WO2022247508A1 - 5g高频覆铜板用陶瓷改性ptfe薄膜的加工方法 - Google Patents

5g高频覆铜板用陶瓷改性ptfe薄膜的加工方法 Download PDF

Info

Publication number
WO2022247508A1
WO2022247508A1 PCT/CN2022/086689 CN2022086689W WO2022247508A1 WO 2022247508 A1 WO2022247508 A1 WO 2022247508A1 CN 2022086689 W CN2022086689 W CN 2022086689W WO 2022247508 A1 WO2022247508 A1 WO 2022247508A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
blank
film
ceramic membrane
membrane blank
Prior art date
Application number
PCT/CN2022/086689
Other languages
English (en)
French (fr)
Inventor
杨文光
孙克原
张敏华
余辉
徐小曼
王孝刚
徐辉
夏炎
Original Assignee
南京肯特复合材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京肯特复合材料股份有限公司 filed Critical 南京肯特复合材料股份有限公司
Publication of WO2022247508A1 publication Critical patent/WO2022247508A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/006Pressing and sintering powders, granules or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating
    • B29B13/021Heat treatment of powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/10Conditioning or physical treatment of the material to be shaped by grinding, e.g. by triturating; by sieving; by filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/28Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5808Measuring, controlling or regulating pressure or compressing force
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives

Definitions

  • the invention belongs to the technical field of high-frequency and ultra-high-frequency wireless communication, and specifically relates to a processing method of a ceramic modified PTFE film for a 5G high-frequency copper-clad laminate.
  • the ceramic-modified PTFE film can be used as a high-frequency copper-clad laminate and a multilayer high-speed laminate
  • the base material of copper plate is used.
  • the vertical sintering method is usually used during sintering. Due to the weight of the blank, the size difference between the upper and lower ends of the blank after sintering is too large (that is, the phenomenon of large and small ends), and the blank is deformed, resulting in the turning of the film. The material waste is large, which increases the cost.
  • the technical problem to be solved by this invention is to provide a kind of processing method of ceramic modified PTFE film for 5G high-frequency copper-clad laminate for above-mentioned deficiencies in the prior art, the processing method of this 5G high-frequency copper-clad laminate ceramic modified PTFE film can improve The uniformity of the ceramic powder dispersion, the uniformity of the film thickness and the uniformity of the film layer are good, and the processing difficulty is small, which can meet the needs of mass production and has high practicability.
  • a processing method for a ceramic modified PTFE film for a 5G high-frequency copper-clad laminate comprising the following steps:
  • step (1) is specifically:
  • the ceramic powder is subjected to high temperature heat treatment, the particle size of the ceramic powder is 1um-6um, the heat treatment temperature is 400°C-600°C, and the heat treatment time is 24h-72h.
  • step (2) is specifically:
  • Sieve the above-mentioned treated ceramic powder with a 200-mesh sieve, then roughly mix the polytetrafluoroethylene suspension resin, ceramic powder and high-temperature dispersant, and then use a mixer for fine mixing after rough mixing.
  • the sieve aperture is 0.5mm-1.0mm
  • the speed of the mixer is 1500r/min-3600r/min
  • the mixing frequency is 5-15 times.
  • the mass percentage of the polytetrafluoroethylene suspension resin is 65% to 95%, and the mass percentage of the ceramic powder is 4.5% to 30%.
  • the mass percent of the high-temperature dispersant is 0.5% to 5%.
  • step (3) is specifically:
  • the outer diameter of the ceramic membrane blank is 560mm-580mm, and the axial length is ⁇ 500mm.
  • step (4) is specifically:
  • the ceramic membrane blank is sintered horizontally in a sintering furnace. When the temperature is below 40°C, the ceramic membrane blank does not rotate. When the temperature is 40°C to 360°C, the rotation speed of the ceramic membrane blank is 1r/h to 3r/h. During the cooling process, The rotational speed of the ceramic membrane blank is 2r/h ⁇ 4r/h.
  • step (5) is specifically:
  • the present invention adopts the method of high heat treatment of ceramic powder to selectively remove surface coupling agent and other substances, retain some active groups, avoid ceramic powder agglomeration and poor dispersion during the mixing process; reduce the proportion of surface hydroxyl groups; improve high frequency Copper-clad laminate anti-CAF (conductive anode filament) capability; the PCB prepared by using the ceramic modified PTFE film of the present invention meets the tracking resistance CTI>600V.
  • the present invention adds a high-temperature dispersant in the preparation process, which improves the uniformity of ceramic powder dispersion.
  • the polytetrafluoroethylene suspension resin, ceramic powder and high-temperature dispersant are blended using a mixer.
  • the mixing method has good uniformity. It can be produced in batches, and the processing difficulty is small; the invention adopts the rotary cutting film technology, which can realize uniform film thickness, wide film, and high practicability; it can meet the actual high-frequency and ultra-high-frequency copper-clad laminate substrates with a width of more than 500mm Membrane use.
  • the ceramic membrane blank of the present invention adopts horizontal rotary sintering technology, that is, the axis of the cylindrical blank is in a horizontal state, and the axis of the cylindrical blank is used as the center line to rotate and sinter in the sintering furnace, which avoids the large and small ends that are easy to appear in standing sintering
  • the disadvantages are that the outer diameter of the blank after sintering is about 5mm higher and lower, and the material loss caused by turning the film is a normal loss.
  • a processing method for a ceramic modified PTFE film for a 5G high-frequency copper-clad laminate comprising the following steps:
  • Ceramic powder is subjected to high-temperature heat treatment, the particle diameter of described ceramic powder is D501um, heat treatment temperature is 400 °C, and heat treatment time is 72h;
