WO2022210377A1 - 船舶 - Google Patents

船舶 Download PDF

Info

Publication number
WO2022210377A1
WO2022210377A1 PCT/JP2022/014492 JP2022014492W WO2022210377A1 WO 2022210377 A1 WO2022210377 A1 WO 2022210377A1 JP 2022014492 W JP2022014492 W JP 2022014492W WO 2022210377 A1 WO2022210377 A1 WO 2022210377A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
fuel
line
storage tank
supply line
Prior art date
Application number
PCT/JP2022/014492
Other languages
English (en)
French (fr)
Inventor
晋介 森本
大祐 山田
隆司 雲石
Original Assignee
三菱造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱造船株式会社 filed Critical 三菱造船株式会社
Priority to EP22780590.0A priority Critical patent/EP4316971A1/en
Priority to KR1020237031662A priority patent/KR20230146083A/ko
Priority to JP2023511177A priority patent/JP7566137B2/ja
Priority to CN202280022517.3A priority patent/CN117015499A/zh
Publication of WO2022210377A1 publication Critical patent/WO2022210377A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • B63B17/0027Tanks for fuel or the like ; Accessories therefor, e.g. tank filler caps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0206Non-hydrocarbon fuels, e.g. hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0221Fuel storage reservoirs, e.g. cryogenic tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/044Methods for emptying or filling by purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/044Avoiding pollution or contamination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/046Enhancing energy recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/01Purifying the fluid
    • F17C2265/015Purifying the fluid by separating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Definitions

