WO2022247948A1 - 一种内燃机散热方法及装置 - Google Patents
一种内燃机散热方法及装置 Download PDFInfo
- Publication number
- WO2022247948A1 WO2022247948A1 PCT/CN2022/095823 CN2022095823W WO2022247948A1 WO 2022247948 A1 WO2022247948 A1 WO 2022247948A1 CN 2022095823 W CN2022095823 W CN 2022095823W WO 2022247948 A1 WO2022247948 A1 WO 2022247948A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- internal combustion
- combustion engine
- heat dissipation
- pipe
- diversion
- Prior art date
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 140
- 230000017525 heat dissipation Effects 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000001816 cooling Methods 0.000 claims description 16
- 238000009428 plumbing Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 31
- 238000010586 diagram Methods 0.000 description 12
- 239000012530 fluid Substances 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- 241000475481 Nebula Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/08—Other arrangements or adaptations of exhaust conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N5/00—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
- F01N5/02—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N5/00—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
- F01N5/04—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using kinetic energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/02—Controlling of coolant flow the coolant being cooling-air
Definitions
- the present application relates to the field of heat dissipation, in particular to a heat dissipation method and device for an internal combustion engine.
- the internal combustion engine Since human beings invented the internal combustion engine, the internal combustion engine has achieved many applications because it can convert chemical energy into mechanical energy and transmit it to other mechanisms, such as driving cars, food processing machinery, driving industrial machines, driving trains, airplanes, ships, etc.
- the ubiquitous internal combustion engine has changed the world and changed our life. During the use of the internal combustion engine, about half of the energy will be wasted as heat energy. This part of heat energy will be released through the internal combustion engine body and exhaust. The heat released through the body will make The internal combustion engine exceeds the best condition of the internal combustion engine itself, which affects its work due to overheating, and even damages the internal combustion engine. Therefore, it is necessary to take methods to help the internal combustion engine body release this part of heat in time.
- Air cooling Directly use the wind around the internal combustion engine to dissipate heat, often because the wind around the internal combustion engine does not flow or the flow is poor, the efficiency is very low, the heat dissipation is insufficient, or the fan is used to accelerate the heat dissipation.
- the medium takes away the heat of the internal combustion engine body to the heat sink with a larger area, and at the same time, the electric fan is used to accelerate the flow of the air around the radiator to release the heat of the internal combustion engine body, but this method has the need to increase the electric device and consume extra energy.
- the purpose of this application is to provide a method and device for heat dissipation of an internal combustion engine, specifically using the heat and kinetic energy contained in the exhaust gas of the internal combustion engine itself to directly drive the gas flow near the internal combustion engine, so that the internal combustion engine can use the energy wasted by the internal combustion engine without additional consumption Energy, with no rotating parts, serves the purpose of helping the internal combustion engine dissipate heat.
- a heat dissipation method for an internal combustion engine discharges gas through the exhaust pipe when the internal combustion engine works.
- the internal combustion engine needs to be dissipated.
- the exhaust gas flows near the mouth of the diversion pipe, driving the air in the diversion pipe to flow, thereby accelerating the flow of air near the internal combustion engine and accelerating the heat dissipation of the internal combustion engine. Cooling of internal combustion engine components.
- a heat dissipation device for an internal combustion engine comprising a diversion pipe, the opening of the inlet end of the diversion pipe is close to and half-wraps the internal combustion engine, the opening of the outlet end of the diversion pipe and the opening of the exhaust pipe form an inner and outer duct type sleeve, and the internal combustion engine
- the exhaust gas is discharged from one of the ducts of the ducted sleeve, driving the air in the other duct connected to the ducted duct to accelerate the flow, thereby accelerating the flow of air near the internal combustion engine and accelerating the internal combustion engine.
- the mouth of the inner pipe of the inner and outer duct casing is indented compared with the mouth of the outer pipe.
- Such a structure is conducive to the interaction between the fluids of the inner and outer ducts in the outer pipe.
- the inner tube of the inner and outer ducted sleeves is provided with at least two sub-pipes, and a plurality of sub-pipes can be set so that the fluids of the inner and outer ducts can interact at multiple positions, which can make the interaction more uniform and effective.
- the inner pipe of the inner and outer ducted casing is connected to the exhaust pipe of the internal combustion engine, and the outer pipe of the inner and outer ducted casing is connected to the diversion pipe, so that the exhaust of the internal combustion engine passes through the inner and outer ducted casing
- the inner channel of the inner channel is discharged, and it interacts with the fluid in the outer channel of the inner and outer channel casing, driving the fluid in the outer channel and the fluid in the inner channel to move in one direction.
- the outer tube is connected with the diversion pipe, the outer channel
- the fluid that is, the air, generates flow, acts on the air near the internal combustion engine through the guide pipe to accelerate the flow, and accelerates the heat dissipation of the internal combustion engine.
- An automatic valve is arranged in the diversion pipeline, and the automatic valve is connected with the temperature control system of the internal combustion engine.
- the diversion pipeline is closed, and when the internal combustion engine needs to be cooled, the diversion pipeline is opened.
- a diversion pipe is provided at the inlet end of the diversion pipe, and the diversion pipe is connected to at least one of the cooling fins and circuit components of the internal combustion engine, and an automatic valve is provided to control the opening or closing of the diversion pipe.
- the beneficial effects of the present application are: adopting a method and device for heat dissipation of an internal combustion engine described in this application, abandoning most existing internal combustion engines that use a water pump to drive the medium flow in the radiator, and use an electronic fan to blow the heat dissipation method of the radiator.
- the backflow pipe and the exhaust pipe of the internal combustion engine are combined into a duct structure, which uses the heat and kinetic energy of the gas discharged when the internal combustion engine itself is working to achieve the purpose of accelerating heat dissipation for the internal combustion engine.
- the first is to use the internal combustion engine
- the waste of exhaust resources in the work itself does not require additional consumption of electricity and fuel.
- the third is to use the method and device of the present application to reduce equipment and save costs; the fourth is to compare the existing heat dissipation methods of internal combustion engines with the method and device of the present application It can also dissipate heat to other components at the same time; thus, the safe and stable operation of internal combustion and its cooling system can be guaranteed by using the method and device of the present application.
- Fig. 1 is a schematic diagram of a cooling device for an internal combustion engine of the present application
- Fig. 2 is a schematic diagram of a cooling device for an internal combustion engine with branch pipes of the present application
- Fig. 3 is a schematic diagram of the end face of Fig. 2 of the present application with branch pipes;
- Fig. 4 is a schematic diagram of a cooling device for an internal combustion engine with an exhaust pipe in an outer pipe of the present application
- Fig. 5 is a schematic diagram of a heat dissipation device for an internal combustion engine with a branch in Fig. 4 of the present application;
- Fig. 6 is a schematic diagram of another internal combustion engine cooling device of the present application.
- 1 is the internal combustion engine
- 2 is the exhaust pipe
- 3 is the inner pipe
- 4 is the outer pipe
- 5 is the intake pipe of the internal combustion engine
- 6 is the shroud
- 7 is the branch pipe
- 8 is the first electromagnetic valve
- 9 is the second electromagnetic valve.
- Valve, 10 is a radiator
- 11 is a sub-drain pipe
- 12 is an air inlet.
- Fig. 1 is a kind of internal combustion engine radiator schematic diagram of the present application, among the figure 1 is internal combustion engine, belonging internal combustion engine 1 has exhaust pipe 2, and internal combustion engine intake pipe 5, combustion-supporting gas enters by internal combustion engine
- the air pipe 5 enters the internal combustion engine, undergoes mixed combustion with fuel, and performs work externally, and exhaust gas is discharged from the exhaust pipe 2.
- Other supporting components of the internal combustion engine 1 are no longer shown in this drawing, and the outlet part of the exhaust pipe 2 forms an inner pipe. 3.
- the nebula space of the inner tube 3 is the inner duct
- the space between the inner tube 3 and the outer tube 4 is the outer duct
- the outer tube 4 extends to the periphery of the internal combustion engine 1 , forming a semi-enclosed structure, called the shroud 6,
- the inner pipe 3 is indented by a certain distance compared with the outer pipe 4, when the internal combustion engine 1 is working, the exhaust pipe 2 discharges exhaust gas, and the exhaust gas flows at a certain speed and has a certain Heat is ejected from the inner pipe 3, and the gas flow rate in the inner channel is fast.
- the fluid pressure with a fast flow rate is low, so the inner channel forms a low-pressure area, and the gas in the outer channel flows from the high-pressure area to the low-pressure area, so the heat of the exhaust gas
- the gas transferred to the outer duct with kinetic energy, and the gas from the inner and outer ducts are discharged together, because the outer pipe 4 extends to the vicinity of the internal combustion engine, and forms a semi-enclosed structure around the periphery of the internal combustion engine 1, and the gas flowing in the outer duct will flow from the shroud
- the gap of 6 flows in, accelerates through the periphery of the internal combustion engine 1, and takes away the heat of the internal combustion engine 1.
- Fig. 2 is a schematic diagram of an internal combustion engine cooling device with branch pipes of the present application; this accompanying drawing 2 is an improved structure on the basis of accompanying drawing 1, mainly setting branch pipes 7 at the mouth of the exhaust pipe 2, shown in the figure There are 3 sub-pipes 7, the number of sub-pipes 7 can be increased or decreased in practical application, and the exhaust gas discharged from the exhaust pipe 2 can be sprayed out through each port of the sub-pipe 7 by setting the sub-pipe 7, so that the exhaust gas with a certain heat and speed is evenly distributed in the outer pipe
- the gas in the outer duct can be rapidly mixed with the gas in the inner duct to transfer the kinetic energy of heat and improve the efficiency, so that the gas flow rate in the outer duct can be increased, that is, the guide flow arranged around the internal combustion engine 1 can be increased.
- the flow rate of the gas entering the cover 6 improves the heat dissipation efficiency of the internal combustion engine 1 .
- Fig. 3 is a schematic diagram of the end face of Fig. 2 of the present application with branch pipes; from the end face of appearance 4, the distribution of internal branch pipes 7 can be clearly seen.
- Fig. 4 is a schematic diagram of an internal combustion engine cooling device with an exhaust pipe in an outer pipe of the present application;
- the periphery of 1 forms a semi-enclosed structure, and the gas flowing in the outer duct will flow in from the gap of the shroud 6, accelerate through the periphery of the internal combustion engine 1, and take away the heat of the internal combustion engine 1.
- the accompanying drawing 4 has the same principle as the accompanying drawing 1. It will not be stated here again, such setting is convenient for different application embodiments and specific structure arrangement.
- Fig. 5 is the schematic diagram of the heat dissipation device of the internal combustion engine shown in Fig. 4 of the present application; this accompanying drawing 5 is an improvement of the accompanying drawing 4, mainly setting the branch pipe 7, increasing the gas flow rate of the external duct, improving the heat dissipation efficiency of the internal combustion engine 1, and the accompanying drawing Figure 2 has the same principle.
- 6 is a schematic diagram of another internal combustion engine cooling device of the present application; among the figure, 1 is an internal combustion engine, 2 is an exhaust pipe, 4 is an outer pipe, 5 is an intake pipe of an internal combustion engine, 6 is a shroud, 7 is a branch pipe, and 8 is the first Solenoid valve, 9 is a second solenoid valve, 10 is a radiator, 11 is a diversion pipe, and 12 is an air inlet.
- the first solenoid valve 8 and the second solenoid valve 9 are set to control the flow of the respective pipelines respectively.
- the sub-drain pipe 11 On or off, to adapt to the situation of the internal combustion engine 1 under different working conditions, set the sub-drain pipe 11 to extend to the vicinity of the heat sink 10 of the internal combustion engine 1, and half surround the heat sink 10, and the heat sink 10 is connected to the internal combustion engine through its internal heat dissipation medium Inside, the heat generated by the internal combustion engine 1 is taken away by the circulation of the heat dissipation medium.
- the sub-drain tube 11 can use the same principle as above to accelerate the gas flow near the heat sink 10 and accelerate the heat dissipation of the heat sink 10.
- the solenoid valve 8 and solenoid valve 9 close the solenoid valve 8 and solenoid valve 9 to reduce the gas circulation near the internal combustion engine 1, which is conducive to the increase of the temperature of the internal combustion engine 1.
- the air intake hole 12 is provided to perform gas acceleration drive for different parts of the internal combustion engine 1, and adjust the position where the gas enters, so that the position can get better heat dissipation.
- the end of the outer tube close to the internal combustion engine can be provided with a plurality of air intake holes, and the intake air can be taken from different positions of the internal combustion engine, so as to give balanced heat dissipation to different parts of the internal combustion engine.
- the heat dissipation method and device for an internal combustion engine of the present application can be widely used in fields such as automobiles with internal combustion engines, industry, agriculture, and national defense.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Silencers (AREA)
Abstract
一种内燃机散热方法,其中,内燃机(1)通过排气管(2)排出气体,内燃机(1)工作需要散热,以导流管道连接内燃机(1)至排气管口附近,内燃机(1)排气从导流管道口附近流过,从而带动导流管道内空气流动;还公开了一种内燃机散热装置。利用了内燃机(1)浪费的能量,没有转动部件,使内燃机(1)附近空气加速流动而给内燃机(1)加速散热。
Description
本申请涉及散热领域, 具体是一种内燃机散热方法及装置。
自从人类发明制造了内燃机,内燃机因为其能够把化学能量转化成机械能量,传递给其他机构而实现非常多的应用,例如驱动汽车,食品加工机械,驱动工业机器,驱动火车飞机轮船等等,无处不在的内燃机使我们改变了世界,改变了生活,内燃机在使用过程中会有大约一半的能量以热能的方式浪费掉,这部分热能通过内燃机机体和排气释放,通过机体释放的热量会使内燃机超过内燃机本身过热而影响其工作的最佳状况,甚至损坏内燃机,因此需要采取方法帮助内燃机本体及时释放这部分热量,现有技术中最常见的是使用风冷和液冷的方法,风冷直接利用内燃机周围的风散热,经常因为内燃机周围的风不流动或流动不良而效率很低,散热不充分,或者用电扇加速散热,液冷是利用内燃机本体外层设置液体包,由导热的液体介质带走内燃机本体的热量到更大面积的散热片,同时利用电风扇将吹动散热器周围的空气加速流动而将内燃机本体的热量释放掉,但是这种方法具有需要增加电动装置并且额外消耗能量,需要转动部件,液体介质腐蚀管道容器等问题,因此常因为电力电器和转动部件损坏而影响内燃机的工作,甚至使内燃机完全损坏而停止工作,因此内燃机需要更经济更安全可靠地散热才能保证内燃机的正常运行,从而保证内燃机所驱动的其他装置正常工作,现有上述内燃机的散热技术方案存在上述问题,经常需要检查维护,因此需要设计改进。
在此处键入技术问题描述段落。
本申请的目的是在于提供一种内燃机散热的方法及装置,具体是利用内燃机本身的排出气体所含有的热能和动能直接驱动内燃机附近的气体流动,实现内燃机利用内燃机浪费的能量而不需要额外消耗能量,没有转动部件,达到帮助内燃机散热的目的。
本申请为实现上述目的,通过以下技术方案实现:一种内燃机散热方法,内燃机工作通过排气管排出气体,内燃机工作需要散热,以导流管道连接内燃机至所述排气管口附近,利用内燃机排出气体从所述导流管道口附近流过,带动所述导流管道内空气流动,从而使内燃机附近空气加速流动而给内燃机加速散热,本方法除了给内燃机本体加速散热,还可以用于给内燃机配套部件散热。
一种内燃机散热装置,包括导流管道,所述导流管道进气端开口靠近并半包裹内燃机,所述导流管道出气端开口与排气管道的开口形成内外涵道式套管,从内燃机排出气体从所述涵道式套管的其中一个涵道排出,带动所述涵道式套管连接导流管道的另一个涵道的空气加速流动,从而使内燃机附近空气加速流动而给内燃机加速散热。
所述内外涵道式套管的内管管口比较外管管口缩进,这样的结构有利于内外涵道流体在外管内发生相互作用。
所述内外涵道式套管的内管至少设有2个分管,设置多个分管可以是内外涵道的流体在多个位置相互作用,能够使相互作用更加均匀有效。
所述内外涵道式套管的内管与内燃机的排气管道连接,所述内外涵道式套管的外管与导流管道连接,这样设置使内燃机的排气通过内外涵道式套管的内涵道排出,而与内外涵道式套管的外涵道流体发生作用,带动外涵道的流体与内涵道的流体一个方向运动,当所述外管与导流管道连接,外涵道流体即空气产生流动,通过导流管道作用于内燃机附近空气加速流动,加速内燃机的散热。
在所述导流管道设有自动阀门,所述自动阀门 与内燃机的温度控制系统连接,在不需要给内燃机散热的时候,关闭导流管道,在需要给内燃机散热的时候,打开导流管道。
在所述导流管道进气端设有分导流管道,所述分导流管道连接内燃机的散热片和电路部件至少其中一个,并设有自动阀门以控制分导流管道的打开或关闭。
本申请的有益效果在于:采用本申请所述的一种内燃机散热的方法及装置,抛弃现有大多数内燃机的利用水泵驱动散热器内的介质流动,利用电子风扇吹散热器的散热方法,利用倒流管道和内燃机排气管道组合成涵道结构,利用内燃机本身工作的时候排除的气体所具有的热量和动能,达到给内燃机加速散热的目的,比较现有技术具有以下优点:第一是利用内燃机本身工作中浪费的排气资源,不用额外消耗电量燃料等;第二是本申请的方法和装置中不含有转动部件,不含有电子电动部件,只有管道间的流体之间的相互作用,不会因为转动,电子设备故障而损坏内燃机,因此可以长期免维护工作;第三是采用本申请的方法和装置减少了设备,节约成本;第四是比较现有内燃机散热方法,本申请的方法和装置还可以同时给其他部件散热;由此,采用本申请的方法和装置能够实现保障内燃及其散热系统的安全稳定运行。
图1为本申请的一种内燃机散热装置示意图;
图2为本申请的一种具有分管的内燃机散热装置示意图;
图3为本申请的图2具有分管的端面示意图;
图4为本申请的一种排气管在外管的内燃机散热装置示意图;
图5为本申请的图4具有分管的内燃机散热装置示意图;
图6为本申请的另一内燃机散热装置示意图;
图中1为内燃机,2为排气管,3为内管,4为外管,5为内燃机进气管,6为导流罩,7为分管,8为第一电磁阀,9为第二电磁阀,10为散热器,11为分导流管,12为进气孔。
下面结合具体实施例,进一步阐述本申请,图1为本申请的一种内燃机散热装置示意图,图中1为内燃机,所属内燃机1具有排气管2,和内燃机进气管5,助燃气体通过内燃机进气管5进入内燃机,经过与燃料混合燃烧,对外做功,并且有废气从排气管2排出,内燃机1的其他配套不再在本附图中不再体现,排气管2的出口部分形成内管3,与外管4形成内外涵道式套管结构,内管3的nebula空间为内涵道,内管3和外管4之间的空间为外涵道,外管4延伸至内燃机1的外围,形成半包围的结构,称为导流罩6,内管3比较外管4缩进一定距离,当内燃机1进行工作的时候,排气管2排出废气,废气以一定的速度和具有一定的热量从内管3喷出,内涵道的气体流速快,根据伯努利原理,流速快的流体压力低,因此内涵道形成低压区域,外涵道气体从高压区域流向低压区域,因此废气的热量和动能传递给外涵道的气体,内外涵道的气体一起排出,因为外管4一直延伸至内燃机的附近,并且在内燃机1外围形成半包围结构,外涵道流动的气体将从导流罩6的缺口流入,加速经过内燃机1的外围,带走内燃机1的热量。
图2为本申请的一种具有分管的内燃机散热装置示意图; 本附图2是在附图1的基础上改进的结构,主要是在排气管2的口部设置分管7,图中显示的分管7为3个,实际应用中可以增加减少分管7的数量,设置分管7可以将排气管2排出的废气通过分管7的各个口喷出,使具有一定热量和速度的废气均匀分布在外管4的径向的空间内,使外涵道的气体能够与内涵道的气体迅速混合,传递热量的动能,提高效率,因而能够增加外涵道气体流速,即增加设置在内燃机1周围的导流罩6处进入气体的流速,提高对内燃机1的散热效率。
图3为本申请的图2具有分管的端面示意图;从外观4的端面上看,可以清晰其内部分管7的分布情况,在本附图中设有3个分管7,3个分管7均匀分布在外管4的径向内部空间里,外涵道进入的气体不仅流过分管7外侧,也流过分管7之间的空间,因而增加气体间相互交换热量和动能的位置,提高效率。
图4为本申请的一种排气管在外管的内燃机散热装置示意图;在本附图中,排气管2排出的废气经过外管4排出,而内管3延伸至内燃机1附近并在内燃机1外围形成半包围结构,外涵道流动的气体将从导流罩6的缺口流入,加速经过内燃机1的外围,带走内燃机1的热量,本附图4与附图1具有一样的原理,在此不再陈述,这样的设置方便不同应用实施例中,方便结构具体布置。
图5为本申请的图4具有分管的内燃机散热装置示意图;本附图5是附图4的改进,主要是设置分管7,增加外涵道气体流速,提高对内燃机1的散热效率,与附图2具有同样的原理。
图6为本申请的另一内燃机散热装置示意图;图中1为内燃机,2为排气管,4为外管,5为内燃机进气管,6为导流罩,7为分管,8为第一电磁阀,9为第二电磁阀,10为散热器,11为导流分管,12为进气孔在本附图中,设置第一电磁阀8和第二电磁阀9,分别控制各自管道的导通或关闭,适应内燃机1在不同工作状态下的情况,设置分导流管11延伸至内燃机1的散热片10附近,并半包围散热片10,散热片10通过其内部的散热介质连接内燃机内部,通过散热介质的循环带走内燃机1产生的热量,分导流管11可以利用上述相同的原理加速散热片10附近气体流动,加速散热片10的散热,在内燃机1启动阶段或环境温度很低的阶段,关闭电磁阀8和电磁阀9,减少内燃机1附近气体流通,有利于内燃机1温度的提升,档内燃机1温度达到设定温度,打开需要的电磁阀导通导流管内气体加速流动,加速内燃机1散热,设置进气孔12能够针对内燃机1的不同部位进行气体加速驱动,调节进入气体的部位,使该部位得到更好的散热。
外管靠近内燃机的一端可以设置多个进气孔,从内燃机的不同位置进气,以能够给予内燃机不同部位均衡散热。
本申请的一种内燃机散热方法及装置可以广泛应用于具有内燃机的汽车,工业,农业,国防等领域。
这里仅通过所选的实施例对本申请进行了说明,在实际应用中,所述发动机的排气,进气和辅助散热器分别与发动机的相关结构连接,发动机的排气,进气和辅助散热器与发动机的连接,并非直接连通,在本实施例的各个附图中,本申请附图只是用于说明其原理,因此显而易见的是,上述的实施例用于说明而不是用于限定本申请。
在此处键入本发明的实施方式描述段落。
在此处键入工业实用性描述段落。
在此处键入序列表自由内容描述段落。
Claims (9)
- 一种内燃机散热方法,内燃机工作通过排气管排出气体,内燃机工作需要散热,以导流管道连接内燃机至所述排气管口附近,利用内燃机排出气体从所述导流管道口附近流过,带动所述导流管道内空气流动,从而使内燃机附近空气加速流动而给内燃机加速散热。
- 根据权利要求1所述的一种内燃机散热方法,其特征在于:本方法除了给内燃机本体加速散热,还可以用于给内燃机配套部件散热。
- 一种内燃机散热装置,其特征在于:包括导流管道,所述导流管道进气端开口靠近并半包裹内燃机,所述导流管道出气端开口与排气管道的开口形成内外涵道式套管,从内燃机排出气体从所述涵道式套管的其中一个涵道排出,带动所述涵道式套管连接导流管道的另一个涵道的空气加速流动,从而使内燃机附近空气加速流动而给内燃机加速散热。
- 根据权利要求3所述的一种内燃机散热装置,其特征在于:所述内外涵道式套管的内管管口比较外管管口缩进。
- 根据权利要求3所述的一种内燃机散热装置,其特征在于:所述内外涵道式套管的内管至少设有2个分管。
- 根据权利要求3所述的一种内燃机散热装置,其特征在于:所述内外涵道式套管的内管与内燃机的排气管道连接,所述内外涵道式套管的外管与导流管道连接。
- 根据权利要求3所述的一种内燃机散热装置,其特征在于:在所述导流管道设有自动阀门,所述自动阀门 与内燃机的温度控制系统连接,在不需要给内燃机散热的时候,关闭导流管道,在需要给内燃机散热的时候,打开导流管道。
- 根据权利要求3所述的一种内燃机散热装置,其特征在于:在所述导流管道进气端设有分导流管道,所述分导流管道连接内燃机的散热片和电路部件至少其中一个,并设有自动阀门以控制分导流管道的打开或关闭。
- 根据权利要求3所述的一种内燃机散热装置,其特征在于:在所述导流管道进气端设有进气孔,调节进入气体的部位,以给内燃机不同部位加速散热。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110588101.5A CN114622979A (zh) | 2021-05-28 | 2021-05-28 | 一种内燃机散热方法及装置 |
CN202110588101.5 | 2021-05-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022247948A1 true WO2022247948A1 (zh) | 2022-12-01 |
Family
ID=81897564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/095823 WO2022247948A1 (zh) | 2021-05-28 | 2022-05-28 | 一种内燃机散热方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114622979A (zh) |
WO (1) | WO2022247948A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1492198A (en) * | 1974-09-21 | 1977-11-16 | Peterek H | Internal combustion engines |
JPS63289212A (ja) * | 1987-05-22 | 1988-11-25 | Yoshiaki Tsunoda | 内燃機関用冷却機構 |
EP0323039B1 (en) * | 1987-12-03 | 1992-05-13 | Yoshiaki Kakuta | Air cooling system in an internal combustion engine |
GB2233037B (en) * | 1988-11-26 | 1993-08-11 | James David Coleman | Combustion engines |
CN202073626U (zh) * | 2011-03-30 | 2011-12-14 | 蒋万文 | 内燃机废气动力辅助散热装置 |
CN110657028A (zh) * | 2019-11-12 | 2020-01-07 | 江苏徐工工程机械研究院有限公司 | 动力舱装置和工程机械 |
CN111287832A (zh) * | 2017-08-29 | 2020-06-16 | 熵零技术逻辑工程院集团股份有限公司 | 一种内燃机冷却装置 |
CN214944540U (zh) * | 2021-05-28 | 2021-11-30 | 米建军 | 一种内燃机散热装置 |
-
2021
- 2021-05-28 CN CN202110588101.5A patent/CN114622979A/zh active Pending
-
2022
- 2022-05-28 WO PCT/CN2022/095823 patent/WO2022247948A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1492198A (en) * | 1974-09-21 | 1977-11-16 | Peterek H | Internal combustion engines |
JPS63289212A (ja) * | 1987-05-22 | 1988-11-25 | Yoshiaki Tsunoda | 内燃機関用冷却機構 |
EP0323039B1 (en) * | 1987-12-03 | 1992-05-13 | Yoshiaki Kakuta | Air cooling system in an internal combustion engine |
GB2233037B (en) * | 1988-11-26 | 1993-08-11 | James David Coleman | Combustion engines |
CN202073626U (zh) * | 2011-03-30 | 2011-12-14 | 蒋万文 | 内燃机废气动力辅助散热装置 |
CN111287832A (zh) * | 2017-08-29 | 2020-06-16 | 熵零技术逻辑工程院集团股份有限公司 | 一种内燃机冷却装置 |
CN110657028A (zh) * | 2019-11-12 | 2020-01-07 | 江苏徐工工程机械研究院有限公司 | 动力舱装置和工程机械 |
CN214944540U (zh) * | 2021-05-28 | 2021-11-30 | 米建军 | 一种内燃机散热装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114622979A (zh) | 2022-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4627907B2 (ja) | タービンエンジンに冷却空気を供給する方法及び装置 | |
US9249730B2 (en) | Integrated inducer heat exchanger for gas turbines | |
CN1624307A (zh) | 用于航空发动机高温部件的冷却系统及装有该系统的航空发动机 | |
CN107965353A (zh) | 一种具有提高静叶前缘附近端壁冷却效率的射流槽冷却结构 | |
RU2009129260A (ru) | Система охлаждения, способ охлаждения и система энергосбережения | |
JP2017155664A (ja) | 遠心圧縮機 | |
JP2013238131A (ja) | 廃熱利用装置 | |
CN103046992A (zh) | 无动力风扇散热器 | |
CN104632349B (zh) | 一种柴油机用水冷与风冷交互式散热装置 | |
CN103032134B (zh) | 蒸汽动力热气体自身冷却系统 | |
KR20130122946A (ko) | 내연기관의 배기가스 터보차저 | |
CN214944540U (zh) | 一种内燃机散热装置 | |
WO2022247948A1 (zh) | 一种内燃机散热方法及装置 | |
CN104564195B (zh) | 内燃机余热综合利用系统 | |
CN204492956U (zh) | 一种柴油机用水冷与风冷交互式散热装置 | |
CN213838744U (zh) | 一种柴油机冷却结构 | |
CN109296531A (zh) | 静涡盘、涡旋压缩机、空气调节系统 | |
CN202091059U (zh) | 用于内燃机的废气冷却模块 | |
CN208608889U (zh) | 模块冷却机构和变频器 | |
CN103727807B (zh) | 内流风冷式高压流体热交换器 | |
CN219605559U (zh) | 一种无油螺杆空气压缩机用冷却系统 | |
TW202035852A (zh) | 兼具水冷及氣冷之渦輪冷卻系統 | |
CN110630368A (zh) | 船用柴油机超临界二氧化碳联合循环动力装置冷却系统 | |
CN219452445U (zh) | 一种密闭无尘风机系统 | |
CN220472364U (zh) | 一种机力冷却风扇驱动设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22810671 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.04.2024) |