WO2022247469A1 - 全息记录介质、全息高分子材料及其制备方法、显示设备 - Google Patents

全息记录介质、全息高分子材料及其制备方法、显示设备 Download PDF

Info

Publication number
WO2022247469A1
WO2022247469A1 PCT/CN2022/085089 CN2022085089W WO2022247469A1 WO 2022247469 A1 WO2022247469 A1 WO 2022247469A1 CN 2022085089 W CN2022085089 W CN 2022085089W WO 2022247469 A1 WO2022247469 A1 WO 2022247469A1
Authority
WO
WIPO (PCT)
Prior art keywords
holographic
order
group
recording medium
polymer material
Prior art date
Application number
PCT/CN2022/085089
Other languages
English (en)
French (fr)
Inventor
彭海炎
徐绍钦
解孝林
周兴平
姚铭
邱博通
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22810202.6A priority Critical patent/EP4343434A1/en
Publication of WO2022247469A1 publication Critical patent/WO2022247469A1/zh
Priority to US18/518,135 priority patent/US20240118660A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H1/024Hologram nature or properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/006Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/12Esters of phenols or saturated alcohols
    • C08F222/22Esters containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/10N-Vinyl-pyrrolidone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0465Particular recording light; Beam shape or geometry
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0476Holographic printer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0216Optical components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/026Recording materials or recording processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0465Particular recording light; Beam shape or geometry
    • G03H2001/0473Particular illumination angle between object or reference beams and hologram

Definitions

  • the application relates to the field of polymer resin materials, in particular to a holographic recording medium, a holographic polymer material, a preparation method thereof, and a display device.
  • Holographic polymer materials based on cross-linked networks have the characteristics of solvent-free preparation, convenient processing, stable size, and thick film recording. Holographic polymer materials play an important role in many fields. Holographic polymer materials are mainly obtained through two-stage polymerization: in the first stage, non-radical reactive monomers (called first-order monomers) form a first-order cross-linked network through polymerization, providing mechanical support, and free Based reactive monomers (called second-order monomers) are stabilized in the first-order crosslinked network for subsequent holographic recording. The second-order monomer does not react during the formation of the first-order cross-linked network.
  • first-order monomers non-radical reactive monomers
  • second-order monomers free Based reactive monomers
  • the second-order monomer does not react during the formation of the first-order cross-linked network.
  • the photoinitiator In the second stage, under the irradiation of coherent laser, the photoinitiator generates free radicals to make the second-order monomer photopolymerize in the coherent bright area. , to induce monomers in the coherent dark area to diffuse to the coherent bright area and participate in the photopolymerization reaction, which eventually leads to different polymer densities and refractive indices in the coherent bright area and the coherent dark area, and the holographic information is recorded in the form of a holographic grating.
  • the generated polymer will undergo microscopic phase separation from the first-order cross-linked network. Increase, the diffraction efficiency increases, but the light transmittance decreases, making it difficult to prepare holographic polymer materials with high diffraction efficiency and high light transmittance.
  • the present application provides a holographic recording medium, a holographic polymer material and a preparation method thereof, and a display device, so as to realize that the holographic polymer material has the advantages of high diffraction efficiency and high light transmittance at the same time.
  • the present application provides a holographic recording medium, including a first-order crosslinking network, a photoinitiator, and a second-order monomer.
  • the first-order crosslinking network provides mechanical support for the holographic recording medium
  • the second-order monomer is a Reactive monomers
  • photoinitiators are used to absorb light to generate free radicals to polymerize secondary monomers
  • holographic recording media include ester groups (I), urethane groups (II), urea groups (III), allophanic acid Ester group (IV), amide group (V), group connected to ester group (I), urethane group (II), urea group (III), allophanate group (IV), amide group (V)
  • Each group is independently selected from at least one of an alkyl group, an alkoxy group, an alkenyl group or an aryl group.
  • the holographic recording medium provided by the application can increase the The compatibility between monomers and monomers, and between the second-order monomers and the first-order cross-linked network, on the other hand, can also inhibit the phase separation of the polymer generated by the second-order monomers and the first-order cross-linked network, Therefore, a holographic polymer material with high light transmittance and high diffraction efficiency can be prepared.
  • the secondary monomer accounts for 10-80% of the total weight of the holographic recording medium, and further may be 30%-70%.
  • the weight percentage of the second-order monomer in the holographic recording medium and the weight percentage of the photoinitiator in the holographic recording medium is relatively low, about 0.1%-3%, which is equivalent to also limiting the first-order
  • the weight percentage of the network network in the holographic recording medium is used so that the finally obtained holographic polymer material has both high light transmittance and high diffraction efficiency.
  • the holographic recording medium includes an ester group (I), a urethane group (II), a urea group (III), an allophanate group (IV), an amide group ( At least one of V).
  • the holographic recording medium includes at least one of ester group (I), urethane group (II), urea group (III), allophanate group (IV) and amide group (V) before and after illumination,
  • ester group (I) urethane group
  • II urea group
  • III allophanate group
  • IV amide group
  • V amide group
  • the holographic recording medium includes ester group (I), urethane group (II), urea group (III), allophanate group (IV), amide group (V) At least one of them, so that the infrared spectrum of the holographic recording medium includes a first characteristic absorption peak and a second characteristic absorption peak, the wave number range of the first characteristic absorption peak is 1760-1650 cm -1 , and the wave number range of the second characteristic absorption peak is 1650 -1610cm -1 .
  • the non-reactive polar groups included in the holographic recording medium can be characterized by the wave number range of the two characteristic absorption peaks of the infrared spectrum.
  • the wave number range of the infrared spectrum including the first characteristic absorption peak is 1760-1650cm -1
  • the holographic recording medium whose wave number range of the absorption peak is 1650-1610 cm -1 can prepare a holographic polymer material with high light transmittance and diffraction efficiency.
  • the ratio of the peak area of the first characteristic absorption peak to the peak area of the second characteristic absorption peak is 5-30, by using the peak area of the first characteristic absorption peak and the second characteristic
  • the ratio of the peak area of the absorption peak is 5-30 for the holographic recording medium, which can make the ratio of the peak area of the first characteristic absorption peak and the peak area of the second characteristic absorption peak of the infrared spectrum of the prepared polymer material be 0.5-5 Within the range, the prepared holographic polymer material can have higher light transmittance and higher diffraction efficiency.
  • the secondary monomer includes at least one of the following: acrylate, methacrylate, maleate, fumarate, maleimide, acrylamide, vinyl Toluene, Vinylcarbazole, N-Vinylpyrrolidone, N,N-Dimethacrylamide, Methacrylonitrile, Methacrylamide, Methacrylic Acid, Acrylic Acid.
  • These secondary monomers can make the holographic recording medium include at least one of ester group (I), urethane group (II), urea group (III), allophanate group (IV) and amide group (V). On the one hand, it can increase the compatibility between monomers and monomers, and between the second-order monomers and the first-order crosslinking network; Phase Separation of Orderly Crosslinked Networks.
  • the refractive index of at least one of the second-order monomers is greater than 1.505.
  • the high refractive index of the second-order monomers is conducive to improving the refractive index contrast with the first-order monomers, and it is easier to achieve high Light transmittance and high diffraction efficiency.
  • the first-order cross-linked network is formed by polymerization of first-order monomers, and the first-order monomers generally do not have free radical reactivity. In this way, the photopolymerization reaction of the first-order monomer does not occur in the holographic recording medium under the light, and interference to the subsequent photopolymerization reaction can be avoided.
  • the photoinitiator includes at least one of the following: benzoin and its derivatives, benzyl ketal, acyl phosphine oxide, coumarin ketone, amino acid, rose bengal, methylene blue , triazine compounds, alkylamines.
  • benzoin and its derivatives benzyl ketal, acyl phosphine oxide, coumarin ketone, amino acid, rose bengal, methylene blue , triazine compounds, alkylamines.
  • the present application also provides a method for preparing a holographic recording medium.
  • the preparation method includes the following steps: mixing the first-order monomer, the second-order monomer and a photoinitiator at room temperature to obtain a mixed solution;
  • the curing molding treatment makes the first-order monomers undergo a polymerization reaction to generate a first-order cross-linked network to obtain a holographic recording medium.
  • the holographic recording medium includes at least one of ester group (I), urethane group (II), urea group (III), allophanate group (IV), and amide group (V).
  • the holographic recording medium prepared by the present application can increase the The compatibility between monomers and monomers in the holographic recording medium, as well as between the second-order monomers and the first-order cross-linked network, on the other hand, can also suppress the generation of second-order monomers when preparing holographic high-resolution materials.
  • the phase separation of the polymer and the first-order cross-linked network can prepare a holographic polymer material with both high light transmittance and high diffraction efficiency.
  • the present application also provides a holographic polymer material, which includes a first-order cross-linked network and a second-order polymer, wherein the first-order cross-linked network provides mechanical support for the holographic polymer material, and the second-order Polymers are used to form the refractive index distribution for recording holographic information;
  • holographic polymer materials include ester groups (I), urethane groups (II), urea groups (III), allophanate groups (IV), amide groups ( At least one of V); the groups connected to the ester group (I), the urethane group (II), the urea group (III), the allophanate group (IV), and the amide group (V) are each independently At least one selected from alkyl, alkoxy, alkenyl or aryl.
  • the holographic polymer material has the advantages of high light transmittance and high diffraction efficiency.
  • the holographic polymer material includes an ester group (I), a urethane group (II), a urea group (III), an allophanate group (IV), an amide group (V ), so that the infrared spectrum of the holographic polymer material includes a first characteristic absorption peak and a second characteristic absorption peak, the wave number range of the first characteristic absorption peak is 1760-1702 cm -1 , and the wave number of the second characteristic absorption peak The range is 1702-1640 cm -1 .
  • the wave number range of the two characteristic absorption peaks of the infrared spectrum can be used to characterize the inclusion of non-reactive polar groups in the holographic polymer material, so that the holographic polymer material has both high light transmittance and high diffraction efficiency.
  • the ratio of the peak area of the first characteristic absorption peak to the peak area of the second characteristic absorption peak is 0.5-5, so that the holographic polymer material has a higher light transmittance and a lower High diffraction efficiency.
  • the second-order polymer is generated by polymerization of second-order monomers under free radical initiation, and the second-order monomers are monomers with free radical reactivity, and the second-order monomers include at least one of the following: Species: Acrylate, Methacrylate, Maleate, Fumarate, Maleimide, Acrylamide, Vinyltoluene, Vinylcarbazole, N-Vinylpyrrolidone, N,N-Dimethyl methacrylamide, methacrylonitrile, methacrylamide, methacrylic acid, acrylic acid.
  • the holographic polymer material can include at least one of ester group (I), urethane group (II), urea group (III), allophanate group (IV), and amide group (V).
  • the refractive index of at least one of the second-order monomers is greater than 1.505.
  • the high refractive index of the second-order monomers is beneficial to improve the refractive index contrast with the first-order monomers, and it is easier to achieve high transparency at the same time. Light rate and high diffraction efficiency.
  • the present application also provides a method for preparing a holographic polymer material.
  • the preparation method includes the following steps: mixing the first-order monomer, the second-order monomer and the photoinitiator at room temperature to obtain a mixed solution; Carry out curing molding treatment, so that the first-order monomer is polymerized to form a first-order cross-linked network to obtain a holographic recording medium; expose the holographic recording medium to coherent light to obtain a holographic polymer material with recorded holographic information.
  • the holographic polymer material prepared in this application has the advantages of high light transmittance and high diffraction efficiency.
  • the first-stage monomer includes at least one of the following: polyol, polyepoxide, polyvinyl ether, polyamine, and polyisocyanate.
  • These primary monomers can make the prepared holographic recording medium include ester group (I), urethane group (II), urea group (III), allophanate group (IV), amide group (V)
  • At least one on the one hand, it can increase the compatibility between the monomers in the holographic recording medium, and the compatibility between the second-order monomers and the first-order cross-linked network; on the other hand, it can also , Inhibit the phase separation of the polymer formed by the second-order monomer and the first-order cross-linked network, so that a holographic polymer material with high light transmittance and high diffraction efficiency can be prepared.
  • the method further includes: post-processing the holographic polymer material, where the post-processing includes light irradiation or heating.
  • the post-treatment step the unreacted secondary monomers in the photopolymerization reaction are further reacted, thereby further increasing the conversion rate of the monomers.
  • the method further includes: adding a nitrogen-containing polar monomer into the mixed solution.
  • a nitrogen-containing polar monomer By adding a certain amount of polar monomers to the mixed solution, the dissolution of the photoinitiator in the monomers (such as second-order monomers, or first-order monomers) can be promoted.
  • the nitrogen-containing polar monomer may be one or more of N-vinylpyrrolidone and N,N-dimethylacrylamide.
  • N-vinylpyrrolidone and N,N-dimethylacrylamide can not only promote the dissolution of the photoinitiator in the monomer, but also participate in the photopolymerization reaction to avoid solvent residues affecting material properties.
  • the mixed solution is cured and formed so that the thickness of the holographic polymer material is controlled at 5-50 micrometers ( ⁇ m), and further may be 10-30 ⁇ m. Therefore, a holographic polymer material with high light transmittance and diffraction efficiency can be prepared.
  • the present application also provides a display device, the storage device is prepared by photopolymerization using the holographic recording medium described in the first aspect and any possible implementation thereof, or includes the third aspect and its The holographic polymer material described in any possible implementation manner.
  • the display device is, for example, a head up display (head up display, HUD) device.
  • the present application also provides a storage device, which is prepared by photopolymerization using the holographic recording medium described in the first aspect and any possible implementation thereof, or includes the third aspect and its The holographic polymer material described in any possible implementation manner.
  • the storage device may be, for example, a holographic memory.
  • the present application also provides an anti-counterfeiting mark, which is made by photopolymerization using the holographic recording medium described in the first aspect and any possible implementation thereof, or includes the third aspect and its The holographic polymer material described in any possible implementation manner.
  • Figure 1 is a schematic diagram of the preparation of the holographic polymer material provided by the embodiment of the present application.
  • Fig. 2 is a flow chart of the preparation method of the holographic recording medium provided by the embodiment of the present application;
  • Fig. 3 is a schematic diagram of the optical path principle of reflective holographic recording provided by the embodiment of the present application.
  • Fig. 4 is a flow chart of the preparation method of the holographic polymer material provided in the embodiment of the present application.
  • Fig. 5 is a schematic diagram of the preparation process of the holographic polymer material provided in Example 1 of the present application;
  • Fig. 6 is the infrared spectrogram of the holographic polymer material prepared in Example 1 of the present application;
  • Fig. 7 is the ultraviolet-visible light absorption spectrogram of the holographic polymer material prepared in Example 1;
  • Fig. 8 is the infrared spectrogram of the holographic polymer material prepared in Example 3.
  • Figure 9 is an ultraviolet-visible light absorption spectrum diagram of the holographic polymer material prepared in Example 3.
  • Fig. 10 is the infrared spectrogram of the holographic polymer material prepared in Example 5.
  • Figure 11 is an ultraviolet-visible light absorption spectrum diagram of the holographic polymer material prepared in Example 5.
  • Fig. 12 is the infrared spectrogram of the holographic polymer material prepared in Example 28;
  • Figure 13 is an ultraviolet-visible light absorption spectrum diagram of the holographic polymer material prepared in Example 28;
  • Fig. 14 is the infrared spectrogram of the holographic polymer material prepared in Example 30;
  • FIG. 15 is an ultraviolet-visible light absorption spectrum diagram of the holographic polymer material prepared in Example 30.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • Holographic polymer materials refer to polymer materials that record holographic information.
  • Holographic recording refers to the process of recording all information such as the amplitude and phase of coherent light through photopolymerization under coherent laser irradiation.
  • the first-order monomer refers to a monomer capable of forming a first-order cross-linked network through anionic polymerization, cationic polymerization, or stepwise polymerization.
  • the first-order crosslinked network refers to the mechanical skeleton structure formed by chemical reactions such as anionic polymerization, cationic polymerization or stepwise polymerization, which can stabilize monomers with free radical reactivity, so that the material does not flow at room temperature.
  • Non-radical reactive monomer means that the active center in the monomer polymerization process is not a free radical.
  • the second-order monomer refers to a monomer that is stabilized by the first-order crosslinking network and can undergo free radical polymerization.
  • the non-photoreactive polar group refers to a group that does not react during the photopolymerization of the second-order monomer and whose positive and negative charge centers do not overlap.
  • the second-order polymer is a polymer formed by photopolymerization of second-order monomers under the action of a photoinitiator under coherent laser irradiation.
  • the polymerization reaction mechanism of the first-order monomer and the second-order monomer is different, the two reactions do not interfere with each other, and can be independently regulated.
  • the polymerization reaction of the first-order monomer can be anion
  • One or more of polymerization, cationic polymerization, and stepwise polymerization are different from the free radical polymerization reaction mechanism of the second-order monomer.
  • At least one (one) means one (one) or multiple (ones), and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects before and after are an "or” relationship.
  • At least one (species) of the following” or similar expressions refer to any combination of these items, including any combination of a single item (species) or a plurality of items (species).
  • At least one (species) of a, b or c can represent: a, b, c, a and b, a and c, b and c, or, a, b and c, wherein a, b, c can be one or more.
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority or priority of multiple objects. Importance.
  • first characteristic absorption peak and the second characteristic absorption peak are only for distinguishing different characteristic absorption peaks, and do not represent the difference in priority, order or importance of these two characteristic absorption peaks.
  • Holographic polymer materials are mainly obtained through two-stage polymerization reactions: as shown in Figure 1, in the first stage, non-radical reactive monomers (called first-order monomers) undergo polymerization reactions (such as anionic polymerization, cationic polymerization or step-by-step polymerization) to form a first-order cross-linked network, and stabilize the radical-reactive monomers (called second-order monomers) in the first-order cross-linked network for subsequent holographic recording.
  • first-order monomers non-radical reactive monomers
  • polymerization reactions such as anionic polymerization, cationic polymerization or step-by-step polymerization
  • second-order monomers radical-reactive monomers in the first-order cross-linked network for subsequent holographic recording.
  • the second-order monomers do not react during the formation of the first-order crosslinked network, and the second-stage polymerization reaction is holographic photopolymerization, that is, under the irradiation of coherent laser, the second-order monomers Photopolymerization (usually free radical polymerization) occurs in the coherent bright area, and induces monomers in the coherent dark area to diffuse to the coherent bright area and participate in the photopolymerization reaction to form a second-order polymer, which eventually leads to the coherent bright area and the coherent dark area.
  • holographic information is recorded in the form of holographic gratings.
  • the purpose of adjusting the material performance is mainly achieved by changing the monomer structure, but it is not pointed out that the chemical structure of the holographic polymer material obtained after the polymerization reaction of the monomer affects its material performance, resulting in holographic polymer materials.
  • the structure-performance relationship remains a black box.
  • the existing technology only adjusts the diffraction efficiency by changing the structure of the monomer.
  • the generated polymer will microscopically interact with the first-order cross-linked network. Phase separation, as the degree of microphase separation increases during the photopolymerization reaction, the diffraction efficiency increases, but the light transmittance decreases. Therefore, it is difficult to prepare holographic polymer materials with high diffraction efficiency and high light transmittance .
  • an embodiment of the present application provides a holographic recording medium, which includes a first-order crosslinking network, a photoinitiator, and a second-order monomer.
  • the first-order crosslinking network provides mechanical support for the holographic recording medium
  • the second-order monomer is a monomer with free radical reactivity
  • the photoinitiator is used to absorb light to generate free radicals to polymerize the second-order monomer.
  • the holographic recording medium includes ester group (I), urethane group (II), urea At least one of group (III), allophanate group (IV), amide group (V), and ester group (I), urethane group (II), urea group (III), allophanate group
  • the groups connected by the ester group (IV) and the amide group (V) are each independently selected from at least one of an alkyl group, an alkoxy group, an alkenyl group or an aromatic group.
  • the first-order crosslinking network in the holographic recording medium includes at least One, and/or, the second stage monomer includes at least one of ester group (I), urethane group (II), urea group (III), allophanate group (IV), amide group (V) kind. Further, both the first-order crosslinking network and the second-order unit include ester group (I), urethane group (II), urea group (III), allophanate group (IV), and amido group (V).
  • At least one can better increase the compatibility between the second-order monomer and the second-order monomer, and the compatibility between the second-order monomer and the first-order cross-linked network, and can also suppress the second-order cross-linking network during the holographic recording process.
  • the second-order polymer produced by photopolymerization of the first-order monomer is separated from the first-order cross-linked network, thereby simultaneously improving the light transmittance and diffraction efficiency of the holographic polymer material.
  • ester group (I) in the holographic recording medium is as follows:
  • R 1 and R 2 are each independently selected from at least one of alkyl, alkoxy, alkenyl or aryl.
  • the structure comprising the urethane group (II) in the holographic recording medium is as follows:
  • R 1 , R 2 and R 3 are each independently selected from at least one of alkyl, alkoxy, alkenyl or aryl.
  • the structure of the ureido group (III) in the holographic recording medium is as follows:
  • R 1 and R 2 are each independently selected from at least one of alkyl, alkoxy, alkenyl or aryl.
  • the structure of the allophanate group (IV) in the holographic recording medium is as follows:
  • R 1 , R 2 and R 3 are each independently selected from at least one of alkyl, alkoxy, alkenyl or aryl.
  • the structure of the amide group (V) in the holographic recording medium is as follows:
  • R 1 , R 2 and R 3 are each independently selected from at least one of alkyl, alkoxy, alkenyl or aryl.
  • the secondary monomer accounts for 10%-80% of the total weight of the holographic recording medium, and further may be 30%-70%.
  • the secondary monomer content may be, for example, 10%, 20%, 30%, 40%, 50%, 60%, 70% or 80%.
  • the weight percentage of the second-order monomer in the holographic recording medium By limiting the weight percentage of the second-order monomer in the holographic recording medium, and the weight percentage of the photoinitiator in the holographic recording medium is relatively low, about 0.1%-3%, which is equivalent to also limiting the first-order
  • the weight percentage of the network network in the holographic recording medium is used so that the finally obtained holographic polymer material has both high light transmittance and high diffraction efficiency.
  • the molecular weight of the secondary monomer may be, for example, 30-3000 g/mol.
  • the holographic recording medium includes an ester group (I), a urethane group (II), a urea group (III), an allophanate group (IV), an amide group (V ) at least one of.
  • the holographic recording medium includes at least one of ester group (I), urethane group (II), urea group (III), allophanate group (IV) and amide group (V) before and after illumination,
  • ester group (I) urethane group
  • II urea group
  • III allophanate group
  • IV amide group
  • V amide group
  • the holographic recording medium includes at least One, the infrared spectrum of the holographic recording medium includes a first characteristic absorption peak and a second characteristic absorption peak, the wave number range of the first characteristic absorption peak is 1760-1650 cm -1 , and the wave number range of the second characteristic absorption peak is 1650-1610 cm -1 .
  • the non-reactive polar groups included in the holographic recording medium can be characterized by the wave number range of the two characteristic absorption peaks of the infrared spectrum.
  • the wave number range of the infrared spectrum including the first characteristic absorption peak is 1760-1650cm -1
  • the holographic recording medium whose wave number range of the absorption peak is 1650-1610 cm -1 can prepare a holographic polymer material with high light transmittance and diffraction efficiency.
  • the ratio of the peak area of the first characteristic absorption peak to the peak area of the second characteristic absorption peak is 5-30, by having the peak area of the first characteristic absorption peak and the ratio of the second characteristic absorption peak A holographic recording medium whose peak area ratio is 5-30, so that the ratio of the peak area of the first characteristic absorption peak of the infrared spectrum of the prepared polymer material to the peak area of the second characteristic absorption peak is in the range of 0.5-5, thereby
  • the prepared holographic polymer material can have higher light transmittance and higher diffraction efficiency.
  • the ratio of the peak area of the first characteristic absorption peak to the peak area of the second characteristic absorption peak can be 10-20, so that the prepared holographic polymer material can have both higher light transmittance and higher diffraction efficiency.
  • the ratio of the peak area of the first characteristic absorption peak to the peak area of the second characteristic absorption peak may be 5, 10, 15, 20, 25, 30, for example.
  • the secondary monomer includes at least one of the following: acrylate, methacrylate, maleate, fumarate, maleimide, acrylamide, vinyl toluene, Vinylcarbazole, N-vinylpyrrolidone, N,N-dimethylacrylamide, methacrylonitrile, methacrylamide, methacrylic acid, acrylic acid.
  • the second-stage monomers are preferably acrylate and acrylamide, and further, acrylate is preferred.
  • acrylates include but are not limited to methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, trimethylolpropane triacrylate, triethylene glycol Dimethacrylate, phenyl methacrylate, 1,6-hexanediol diacrylate, 2-ethylhexyl acrylate, ethyl acrylate, trimethylolpropane trimethacrylate, quinol di Methacrylate, 2-(perfluorooctyl)ethyl methacrylate, neopentyl glycol diacrylate, 1,4-butanediol diacrylate, ethoxyethyl acrylate, ethoxymethacrylate Ethyl ester, n-butyl acrylate, n-butyl methacrylate, tert-butyl acrylate, tert-butyl acrylate, tert-buty
  • acrylate monomers with a high refractive index such as 1,3-bis(phenylthio)-2-propyl acrylate, 2-([1,1'-biphenyl]-2 One or more mixtures of -yloxy)ethyl ester, 3-(9H-carbazol-9-yl)propane-1,2-diacrylate.
  • the refractive index of the second-order monomer may be greater than 1.505, or less than or equal to 1.505.
  • the refractive index of the aforementioned N,N-dimethylacrylamide, acrylic acid, etc. is less than 1.505.
  • At least one of the second-order monomers has a refractive index greater than 1.505.
  • the high refractive index of the second-order monomer is conducive to improving the refractive index contrast with the first-order monomer, and it is easier to achieve high light transmittance and high diffraction efficiency at the same time.
  • the first-order cross-linked network is generated by the polymerization reaction of the first-order monomers, which generally do not have free radical reactivity. In some other embodiments, if the first-order monomers have free radical Radical reactivity, but does not affect the free radical polymerization of the second-order monomers, and better material properties can also be obtained. In this way, the photopolymerization reaction of the first-order monomer does not occur in the holographic recording medium under the light, and interference to the subsequent photopolymerization reaction can be avoided.
  • the first-order monomer includes one or more of polyols, polyepoxides, polyvinyl ethers, polyamines, and polyisocyanates.
  • polyols include but are not limited to ethylene glycol, 1,2-propanediol, 2,4-dimethyl-2,4-pentanediol, 2-n-pentylpropane- 1,3-diol, tripropylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 2-ethyl-2-butylpropanediol, trimethylpentane Diol, 1,3-butanediol, cyclohexanediol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol Diol, 3,3-dimethyl-1,2-butanediol, 1,3-cyclopentane
  • the polyvalent epoxy includes, but is not limited to, one or more of epoxy resins based on aromatic, aryl aliphatic, aliphatic or alicyclic epoxy resins.
  • polyvinyl ethers include but are not limited to small molecules, oligomers or macromolecules based on aromatic, aryl aliphatic, aliphatic or aliphatic ring groups, with vinyl ether as the terminal group
  • vinyl ether as the terminal group
  • polyamines include but are not limited to ethylenediamine, diethylenetriamine, triethylenetetramine, propylenediamine, diaminocyclohexane, diaminobenzene, diaminobenzidine , amine-terminated polymers having a number-average molar mass of at most 10,000 g/mol or any mixture thereof with one another.
  • the polyisocyanate includes but not limited to butylene diisocyanate, hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 1,8-diisocyanato- 4-(isocyanatomethyl)octane, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, bis(4,4 '-isocyanatocyclohexyl)methane, isocyanatomethyl-1,8-octane diisocyanate, 1,4-cyclohexylene diisocyanate, cyclohexane dimethylene diisocyanate, 1 ,4-phenylene diisocyanate, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 1,5-naphthylene diisocyanate, 2,4-diphenylmethane
  • the photoinitiator includes at least one of the following: benzoin and its derivatives, benzyl ketal, acyl phosphine oxide, coumarin ketone, amino acid, rose bengal, methylene blue, three Oxazine compounds, alkylamines.
  • the embodiment of the present application also provides a method for preparing a holographic recording medium, as shown in Figure 2, the preparation method includes:
  • the holographic recording medium includes at least one of ester group (I), urethane group (II), urea group (III), allophanate group (IV), and amide group (V).
  • the holographic recording medium prepared by the present application can increase the The compatibility between monomers and monomers in the holographic recording medium, as well as between the second-order monomers and the first-order cross-linked network, on the other hand, can also suppress the generation of second-order monomers when preparing holographic high-resolution materials.
  • the phase separation of the polymer and the first-order cross-linked network can prepare a holographic polymer material with both high light transmittance and high diffraction efficiency.
  • the content of the monomer and the molecular weight of the monomer will affect the ratio of the peak areas of the two characteristic absorption peaks of the infrared spectrum of the holographic recording medium, that is, the first characteristic absorption peak at 1760-1650 cm -1 and the first characteristic absorption peak at 1650-1610 cm
  • the ratio between the second characteristic absorption peaks of -1 in one embodiment of the present application, the content of the second-order monomer is 10-80 wt%, and further may be 30%-70%.
  • the secondary monomer content may be, for example, 10%, 20%, 30%, 40%, 50%, 60%, 70% or 80%.
  • the molecular weight of the first-stage monomer is 30-3000 g/mol
  • the molecular weight of the second-stage monomer is 30-3000 g/mol
  • the preparation method further includes: adding a nitrogen-containing polar monomer into the mixed solution.
  • a nitrogen-containing polar monomer By adding a certain amount of polar monomers to the mixed solution, the dissolution of the photoinitiator in the monomers (such as second-order monomers, or first-order monomers) can be promoted.
  • the nitrogen-containing polar monomer may be one or more of N-vinylpyrrolidone and N,N-dimethylacrylamide.
  • the mixed solution is cured and shaped so that the thickness of the holographic polymer material is controlled at 5-50 ⁇ m, and the further thickness may be 10-30 ⁇ m. Therefore, a holographic polymer material with high light transmittance and diffraction efficiency can be prepared.
  • the mixed solution including the first-order monomer, the second-order monomer and the photoinitiator is uniformly mixed and applied to the substrate, and a film can be prepared by scraping, casting, printing, spraying or inkjet printing, etc.
  • the thickness is 5-50 ⁇ m, and the further thickness can be 10-30 ⁇ m, wherein the substrate can be plastic, glass, ceramics and composite materials containing many of these materials, wherein the plastic is a high molecular polymer.
  • the embodiment of this application also provides a holographic polymer material, including a first-order cross-linked network and a second-order polymer, wherein the first-order cross-linked network provides mechanical support for the holographic polymer material, and the second-order polymer
  • the material is used to form the refractive index distribution for recording holographic information.
  • the refractive index of the area where the second-order polymer is gathered is relatively high, and the area that does not contain the second-order polymer or the area where the second-order polymer is less aggregated can also be understood as Background, the refractive index of the background is relatively low, and the second-order polymer can form a refractive index distribution for recording holographic information together with the background.
  • the area where the second-order polymer gathers can also be understood as the area in Figure 1
  • the coherent bright area, the background can be understood as the coherent dark area in Figure 1.
  • the holographic polymer material includes at least one of ester group (I), urethane group (II), urea group (III), allophanate group (IV), amide group (V); (I), urethane group (II), urea group (III), allophanate group (IV), amide group (V) connected groups are independently selected from alkyl, alkoxy, alkenyl or at least one of aromatic groups.
  • the light transmittance in the range of 400nm-700nm is greater than 80%, and the diffraction efficiency is greater than 80%.
  • the holographic polymer material includes ester group (I), urethane group (II), urea group (III), allophanate group (IV), amide group (V) At least one of the above, so that the infrared spectrum of the holographic polymer material includes a first characteristic absorption peak and a second characteristic absorption peak, the wave number range of the first characteristic absorption peak is 1760-1702 cm -1 , and the wave number range of the second characteristic absorption peak is 1702-1640cm -1 .
  • the ratio of the peak area of the first characteristic absorption peak to the peak area of the second characteristic absorption peak is 0.5-5, so that the holographic polymer material has higher light transmittance and higher Diffraction efficiency.
  • the ratio of the peak area of the first characteristic absorption peak to the peak area of the second characteristic absorption peak can be 1-5, so that the light transmittance and diffraction efficiency of the holographic polymer material both reach 80%.
  • the ratio of the peak area of the first characteristic absorption peak to the peak area of the second characteristic absorption peak can be 1.1 to 3, which can make the light transmittance and diffraction efficiency of the holographic polymer material higher than the transmittance when the peak area ratio is 1-5.
  • the light rate and diffraction efficiency can further be 1.2-2.5, which can make the holographic polymer material obtain higher light transmittance and diffraction efficiency, even as high as 90% and above.
  • the ratio of the peak area of the first characteristic absorption peak to the peak area of the second characteristic absorption peak can be, for example, 0.5:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1 , 1.5:1, 2:1, 2.5:1, 3:1, 4:1, 5:1.
  • the second-order polymer is generated by the polymerization of the second-order monomer under free radical initiation
  • the second-order monomer is a monomer with free radical reactivity
  • the second-order monomer includes at least one of the following: Acrylates, Methacrylates, Maleates, Fumarates, Maleimides, Acrylamides, Vinyltoluene, Vinylcarbazole, N-Vinylpyrrolidone, N,N-Dimethypropene Amide, methacrylonitrile, methacrylamide, methacrylic acid, acrylic acid.
  • the refractive index of at least one of the second-order monomers is greater than 1.505.
  • the high refractive index of the second-order monomers is conducive to improving the refractive index contrast with the first-order monomers, and it is easier to achieve high light transmittance at the same time. with high diffraction efficiency.
  • the holographic polymer material can be used in various fields.
  • the holographic polymer material can be applied to data storage, anti-counterfeiting images, holographic optical elements, holographic display and other fields.
  • the holographic polymer material It can be used to prepare reflective holographic gratings.
  • the following is a schematic diagram of the optical path principle of reflective holographic recording in conjunction with FIG. 3 .
  • the holographic recording system includes a laser (Laser), a shutter (shutter, SH), a beam splitter (beam splitter, BS), a mirror (M), and a Fourier lens (CL).
  • Laser Laser
  • SH shutter
  • beam splitter beam splitter
  • M mirror
  • CL Fourier lens
  • the shutter is used to control the holographic exposure time
  • the beam splitter is used to divide the beam into coherent light with the same frequency, constant phase difference, and consistent vibration direction
  • the mirror is used to control the propagation direction of the coherent light
  • the Fourier lens is used To collimate the expanded laser beam.
  • the laser beam that meets the coherence condition generated from the laser passes through the shutter and is divided into coherent light in two directions by the beam splitter.
  • materials, HPM to achieve holographic recording.
  • the embodiment of the present application also provides a method for preparing a holographic polymer material.
  • the preparation method includes the following steps: exposing the holographic recording medium to coherent light to obtain a holographic polymer material recorded with holographic information.
  • the preparation method further includes: performing post-processing on the holographic polymer material, the post-processing including light irradiation or heating.
  • the light irradiation is, for example, ultraviolet light irradiation, and the ultraviolet light irradiation is preferably 1-20 minutes, more preferably 5-10 minutes.
  • the embodiment of the present application also provides a method for preparing a holographic polymer material, taking the preparation of a holographic polymer material by using a first-order monomer, a second-order monomer and a photoinitiator as an example, as shown in Figure 4,
  • the preparation method comprises the following steps:
  • the holographic recording medium includes at least one of ester group (I), urethane group (II), urea group (III), allophanate group (IV), and amide group (V).
  • the holographic polymer material includes at least one of ester group (I), urethane group (II), urea group (III), allophanate group (IV), and amide group (V).
  • the preparation method further includes: performing post-processing on the holographic polymer material, the post-processing including light irradiation or heating.
  • the preparation method further includes: adding a nitrogen-containing polar monomer into the mixed solution.
  • a nitrogen-containing polar monomer By adding a certain amount of polar monomers to the mixed solution, the dissolution of the photoinitiator in the monomers (such as second-order monomers, or first-order monomers) can be promoted.
  • the nitrogen-containing polar monomer may be one or more of N-vinylpyrrolidone and N,N-dimethylacrylamide.
  • the mixed solution is cured and shaped so that the thickness of the holographic polymer material is controlled at 5-50 ⁇ m, and the further thickness may be 10-30 ⁇ m.
  • the mixed solution including the first-order monomer, the second-order monomer and the photoinitiator is uniformly mixed and applied to the substrate, and a film can be prepared by scraping, casting, printing, spraying or inkjet printing, etc.
  • the thickness is 5-50 ⁇ m, and the further thickness can be 10-30 ⁇ m, and the substrate can be plastic, glass, ceramics and composite materials containing a variety of these materials.
  • the preparation method may further include solution encapsulation
  • the solution encapsulation may specifically be pouring the above mixed solution into a glass box in a dark room
  • the cavity thickness of the glass box is 5-50 ⁇ m, so that The thickness of the holographic polymer material is controlled at 5-50 ⁇ m.
  • the thickness of the cavity of the glass box is 10-30 ⁇ m, so that the thickness of the holographic polymer material can be controlled at 10-30 ⁇ m.
  • the holographic polymer material of the present application will be further described below in combination with specific examples and comparative examples, but the present application is not limited to the following examples.
  • the following examples select the first-order monomers containing ester groups and the second-order monomers containing ester groups to prepare holographic polymer materials, and the first-order monomers containing ester groups and/or the second-order monomers containing ester groups in the examples
  • the first-order monomer is replaced by at least one of other ester groups, urethane groups (II), urea groups (III), allophanate groups (IV), and amide groups (V) in the above content of the application, and
  • the prepared holographic polymer materials have the same or similar effects as those of the following examples.
  • the structural formula of polycaprolactone oxydiethylene ester is as follows
  • Solution encapsulation as shown in (b) in Figure 5, pour the solution prepared in A above into a glass box in a dark room, and the cavity thickness of the glass box is 5-50 ⁇ m.
  • Curing and forming as shown in (c) in Figure 5, solidify and form at a certain temperature to obtain a film with a thickness of 15 microns.
  • This film can be called a holographic recording medium, which contains a free radical reactive monomer (also The first-order cross-linked network, which can be called the second-order monomer), also contains a photoinitiator.
  • the optical path prepared by reflective holographic grating is used to expose the holographic recording medium to two coherent laser beams of 460 nm, for example, the light intensity of the laser is 6mW/cm 2 (ie mW/cm2), the exposure time is 10 seconds, and the calculated total exposure dose is 60mJ/ cm2 (ie mJ/cm2).
  • FIG. 6 is an infrared spectrum diagram of the holographic polymer material prepared in Example 1.
  • FIG. 7 is an ultraviolet-visible light absorption spectrum diagram of the holographic polymer material prepared in Example 1.
  • FIG. 7 It can be seen from FIG. 7 that the holographic polymer material of this embodiment has higher transmittance and higher diffraction efficiency.
  • the first-order monomers and second-order monomers used in Examples 2-30 are listed in Table 1, and the photoinitiators and their contents used are listed in Table 2. Among them, the preparation of the holographic polymer material in Examples 2-30 Refer to Example 1 for the process, and refer to Table 3 for specific process parameters.
  • the ratio of the peak area of the first characteristic absorption peak to the peak area of the second characteristic absorption peak is in the range of 0.3-5.
  • the infrared spectrum can be obtained by using the infrared light source in the infrared spectrometer to scan the sample of the holographic polymer material within the wavenumber scanning range of 400-4000 cm ⁇ 1 .
  • Example 1 Taking the infrared spectrum of Example 1 as an example below, the peak area of the first characteristic absorption peak and the peak area of the second characteristic absorption peak in the present application are explained: first determine the spectral interval of the baseline and the characteristic absorption peak, and the baseline is the characteristic absorption The tangent line of the lowest points on both sides of the peak, the spectral interval of the characteristic absorption peak is the wave number range contained in the characteristic absorption peak, and the peak area of the characteristic absorption peak is the area surrounded by the absorption peak curve and the baseline, as shown in Figure 6.
  • the first characteristic absorption The peak area A of the peak and the peak area of the second characteristic absorption peak, the ratio of A to B is 1.7.
  • the optical performance of the holographic polymer material is measured by a UV-visible spectrophotometer, the thickness of the film is in the range of 10-30 ⁇ m, and the light transmittance is the light transmittance T at a wavelength of 400-800 nm.
  • Example 7 Taking the ultraviolet-visible absorption spectrogram of Example 1 as an example below, the calculation of diffraction efficiency in the present application is illustrated: as shown in Figure 7, at first determine the minimum light transmittance (T B ) of the reflection peak and the light transmittance (T of the baseline) A ), the light transmittance of the baseline is the ordinate value of the intersection point of the peak of the minimum light transmittance and the baseline, and then calculate the diffraction efficiency according to the following formula.
  • FIG. 8 is an infrared spectrum diagram of the holographic polymer material prepared in Example 3
  • FIG. 9 is an ultraviolet-visible light absorption spectrum diagram of the holographic polymer material prepared in Example 3.
  • FIG. 10 is an infrared spectrum diagram of the holographic polymer material prepared in Example 5
  • FIG. 11 is an ultraviolet-visible light absorption spectrum diagram of the holographic polymer material prepared in Example 5.
  • FIG. 12 is an infrared spectrum diagram of the holographic polymer material prepared in Example 28, and
  • FIG. 13 is an ultraviolet-visible light absorption spectrum diagram of the holographic polymer material prepared in Example 28.
  • FIG. 14 is an infrared spectrum diagram of the holographic polymer material prepared in Example 30, and
  • FIG. 15 is an ultraviolet-visible light absorption spectrum diagram of the holographic polymer material prepared in Example 30.
  • the ratio of the peak areas of the first characteristic absorption peak and the second characteristic absorption peak of the infrared spectrum of the holographic polymer material can be regulated by adjusting the content of the second-order monomer.
  • the ratio of the peak area of the first characteristic absorption peak included in the infrared spectrogram of the holographic polymer material corresponding to Example 1-24 to the peak area of the second characteristic absorption peak is between 1- 5, the diffraction efficiency of the holographic polymer material is above 80%, the light transmittance is above 80%, and the infrared spectrum of the holographic polymer material corresponding to Examples 25-30 includes the first characteristic absorption peak If the ratio of the peak area of the peak area to the peak area of the second characteristic absorption peak is in the range of 0.3-1, the diffraction efficiency or light transmittance of the holographic polymer material is relatively low.
  • the embodiments of the present application also provide a display device, which is prepared by photopolymerization using the holographic recording medium described in the above embodiments, or includes the holographic polymer material described in the above embodiments.
  • the display device is, for example, a head up display (head up display, HUD) device.
  • the embodiments of the present application also provide a storage device, which is prepared by photopolymerization using the holographic recording medium described in the above embodiments, or includes the holographic polymer material described in the above embodiments.
  • the storage device can be, for example, a holographic memory.
  • the embodiment of the present application also provides an anti-counterfeit mark, which is prepared by photopolymerization using the holographic recording medium described in the above embodiments, or includes the holographic polymer material described in the above embodiments.
  • the numerical range “1-5" means that all the real numbers between “1-5" have been listed in this article, and "1-5" is just an abbreviated representation of these numerical combinations.
  • a “range” disclosed in this application takes the form of a lower limit and an upper limit, and may refer to one or more lower limits, and one or more upper limits, respectively.
  • each reaction or operation step may be performed sequentially or not. Alternatively, the reaction processes herein are performed sequentially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Holo Graphy (AREA)

Abstract

本申请实施例提供全息记录介质、全息高分子材料及其制备方法、显示设备,可用于数据存储、防伪图像、全息光学元件、全息显示等领域。全息高分子材料在曝光前的全息记录介质包括一阶交联网络、光引发剂以及二阶单体,一阶交联网络为全息记录介质提供力学支撑,二阶单体为具有自由基反应活性的单体,光引发剂用于引发二阶单体聚合,全息记录介质包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V),与酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)连接的基团各自选自烷基、烷氧基、烯基或芳香基中至少一种。全息记录介质可制备兼具高衍射效率和高透光率的全息高分子材料。

Description

全息记录介质、全息高分子材料及其制备方法、显示设备
相关申请的交叉引用
本申请要求在2021年05月24日提交中国专利局、申请号为202110563230.9、申请名称为“全息记录介质、全息高分子材料及其制备方法、显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及高分子树脂材料领域,具体涉及一种全息记录介质、全息高分子材料及其制备方法、显示设备。
背景技术
基于交联网络的全息高分子材料具有无溶剂制备、加工便捷、尺寸稳定、可厚膜记录等特点,全息高分子材料在很多领域发挥着重要作用。全息高分子材料主要通过两个阶段的聚合反应得到:在第一阶段,非自由基反应性单体(称为一阶单体)通过聚合反应形成一阶交联网络,提供力学支撑,将自由基反应活性的单体(称为二阶单体)稳定在一阶交联网络中,以便于后续全息记录。二阶单体在一阶交联网络的形成过程中不发生反应,在第二阶段,在相干激光的辐照下,光引发剂产生自由基使得二阶单体在相干亮区发生光聚合反应,诱导相干暗区的单体向相干亮区扩散并参与光聚合反应,最终导致相干亮区与相干暗区具有不同的聚合物密度和折射率,通过全息光栅的形式将全息信息记录。目前,在大多数情况下,二阶单体在相干亮区发生光聚合反应后,生成的聚合物会与一阶交联网络发生微观相分离,随着光聚合反应过程中微相分离程度的增加,衍射效率增加,但透光率下降,导致难以制备兼具高衍射效率和高透光率的全息高分子材料。
发明内容
本申请提供了一种全息记录介质、全息高分子材料及其制备方法、显示设备,以实现全息高分子材料同时具有高衍射效率和高透光率的优点。
第一方面,本申请提供一种全息记录介质,包括一阶交联网络、光引发剂以及二阶单体,一阶交联网络为全息记录介质提供力学支撑,二阶单体为具有自由基反应活性的单体,光引发剂用于吸收光产生自由基使得二阶单体聚合,全息记录介质包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V),与酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)连接的基团各自独立地选自烷基、烷氧基、烯基或芳香基中的至少一种。
本申请提供的全息记录介质,通过引入上述酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V),一方面可以增加单体与单体之间、以及二阶单体与一阶交联网络之间的相容性,另一方面也可以抑制二阶单体生成的聚合物与一阶交联网络的相分离,从而可以制备兼具高透光率和高衍射效率的全息高分子材料。
在本申请一种可能的实施方式中,二阶单体占全息记录介质总重的10-80%,进一步地 可为30%-70%。通过限定二阶单体在全息记录介质中所占的重量百分数,而光引发剂在全息记录介质中所占的重量百分数较低,大约为0.1%-3%,相当于也限定了一阶交联网络在全息记录介质中所占的重量百分数,以使最终获得的全息高分子材料兼具高透光率和高衍射效率。
在本申请一种可能的实施方式中,全息记录介质经光照后包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种。如此,全息记录介质在光照前后均包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种,从而可以提高单体与单体之间、以及二阶单体与一阶交联网络之间的相容性,同时也可以在全息记录过程中,抑制二阶单体经过光聚合反应生成的二阶聚合物与一阶交联网络的相分离,从而同时提高全息高分子材料的透光率和衍射效率。
在本申请一种可能的实施方式中,全息记录介质中包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)的至少一种,使得全息记录介质的红外光谱包括第一特征吸收峰和第二特征吸收峰,第一特征吸收峰的波数范围为1760-1650cm -1,第二特征吸收峰的波数范围为1650-1610cm -1。通过红外光谱的两个特征吸收峰的波数范围可以表征全息记录介质中包括的非反应性极性基团,选择红外光谱包括第一特征吸收峰的波数范围为1760-1650cm -1,第二特征吸收峰的波数范围为1650-1610cm -1的全息记录介质,从而可以制备出透光率和衍射效率均较高的全息高分子材料。
在本申请一种可能的实施方式中,第一特征吸收峰的峰面积与第二特征吸收峰的峰面积的比值为5-30,通过采用具有第一特征吸收峰的峰面积与第二特征吸收峰的峰面积的比值为5-30的全息记录介质,可以使得制备的高分子材料的红外光谱的第一特征吸收峰的峰面积和第二特征吸收峰的峰面积的比值在0.5-5范围内,从而可以使得制备的全息高分子材料具有较高的透光率和较高衍射效率。
在本申请一种可能的实施方式中,二阶单体包括以下至少一种:丙烯酸酯、甲基丙烯酸酯、马来酸酯、富马酸酯、马来酰亚胺、丙烯酰胺、乙烯基甲苯、乙烯基咔唑、N-乙烯基吡咯烷酮、N,N-二甲基丙烯酰胺、甲基丙烯腈、甲基丙烯酰胺、甲基丙烯酸、丙烯酸。通过这些二阶单体可以使得全息记录介质包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种,从而一方面可以实现增加单体与单体之间、以及二阶单体与一阶交联网络之间的相容性,另一方面也可以抑制二阶单体生成的聚合物与一阶交联网络的相分离。
在本申请一种可能的实施方式中,二阶单体中至少有一种的折射率大于1.505,二阶单体高折射率有利于提高与一阶单体的折射率对比度,更容易同时实现高透光率与高衍射效率。
在本申请一种可能的实施方式中,一阶交联网络由一阶单体经聚合反应生成,一阶单体一般不具有自由基反应活性。从而使得全息记录介质在光照下,一阶单体不会发生光聚合反应,可以避免对后续的光聚合反应造成干扰。
在本申请一种可能的实施方式中,光引发剂包括以下至少一种:苯偶姻及其衍生物、苯甲基缩酮、酰基膦氧化物、香豆素酮、氨基酸、玫瑰红、亚甲基蓝、三嗪化合物、烷基胺。通过这些光引发剂可以提高光聚合反应的效率。
第二方面,本申请还提供一种制备全息记录介质的方法,该制备方法包括以下步骤:将一阶单体、二阶单体和光引发剂在室温下混合,得到混合溶液;对混合溶液进行固化成 型处理,使得一阶单体经聚合反应生成一阶交联网络,得到全息记录介质。其中,全息记录介质包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种。
本申请制备的全息记录介质,通过引入上述酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V),一方面可以增加全息记录介质中单体与单体之间、以及二阶单体与一阶交联网络之间的相容性,另一方面也可以在制备全息高分材料时,抑制二阶单体生成的聚合物与一阶交联网络的相分离,从而可以制备兼具高透光率和高衍射效率的全息高分子材料。
第三方面,本申请还提供一种全息高分子材料,该全息高分子材料包括一阶交联网络和二阶聚合物,其中,一阶交联网络为全息高分子材料提供力学支撑,二阶聚合物用于形成记录全息信息的折射率分布;全息高分子材料包含酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种;与酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)连接的基团各自独立地选自烷基、烷氧基、烯基或芳香基中的至少一种。该全息高分子材料兼具高透光率和高衍射效率的优点。
在本申请一种可能的实施方式中,全息高分子材料中包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种,使得全息高分子材料的红外光谱包括第一特征吸收峰和第二特征吸收峰,第一特征吸收峰的波数范围为1760-1702cm -1,第二特征吸收峰的波数范围为1702-1640cm -1。通过红外光谱的两个特征吸收峰的波数范围可以表征全息高分子材料中包括非反应性极性基团,使得全息高分子材料兼具高透光率和高衍射效率。
在本申请一种可能的实施方式中,第一特征吸收峰的峰面积与第二特征吸收峰的峰面积的比值为0.5-5,从而使得全息高分子材料具有较高的透光率和较高的衍射效率。
在本申请一种可能的实施方式中,二阶聚合物为二阶单体在自由基引发下聚合生成,二阶单体为具有自由基反应活性的单体,二阶单体包括以下至少一种:丙烯酸酯、甲基丙烯酸酯、马来酸酯、富马酸酯、马来酰亚胺、丙烯酰胺、乙烯基甲苯、乙烯基咔唑、N-乙烯基吡咯烷酮、N,N-二甲基丙烯酰胺、甲基丙烯腈、甲基丙烯酰胺、甲基丙烯酸、丙烯酸。通过这些二阶单体可以使得全息高分子材料包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种,从而可以抑制二阶单体生成的聚合物与一阶交联网络的相分离。
在本申请一种可能的实施方式中,二阶单体至少有一种的折射率大于1.505,二阶单体高折射率有利于提高与一阶单体的折射率对比度,更容易同时实现高透光率与高衍射效率。
第四方面,本申请还提供一种制备全息高分子材料的方法,该制备方法包括以下步骤:将一阶单体、二阶单体和光引发剂在室温下混合,得到混合溶液;对混合溶液进行固化成型处理,使得一阶单体经聚合反应生成一阶交联网络,得到全息记录介质;将全息记录介质置于相干光下曝光,得到记录有全息信息的全息高分子材料。本申请制备的全息高分子材料兼具高透光率和高衍射效率的优点。
在本申请一种可能的实施方式中,一阶单体包括以下至少一种:多元醇、多元环氧、多元乙烯基醚、多元胺、多元异氰酸酯。通过这些一阶单体可以使得制备的全息记录介质包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种, 一方面可以增加全息记录介质中单体与单体之间、以及二阶单体与一阶交联网络之间的相容性,另一方面也可以在制备全息高分材料时,抑制二阶单体生成的聚合物与一阶交联网络的相分离,从而可以制备兼具高透光率和高衍射效率的全息高分子材料。
在本申请一种可能的实施方式中,方法还包括:对全息高分子材料进行后处理,后处理包括光照或加热。通过后处理步骤,使得在光聚合反应中未反应完全的二阶单体进一步反应,从而进一步提高单体转化率。
在本申请一种可能的实施方式中,方法还包括:向混合溶液中加入含氮极性单体。通过向混合溶液加入一定量的极性单体,可以促进光引发剂在单体(例如二阶单体,又例如一阶单体)中的溶解。
在本申请一种可能的实施方式中,含氮极性单体可以为N-乙烯基吡咯烷酮、N,N-二甲基丙烯酰胺的一种或几种。N-乙烯基吡咯烷酮、N,N-二甲基丙烯酰胺不仅可以促进光引发剂在单体中溶解,还参与光聚合反应,避免溶剂残留影响材料性能。
在本申请一种可能的实施方式中,对混合溶液进行固化成型处理,使得全息高分子材料的厚度控制在5-50微米(μm),进一步可为10-30μm。从而可以制得透光率和衍射效率均较高的全息高分子材料。
第五方面,本申请还提供一种显示设备,该存储设备利用第一方面及其任一可能的实施方式中所述的全息记录介质经过光聚合反应制得,或者包括如第三方面及其任一可能的实施方式中所述的全息高分子材料。该显示设备例如为抬头显示(head up display,HUD)设备。
第六方面,本申请还提供一种存储设备,该存储设备利用第一方面及其任一可能的实施方式中所述的全息记录介质经过光聚合反应制得,或者包括如第三方面及其任一可能的实施方式中所述的全息高分子材料。该存储设备例如可为全息存储器(holographic memory)。
第七方面,本申请还提供一种防伪标识,该防伪标识利用第一方面及其任一可能的实施方式中所述的全息记录介质经过光聚合反应制得,或者包括如第三方面及其任一可能的实施方式中所述的全息高分子材料。
上述第五方面至第六方面的有益效果可参考前述第一方面或第三方面的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的全息高分子材料的制备原理图;
图2为本申请实施例提供的全息记录介质的制备方法流程图;
图3为本申请实施例提供的反射式全息记录的光路原理示意图;
图4为本申请实施例提供的全息高分子材料的制备方法流程图;
图5为本申请实施例1提供的全息高分子材料的制备过程示意图;
图6为本申请实施例1制备的全息高分子材料的红外光谱图;
图7为实施例1制备的全息高分子材料的紫外-可见光吸收光谱图;
图8为实施例3制备的全息高分子材料的红外光谱图;
图9为实施例3制备的全息高分子材料的紫外-可见光吸收光谱图;
图10为实施例5制备的全息高分子材料的红外光谱图;
图11为实施例5制备的全息高分子材料的紫外-可见光吸收光谱图;
图12为实施例28制备的全息高分子材料的红外光谱图;
图13为实施例28制备的全息高分子材料的紫外-可见光吸收光谱图;
图14为实施例30制备的全息高分子材料的红外光谱图;
图15为实施例30制备的全息高分子材料的紫外-可见光吸收光谱图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
为便于理解,先示例性介绍下本申请的下列实施例所涉及到的部分术语。
(1)全息高分子材料是指记录了全息信息的高分子材料。
(2)全息记录是指在相干激光辐照下通过光聚合反应将相干光的振幅、相位等全部信息记录的过程。
(3)一阶单体是指能够通过阴离子聚合、阳离子聚合或逐步聚合等方式形成一阶交联网络的单体。
(4)一阶交联网络是指通过阴离子聚合、阳离子聚合或逐步聚合等化学反应形成的,能够将具有自由基反应活性的单体稳定,使材料在室温下不发生流淌的力学骨架结构。
(5)非自由基反应性单体是指单体聚合过程中的活性中心不是自由基。
(6)二阶单体是指被一阶交联网络稳定,能够发生自由基聚合的单体。
(7)非光反应性极性基团是指,在二阶单体光聚合时不发生反应,且正负电荷中心不重合的基团。
(8)二阶聚合物,为相干激光辐照下二阶单体在光引发剂作用下经光聚合生成的聚合物。
(9)正交化学反应,为一阶单体与二阶单体的聚合反应机理不同,两种反应互不干扰,可独立调控的反应,具体地,一阶单体的聚合反应可以为阴离子聚合、阳离子聚合、逐步聚合一种或几种,与二阶单体的自由基聚合反应机理不同。
(10)重量百分数,也可用wt%表示。
(11)“至少一种(个)”是指一种(个)或者多种(个),“多种”是指两种或两种以上。“和/或”,描述关联物体的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联物体是一种“或”的关系。“以下至少一项(种)”或其类似表达, 是指的这些项中的任意组合,包括单项(种)或复数项(种)的任意组合。例如,a,b或c中的至少一项(种),可以表示:a,b,c,a和b,a和c,b和c,或者,a、b和c,其中a,b,c可以是一种,也可以是多种。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一特征吸收峰和第二特征吸收峰,只是为了区分不同的特征吸收峰,而并不是表示这两种特征吸收峰的优先级、顺序或者重要程度等的不同。
全息高分子材料主要通过两个阶段的聚合反应得到:如图1所示,在第一阶段,非自由基反应性单体(称为一阶单体)通过聚合反应(例如阴离子聚合、阳离子聚合或逐步聚合)形成一阶交联网络,将自由基反应活性的单体(称为二阶单体)稳定在一阶交联网络中,以便于后续全息记录。通过正交化学反应设计,二阶单体在一阶交联网络的形成过程中不发生反应,第二阶段的聚合反应为全息光聚合反应,即在相干激光的辐照下,二阶单体在相干亮区发生光聚合反应(通常为自由基聚合),诱导相干暗区的单体向相干亮区扩散并参与光聚合反应,生成二阶聚合物,最终导致相干亮区与相干暗区具有不同的聚合物密度和折射率,通过全息光栅的形式将全息信息记录。现有技术中,主要通过改变单体结构达到调控材料性能的目的,但并未指出单体经过聚合反应后,得到全息高分子材料的化学结构对其材料性能有何影响,导致全息高分子材料的结构与性能的关系仍是一个黑箱。而现有技术仅通过改变单体结构调控了衍射效率,但是,在大多数情况下,二阶单体在相干亮区发生光聚合反应后,生成的聚合物会与一阶交联网络发生微观相分离,随着光聚合反应过程中微相分离程度的增加,从而出现衍射效率增加,但透光率下降的情况,因此,难以制备兼具高衍射效率和高透光率的全息高分子材料。
为解决上述技术问题,本申请实施例提供一种全息记录介质,该全息记录介质包括一阶交联网络、光引发剂以及二阶单体,一阶交联网络为全息记录介质提供力学支撑,二阶单体为具有自由基反应活性的单体,光引发剂用于吸收光产生自由基使得二阶单体聚合,该全息记录介质包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种,与酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)连接的基团各自独立地选自烷基、烷氧基、烯基或芳香基中的至少一种。
其中,全息记录介质中的一阶交联网络包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种,和/或,二阶单体包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种。进一步的,一阶交联网络和二阶单元均包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种,可以更好的增加二阶单体与二阶单体之间、以及二阶单体与一阶交联网络之间的相容性,同时也可以在全息记录过程中,抑制二阶单体经过光聚合反应生成的二阶聚合物与一阶交联网络的相分离,从而同时提高全息高分子材料的透光率和衍射效率。
作为示例性说明,全息记录介质中包括酯基(I)的结构如下:
Figure PCTCN2022085089-appb-000001
其中,R 1和R 2各自独立地选自烷基、烷氧基、烯基或芳香基中的至少一种。
全息记录介质中包括氨酯基(II)的结构如下:
Figure PCTCN2022085089-appb-000002
其中,R 1、R 2和R 3各自独立地选自烷基、烷氧基、烯基或芳香基中的至少一种。
全息记录介质中包括脲基(III)的结构如下:
Figure PCTCN2022085089-appb-000003
其中,R 1和R 2各自独立地选自烷基、烷氧基、烯基或芳香基中的至少一种。
全息记录介质中包括脲基甲酸酯基(IV)的结构如下:
Figure PCTCN2022085089-appb-000004
其中,R 1、R 2和R 3各自独立地选自烷基、烷氧基、烯基或芳香基中的至少一种。
全息记录介质中包括酰胺基(V)的结构如下:
Figure PCTCN2022085089-appb-000005
其中,R 1、R 2和R 3各自独立地选自烷基、烷氧基、烯基或芳香基中的至少一种。
在本申请一种实施例中,二阶单体占全息记录介质总重的10%-80%,进一步地可为30%-70%。作为示例性说明,二阶单体含量例如可以为10%、20%、30%、40%、50%、60%、70%或80%。
通过限定二阶单体在全息记录介质中所占的重量百分数,而光引发剂在全息记录介质中所占的重量百分数较低,大约为0.1%-3%,相当于也限定了一阶交联网络在全息记录介质中所占的重量百分数,以使最终获得的全息高分子材料兼具高透光率和高衍射效率。
其中,二阶单体的分子量例如可为30-3000g/mol。
在本申请一种实施例中,该全息记录介质经光照后包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种。如此,全息记录介质在光照前后均包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种,从而可以提高单体与单体之间、以及二阶单体与一阶交联网络之间的相容性,同时也可以在全息记录过程中,抑制二阶单体经过光聚合反应生成的二阶聚合物与一阶交联网络的相分离,从而同时提高全息高分子材料的透光率和衍射效率。
在本申请一种实施例中,全息记录介质中包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)的至少一种,使得全息记录介质的红外光谱包括第一特征吸收峰和第二特征吸收峰,第一特征吸收峰的波数范围为1760-1650cm -1,第二特征吸收峰的波数范围为1650-1610cm -1。通过红外光谱的两个特征吸收峰的波数范围可以表征全息记录介质中包括的非反应性极性基团,选择红外光谱包括第一特征吸收峰的波数范围为1760-1650cm -1,第二特征吸收峰的波数范围为1650-1610cm -1的全息记录介质,从而可以制备出透光率和衍射效率均较高的全息高分子材料。
在本申请一种实施例中,第一特征吸收峰的峰面积与第二特征吸收峰的峰面积的比值为5-30,通过具有第一特征吸收峰的峰面积与第二特征吸收峰的峰面积的比值为5-30的全息记录介质,使得制备的高分子材料的红外光谱的第一特征吸收峰的峰面积和第二特征吸收峰的峰面积的比值在0.5-5范围内,从而可以使得制备的全息高分子材料具有较高的透光率和较高衍射效率。进一步地第一特征吸收峰的峰面积与第二特征吸收峰的峰面积的比值可为10-20,从而可以使得制备的全息高分子材料可以兼具更高的透光率和更高的衍射效率。作为示例性说明,第一特征吸收峰的峰面积与第二特征吸收峰的峰面积的比值例如可以为5、10、15、20、25、30。
在本申请一种实施例中,二阶单体包括以下至少一种:丙烯酸酯、甲基丙烯酸酯、马来酸酯、富马酸酯、马来酰亚胺、丙烯酰胺、乙烯基甲苯、乙烯基咔唑、N-乙烯基吡咯烷酮、N,N-二甲基丙烯酰胺、甲基丙烯腈、甲基丙烯酰胺、甲基丙烯酸、丙烯酸。进一步的,二阶单体优选丙烯酸酯和丙烯酰胺,更进一步的,优选丙烯酸酯。
其中,在本申请一种实施例中,丙烯酸酯包括但不限于丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸乙酯、三羟甲基丙烷三丙烯酸酯、三乙二醇二甲基丙烯酸酯、甲基丙烯酸苯酯、1,6-己二醇二丙烯酸酯、2-乙基己基丙烯酸酯、乙基丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、奎诺二甲基丙烯酸酯、2-(全氟辛基)乙基甲基丙烯酸酯、新戊二醇二丙烯酸酯、1,4-丁二醇二丙烯酸酯、丙烯酸乙氧乙酯、甲基丙烯酸乙氧乙酯、丙烯酸正丁酯、甲基丙烯酸正丁酯、丙烯酸叔丁酯、甲基丙烯酸叔丁酯、丙烯酸己酯、甲基丙烯酸己酯、丙烯酸2-乙基己酯、甲基丙烯酸2-乙基己酯、丙烯酸丁氧乙酯、甲基丙烯酸丁氧乙酯、丙烯酸月桂基酯、甲基丙烯酸月桂基酯、丙烯酸异冰片酯、甲基丙烯酸异冰片酯、丙烯酸苯酯、丙烯酸对氯苯酯、甲基丙烯酸对氯苯酯、丙烯酸对溴苯酯、甲基丙烯酸对溴苯酯、丙烯酸三氯苯酯、甲基丙烯酸三氯苯酯、丙烯酸三溴苯酯、甲基丙烯酸三溴苯酯、丙烯酸五氯苯酯、甲基丙烯酸五氯苯酯、丙烯酸五溴苯酯、甲基丙烯酸五溴苯酯、丙烯酸五溴苯甲酯、甲基丙烯酸五溴苯甲酯、丙烯酸苯氧乙酯、甲基丙烯酸苯氧乙酯、丙烯酸苯氧乙氧乙酯、二环戊烯基丙烯酸酯。特别优选具有高折射率(n>1.5)的丙烯酸酯单体,例如1,3-双(苯硫基)-2-丙烯酸丙酯,丙烯酸2-([1,1'-联苯]-2-基氧基)乙酯,3-(9H-咔唑-9-基)丙烷-1,2-二丙烯酸酯的一种或几种的混合物。
本申请实施例中,二阶单体的折射率可以大于1.505,也可以小于或等于1.505。示例的,上述N,N-二甲基丙烯酰胺、丙烯酸等的折射率小于1.505。
在本申请一种实施例中,二阶单体至少有一种的折射率大于1.505。二阶单体高折射率有利于提高与一阶单体的折射率对比度,更容易同时实现高透光率与高衍射效率。
在本申请一种实施例中,一阶交联网络由一阶单体经聚合反应生成,一阶单体一般不具有自由基反应活性,在其它一些实施例中,如果一阶单体具有自由基反应活性,但不影响二阶单体的自由基聚合反应,也可以获得较好的材料性能。从而使得全息记录介质在光照下,一阶单体不会发生光聚合反应,可以避免对后续的光聚合反应造成干扰。
在本申请一种实施例中,一阶单体包括多元醇、多元环氧、多元乙烯基醚、多元胺、多元异氰酸酯中一种或几种。
其中,在本申请一种实施例中,多元醇包括但不限于乙二醇、1,2-丙二醇、2,4-二甲基-2,4-戊二醇、2-正戊基丙烷-1,3-二醇、三丙二醇、1,2-丙二醇、1,3-丙二醇、1,4-丁二醇、新戊二醇、2-乙基-2-丁基丙二醇、三甲基戊二醇、1,3-丁二醇、环己烷二醇、1,4-环已烷二甲 醇、1,6-己二醇、1,2-环己二醇、1,4-环己二醇、3,3-二甲基-1,2-丁二醇、1,3-环戊二醇、三羟甲基乙烷、三羟甲基丙烷、丙三醇、二(三羟甲基丙烷)、季戊四醇、一缩二季戊四醇、山梨醇,以及多羟基官能团封端并含有酯基、氨酯基等非光反应性极性基团的嵌段共聚物中的一种或几种。
在本申请一种实施例中,多元环氧包括但不限于基于芳族、芳酯族、酯族或酯环族的环氧树脂中的一种或多种。
在本申请一种实施例中,多元乙烯基醚包括但不限于基于芳族、芳酯族、酯族或酯环族、以乙烯基醚为端基的小分子、齐聚物或高分子中的一种或多种,例如二乙二醇二乙烯基醚、1,4-丁二醇二乙烯基醚、聚乙二醇二乙烯基醚。
在本申请一种实施例中,多元胺包括但不限于乙二胺、二亚乙基三胺、三亚乙基四胺、丙二胺、二氨基环己烷、二氨基苯、二氨基联苯,具有数均摩尔质量最多10000g/mol的胺封端的聚合物或其相互任意混合物。
在本申请一种实施例中,多元异氰酸酯包括但不限于亚丁基二异氰酸酯、六亚甲基二异氰酸酯(HDI)、异佛乐酮二异氰酸酯(IPDI)、1,8-二异氰酸基-4-(异氰酸基甲基)辛烷、2,2,4-三甲基六亚甲基二异氰酸酯、2,4,4-三甲基六亚甲基二异氰酸酯、双(4,4'-异氰酸基环已基)甲烷、异氰酸基甲基-1,8-辛烷二异氰酸酯、1,4-环亚已基二异氰酸酯、环已烷二亚甲基二异氰酸酯、1,4-亚苯基二异氰酸酯、2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯、1,5-亚萘基二异氰酸酯、2,4-二苯基甲烷二异氰酸酯、4,4’-二苯基甲烷二异氰酸酯、三苯基甲烷-4,4’,4”-三异氰酸酯、1,3,5-三(2-异氰酰基乙基)-1,3,5-三嗪-2,4,6-三酮、1,3,5-三(4-异氰酰基丁基)-1,3,5-三嗪-2,4,6-三酮、1,3,5-三(6-异氰酰基己基)-1,3,5-三嗪-2,4,6-三酮、1,3,5-三(8-异氰酰基辛基)-1,3,5-三嗪-2,4,6-三酮、1,3,5-三(10-异氰酰基癸基)-1,3,5-三嗪-2,4,6-三酮中的一种或几种。
在本申请一种实施例中,光引发剂包括以下至少一种:苯偶姻及其衍生物、苯甲基缩酮、酰基膦氧化物、香豆素酮、氨基酸、玫瑰红、亚甲基蓝、三嗪化合物、烷基胺。
基于同样的技术构思,本申请实施例还提供一种全息记录介质的制备方法,如图2所示,该制备方法包括:
S201,将一阶单体、二阶单体和光引发剂在室温下混合,得到混合溶液。
S202,对混合溶液进行固化成型处理,使得一阶单体经聚合反应生成一阶交联网络,得到全息记录介质。其中,全息记录介质包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种。
本申请制备的全息记录介质,通过引入上述酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V),一方面可以增加全息记录介质中单体与单体之间、以及二阶单体与一阶交联网络之间的相容性,另一方面也可以在制备全息高分材料时,抑制二阶单体生成的聚合物与一阶交联网络的相分离,从而可以制备兼具高透光率和高衍射效率的全息高分子材料。
上述S201和S202应在暗处或安全灯下完成,其中,S202中的固化成型处理不限于烘箱加热,还可以采取其它的固化方式。
其中,单体的含量和单体的分子量会影响到全息记录介质的红外光谱的两个特征吸收峰的峰面积的比值,即位于1760-1650cm -1的第一特征吸收峰与位于1650-1610cm -1的第二 特征吸收峰之间的比值,在本申请的一种实施例中,二阶单体含量为10~80wt%,进一步地可为30%-70%。作为示例性说明,二阶单体含量例如可以为10%、20%、30%、40%、50%、60%、70%或80%。
在本申请的一种实施例中,一阶单体的分子量为30-3000g/mol,二阶单体的分子量为30-3000g/mol。
在本申请一种实施例中,该制备方法还包括:向混合溶液中加入含氮极性单体。通过向混合溶液加入一定量的极性单体,可以促进光引发剂在单体(例如二阶单体,又例如一阶单体)中的溶解。
在本申请一种实施例中,含氮极性单体可以为N-乙烯基吡咯烷酮、N,N-二甲基丙烯酰胺的一种或几种。
在本申请一种实施例中,对混合溶液进行固化成型处理,使得全息高分子材料的厚度控制在5-50μm,进一步的厚度可为10-30μm。从而可以制得透光率和衍射效率均较高的全息高分子材料。
作为示例性说明,将包括一阶单体、二阶单体和光引发剂的混合溶液混合均匀后应用于基底,可通过刮涂、流延、印刷、喷雾或喷墨打印等技术制备成膜,厚度为5-50μm,进一步的厚度可为10-30μm,其中,基底可以是塑料、玻璃、陶瓷以及包含多种这些材料的复合材料,其中塑料是一种高分子聚合物。
基于同样的技术构思,本申请实施例还提供一种全息高分子材料,包括一阶交联网络和二阶聚合物,其中,一阶交联网络为全息高分子材料提供力学支撑,二阶聚合物用于形成记录全息信息的折射率分布,二阶聚合物聚集的区域的折射率相对较高,而不含有二阶聚合物的区域或者二阶聚合物聚集较少的区域,也可以理解为背景,背景的折射率相对较低,二阶聚合物可以与背景一起形成记录全息信息的折射率分布,以图1为例来说,二阶聚合物聚集的区域也可以理解为图1中的相干亮区,背景可以理解为图1中的相干暗区。
其中,全息高分子材料包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种;与酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)连接的基团各自独立地选自烷基、烷氧基、烯基或芳香基中的至少一种。
在本申请一种实施例中,该全息高分子材料用于制作反射式全息光学元件时,在400nm-700nm范围内的透光率大于80%,衍射效率大于80%。
在本申请一种实施例中,全息高分子材料中包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种,使得全息高分子材料的红外光谱包括第一特征吸收峰和第二特征吸收峰,第一特征吸收峰的波数范围为1760-1702cm -1,第二特征吸收峰的波数范围为1702-1640cm -1
在本申请一种实施例中,第一特征吸收峰的峰面积与第二特征吸收峰的峰面积的比值为0.5-5,从而使得全息高分子材料具有较高的透光率和较高的衍射效率。进一步地第一特征吸收峰的峰面积与第二特征吸收峰的峰面积的比值可为1-5,从而使得全息高分子材料的透光率和衍射效率均达到80%。进一步地第一特征吸收峰的峰面积与第二特征吸收峰的峰面积的比值可为1.1~3,可以使得全息高分子材料的透光率和衍射效率高于峰面积比值为1-5时的透光率和衍射效率,更进一步地可为1.2~2.5,可以使得全息高分子材料获得更高的透光率和衍射效率,甚至可以高达90%及以上。作为示例性说明,第一特征吸收峰的 峰面积与第二特征吸收峰的峰面积的比值例如可以为0.5:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、2:1、2.5:1、3:1、4:1、5:1。
在本申请一种实施例中,二阶聚合物为二阶单体在自由基引发下聚合生成,二阶单体为具有自由基反应活性的单体,二阶单体包括以下至少一种:丙烯酸酯、甲基丙烯酸酯、马来酸酯、富马酸酯、马来酰亚胺、丙烯酰胺、乙烯基甲苯、乙烯基咔唑、N-乙烯基吡咯烷酮、N,N-二甲基丙烯酰胺、甲基丙烯腈、甲基丙烯酰胺、甲基丙烯酸、丙烯酸。
在本申请一种实施例中,二阶单体至少有一种的折射率大于1.505,二阶单体高折射率有利于提高与一阶单体的折射率对比度,更容易同时实现高透光率与高衍射效率。
该全息高分子材料可以用于多种领域,在本申请一种实施例中,全息高分子材料可应用于数据存储、防伪图像、全息光学元件、全息显示等领域,特别地,全息高分子材料可用于制备反射式全息光栅。
下面结合图3,对反射式全息记录的光路原理示意图。
如图3所示,全息记录系统包括激光器(Laser)、快门(shutter,SH)、分束器(beam splitter,BS)、反射镜(M)、傅立叶透镜(CL),激光器用以产生满足相干条件的激光光束,快门用来控制全息曝光时间,分束器用于将光束分为成频率相同、相位差恒定、振动方向一致的相干光,反射镜用来控制相干光的传播方向,傅立叶透镜用于对扩束后的激光光束进行准直。
从激光器产生的满足相干条件的激光光束,经过快门之后,经过分束器分成两个方向的相干光,这两个方向的相干光分别照向全息记录介质,从而得到全息高分子材料(holographic polymer materials,HPM),实现全息记录。
基于同样的技术构思,本申请实施例还提供一种全息高分子材料的制备方法。以采用本申请的上述全息记录介质制备全息高分子材料为例,该制备方法包括以下步骤:将全息记录介质置于相干光下曝光,得到记录有全息信息的全息高分子材料。
在本申请一种实施例中,该制备方法还包括:对全息高分子材料进行后处理,后处理包括光照或加热。其中,光照例如紫外光辐照,紫外光辐照优选为1-20分钟,进一步优选为5-10分钟。
基于同样的技术构思,本申请实施例还提供一种全息高分子材料的制备方法,以采用一阶单体、二阶单体和光引发剂制备全息高分子材料为例,如图4所示,该制备方法包括以下步骤:
S401,将一阶单体、二阶单体和光引发剂在室温下混合,得到混合溶液。
S402,对混合溶液进行固化成型处理,使得一阶单体经聚合反应生成一阶交联网络,得到全息记录介质。其中,全息记录介质包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种。
上述S401和S402应在暗处或安全灯下完成,其中,S202中的固化成型处理不限于烘箱加热,还可以采取其它的固化方式。
S403,将全息记录介质置于相干光下曝光,得到记录有全息信息的全息高分子材料。其中,全息高分子材料包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种。
在本申请一种实施例中,该制备方法还包括:对全息高分子材料进行后处理,后处理包括光照或加热。
在本申请一种实施例中,该制备方法还包括:向混合溶液中加入含氮极性单体。通过向混合溶液加入一定量的极性单体,可以促进光引发剂在单体(例如二阶单体,又例如一阶单体)中的溶解。
在本申请一种实施例中,含氮极性单体可以为N-乙烯基吡咯烷酮、N,N-二甲基丙烯酰胺的一种或几种。
在本申请一种实施例中,对混合溶液进行固化成型处理,使得全息高分子材料的厚度控制在5-50μm,进一步的厚度可为10-30μm。
作为示例性说明,将包括一阶单体、二阶单体和光引发剂的混合溶液混合均匀后应用于基底,可通过刮涂、流延、印刷、喷雾或喷墨打印等技术制备成膜,厚度为5-50μm,进一步的厚度可为10-30μm,基底可以是塑料、玻璃、陶瓷以及包含多种这些材料的复合材料。
在一个示例中,在S402之前,该制备方法还可以包括溶液封装,该溶液封装具体可以为在暗室下将上述混合溶液灌入玻璃盒中,玻璃盒的空腔厚度为5-50μm,从而可以使得全息高分子材料的厚度控制在5-50μm。进一步的,玻璃盒的空腔厚度为10-30μm,可以使得全息高分子材料的厚度控制在10-30μm。
下面结合具体实施例和对比例对本申请的全息高分子材料作进一步阐述,但本申请不限于以下实施例。以下实施例选取含有酯基的一阶单体和含有酯基的二阶单体制备得到全息高分子材料,以及将实施例中的含有酯基的一阶单体和/或含有酯基的二阶单体替换为本申请上述内容中其它含有酯基、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种,并采用本申请内容描述的制备方法和条件,所制备的全息高分子材料均具有与以下实施例同等或相似的效果。
实施例1
A.溶液制备:在低亮度安全灯下,称取0.4-0.7wt%的3,3′-羰基双(7-二乙胺香豆素),以及1.0-1.5wt%的N-苯基甘氨酸作为光引发剂(光引发剂占总重量1.4-2.2wt%),加入棕色样品瓶中,然后加入5wt%N-乙烯吡咯烷酮使光引发体系溶解,超声30分钟获得均一的溶液,向溶液中加入15.4wt%的异佛乐酮二异氰酸酯,34.6wt%聚己内酯氧基二亚乙基酯,以及45wt%9,9-双[4-(2-丙烯酰氧基乙氧基)苯基]芴,然后超声5分钟,获得均一的溶液,如图5中的(a)。其中,聚己内酯氧基二亚乙基酯的结构式如下:
Figure PCTCN2022085089-appb-000006
B.溶液封装:如图5中的(b)所示,在暗室下将上述A制备的溶液灌入玻璃盒中,玻璃盒的空腔厚度为5-50μm。
C.固化成型:如图5中的(c)所示,在一定温度下固化成型,得到厚度为15微米的薄膜,该薄膜可以称为全息记录介质,其中含有自由基反应活性单体(也可以称为二阶单体)的一阶交联网络,还含有光引发剂。
D.全息曝光:如图5中的(d)所示,采用反射式全息光栅制备的光路,将全息记录介质在两束460纳米相干激光下曝光,例如,激光的光强为6mW/cm 2(即毫瓦/平方厘米),曝光时间为10秒,计算得到的总曝光剂量为60mJ/cm 2(即毫焦/平方厘米)。
E.后处理:采用高压汞灯曝光10分钟,从而得到全息高分子材料。
通过测试全息高分子材料的红外光谱,用于测定该实施例中全息高分子材料的分子构成,图6为实施例1制备的全息高分子材料的红外光谱图。
图7为实施例1制备的全息高分子材料的紫外-可见光吸收光谱图。从图7中可以看出,该实施例的全息高分子材料具有较高的透过率和较高的衍射效率。
实施例2-30
实施例2-30中采用的一阶单体和二阶单体列于表1,采用的光引发剂及其含量列于表2,其中,实施例2-30中的全息高分子材料的制备过程参照实施例1,具体的工艺参数参见表3。
应理解,上述实施例1-30制备的全息高分子材料的红外光谱中,第一特征吸收峰的峰面积与第二特征吸收峰的峰面积之比在0.3-5范围内。
表1
Figure PCTCN2022085089-appb-000007
Figure PCTCN2022085089-appb-000008
Figure PCTCN2022085089-appb-000009
Figure PCTCN2022085089-appb-000010
Figure PCTCN2022085089-appb-000011
Figure PCTCN2022085089-appb-000012
Figure PCTCN2022085089-appb-000013
Figure PCTCN2022085089-appb-000014
Figure PCTCN2022085089-appb-000015
表2
Figure PCTCN2022085089-appb-000016
表3
Figure PCTCN2022085089-appb-000017
分别测试实施例1-30中制备的全息高分子材料的各项性能参数,测试结果列于表4。
各测试项目的具体测试过程如下:
1)全息高分子材料的结构采用红外光谱仪测定。
需要说明的是,利用红外光谱仪中的红外光源在波数扫描范围400-4000cm -1内扫描全息高分子材料的样品,可得到红外光谱。
下面以实施例1的红外光谱为例,对本申请中的第一特征吸收峰的峰面积与第二特征吸收峰的峰面积进行说明:先确定基线和特征吸收峰的光谱区间,基线为特征吸收峰两侧最低点的切线,特征吸收峰的光谱区间为特征吸收峰所包含的波数范围,特征吸收峰的峰面积为吸收峰曲线与基线所包围的面积,如图6中的第一特征吸收峰的峰面积A和第二特征吸收峰的峰面积,A与B的比值为1.7。
2)全息高分子材料的光学性能采用紫外-可见光分光光度计测定,薄膜厚度在10~30μm范围,透光率为波长400-800nm处的透光率T。
下面以实施例1的紫外可见吸收光谱图为例,对本申请中计算衍射效率进行说明:如图7所示,首先确定反射峰的最小透光率(T B)和基线的透光率(T A),基线的透光率为最小透光率的峰值与基线的交点的纵坐标值,然后根据下列公式计算衍射效率。
Figure PCTCN2022085089-appb-000018
其中,图8为实施例3制备的全息高分子材料的红外光谱图,图9为实施例3制备的全息高分子材料的紫外-可见光吸收光谱图。图10为实施例5制备的全息高分子材料的红外光谱图,图11为实施例5制备的全息高分子材料的紫外-可见光吸收光谱图。图12为实施例28制备的全息高分子材料的红外光谱图,图13为实施例28制备的全息高分子材料的紫外-可见光吸收光谱图。图14为实施例30制备的全息高分子材料的红外光谱图,图15为实施例30制备的全息高分子材料的紫外-可见光吸收光谱图。
表4
Figure PCTCN2022085089-appb-000019
Figure PCTCN2022085089-appb-000020
备注:实施例1-30中,全息高分子材料的红外光谱的第一特征吸收峰和第二特征吸收峰的峰面积之比可以通过调节二阶单体的含量来调控。
从表4中的数据可以看出,实施例1-24所对应的全息高分子材料的红外光谱图包括的第一特征吸收峰的峰面积与第二特征吸收峰的峰面积的比值在1-5范围内,全息高分材料的衍射效率均在80%以上,透光率均在80%以上,而实施例25-30所对应的全息高分子材料的红外光谱图包括的第一特征吸收峰的峰面积与所述第二特征吸收峰的峰面积的比值在0.3-1范围内,全息高分子材料的衍射效率或透光率较低。
基于同样的技术构思,本申请实施例还提供一种显示设备,利用上述实施例所述的全息记录介质经过光聚合反应制得,或者包括上述实施例所述的全息高分子材料。该显示设备例如为抬头显示(head up display,HUD)设备。
基于同样的技术构思,本申请实施例还提供一种存储设备,利用上述实施例所述的全息记录介质经过光聚合反应制得,或者包括上述实施例所述的全息高分子材料。该存储设备例如可为全息存储器。
基于同样的技术构思,本申请实施例还提供一种防伪标识,利用上述实施例所述的全息记录介质经过光聚合反应制得,或者包括上述实施例所述的全息高分子材料。
需要说明的是:本申请中,如果没有特别的说明,本文所提到的所有实施方式以及优选实施方法可以相互组合形成新的技术方案。本申请中,如果没有特别的说明,本文所提到的所有技术特征以及优选特征可以相互组合形成新的技术方案。本申请中,如果没有特别的说明,百分数(%)或者份指的是相对于组合物的重量百分数或重量份。本申请中,如果没有特别的说明,所涉及的各组分或其优选组分可以相互组合形成新的技术方案。本 申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,且包括a和b,其中a和b都是实数。例如数值范围“1-5”表示本文中已经全部列出了“1-5”之间的全部实数,“1-5”只是这些数值组合的缩略表示。本申请所公开的“范围”以下限和上限的形式,可以分别为一个或多个下限,和一个或多个上限。本申请中,除非另有说明,各个反应或操作步骤可以顺序进行,也可以不按照顺序进行。可选地,本文中的反应方法是顺序进行的。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种全息记录介质,其特征在于,包括一阶交联网络、光引发剂以及二阶单体;
    所述一阶交联网络为所述全息记录介质提供力学支撑,所述二阶单体为具有自由基反应活性的单体,所述光引发剂用于吸收光并产生使得所述二阶单体聚合的自由基;
    所述全息记录介质包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种;与酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)连接的基团各自独立地选自烷基、烷氧基、烯基或芳香基中的至少一种。
  2. 根据权利要求1所述的全息记录介质,其特征在于,所述二阶单体占所述全息记录介质总重的10-80%。
  3. 根据权利要求1或2所述的全息记录介质,其特征在于,所述全息记录介质经光照后包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种。
  4. 根据权利要求1-3任一项所述的全息记录介质,其特征在于,所述全息记录介质中包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)的至少一种,使得所述全息记录介质的红外光谱包括第一特征吸收峰和第二特征吸收峰,所述第一特征吸收峰的波数范围为1760-1650cm -1,所述第二特征吸收峰的波数范围为1650-1610cm -1
  5. 根据权利要求4所述的全息记录介质,其特征在于,所述第一特征吸收峰的峰面积与所述第二特征吸收峰的峰面积的比值为5-30。
  6. 根据权利要求1-5任一项所述的全息记录介质,其特征在于,所述二阶单体包括以下至少一种:丙烯酸酯、甲基丙烯酸酯、马来酸酯、富马酸酯、马来酰亚胺、丙烯酰胺、乙烯基甲苯、乙烯基咔唑、N-乙烯基吡咯烷酮、N,N-二甲基丙烯酰胺、甲基丙烯腈、甲基丙烯酰胺、甲基丙烯酸、丙烯酸。
  7. 根据权利要求1-6任一项所述的全息记录介质,其特征在于,所述二阶单体至少有一种的折射率大于1.505。
  8. 根据权利要求1-7任一项所述的全息记录介质,其特征在于,所述一阶交联网络由一阶单体经聚合反应生成。
  9. 根据权利要求1-8任一项所述的全息记录介质,其特征在于,所述光引发剂包括以下至少一种:
    苯偶姻及其衍生物、苯甲基缩酮、酰基膦氧化物、香豆素酮、氨基酸、玫瑰红、亚甲基蓝、三嗪化合物、烷基胺。
  10. 一种全息高分子材料,其特征在于,包括一阶交联网络和二阶聚合物,其中,所述一阶交联网络为所述全息高分子材料提供力学支撑,所述二阶聚合物用于形成记录全息信息的折射率分布;
    所述全息高分子材料包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种;与酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)连接的基团各自独立地选自烷基、烷氧基、烯基或芳香基中的至少一种。
  11. 根据权利要求10所述的全息高分子材料,其特征在于,所述全息高分子材料用于制作反射式全息光学元件时,在400nm-700nm范围内的透光率大于80%,衍射效率大于80%。
  12. 根据权利要求10或11所述的全息高分子材料,其特征在于,所述全息高分子材料 中包括酯基(I)、氨酯基(II)、脲基(III)、脲基甲酸酯基(IV)、酰胺基(V)中的至少一种,使得所述全息高分子材料的红外光谱包括第一特征吸收峰和第二特征吸收峰,所述第一特征吸收峰的波数范围为1760-1702cm -1,所述第二特征吸收峰的波数范围为1702-1640cm -1
  13. 根据权利要求12所述的全息高分子材料,其特征在于,所述第一特征吸收峰的峰面积与所述第二特征吸收峰的峰面积的比值为0.5-5。
  14. 根据权利要求10-13任一项所述的全息高分子材料,其特征在于,所述二阶聚合物为二阶单体在自由基引发下聚合生成,所述二阶单体包括以下至少一种:丙烯酸酯、甲基丙烯酸酯、马来酸酯、富马酸酯、马来酰亚胺、丙烯酰胺、乙烯基甲苯、乙烯基咔唑、N-乙烯基吡咯烷酮、N,N-二甲基丙烯酰胺、甲基丙烯腈、甲基丙烯酰胺、甲基丙烯酸、丙烯酸。
  15. 根据权利要求14所述的全息高分子材料,其特征在于,所述二阶单体至少有一种的折射率大于1.505。
  16. 一种制备全息高分子材料的方法,其特征在于,包括以下步骤:
    将一阶单体、二阶单体和光引发剂在室温下混合,得到混合溶液;
    对所述混合溶液进行固化成型处理,使得所述一阶单体经聚合反应生成一阶交联网络,得到全息记录介质;
    将所述全息记录介质置于相干光下曝光,得到记录有全息信息的全息高分子材料。
  17. 根据权利要求16所述的方法,其特征在于,所述一阶单体包括以下至少一种:多元醇、多元环氧、多元乙烯基醚、多元胺、多元异氰酸酯。
  18. 根据权利要求16或17所述的方法,其特征在于,所述方法还包括:
    对所述全息高分子材料进行后处理,所述后处理包括光照或加热。
  19. 根据权利要求16-18任一项所述的方法,其特征在于,所述方法还包括:
    向所述混合溶液中加入含氮极性单体。
  20. 根据权利要求19所述的方法,其特征在于,所述含氮极性单体可以为N-乙烯基吡咯烷酮、N,N-二甲基丙烯酰胺的一种或几种。
  21. 根据权利要求16-20任一项所述的方法,其特征在于,所述对所述混合溶液进行固化成型处理,使得所述全息高分子材料的厚度控制在5-50μm。
  22. 一种显示设备,其特征在于,利用如所述1-9任一项所述的全息记录介质经过光聚合反应制得,或者包括如10-15任一项所述的全息高分子材料。
PCT/CN2022/085089 2021-05-24 2022-04-02 全息记录介质、全息高分子材料及其制备方法、显示设备 WO2022247469A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22810202.6A EP4343434A1 (en) 2021-05-24 2022-04-02 Holographic recording medium, holographic polymer material and preparation method therefor, and display device
US18/518,135 US20240118660A1 (en) 2021-05-24 2023-11-22 Holographic recording medium, holographic polymer material, preparation method therefor, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110563230.9A CN115386046A (zh) 2021-05-24 2021-05-24 全息记录介质、全息高分子材料及其制备方法、显示设备
CN202110563230.9 2021-05-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/518,135 Continuation US20240118660A1 (en) 2021-05-24 2023-11-22 Holographic recording medium, holographic polymer material, preparation method therefor, and display device

Publications (1)

Publication Number Publication Date
WO2022247469A1 true WO2022247469A1 (zh) 2022-12-01

Family

ID=84114612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085089 WO2022247469A1 (zh) 2021-05-24 2022-04-02 全息记录介质、全息高分子材料及其制备方法、显示设备

Country Status (4)

Country Link
US (1) US20240118660A1 (zh)
EP (1) EP4343434A1 (zh)
CN (1) CN115386046A (zh)
WO (1) WO2022247469A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101606106A (zh) * 2007-02-05 2009-12-16 新日铁化学株式会社 体积相位全息记录材料及光信息记录介质
CN101713923A (zh) * 2008-10-01 2010-05-26 拜尔材料科学股份公司 具有低交联密度的光聚合物配制剂
CN101807003A (zh) * 2009-02-17 2010-08-18 拜尔材料科学股份公司 新型全息介质和光聚合物
JP2012047787A (ja) * 2010-08-24 2012-03-08 Daicel Corp 体積ホログラム記録用感光性組成物および媒体製造法
CN103222000A (zh) * 2010-11-08 2013-07-24 拜耳知识产权有限责任公司 用于制备具有高度交联基质聚合物的全息介质的光聚合物制剂
CN104718503A (zh) * 2012-10-15 2015-06-17 株式会社大赛璐 体积全息图记录层形成用光敏性组合物
CN107001246A (zh) * 2014-12-12 2017-08-01 科思创德国股份有限公司 作为光聚合物用书写单体的萘基丙烯酸酯

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101606106A (zh) * 2007-02-05 2009-12-16 新日铁化学株式会社 体积相位全息记录材料及光信息记录介质
CN101713923A (zh) * 2008-10-01 2010-05-26 拜尔材料科学股份公司 具有低交联密度的光聚合物配制剂
CN101807003A (zh) * 2009-02-17 2010-08-18 拜尔材料科学股份公司 新型全息介质和光聚合物
JP2012047787A (ja) * 2010-08-24 2012-03-08 Daicel Corp 体積ホログラム記録用感光性組成物および媒体製造法
CN102971677A (zh) * 2010-08-24 2013-03-13 株式会社大赛璐 体积全息图记录用感光性组合物及介质制造方法
CN103222000A (zh) * 2010-11-08 2013-07-24 拜耳知识产权有限责任公司 用于制备具有高度交联基质聚合物的全息介质的光聚合物制剂
CN104718503A (zh) * 2012-10-15 2015-06-17 株式会社大赛璐 体积全息图记录层形成用光敏性组合物
CN107001246A (zh) * 2014-12-12 2017-08-01 科思创德国股份有限公司 作为光聚合物用书写单体的萘基丙烯酸酯

Also Published As

Publication number Publication date
EP4343434A1 (en) 2024-03-27
CN115386046A (zh) 2022-11-25
US20240118660A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
KR100920261B1 (ko) 청색 감광 홀로그래프 매체
EP0969323B1 (en) Material exhibiting compensation for polymerization-induced shrinkage and recording medium formed therefrom
EP0697631B1 (en) Photosensitive recording material, photosensitive recording medium, and process for producing hologram using this photosensitive recording medium
WO2007108367A1 (ja) 高分子化合物およびその製造方法、顔料分散剤、顔料分散組成物、光硬化性組成物、並びにカラーフィルタおよびその製造方法
JP2003043904A (ja) ビームアポダイゼイションを用いてホログラフィック書き込みを向上させる方法
TW201033241A (en) Photopolymer formulations having a low crosslinking density
JPWO2006101003A1 (ja) 有機微粒子を含む感光性組成物
JPH11352303A (ja) 光学製品およびその製造法
JPH0619040A (ja) 光記録用組成物、光記録用膜及び光記録方法
TW200848473A (en) Pigment dispersant composition, photocurable composition, and color filter and method for manufacturing the same
JPH04239505A (ja) 光重合性組成物
TW200821362A (en) Pigment dispersion composition, photocurable composition, color filter, and method for producing the color filter
US7736818B2 (en) Holographic recording medium and method of making it
CN114728889A (zh) 用于体布拉格光栅的芳族取代烷烃-核单体及其聚合物
US7244548B2 (en) Photopolymerizing composition and photopolymerizing recording medium manufactured using the same and used to manufacture 3D optical memory having ultra-high information storage capacity
CN102344504B (zh) 一种制备高衍射效率全息光聚合物材料的可见光光引发体系
US7727679B2 (en) Optical refractive index-modifying polymer composition, hologram recording material and method of controlling refractive index
CN113748108A (zh) 用于体布拉格光栅的噻蒽衍生的单体和聚合物
WO2022247469A1 (zh) 全息记录介质、全息高分子材料及其制备方法、显示设备
Ley et al. Application of high performance photoinitiating systems for holographic grating recording
US20220299867A1 (en) Recording a latent holographic grating and amplification of its dynamic range
EP4308982A1 (en) Recording a latent holographic grating and amplification of its dynamic range
JP4550616B2 (ja) 体積ホログラム記録用感光性組成物およびそれを用いる体積ホログラム記録媒体の製造方法
CN115595001B (zh) 一种光敏聚合物组合物及其制备方法和全息衍射光栅元件
CN112764159A (zh) 光波导元件及其制备方法以及全息光波导显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810202

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022810202

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022810202

Country of ref document: EP

Effective date: 20231221