  • Patent Document 1 describes a power plant that burns high-temperature hydrogen-rich ammonia and combustion air to generate mechanical power.
  • a ship includes a hull, an ammonia tank provided in the hull and storing fuel ammonia in a liquid state, a fuel supply line connected to the ammonia tank, and the fuel supply line through the fuel supply line.
  • a combustion device into which the fuel ammonia is introduced from an ammonia tank, an inert gas supply device for pressure-feeding inert gas to at least the combustion device through the fuel supply line, and the inert gas pressure-fed to the combustion device a high-pressure storage tank into which the fuel ammonia is introduced into the combustion device and capable of storing the fuel ammonia in a high-pressure state capable of maintaining the liquid state of the fuel ammonia; , an ammonia filling line that can be introduced into the fuel supply line.
  • FIG. 1 is a side view of a ship according to a first embodiment of the present disclosure
  • FIG. 1 is a diagram showing a piping system according to a first embodiment of the present disclosure, showing a state when a combustion device is driven
  • FIG. 1 is a diagram showing a piping system according to a first embodiment of the present disclosure, showing a state during purging
  • FIG. 2 is a diagram showing a piping system according to the first embodiment of the present disclosure, showing a state before charging with ammonia
  • FIG. 2 is a diagram showing a piping system according to the first embodiment of the present disclosure, showing a state when ammonia is charged
  • FIG. 1 is a diagram showing a piping system according to a first embodiment of the present disclosure, showing a state when a combustion device is driven
  • FIG. 1 is a diagram showing a piping system according to a first embodiment of the present disclosure, showing a state during purging
  • FIG. 2 is a diagram showing a piping system according to the first
  • FIG. 4 is a diagram showing a piping system according to a modification of the first embodiment of the present disclosure, showing a state when purging inert gas containing a small amount of residual fuel ammonia.
  • FIG. 4 is a diagram showing a piping system according to a second embodiment of the present disclosure;
  • FIG. 5 is a diagram showing a piping system according to a modification of the second embodiment of the present disclosure;
  • FIG. 5 is a diagram showing a piping system according to a third embodiment of the present disclosure;
  • FIG. 1 is a side view of a vessel according to a first embodiment of the present disclosure; FIG. (Vessel configuration) As shown in FIG. 1, the ship 1 of the first embodiment includes a hull 2, an upper structure 4, a combustion device 8, an ammonia tank 10, a piping system 20, a vent post 30, an ammonia recovery section 60 and a recovered ammonia water tank 70.
  • the ship type of the ship 1 is not limited to a specific one.
  • the ship type of the ship 1 can be exemplified by, for example, a liquefied gas carrier, a ferry, a RORO ship, a car carrier, and a passenger ship.
  • the hull 2 has a pair of sides 5A and 5B and a hull 6 that form its outer shell.
  • the shipboard sides 5A, 5B are provided with a pair of shipboard skins forming the starboard and port sides, respectively.
  • the ship's bottom 6 includes a ship's bottom shell plate that connects the sides 5A and 5B.
  • the pair of sides 5A and 5B and the bottom 6 form a U-shaped outer shell of the hull 2 in a cross section perpendicular to the fore-and-aft direction FA.
  • the hull 2 further includes an upper deck 7, which is a through deck arranged on the uppermost layer.
  • the superstructure 4 is formed on this upper deck 7 .
  • a living quarter and the like are provided in the upper structure 4 .
  • a cargo space (not shown) for loading cargo is provided on the bow 3a side in the fore-aft direction FA from the superstructure 4 .
  • the combustion device 8 is a device that generates thermal energy by burning fuel, and is provided inside the hull 2 described above.
  • the combustion device 8 of the first embodiment is an internal combustion engine used as a main engine for propelling the ship 1 .
  • the combustion device 8 uses ammonia (hereinafter referred to as fuel ammonia) as fuel.
  • fuel ammonia ammonia
  • the combustion device 8 is not limited to the internal combustion engine used as the main engine for propelling the ship 1.
  • the internal combustion engine used as a generator for supplying electricity to the ship, a boiler for generating steam as a working fluid, etc. etc. can be exemplified.
  • the ammonia tank 10 stores liquefied ammonia as fuel ammonia.
  • the ammonia tank 10 exemplified in the first embodiment is installed on the upper deck 7 on the stern 3b side of the superstructure 4. It is not limited to above the deck 7.
  • the vent post 30 for example, guides gas such as vent gas discharged from the cargo tank above the upper deck 7 and releases it into the atmosphere.
  • the vent post 30 of the first embodiment is provided on the upper deck 7 and extends upward from the upper deck 7 .
  • the vent post 30 has a tubular shape extending in the vertical direction Dv and has an open top.
  • the ammonia recovery unit 60 causes water W to absorb the ammonia to be recovered and recovers it as recovered ammonia water.
  • the ammonia recovery unit 60 of the first embodiment is arranged on the upper deck 7 on the stern 3 b side of the ammonia tank 10 .
  • a so-called scrubber can be used, in which water is injected into a gas containing ammonia so that the water absorbs the ammonia.
  • Water (for example, fresh water) stored in a water tank (not shown) provided in the hull 2 is supplied to the ammonia recovery unit 60 .
  • the ammonia recovery unit 60 is not limited to the above configuration and arrangement as long as it can absorb ammonia into water and recover it as recovered ammonia water.
  • the recovered ammonia water tank 70 stores the recovered ammonia water recovered by the ammonia recovery unit 60 .
  • the recovered ammonia water tank 70 in the first embodiment is arranged in the hull 2 below the upper deck 7 where the ammonia recovery section 60 is installed.
  • FIG. 2 is a diagram showing a piping system 20 through which ammonia flows according to the first embodiment of the present disclosure.
  • the ship 1 of the first embodiment further includes a fuel supply line 21, an ammonia high-pressure pump 25, an ammonia fuel return line 22, and an inert gas supply device 50, in addition to the above configuration. , a vent line 38 , a high pressure storage tank 26 and an ammonia fill line 27 .
  • the ship 1 of this first embodiment is further provided with an ammonia storage tank 40 .
  • the fuel supply line 21 is connected to the ammonia tank 10 and forms a flow path capable of supplying fuel ammonia stored in the ammonia tank 10 to the combustion device 8 .
  • the fuel supply line 21 in the first embodiment includes a first supply line 21A and a second supply line 21B.
  • the first supply line 21A connects the ammonia tank 10 and the ammonia high-pressure pump 25 .
  • the second supply line 21B connects the ammonia high-pressure pump 25 and the combustion device 8 .
  • An ammonia storage tank 40 is installed in the middle of the first supply line 21A in the first embodiment.
  • An ammonia fuel return line 22 and an ammonia filling line 27 are connected to the ammonia storage tank 40 .
  • the ammonia storage tank 40 can temporarily store the fuel ammonia flowing from the ammonia tank 10, the liquid fuel ammonia flowing from the ammonia fuel return line 22, and the liquid fuel ammonia flowing from the ammonia filling line 27. It is configured.
  • the ammonia tank 10 is arranged, for example, above the ammonia storage tank 40, and the fuel ammonia in the ammonia tank 10 can flow into the ammonia storage tank 40 due to its own weight.
  • a plurality of on-off valves 81 and 82 are provided in the first supply line 21A. These on-off valves 81 and 82 are provided at the inlet position of the ammonia storage tank 40 and the inlet position of the ammonia high-pressure pump 25, respectively.
  • the ammonia high-pressure pump 25 pressurizes the fuel ammonia supplied from the ammonia storage tank 40 to the combustion device 8 .
  • the fuel ammonia pressurized by the ammonia high-pressure pump 25 is supplied to the combustion device 8 via the second supply line 21B.
  • a plurality of on-off valves 83 and 84 are provided in the second supply line 21B. These on-off valves 83 and 84 are provided at both ends of the second supply line 21B, that is, at the outlet of the ammonia high-pressure pump 25 and the inlet of the combustion device 8, respectively.
  • an ammonia heater for heating fuel ammonia pressurized by the ammonia high pressure pump 25 is provided between the ammonia high pressure pump 25 and the combustion device 8 .
  • the ammonia fuel return line 22 returns surplus fuel ammonia that has not been used as fuel in the combustion device 8 to the fuel supply line 21 closer to the ammonia tank 10 than the ammonia high pressure pump 25 .
  • the ammonia fuel return line 22 in the first embodiment returns surplus fuel ammonia to the ammonia storage tank 40 provided in the first supply line 21A.
  • a plurality of on-off valves 85 and 86 are provided in the ammonia fuel return line 22 . These on-off valves 85 and 86 are provided at both ends of the ammonia fuel return line 22, that is, at the outlet of the combustion device 8 and at the inlet of the ammonia storage tank 40, respectively.
  • the inert gas supply device 50 performs so-called purging, in which the fuel ammonia in the distribution route R through which the fuel ammonia as the fuel of the combustion device 8 flows is replaced with an inert gas such as nitrogen.
  • the inert gas supply device 50 includes an inert gas supply section 51 , an inert gas supply line 52 and an inert gas supply valve 53 .
  • the inert gas for example, an inert gas generated inside the hull 2 by an inert gas generator (not shown), or an inert gas stored in advance in an inert gas tank (not shown) provided in the hull 2 can be used.
  • the inert gas may be any gas that does not chemically react when it comes into contact with the fuel ammonia.
  • the inert gas supply unit 51 supplies inert gas to the inert gas supply line 52 .
  • the inert gas supply line 52 connects the inert gas supply section 51 and the distribution route R. More specifically, the inert gas supply line 52 connects the inert gas supply section 51 and the purge target region 20p of the flow path R.
  • the purge target region 20p in the first embodiment includes the fuel supply line 21 on the combustion device 8 side of the on-off valve 83, the ammonia fuel return line 22 on the combustion device 8 side of the on-off valve 86, and the combustion device 8. Distribution route R to be formed.
  • the inert gas supply line 52 illustrated in the first embodiment is connected to the purge target region 20p of the second supply line 21B in the purge target region 20p.
  • the inert gas supply valve 53 is provided on the inert gas supply line 52 .
  • the inert gas supply valve 53 is normally closed to block the supply of inert gas from the inert gas supply unit 51 to the purge target region 20p.
  • the normal time is when the fuel ammonia can be supplied to the combustion device 8, such as when the combustion device 8 is in operation.
  • the on-off valve 81 to the on-off valve 86 are opened, fuel ammonia is supplied from the ammonia storage tank 40 to the combustion device 8 through the second supply line 21B, and surplus fuel ammonia is supplied from the combustion device 8 to the ammonia storage. It is returned to the tank 40.
  • the inert gas supply valve 53 is opened from the closed state when the combustion device 8 is stopped for an emergency or for a long period of time. In other words, when the fuel ammonia remaining in the purge target region 20p is purged, the closed state is operated to the open state.
  • the on-off valves 83 and 86 are closed, and the second supply line 21B and the ammonia fuel return line 22 are blocked. As a result, the supply of fuel ammonia from the ammonia high-pressure pump 25 to the combustion device 8 is stopped.
  • the inert gas supply valve 53 is opened from the closed state, the inert gas can be supplied from the inert gas supply unit 51 to the purge target region 20p.
  • the vent line 38 guides the inert gas supplied by the inert gas supply device 50 and the fuel ammonia remaining in the distribution route R to the high-pressure storage tank 26 .
  • Fuel ammonia flows into the vent line 38 together with the inert gas, so that the fuel ammonia in the purge target region 20p (distribution route R) is replaced with the inert gas.
  • three vent lines 38 are provided: a first vent line 38A, a second vent line 38B, and a third vent line 38C.
  • a first vent line 38 A connects the fuel supply line 21 and the high pressure storage tank 26 . More specifically, the first vent line 38A connects the second supply line 21B of the fuel supply lines 21 and the high pressure storage tank 26 .
  • a second vent line 38B connects the ammonia fuel return line 22 and the high pressure storage tank 26 .
  • a third vent line 38 ⁇ /b>C connects the inside of the combustion device 8 and the high pressure storage tank 26 .
  • On-off valves 87, 88, 89 are provided in the first vent line 38A, the second vent line 38B, and the third vent line 38C, respectively.
  • the high-pressure storage tank 26 is configured to be able to store inert gas and fuel ammonia in a high-pressure state (for example, 20 barG or higher).
  • This high-pressure storage tank 26 is a high-pressure vessel that can withstand higher pressures than a typical knockout drum.
  • Fuel ammonia is introduced into the high pressure storage tank 26 along with the inert gas via a vent line 38 .
  • the fuel ammonia is pressure-fed using the high-pressure inert gas of the inert gas supply device 50, the fuel ammonia remaining in the flow path R remains in the high-pressure storage tank 26 even after being introduced. Remain liquid.
  • a gas phase containing inert gas and a liquid phase of fuel ammonia exist.
  • the liquid phase in the high-pressure storage tank 26 is communicated with an ammonia filling line 27
  • the gas phase in the high-pressure storage tank 26 is communicated with a gas discharge line 28 for sending gas to the ammonia recovery section 60 .
  • An on-off valve 90 is provided in the gas discharge line 28 .
  • the on-off valve 90 is closed when fuel ammonia is introduced into the high-pressure storage tank 26 together with the inert gas, and is opened when the pressure inside the high-pressure storage tank 26 is lowered.
  • the liquid phase of the high pressure storage tank 26 may be provided with another line connected to the ammonia recovery section 60 via a knockout drum (not shown). By doing so, it becomes possible to discharge the liquid ammonia remaining in the high-pressure storage tank 26 and reduce the pressure in the high-pressure storage tank 26 .
  • the ammonia filling line 27 introduces the fuel ammonia stored in the high pressure storage tank 26 into the fuel supply line 21 . More specifically, the ammonia filling line 27 is capable of introducing liquid ammonia in the liquid phase of the high pressure storage tank 26 into the fuel supply line 21 using the pressure within the high pressure storage tank 26 .
  • the ammonia filling line 27 exemplified in the first embodiment introduces liquefied ammonia into the ammonia storage tank 40 provided in the first supply line 21A.
  • the ammonia filling line 27 is provided with an on-off valve 91 on the side close to the high-pressure storage tank 26 . The on-off valve 91 is opened when fuel ammonia is introduced from the high-pressure storage tank 26 into the fuel supply line 21, and otherwise closed.
  • the fuel ammonia in the ammonia storage tank 40 is drawn into the ammonia high-pressure pump 25, pressurized, and sent to the second supply line 21B.
  • the fuel ammonia sent out to the second supply line 21B flows into the combustion device 8 and is used as fuel.
  • Surplus fuel ammonia that has flowed into the combustion device 8 but has not been used as fuel is returned to the ammonia storage tank 40 via the ammonia fuel return line 22 .
  • the on-off valve 90 may be in an open state.
  • the on-off valves 84, 85, 87, 88, 89 and the inert gas supply valve 53 are opened, and the on-off valves 81, 82, 83, 86, 90 and 91 are closed. Then, the inert gas supply unit 51 is operated. Then, among the fuel supply lines 21, the fuel ammonia remaining in the second supply line 21B, the fuel ammonia remaining in the ammonia fuel return line 22, and the fuel ammonia remaining in the combustion device 8 are each removed by the high-pressure inert gas.
  • the on-off valve 91 is first opened and the on-off valves 81 to 90 are closed. This introduces the purged fuel ammonia stored at high pressure in the high pressure storage tank 26 into the ammonia storage tank 40 via the ammonia fill line 27 .
  • the fuel introduced into the ammonia storage tank 40 is Ammonia is supplied through first supply line 21A and ammonia high pressure pump 25 to second supply line 21B. Further, the fuel ammonia supplied to the second supply line 21B reaches the combustion device 8 and the respective distribution paths R of the ammonia fuel return line 22 and is returned to the ammonia storage tank 40. That is, the fuel ammonia in the ammonia storage tank 40 circulates through the annular flow path formed by the first supply line 21A, the second supply line 21B, the combustion device 8, and the ammonia fuel return line 22.
  • the on-off valve 91 is closed from the state of FIG.
  • the valve 81 is opened.
  • the combustion device 8 is put into a state of operating using the fuel ammonia in the ammonia tank 10 .
  • the on-off valve 90 is opened to lower the pressure inside the high-pressure storage tank 26 .
  • the high-pressure storage tank 26 becomes ready to receive the purged fuel ammonia.
  • the pressure inside the high-pressure storage tank 26 becomes low, if fuel ammonia remains in the high-pressure storage tank 26, the fuel ammonia vaporizes and flows into the ammonia recovery unit 60 together with the inert gas. sent in.
  • the ship 1 of the first embodiment includes a hull 2, an ammonia tank 10 provided in the hull 2 and storing fuel ammonia in a liquid state, and a fuel supply line 21 connected to the ammonia tank 10. , a combustion device 8 into which fuel ammonia is introduced from the ammonia tank 10 via the fuel supply line 21, an inert gas supply device for pressure-feeding the inert gas to the combustion device 8 via the fuel supply line 21, and a combustion device.
  • a high-pressure storage tank 26 in which fuel ammonia is introduced into the combustion device 8 together with the inert gas pressure-fed to 8, and in which the fuel ammonia can be stored in a high-pressure state in which the fuel ammonia can be maintained in a liquid state, and a high-pressure storage tank 26. and an ammonia filling line 27 capable of introducing fuel ammonia stored in the fuel supply line 21 into the fuel supply line 21 .
  • the fuel ammonia discharged by this purge is in a liquid state. It can be stored in high pressure storage tank 26 .
  • the fuel ammonia stored in the high pressure storage tank 26 can be used to replace the inert gas with ammonia. Therefore, the purged ammonia can be effectively used, and the consumption of the fuel ammonia stored in the ammonia tank 10 can be suppressed.
  • the amount of ammonia to be treated in the ammonia recovery unit 60 can be reduced, and the ammonia recovery unit 60 can be made smaller.
  • the ship 1 of the first embodiment is further provided in the fuel supply line 21 to temporarily store the fuel ammonia from the ammonia tank 10, and is stored in the high-pressure storage tank 26 via the ammonia filling line 27.
  • an ammonia storage tank 40 capable of temporarily storing fuel ammonia and capable of sending the temporarily stored fuel ammonia to a fuel supply line 21; and a fuel supply line 21 closer to the combustion device 8 than the ammonia storage tank 40 and an ammonia high-pressure pump 25 which is provided in the ammonia storage tank 40 and pumps fuel ammonia stored in the ammonia storage tank 40 .
  • the ship 1 of the first embodiment further disposes surplus fuel ammonia remaining without being used as fuel in the combustion device 8 to the fuel supply line 21 closer to the ammonia tank 10 than the ammonia high pressure pump 25.
  • An ammonia fuel return line 22 is provided to return to the By configuring in this way, surplus fuel ammonia that remains without being used as fuel in the combustion device 8 can be sent to the combustion device 8 again by the ammonia high-pressure pump 25 .
  • the ammonia fuel return line 22 can be used to circulate the fuel ammonia to the fuel supply line 21 and the combustion device 8 . Therefore, residual inert gas in the fuel supply line 21 and the combustion device 8 can be suppressed.
  • ammonia fuel return line 22 in the ship 1 of the first embodiment returns surplus fuel ammonia left without being used as fuel in the combustion device 8 to the ammonia storage tank 40 . Therefore, the fuel ammonia sent from the high-pressure storage tank 26 and the fuel ammonia returned through the ammonia fuel return line 22 can be smoothly merged in the ammonia storage tank 40 .
  • the inert gas can be introduced directly from the fuel supply line 21 to the ammonia recovery unit 60, and the inert gas can be directly introduced from the ammonia fuel return line 22 to the ammonia recovery unit 60.
  • the same reference numerals are given to the same parts as in the above-described first embodiment, and repeated explanations are omitted.
  • FIG. 6 is a diagram showing a piping system according to a modification of the first embodiment of the present disclosure, showing a state when purging inert gas containing a small amount of residual fuel ammonia.
  • the piping system 20 in the modified example of the first embodiment includes a first purge gas discharge line 61, a second purge gas discharge line 62, an open/close valves 92 and 93;
  • the first purge gas discharge line 61 connects the fuel supply line 21 and the ammonia recovery section 60 . More specifically, the first purge gas discharge line 61 connects the second supply line 21B of the fuel supply line 21 and the ammonia recovery section 60 .
  • An on-off valve 92 is provided in the first purge gas discharge line 61 .
  • the second purge gas discharge line 62 connects the ammonia fuel return line 22 and the ammonia recovery section 60 .
  • An on-off valve 93 is provided in the second purge gas discharge line 62 .
  • the on-off valves 92 and 93 are normally closed and when the fuel ammonia remaining in the flow path R is led to the high-pressure storage tank 26 through the vent line 38 .
  • the fuel ammonia remaining in the flow path R initially pushed by the pressurized inert gas flows into the high-pressure storage tank 26, but the purge process is performed as it is. If continued, the inert gas will also begin to flow into the high pressure storage tank 26 .
  • the on-off valves 87-89 are closed and the on-off valves 92, 93 are opened.
  • the on-off valves 84, 85, 92, 93 and the inert gas supply valve 53 are opened, and the on-off valves 81, 82, 83, 86, 87, 88, 89, 90, 91 are closed. , the operation of the inert gas supply unit 51 is continued.
  • the small amount of fuel ammonia and inert gas remaining in the distribution path R is pushed out by the new pressurized inert gas supplied from the inert gas supply unit 51. Then, it is directly introduced into the ammonia recovery section 60 via the first purge gas discharge line 61 and the second purge gas discharge line 62 without going through the high pressure storage tank 26 and processed. After no fuel ammonia remains in the flow path R, the inert gas supply valve 53 is closed, and then all the on-off valves 81 to 93 are closed.
  • the first purge gas discharge line 61 connects the second supply line 21B of the fuel supply line 21 to the ammonia recovery unit 60, and the second purge gas discharge line 62 connects the ammonia fuel return line 22 and the ammonia recovery unit 60. , so that the second supply line 21B and the ammonia fuel return line 22 can each be in a low-pressure inert gas atmosphere, so that maintenance and the like can be performed quickly.
  • FIG. 7 is a diagram showing a piping system according to a second embodiment of the present disclosure.
  • the ship 1 of the second embodiment includes a hull 2, an upper structure 4, a combustion device 8, an ammonia tank 10, a piping system 20, a vent post 30, an ammonia recovery Unit 60, recovered ammonia water tank 70, fuel supply line 21, ammonia high pressure pump 25, ammonia fuel return line 22, inert gas supply device 50, vent line 38, high pressure storage tank 26, ammonia A fill line 127 and an ammonia storage tank 40 are provided.
  • Ammonia fill line 127 allows fuel ammonia stored in high pressure storage tank 26 to be introduced into fuel supply line 21 .
  • the ammonia filling line 127 has a first filling line 41 and a second filling line 42 .
  • the first filling line 41 is configured to allow the fuel ammonia stored in the high-pressure storage tank 26 to be introduced into the second supply line 21B, which is the fuel supply line 21 closer to the combustion device 8 than the high-pressure pump 25. .
  • the second filling line 42 is configured to be able to introduce the fuel ammonia stored in the high-pressure storage tank 26 into the first supply line 21A, which is the fuel supply line 21 closer to the ammonia tank 10 than the high-pressure pump 25. .
  • the second filling line 42 of the second embodiment introduces liquefied ammonia into the ammonia storage tank 40 provided in the first supply line 21A.
  • the first filling line 41 connects the high-pressure storage tank 26 and the second supply line 21B, and the second filling line 42 branches off from the first filling line 41 to form the second
  • a second fill line 42 may be formed from high pressure storage tank 26 to ammonia storage tank 40 .
  • ammonia filling line 127 is provided with an on-off valve 91 on the side near the high-pressure storage tank 26, similar to the ammonia filling line 27 of the first embodiment.
  • the on-off valve 91 is opened when fuel ammonia is introduced from the high-pressure storage tank 26 into the fuel supply line 21, and otherwise closed.
  • the pressure in the high pressure storage tank 26 is higher than the pressure in the second supply line 21B, and the ammonia fill line 127 utilizes the pressure in this high pressure storage tank 26 to Liquid ammonia in the liquid phase of the high pressure storage tank 26 can be introduced into the second supply line 21 B and the ammonia storage tank 40 .
  • the pressure in the high-pressure storage tank 26 may be higher than the pressure in the second supply line 21B. The pressure in the second supply line 21B may be released only when the liquid ammonia is introduced into the fuel supply line 21 by using the second supply line 21B.
  • FIG. 8 is a diagram showing a piping system in a modification of the second embodiment of the present disclosure.
  • the piping system 20 in the modified example of the second embodiment includes a boost pump 43 and on-off valves 44 and 45 in addition to the configuration of the second embodiment described above.
  • the boost pump 43 is configured to be able to boost the fuel ammonia in the first filling line 41 .
  • a booster pump 43 exemplified in this modified example of the second embodiment is provided in an ammonia charging line 127 between the high-pressure storage tank 26 and the on-off valve 91 .
  • the liquid ammonia pressurized by the booster pump 43 that is, the pressure in the ammonia filling line 127 closer to the fuel supply line 21 than the booster pump 43 is increased in the fuel supply line 21 closer to the combustion device 8 than the high pressure pump 25.
  • the pressure is set to be higher than the pressure in a certain second supply line 21B.
  • the on-off valve 44 can open and close the flow path in the first filling line 41, and the on-off valve 45 can open and close the flow path in the second filling line. These on-off valves 44 and 45 allow the introduction destination of the liquid ammonia in the high-pressure storage tank 26 to be switched. These on-off valves 44 and 45 are normally closed and opened when the liquid ammonia in the high-pressure storage tank 26 is introduced into the fuel supply line 21 .
  • the on-off valve 44 is located in the second supply line 21B rather than the position where the second filling line 42 branches. It is provided in the first filling line 41 on the side.
  • the opening-and-closing valve 91 may be abbreviate
  • the liquid ammonia in the high-pressure storage tank 26 is pressurized without increasing the pressure of the liquid ammonia in the high-pressure storage tank 26 higher than the pressure in the second supply line 21B. It can be pressurized by a pump and introduced into the second supply line 21B. Therefore, it becomes possible to use a high-pressure storage tank 26 with a lower pressure resistance.
  • FIG. 1 is used, and the same parts as those of the above-described first embodiment and second embodiment are given the same reference numerals for description, and overlapping descriptions are omitted.
  • FIG. 9 is a diagram showing a piping system according to a third embodiment of the present disclosure.
  • the ship 1 of the third embodiment includes a hull 2, an upper structure 4, a combustion device 8, an ammonia tank 10, a piping system 20, a vent post 30, an ammonia recovery Unit 60, recovered ammonia water tank 70, fuel supply line 21, ammonia high pressure pump 25, ammonia fuel return line 22, inert gas supply device 150, vent line 38, high pressure storage tank 126, ammonia A fill line 127 and an ammonia storage tank 40 are provided.
  • the inert gas supply device 150 performs so-called purging, in which the fuel ammonia in the distribution route R through which the fuel ammonia as the fuel of the combustion device 8 flows is replaced with an inert gas such as nitrogen.
  • the inert gas supply device 150 includes an inert gas supply unit 51, an inert gas supply line 52, an inert gas supply valve 53, and a It has
  • the inert gas supply device 150 of this third embodiment further comprises an inert gas supply line 46 for purging the high pressure storage tank 126 and an inert gas supply valve 47 .
  • the inert gas supply line 46 connects the inert gas supply section 51 and the high pressure storage tank 126 .
  • the inert gas supply valve 47 is provided in the inert gas supply line 46 and is opened from the closed state when supplying the inert gas from the inert gas supply section 51 to the high pressure storage tank 126 .
  • the high-pressure storage tank 126 is configured to be able to store inert gas and fuel ammonia in a high-pressure state, like the high-pressure storage tank 26 of the first and second embodiments. Fuel ammonia is introduced into this high-pressure storage tank 126 along with inert gas through a vent line 38 . In the high-pressure storage tank 126, a gas phase containing inert gas and a liquid phase of fuel ammonia exist. The liquid phase in the high-pressure storage tank 126 is communicated with an ammonia filling line 127 , and the gas phase in the high-pressure storage tank 126 is communicated with a gas discharge line 28 for sending gas to the ammonia recovery section 60 .
  • the high-pressure storage tank 126 is provided below the fuel supply line 21 and the ammonia fuel return line 22 in the vertical direction. More specifically, the high pressure storage tank 126 is positioned vertically above both the lowest fuel supply line 21 and the lowest ammonia fuel return line 22 . oriented downwards. In other words, the liquid ammonia in the fuel supply line 21 and the liquid ammonia in the ammonia fuel return line 22 can move to the high pressure storage tank 126 by gravity, respectively, relative to the fuel supply line 21 and the ammonia fuel return line 22. The liquid phase of the high pressure storage tank 126 is located below. In addition, in this third embodiment, the vent line 38 may be connected to the lowest portion of the fuel supply line 21 or the lowest portion of the ammonia fuel return line 22 .
  • combustion device 8 is the main engine using ammonia as fuel.
  • the combustion device 8 is not limited to a device that burns only ammonia, and may be, for example, a combustion device 8 capable of switching between ammonia and a fuel other than ammonia (for example, heavy oil).
  • valve used in the piping system is described as an on-off valve, but the valve does not mean only a valve that can hold only a fully open or fully closed position, but also a valve that can hold an intermediate opening. It is described as an included valve.
  • the ammonia recovery unit 60 and the recovered ammonia water tank 70 are provided has been described.
  • an ammonia processing device that detoxifies ammonia by combustion or the like may be installed.
  • the case where the recovered ammonia water tank 70 is provided has been described.
  • the recovered ammonia water tank 70 may be omitted.
  • the recovered ammonia water recovered by the ammonia recovery unit 60 may be stored, neutralized or diluted, and then released out of the ship.
  • the ammonia storage tank 40 is provided in the fuel supply line 21 .
  • the structure is not limited to the ammonia storage tank 40 as long as the fuel ammonia from the ammonia filling line 27 and the ammonia fuel return line 22 can be merged into the fuel supply line 21 and temporarily stored.
  • the piping of the fuel supply line 21 where the ammonia filling line 27 and the ammonia fuel return line 22 are joined and connected may be made thicker than the piping of the other fuel supply lines 21. .
  • the pressure inside the high-pressure storage tank 26 is used to return the fuel ammonia in the high-pressure storage tank 26 to the fuel supply line 21 .
  • the configuration is not limited to this, and for example, a pump may be provided in the ammonia filling line 27 to return the fuel ammonia in the high pressure storage tank 26 to the fuel supply line 21 .
  • the case where both the first filling line 41 and the second filling line 42 are provided was exemplified, but the second filling line 42 may be provided as necessary. May be omitted.
  • the arrangement of the high-pressure storage tank 126 is not limited to the arrangement illustrated in the third embodiment.
  • the vertical position where the high pressure storage tank 126 is installed is the bottom of the purge target area 20p of the fuel supply line 21 in the section (not shown) where the high pressure storage tank 126 is installed, and It may be below the bottom of the purge target area 20p of the ammonia fuel return line 22 .
  • the high pressure storage tank 126 and the fuel supply line 21 and the ammonia fuel return line 22 are provided in the same section (not shown), the high pressure storage tank 126 is provided within the section with the fuel supply line 21 and the lowest portion of the ammonia fuel return line 22 in the vertical direction.
  • the on-off valve 84 is arranged downstream of the fuel supply line 21 from the branched position of the first vent line 38A, and the on-off valve 85 is arranged from the branched position of the second vent line 38B.
  • the arrangement of the on-off valves 84 and 85 is not limited to these arrangements.
  • the on-off valve 84 is arranged upstream of the fuel supply line 21 from the branching position of the first vent line 38A, or the on-off valve 85 is arranged on the ammonia fuel return line 22 from the branching position of the second vent line 38B. You may arrange
  • the configuration is not limited to providing the opening/closing valve only on either the upstream side of the branching position of the vent line 38 or the downstream side of the branching position of the vent line 38 .
  • an on-off valve is provided both upstream of the fuel supply line 21 from the branching position of the first vent line 38A and downstream of the fuel supply line 21 from the branching position of the first vent line 38A.
  • An on-off valve may be provided on both the upstream side of the branching position of the vent line 38B and the downstream side of the branching position of the second vent line 38B.
  • the on-off valve 84 is arranged downstream of the fuel supply line 21 from the position where the first purge gas discharge line 61 branches, and the on-off valve 85 branches off the second purge gas discharge line 62.
  • the on-off valve 84 is arranged on the upstream side of the fuel supply line 21 from the position where the first purge gas discharge line 61 branches, or the on-off valve 85 is arranged on the downstream side of the ammonia fuel return line 22 rather than the second purge gas discharge line 62.
  • the on-off valve 84 is not limited to being arranged either upstream or downstream of the branching position of the first purge gas discharge line 61 .
  • the on-off valve 85 is not limited to being arranged either upstream or downstream of the branching position of the second purge gas discharge line 62 .
  • opening/closing valves are provided both upstream and downstream of the branching position of the first purge gas discharge line 61, or both upstream and downstream of the branching position of the second purge gas discharge line 62.
  • An on-off valve may be provided.
  • the branching position of the first vent line 38A is located downstream of the fuel supply line 21 from the branching position of the first purge gas discharge line 61, and the branching position of the second vent line 38B. is on the upstream side of the ammonia fuel return line 22 from the position where the second purge gas discharge line 62 branches.
  • the positional relationship between the first vent line 38A and the first purge gas discharge line 61 is exchanged so that the branching position of the first vent line 38A is upstream of the fuel supply line 21 from the branching position of the first purge gas discharge line 61.
  • the positional relationship between the second vent line 38B and the second purge gas discharge line 62 is exchanged so that the branching position of the second vent line 38B is positioned closer to the ammonia fuel return line 22 than the branching position of the second purge gas discharge line 62. It may be arranged on the downstream side.
  • the ship 1 includes a hull 2, an ammonia tank 10 provided in the hull 2 and storing fuel ammonia in a liquid state, and a fuel supply connected to the ammonia tank 10.
  • a combustion device 8 into which the fuel ammonia is introduced from the ammonia tank 10 via the fuel supply line 21;
  • the fuel ammonia in the combustion device 8 is introduced together with an active gas supply device and the inert gas pressure-fed to the combustion device 8, and the fuel ammonia is stored in a high pressure state in which the fuel ammonia can be maintained in a liquid state.
  • an ammonia filling line 27 capable of introducing the fuel ammonia stored in the high pressure storage tank 26 into the fuel supply line 21 .
  • the combustion device 8 include an internal combustion engine and a boiler that are used for the main engine and the generator, respectively.
  • the fuel ammonia discharged by this purge can be stored in the high-pressure storage tank 26 in a liquid state. .
  • the fuel ammonia stored in the high pressure storage tank 26 can be used to replace the inert gas with ammonia. Therefore, the purged ammonia can be effectively used, and the consumption of the fuel ammonia stored in the ammonia tank 10 can be suppressed.
  • the amount of ammonia to be treated in the ammonia recovery unit 60 can be reduced, and the ammonia recovery unit 60 can be made smaller.
  • the ship 1 according to the second aspect is the ship 1 of (1), and is provided in the fuel supply line 21 to temporarily store the fuel ammonia from the ammonia tank 10, and an ammonia storage tank 40 capable of temporarily storing the fuel ammonia stored in the high pressure storage tank 26 via the ammonia filling line 27 and capable of feeding the temporarily stored fuel ammonia to the fuel supply line 21; and an ammonia high-pressure pump 25 provided in the fuel supply line 21 closer to the combustion device 8 than the ammonia storage tank 40 for pumping the fuel ammonia stored in the ammonia storage tank 40 .
  • the fuel ammonia stored in the high-pressure storage tank 26 can be smoothly returned to the fuel supply line 21. Further, since the fuel ammonia stored in the high-pressure storage tank 26 is sent to the fuel supply line 21 and the combustion device 8 by the ammonia high-pressure pump 25, inert gas can be smoothly replaced with fuel ammonia.
  • the ship 1 according to the third aspect is the ship 1 of (2), wherein surplus fuel ammonia remaining without being used as fuel in the combustion device 8 is removed from the ammonia high-pressure pump 25. Further provided is an ammonia fuel return line 22 returning to the fuel supply line 21 on the side closer to the tank 10 .
  • surplus fuel ammonia that has not been used as fuel in the combustion device 8 can be sent to the combustion device 8 again by the ammonia high-pressure pump 25 .
  • the ammonia fuel return line 22 can be used to circulate the fuel ammonia to the fuel supply line 21 and the combustion device 8 . Therefore, residual inert gas in the fuel supply line 21 and the combustion device 8 can be suppressed.
  • the ship 1 according to the fourth aspect is the ship 1 of (3), wherein the ammonia fuel return line 22 is configured to remove the surplus fuel ammonia remaining without being used as fuel in the combustion device 8. , to the ammonia storage tank 40 .
  • the fuel ammonia sent from the high-pressure storage tank 26 and the fuel ammonia returned by the ammonia fuel return line 22 can be smoothly merged in the ammonia storage tank 40 .
  • a ship 1 according to a fifth aspect is the ship 1 of (3) or (4), which includes an ammonia recovery section 60 capable of recovering the fuel ammonia, the high-pressure storage tank 26, and the ammonia recovery section. and a gas exhaust line 28 connecting with 60 .
  • the ship 1 according to the sixth aspect is the ship of (5), and includes a first purge gas discharge line 61 connecting the fuel supply line 21 and the ammonia recovery section 60, and the ammonia fuel return line. 22 and a second purge gas discharge line 62 connecting the ammonia recovery unit 60 .
  • the inert gas can be introduced directly into the ammonia recovery unit 60 without introducing the inert gas into the high-pressure storage tank 26, so that the high-pressure storage tank 26 can be prevented from increasing in size.
  • the first purge gas discharge line 61 communicates the second supply line 21B and the ammonia recovery unit 60
  • the second purge gas discharge line 62 communicates the ammonia fuel return line 22 and the ammonia recovery unit 60
  • the ship 1 according to the seventh aspect is the ship of (1), and includes an ammonia high-pressure pump 25 that is provided in the fuel supply line 21 and pumps the fuel ammonia toward the combustion device 8.
  • the ammonia filling line 127 is a second line capable of introducing the fuel ammonia stored in the high-pressure storage tanks 26 and 126 into the fuel supply line 21B closer to the combustion device 8 than the ammonia high-pressure pump 25.
  • a first filling line 41 and a second filling line capable of introducing the fuel ammonia stored in the high-pressure storage tanks 26 and 126 into the fuel supply line 21A closer to the ammonia tank 10 than the ammonia high-pressure pump 25. 42 and at least a first filling line 41 .
  • the ship 1 according to the eighth aspect is the ship of (7), and includes a boost pump 43 capable of boosting at least the fuel ammonia in the first filling line 41 . This makes it possible to use a high pressure storage tank 26 with a lower pressure resistance.
  • the ship 1 according to the ninth aspect is the ship according to (7) or (8), and is provided in the fuel supply line 21 to temporarily store the fuel ammonia from the ammonia tank 10. and an ammonia storage tank 40 capable of feeding the temporarily stored fuel ammonia to the fuel supply line 21, and the second filling line 42 feeds the fuel ammonia stored in the high pressure storage tanks 26, 126. is introduced into the ammonia storage tank 40 .
  • the fuel ammonia sent from the high-pressure storage tanks 26 and 126 and the fuel ammonia returned by the ammonia fuel return line 22 can be smoothly combined in the ammonia storage tank 40 .
  • the ship 1 according to the tenth aspect is the ship according to any one of (7) to (9), and includes an ammonia recovery section 60 capable of recovering the fuel ammonia, and the high-pressure storage tanks 26 and 126. and a gas discharge line 28 connecting the ammonia recovery unit 60.
  • the ship 1 according to the eleventh aspect is the ship of (10), and includes a first purge gas discharge line 61 connecting the fuel supply line 21 and the ammonia recovery unit 60 . As a result, it becomes possible to quickly perform maintenance and the like.
  • the ship 1 is the ship of (10) or (11), wherein surplus fuel ammonia remaining without being used as fuel in the combustion device 8 is discharged from the ammonia high-pressure pump 25 and an ammonia fuel return line 22 that returns to the fuel supply line 21 A on the side closer to the ammonia tank 10 , and a second purge gas discharge line 62 that connects the ammonia fuel return line 22 and the ammonia recovery unit 60 .
  • surplus fuel ammonia remaining without being used as fuel in the combustion device 8 is discharged from the ammonia high-pressure pump 25 and an ammonia fuel return line 22 that returns to the fuel supply line 21 A on the side closer to the ammonia tank 10 , and a second purge gas discharge line 62 that connects the ammonia fuel return line 22 and the ammonia recovery unit 60 .
  • the ship 1 according to the thirteenth aspect is the ship according to any one of (7) to (12), wherein the high-pressure storage tank 126 is provided below at least the fuel supply line 21. there is This makes it possible to recover the liquid ammonia in the fuel supply line 21 more efficiently.
  • fuel consumption can be suppressed by effectively using the purged ammonia.
  • Inert gas supply device 51 Inert gas supply section 52. Inert gas supply line 53... Inert gas supply valve 60... Ammonia recovery section 61... First purge gas discharge line 62... Second purge gas Discharge line 70... Recovered ammonia water tank 81-93... Open/close valve R... Distribution route