  • the whole sintering process includes three stages of heating, heat preservation and cooling.
  • the heating stage and cooling stage need to be slow to ensure the uniformity of the ceramic blank temperature. It is enough to burn through the ceramic blank;
  • this embodiment adopts the horizontal rotary sintering technology of the cylindrical blank, that is, the ceramic membrane blank is sintered horizontally in the blast sintering furnace, and there is no rotation at 40°C, and the rotation speed is 1r at 40°C to 360°C /h, the speed is 2r/h during the cooling process;
  • a processing method for a ceramic modified PTFE film for a 5G high-frequency copper-clad laminate comprising the following steps:
  • Ceramic powder is subjected to high-temperature heat treatment, the particle diameter of described ceramic powder is D50 3um, heat treatment temperature is 500 °C, and heat treatment time is 48h;
  • the whole sintering process includes three stages of heating, heat preservation and cooling.
  • the heating stage and cooling stage need to be slow to ensure the uniformity of the ceramic blank temperature. It is enough to burn through the ceramic blank;
  • this embodiment adopts the horizontal rotary sintering technology of the cylindrical blank, that is, the ceramic membrane blank is sintered horizontally in the blast sintering furnace, and there is no rotation at 40°C, and the rotation speed is 2r at 40°C to 360°C /h, the speed is 3r/h during the cooling process;
  • a processing method for a ceramic modified PTFE film for a 5G high-frequency copper-clad laminate comprising the following steps:
  • Ceramic powder is subjected to high-temperature heat treatment, the particle diameter of described ceramic powder is D50 6um, heat treatment temperature is 600 °C, and heat treatment time is 24h;
  • the whole sintering process includes three stages of heating, heat preservation and cooling.
  • the heating stage and cooling stage need to be slow to ensure the uniformity of the ceramic blank temperature. It is enough to burn through the ceramic blank;
  • this embodiment adopts the horizontal rotary sintering technology of the cylindrical blank, that is, the ceramic membrane blank is sintered horizontally in the blast sintering furnace, and there is no rotation at 40°C, and the rotation speed is 3r at 40°C to 360°C /h, the speed is 4r/h during the cooling process;
  • all select micron order ceramic powder to prepare ceramic modified PTFE film (or ceramic filled PTFE film), preferred particle size 1um-6um ceramic powder, nanoscale ceramic powder same mass percentage ceramic powder volume-to-mass ratio can improve, not It is conducive to the dispersion of ceramic powder.
  • the addition of the same mass percentage of ceramic powder with a particle size higher than 6um cannot meet the required dielectric constant and dielectric loss. At the same time, the ceramic powder will fall off and form holes during film formation.
  • the heat treatment temperature used for high-temperature heat treatment of ceramic powder is 400°C-600°C, and the time is 24h-72h, to selectively remove surface coupling agents and other substances, retain some active groups, and avoid ceramic powder agglomeration and mixing process Not easy to disperse.
  • the high temperature dispersant is a titanate coupling agent.
  • the horizontal rotary sintering technology of the cylindrical blank is adopted.
  • the roller distance of the driving device for driving the blank to rotate is 400mm-700mm.
  • the blank does not rotate at 40°C, and the blank rotates at 1r/h at 40°C-360°C. ⁇ 3r/h, when cooling down, the blank rotation speed is 2r/h ⁇ 4r/h, to avoid residual stress in the XY direction of the copper clad laminate substrate film, and realize the preparation of ceramic modified PTFE films for high frequency copper clad laminates with a thickness of 0.015 ⁇ 10mm.
  • the polytetrafluoroethylene suspension resin preferably has a mass percentage of 65% to 95%
  • the ceramic powder preferably has a mass percentage of 4.5% to 30%
  • the high temperature dispersant preferably has a mass percentage of 0.5% to 5%.
  • the coefficient of thermal expansion can reach 15-30ppm/°C
  • the dielectric constant of single-layer and laminated films at 10GHz can be adjusted to 2.6-3.2
  • the loss factor is less than 0.0015.
  • the high heat treatment method of ceramic powder reduces the proportion of surface hydroxyl groups and improves the high High-frequency copper-clad laminates are resistant to CAF (conductive anode filament), and PCBs prepared using this ceramic-modified PTFE film meet the tracking resistance CTI>600V.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种5G高频覆铜板用陶瓷改性PTFE薄膜的加工方法,包括:将陶瓷粉进行高温热处理;将上述处理后的陶瓷粉用筛网过筛,再将聚四氟乙烯悬浮树脂、陶瓷粉和高温分散剂进行混合;将上述混合后的混合料倒入模具中,压制成中空的圆柱形毛坯,圆柱形毛坯脱模后,得到陶瓷膜毛坯;将陶瓷膜毛坯放入鼓风烧结炉中进行烧结;将烧结好的陶瓷膜毛坯置于保温炉中保温,待陶瓷膜毛坯温度均匀后,从保温炉中取出陶瓷膜毛坯,在陶瓷膜毛坯的中心孔中顶入芯轴后,按照设定的薄膜厚度对陶瓷膜毛坯进行旋切,得到陶瓷改性PTFE薄膜。本发明可改善陶瓷粉分散的均匀性,成膜的膜厚均匀性、膜层均匀性好,可批量生产,加工难度小,实用性高。

Description

5G高频覆铜板用陶瓷改性PTFE薄膜的加工方法 技术领域
本发明属于高频及超高频无线通信技术领域,具体涉及一种5G高频覆铜板用陶瓷改性PTFE薄膜的加工方法,该陶瓷改性PTFE薄膜可作为高频覆铜板及多层高速覆铜板的基材使用。
背景技术
目前,陶瓷填充PTFE薄膜大多使用PTFE乳液,或分散PTFE树脂添加陶瓷粉,采用基础压延的方法制备陶瓷填充PTFE薄膜,由于加工难度大,所以对无机陶瓷进行表面改性,嫁接偶联剂,并在生产过程中添加其他助剂,且由于压辊精度、尺寸及乳液分散均匀性限制,使得基础PTFE乳液及分散PTFE树脂通常只能作为实验室研究使用,而且成膜的膜厚均匀性、膜层均匀性很难满足实际超过500mm宽幅的高频及超高频覆铜板用基材膜的使用,不能满足大批量生产的需要,因此实用性很低。
采用悬浮聚四氟乙烯制备陶瓷膜时,烧结时通常采用立式烧结方式,由于毛坯自重大,导致烧结后毛坯上下端尺寸差异过大(即出现大小头现象),毛坯变形,导致车削薄膜时材料浪费较大,增加了成本。
发明内容
本发明所要解决的技术问题是针对上述现有技术的不足提供一种5G高频覆铜板用陶瓷改性PTFE薄膜的加工方法,本5G高频覆铜板用陶瓷改性PTFE薄膜的加工方法可改善陶瓷粉分散的均匀性,成膜的膜厚均匀性、膜层均匀性好,加工难度小,能满足大批量生产的需要,实用性高。
为实现上述技术目的,本发明采取的技术方案为:
一种5G高频覆铜板用陶瓷改性PTFE薄膜的加工方法,包括以下步骤:
(1)将陶瓷粉进行高温热处理;
(2)将上述处理后的陶瓷粉用筛网过筛,再将聚四氟乙烯悬浮树脂、陶瓷粉和高温分散剂进行混合;
(3)将上述混合后的混合料倒入模具中,压制成中空的圆柱形毛坯,圆柱形毛坯脱模后,得到陶瓷膜毛坯;
(4)将陶瓷膜毛坯放入鼓风烧结炉中进行烧结;
(5)将烧结好的陶瓷膜毛坯置于保温炉中保温,待陶瓷膜毛坯温度均匀后,从保温炉中 取出陶瓷膜毛坯,在陶瓷膜毛坯的中心孔中顶入芯轴后,按照设定的薄膜厚度对陶瓷膜毛坯进行旋切,得到陶瓷改性PTFE薄膜。
作为本发明进一步改进的技术方案,所述的步骤(1)具体为:
将陶瓷粉进行高温热处理,所述陶瓷粉的粒径为1um~6um,热处理温度为400℃~600℃,热处理时间为24h-72h。
作为本发明进一步改进的技术方案,所述的步骤(2)具体为:
将上述处理后的陶瓷粉用200目筛网过筛,再将聚四氟乙烯悬浮树脂、陶瓷粉和高温分散剂进行粗混,粗混后用混料机进行精混,其中混料机的筛网孔径为0.5mm~1.0mm,混料机的转速为1500r/min~3600r/min,混合次数为5遍~15遍。
作为本发明进一步改进的技术方案,所述步骤(2)中,所述聚四氟乙烯悬浮树脂的质量百分比为65%~95%,所述陶瓷粉的质量百分比为4.5%~30%,所述高温分散剂的质量百分比为0.5%~5%。
作为本发明进一步改进的技术方案,所述的步骤(3)具体为:
将上述精混后的混合料倒入模具中,压制成中空的圆柱形毛坯,压制压力为20MPa-30MPa,保压时间为1h-3h,30min后卸去压力,脱模,得到陶瓷膜毛坯,陶瓷膜毛坯的外径为560mm~580mm,轴向长度≥500mm。
作为本发明进一步改进的技术方案,所述的步骤(4)具体为:
所述陶瓷膜毛坯在烧结炉内卧式旋转烧结,40℃以下时,陶瓷膜毛坯无转动,40℃~360℃时,陶瓷膜毛坯的转速为1r/h~3r/h,降温过程中,陶瓷膜毛坯的转速为2r/h~4r/h。
作为本发明进一步改进的技术方案,所述的步骤(5)具体为:
将烧结好的陶瓷膜毛坯置于90-100℃的保温炉中保温,待陶瓷膜毛坯温度均匀后,从保温炉中取出陶瓷膜毛坯,在陶瓷膜毛坯的中心孔中顶入专用芯轴后,安装到旋切机上,按照设定的薄膜厚度对陶瓷膜毛坯进行旋切,得到陶瓷改性PTFE薄膜,其中陶瓷改性PTFE薄膜的厚度为0.1mm。
本发明的有益效果为:
1、本发明采用高热处理陶瓷粉方法选择性去除表面偶联剂等物质,保留部分活性基团,避免陶瓷粉结团混料过程中不好分散;降低表面羟基基团比例;提高了高频覆铜板抗CAF(导电性阳极丝)能力;使用本发明的陶瓷改性PTFE薄膜制备的PCB满足耐漏电痕性CTI>600V。
2、本发明在制备过程添加了高温分散剂,改善了陶瓷粉分散的均匀性,使用混料机将聚四氟乙烯悬浮树脂、陶瓷粉和高温分散剂共混,该混合方式均匀性好,可批量生产,加工难度小;本发明采用旋切成膜技术,可实现膜厚均匀,宽幅膜,实用性高;能满足实际超过500mm 宽幅的高频及超高频覆铜板用基材膜的使用。
3、本发明的陶瓷膜毛坯采用卧式旋转烧结技术,即圆柱形毛坯的轴线成水平状态,并以圆柱形毛坯的轴线为中心线在烧结炉内旋转烧结,避免了站立烧结容易出现大小头的弊端,烧结后毛坯外径上下大概相差5mm以内,车削薄膜时造成的材料损耗属于正常损耗。
具体实施方式
下面对本发明的具体实施方式做出进一步说明:
实施例1:
一种5G高频覆铜板用陶瓷改性PTFE薄膜的加工方法,包括以下步骤:
(1)将陶瓷粉进行高温热处理,所述陶瓷粉的粒径D50 1um,热处理温度为400℃,热处理时间为72h;
(2)将上述处理后的陶瓷粉用200目筛网过筛,再将聚四氟乙烯悬浮树脂、陶瓷粉和高温分散剂进行粗混,粗混后用立式锤磨混料机进行精混,其中立式锤磨混料机的筛网孔径为0.5mm,立式锤磨混料机的转速为1500r/min,混合次数为15遍;其中聚四氟乙烯悬浮树脂的质量百分比为95%,所述陶瓷粉的质量百分比为4.5%,所述高温分散剂的质量百分比为0.5%;
(3)将上述精混后的混合料倒入模具中,压制成中空的圆柱形毛坯,压制压力为20MPa,保压时间为1h,30min后卸去压力,脱模,得到陶瓷膜毛坯,陶瓷膜毛坯的外径为560mm,轴向长度≥500mm;
(4)将陶瓷膜毛坯放入鼓风烧结炉中进行烧结,整个烧结过程包括升温、保温、降温三个阶段,升温阶段、降温阶段均需缓慢,确保陶瓷毛坯温度的均匀性,保温时间要足够陶瓷毛坯烧透;本实施例采用筒状毛坯卧式旋转烧结技术,即陶瓷膜毛坯在鼓风烧结炉内卧式旋转烧结,40℃下无转动,40℃~360℃时,转速为1r/h,降温过程中转速为2r/h;
(5)将烧结好的陶瓷膜毛坯置于90℃的保温炉中保温,待陶瓷膜毛坯温度均匀后,从保温炉中取出陶瓷膜毛坯,在陶瓷膜毛坯的中心孔中顶入专用芯轴后,安装到旋切机上,按照设定的薄膜厚度和设置的车削速度对陶瓷膜毛坯进行旋切,得到陶瓷改性PTFE薄膜,其中陶瓷改性PTFE薄膜的厚度为0.1mm。
实施例2:
一种5G高频覆铜板用陶瓷改性PTFE薄膜的加工方法,包括以下步骤:
(1)将陶瓷粉进行高温热处理,所述陶瓷粉的粒径为D50 3um,热处理温度为500℃,热处理时间为48h;
(2)将上述处理后的陶瓷粉用200目筛网过筛,再将聚四氟乙烯悬浮树脂、陶瓷粉和高温分散剂进行粗混,粗混后用立式锤磨混料机进行精混,其中立式锤磨混料机的筛网孔径为0.8mm,立式锤磨混料机的转速为2000r/min,混合次数为10遍;所述聚四氟乙烯悬浮树脂的质量百分比为80%,所述陶瓷粉的质量百分比为17%,所述高温分散剂的质量百分比为3%;
(3)将上述精混后的混合料倒入模具中,压制成中空的圆柱形毛坯,压制压力为25MPa,保压时间为2h,30min后卸去压力,脱模,得到陶瓷膜毛坯,陶瓷膜毛坯的外径为570mm,轴向长度≥500mm;
(4)将陶瓷膜毛坯放入鼓风烧结炉中进行烧结,整个烧结过程包括升温、保温、降温三个阶段,升温阶段、降温阶段均需缓慢,确保陶瓷毛坯温度的均匀性,保温时间要足够陶瓷毛坯烧透;本实施例采用筒状毛坯卧式旋转烧结技术,即陶瓷膜毛坯在鼓风烧结炉内卧式旋转烧结,40℃下无转动,40℃~360℃时,转速为2r/h,降温过程中转速为3r/h;
(5)将烧结好的陶瓷膜毛坯置于90℃的保温炉中保温,待陶瓷膜毛坯温度均匀后,从保温炉中取出陶瓷膜毛坯,在陶瓷膜毛坯的中心孔中顶入专用芯轴后,安装到旋切机上,按照设定的薄膜厚度和设置的车削速度对陶瓷膜毛坯进行旋切,得到陶瓷改性PTFE薄膜,其中陶瓷改性PTFE薄膜的厚度为0.1mm。
实施例3:
一种5G高频覆铜板用陶瓷改性PTFE薄膜的加工方法,包括以下步骤:
(1)将陶瓷粉进行高温热处理,所述陶瓷粉的粒径为D50 6um,热处理温度为600℃,热处理时间为24h;
(2)将上述处理后的陶瓷粉用200目筛网过筛,再将聚四氟乙烯悬浮树脂、陶瓷粉和高温分散剂进行粗混,粗混后用立式锤磨混料机进行精混,其中立式锤磨混料机的筛网孔径为1.0mm,立式锤磨混料机的转速为3600r/min,混合次数为5遍;所述聚四氟乙烯悬浮树脂的质量百分比为65%,所述陶瓷粉的质量百分比为30%,所述高温分散剂的质量百分比为5%;
(3)将上述精混后的混合料倒入模具中,压制成中空的圆柱形毛坯,压制压力为30MPa,保压时间为3h,30min后卸去压力,脱模,得到陶瓷膜毛坯,陶瓷膜毛坯的外径为580mm,轴向长度≥500mm;
(4)将陶瓷膜毛坯放入鼓风烧结炉中进行烧结,整个烧结过程包括升温、保温、降温三个阶段,升温阶段、降温阶段均需缓慢,确保陶瓷毛坯温度的均匀性,保温时间要足够陶瓷毛坯烧透;本实施例采用筒状毛坯卧式旋转烧结技术,即陶瓷膜毛坯在鼓风烧结炉内卧式旋转烧结,40℃下无转动,40℃~360℃时,转速为3r/h,降温过程中转速为4r/h;
(5)将烧结好的陶瓷膜毛坯置于100℃的保温炉中保温,待陶瓷膜毛坯温度均匀后,从 保温炉中取出陶瓷膜毛坯,在陶瓷膜毛坯的中心孔中顶入专用芯轴后,安装到旋切机上,按照设定的薄膜厚度和设置的车削速度对陶瓷膜毛坯进行旋切,得到陶瓷改性PTFE薄膜,其中陶瓷改性PTFE薄膜的厚度为0.1mm。
上述实施例中,均选择微米级陶瓷粉制备陶瓷改性PTFE薄膜(或陶瓷填充PTFE薄膜),优选粒径1um-6um陶瓷粉,纳米级陶瓷粉相同质量百分比陶瓷粉体积质量比会提高,不利于陶瓷粉分散,粒径高于6um陶瓷粉相同质量百分比添加达不到要求介电常数以及介质损耗,同时成膜时陶瓷粉会脱落形成孔洞。
上述实施例中,陶瓷粉进行高温热处理使用的热处理温度为400℃-600℃,时间24h-72h,选择性去除表面偶联剂等物质,保留部分活性基团,避免陶瓷粉结团混料过程中不好分散。
上述实施例中,高温分散剂为钛酸脂偶联剂。
上述实施例中,均采用筒状毛坯卧式旋转烧结技术,带动毛坯旋转的驱动装置的辊距为400mm~700mm,40℃下毛坯无转动,40℃~360℃时,毛坯转速为1r/h~3r/h,降温时,毛坯转速为2r/h~4r/h,避免覆铜板基材膜XY方向应力残余,实现厚度为0.015~10mm范围内高频覆铜板用陶瓷改性PTFE薄膜制备。
上述实施例中,聚四氟乙烯悬浮树脂优选质量百分比为65%~95%,陶瓷粉优选质量百分比为4.5%~30%,高温分散剂优选质量百分比为0.5%~5%。热膨胀系数可达到15-30ppm/℃,在10GHz单层及叠层膜的介电常数可调控为2.6~3.2,损耗因子小于0.0015,采用高热处理陶瓷粉方法降低表面羟基基团比例,提高了高频覆铜板抗CAF(导电性阳极丝)能力,使用该陶瓷改性PTFE薄膜制备的PCB满足耐漏电痕性CTI>600V。
本发明的保护范围包括但不限于以上实施方式,本发明的保护范围以权利要求书为准,任何对本技术做出的本领域的技术人员容易想到的替换、变形、改进均落入本发明的保护范围。

Claims (7)

  1. 一种5G高频覆铜板用陶瓷改性PTFE薄膜的加工方法,其特征在于:包括以下步骤:
    (1)将陶瓷粉进行高温热处理;
    (2)将上述处理后的陶瓷粉用筛网过筛,再将聚四氟乙烯悬浮树脂、陶瓷粉和高温分散剂进行混合;
    (3)将上述混合后的混合料倒入模具中,压制成中空的圆柱形毛坯,圆柱形毛坯脱模后,得到陶瓷膜毛坯;
    (4)将陶瓷膜毛坯放入鼓风烧结炉中进行烧结;
    (5)将烧结好的陶瓷膜毛坯置于保温炉中保温,待陶瓷膜毛坯温度均匀后,从保温炉中取出陶瓷膜毛坯,在陶瓷膜毛坯的中心孔中顶入芯轴后,按照设定的薄膜厚度对陶瓷膜毛坯进行旋切,得到陶瓷改性PTFE薄膜。
  2. 根据权利要求1所述的5G高频覆铜板用陶瓷改性PTFE薄膜的加工方法,其特征在于:所述的步骤(1)具体为:
    将陶瓷粉进行高温热处理,所述陶瓷粉的粒径为1um~6um,热处理温度为400℃~600℃,热处理时间为24h-72h。
  3. 根据权利要求2所述的5G高频覆铜板用陶瓷改性PTFE薄膜的加工方法,其特征在于:所述的步骤(2)具体为:
    将上述处理后的陶瓷粉用200目筛网过筛,再将聚四氟乙烯悬浮树脂、陶瓷粉和高温分散剂进行粗混,粗混后用混料机进行精混,其中混料机的筛网孔径为0.5mm~1.0mm,混料机的转速为1500r/min~3600r/min,混合次数为5~15遍。
  4. 根据权利要求3所述的5G高频覆铜板用陶瓷改性PTFE薄膜的加工方法,其特征在于:所述步骤(2)中,所述聚四氟乙烯悬浮树脂的质量百分比为65%~95%,所述陶瓷粉的质量百分比为4.5%~30%,所述高温分散剂的质量百分比为0.5%~5%。
  5. 根据权利要求3所述的5G高频覆铜板用陶瓷改性PTFE薄膜的加工方法,其特征在于:所述的步骤(3)具体为:
    将上述精混后的混合料倒入模具中,压制成中空的圆柱形毛坯,压制压力为20MPa-30MPa,保压时间为1h-3h,30min后卸去压力,脱模,得到陶瓷膜毛坯,陶瓷膜毛坯的外径为560mm~580mm,轴向长度≥500mm。
  6. 根据权利要求5所述的5G高频覆铜板用陶瓷改性PTFE薄膜的加工方法,其特征在于:所述的步骤(4)具体为:
    所述陶瓷膜毛坯在烧结炉内卧式旋转烧结,40℃以下时,陶瓷膜毛坯无转动,40℃~360℃时,陶瓷膜毛坯的转速为1r/h~3r/h,降温过程中,陶瓷膜毛坯的转速为2r/h~4r/h。
  7. 根据权利要求6所述的5G高频覆铜板用陶瓷改性PTFE薄膜的加工方法,其特征在于:所述的步骤(5)具体为:
    将烧结好的陶瓷膜毛坯置于90-100℃的保温炉中保温,待陶瓷膜毛坯温度均匀后,从保温炉中取出陶瓷膜毛坯,在陶瓷膜毛坯的中心孔中顶入专用芯轴后,安装到旋切机上,按照设定的薄膜厚度对陶瓷膜毛坯进行旋切,得到陶瓷改性PTFE薄膜,其中陶瓷改性PTFE薄膜的厚度为0.1mm。
PCT/CN2022/086689 2021-05-22 2022-04-13 5g高频覆铜板用陶瓷改性ptfe薄膜的加工方法 WO2022247508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110560800.9 2021-05-22
CN202110560800.9A CN113183380A (zh) 2021-05-22 2021-05-22 5g高频覆铜板用陶瓷改性ptfe薄膜的加工方法

Publications (1)

Publication Number Publication Date
WO2022247508A1 true WO2022247508A1 (zh) 2022-12-01

Family

ID=76984658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086689 WO2022247508A1 (zh) 2021-05-22 2022-04-13 5g高频覆铜板用陶瓷改性ptfe薄膜的加工方法

Country Status (2)

Country Link
CN (1) CN113183380A (zh)
WO (1) WO2022247508A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117565438A (zh) * 2024-01-16 2024-02-20 山东东岳高分子材料有限公司 一种磨砂表面的聚四氟乙烯薄膜的制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113183380A (zh) * 2021-05-22 2021-07-30 南京肯特复合材料股份有限公司 5g高频覆铜板用陶瓷改性ptfe薄膜的加工方法
CN113881082B (zh) * 2021-12-06 2022-04-12 中国电子科技集团公司第四十六研究所 一种高拉伸强度、超薄薄膜材料及制备方法
CN115784744A (zh) * 2022-11-29 2023-03-14 天津氟膜新材料有限公司 一种高频通讯用高介电合金复合膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109233263A (zh) * 2018-10-15 2019-01-18 上海安费诺永亿通讯电子有限公司 陶瓷树脂复合材料及制备方法及提纯陶瓷粉体的方法
CN110564085A (zh) * 2019-09-20 2019-12-13 天津市天塑滨海氟塑料制品有限公司 一种用于高性能电路板的ptfe陶瓷改性基材膜的制造方法
CN113183380A (zh) * 2021-05-22 2021-07-30 南京肯特复合材料股份有限公司 5g高频覆铜板用陶瓷改性ptfe薄膜的加工方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107903548A (zh) * 2017-11-21 2018-04-13 浙江德清科赛塑料制品有限公司 硫酸钡填充改性的聚四氟乙烯复合材料
CN108570202B (zh) * 2018-03-29 2020-07-14 电子科技大学 聚四氟乙烯复合基板材料的制备方法
CN108859160B (zh) * 2018-07-24 2023-12-29 天津市天塑滨海氟塑料制品有限公司 一种烧结炉用管状毛坯放置架
CN110698112B (zh) * 2019-11-01 2021-10-01 中国电子科技集团公司第四十六研究所 一种包含中空陶瓷粉的低介电常数微波介质基板制备方法
CN111844824A (zh) * 2020-06-24 2020-10-30 腾辉电子(苏州)有限公司 Ptfe复合材料薄片的制备方法、ptfe复合材料薄片及应用该薄片的覆铜板
CN112608573A (zh) * 2020-11-27 2021-04-06 南京肯特复合材料股份有限公司 一种防偏移耐磨密封圈材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109233263A (zh) * 2018-10-15 2019-01-18 上海安费诺永亿通讯电子有限公司 陶瓷树脂复合材料及制备方法及提纯陶瓷粉体的方法
CN110564085A (zh) * 2019-09-20 2019-12-13 天津市天塑滨海氟塑料制品有限公司 一种用于高性能电路板的ptfe陶瓷改性基材膜的制造方法
CN113183380A (zh) * 2021-05-22 2021-07-30 南京肯特复合材料股份有限公司 5g高频覆铜板用陶瓷改性ptfe薄膜的加工方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117565438A (zh) * 2024-01-16 2024-02-20 山东东岳高分子材料有限公司 一种磨砂表面的聚四氟乙烯薄膜的制备方法和应用
CN117565438B (zh) * 2024-01-16 2024-04-16 山东东岳高分子材料有限公司 一种磨砂表面的聚四氟乙烯薄膜的制备方法和应用

Also Published As

Publication number Publication date
CN113183380A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
WO2022247508A1 (zh) 5g高频覆铜板用陶瓷改性ptfe薄膜的加工方法
CN104774005B (zh) 一种低温烧结无铅系微波介质陶瓷及其制备方法
US10179749B2 (en) Low-temperature co-fired ceramic material and preparation method thereof
CN102139371A (zh) 一种钨合金靶材及其制备方法
CN110295294A (zh) 一种通过添加超细晶铬相优化铜铬触头的制备方法
CN113842787B (zh) 一种埃洛石纳米管增强的超薄陶瓷膜及其制备方法
CN108947520A (zh) 一种ito烧结靶材的制备方法
CN109036852B (zh) 一种三维多孔铝电极箔及其制备方法
CN105908021A (zh) 一种电容器用纯铝阴极箔及其制造方法
CN111504105B (zh) 采用复相造孔剂造孔的热管或均热板用吸液芯及其制法
CN113277859A (zh) 一种纳米包覆氧化铝颗粒及用其制备的高纯抗热震氧化铝陶瓷材料
CN110394457B (zh) 一种高性能热导铜粉的制备方法
CN113506648A (zh) 一种Ca-B-Si体系LTCC用内层金导体浆料
DE3623843C2 (zh)
CN109940158A (zh) 一种细晶钼板的快速制备工艺
CN112643020A (zh) 一种金属粉末球化整形装置及其使用方法
CN110777277A (zh) 激光沉积制造氧化石墨烯铝基复合材料及其制备方法
CN114758840A (zh) 用于高温共烧陶瓷体系的钨铜电极浆料及其制造方法
CN114009856A (zh) 抽吸设备的改性电极浆料及制备工艺
TWI755565B (zh) 銀粉及其製造方法
CN106986665B (zh) 薄膜集成电路用99.6%Al2O3 陶瓷基片的制备方法
CN115572073B (zh) 一种可控强析晶高频低损耗ltcc基板材料及其制备方法
JP2004084069A (ja) 無機酸化物コート金属粉及びその無機酸化物コート金属粉の製造方法
TWI766494B (zh) 低介電材料與其形成方法
CN114951609B (zh) 具有均匀闭孔的泡沫铝板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE