammonia-removed water tank 92 , an ammonia-removed water delivery pump 93 , a removed water reflux line 94 , and an overboard discharge line 95 .
  • the exhaust gas economizer 81 recovers the heat of the exhaust gas G from the combustion device 8.
  • the exhaust gas economizer 81 of this embodiment is installed in the middle of the exhaust pipe that guides the exhaust gas G from the combustion device 8 outboard.
  • the exhaust gas economizer 81 recovers the heat of the exhaust gas G by exchanging heat between the exhaust gas G and a heat medium.
  • the heat medium that has exchanged heat with the exhaust gas G in the exhaust gas economizer 81 is supplied to the steam generator 82 .
  • the exhaust gas economizer 81 in this embodiment is connected to the steam generator 82 via a pipe 81a for circulating a heat medium.
  • a pump 81b for circulating the heat medium is provided in the pipe 81a.
  • the steam generator 82 generates steam from heat recovered by the exhaust gas economizer 81 .
  • a boiler or a steam separator can be used as the steam generator 82 .
  • the steam generated by the steam generating section 82 is supplied to the heater main body 103 of the heater section 83 through the steam supply pipe 82a.
  • the heater section 83 uses the steam supplied from the steam generating section 82 to heat the liquid stored in the lower portion of the regeneration tower 86 .
  • the heater unit 83 in the present embodiment includes a circulation pipe 101 capable of circulating the liquid stored in the lower part of the regeneration tower 86, a circulation pump 102 provided in the middle of the circulation pipe 101, and the steam generator 82.
  • a heater main body 103 heats the liquid stored in the lower part of the regeneration tower 86 by exchanging heat between the steam and the liquid circulating through the circulation pipe 101 .
  • a recovered ammonia water supply line 84 connects the recovered ammonia water tank 70 and the regeneration tower 86 .
  • the inside of the recovered ammonia water tank 70 and the inside of the regeneration tower 86 are communicated via this recovered ammonia water supply line 84 .
  • the recovered aqueous ammonia supply line 84 in this embodiment is connected to the upper portion of the regeneration tower 86 .
  • the recovered ammonia water delivery pump 85 is provided in the recovered ammonia water supply line 84 .
  • the recovered ammonia water delivery pump 85 delivers the recovered ammonia water stored in the recovered ammonia water tank 70 toward the regeneration tower 86 .
  • the regeneration tower 86 separates the recovered ammonia water into ammonia-removed water and ammonia vapor by heating the recovered ammonia water. More specifically, the regeneration tower 86 heats the recovered ammonia water supplied through the recovered ammonia water supply line 84 by the heater unit 83, and utilizes the difference in the boiling points of ammonia and water to produce the recovered ammonia water. separate the ammonia vapor from the Here, the ammonia-removed water means the remainder of the recovered ammonia water from which the ammonia vapor has been separated in the regeneration tower 86 . That is, the ammonia concentration of the ammonia-removed water is lower than that of the recovered ammonia water. The ammonia-removed water may be mixed with newly supplied recovered ammonia water inside the regeneration tower 86 .
  • the condenser 87 cools the ammonia vapor separated by the regeneration tower 86 to reduce the volume of the ammonia vapor.
  • a condenser 87 is provided in the middle of the ammonia vapor line 104 .
  • One end of the ammonia vapor line 104 is connected to the upper portion of the regeneration tower 86 and the other end of the ammonia vapor line 104 is connected to the gas-liquid separator 88 . That is, the condenser 87 condenses the ammonia vapor while sending the ammonia vapor separated by the regeneration tower 86 to the gas-liquid separation section 88 . Note that the ammonia vapor supplied to the condenser 87 contains moisture.
  • the gas-liquid separator 88 separates the ammonia vapor into ammonia gas and separated liquid.
  • the ammonia gas separated by the gas-liquid separator 88 is sent to the ammonia gas dehumidifier 90 via the ammonia gas supply line 108 .
  • the separated liquid is the residue after separating the ammonia gas from the ammonia vapor.
  • the separated liquid is water with a small amount of ammonia.
  • the gas-liquid separation by the gas-liquid separation unit 88 can be exemplified by a method of cooling the ammonia vapor and separating the gas-liquid, but the gas-liquid separation by the gas-liquid separation unit 88 is not limited to the method of cooling the ammonia vapor.
  • the separated liquid reflux unit 89 refluxes the separated liquid gas-liquid separated by the gas-liquid separation unit 88 to the regeneration tower 86 .
  • the separated liquid reflux unit 89 in this embodiment includes a reflux line 105 , a reflux opening/closing valve 106 and a reflux pump 107 .
  • a reflux line 105 connects the gas-liquid separation section 88 and the regeneration tower 86 .
  • the reflux opening/closing valve 106 opens and closes a channel formed inside the reflux line 105 .
  • the reflux pump 107 is provided in the reflux line 105 and pumps the separated liquid from the gas-liquid separation section 88 toward the regeneration tower 86 .
  • the ammonia gas dehumidifier 90 dehumidifies the ammonia gas separated by the gas-liquid separator 88 .
  • the ammonia gas dehumidified by the ammonia gas dehumidifier 90 is sent to the ammonia gas recovery and reuse unit 91 through the dehumidified gas supply line 109 . Since the ammonia gas separated by the gas-liquid separator 88 contains a small amount of water, the ammonia gas dehumidifier 90 dehumidifies the ammonia gas as a pre-stage for liquefying the ammonia gas. Incidentally, when the humidity of the ammonia gas separated by the gas-liquid separator 88 is sufficiently low, the ammonia gas dehumidifier 90 may be omitted.
  • the ammonia gas recovery and reuse unit (ammonia gas liquefying unit) 91 liquefies the ammonia gas and supplies it to the ammonia tank 10 .
  • Ammonia liquefied by the ammonia gas recovery/reuse unit 91 is sent to the ammonia tank 10 via the ammonia return line 110 .
  • a method of liquefying the ammonia gas in the ammonia gas recovery/reuse unit 91 for example, a method of increasing the pressure of the ammonia gas with a gas compressor (not shown) and then exchanging heat with seawater to cool the ammonia gas can be exemplified. .
  • ammonia gas can also be liquefied by As the ammonia gas recovery and reuse unit 91, for example, when the ship 1 has a cargo tank, a reliquefaction device (not shown) that reliquefies the boil-off gas generated in the cargo tank is used. may
  • the ammonia-removed water tank 92 stores the ammonia-removed water separated by the regeneration tower 86 .
  • the removed water reflux line 94 forms a flow path for refluxing the ammonia removed water stored in the ammonia removed water tank 92 to the regeneration tower 86 .
  • the ammonia-removed water delivery pump 93 delivers ammonia-removed water from the ammonia-removed water tank 92 .
  • the ammonia-removed water delivery pump 93 of the present embodiment is arranged near the ammonia-removed water tank 92 in the removed water reflux line 94 .
  • the overboard discharge line 95 discharges the ammonia-removed water in the ammonia-removed water tank 92 overboard.
  • the overboard discharge line 95 in this embodiment branches off from the removed water reflux line 94 closer to the regeneration tower 86 than the ammonia removed water delivery pump 93 .
  • the removed water reflux line 94 is provided with an on-off valve 111 on the side closer to the regeneration tower 86 than the branch point P1 with the overboard discharge line 95 .
  • an on-off valve 112 is provided in the overboard discharge line 95 .
  • the on-off valve 111 provided in the removed water recirculation line 94 is opened when the ammonia removed water is recirculated from the ammonia removed water tank 92 to the regeneration tower 86. It is closed when the removed water is discharged.
  • the on-off valve of the overboard discharge line 95 is closed when the ammonia-removed water is recirculated from the ammonia-removed water tank 92 to the regeneration tower 86. is opened when the is discharged.
  • the concentration of ammonia in the ammonia-removed water stored in the ammonia-removed water tank 92 is a concentration at which discharge to the outside of the ship is permissible
  • the ammonia-removed water is discharged to the outside of the ship.
  • the ammonia-removed water is refluxed to the regeneration tower to separate the ammonia vapor again.
  • the ammonia fuel supply line 115 that connects the ammonia tank 10 and the ammonia buffer tank 40 is provided with a feed pump 116 that feeds the fuel ammonia toward the combustion device 8.
  • the supply pipe 21 of the present embodiment is provided with an ammonia pressurizing pump 117 and an ammonia heat exchanger 118, which are not shown in FIG.
  • the ammonia pressurization pump 117 pressurizes the fuel ammonia supplied from the ammonia buffer tank 40 to the combustion device 8 .
  • Ammonia heat exchanger 118 heats the fuel ammonia pressurized by this ammonia pressurization pump 117 .
  • the ammonia buffer tank 40 and the ammonia recovery section 60 of the present embodiment are connected by a buffer tank vent pipe 119 so that the vent gas of the ammonia buffer tank 40 can be supplied to the ammonia recovery section 60 .
  • the ammonia contained in the vent gas of the ammonia buffer tank 40 can also be recovered in the ammonia recovery section 60 .
  • the ship 1 of the above embodiment includes an ammonia recovery unit 60 that absorbs ammonia into water and recovers it as recovered ammonia water, a regeneration tower 86 that heats the recovered ammonia water and separates it into ammonia-removed water and ammonia vapor, and regeneration A gas-liquid separation unit 88 that separates the ammonia vapor separated in the tower 86 into ammonia gas and a separated liquid, and a separated liquid reflux unit 89 that refluxes the separated liquid to the regeneration tower 86 are provided.
  • the gas-liquid separator 88 separates ammonia vapor into ammonia gas and separated liquid, and this separated liquid is treated as ammonia-removed water. It can be recycled to a regeneration tower 86 where it is separated from ammonia vapor and processed again. Therefore, for example, compared to the case where the separated liquid is used as water for absorbing ammonia in the ammonia recovery section 60, the installation space for piping inside the hull 2 can be reduced. Furthermore, since there is no need to discharge the separated liquid overboard, there is no need for a device for neutralizing or diluting the ammonia contained in the separated liquid.
  • the ship 1 of the above embodiment further includes an ammonia tank 10 provided in the hull 2 and storing fuel ammonia, and a combustion device 8 driven by the fuel ammonia stored in the ammonia tank 10 .
  • the regeneration tower 86 heats the recovered ammonia water using the exhaust heat of the combustion device 8 and separates the recovered ammonia water into ammonia-removed water and ammonia vapor.
  • the exhaust heat of the combustion device 8 can be effectively used when separating ammonia from the recovered ammonia water.
  • the separated ammonia can be used as fuel ammonia for the combustion device 8, or used for other purposes (for example, as a reducing agent for a denitrification device).
  • the ship 1 of the above embodiment further includes an exhaust gas economizer 81 that recovers the heat of the exhaust gas from the combustion device 8, a steam generator 82 that generates steam from the heat recovered by the exhaust gas economizer 81, and the steam generator 82. and a heater section 83 that heats the liquid stored in the lower portion of the regeneration tower 86 using the generated steam.
  • the heat recovered by the exhaust gas economizer 81 can be transferred to the liquid ammonia-removed water or the like stored in the lower portion of the regeneration tower 86 using steam as a heat medium. Therefore, when the ship 1 has the exhaust gas economizer 81 , the exhaust heat of the combustion device 8 can be easily used in the regeneration tower 86 .
  • the ship 1 of the above embodiment further includes an ammonia gas recovery/reuse unit 91 that liquefies the ammonia gas separated by the gas-liquid separation unit 88 and supplies the ammonia gas to the ammonia tank 10 .
  • the ammonia tank 10 can be used as a tank for storing ammonia extracted from the recovered ammonia water. Therefore, a dedicated tank for storing the liquefied ammonia in the ammonia gas recovery/reuse unit 91 can be omitted.
  • the ship 1 of the above embodiment further includes a condenser 87 that cools the ammonia vapor separated by the regeneration tower 86 to reduce the volume of the ammonia vapor. By doing so, the gas-liquid separation process in the gas-liquid separation section 88 can be efficiently performed.
  • the separated liquid reflux section 89 of the ship 1 of the above-described embodiment includes a reflux line 105 that communicates the gas-liquid separation section 88 and the regeneration tower 86, and a reflux pump 107 that pumps the separated liquid toward the regeneration tower 86. there is By doing so, the separated liquid separated by the gas-liquid separation section 88 can be actively fed into the regeneration tower 86 by the reflux pump 107 .
  • the ship 1 of the above embodiment further includes a recovered ammonia water tank 70 that stores the recovered ammonia water recovered by the ammonia recovery unit 60, and a recovered ammonia water supply line 84 that connects the recovered ammonia water tank 70 and the regeneration tower 86. and a recovered ammonia water sending pump 85 which is provided in the recovered ammonia water supply line 84 and sends the recovered ammonia water from the recovered ammonia water tank 70 to the regeneration tower 86 .
  • the recovered ammonia water recovered by the ammonia recovery unit 60 can be temporarily stored in the recovered ammonia water tank 70 .
  • the recovered ammonia water stored in the recovered ammonia water tank 70 can be sent to the regeneration tower 86 by the recovered ammonia water sending pump 85 . Therefore, the step of separating the recovered aqueous ammonia performed in the regeneration tower 86 can be less affected by the state of production of the recovered aqueous ammonia in the ammonia recovery section 60 .
  • the ship 1 of the above embodiment further includes an ammonia-removed water tank 92 that stores the ammonia-removed water separated by the regeneration tower 86, an ammonia-removed water delivery pump 93 that delivers the ammonia-removed water from the ammonia-removed water tank 92, A removed water reflux line 94 for returning the ammonia-removed water in the removed water tank 92 to the regeneration tower 86 and an overboard discharge line 95 for discharging the ammonia-removed water in the ammonia-removed water tank 92 to the outside of the ship are provided.
  • ammonia-removed water when the ammonia concentration of the ammonia-removed water is high, the ammonia-removed water can be refluxed to the regeneration tower 86 to separate the ammonia vapor again.
  • this ammonia-removed water when the ammonia concentration of the ammonia-removed water drops to a level that allows it to be released into the sea, this ammonia-removed water can be discharged overboard.
  • the ship 1 of the above embodiment further includes an inert gas supply device 50 that supplies inert gas to the fuel flow path of the combustion device 8 to purge fuel ammonia remaining in the fuel flow path.
  • the ammonia recovery unit 60 absorbs the purged fuel ammonia in water and recovers it as recovered ammonia water. By doing so, it becomes possible to use the fuel ammonia purged with the inert gas as fuel ammonia for driving the combustion device 8 . Therefore, waste of fuel ammonia can be reduced, so that the increase in size of the ammonia tank 10 can be suppressed.
  • FIG. 4 is a diagram corresponding to FIG. 3 in a modification of the embodiment of the present disclosure.
  • the ammonia gas separated by the gas-liquid separation unit 88 and dehumidified by the ammonia gas dehumidifier 90 is liquefied by the ammonia gas recovery/reuse unit (ammonia gas liquefying unit) 91 and supplied to the ammonia tank 10 .
  • the destination of the ammonia gas separated by the gas-liquid separation unit 88 and dehumidified by the ammonia gas dehumidifier 90 is not limited to the ammonia gas recovery and reuse unit (ammonia gas liquefaction unit) 91 .
  • FIG. 1 ammonia gas recovery and reuse unit
  • the dehumidified gas supply line 109 may be connected to an ammonia reuse unit 96 or an ammonia incineration unit 97 instead of the ammonia gas recovery/reuse unit (ammonia gas liquefying unit) 91 .
  • the ammonia reuse unit 96 reuses the ammonia gas sent through the dehumidified gas supply line 109 .
  • the ammonia gas may be reused as it is, or may be reused after being pressurized or liquefied.
  • Examples of the ammonia reuse unit 96 include a denitrification device and a hydrogen generator.
  • the ammonia burning unit 97 burns the ammonia gas sent through the dehumidified gas supply line 109 in a gaseous state.
  • the ammonia gas separated by the gas-liquid separation unit 88 can be reused in various ammonia reuse units 96 other than the combustion device 8, or can be incinerated in the ammonia incineration unit 97. becomes possible.
  • the connection destination of the dehumidified gas supply line 109 can be switched between the ammonia reuse unit 96 and the ammonia incineration unit 97 as needed, or the dehumidified gas supply line 109 can be connected to the ammonia reuse unit 96 respectively. It may be branched and connected to the ammonia burning section 97 .
  • the connection destination of the dehumidified gas supply line 109 may be selected from among the ammonia gas recovery/reuse unit (ammonia gas liquefaction unit) 91, the ammonia reuse unit 96, and the ammonia incineration unit 97 as necessary.
  • the dehumidified gas supply line 109 is branched into at least two of an ammonia gas recovery/reuse unit (ammonia gas liquefaction unit) 91, an ammonia reuse unit 96, and an ammonia incineration unit 97. You can connect.
  • an ammonia gas recovery/reuse unit ammonia gas liquefaction unit
  • an ammonia reuse unit 96 ammonia reuse unit
  • an ammonia incineration unit 97 an ammonia incineration unit
  • the combustion device 8 is the main engine using ammonia as fuel.
  • the combustion device 8 is not limited to a device that burns only ammonia, and may be, for example, a combustion device 8 capable of switching between ammonia and a fuel other than ammonia (for example, heavy oil).
  • the recovered ammonia water tank 70 may be omitted.
  • the recovered ammonia water recovered by the ammonia recovery unit 60 may be introduced into the regeneration tower 86 .
  • the regeneration tower 86 uses exhaust heat from the combustion device 8, but thermal energy supplied from a heat source other than the combustion device 8 may be used. Furthermore, although the case of generating steam using the heat recovered by the exhaust gas economizer 81 has been described, a heat medium other than steam may be used as the heat medium.
  • the configuration is not limited to the configuration including the reflux pump 107 as long as the separated liquid can be sent to the regeneration tower 86 .
  • the reflux pump 107 may be omitted.
  • the case where the recovered ammonia water delivery pump 85 is provided in the recovered ammonia water supply line 84 has been described, but if it is possible to send the recovered ammonia water to the regeneration tower 86, the recovered ammonia water delivery pump 85 may be omitted.
  • the ship 1 includes an ammonia recovery unit 60 that absorbs ammonia into water and recovers it as recovered ammonia water, and heats the recovered ammonia water and converts the recovered ammonia water into ammonia-removed water.
  • a reflux section 89 is provided.
  • the gas-liquid separator 88 separates ammonia vapor into ammonia gas and separated liquid, and the separated liquid is separated into ammonia-removed water and ammonia vapor. It can be refluxed to the regeneration tower 86 and processed again. Therefore, for example, compared to the case where the separated liquid is used as water for absorbing ammonia in the ammonia recovery section 60, the installation space for piping inside the hull 2 can be reduced. Furthermore, since there is no need to discharge the separated liquid overboard, there is no need for a device for neutralizing or diluting the ammonia contained in the separated liquid. Therefore, it is possible to suppress an increase in the size of the hull 2 while recovering ammonia as the recovered ammonia water.
  • the ship 1 according to the second aspect is the ship of (1), which is provided in the hull and stores ammonia in an ammonia tank 10, and the ammonia stored in the ammonia tank 10
  • the regeneration tower 86 heats the recovered ammonia water using the exhaust heat of the combustion device 8, and converts the recovered ammonia water into the ammonia-removed water and the ammonia vapor. and separate.
  • Examples of the combustion device 8 include an internal combustion engine and a boiler that are used for the main engine and the generator, respectively.
  • the exhaust heat of the combustion device 8 can be effectively used when separating ammonia from the recovered ammonia water. Also, the separated ammonia can be used as fuel ammonia for the combustion device 8 .
  • the ship 1 according to the third aspect is the ship of (2), and includes an exhaust gas economizer 81 that recovers the heat of the exhaust gas from the combustion device 8, and steam generated from the heat recovered by the exhaust gas economizer 81. and a heater unit 83 that heats the liquid stored in the lower part of the regeneration tower 86 using the steam generated by the steam generating unit 82 .
  • the heat recovered by the exhaust gas economizer 81 can be transferred to the liquid stored in the lower part of the regeneration tower 86 using steam as a heat medium. Therefore, when the ship 1 has the exhaust gas economizer 81 , the exhaust heat of the combustion device 8 can be easily used in the regeneration tower 86 .
  • the ship 1 according to the fourth aspect is the ship of (2) or (3), wherein the inert gas is supplied to the fuel flow path of the combustion device 8 and remains in the fuel flow path. Equipped with an inert gas supply device 50 for purging fuel ammonia, the ammonia recovery unit 60 absorbs the purged fuel ammonia in water and recovers it as recovered ammonia.
  • the ship 1 according to the fifth aspect is the ship of (2) to (4), wherein the ammonia gas separated by the gas-liquid separation unit 88 is liquefied and supplied to the ammonia tank 10 A gas recovery/reuse unit 91 is further provided.
  • the ammonia tank 10 can be used as a tank for storing ammonia extracted from the recovered ammonia water. Therefore, a dedicated tank for storing the liquefied ammonia in the ammonia gas recovery/reuse unit 91 can be omitted.
  • the ship 1 according to the sixth aspect is the ship of (2) to (4), and includes an ammonia recycling unit 96 that reuses the ammonia gas separated by the gas-liquid separation unit 88; and an ammonia burning unit 97 for burning the ammonia gas separated by the gas-liquid separating unit 88 .
  • the ammonia gas separated by the gas-liquid separation unit 88 can be reused by the ammonia reuse unit 96 or incinerated by the ammonia incineration unit 97 .
  • a ship 1 according to a seventh aspect is a ship according to any one of (1) to (6), wherein the ammonia vapor separated by the regeneration tower 86 is cooled to reduce the volume of the ammonia vapor.
  • a reducing condenser 87 is further provided. As a result, the gas-liquid separation process in the gas-liquid separation section 88 can be performed efficiently.
  • the ship 1 according to the eighth aspect is the ship according to any one of (1) to (7), and the separated liquid reflux section 89 includes the gas-liquid separation section 88 and the regeneration tower 86. and a reflux pump 107 for pumping the separated liquid toward the regeneration tower 86 .
  • the separated liquid separated by the gas-liquid separation section 88 can be actively fed into the regeneration tower 86 by the reflux pump 107 .
  • the ship 1 according to the ninth aspect is any one of (1) to (8), and includes a recovered ammonia water tank 70 that stores the recovered ammonia water recovered by the ammonia recovery unit 60. a recovered ammonia water supply line 84 connecting the recovered ammonia water tank 70 and the regeneration tower 86; and a recovery ammonia water delivery pump 85 for delivering to the tower 86 .
  • the recovered ammonia water recovered by the ammonia recovery unit 60 can be temporarily stored in the recovered ammonia water tank 70 . Then, the recovered ammonia water stored in the recovered ammonia water tank 70 can be sent to the regeneration tower 86 by the recovered ammonia water sending pump 85 . Therefore, the step of separating the recovered aqueous ammonia performed in the regeneration tower 86 can be less affected by the state of production of the recovered aqueous ammonia in the ammonia recovery section 60 .
  • the ship 1 is any one of (1) to (9), and includes an ammonia-removed water tank 92 for storing the ammonia-removed water separated by the regeneration tower 86.
  • an ammonia-removed water pump 93 for sending the ammonia-removed water from the ammonia-removed water tank 92;
  • a removed water reflux line 94 for returning the ammonia-removed water from the ammonia-removed water tank 92 to the regeneration tower 86;
  • An overboard discharge line 95 for discharging the ammonia-free water in the water tank 92 overboard is further provided.
  • ammonia-removed water when the ammonia concentration of the ammonia-removed water is high, the ammonia-removed water can be refluxed to the regeneration tower 86 to separate the ammonia vapor again.
  • the ammonia concentration of the ammonia-removed water drops to a level that allows it to be released into the sea, this ammonia-removed water can be discharged overboard.
  • Reflux line 106 Reflux on/off valve 107
  • Reflux pump 108 Ammonia gas supply line 109
  • Dehumidified gas supply line 110 ... Ammonia return line 111, 112... On/off valve 115
  • Ammonia fuel supply line 116 Feeding pump 117 .
  • Ammonia pressure pump 118 ...
  • Ammonia heat exchanger 119 Vent pipe for buffer tank G ... Exhaust gas R ... Distribution route

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)

Abstract

船舶は、アンモニアを水に吸収させて回収アンモニア水として回収するアンモニア回収部と、前記回収アンモニア水を加熱し、前記回収アンモニア水をアンモニア除去水とアンモニア蒸気とに分離する再生塔と、前記再生塔で分離したアンモニア蒸気をアンモニアガスと分離液体とに分離する気液分離部と、前記分離液体を前記再生塔に還流させる分離液体還流部と、を備える。

Description

船舶
 本開示は、船舶に関する。
 本願は、2021年5月24日に日本に出願された特願2021-086832号について優先権を主張し、その内容をここに援用する。
 船舶推進用の燃料や、貨物として可燃性ガスを搭載する船舶には、可燃性ガスを船外の大気中に排出するためのベントポストが設けられている。例えば、特許文献1には、可燃性ガス(ガス燃料)により駆動されるガスエンジンの配管内等に残る可燃性ガスを、窒素ガス等でパージし、ベントポストを介して大気開放する構成が開示されている。
 上記船舶にあっては、ガス燃料としてアンモニアを搭載することが検討されている。アンモニアは、不活性ガスによりパージしてベントポストを介して大気に放出しても十分に拡散しない可能性が有る。このようにアンモニアが大気中に拡散し難い理由の一つとしては、アンモニアが、メタンガス、ブタンガス等の他の可燃性ガスに比較すると、空気中の水分と反応しやすく、空気中の水分と反応して霧状(液滴状)のアンモニア水となり、大気よりも比重が大きくなることが挙げられる。
 その一方で、特許文献2には、排出ガスからアンモニアを回収する回収装置が開示されている。この特許文献2に開示された回収装置は、排出ガスを水に溶解させる溶解槽と、溶解槽で形成したアンモニア水を貯留するアンモニア水タンクと、を備えている。
特開2013-11332号公報 特開2008-7378号公報
 特許文献2の回収装置では、アンモニア水を蒸留して得られたアンモニアガスを除湿した後、液化することで高純度のアンモニアを回収しており、アンモニア水を蒸留する工程で発生した水は、アンモニア水タンクよりも前工程の溶解装置に戻されている。しかしながら、船舶において、アンモニア水を蒸留する工程で発生した水を溶解装置まで戻すには、船体内部に配管の設置スペースが別途必要になり船舶の大型化につながるという課題が有る。さらに、特許文献2の回収装置では、アンモニア再生に熱エネルギーが必要になる。
 また、上記特許文献2の溶解装置に戻される水には、少量のアンモニアが含まれているため、このアンモニアを分離した水も、海洋汚染防止等の理由により船外に放出できない。例えば、アンモニア水タンク内のアンモニア水量が上限を超える等した場合に、水に含まれるアンモニアを中和や希釈してから船外に排出する必要が生じ、中和や希釈用の装置が別途必要になったり、アンモニア水タンクの大型化が必要になったりするという課題が有る。
 本開示は、上記課題を解決するためになされたものであって、アンモニアをアンモニア水として回収可能とし、且つ回収アンモニアの船外への排出を抑制しつつ、省エネルギー化及び船体の大型化を抑制することが可能な船舶を提供することにある。
 本開示に係る船舶は、アンモニアを水に吸収させて回収アンモニア水として回収するアンモニア回収部と、前記回収アンモニア水を加熱し、前記回収アンモニア水をアンモニア除去水とアンモニア蒸気とに分離する再生塔と、前記再生塔で分離したアンモニア蒸気をアンモニアガスと分離液体とに分離する気液分離部と、前記分離液体を前記再生塔に還流させる分離液体還流部と、を備える。
 上記態様の船舶によれば、アンモニアをアンモニア水として回収可能とし、且つ回収アンモニアの船外への排出を抑制しつつ、省エネルギー化及び船体の大型化を抑制することが可能となる。
本開示の実施形態に係る船舶の側面図である。 本開示の実施形態に係る船舶の燃料パージを行う配管系統を示す図である。 本開示の実施形態に係る再生塔周りの配管系統を示す図である。 本開示の実施形態の変形例における図3に相当する図である。
 以下、本開示の実施形態に係る船舶について、図面を参照して説明する。図1は、本開示の実施形態に係る船舶の側面図である。
(船舶の構成)
 図1に示すように、この実施形態の船舶1は、船体2と、上部構造4と、燃焼装置8と、アンモニアタンク10と、配管系統20と、ベントポスト30と、アンモニア回収部60と、回収アンモニア水タンク70と、を備えている。船舶1の船種は、特定のものに限られない。船舶1の船種は、例えば液化ガス運搬船、フェリー、RORO船、自動車運搬船、客船等を例示できる。
 船体2は、その外殻をなす、一対の舷側5A,5Bと、船底6と、を有している。舷側5A,5Bは、左右舷側をそれぞれ形成する一対の舷側外板を備える。船底6は、これら舷側5A,5Bを接続する船底外板を備える。これら一対の舷側5A,5B及び船底6により、船体2の外殻は、船首尾方向FAに直交する断面において、U字状を成している。
 船体2は、最も上層に配置される全通甲板である上甲板7を更に備えている。上部構造4は、この上甲板7上に形成されている。上部構造4内には、居住区等が設けられている。本実施形態の船舶1では、例えば、上部構造4よりも船首尾方向FAの船首3a側に、貨物を搭載するカーゴスペース(図示無し)が設けられている。
 燃焼装置8は、燃料を燃焼させることで熱エネルギーを発生させる装置であり、上記の船体2内に設けられている。燃焼装置8としては、船舶1を推進させるための主機に用いられる内燃機関、船内に電気を供給する発電機等に用いられる内燃機関、作動流体としての蒸気を発生させるボイラー等を例示できる。本実施形態の燃焼装置8は、燃料としてアンモニア(以下、燃料アンモニアと称する)を用いている。
 アンモニアタンク10は、燃料アンモニアとして液化アンモニアを貯留している。本実施形態で例示するアンモニアタンク10は、上部構造4よりも船尾3b側の上甲板7上に設置されているが、アンモニアタンク10の配置は、上部構造4よりも船尾3b側の上甲板7上に限られない。
 配管系統20は、燃焼装置8とアンモニアタンク10とを接続している。配管系統20は、アンモニアタンク10に貯留された燃料アンモニアを燃焼装置8に供給している。
 ベントポスト30は、例えば、カーゴタンクから排出されたベントガス等のガスを、上甲板7よりも上方へ導いて大気中へ放出する。本実施形態のベントポスト30は、上甲板7上に設けられ、上甲板7から上方に向かって延びている。ベントポスト30は、上下方向Dvに延びる筒状をなしており、その上部が開口している。
 アンモニア回収部60は、回収対象のアンモニアを水Wに吸収させて回収アンモニア水として回収する。本実施形態のアンモニア回収部60は、アンモニアタンク10よりも船尾3b側の上甲板7上に配置されている。アンモニア回収部60としては、例えば、アンモニアを含む気体に対して水を噴射することでアンモニアを水に吸収させる、いわゆるスクラバーを用いることができる。このアンモニア回収部60には、船体2内に設けられた水タンク(図示せず)に貯留された水(例えば、清水)が供給される。なお、アンモニア回収部60は、アンモニアを水に吸収させて回収アンモニア水として回収できる構成であればよく、上記構成や配置に限られない。
 回収アンモニア水タンク70は、アンモニア回収部60で回収された回収アンモニア水を貯留する。本実施形態における回収アンモニア水タンク70は、アンモニア回収部60の設置された上甲板7よりも下方の船体2内に配置されている。なお、回収アンモニア水タンク70は、アンモニア回収部60で回収したアンモニアを回収アンモニア水として回収できる構成であればよく、上記配置に限られない。
(パージに係る配管系統の構成)
 図2は、本開示の実施形態に係る船舶の燃料パージを行う配管系統を示す図である。
 図2に示すように、本実施形態の船舶1は、アンモニアタンク10から供給された燃料アンモニアを一時的に貯留するアンモニアバッファータンク40を備えている。アンモニアバッファータンク40は、アンモニアタンク10と燃焼装置8との間の配管系統20の途中に設置されている。配管系統20は、後述するアンモニア燃料供給ライン115(図3参照)と、供給管21と、リターン管22と、開閉弁23,24と、をそれぞれ備えている。そして、この配管系統20には、不活性ガス供給装置50と、アンモニア回収部60と、がそれぞれ接続されている。
 供給管21及びリターン管22は、それぞれ、アンモニアバッファータンク40と燃焼装置8とを接続している。供給管21は、アンモニアバッファータンク40から燃焼装置8に燃料アンモニアを供給する。リターン管22は、燃焼装置8で燃料として用いられずに残った余剰の燃料アンモニアをアンモニアバッファータンク40に戻す。なお、供給管21には、後述するアンモニア加圧ポンプ117及びアンモニア熱交換器118(図3参照)が設けられているが、図2においては図示を省略している。
 開閉弁23は、供給管21に設けられている。開閉弁24は、リターン管22に設けられている。これら開閉弁23,24は、燃焼装置8の稼働時に常時開放状態とされる。その一方で、開閉弁23,24は、燃焼装置8の停止時等に閉塞状態とされる。これら開閉弁23,24が閉塞状態にされることで、供給管21及びリターン管22の内部に形成された流路が遮断される。
 不活性ガス供給装置50は、燃焼装置8の燃料としての燃料アンモニアが流通する流通経路Rの燃料アンモニアを窒素等の不活性ガスに置き換える、いわゆるパージを行う。不活性ガス供給装置50は、不活性ガス供給部51と、不活性ガス供給管52と、不活性ガス供給弁53と、を備えている。不活性ガスとしては、例えば、不活性ガス生成装置(不図示)により船体2の内部で生成した不活性ガスや、船体2に設けられた不活性ガスタンク(不図示)に予め貯留した不活性ガスを用いることができる。なお、不活性ガスは、燃料アンモニアに接触した際に化学反応しない気体であればよい。
 不活性ガス供給部51は、不活性ガスを不活性ガス供給管52へ供給する。
 不活性ガス供給管52は、不活性ガス供給部51と、流通経路Rとを接続している。より具体的には、不活性ガス供給管52は、不活性ガス供給部51と、流通経路Rのパージ対象領域20pとを接続している。本実施形態におけるパージ対象領域20pは、開閉弁23よりも燃焼装置8側の供給管21、開閉弁24よりも燃焼装置8側のリターン管22、及び、燃焼装置8内に形成される流通経路Rである。本実施形態で例示する不活性ガス供給管52は、パージ対象領域20pのうち供給管21のパージ対象領域20pに接続されている。
 不活性ガス供給弁53は、不活性ガス供給管52に設けられている。不活性ガス供給弁53は、通常時に閉塞状態とされ、不活性ガス供給部51からパージ対象領域20pへの不活性ガスの供給を遮断している。ここで、通常時とは、燃焼装置8を稼働しているとき等、燃料アンモニアを燃焼装置8に供給可能にしているときである。この通常時において、開閉弁23,24は開放状態とされ、アンモニアバッファータンク40から供給管21を通して燃焼装置8に燃料アンモニアが供給可能にされ、余剰の燃料アンモニアが燃焼装置8からアンモニアバッファータンク40に戻される。
 不活性ガス供給弁53は、燃焼装置8の緊急停止時や長期停止時等に、閉塞状態から開放状態にされる。言い換えれば、パージ対象領域20pに残留する燃料アンモニアをパージする際に閉塞状態から開放状態に操作される。このようなパージを行う際には、まず開閉弁23,24が閉塞状態とされ、供給管21、リターン管22が遮断される。これにより、アンモニアバッファータンク40から燃焼装置8への燃料アンモニアの供給が停止された状態になる。次いで、不活性ガス供給弁53が閉塞状態から開放状態とされると、これにより不活性ガス供給部51からパージ対象領域20pに不活性ガスが供給可能な状態になる。
 ベント管38は、不活性ガス供給装置50によって供給された不活性ガスとともに、流通経路R内に残留していた燃料アンモニアを外部に導く。不活性ガスと共に燃料アンモニアがベント管38に流出することで、パージ対象領域20p(流通経路R)内の燃料アンモニアが不活性ガスに置き換えられる。
 本実施形態のベント管38は、上流側ベント管38Aと、下流側ベント管38Bと、を備えている。上流側ベント管38Aは、回収管71(流通経路R)のパージ対象領域20pとアンモニア回収部60とを接続している。本実施形態で例示する上流側ベント管38Aは、リターン管22に接続されている。下流側ベント管38Bは、アンモニア回収部60とベントポスト30とを接続している。つまり、上流側ベント管38Aには、不活性ガスと燃料アンモニアとの混合流体が流通し、下流側ベント管38Bには、アンモニア回収部60によって燃料アンモニアが回収された残りの流体が流通することとなる。
 本実施形態におけるアンモニア回収部60は、回収管71を介して回収アンモニア水タンク70に接続されている。この回収管71には、回収管開閉弁72が設けられている。アンモニア回収部60で生成されたアンモニア水は、この回収管開閉弁72が開放状態にされているときに、回収管71を介して回収アンモニア水タンク70に移動する。本実施形態では、アンモニア回収部60よりも回収アンモニア水タンク70が下方に配置されているため、アンモニア回収部60により生成されたアンモニア水は、その自重により回収アンモニア水タンク70へと流下可能となっている。
(回収アンモニア水からアンモニアを除去する構成)
 図3は、本開示の実施形態に係る再生塔周りの配管系統を示す図である。
 図3に示すように、本実施形態の船舶1は、上述した回収アンモニア水からアンモニアを除去する構成として、更に、排ガスエコノマイザー81と、蒸気生成部82と、ヒーター部83と、回収アンモニア水供給ライン84と、回収アンモニア水送出ポンプ85と、再生塔86と、凝縮器87と、気液分離部88と、分離液体還流部89と、アンモニアガス除湿器90と、アンモニアガス回収再利用部91と、アンモニア除去水タンク92と、アンモニア除去水送出ポンプ93と、除去水還流ライン94と、船外排出ライン95と、を備えている。
 排ガスエコノマイザー81は、燃焼装置8の排ガスGの熱を回収する。本実施形態の排ガスエコノマイザー81は、燃焼装置8の排ガスGを船外へ導く排気管の途中に設置されている。排ガスエコノマイザー81は、排ガスGと熱媒とを熱交換することで、排ガスGの熱を回収している。この排ガスエコノマイザー81で排ガスGと熱交換した熱媒は、蒸気生成部82に供給される。本実施形態における排ガスエコノマイザー81は、熱媒を循環させる配管81aを介して蒸気生成部82に接続されている。また、配管81aには、熱媒を循環させるためのポンプ81bが設けられている。
 蒸気生成部82は、排ガスエコノマイザー81によって回収した熱から蒸気を生成する。この蒸気生成部82としては、ボイラーやスチームセパレータを用いることができる。蒸気生成部82によって生成された蒸気は、蒸気供給配管82aを介してヒーター部83のヒーター本体103に供給される。
 ヒーター部83は、蒸気生成部82から供給された蒸気を利用して、再生塔86の下部に貯留された液体を加熱する。本実施形態におけるヒーター部83は、再生塔86の下部に貯留された液体を循環可能な循環配管101と、循環配管101の途中に設けられた循環ポンプ102と、蒸気生成部82から供給された蒸気と循環配管101により循環する液体とを熱交換することで、再生塔86の下部に貯留された液体を加熱するヒーター本体103とを備えている。
 回収アンモニア水供給ライン84は、回収アンモニア水タンク70と再生塔86とを接続する。この回収アンモニア水供給ライン84を介して、回収アンモニア水タンク70の内部と、再生塔86の内部とが連通されている。本実施形態における回収アンモニア水供給ライン84は、再生塔86の上部に接続されている。
 回収アンモニア水送出ポンプ85は、回収アンモニア水供給ライン84に設けられている。回収アンモニア水送出ポンプ85は、回収アンモニア水タンク70に貯留された回収アンモニア水を再生塔86に向けて送り出す。
 再生塔86は、回収アンモニア水を加熱することで、回収アンモニア水をアンモニア除去水とアンモニア蒸気とに分離する。より具体的には、再生塔86は、回収アンモニア水供給ライン84を介して供給された回収アンモニア水をヒーター部83によって加熱し、アンモニアと水との各沸点の違いを利用して回収アンモニア水からアンモニア蒸気を分離させる。ここで、アンモニア除去水とは、再生塔86においてアンモニア蒸気が分離された回収アンモニア水の残部を意味している。すなわち、アンモニア除去水のアンモニア濃度は、回収アンモニア水のアンモニア濃度よりも低い。アンモニア除去水は、新たに供給される回収アンモニア水と再生塔86の内部で混合される場合もある。
 凝縮器87は、再生塔86で分離したアンモニア蒸気を冷却してアンモニア蒸気の体積を減少させている。凝縮器87は、アンモニア蒸気ライン104の途中に設けられている。アンモニア蒸気ライン104の一端は再生塔86の上部と接続され、アンモニア蒸気ライン104の他端は気液分離部88に接続されている。つまり、凝縮器87は、再生塔86で分離されたアンモニア蒸気を気液分離部88に送り込む途中でアンモニア蒸気の凝縮を行っている。なお、凝縮器87に供給されるアンモニア蒸気には、水分が含まれている。
 気液分離部88は、アンモニア蒸気をアンモニアガスと分離液体とに分離する。気液分離部88により分離されたアンモニアガスは、アンモニアガス供給ライン108を介して、アンモニアガス除湿器90へ送り込まれる。ここで、分離液体とは、アンモニア蒸気からアンモニアガスを分離した残部である。分離液体は、僅かなアンモニアを含んだ水である。気液分離部88による気液分離は、アンモニア蒸気を冷却して気液分離する方法を例示できるが、気液分離部88による気液分離は、アンモニア蒸気を冷却する方法に限られない。
 分離液体還流部89は、気液分離部88によって気液分離された分離液体を再生塔86に還流させる。本実施形態における分離液体還流部89は、還流ライン105と、還流開閉弁106と、還流ポンプ107と、を備えている。還流ライン105は、気液分離部88と再生塔86とを連通させている。還流開閉弁106は、還流ライン105の内部に形成された流路を開閉する。還流ポンプ107は、還流ライン105に設けられて、気液分離部88から再生塔86に向けて分離液体を圧送する。
 アンモニアガス除湿器90は、気液分離部88により分離されたアンモニアガスを除湿する。このアンモニアガス除湿器90によって除湿されたアンモニアガスは、除湿ガス供給ライン109を介してアンモニアガス回収再利用部91へ送り込まれる。ここで、気液分離部88により分離されたアンモニアガスには、僅かに水分が含まれるため、アンモニアガス除湿器90ではアンモニアガスを液化する前段階として、アンモニアガスの除湿を行っている。なお、気液分離部88によって分離されたアンモニアガスの湿度が十分に低い場合にはアンモニアガス除湿器90を省略してもよい。
 アンモニアガス回収再利用部(アンモニアガス液化部)91は、上記アンモニアガスを液化して、アンモニアタンク10に供給する。このアンモニアガス回収再利用部91により液化されたアンモニアは、アンモニア返送ライン110を介してアンモニアタンク10へ送り込まれる。アンモニアガス回収再利用部91において、アンモニアガスを液化する方法としては、例えば、ガス圧縮機(図示せず)によってアンモニアガスの圧力を高めた後に、海水と熱交換して冷却する方法を例示できる。また、ガス圧縮機(図示せず)によってアンモニアガスの圧力を高めた後に、膨張弁(図示せず)にて膨張させ、アンモニアタンク10に流入させてアンモニアタンク10に貯留された液化アンモニアと接触させることでもアンモニアガスを液化させることができる。また、アンモニアガス回収再利用部91として、例えば、船舶1がカーゴタンクを有している場合には、カーゴタンク内で発生したボイルオフガス等を再液化する再液化装置(図示せず)を用いてもよい。
 アンモニア除去水タンク92は、再生塔86により分離されたアンモニア除去水を貯留する。
 除去水還流ライン94は、アンモニア除去水タンク92に貯留されたアンモニア除去水を再生塔86に還流させる流路を形成している。
 アンモニア除去水送出ポンプ93は、アンモニア除去水タンク92からアンモニア除去水を送り出す。本実施形態のアンモニア除去水送出ポンプ93は、除去水還流ライン94のうち、アンモニア除去水タンク92の近傍に配置されている。
 船外排出ライン95は、アンモニア除去水タンク92のアンモニア除去水を船外へ排出する。本実施形態における船外排出ライン95は、アンモニア除去水送出ポンプ93よりも再生塔86に近い除去水還流ライン94から分岐している。
 ここで、除去水還流ライン94には、船外排出ライン95との分岐点P1よりも再生塔86に近い側に開閉弁111が設けられている。また、船外排出ライン95には、開閉弁112が設けられている。除去水還流ライン94に設けられた開閉弁111は、アンモニア除去水タンク92から再生塔86へアンモニア除去水を還流させる際に開放状態とされる一方で、アンモニア除去水タンク92から船外へアンモニア除去水を排出する際に閉塞状態とされる。また、船外排出ライン95の開閉弁は、アンモニア除去水タンク92から再生塔86へアンモニア除去水を還流させる際に閉塞状態とされる一方で、アンモニア除去水タンク92から船外へアンモニア除去水を排出する際に開放状態とされる。本実施形態では、アンモニア除去水タンク92に貯留されたアンモニア除去水のアンモニア濃度が船外への放出を許容できる濃度である場合には、当該アンモニア除去水を船外へ放出し、船外への放出を許容できない場合には、当該アンモニア除去水を再生塔に還流させて、再度アンモニア蒸気を分離させている。
 さらに、本実施形態においては、アンモニアタンク10と、アンモニアバッファータンク40とを接続するアンモニア燃料供給ライン115には、燃料アンモニアを燃焼装置8に向けて送給する送給ポンプ116が設けられている。
 また、本実施形態の供給管21には、図2において図示省略した、アンモニア加圧ポンプ117と、アンモニア熱交換器118とが設けられている。アンモニア加圧ポンプ117は、アンモニアバッファータンク40から燃焼装置8へ供給される燃料アンモニアを加圧する。アンモニア熱交換器118は、このアンモニア加圧ポンプ117により加圧された燃料アンモニアを加熱する。なお、本実施形態のアンモニアバッファータンク40とアンモニア回収部60とは、バッファータンク用ベント管119により接続され、アンモニアバッファータンク40のベントガスをアンモニア回収部60に供給可能に構成されている。これにより、アンモニアバッファータンク40のベントガスに含まれるアンモニアもアンモニア回収部60において回収可能となっている。
(作用効果)
 上記実施形態の船舶1は、アンモニアを水に吸収させて回収アンモニア水として回収するアンモニア回収部60と、回収アンモニア水を加熱してアンモニア除去水とアンモニア蒸気とに分離する再生塔86と、再生塔86で分離したアンモニア蒸気をアンモニアガスと分離液体とに分離する気液分離部88と、分離液体を再生塔86に還流させる分離液体還流部89と、を備えている。
 このような船舶1によれば、回収アンモニア水からアンモニアを抽出する過程で、気液分離部88によってアンモニア蒸気がアンモニアガスと分離液体とに分離されるが、この分離液体を、アンモニア除去水とアンモニア蒸気とに分離する再生塔86に還流して、再度処理することができる。そのため、例えば、アンモニア回収部60でアンモニアを吸収させるための水として分離液体を利用する場合などよりも、船体2内部における配管の設置スペースを低減することができる。さらに、分離液体を船外に放出する必要が無いため、分離液体に含まれるアンモニアを中和や希釈するための装置が不要となる。したがって、アンモニアを回収アンモニア水として回収しつつ、船体2の大型化を抑制することができる。また、この回収アンモニア水から船舶1の排ガスエネルギーを利用してアンモニアを再生することができるため、省エネルギー化を図ることができる。さらに、この回収アンモニア水から船舶1の排ガスエネルギーを利用してアンモニアを再生することができるため、回収アンモニア水の船外への排出を抑制することができる。
 上記実施形態の船舶1は、更に、船体2に設けられて燃料アンモニアが貯留されたアンモニアタンク10と、アンモニアタンク10に貯留された燃料アンモニアにより駆動される燃焼装置8と、を備えている。そして、再生塔86は、燃焼装置8の排熱を利用して回収アンモニア水を加熱して、回収アンモニア水をアンモニア除去水とアンモニア蒸気とに分離している。
 このようにすることで、アンモニアを燃料とする主機等の燃焼装置8を備えた船舶1において、燃焼装置8の排熱を、回収アンモニア水からアンモニアを分離させる際に有効利用することができる。また、分離されたアンモニアを燃焼装置8の燃料アンモニアとして用いたり、他の用途(例えば、脱硝装置用還元剤として利用等)で用いたりすることが可能となる。
 上記実施形態の船舶1は、更に、燃焼装置8の排ガスの熱を回収する排ガスエコノマイザー81と、排ガスエコノマイザー81によって回収した熱から蒸気を生成する蒸気生成部82と、蒸気生成部82によって生成された蒸気を利用して再生塔86の下部に貯留された液体を加熱するヒーター部83と、を備えている。
 このようにすることで、蒸気を熱媒として、排ガスエコノマイザー81により回収した熱を再生塔86の下部に貯留された液体であるアンモニア除去水等に伝達することができる。したがって、船舶1が排ガスエコノマイザー81を有している場合に、再生塔86において、燃焼装置8の排熱を容易に利用することが可能となる。
 上記実施形態の船舶1は、更に、気液分離部88で分離したアンモニアガスを液化してアンモニアタンク10に供給するアンモニアガス回収再利用部91を備えている。
 このようにすることで、アンモニアタンク10を、回収アンモニア水から抽出したアンモニアを貯留するためのタンクとして利用することが可能となる。したがって、アンモニアガス回収再利用部91で液化したアンモニアを貯留するための専用のタンクを省略できる。
 上記実施形態の船舶1は、更に、再生塔86で分離したアンモニア蒸気を冷却してアンモニア蒸気の体積を減少させる凝縮器87を備えている。
 このようにすることで、気液分離部88における気液分離処理を効率よく行うことが可能となる。
 上記実施形態の船舶1の分離液体還流部89は、気液分離部88と再生塔86とを連通させる還流ライン105と、分離液体を再生塔86に向けて圧送する還流ポンプ107とを備えている。
 このようにすることで、還流ポンプ107によって、気液分離部88で分離された分離液体を再生塔86へ積極的に送り込むことができる。
 上記実施形態の船舶1は、更に、アンモニア回収部60によって回収した前記回収アンモニア水を貯留する回収アンモニア水タンク70と、回収アンモニア水タンク70と再生塔86とを接続する回収アンモニア水供給ライン84と、回収アンモニア水供給ライン84に設けられ、回収アンモニア水タンク70から回収アンモニア水を再生塔86に送り出す回収アンモニア水送出ポンプ85と、を備えている。
 このようにすることで、アンモニア回収部60によって回収した回収アンモニア水を、一時的に回収アンモニア水タンク70に貯留することができる。そして、この回収アンモニア水タンク70に貯留された回収アンモニア水を回収アンモニア水送出ポンプ85により再生塔86に送り込むことができる。したがって、再生塔86にて行われる回収アンモニア水を分離する工程が、アンモニア回収部60における回収アンモニア水の生成状況の影響を受けることを低減できる。
 上記実施形態の船舶1は、更に、再生塔86により分離されたアンモニア除去水を貯留するアンモニア除去水タンク92と、アンモニア除去水タンク92からアンモニア除去水を送り出すアンモニア除去水送出ポンプ93と、アンモニア除去水タンク92のアンモニア除去水を再生塔86に還流させる除去水還流ライン94と、アンモニア除去水タンク92のアンモニア除去水を船外へ排出する船外排出ライン95と、を備えている。
 このようにすることで、アンモニア除去水のアンモニア濃度が高いときには、アンモニア除去水を再生塔86へ還流させて、再度アンモニア蒸気を分離させることができる。また、アンモニア除去水のアンモニア濃度が海洋放出可能なレベルにまで低下した場合には、このアンモニア除去水を船外に排出することができる。
 上記実施形態の船舶1は、更に、燃焼装置8の燃料流路に不活性ガスを供給して燃料流路に残留する燃料アンモニアをパージする不活性ガス供給装置50を備えている。そして、アンモニア回収部60は、パージされた燃料アンモニアを水に吸収させて回収アンモニア水として回収している。
 このようにすることで、不活性ガスを用いてパージされた燃料アンモニアを、燃焼装置8を駆動するための燃料アンモニアとして使用することが可能となる。したがって、燃料アンモニアが無駄になることを低減できるため、アンモニアタンク10の大型化を抑制できる。
〈実施形態の変形例〉
 図4は、本開示の実施形態の変形例における図3に相当する図である。
 上述した実施形態においては、気液分離部88で分離してアンモニアガス除湿器90により除湿されたアンモニアガスをアンモニアガス回収再利用部(アンモニアガス液化部)91により液化してアンモニアタンク10に供給する場合について説明した。しかし、気液分離部88で分離してアンモニアガス除湿器90により除湿されたアンモニアガスの送り込み先は、アンモニアガス回収再利用部(アンモニアガス液化部)91に限られない。例えば、図4に示すように、除湿ガス供給ライン109を、アンモニアガス回収再利用部(アンモニアガス液化部)91ではなく、アンモニア再利用部96やアンモニア焼却部97へ接続しても差し支えない。アンモニア再利用部96は、除湿ガス供給ライン109を介して送り込まれたアンモニアガスを再利用する。アンモニア再利用部96においては、アンモニアガスを気体のまま再利用しても良いし、アンモニアガスを加圧や液化して再利用しても構わない。アンモニア再利用部96としては、例えば、脱硝装置や水素発生装置を例示できる。アンモニア焼却部97は、除湿ガス供給ライン109を介して送り込まれたアンモニアガスを気体の状態で焼却する。
 上記実施形態の変形例によれば、気液分離部88で分離したアンモニアガスを、燃焼装置8以外の様々なアンモニア再利用部96で再利用したり、アンモニア焼却部97で焼却したりすることが可能となる。
 なお、上記実施形態の変形例では、アンモニア再利用部96とアンモニア焼却部97との何れかを設ける場合について説明したが、これらアンモニア再利用部96とアンモニア焼却部97との、少なくとも一方を設ければ良い。例えば、上述したアンモニア再利用部96とアンモニア焼却部97との両方を設けるようにしてもよい。この場合、除湿ガス供給ライン109の接続先を必要に応じてアンモニア再利用部96とアンモニア焼却部97との間で切り替え可能に構成したり、除湿ガス供給ライン109をそれぞれアンモニア再利用部96とアンモニア焼却部97とに分岐接続したりすればよい。
 さらに、第一実施形態のアンモニアガス回収再利用部(アンモニアガス液化部)91と、上記変形例のアンモニア再利用部96と、上記変形例のアンモニア焼却部97とのうち、少なくとも二つを設けるようにしてもよい。この場合、上記と同様に、除湿ガス供給ライン109の接続先を、必要に応じてアンモニアガス回収再利用部(アンモニアガス液化部)91、アンモニア再利用部96、及びアンモニア焼却部97のうちの少なくとも二つの中から選択可能にしたり、除湿ガス供給ライン109をそれぞれアンモニアガス回収再利用部(アンモニアガス液化部)91、アンモニア再利用部96、及びアンモニア焼却部97のうちの少なくとも二つに分岐接続したりすればよい。
〈他の実施形態〉
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 上記実施形態においては、アンモニア回収部60により回収するアンモニアが、燃焼装置8の流通経路Rからパージされた燃料アンモニアである場合について説明した。しかし、アンモニア回収部60により回収するアンモニアは、流通経路Rからパージされた燃料アンモニアに限られない。アンモニア回収部60によって回収されるアンモニアは、船舶1で利用されているアンモニアであればよい。
 上記実施形態においては、燃焼装置8がアンモニアを燃料とする主機である場合について説明した。しかし、燃焼装置8は、アンモニアのみを燃焼させる装置に限られるものではなく、例えば、アンモニアとアンモニア以外の燃料(例えば、重油等)とを切り替え可能な燃焼装置8であってもよい。
 上記実施形態においては、回収アンモニア水タンク70を備える場合について説明した。しかし、回収アンモニア水タンク70を省略してもよい。この場合、アンモニア回収部60によって回収された回収アンモニア水を、再生塔86へ導入するようにすればよい。
 上記実施形態においては、再生塔86において燃焼装置8の排熱を用いる場合について説明したが、燃焼装置8以外の熱源から供給される熱エネルギーを利用するようにしてもよい。
 さらに、排ガスエコノマイザー81によって回収した熱を利用して蒸気を生成する場合について説明したが、熱媒として蒸気以外の熱媒を利用してもよい。
 上記実施形態においては、分離液体還流部89が還流ポンプ107を備える場合について説明したが、分離液体を再生塔86に送り込むことが可能であればよく、還流ポンプ107を備える構成に限られない。例えば、自重により分離液体が再生塔86へ移動可能であれば、還流ポンプ107を省略してもよい。
 同様に、上記実施形態では、回収アンモニア水供給ライン84に回収アンモニア水送出ポンプ85を設ける場合について説明したが、回収アンモニア水を再生塔86に送り込むことが可能であれば、回収アンモニア水送出ポンプ85は省略してもよい。
 上記実施形態では、アンモニア除去水を再生塔86に還流可能な構成について説明したが、アンモニア除去水のアンモニア濃度が常に海洋放出可能な程度である場合は、アンモニア除去水を再生塔86に還流可能としなくてもよい。
<付記>
 実施形態に記載の船舶1は、例えば以下のように把握される。
(1)第1の態様によれば船舶1は、アンモニアを水に吸収させて回収アンモニア水として回収するアンモニア回収部60と、前記回収アンモニア水を加熱し、前記回収アンモニア水をアンモニア除去水とアンモニア蒸気とに分離する再生塔86と、前記再生塔86で分離したアンモニア蒸気をアンモニアガスと分離液体とに分離する気液分離部88と、前記分離液体を前記再生塔86に還流させる分離液体還流部89と、を備える。
 これにより、回収アンモニア水からアンモニアを抽出する過程で、気液分離部88によってアンモニア蒸気がアンモニアガスと分離液体とに分離されるが、この分離液体を、アンモニア除去水とアンモニア蒸気とに分離する再生塔86に還流して、再度処理することができる。そのため、例えば、アンモニア回収部60でアンモニアを吸収させるための水として分離液体を利用する場合などよりも、船体2内部における配管の設置スペースを低減することができる。さらに、分離液体を船外に放出する必要が無いため、分離液体に含まれるアンモニアを中和や希釈するための装置が不要となる。したがって、アンモニアを回収アンモニア水として回収しつつ、船体2の大型化を抑制することができる。
(2)第2の態様に係る船舶1は、(1)の船舶であって、船体に設けられて、前記アンモニアが貯留されたアンモニアタンク10と、前記アンモニアタンク10に貯留された前記アンモニアにより駆動される燃焼装置8と、を備え、前記再生塔86は、前記燃焼装置8の排熱を利用して前記回収アンモニア水を加熱して、前記回収アンモニア水を前記アンモニア除去水と前記アンモニア蒸気とに分離する。
 燃焼装置8としては、例えば、主機及び発電機にそれぞれ用いられる内燃機関、ボイラーが挙げられる。
 これにより、アンモニアを燃料とする燃焼装置8を備えた船舶1において、燃焼装置8の排熱を、回収アンモニア水からアンモニアを分離させる際に有効利用することができる。また、分離されたアンモニアを燃焼装置8の燃料アンモニアとして用いることが可能となる。
(3)第3の態様に係る船舶1は、(2)の船舶であって、前記燃焼装置8の排ガスの熱を回収する排ガスエコノマイザー81と、前記排ガスエコノマイザー81によって回収した熱から蒸気を生成する蒸気生成部82と、前記蒸気生成部82によって生成された蒸気を利用して前記再生塔86の下部に貯留された液体を加熱するヒーター部83と、を備える。
 これにより、蒸気を熱媒として、排ガスエコノマイザー81により回収した熱を再生塔86の下部に貯留された液体に伝達することができる。したがって、船舶1が排ガスエコノマイザー81を有している場合に、再生塔86において、燃焼装置8の排熱を容易に利用することが可能となる。
(4)第4の態様に係る船舶1は、(2)又は(3)の船舶であって、前記燃焼装置8の燃料流路に不活性ガスを供給して前記燃料流路に残留する前記燃料アンモニアをパージする不活性ガス供給装置50を備え、前記アンモニア回収部60は、パージされた前記燃料アンモニアを水に吸収させて回収アンモニアとして回収する。
 これにより、不活性ガスを用いてパージされた燃料アンモニアを、燃焼装置8を駆動するための燃料アンモニアとして使用することが可能となる。したがって、燃料アンモニアが無駄になることを低減できるため、アンモニアタンク10の大型化を抑制できる。
(5)第5の態様に係る船舶1は、(2)から(4)の船舶であって、前記気液分離部88で分離した前記アンモニアガスを液化して前記アンモニアタンク10に供給するアンモニアガス回収再利用部91を更に備える。
 これにより、アンモニアタンク10を、回収アンモニア水から抽出したアンモニアを貯留するためのタンクとして利用することが可能となる。したがって、アンモニアガス回収再利用部91で液化したアンモニアを貯留するための専用のタンクを省略できる。
(6)第6の態様に係る船舶1は、(2)から(4)の船舶であって、前記気液分離部88で分離した前記アンモニアガスを再利用するアンモニア再利用部96と、前記気液分離部88で分離した前記アンモニアガスを焼却するアンモニア焼却部97と、の少なくとも一方を更に備える。
 これにより、気液分離部88で分離したアンモニアガスを、アンモニア再利用部96によって再利用したり、アンモニア焼却部97によって焼却したりすることができる。
(7)第7の態様に係る船舶1は、(1)から(6)の何れか一つの船舶であって、前記再生塔86で分離した前記アンモニア蒸気を冷却して前記アンモニア蒸気の体積を減少させる凝縮器87を更に備える。
 これにより、気液分離部88における気液分離処理を効率よく行うことが可能となる。
(8)第8の態様に係る船舶1は、(1)から(7)の何れか一つの船舶であって、前記分離液体還流部89は、前記気液分離部88と前記再生塔86とを連通させる還流ラインと、前記分離液体を前記再生塔86に向けて圧送する還流ポンプ107とを備える。
 これにより、還流ポンプ107によって、気液分離部88で分離された分離液体を再生塔86へ積極的に送り込むことができる。
(9)第9の態様に係る船舶1は、(1)から(8)の何れか一つの船舶であって、前記アンモニア回収部60によって回収した前記回収アンモニア水を貯留する回収アンモニア水タンク70と、前記回収アンモニア水タンク70と前記再生塔86とを接続する回収アンモニア水供給ライン84と、前記回収アンモニア水供給ライン84に設けられ、前記回収アンモニア水タンク70から前記回収アンモニア水を前記再生塔86に送り出す回収アンモニア水送出ポンプ85と、を備える。
 これにより、アンモニア回収部60によって回収した回収アンモニア水を、一時的に回収アンモニア水タンク70に貯留することができる。そして、この回収アンモニア水タンク70に貯留された回収アンモニア水を回収アンモニア水送出ポンプ85により再生塔86に送り込むことができる。したがって、再生塔86にて行われる回収アンモニア水を分離する工程が、アンモニア回収部60における回収アンモニア水の生成状況の影響を受けることを低減できる。
(10)第10の態様に係る船舶1は、(1)から(9)の何れか一つの船舶であって、前記再生塔86により分離されたアンモニア除去水を貯留するアンモニア除去水タンク92と、前記アンモニア除去水タンク92から前記アンモニア除去水を送り出すアンモニア除去水送出ポンプ93と、前記アンモニア除去水タンク92のアンモニア除去水を前記再生塔86に還流させる除去水還流ライン94と、前記アンモニア除去水タンク92のアンモニア除去水を船外へ排出する船外排出ライン95と、を更に備える。
 これにより、アンモニア除去水のアンモニア濃度が高いときには、アンモニア除去水を再生塔86へ還流させて、再度アンモニア蒸気を分離させることができる。また、アンモニア除去水のアンモニア濃度が海洋放出可能なレベルにまで低下した場合には、このアンモニア除去水を船外に排出することができる。
 本開示によれば、アンモニアをアンモニア水として回収可能とし、且つ回収アンモニアの船外への排出を抑制しつつ、省エネルギー化及び船体の大型化を抑制することが可能となる。
1…船舶 2…船体 4…上部構造 5A,5B…舷側 6…船底 7…上甲板 8…燃焼装置 10…アンモニアタンク 20…配管系統 20p…パージ対象領域 21…供給管 22…リターン管 23,24…開閉弁 30…ベントポスト 38…ベント管 38A…上流側ベント管 38B…下流側ベント管 40…アンモニアバッファータンク 50…不活性ガス供給装置 51…不活性ガス供給部 52…不活性ガス供給管 53…不活性ガス供給弁 60…アンモニア回収部 70…回収アンモニア水タンク 71…回収管 72…回収管開閉弁 80…排気管 81…排ガスエコノマイザー 81a…配管 81b…ポンプ 82…蒸気生成部 82a…蒸気供給配管 83…ヒーター部 84…回収アンモニア水供給ライン 85…回収アンモニア水送出ポンプ 86…再生塔 87…凝縮器 88…気液分離部 89…分離液体還流部 90…アンモニアガス除湿器 91…アンモニアガス回収再利用部 92…アンモニア除去水タンク 93…アンモニア除去水送出ポンプ 94…除去水還流ライン 95…船外排出ライン 96…アンモニア再利用部 97…アンモニア焼却部 101…循環配管 102…循環ポンプ 103…ヒーター本体 104…アンモニア蒸気ライン 105…還流ライン 106…還流開閉弁 107…還流ポンプ 108…アンモニアガス供給ライン 109…除湿ガス供給ライン 110…アンモニア返送ライン 111,112…開閉弁 115…アンモニア燃料供給ライン 116…送給ポンプ 117…アンモニア加圧ポンプ 118…アンモニア熱交換器 119…バッファータンク用ベント管 G…排ガス R…流通経路

Claims (10)

  1.  アンモニアを水に吸収させて回収アンモニア水として回収するアンモニア回収部と、
     前記回収アンモニア水を加熱し、前記回収アンモニア水をアンモニア除去水とアンモニア蒸気とに分離する再生塔と、
     前記再生塔で分離したアンモニア蒸気をアンモニアガスと分離液体とに分離する気液分離部と、
     前記分離液体を前記再生塔に還流させる分離液体還流部と、
    を備える船舶。
  2.  船体に設けられて、前記アンモニアが貯留されたアンモニアタンクと、
     前記アンモニアタンクに貯留された前記アンモニアにより駆動される燃焼装置と、を備え、
     前記再生塔は、前記燃焼装置の排熱を利用して前記回収アンモニア水を加熱して、前記回収アンモニア水を前記アンモニア除去水と前記アンモニア蒸気とに分離する
    請求項1に記載の船舶。
  3.  前記燃焼装置の排ガスの熱を回収する排ガスエコノマイザーと、
     前記排ガスエコノマイザーによって回収した熱から蒸気を生成する蒸気生成部と、
     前記蒸気生成部によって生成された蒸気を利用して前記再生塔の下部に貯留された液体を加熱するヒーター部と、を備える
    請求項2に記載の船舶。
  4.  前記燃焼装置の燃料流路に不活性ガスを供給して前記燃料流路に残留する燃料アンモニアをパージする不活性ガス供給装置を備え、
     前記アンモニア回収部は、パージされた前記燃料アンモニアを水に吸収させて回収アンモニアとして回収する
    請求項2又は3に記載の船舶。
  5.  前記気液分離部で分離した前記アンモニアガスを液化して前記アンモニアタンクに供給するアンモニアガス回収再利用部を更に備える
    請求項2から4の何れか一項に記載の船舶。
  6.  前記気液分離部で分離した前記アンモニアガスを再利用するアンモニア再利用部と、前記気液分離部で分離した前記アンモニアガスを焼却するアンモニア焼却部と、の少なくとも一方を更に備える
    請求項2から4の何れか一項に記載の船舶。
  7.  前記再生塔で分離した前記アンモニア蒸気を冷却して前記アンモニア蒸気の体積を減少させる凝縮器を更に備える請求項1から6の何れか一項に記載の船舶。
  8.  前記分離液体還流部は、前記気液分離部と前記再生塔とを連通させる還流ラインと、前記分離液体を前記再生塔に向けて圧送する還流ポンプとを備える
    請求項1から7の何れか一項に記載の船舶。
  9.  前記アンモニア回収部によって回収した前記回収アンモニア水を貯留する回収アンモニア水タンクと、
     前記回収アンモニア水タンクと前記再生塔とを接続する回収アンモニア水供給ラインと、
     前記回収アンモニア水供給ラインに設けられ、前記回収アンモニア水タンクから前記回収アンモニア水を前記再生塔に送り出す回収アンモニア水送出ポンプと、を備える
    請求項1から8の何れか一項に記載の船舶。
  10.  前記再生塔により分離されたアンモニア除去水を貯留するアンモニア除去水タンクと、
     前記アンモニア除去水タンクから前記アンモニア除去水を送り出すアンモニア除去水送出ポンプと、
     前記アンモニア除去水タンクのアンモニア除去水を前記再生塔に還流させる除去水還流ラインと、
     前記アンモニア除去水タンクのアンモニア除去水を船外へ排出する船外排出ラインと、を更に備える
    請求項1から9の何れか一項に記載の船舶。
PCT/JP2022/018251 2021-05-24 2022-04-20 船舶 WO2022249799A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280035500.1A CN117320957A (zh) 2021-05-24 2022-04-20 船舶
KR1020237039837A KR20230173171A (ko) 2021-05-24 2022-04-20 선박
EP22811073.0A EP4353584A1 (en) 2021-05-24 2022-04-20 Ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-086832 2021-05-24
JP2021086832A JP2022179980A (ja) 2021-05-24 2021-05-24 船舶

Publications (1)

Publication Number Publication Date
WO2022249799A1 true WO2022249799A1 (ja) 2022-12-01

Family

ID=84229907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018251 WO2022249799A1 (ja) 2021-05-24 2022-04-20 船舶

Country Status (5)

Country Link
EP (1) EP4353584A1 (ja)
JP (1) JP2022179980A (ja)
KR (1) KR20230173171A (ja)
CN (1) CN117320957A (ja)
WO (1) WO2022249799A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120031A1 (ja) * 2021-12-21 2023-06-29 三菱造船株式会社 浮体及び浮体の不活性ガス排出方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK181016B1 (en) * 2021-05-26 2022-09-26 Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland A large two-stroke uniflow scavenged turbocharged internal combustion engine with ammonia absorption system
JP2023071026A (ja) * 2021-11-10 2023-05-22 三菱重工業株式会社 浮体
JP2023123982A (ja) * 2022-02-25 2023-09-06 三菱重工業株式会社 浮体及び浮体のアンモニア処理方法
KR102582933B1 (ko) * 2023-06-23 2023-10-04 하이에어코리아 주식회사 암모니아 회수방법 및 회수시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128501A (en) * 1974-09-03 1976-03-10 Mitsubishi Heavy Ind Ltd Kaiteikobutsuyoshu hatsudensochi
JP2008007378A (ja) 2006-06-30 2008-01-17 Iwatani Internatl Corp アンモニアガスの回収方法及び回収装置
JP2013011332A (ja) 2011-06-30 2013-01-17 Mitsubishi Heavy Ind Ltd 燃料積込装置
JP2019014335A (ja) * 2017-07-05 2019-01-31 川崎重工業株式会社 船舶
JP2019167054A (ja) * 2018-03-26 2019-10-03 国立研究開発法人 海上・港湾・航空技術研究所 排ガス規制に対応した運転を行なう船舶、及び船舶の排ガス規制に対応した運転方法
JP2020147481A (ja) * 2019-03-15 2020-09-17 三菱日立パワーシステムズ株式会社 アンモニア分解設備、これを備えるガスタービンプラント、アンモニア分解方法
JP2021086832A (ja) 2019-11-29 2021-06-03 ピー.ホフゼース マルセル 温度依存スイッチ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128501A (en) * 1974-09-03 1976-03-10 Mitsubishi Heavy Ind Ltd Kaiteikobutsuyoshu hatsudensochi
JP2008007378A (ja) 2006-06-30 2008-01-17 Iwatani Internatl Corp アンモニアガスの回収方法及び回収装置
JP2013011332A (ja) 2011-06-30 2013-01-17 Mitsubishi Heavy Ind Ltd 燃料積込装置
JP2019014335A (ja) * 2017-07-05 2019-01-31 川崎重工業株式会社 船舶
JP2019167054A (ja) * 2018-03-26 2019-10-03 国立研究開発法人 海上・港湾・航空技術研究所 排ガス規制に対応した運転を行なう船舶、及び船舶の排ガス規制に対応した運転方法
JP2020147481A (ja) * 2019-03-15 2020-09-17 三菱日立パワーシステムズ株式会社 アンモニア分解設備、これを備えるガスタービンプラント、アンモニア分解方法
JP2021086832A (ja) 2019-11-29 2021-06-03 ピー.ホフゼース マルセル 温度依存スイッチ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120031A1 (ja) * 2021-12-21 2023-06-29 三菱造船株式会社 浮体及び浮体の不活性ガス排出方法

Also Published As

Publication number Publication date
EP4353584A1 (en) 2024-04-17
KR20230173171A (ko) 2023-12-26
JP2022179980A (ja) 2022-12-06
CN117320957A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
WO2022249799A1 (ja) 船舶
WO2022249792A1 (ja) 船舶
JP5618358B2 (ja) 二酸化炭素回収機能付き輸送手段および二酸化炭素の回収処理方法
WO2022210377A1 (ja) 船舶
WO2023120031A1 (ja) 浮体及び浮体の不活性ガス排出方法
KR20180086566A (ko) 선박의 배기가스 유해물질 저감 장치
KR102632393B1 (ko) 선박의 암모니아 배출 시스템
KR102543385B1 (ko) Vlcc의 온실가스 배출 저감장치 및 동 장치를 구비한 vlcc
KR20230165989A (ko) 선박의 암모니아 연료공급시스템
KR20230165987A (ko) 선박의 암모니아 연료공급시스템
KR20230165986A (ko) 선박의 암모니아 연료공급시스템
KR102663784B1 (ko) 선박의 이중관시스템, 그 설치방법 및 그에 의한 암모니아 배출방법
KR20230165990A (ko) 선박의 암모니아 연료공급시스템
KR20230165988A (ko) 선박의 암모니아 연료공급시스템
WO2024090091A1 (ja) アンモニア除害システム、浮体、及びアンモニア除害方法
KR102651090B1 (ko) 암모니아 연료 추진 선박의 이중관 퍼징시스템 및 그 방법
KR20230084954A (ko) 선박의 암모니아 연료공급시스템
KR20230168627A (ko) 선박의 암모니아 연료공급시스템
KR20230101274A (ko) 암모니아 연료 추진 선박의 가스 퍼징시스템 및 그 방법
US20230372867A1 (en) Apparatus for reducing greenhouse gas emission in vessel and vessel including the same
KR20230152896A (ko) 암모니아 연료 선박
JP2022103048A (ja) ガス処理システム、及び船舶
KR20220072629A (ko) 선박
KR20230149917A (ko) 암모니아 처리 시스템 및 이를 포함하는 선박
KR20230120179A (ko) 배기 가스 처리 시스템 및 동 시스템을 포함하는 선박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811073

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280035500.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237039837

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039837

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022811073

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022811073

Country of ref document: EP

Effective date: 20231215

NENP Non-entry into the national phase

Ref country code: DE