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

船舶は、船体と、前記船体に設けられて、燃料アンモニアを液体の状態で貯留するアンモニアタンクと、前記アンモニアタンクに接続された燃料供給ラインと、前記燃料供給ラインを介して前記アンモニアタンクから前記燃料アンモニアが導入される燃焼装置と、前記燃料供給ラインを介して少なくとも前記燃焼装置に不活性ガスを圧送する不活性ガスラインと、前記燃焼装置に圧送された不活性ガスとともに前記燃焼装置内の前記燃料アンモニアが導入され、前記燃料アンモニアが液体の状態を維持可能な高圧状態で前記燃料アンモニアを貯蔵可能な高圧貯蔵タンクと、前記高圧貯蔵タンクに貯蔵された前記燃料アンモニアを、前記燃料供給ラインに導入可能なアンモニア充填ラインを備える。

Description

船舶
 本開示は、船舶に関する。
 本願は、2021年3月31日に日本に出願された特願2021-060215号について優先権を主張し、その内容をここに援用する。
 特許文献1には、高温水素リッチアンモニアと燃焼用空気とを燃焼させて機械的動力を発生させる動力装置が記載されている。
日本国特許第5315493号公報
 特許文献1に記載されているような装置では、例えば、点検で運転を停止するときなどに、内燃機関の内部や燃料流路内に残留したアンモニアを、不活性ガスを用いてパージする必要がある。パージして排出されたアンモニアは、例えば、アンモニア回収装置によりアンモニア水として回収された後、中和や希釈等を行い船外に排出される。そのため、パージされた燃料が無駄になってしまうという課題が有る。
 本開示は、上記課題を解決するためになされたものであって、パージされたアンモニアを有効利用して燃料消費を抑えることが可能な船舶を提供することにある。
 本開示に係る船舶は、船体と、前記船体に設けられて、燃料アンモニアを液体の状態で貯留するアンモニアタンクと、前記アンモニアタンクに接続された燃料供給ラインと、前記燃料供給ラインを介して前記アンモニアタンクから前記燃料アンモニアが導入される燃焼装置と、前記燃料供給ラインを介して少なくとも前記燃焼装置に不活性ガスを圧送する不活性ガス供給装置と、前記燃焼装置に圧送された不活性ガスとともに前記燃焼装置内の前記燃料アンモニアが導入され、前記燃料アンモニアが液体の状態を維持可能な高圧状態で前記燃料アンモニアを貯蔵可能な高圧貯蔵タンクと、前記高圧貯蔵タンクに貯蔵された前記燃料アンモニアを、前記燃料供給ラインに導入可能なアンモニア充填ラインと、を備える。
 上記態様の船舶によれば、パージされたアンモニアを有効利用して燃料消費を抑えることができる。
本開示の第一実施形態に係る船舶の側面図である。 本開示の第一実施形態に係る配管系統を示す図であり、燃焼装置の駆動時の状態を示している。 本開示の第一実施形態に係る配管系統を示す図であり、パージ時の状態を示している。 本開示の第一実施形態に係る配管系統を示す図であり、アンモニア充填前の状態を示している。 本開示の第一実施形態に係る配管系統を示す図であり、アンモニア充填時の状態を示している。 本開示の第一実施形態の変形例に係る配管系統を示す図であり、残留した僅かな燃料アンモニアを含む不活性ガスをパージする際の状態を示している。 本開示の第二実施形態に係るに係る配管系統を示す図である。 本開示の第二実施形態の変形例に係るに係る配管系統を示す図である。 本開示の第三実施形態に係るに係る配管系統を示す図である。
〈第一実施形態〉
 以下、本開示の第一実施形態に係る船舶について、図面を参照して説明する。図1は、本開示の第一実施形態に係る船舶の側面図である。
(船舶の構成)
 図1に示すように、この第一実施形態の船舶1は、船体2と、上部構造4と、燃焼装置8と、アンモニアタンク10と、配管系統20と、ベントポスト30と、アンモニア回収部60と、回収アンモニア水タンク70と、を備えている。船舶1の船種は、特定のものに限られない。船舶1の船種は、例えば液化ガス運搬船、フェリー、RORO船、自動車運搬船、客船等を例示できる。
 船体2は、その外殻をなす、一対の舷側5A,5Bと、船底6と、を有している。舷側5A,5Bは、左右舷側をそれぞれ形成する一対の舷側外板を備える。船底6は、これら舷側5A,5Bを接続する船底外板を備える。これら一対の舷側5A,5B及び船底6により、船体2の外殻は、船首尾方向FAに直交する断面において、U字状を成している。
 船体2は、最も上層に配置される全通甲板である上甲板7を更に備えている。上部構造4は、この上甲板7上に形成されている。上部構造4内には、居住区等が設けられている。本第一実施形態の船舶1では、例えば、上部構造4よりも船首尾方向FAの船首3a側に、貨物を搭載するカーゴスペース(図示無し)が設けられている。
 燃焼装置8は、燃料を燃焼させることで熱エネルギーを発生させる装置であり、上記の船体2内に設けられている。本第一実施形態の燃焼装置8は、船舶1を推進させるための主機に用いられる内燃機関である。そして、この燃焼装置8は、燃料としてアンモニア(以下、燃料アンモニアと称する)を用いている。なお、燃焼装置8は、船舶1を推進させるための主機に用いられる内燃機関に限られず、例えば、船内に電気を供給する発電機等に用いられる内燃機関、作動流体としての蒸気を発生させるボイラー等を例示できる。
 アンモニアタンク10は、燃料アンモニアとして液化アンモニアを貯留している。本第一実施形態で例示するアンモニアタンク10は、上部構造4よりも船尾3b側の上甲板7上に設置されているが、アンモニアタンク10の配置は、上部構造4よりも船尾3b側の上甲板7上に限られない。
 ベントポスト30は、例えば、カーゴタンクから排出されたベントガス等のガスを、上甲板7よりも上方へ導いて大気中へ放出する。本第一実施形態のベントポスト30は、上甲板7上に設けられ、上甲板7から上方に向かって延びている。ベントポスト30は、上下方向Dvに延びる筒状をなしており、その上部が開口している。
 アンモニア回収部60は、回収対象のアンモニアを水Wに吸収させて回収アンモニア水として回収する。本第一実施形態のアンモニア回収部60は、アンモニアタンク10よりも船尾3b側の上甲板7上に配置されている。アンモニア回収部60としては、例えば、アンモニアを含む気体に対して水を噴射することでアンモニアを水に吸収させる、いわゆるスクラバーを用いることができる。このアンモニア回収部60には、船体2内に設けられた水タンク(図示せず)に貯留された水(例えば、清水)が供給される。なお、アンモニア回収部60は、アンモニアを水に吸収させて回収アンモニア水として回収できる構成であればよく、上記構成や配置に限られない。
 回収アンモニア水タンク70は、アンモニア回収部60で回収された回収アンモニア水を貯留する。本第一実施形態における回収アンモニア水タンク70は、アンモニア回収部60の設置された上甲板7よりも下方の船体2内に配置されている。
 図2は、本開示の第一実施形態に係るアンモニアの流通する配管系統20を示す図である。
 図2に示すように、本第一実施形態の船舶1は、上記構成に加えて、更に、燃料供給ライン21と、アンモニア高圧ポンプ25と、アンモニア燃料戻りライン22と、不活性ガス供給装置50と、ベントライン38と、高圧貯蔵タンク26と、アンモニア充填ライン27と、を備えている。また、本第一実施形態の船舶1は、更に、アンモニア貯めタンク40を備えている。
 燃料供給ライン21は、アンモニアタンク10に接続され、アンモニアタンク10に貯留された燃料アンモニアを燃焼装置8に供給可能な流路を形成している。本第一実施形態における燃料供給ライン21は、第一供給ライン21Aと、第二供給ライン21Bとを備えている。第一供給ライン21Aは、アンモニアタンク10とアンモニア高圧ポンプ25とを接続している。第二供給ライン21Bは、アンモニア高圧ポンプ25と燃焼装置8とを接続している。
 本第一実施形態における第一供給ライン21Aの途中には、アンモニア貯めタンク40が設置されている。アンモニア貯めタンク40には、アンモニア燃料戻りライン22とアンモニア充填ライン27とが接続されている。アンモニア貯めタンク40は、アンモニアタンク10から流入する燃料アンモニアと、アンモニア燃料戻りライン22から流入する液体の燃料アンモニアと、アンモニア充填ライン27から流入する液体の燃料アンモニアとを、一時的に貯留可能に構成されている。アンモニアタンク10は、例えば、アンモニア貯めタンク40よりも上方に配置され、アンモニアタンク10の燃料アンモニアは、その自重によりアンモニア貯めタンク40へ流入可能となっている。第一供給ライン21Aには、複数の開閉弁81,82が設けられている。これら開閉弁81,82は、アンモニア貯めタンク40の入口の位置と、アンモニア高圧ポンプ25の入口の位置とに、それぞれ設けられている。
 アンモニア高圧ポンプ25は、アンモニア貯めタンク40から燃焼装置8へ供給される燃料アンモニアを加圧する。このアンモニア高圧ポンプ25により加圧された燃料アンモニアは、第二供給ライン21Bを介して燃焼装置8へ供給される。第二供給ライン21Bには、複数の開閉弁83,84が設けられている。これら複数の開閉弁83,84は、第二供給ライン21Bの両端部、すなわちアンモニア高圧ポンプ25の出口の位置と、燃焼装置8の入口の位置とに、それぞれ設けられている。なお、図2では図示を省略しているが、アンモニア高圧ポンプ25と燃焼装置8との間に、アンモニア高圧ポンプ25により加圧された燃料アンモニアを加熱するアンモニアヒーターが設けられている。
 アンモニア燃料戻りライン22は、燃焼装置8で燃料として用いられずに残った余剰の燃料アンモニアをアンモニア高圧ポンプ25よりもアンモニアタンク10側の燃料供給ライン21へ戻している。本第一実施形態におけるアンモニア燃料戻りライン22は、余剰の燃料アンモニアを第一供給ライン21Aに設けられたアンモニア貯めタンク40に戻している。アンモニア燃料戻りライン22には、複数の開閉弁85,86が設けられている。これら開閉弁85,86は、アンモニア燃料戻りライン22の両端部、すなわち燃焼装置8の出口の位置と、アンモニア貯めタンク40の入口の位置とに、それぞれ設けられている。
 不活性ガス供給装置50は、燃焼装置8の燃料としての燃料アンモニアが流通する流通経路Rの燃料アンモニアを窒素等の不活性ガスに置き換える、いわゆるパージを行う。不活性ガス供給装置50は、不活性ガス供給部51と、不活性ガス供給ライン52と、不活性ガス供給弁53と、を備えている。不活性ガスとしては、例えば、不活性ガス生成装置(不図示)により船体2の内部で生成した不活性ガスや、船体2に設けられた不活性ガスタンク(不図示)に予め貯留した不活性ガスを用いることができる。なお、不活性ガスは、燃料アンモニアに接触した際に化学反応しない気体であればよい。
 不活性ガス供給部51は、不活性ガスを不活性ガス供給ライン52へ供給する。
 不活性ガス供給ライン52は、不活性ガス供給部51と、流通経路Rとを接続している。より具体的には、不活性ガス供給ライン52は、不活性ガス供給部51と、流通経路Rのパージ対象領域20pとを接続している。本第一実施形態におけるパージ対象領域20pは、開閉弁83よりも燃焼装置8側の燃料供給ライン21、開閉弁86よりも燃焼装置8側のアンモニア燃料戻りライン22、及び、燃焼装置8内に形成される流通経路Rである。本第一実施形態で例示する不活性ガス供給ライン52は、パージ対象領域20pのうち第二供給ライン21Bのパージ対象領域20pに接続されている。
 不活性ガス供給弁53は、不活性ガス供給ライン52に設けられている。不活性ガス供給弁53は、通常時に閉塞状態とされ、不活性ガス供給部51からパージ対象領域20pへの不活性ガスの供給を遮断している。ここで、通常時とは、燃焼装置8を稼働しているとき等、燃料アンモニアを燃焼装置8に供給可能にしているときである。この通常時において、開閉弁81から開閉弁86は開放状態とされ、アンモニア貯めタンク40から第二供給ライン21Bを通して燃焼装置8に燃料アンモニアが供給され、余剰の燃料アンモニアが燃焼装置8からアンモニア貯めタンク40に戻される。
 不活性ガス供給弁53は、燃焼装置8の緊急停止時や長期停止時等に、閉塞状態から開放状態にされる。言い換えれば、パージ対象領域20pに残留する燃料アンモニアをパージする際に閉塞状態から開放状態に操作される。このようなパージを行う際には、まず開閉弁83,86が閉塞状態とされ、第二供給ライン21B、アンモニア燃料戻りライン22が遮断される。これにより、アンモニア高圧ポンプ25から燃焼装置8への燃料アンモニアの供給が停止された状態になる。次いで、不活性ガス供給弁53が閉塞状態から開放状態とされると、これにより不活性ガス供給部51からパージ対象領域20pに不活性ガスが供給可能な状態になる。
 ベントライン38は、不活性ガス供給装置50によって供給された不活性ガスとともに、流通経路R内に残留していた燃料アンモニアを高圧貯蔵タンク26に導く。不活性ガスと共に燃料アンモニアがベントライン38に流出することで、パージ対象領域20p(流通経路R)内の燃料アンモニアが不活性ガスに置き換えられる。本第一実施形態においては、第一ベントライン38A、第二ベントライン38B、及び第三ベントライン38Cの三つのベントライン38が設けられている。第一ベントライン38Aは、燃料供給ライン21と高圧貯蔵タンク26とを接続している。より具体的には、第一ベントライン38Aは、燃料供給ライン21のうちの第二供給ライン21Bと高圧貯蔵タンク26とを接続している。第二ベントライン38Bは、アンモニア燃料戻りライン22と高圧貯蔵タンク26とを接続している。第三ベントライン38Cは、燃焼装置8内と高圧貯蔵タンク26とを接続している。第一ベントライン38A、第二ベントライン38B、及び第三ベントライン38Cには、それぞれ開閉弁87,88,89が設けられている。
 高圧貯蔵タンク26は、不活性ガス及び燃料アンモニアを高圧状態(例えば、20barG以上)で貯蔵可能に構成されている。この高圧貯蔵タンク26は、一般的なノックアウトドラムよりも高圧まで耐えられる高圧容器である。高圧貯蔵タンク26には、ベントライン38を介して不活性ガスとともに燃料アンモニアが導入される。この際、不活性ガス供給装置50の高圧の不活性ガスを用いて燃料アンモニアが圧送されるため、流通経路R内に残留していた燃料アンモニアは、高圧貯蔵タンク26に導入された後も、液体の状態を維持する。高圧貯蔵タンク26内では、不活性ガスを含む気相と、燃料アンモニアの液相とが存在した状態となる。この高圧貯蔵タンク26内の液相には、アンモニア充填ライン27が連通され、高圧貯蔵タンク26内の気相には、アンモニア回収部60へ気体を送り込む気体排出ライン28が連通されている。
 気体排出ライン28には、開閉弁90が設けられている。この開閉弁90は、高圧貯蔵タンク26に不活性ガスと共に燃料アンモニアが導入される際に閉塞状態とされる一方で、高圧貯蔵タンク26の内部を低圧化する際に開放状態にされる。なお、高圧貯蔵タンク26の液相には、ノックアウトドラム(図示せず)を介して、アンモニア回収部60へ接続される他のラインを設けてもよい。このようにすることで、高圧貯蔵タンク26内に残っている液体アンモニアを排出して、高圧貯蔵タンク26内を低圧化することが可能となる。
 アンモニア充填ライン27は、高圧貯蔵タンク26に貯蔵された燃料アンモニアを、燃料供給ライン21に導入させる。より具体的には、アンモニア充填ライン27は、高圧貯蔵タンク26内の圧力を利用して、高圧貯蔵タンク26の液相の液体アンモニアを燃料供給ライン21に導入可能になっている。本第一実施形態において例示するアンモニア充填ライン27は、第一供給ライン21Aに設けられたアンモニア貯めタンク40に液化アンモニアを導入させている。アンモニア充填ライン27には、高圧貯蔵タンク26に近い側に開閉弁91が設けられている。この開閉弁91は、高圧貯蔵タンク26から燃料供給ライン21に燃料アンモニアを導入させるときに開放状態とされ、それ以外の場合は閉塞状態とされる。
(配管系統による動作)
 次に、上述した配管系統20を用いたパージ処理、及び、アンモニア充填処理について図面を参照しながら説明する。なお、図中、開放状態の開閉弁を白抜き、閉塞状態の開閉弁を黒塗りで示している。
 まず、アンモニアタンク10に貯留された燃料アンモニアを用いて燃焼装置8を動作させる場合、図2に示すように、開閉弁81,82,83,84,85,86を開放状態とし、開閉弁87,88,89,90,91を閉塞状態にする。また、不活性ガス供給弁53は閉塞状態にする。すると、アンモニアタンク10からアンモニア貯めタンク40に燃料アンモニアが流入して一時的に貯留される。そして、アンモニア高圧ポンプ25を動作させると、アンモニア貯めタンク40の燃料アンモニアがアンモニア高圧ポンプ25に引き込まれて、昇圧されて第二供給ライン21Bに送り出される。この第二供給ライン21Bに送り出された燃料アンモニアは、燃焼装置8へ流入して燃料として用いられる。そして、燃焼装置8に流入したものの燃料として用いられずに残った余剰の燃料アンモニアは、アンモニア燃料戻りライン22を介してアンモニア貯めタンク40に戻される。なお開閉弁90は、開放状態としてもよい。
 一方で、例えば、燃焼装置8で用いられる燃料が切り替えられる場合や、メンテナンス等により燃焼装置8による燃料アンモニアの使用が停止される場合、図3に示すように、開閉弁84,85,87,88,89、不活性ガス供給弁53を開放状態とし、開閉弁81,82,83,86,90,91を閉塞状態にする。そして、不活性ガス供給部51を動作させる。すると、燃料供給ライン21のうち、第二供給ライン21Bに残留した燃料アンモニア、アンモニア燃料戻りライン22に残留した燃料アンモニア、及び、燃焼装置8に残留した燃料アンモニアが、それぞれ高圧の不活性ガスによりパージされて、不活性ガスと共に高圧貯蔵タンク26に導入される。なお、パージ完了後、全ての開閉弁81~91および不活性ガス供給弁53は、閉塞状態にする。また、以降の工程では、不活性ガス供給弁53は、閉塞状態を維持するため、不活性ガス供給弁53の開閉状態の説明は省略する。
 次いで、燃焼装置8において、燃料アンモニアの使用を再開する場合、図4に示すように、まず、開閉弁91を開放状態とし、開閉弁81~90を閉塞状態にする。これにより、高圧貯蔵タンク26に高圧にて貯蔵されているパージされた燃料アンモニアがアンモニア充填ライン27を介してアンモニア貯めタンク40内に導入される。
 そして、図5に示すように、開閉弁82~86,91を開放状態とし、開閉弁87~90を閉塞状態にして、アンモニア高圧ポンプ25を動作せると、アンモニア貯めタンク40に導入された燃料アンモニアが第一供給ライン21Aとアンモニア高圧ポンプ25を経て第二供給ライン21Bに供給される。更に、第二供給ライン21Bに供給された燃料アンモニアは、燃焼装置8及びアンモニア燃料戻りライン22の各流通経路Rに至り、アンモニア貯めタンク40に戻される。つまり、アンモニア貯めタンク40の燃料アンモニアが、第一供給ライン21A、第二供給ライン21B、燃焼装置8、アンモニア燃料戻りライン22により形成される環状の流路を循環することとなる。
 その後、これら第二供給ライン21B、燃焼装置8、及びアンモニア燃料戻りライン22の内部が、十分に燃料アンモニアによって満たされた状態になると、図5の状態から開閉弁91を閉塞状態とした後に開閉弁81を開放状態とする。これにより、燃焼装置8が、アンモニアタンク10の燃料アンモニアを用いて動作する状態となる。
 ここで、再度、燃料アンモニアの使用が停止される前に、開閉弁90を開放状態にして、高圧貯蔵タンク26の内部を低圧にする。これにより、高圧貯蔵タンク26では、パージされた燃料アンモニアを受け入れ可能な状態となる。そして、高圧貯蔵タンク26の内部が低圧になることで、仮に高圧貯蔵タンク26内に燃料アンモニアが残留している場合には、燃料アンモニアが気化して、不活性ガスと共にアンモニア回収部60へと送り込まれる。
(作用効果)
 上記の通り、本第一実施形態の船舶1は、船体2と、船体2に設けられて、燃料アンモニアを液体の状態で貯留するアンモニアタンク10と、アンモニアタンク10に接続された燃料供給ライン21と、燃料供給ライン21を介してアンモニアタンク10から燃料アンモニアが導入される燃焼装置8と、燃料供給ライン21を介して燃焼装置8に不活性ガスを圧送する不活性ガス供給装置と、燃焼装置8に圧送された不活性ガスとともに燃焼装置8内の燃料アンモニアが導入され、燃料アンモニアが液体の状態を維持可能な高圧状態で、燃料アンモニアを貯蔵可能な高圧貯蔵タンク26と、高圧貯蔵タンク26に貯蔵された燃料アンモニアを、燃料供給ライン21に導入可能なアンモニア充填ライン27と、を備えている。
 このような船舶1によれば、燃料アンモニアの残留する燃料供給ライン21と燃焼装置8との流通経路Rを不活性ガスによりパージした際に、このパージにより排出された燃料アンモニアを液体の状態で高圧貯蔵タンク26に貯蔵できる。そして、このような船舶1においては、再度、燃料アンモニアを用いて燃焼装置8を動作させる前に、燃料供給ライン21及び燃焼装置8内の不活性ガスをアンモニアに置換する作業を行う必要があるが、この作業を行う際に、高圧貯蔵タンク26に貯蔵された燃料アンモニアを用いて不活性ガスをアンモニアに置換することができる。したがって、パージされたアンモニアを有効利用して、アンモニアタンク10に貯留された燃料アンモニアの消費を抑えることができる。さらに、例えば、流通経路Rに残留した燃料アンモニアを全量パージしたときにアンモニア回収部60で処理するアンモニアの量を減ずる事が可能となり、アンモニア回収部60を小型化する事が可能になる。
 上記第一実施形態の船舶1は、更に、燃料供給ライン21に設けられて、アンモニアタンク10からの燃料アンモニアを一時貯留可能であるとともに、アンモニア充填ライン27を介して高圧貯蔵タンク26に貯蔵された燃料アンモニアを一時貯留可能であり、一時貯留された燃料アンモニアを燃料供給ライン21へ送り込むことが可能なアンモニア貯めタンク40と、アンモニア貯めタンク40よりも燃焼装置8に近い側の燃料供給ライン21に設けられて、アンモニア貯めタンク40に貯留された燃料アンモニアを圧送するアンモニア高圧ポンプ25と、を備えている。
 このように構成することで、高圧貯蔵タンク26に貯蔵された燃料アンモニアを、円滑に燃料供給ライン21に戻すことができる。また、高圧貯蔵タンク26に貯蔵された燃料アンモニアは、アンモニア高圧ポンプ25によって燃料供給ライン21や燃焼装置8へ送り込まれるため、円滑に流通経路Rの不活性ガスを燃料アンモニアに置換することが可能となる。
 上記第一実施形態の船舶1は、更に、前記燃焼装置8で燃料として用いられずに残った余剰の燃料アンモニアを前記アンモニア高圧ポンプ25よりも前記アンモニアタンク10に近い側の前記燃料供給ライン21に戻すアンモニア燃料戻りライン22を備えている。
 このように構成することで、燃焼装置8で燃料として用いられずに残った余剰の燃料アンモニアを、再度アンモニア高圧ポンプ25によって燃焼装置8へ送り込むことができる。さらに、高圧貯蔵タンク26の燃料アンモニアを燃料供給ライン21に戻す際には、このアンモニア燃料戻りライン22を用いて燃料供給ライン21及び燃焼装置8に燃料アンモニアを循環させることができる。したがって、燃料供給ライン21及び燃焼装置8に不活性ガスの残留が生じることを抑制できる。
 上記第一実施形態の船舶1におけるアンモニア燃料戻りライン22は、更に、燃焼装置8で燃料として用いられずに残った余剰の燃料アンモニアを、アンモニア貯めタンク40に戻している。
 従って、高圧貯蔵タンク26から送り込まれた燃料アンモニアと、アンモニア燃料戻りライン22により戻された燃料アンモニアとをアンモニア貯めタンク40内で円滑に合流させることができる。
《第一実施形態の変形例》
 次に、本開示の第一実施形態の変形例を図面に基づき説明する。なお、この変形例においては、不活性ガスを燃料供給ライン21からアンモニア回収部60へ直接的に導入可能にするとともに、不活性ガスをアンモニア燃料戻りライン22からアンモニア回収部60へ直接的に導入可能にしている点でのみ相違する。したがって、上述した第一実施形態と同一部分に同一符号を付して、重複説明を省略する。
 図6は、本開示の第一実施形態の変形例に係る配管系統を示す図であり、残留した僅かな燃料アンモニアを含む不活性ガスをパージする際の状態を示している。
 図6に示すように、本第一実施形態の変形例における配管系統20は、上述した第一実施形態の構成に加えて、第一パージガス排出ライン61と、第二パージガス排出ライン62と、開閉弁92,93と、を備えている。
 第一パージガス排出ライン61は、燃料供給ライン21とアンモニア回収部60とを接続している。より具体的には、第一パージガス排出ライン61は、燃料供給ライン21のうちの第二供給ライン21Bとアンモニア回収部60とを接続している。この第一パージガス排出ライン61には、開閉弁92が設けられている。
 第二パージガス排出ライン62は、アンモニア燃料戻りライン22とアンモニア回収部60とを接続している。この第二パージガス排出ライン62には、開閉弁93が設けられている。
 開閉弁92,93は、通常時、及び、ベントライン38を介して流通経路R内に残留していた燃料アンモニアを高圧貯蔵タンク26に導いているときに閉塞状態とされる。
 上述した第一実施形態のパージ処理においては、初めに加圧状態の不活性ガスに押されて流通経路R内に残留していた燃料アンモニアが高圧貯蔵タンク26に流入するが、そのままパージ処理を継続すると、不活性ガスも高圧貯蔵タンク26に流入し始めてしまう。しかし、この変形例においては、不活性ガスが高圧貯蔵タンク26に流入し始める前に、開閉弁87~89を閉塞状態にして、開閉弁92,93を開放状態にする。より具体的には、開閉弁84,85,92,93,不活性ガス供給弁53を開放状態とし、開閉弁81,82,83,86,87, 88,89、90,91を閉塞状態として、不活性ガス供給部51の動作を継続させる。
 この変形例のようにすることで、流通経路R内に残留している僅かな燃料アンモニア及び不活性ガスは、不活性ガス供給部51から供給される新たな加圧状態の不活性ガスにより押されて、高圧貯蔵タンク26を経由することなく、第一パージガス排出ライン61及び第二パージガス排出ライン62を介して直接的にアンモニア回収部60へ導入されて処理されることとなる。そして、流通経路Rに燃料アンモニアが残留していない状態となった後、不活性ガス供給弁53を閉塞状態として、その後、全ての開閉弁81~93を閉塞状態とする。
 この変形例のように構成することで、上述した第一実施形態の作用効果に加えて、高圧貯蔵タンク26に不活性ガスが導入されることを抑えて、残留した僅かな燃料アンモニアを含む不活性ガスを直接的にアンモニア回収部60に導入させることが可能となる。そのため、燃料アンモニアを流通経路Rに残留させずに、且つ高圧貯蔵タンク26が大型化することを抑えることができる。また、第一パージガス排出ライン61によって、燃料供給ライン21のうちの第二供給ライン21Bとアンモニア回収部60とを連通させ、第二パージガス排出ライン62によってアンモニア燃料戻りライン22とアンモニア回収部60とを連通させて、第二供給ライン21Bおよびアンモニア燃料戻りライン22のそれぞれを低圧の不活性ガス雰囲気とすることができるため、迅速にメンテナンス等を行うことも可能となる。
〈第二実施形態〉
 以下、本開示の第二実施形態に係る船舶について、図面を参照して説明する。なお、この第二実施形態は、上述した第一実施形態と、アンモニア充填ラインの構成のみが異なる。そのため、図1を援用すると共に、第一実施形態と同一部分に同一符号を付して、重複する説明を省略する。
 図7は、本開示の第二実施形態に係るに係る配管系統を示す図である。
 図1、図7に示すように、第二実施形態の船舶1は、船体2と、上部構造4と、燃焼装置8と、アンモニアタンク10と、配管系統20と、ベントポスト30と、アンモニア回収部60と、回収アンモニア水タンク70と、燃料供給ライン21と、アンモニア高圧ポンプ25と、アンモニア燃料戻りライン22と、不活性ガス供給装置50と、ベントライン38と、高圧貯蔵タンク26と、アンモニア充填ライン127と、アンモニア貯めタンク40と、を備えている。
 アンモニア充填ライン127は、高圧貯蔵タンク26に貯蔵された燃料アンモニアを、燃料供給ライン21に導入させる。アンモニア充填ライン127は、第一充填ライン41と、第二充填ライン42と、を備えている。
 第一充填ライン41は、高圧貯蔵タンク26に貯蔵された燃料アンモニアを、高圧ポンプ25よりも燃焼装置8に近い側の燃料供給ライン21である第二供給ライン21Bに導入可能に構成されている。
 第二充填ライン42は、高圧貯蔵タンク26に貯蔵された燃料アンモニアを、高圧ポンプ25よりもアンモニアタンク10に近い側の燃料供給ライン21である第一供給ライン21Aに導入可能に構成されている。この第二実施形態の第二充填ライン42は、第一実施形態のアンモニア充填ライン27と同様に、第一供給ライン21Aに設けられたアンモニア貯めタンク40に液化アンモニアを導入させている。ここで、この第二実施形態では、第一充填ライン41が、高圧貯蔵タンク26と第二供給ライン21Bとを連通させ、第二充填ライン42が、第一充填ライン41から分岐して、第一充填ライン41とアンモニア貯めタンク40とを連通させている場合を例示しているが、この構成に限られない。例えば、第二充填ライン42は、高圧貯蔵タンク26からアンモニア貯めタンク40に至るように形成してもよい。
 さらに、アンモニア充填ライン127には、第一実施形態のアンモニア充填ライン27と同様に、高圧貯蔵タンク26に近い側に開閉弁91が設けられている。この開閉弁91は、高圧貯蔵タンク26から燃料供給ライン21に燃料アンモニアを導入させるときに開放状態とされ、それ以外の場合は閉塞状態とされる。
 この第二実施形態では、高圧貯蔵タンク26内の圧力は、第二供給ライン21B内の圧力よりも高くなっており、アンモニア充填ライン127は、この高圧貯蔵タンク26内の圧力を利用して、高圧貯蔵タンク26の液相の液体アンモニアを、第二供給ライン21B及びアンモニア貯めタンク40に導入させることが可能となっている。なお、アンモニア充填ライン127を介して液体アンモニアを燃料供給ライン21へ導入させるときに高圧貯蔵タンク26の圧力が第二供給ライン21B内の圧力よりも高ければよく、例えば、アンモニア充填ライン127を介して液体アンモニアを燃料供給ライン21へ導入させるときにだけ、第二供給ライン21B内の圧力を逃がすようにしてもよい。
(作用効果)
 上記第二実施形態によれば、高圧貯蔵タンク26をアンモニア高圧ポンプ25よりも燃焼装置8に近い位置に配置した場合に、燃焼装置8に近い位置に配索された第二供給ライン21Bへ液体アンモニアを導入させることができる。したがって、高圧貯蔵タンク26の配置自由度を高めつつ、高圧貯蔵タンク26の液体アンモニアを迅速に燃料供給ライン21に導入することができる。
《第二実施形態の変形例》
 上記第二実施形態では、高圧貯蔵タンク26内の圧力が第二供給ライン21B内の圧力よりも高い場合について説明した。しかし、高圧貯蔵タンク26内の圧力は、第二供給ライン21B内の圧力以下であってもよい。
 図8は、本開示の第二実施形態の変形例における配管系統を示す図である。
 図8に示すように、第二実施形態の変形例における配管系統20は、上述した第二実施形態の構成に加えて、昇圧ポンプ43と、開閉弁44,45とを備えている。
 昇圧ポンプ43は、第一充填ライン41の燃料アンモニアを昇圧可能に構成されている。この第二実施形態の変形例で例示する昇圧ポンプ43は、高圧貯蔵タンク26と開閉弁91との間のアンモニア充填ライン127に設けられている。この昇圧ポンプ43により昇圧された液体アンモニア、すなわち、昇圧ポンプ43よりも燃料供給ライン21側のアンモニア充填ライン127内の圧力は、高圧ポンプ25よりも燃焼装置8に近い側の燃料供給ライン21である第二供給ライン21B内の圧力よりも高い圧力とされている。
 開閉弁44は、第一充填ライン41内の流路を開閉可能とされ、開閉弁45は、第二充填ライン内の流路を開閉可能とされている。これら開閉弁44,45によって、高圧貯蔵タンク26の液体アンモニアの導入先が、切替可能となっている。これら開閉弁44,45は、通常時、閉塞状態とされ、高圧貯蔵タンク26の液体アンモニアを燃料供給ライン21に導入させるときに開放状態にされる。この第二実施形態変形例では、第一充填ライン41の途中から第二充填ライン42が分岐しているため、開閉弁44は、第二充填ライン42の分岐する位置よりも第二供給ライン21B側の第一充填ライン41に設けられている。なお、上述した第二実施形態の変形例において、開閉弁91を省略してもよい(第三実施形態も同様)。
(作用効果)
 上記第二実施形態の変形例によれば、高圧貯蔵タンク26内の液体アンモニアの圧力を、第二供給ライン21B内の圧力よりも高くしなくても、高圧貯蔵タンク26内の液体アンモニアを昇圧ポンプによって昇圧して、第二供給ライン21Bに導入させることができる。したがって、より耐圧の低い高圧貯蔵タンク26を用いることが可能となる。
〈第三実施形態〉
 次に、本開示の第三実施形態に係る船舶について、図面を参照して説明する。上述した第一、第二実施形態では、如何なる高圧貯蔵タンク26の配置も含み得るものであったが、この第三実施形態は、高圧貯蔵タンクの鉛直方向における配置に特徴がある。そのため、図1を援用すると共に、上述した第一実施形態及び第二実施形態と同一部分に同一符号を付して説明すると共に、重複する説明を省略する。
 図9は、本開示の第三実施形態に係るに係る配管系統を示す図である。
 図1、図9に示すように、第三実施形態の船舶1は、船体2と、上部構造4と、燃焼装置8と、アンモニアタンク10と、配管系統20と、ベントポスト30と、アンモニア回収部60と、回収アンモニア水タンク70と、燃料供給ライン21と、アンモニア高圧ポンプ25と、アンモニア燃料戻りライン22と、不活性ガス供給装置150と、ベントライン38と、高圧貯蔵タンク126と、アンモニア充填ライン127と、アンモニア貯めタンク40と、を備えている。
 不活性ガス供給装置150は、燃焼装置8の燃料としての燃料アンモニアが流通する流通経路Rの燃料アンモニアを窒素等の不活性ガスに置き換える、いわゆるパージを行う。不活性ガス供給装置150は、第一、第二実施形態の不活性ガス供給装置50と同様に、不活性ガス供給部51と、不活性ガス供給ライン52と、不活性ガス供給弁53と、を備えている。この第三実施形態の不活性ガス供給装置150は、更に、高圧貯蔵タンク126のパージを行うための不活性ガス供給ライン46と、不活性ガス供給弁47とを備えている。不活性ガス供給ライン46は、不活性ガス供給部51と、高圧貯蔵タンク126とを接続している。不活性ガス供給弁47は、不活性ガス供給ライン46に設けられ、不活性ガス供給部51から高圧貯蔵タンク126に不活性ガスを供給するときに閉塞状態から開放状態とされる。
 高圧貯蔵タンク126は、第一、第二実施形態の高圧貯蔵タンク26と同様に、不活性ガス及び燃料アンモニアを高圧状態で貯蔵可能に構成されている。この高圧貯蔵タンク126には、ベントライン38を介して不活性ガスとともに燃料アンモニアが導入される。高圧貯蔵タンク126内では、不活性ガスを含む気相と、燃料アンモニアの液相とが存在した状態となる。この高圧貯蔵タンク126内の液相には、アンモニア充填ライン127が連通され、高圧貯蔵タンク126内の気相には、アンモニア回収部60へ気体を送り込む気体排出ライン28が連通されている。
 高圧貯蔵タンク126は、燃料供給ライン21及びアンモニア燃料戻りライン22よりも鉛直方向で下方に設けられている。より具体的には、燃料供給ライン21のうち最も下方に位置する最下部、及び、アンモニア燃料戻りライン22のうち最も下方に位置する最下部の何れの最下部よりも、高圧貯蔵タンク126は鉛直方向で下方に配置されている。言い換えれば、燃料供給ライン21内の液体アンモニアやアンモニア燃料戻りライン22内の液体アンモニアが、それぞれ重力により高圧貯蔵タンク126へ移動可能なように、燃料供給ライン21及びアンモニア燃料戻りライン22に対しして高圧貯蔵タンク126の液相が下方に配置されている。なお、この第三実施形態において、ベントライン38は、燃料供給ライン21の最下部や、アンモニア燃料戻りライン22の最下部に接続するようにしてもよい。
(作用効果)
 第三実施形態によれば、上述した第一、第二実施形態の効果に加えて、不活性ガス供給装置150による不活性ガスの供給を行っても燃料供給ライン21及びアンモニア燃料戻りライン22から排出されずにそれぞれの配管の下部に残留してしまった液体アンモニアを、その自重によって高圧貯蔵タンク126に導くことができる。したがって、燃料供給ライン21及びアンモニア燃料戻りライン22の液体アンモニアをより効率よく回収することが可能となる。
〈他の実施形態〉
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 上記実施形態においては、燃焼装置8がアンモニアを燃料とする主機である場合について説明した。しかし、燃焼装置8は、アンモニアのみを燃焼させる装置に限られるものではなく、例えば、アンモニアとアンモニア以外の燃料(例えば、重油等)とを切り替え可能な燃焼装置8であってもよい。
 上記実施形態においては、配管系統に用いられる弁を開閉弁と記載しているが、当該弁は全開または全閉のみの位置が保持できる弁のみの意味ではなく、中間開度保持可能な弁も含めた弁として記載している。
 上記実施形態においては、アンモニア回収部60および回収アンモニア水タンク70を備える場合について説明した。しかし、アンモニア回収部60および回収アンモニア水タンク70ではなく燃焼等によりアンモニアを無害化するアンモニア処理装置を装備することでも良い。
 上記実施形態においては、回収アンモニア水タンク70を備える場合について説明した。しかし、回収アンモニア水タンク70を省略してもよい。この場合、アンモニア回収部60によって回収された回収アンモニア水を、貯蔵または、例えば、中和・希釈して船外に放出すればよい。
 上記実施形態においては、燃料供給ライン21にアンモニア貯めタンク40を設ける場合について説明した。しかし、アンモニア充填ライン27やアンモニア燃料戻りライン22からの燃料アンモニアを燃料供給ライン21に合流させて、一時的に貯留可能な構成であれば、アンモニア貯めタンク40に限られない。例えば、アンモニア貯めタンク40に代えて、アンモニア充填ライン27やアンモニア燃料戻りライン22が合流接続される箇所の燃料供給ライン21の配管を、他の燃料供給ライン21の配管よりも太い配管としてもよい。
 また、上記第一実施形態においては、高圧貯蔵タンク26内部の圧力を利用して高圧貯蔵タンク26内の燃料アンモニアを燃料供給ライン21に戻す場合について説明した。しかし、この構成に限られず、例えば、アンモニア充填ライン27にポンプを設けて高圧貯蔵タンク26内の燃料アンモニアを燃料供給ライン21に戻すようにしてもよい。
 さらに、上記第二、第三実施形態において第一充填ライン41と第二充填ライン42との両方を設ける場合を例示したが、第二充填ライン42は、必要に応じて設ければ良く、例えば省略してもよい。
 また、上記第二、第三実施形態において、第一実施形態の変形例と同様に、図7に破線で示すように、第一パージガス排出ライン61と、第二パージガス排出ライン62と、開閉弁92,93と、を設けてもよい。
 さらに、高圧貯蔵タンク126の配置は、第三実施形態で例示した配置に限られない。例えば、高圧貯蔵タンク126が設置される鉛直方向の位置は、当該高圧貯蔵タンク126が設置される区画(図示せず)内において、燃料供給ライン21のパージ対象領域20pのうちの最下部、及びアンモニア燃料戻りライン22のパージ対象領域20pのうちの最下部よりも下方であってもよい。例えば、高圧貯蔵タンク126と、燃料供給ライン21及びアンモニア燃料戻りライン22とが同一区画(図示せず)に設けられている場合には、高圧貯蔵タンク126は、当該区画内で、燃料供給ライン21のうち最も下方に位置する最下部、及び、アンモニア燃料戻りライン22のうち最も下方に位置する最下部の何れの最下部よりも鉛直方向で下方に配置すればよい。
 上記各実施形態及び変形例では、開閉弁84が第一ベントライン38Aの分岐する位置よりも燃料供給ライン21の下流側に配置され、開閉弁85が第二ベントライン38Bの分岐する位置よりもアンモニア燃料戻りライン22の上流側に配置されている場合を例示した。しかし、開閉弁84,85の配置は、これらの配置に限らない。例えば、開閉弁84を第一ベントライン38Aの分岐する位置よりも燃料供給ライン21の上流側に配置したり、開閉弁85を第二ベントライン38Bの分岐する位置よりもアンモニア燃料戻りライン22の下流側に配置したりしてもよい。
 さらに、ベントライン38の分岐する位置よりも上流側とベントライン38の分岐する位置よりも下流側との何れか一方のみに開閉弁を設ける構成に限られない。例えば、第一ベントライン38Aの分岐する位置よりも燃料供給ライン21の上流側及び第一ベントライン38Aの分岐する位置よりも燃料供給ライン21の下流側の両方に開閉弁を設けたり、第二ベントライン38Bの分岐する位置よりも上流側及び第二ベントライン38Bの分岐する位置よりも下流側の両方に開閉弁を設けたりしてもよい。
 また、上記各実施形態及び変形例では、開閉弁84が第一パージガス排出ライン61の分岐する位置よりも燃料供給ライン21の下流側に配置され、開閉弁85が第二パージガス排出ライン62の分岐する位置よりもアンモニア燃料戻りライン22の上流側に配置されている場合を例示した。しかし、これら配置に限らない。開閉弁84を第一パージガス排出ライン61の分岐する位置よりも燃料供給ライン21の上流側に配置したり、開閉弁85を第二パージガス排出ライン62よりもアンモニア燃料戻りライン22の下流側に配置したりしてもよい。また、開閉弁84は、第一パージガス排出ライン61の分岐する位置よりも上流側と下流側との何れか一方のみに配置される場合に限られない。同様に、開閉弁85は、第二パージガス排出ライン62の分岐する位置よりも上流側と下流側との何れか一方のみに配置される場合に限られない。例えば、第一パージガス排出ライン61の分岐する位置よりも上流側と下流側との両方に開閉弁を設けたり、第二パージガス排出ライン62の分岐する位置よりも上流側と下流側との両方に開閉弁を設けたりしてもよい。
 さらに上記各実施形態及び変形例では、第一ベントライン38Aの分岐する位置が第一パージガス排出ライン61の分岐する位置よりも燃料供給ライン21の下流側とされ第二ベントライン38Bの分岐する位置が第二パージガス排出ライン62の分岐する位置よりもアンモニア燃料戻りライン22の上流側とされている場合を例示した。しかし、これらの構成に限られるものではない。例えば、第一ベントライン38Aと第一パージガス排出ライン61の位置関係を入れ替えて、第一ベントライン38Aの分岐する位置を第一パージガス排出ライン61の分岐する位置よりも燃料供給ライン21の上流側としたり、第二ベントライン38Bと第二パージガス排出ライン62の位置関係を入れ替えて、第二ベントライン38Bの分岐する位置を第二パージガス排出ライン62の分岐する位置よりもアンモニア燃料戻りライン22の下流側に配置としたりしても良い。
〈付記〉
 実施形態に記載の船舶1は、例えば以下のように把握される。
(1)第1の態様によれば船舶1は、船体2と、前記船体2に設けられて、燃料アンモニアを液体の状態で貯留するアンモニアタンク10と、前記アンモニアタンク10に接続された燃料供給ライン21と、前記燃料供給ライン21を介して前記アンモニアタンク10から前記燃料アンモニアが導入される燃焼装置8と、前記燃料供給ライン21を介して少なくとも前記燃焼装置8に不活性ガスを圧送する不活性ガス供給装置と、前記燃焼装置8に圧送された不活性ガスとともに前記燃焼装置8内の前記燃料アンモニアが導入され、前記燃料アンモニアが液体の状態を維持可能な高圧状態で前記燃料アンモニアを貯蔵可能な高圧貯蔵タンク26と、前記高圧貯蔵タンク26に貯蔵された前記燃料アンモニアを、前記燃料供給ライン21に導入可能なアンモニア充填ライン27と、を備える。
 燃焼装置8としては、例えば、主機及び発電機にそれぞれ用いられる内燃機関、ボイラーが挙げられる。
 これにより、燃料アンモニアの残留する燃料供給ライン21と燃焼装置8との流通経路を不活性ガスによりパージした際に、このパージにより排出された燃料アンモニアを液体の状態で高圧貯蔵タンク26に貯蔵できる。そして、このような船舶1においては、再度、燃料アンモニアを用いて燃焼装置8を動作させる前に、燃料供給ライン21及び燃焼装置8内の不活性ガスをアンモニアに置換する作業を行う必要があるが、この作業を行う際に、高圧貯蔵タンク26に貯蔵された燃料アンモニアを用いて不活性ガスをアンモニアに置換することができる。したがって、パージされたアンモニアを有効利用して、アンモニアタンク10に貯留された燃料アンモニアの消費を抑えることができる。さらに、例えば、流通経路Rに残留した燃料アンモニアを全量パージしたときにアンモニア回収部60で処理するアンモニアの量を減ずる事が可能となり、アンモニア回収部60を小型化する事が可能になる。
(2)第2の態様に係る船舶1は、(1)の船舶1であって、前記燃料供給ライン21に設けられて、前記アンモニアタンク10からの燃料アンモニアを一時貯留可能であるとともに、前記アンモニア充填ライン27を介して前記高圧貯蔵タンク26に貯蔵された前記燃料アンモニアを一時貯留可能であり、一時貯留された前記燃料アンモニアを前記燃料供給ライン21へ送り込むことが可能なアンモニア貯めタンク40と、前記アンモニア貯めタンク40よりも前記燃焼装置8に近い側の前記燃料供給ライン21に設けられて、前記アンモニア貯めタンク40に貯留された前記燃料アンモニアを圧送するアンモニア高圧ポンプ25と、を備える。
 これにより、高圧貯蔵タンク26に貯蔵された燃料アンモニアを、円滑に燃料供給ライン21に戻すことができる。また、高圧貯蔵タンク26に貯蔵された燃料アンモニアは、アンモニア高圧ポンプ25によって燃料供給ライン21や燃焼装置8へ送り込まれるため、不活性ガスを燃料アンモニアへ円滑に置換することが可能となる。
(3)第3の態様に係る船舶1は、(2)の船舶1であって、前記燃焼装置8で燃料として用いられずに残った余剰の燃料アンモニアを前記アンモニア高圧ポンプ25よりも前記アンモニアタンク10に近い側の前記燃料供給ライン21に戻すアンモニア燃料戻りライン22を更に備える。
 これにより、燃焼装置8で燃料として用いられずに残った余剰の燃料アンモニアを、再度アンモニア高圧ポンプ25によって燃焼装置8へ送り込むことができる。さらに、高圧貯蔵タンク26の燃料アンモニアを燃料供給ライン21に戻す際には、このアンモニア燃料戻りライン22を用いて燃料供給ライン21及び燃焼装置8に燃料アンモニアを循環させることができる。したがって、燃料供給ライン21及び燃焼装置8に不活性ガスの残留が生じることを抑制できる。
(4)第4の態様に係る船舶1は、(3)の船舶1であって、前記アンモニア燃料戻りライン22は、前記燃焼装置8で燃料として用いられずに残った余剰の前記燃料アンモニアを、前記アンモニア貯めタンク40に戻す。
 これにより、高圧貯蔵タンク26から送り込まれた燃料アンモニアと、アンモニア燃料戻りライン22により戻された燃料アンモニアとをアンモニア貯めタンク40内で円滑に合流させることができる。
(5)第5の態様に係る船舶1は、(3)又は(4)の船舶1であって、前記燃料アンモニアを回収可能なアンモニア回収部60と、前記高圧貯蔵タンク26と前記アンモニア回収部60とを接続する気体排出ライン28と、を備える。
 これにより、高圧貯蔵タンク26の内部を低圧化する際に、高圧貯蔵タンク26内の気相を、アンモニア回収部60に導入させてアンモニアを回収することができる。
(6)第6の態様に係る船舶1は、(5)の船舶であって、前記燃料供給ライン21と前記アンモニア回収部60とを接続する第一パージガス排出ライン61と、前記アンモニア燃料戻りライン22と前記アンモニア回収部60とを接続する第二パージガス排出ライン62と、を備える。
 これにより、高圧貯蔵タンク26に不活性ガスを導入させずに直接的にアンモニア回収部60に導入させることが可能となるため、高圧貯蔵タンク26が大型化することを抑えることができる。また、第一パージガス排出ライン61によって、第二供給ライン21Bとアンモニア回収部60とを連通させ、第二パージガス排出ライン62によってアンモニア燃料戻りライン22とアンモニア回収部60とを連通させて、第二供給ライン21Bおよびアンモニア燃料戻りライン22のそれぞれを低圧の不活性ガス雰囲気とすることができるため、迅速にメンテナンス等を行うことが可能となる。
(7)第7の態様に係る船舶1は、(1)の船舶であって、前記燃料供給ライン21に設けられて、前記燃料アンモニアを前記燃焼装置8へ向けて圧送するアンモニア高圧ポンプ25を備え、前記アンモニア充填ライン127は、前記高圧貯蔵タンク26,126に貯蔵された前記燃料アンモニアを、前記アンモニア高圧ポンプ25よりも前記燃焼装置8に近い側の前記燃料供給ライン21Bに導入可能な第一充填ライン41と、前記高圧貯蔵タンク26,126に貯蔵された前記燃料アンモニアを、前記アンモニア高圧ポンプ25よりも前記アンモニアタンク10に近い側の前記燃料供給ライン21Aに導入可能な第二充填ライン42と、のうち少なくとも第一充填ライン41を備える。
 これにより、高圧貯蔵タンク26の配置自由度を高めつつ、高圧貯蔵タンク26の液体アンモニアを迅速に燃料供給ライン21に導入することができる。
(8)第8の態様に係る船舶1は、(7)の船舶であって、少なくとも前記第一充填ライン41の前記燃料アンモニアを昇圧可能な昇圧ポンプ43を備える。
 これにより、より耐圧の低い高圧貯蔵タンク26を用いることが可能となる。
(9)第9の態様に係る船舶1は、(7)又は(8)の船舶であって、前記燃料供給ライン21に設けられて、前記アンモニアタンク10からの燃料アンモニアを一時貯留可能であるとともに、一時貯留された前記燃料アンモニアを前記燃料供給ライン21へ送り込むことが可能なアンモニア貯めタンク40を備え、前記第二充填ライン42は、前記高圧貯蔵タンク26,126に貯蔵された前記燃料アンモニアを前記アンモニア貯めタンク40に導入する。
 これにより、高圧貯蔵タンク26,126から送り込まれた燃料アンモニアと、アンモニア燃料戻りライン22により戻された燃料アンモニアとをアンモニア貯めタンク40内で円滑に合流させることができる。
(10)第10の態様に係る船舶1は、(7)から(9)の何れか一つの船舶であって、前記燃料アンモニアを回収可能なアンモニア回収部60と、前記高圧貯蔵タンク26,126と前記アンモニア回収部60とを接続する気体排出ライン28と、を備える。
 これにより、高圧貯蔵タンク26の内部を低圧化する際に、高圧貯蔵タンク26内の気相を、アンモニア回収部60に導入させてアンモニアを回収することができる。
(11)第11の態様に係る船舶1は、(10)の船舶であって、前記燃料供給ライン21と前記アンモニア回収部60とを接続する第一パージガス排出ライン61を備える。
 これにより、迅速にメンテナンス等を行うことが可能となる。
(12)第12の態様に係る船舶1は、(10)又は(11)の船舶であって、前記燃焼装置8で燃料として用いられずに残った余剰の燃料アンモニアを前記アンモニア高圧ポンプ25よりも前記アンモニアタンク10に近い側の前記燃料供給ライン21Aに戻すアンモニア燃料戻りライン22と、前記アンモニア燃料戻りライン22と前記アンモニア回収部60とを接続する第二パージガス排出ライン62と、を備える。
 これにより、迅速にメンテナンス等を行うことが可能となる。
(13)第13の態様に係る船舶1は、(7)から(12)の何れか一つの船舶であって、前記高圧貯蔵タンク126は、少なくとも前記燃料供給21ラインよりも下方に設けられている。
 これにより、燃料供給ライン21の液体アンモニアをより効率よく回収することが可能となる。
 上記態様によれば、パージされたアンモニアを有効利用して燃料消費を抑えることができる。
1…船舶 2…船体 4…上部構造 5A,5B…舷側 6…船底 7…上甲板 8…燃焼装置 10…アンモニアタンク 20…配管系統 20p…パージ対象領域 21…燃料供給ライン 21A…第一供給ライン 21B…第二供給ライン 22…アンモニア燃料戻りライン 25…アンモニア高圧ポンプ 26,126…高圧貯蔵タンク 27,127…アンモニア充填ライン 28…気体排出ライン 30…ベントポスト 38…ベントライン 38A…第一ベントライン 38B…第二ベントライン 38C…第三ベントライン 40…アンモニア貯めタンク 41…第一充填ライン 42…第二充填ライン 43…昇圧ポンプ 44,45…開閉弁 46…不活性ガス供給ライン 47…不活性ガス供給弁 50,150…不活性ガス供給装置 51…不活性ガス供給部 52…不活性ガス供給ライン 53…不活性ガス供給弁 60…アンモニア回収部 61…第一パージガス排出ライン 62…第二パージガス排出ライン 70…回収アンモニア水タンク 81~93…開閉弁 R…流通経路

Claims (13)

  1.  船体と、
     前記船体に設けられて、燃料アンモニアを液体の状態で貯留するアンモニアタンクと、
     前記アンモニアタンクに接続された燃料供給ラインと、
     前記燃料供給ラインを介して前記アンモニアタンクから前記燃料アンモニアが導入される燃焼装置と、
     前記燃料供給ラインを介して少なくとも前記燃焼装置に不活性ガスを圧送する不活性ガス供給装置と、
     前記燃焼装置に圧送された不活性ガスとともに前記燃焼装置内の前記燃料アンモニアが導入され、前記燃料アンモニアが液体の状態を維持可能な高圧状態で前記燃料アンモニアを貯蔵可能な高圧貯蔵タンクと、
     前記高圧貯蔵タンクに貯蔵された前記燃料アンモニアを、前記燃料供給ラインに導入可能なアンモニア充填ラインと、
    を備える船舶。
  2.  前記燃料供給ラインに設けられて、前記アンモニアタンクからの燃料アンモニアを一時貯留可能であるとともに、前記アンモニア充填ラインを介して前記高圧貯蔵タンクに貯蔵された前記燃料アンモニアを一時貯留可能であり、一時貯留された前記燃料アンモニアを前記燃料供給ラインへ送り込むことが可能なアンモニア貯めタンクと、
     前記アンモニア貯めタンクよりも前記燃焼装置に近い側の前記燃料供給ラインに設けられて、前記アンモニア貯めタンクに貯留された前記燃料アンモニアを圧送するアンモニア高圧ポンプと、
    を備える
    請求項1に記載の船舶。
  3.  前記燃焼装置で燃料として用いられずに残った余剰の燃料アンモニアを前記アンモニア高圧ポンプよりも前記アンモニアタンクに近い側の前記燃料供給ラインに戻すアンモニア燃料戻りライン
    を更に備える
    請求項2に記載の船舶。
  4.  前記アンモニア燃料戻りラインは、前記燃焼装置で燃料として用いられずに残った余剰の前記燃料アンモニアを、前記アンモニア貯めタンクに戻す
    請求項3に記載の船舶。
  5.  前記燃料アンモニアを回収可能なアンモニア回収部と、
     前記高圧貯蔵タンクと前記アンモニア回収部とを接続する気体排出ラインと、
    を備える
    請求項3又は4に記載の船舶。
  6.  前記燃料供給ラインと前記アンモニア回収部とを接続する第一パージガス排出ラインと、
     前記アンモニア燃料戻りラインと前記アンモニア回収部とを接続する第二パージガス排出ラインと、を備える
    請求項5に記載の船舶。
  7.  前記燃料供給ラインに設けられて、前記燃料アンモニアを前記燃焼装置へ向けて圧送するアンモニア高圧ポンプを備え、
     前記アンモニア充填ラインは、
     前記高圧貯蔵タンクに貯蔵された前記燃料アンモニアを、前記アンモニア高圧ポンプよりも前記燃焼装置に近い側の前記燃料供給ラインに導入可能な第一充填ラインと、前記高圧貯蔵タンクに貯蔵された前記燃料アンモニアを、前記アンモニア高圧ポンプよりも前記アンモニアタンクに近い側の前記燃料供給ラインに導入可能な第二充填ラインと、のうち少なくとも前記第一充填ラインを備える
    請求項1に記載の船舶。
  8.  少なくとも前記第一充填ラインの前記燃料アンモニアを昇圧可能な昇圧ポンプを備える
     請求項7に記載の船舶。
  9.  前記燃料供給ラインに設けられて、前記アンモニアタンクからの燃料アンモニアを一時貯留可能であるとともに、一時貯留された前記燃料アンモニアを前記燃料供給ラインへ送り込むことが可能なアンモニア貯めタンクを備え、
     前記第二充填ラインは、
     前記高圧貯蔵タンクに貯蔵された前記燃料アンモニアを前記アンモニア貯めタンクに導入する
    請求項7又は8に記載の船舶。
  10.  前記燃料アンモニアを回収可能なアンモニア回収部と、
     前記高圧貯蔵タンクと前記アンモニア回収部とを接続する気体排出ラインを備える
    請求項7から9の何れか一項に記載の船舶。
  11.  前記燃料供給ラインと前記アンモニア回収部とを接続する第一パージガス排出ラインを備える
    請求項10に記載の船舶。
  12.  前記燃焼装置で燃料として用いられずに残った余剰の燃料アンモニアを前記アンモニア高圧ポンプよりも前記アンモニアタンクに近い側の前記燃料供給ラインに戻すアンモニア燃料戻りラインと、
     前記アンモニア燃料戻りラインと前記アンモニア回収部とを接続する第二パージガス排出ラインと、
    を備える請求項10又は11に記載の船舶。
  13.  前記高圧貯蔵タンクは、
     少なくとも前記燃料供給ラインよりも下方に設けられている
    請求項7から12の何れか一項に記載の船舶。
PCT/JP2022/014492 2021-03-31 2022-03-25 船舶 WO2022210377A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22780590.0A EP4316971A1 (en) 2021-03-31 2022-03-25 Watercraft
KR1020237031662A KR20230146083A (ko) 2021-03-31 2022-03-25 선박
JP2023511177A JP7566137B2 (ja) 2021-03-31 2022-03-25 船舶
CN202280022517.3A CN117015499A (zh) 2021-03-31 2022-03-25 船舶

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060215 2021-03-31
JP2021-060215 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210377A1 true WO2022210377A1 (ja) 2022-10-06

Family

ID=83459091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014492 WO2022210377A1 (ja) 2021-03-31 2022-03-25 船舶

Country Status (5)

Country Link
EP (1) EP4316971A1 (ja)
JP (1) JP7566137B2 (ja)
KR (1) KR20230146083A (ja)
CN (1) CN117015499A (ja)
WO (1) WO2022210377A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162350A1 (ja) * 2022-02-25 2023-08-31 三菱重工業株式会社 浮体のガス処理方法及び浮体
WO2023162325A1 (ja) * 2022-02-25 2023-08-31 三菱重工業株式会社 浮体
CN117346056A (zh) * 2023-11-13 2024-01-05 重庆瑞信气体有限公司 一种高纯气体输送机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315493B1 (ja) 2012-06-13 2013-10-16 武史 畑中 次世代カーボンフリー動力装置及びこれを利用した次世代カーボンフリー移動体
JP2019014335A (ja) * 2017-07-05 2019-01-31 川崎重工業株式会社 船舶
KR102111525B1 (ko) * 2019-05-14 2020-05-15 대우조선해양 주식회사 친환경 선박의 연료공급시스템
JP2021060215A (ja) 2019-10-03 2021-04-15 日本車輌製造株式会社 ノズル径測定ゲージ、ノズル径測定装置、及び、ノズル径の測定方法
CN112696289A (zh) * 2020-12-28 2021-04-23 大连船舶重工集团有限公司 一种船用液氨燃料供给及燃料回收利用系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315493U (ja) 1976-07-22 1978-02-08

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315493B1 (ja) 2012-06-13 2013-10-16 武史 畑中 次世代カーボンフリー動力装置及びこれを利用した次世代カーボンフリー移動体
JP2019014335A (ja) * 2017-07-05 2019-01-31 川崎重工業株式会社 船舶
KR102111525B1 (ko) * 2019-05-14 2020-05-15 대우조선해양 주식회사 친환경 선박의 연료공급시스템
JP2021060215A (ja) 2019-10-03 2021-04-15 日本車輌製造株式会社 ノズル径測定ゲージ、ノズル径測定装置、及び、ノズル径の測定方法
CN112696289A (zh) * 2020-12-28 2021-04-23 大连船舶重工集团有限公司 一种船用液氨燃料供给及燃料回收利用系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162350A1 (ja) * 2022-02-25 2023-08-31 三菱重工業株式会社 浮体のガス処理方法及び浮体
WO2023162325A1 (ja) * 2022-02-25 2023-08-31 三菱重工業株式会社 浮体
CN117346056A (zh) * 2023-11-13 2024-01-05 重庆瑞信气体有限公司 一种高纯气体输送机构
CN117346056B (zh) * 2023-11-13 2024-06-04 重庆瑞信气体有限公司 一种高纯气体输送机构

Also Published As

Publication number Publication date
EP4316971A1 (en) 2024-02-07
KR20230146083A (ko) 2023-10-18
JPWO2022210377A1 (ja) 2022-10-06
CN117015499A (zh) 2023-11-07
JP7566137B2 (ja) 2024-10-11

Similar Documents

Publication Publication Date Title
WO2022210377A1 (ja) 船舶
JP6589210B2 (ja) 燃料タンクのイナーティング方法及び浮体
KR101205351B1 (ko) 연료 공급 선박
WO2022249799A1 (ja) 船舶
KR102375717B1 (ko) 가스연료 추진 선박
KR20230173167A (ko) 선박
KR102699728B1 (ko) 선박
KR102340141B1 (ko) 선박
KR102608687B1 (ko) 선박의 암모니아 연료공급시스템
WO2024009672A1 (ja) バンカー設備、バンカー船、バンカーシステム、及び液化ガスの供給方法
KR102677388B1 (ko) 선박
KR102340138B1 (ko) 선박
KR102340140B1 (ko) 선박
KR102340142B1 (ko) 선박
WO2023162325A1 (ja) 浮体
KR20190011543A (ko) 선박
KR20190011554A (ko) 선박
KR20230084954A (ko) 선박의 암모니아 연료공급시스템
NL2021667B1 (nl) Werkwijze en systeem voor het over een water transporteren van CO2.
JP6426250B1 (ja) ガス燃料船の燃料揮発ガス排出バンカーステーション構造
KR20230168626A (ko) 선박의 암모니아 연료공급시스템
JP2024033951A (ja) バンカー用浮体、液化ガスの供給方法
JP2023093265A (ja) アンモニア水貯留システム及びアンモニア燃料船
KR20190011546A (ko) 선박
KR20190011563A (ko) 선박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237031662

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031662

Country of ref document: KR

Ref document number: 2023511177

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280022517.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022780590

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022780590

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE