WO2022247450A1 - 电动车辆续驶里程确定方法、装置和车辆 - Google Patents

电动车辆续驶里程确定方法、装置和车辆 Download PDF

Info

Publication number
WO2022247450A1
WO2022247450A1 PCT/CN2022/083865 CN2022083865W WO2022247450A1 WO 2022247450 A1 WO2022247450 A1 WO 2022247450A1 CN 2022083865 W CN2022083865 W CN 2022083865W WO 2022247450 A1 WO2022247450 A1 WO 2022247450A1
Authority
WO
WIPO (PCT)
Prior art keywords
mileage
value
electric vehicle
soe
soc
Prior art date
Application number
PCT/CN2022/083865
Other languages
English (en)
French (fr)
Inventor
王斌
王少冲
乔凯
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP22810183.8A priority Critical patent/EP4328082A1/en
Publication of WO2022247450A1 publication Critical patent/WO2022247450A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to the technical field of vehicle control, and in particular to a method, a device and a vehicle for determining the driving range of an electric vehicle.
  • the initial cruising range displayed by the electric vehicle is one of the important parameters.
  • the existing methods for estimating the initial mileage generally use the stored actual remaining mileage value, or use the real-time calculated continuation mileage value as the initialization value. Both methods cannot accurately display the real remaining mileage value, resulting in Range estimates for electric vehicles are inaccurate.
  • the purpose of the present disclosure is to provide a method, device and vehicle for determining the mileage of an electric vehicle, so as to improve the accuracy of the initially displayed mileage and improve the user's experience of using the electric vehicle.
  • the first aspect of the present disclosure provides a method for determining the driving range of an electric vehicle, the method comprising:
  • the initial displayed driving range is displayed.
  • the method also includes:
  • the determining the initially displayed driving range according to the current virtual SOE value includes:
  • the initially displayed cruising range is determined.
  • the method further includes:
  • the updated driving range is displayed.
  • the first mileage calculation condition is: the SOC value of the power battery drops by a first preset ratio.
  • the determining the mileage reduction coefficient according to the currently displayed mileage and the current SOC value of the power battery includes:
  • the determining the mileage drop value according to the SOC drop value of the power battery and the mileage drop coefficient includes:
  • the mileage decrease value is determined according to the product of the SOC decrease value of the power battery and the mileage decrease coefficient.
  • the method further includes:
  • the electric vehicle When the electric vehicle is running, if the first mileage filtering condition is satisfied, whenever the mileage of the electric vehicle changes to meet the second mileage calculation condition, according to the currently displayed mileage and The difference between the current actual remaining mileage and the current SOC value of the power battery of the electric vehicle, determine the mileage reduction coefficient corresponding to the current SOC value and the difference by looking up a table, wherein the The current actual remaining mileage is determined in real time based on the current virtual SOE value and the current average energy consumption; according to the mileage change value of the electric vehicle and the mileage reduction coefficient, the mileage reduction value is determined, wherein the driving The mileage change value is the change value of the mileage when the electric vehicle satisfies the second mileage calculation condition this time compared with the mileage change when the second mileage calculation condition was met last time;
  • the first driving range filter condition includes:
  • the current SOC value of the power battery is less than a preset SOC threshold; or,
  • the current SOC value of the power battery is greater than or equal to the SOC threshold, and the currently displayed mileage is greater than the current actual remaining mileage; or,
  • the current SOC value of the power battery is greater than or equal to the SOC threshold, and the SOC value of the power battery is decreasing.
  • the second mileage calculation condition is: the mileage is increased by a preset distance.
  • the determining the reduction value of the driving range according to the change value of the driving range of the electric vehicle and the reduction coefficient of the driving range includes:
  • the reduction value of the driving range is determined according to the ratio of the change value of the driving range of the electric vehicle to the reduction coefficient of the driving range.
  • the method further includes:
  • the second mileage filtering condition includes: the current SOC value of the power battery is greater than or equal to the SOC threshold, the SOC value of the power battery is rising, and the currently displayed mileage is less than the current actual remaining mileage.
  • the method further includes:
  • the target ratio is the difference between the maximum mileage of the electric vehicle and the currently displayed mileage and the SOC value when the power battery is fully charged and the current value of the power battery.
  • the third mileage filtering condition includes: the current SOC value of the power battery does not reach the SOC value when the power battery is fully charged, or the currently displayed mileage does not reach the maximum mileage of the electric vehicle. Driving range.
  • the determining the cruising range increase value according to the target ratio and the SOC change value of the power battery within the second preset time includes:
  • the cruising range increase value is determined according to the product of the target ratio and the SOC change value.
  • the second aspect of the present disclosure provides a device for determining the driving range of an electric vehicle, the device comprising:
  • a calculation module configured to calculate the current virtual SOE value of the electric vehicle when the electric vehicle is powered on
  • a comparison module configured to compare the current virtual SOE value with a stored virtual SOE value, wherein the stored virtual SOE value is a virtual SOE value stored before the electric vehicle was powered off last time;
  • the initial display mileage determination module is used to determine the initial display mileage according to the current virtual SOE value if the difference between the current virtual SOE value and the stored virtual SOE value exceeds a preset difference range; if If the difference between the current virtual SOE value and the stored virtual SOE value is within the range of the difference, then the actual remaining mileage stored before the last power-off of the electric vehicle is determined as the initially displayed driving mileage;
  • a display module configured to display the initially displayed mileage.
  • the device for determining the driving range of an electric vehicle may also include:
  • An initial display energy consumption determination module configured to determine the target energy consumption of the electric vehicle as the initial display energy consumption if the difference between the current virtual SOE value and the stored virtual SOE value exceeds a preset difference range; if If the difference between the current virtual SOE value and the stored virtual SOE value is within the range of the difference, the average energy consumption stored before the last power-off of the electric vehicle is determined as the initial displayed energy consumption;
  • the display module can also be used to display the initial display energy consumption.
  • the initial display cruising range determination module is configured to determine the initial display cruising range according to the current virtual SOE value in the following manner: according to the difference between the current virtual SOE value and the target energy consumption of the electric vehicle ratio, determine the initial displayed driving range.
  • the device for determining the driving range of an electric vehicle may also include:
  • the first mileage reduction value determination module is used to determine the first continuation range whenever the SOC value of the power battery of the electric vehicle drops to meet the first continuation range when the electric vehicle is in a stationary state after the electric vehicle is powered on.
  • the mileage reduction coefficient is determined according to the currently displayed mileage and the current SOC value of the power battery, and the mileage reduction coefficient is determined according to the SOC decrease value of the power battery and the mileage reduction coefficient.
  • mileage drop value wherein the SOC drop value is compared with the SOC value of the power battery when the first mileage calculation condition is met this time when the first mileage calculation condition is met last time The drop value of the SOC value;
  • a mileage updating module configured to determine an updated mileage according to the difference between the currently displayed mileage and the mileage drop value
  • the display module is also used to display the updated driving range.
  • the first mileage reduction value determination module is configured to determine the mileage reduction coefficient and the mileage reduction value in the following manner: according to the difference between the currently displayed mileage and the current SOC value of the power battery Determine the reduction coefficient of the driving range; determine the reduction value of the driving range according to the product of the SOC reduction value of the power battery and the reduction coefficient of the driving range.
  • the device for determining the driving range of an electric vehicle may also include:
  • the second mileage reduction value determination module is used for determining the first mileage filtering condition when the electric vehicle is running after the electric vehicle is powered on. Whenever the mileage of the electric vehicle changes to meet In the second mileage calculation condition, according to the difference between the currently displayed mileage and the current actual remaining mileage, and the current SOC value of the power battery of the electric vehicle, determine the current SOC value by looking up a table The mileage reduction coefficient corresponding to the difference; according to the mileage change value of the electric vehicle and the mileage reduction coefficient, determine the mileage decrease value, wherein the mileage change value is the The change value of the mileage of the electric vehicle when the second mileage calculation condition is satisfied this time compared with the mileage when the second mileage calculation condition was met last time;
  • a mileage updating module configured to determine an updated mileage according to the difference between the currently displayed mileage and the mileage drop value
  • the display module is also used to display the updated driving range.
  • the second mileage reduction value determination module is configured to determine the mileage reduction value in the following manner: according to the ratio of the change value of the mileage of the electric vehicle to the mileage reduction coefficient, determine the The mileage reduction value mentioned above.
  • the mileage updating module can also be used for: when the electric vehicle is running, if the second mileage filtering condition is met, every first preset time, the current actual remaining mileage It is determined as the updated mileage, and then the display module is triggered to display the updated mileage.
  • the device for determining the driving range of an electric vehicle may also include:
  • the cruising range increase value determination module is configured to, after the electric vehicle is powered on and during the charging process of the electric vehicle, if the third cruising range filtering condition is met, every second preset time, according to the target ratio and The SOC change value of the power battery within the second preset time determines the cruising range increase value, wherein the target ratio is the difference between the maximum cruising range of the electric vehicle and the currently displayed cruising range and the specified The ratio of the difference between the SOC value when the power battery is fully charged and the current SOC value of the power battery;
  • a mileage updating module configured to determine an updated mileage according to the sum of the currently displayed mileage and the added value of the mileage
  • the display module is also used to display the updated driving range.
  • the cruising range increase value determination module is configured to determine the cruising range increase value in the following manner: determine the cruising range increase value according to the product of the target ratio and the SOC change value.
  • a third aspect of the present disclosure provides a controller, including:
  • a controller when the computer program is executed by the controller, implements the steps of the method described in the first aspect of the present disclosure.
  • a fourth aspect of the present disclosure provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of the method described in the first aspect of the present disclosure are implemented.
  • a fifth aspect of the present disclosure provides an electric vehicle, including the device provided in the second aspect of the present disclosure, or the controller provided in the third aspect of the present disclosure.
  • the present disclosure also provides a computing processing device, including:
  • One or more processors when the computer readable code is executed by the one or more processors, the computing processing device executes the method for determining the driving range of an electric vehicle proposed in the embodiment of the first aspect of the present disclosure.
  • the present disclosure further provides a computer program, including computer readable codes, which, when the computer readable codes are run on a computing processing device, cause the computing processing device to execute the program proposed in the embodiment of the first aspect of the present disclosure.
  • the present disclosure further provides a computer-readable storage medium, in which the computer program provided by the embodiment of the fifth aspect of the present disclosure is stored.
  • the initially displayed driving range of the electric vehicle is corrected. Specifically, when the difference between the current virtual SOE value calculated at power-on and the virtual SOE value stored before power-off exceeds the preset difference range, the initial display mileage is determined according to the current virtual SOE value, otherwise The actual remaining mileage stored before the last power-off of the electric vehicle is determined as the initially displayed driving mileage.
  • a preset difference range is introduced in the process of determining the initial display mileage, an accurate value is given according to the state of the electric vehicle, and historical records and real-time calculation results are organically combined to improve the initial display mileage. Accuracy, enhance the user's experience in using electric vehicles.
  • Fig. 1 is a flowchart of a method for determining the driving range of an electric vehicle provided by an exemplary embodiment of the present disclosure
  • Fig. 2 is a flowchart of a method for determining the driving range of an electric vehicle provided by another exemplary embodiment of the present disclosure
  • Fig. 3 is a flowchart of a method for determining the driving range of an electric vehicle provided by another exemplary embodiment of the present disclosure
  • Fig. 4 is a flowchart of a method for determining the driving range of an electric vehicle provided by another exemplary embodiment of the present disclosure
  • Fig. 5 is a flowchart of a method for determining the driving range of an electric vehicle provided by another exemplary embodiment of the present disclosure
  • Fig. 6 is a block diagram of a device for determining the driving range of an electric vehicle provided by an exemplary embodiment of the present disclosure
  • Fig. 7 is a block diagram of a controller provided by another exemplary embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a computing processing device provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a program code storage unit for portable or fixed implementation of the method according to the present invention provided by an embodiment of the present disclosure.
  • Fig. 1 is a flow chart of a method for determining the driving range of an electric vehicle provided by an exemplary embodiment of the present disclosure.
  • the method can be applied to vehicles, such as control components inside the vehicle, such as body controllers, vehicle controllers, battery management systems, and the like.
  • the method may include S101 to S105.
  • the virtual SOE value is the SOE value calculated according to the percentage of remaining battery power of the electric vehicle, the battery health degree, the theoretical value of the battery power and the temperature coefficient of the battery cell of the battery pack, and the specific calculation method is as follows:
  • Virtual SOE SOC*SOH*cell temperature coefficient of the battery pack*theoretical value of battery power
  • SOC state of charge
  • SOH state of health
  • the current actual remaining mileage, average energy consumption and virtual SOE value of the electric vehicle will be stored in the bottom layer of the controller, and the value stored before the last power-off will be called when the electric vehicle is powered on again.
  • the virtual SOE value determines the initially displayed cruising range according to the comparison result between the current virtual SOE value and the stored virtual SOE value.
  • the above-mentioned exceeding the preset difference range refers to: a situation greater than the upper limit value of the difference range and a situation smaller than the lower limit value of the difference range.
  • the difference between the current virtual SOE value and the stored virtual SOE value exceeds the preset difference range, it means that the current state of the electric vehicle is quite different from the state before power-off. Choosing to use the current virtual SOE value to determine the initial display mileage can avoid The error caused by calling the actual remaining mileage stored before the last power-off of the electric vehicle makes the initial display of the driving mileage more accurate.
  • the above-mentioned being in the difference range refers to the situation that it is less than or equal to the upper limit value of the difference range and greater than or equal to the lower limit value of the difference range.
  • the difference between the current virtual SOE value and the stored virtual SOE value is within the range of the difference, it means that the current state of the electric vehicle is basically the same as the state before power-off, and the actual remaining mileage stored before the last power-off of the electric vehicle is determined as the initial display continuous driving The mileage can meet the accuracy requirements for the initial display of the driving mileage.
  • the display components include but are not limited to: instrument panels, display screens of the driving computer, display screens of other external electronic devices that communicate with the vehicle, and the like.
  • the initially displayed driving range is corrected. Specifically, when the difference between the current virtual SOE value calculated at this power-on and the virtual SOE value stored before the last power-off exceeds the preset difference range, the initial display mileage is determined according to the current virtual SOE value, otherwise The actual remaining mileage stored before the last power-off of the electric vehicle is determined as the initially displayed driving mileage.
  • a preset difference range is introduced in the process of determining the initial display mileage, an accurate value is given according to the state of the electric vehicle, and historical records and real-time calculation results are organically combined to improve the initial display mileage. Accuracy, enhance the user's experience in using electric vehicles.
  • the average energy consumption is also used as an important parameter that users need to refer to when traveling.
  • Fig. 2 is a flow chart of a method for determining the driving range of an electric vehicle provided by another exemplary embodiment of the present disclosure. As shown in FIG. 2, the method may include S201 to S207.
  • S205 Determine the actual remaining mileage stored before the last power-off of the electric vehicle as the initially displayed driving mileage.
  • AvgE (a 1 *AvgE 1 +a 2 *AvgE 2 +...+a n-1 *AvgE n-1 +a n *AvgE n )/n
  • the average energy consumption is set as an important parameter that users need to refer to when traveling.
  • the initial display energy consumption is determined, and the target energy consumption is introduced to avoid
  • the problem of inaccurate initial display of energy consumption due to the large gap between the stored average energy consumption and the actual average energy consumption can improve the accuracy of the initial display of energy consumption and further enhance the user's experience in using electric vehicles.
  • the driving mileage displayed by the electric vehicle in the static, driving, and charging states also has important reference significance for users to travel.
  • Fig. 3 is a flowchart of a method for determining the driving range of an electric vehicle provided by another exemplary embodiment of the present disclosure. As shown in Figure 3, after the electric vehicle is powered on, the method may further include:
  • the calculation condition of the above-mentioned first mileage may be: the SOC value of the power battery drops by a first preset ratio, the first preset ratio is, for example, 0.05%, that is, when the SOC value drops by 0.05%, the vehicle The mileage reduction coefficient in the static state is updated once, and the displayed mileage is updated to ensure that the user can obtain the updated mileage in real time.
  • the above-mentioned first mileage calculation condition may also be: the SOC value of the power battery drops by a preset threshold.
  • determining the mileage drop value may include: determining the mileage drop value according to the product of the SOC drop value of the power battery and the mileage drop coefficient .
  • mileage reduction value SOC reduction value ⁇ degradation coefficient of mileage.
  • the mileage is filtered and calculated, and the reduction coefficient is determined in real time according to the ratio between the currently displayed mileage and the current SOC value of the power battery, which is used to determine the updated mileage.
  • the driving mileage value can improve the accuracy of the driving mileage obtained by the user, so as to further enhance the user's experience in using the electric vehicle.
  • Fig. 4 is a flow chart of a method for determining the driving range of an electric vehicle provided by another exemplary embodiment of the present disclosure. As shown in Figure 4, after the electric vehicle is powered on, the method may further include:
  • the aforementioned first mileage filtering condition may include:
  • the current SOC value of the power battery is less than the preset SOC threshold; or,
  • the current SOC value of the power battery is greater than or equal to the SOC threshold, and the currently displayed mileage is greater than the current actual remaining mileage; or,
  • the current SOC value of the power battery is greater than or equal to the SOC threshold, and the SOC value of the power battery is decreasing.
  • the above-mentioned second driving mileage calculation condition may be: the driving mileage is increased by a preset distance.
  • the preset distance can be set to 1km, that is, when the vehicle is driving, every 1km, according to the difference between the currently displayed mileage and the current actual remaining mileage, and the current SOC value of the power battery of the electric vehicle , determine the mileage reduction coefficient corresponding to the current SOC value and the difference by looking up the table, and update the displayed mileage accordingly, so as to ensure that the user can obtain the updated mileage in real time.
  • the above-mentioned second mileage calculation condition may also be: the mileage increases by a second preset ratio.
  • the data table can be calibrated in advance through the experimental data, and the data table records the difference between the displayed mileage and the actual remaining mileage, the SOC value of the power battery and the decrease coefficient of the mileage. Correspondence. In this way, in S401, according to the difference between the currently displayed mileage and the current actual remaining mileage, and the current SOC value of the power battery of the electric vehicle, by querying the data table, it is possible to determine the relationship between the current SOC value and the current SOC value. The mileage reduction coefficient corresponding to the difference.
  • the mileage reduction value is determined according to the change value of the mileage of the electric vehicle and the mileage reduction coefficient.
  • the reduction value of the driving range is determined according to the ratio of the change value of the driving range of the electric vehicle to the reduction coefficient of the driving range.
  • the reduction value of the driving range the change value of the driving range / the reduction coefficient of the driving range.
  • S402. Determine the updated driving range according to the difference between the currently displayed driving range and the decreasing value of the driving range.
  • the updated mileage the currently displayed mileage - the reduced value of the mileage.
  • the mileage is filtered and calculated, and when the first mileage filtering condition is met, the distance between the currently displayed mileage and the current actual remaining mileage is calculated.
  • the difference between the difference value and the current SOC value of the power battery of the electric vehicle is determined by looking up the table in real time.
  • the reduction coefficient of the mileage is determined in real time, and the updated mileage value is determined accordingly, which can improve the accuracy of the mileage obtained by the user, and further Improve the user experience of using electric vehicles.
  • the method may further include:
  • the second mileage filtering condition may include: the current SOC value of the power battery is greater than or equal to the SOC threshold, the SOC value of the power battery is rising, and the currently displayed mileage is less than the current actual remaining mileage.
  • the SOC value of the power electric vehicle will rise at this time.
  • the first preset time can be set to 100 ms, that is, when the electric vehicle is in a driving state, and the second driving range filtering condition is satisfied, the displayed driving range is updated every time the time interval reaches 100 ms
  • the current actual remaining mileage is used to ensure that users can obtain updated driving mileage in real time.
  • the mileage is filtered and calculated, and when the second mileage filtering condition is met, the current actual remaining mileage is determined every first preset time. In order to update the mileage, avoid the problem that the user cannot better plan the trip due to the inaccurate updated mileage when the SOC value of the power electric vehicle rises.
  • Fig. 5 is a flowchart of a method for determining the driving range of an electric vehicle provided by another exemplary embodiment of the present disclosure. As shown in Figure 5, after the electric vehicle is powered on, the method may further include:
  • the third driving range filtering condition may include: the current SOC value of the power battery does not reach the SOC value when the power battery is fully charged, or the currently displayed driving range does not reach the maximum driving range of the vehicle.
  • the value of the second preset time may be the same as or different from the value of the first preset time.
  • the second preset time can be set to 100ms, that is, when the electric vehicle is in the driving state, when the third mileage filtering condition is met, when the time interval reaches 100ms, according to the target ratio and the power battery within the 100ms.
  • the product of the SOC change value of the battery is used to determine the added value of the cruising range, and accordingly determine the updated cruising range, so as to ensure that the user can obtain the updated cruising range in real time.
  • S502. Determine the updated driving range according to the currently displayed driving range and the added value of the driving range.
  • updated mileage currently displayed mileage+addition value of mileage.
  • the mileage when the electric vehicle is in the charging state, the mileage is filtered and calculated, and when the third filtering condition is met, it is updated in real time, according to the target ratio and the power battery within the second preset time.
  • the product of the SOC change value of the vehicle is used to determine the added value of the driving mileage, and accordingly determine the updated driving mileage. In this way, the updated mileage can be obtained in real time during charging, and the user's experience in using electric vehicles can be improved.
  • Fig. 6 is a structural block diagram of a device for determining the driving range of an electric vehicle provided by an exemplary embodiment of the present disclosure.
  • the device 600 for determining the driving range of an electric vehicle may include:
  • a calculation module 601, configured to calculate the current virtual SOE value of the electric vehicle when the electric vehicle is powered on;
  • a comparison module 602 configured to compare the current virtual SOE value with a stored virtual SOE value, wherein the stored virtual SOE value is a virtual SOE value stored before the electric vehicle was last powered off;
  • the initial display mileage determination module 603 is configured to determine the initial display mileage according to the current virtual SOE value if the difference between the current virtual SOE value and the stored virtual SOE value exceeds a preset difference range; If the difference between the current virtual SOE value and the stored virtual SOE value is within the range of the difference, then determine the actual remaining mileage stored before the last power-off of the electric vehicle as the initially displayed driving mileage;
  • the initially displayed driving range is corrected. Specifically, when the difference between the current virtual SOE value calculated at this power-on and the virtual SOE value stored before the last power-off exceeds the preset difference range, the initial display mileage is determined according to the current virtual SOE value, otherwise The actual remaining mileage stored before the last power-off of the electric vehicle is determined as the initially displayed driving mileage.
  • a preset difference range is introduced in the process of determining the initial display mileage, an accurate value is given according to the state of the electric vehicle, and historical records and real-time calculation results are organically combined to improve the initial display mileage. Accuracy, enhance the user's experience in using electric vehicles.
  • the device 600 for determining the driving range of an electric vehicle may further include:
  • An initial display energy consumption determination module configured to determine the target energy consumption of the electric vehicle as the initial display energy consumption if the difference between the current virtual SOE value and the stored virtual SOE value exceeds a preset difference range; if If the difference between the current virtual SOE value and the stored virtual SOE value is within the range of the difference, the average energy consumption stored before the last power-off of the electric vehicle is determined as the initial displayed energy consumption;
  • the display module 604 may also be used to display the initial display energy consumption.
  • the initial display cruising range determination module 603 is configured to determine the initial display cruising range according to the current virtual SOE value in the following manner: according to the current virtual SOE value and the electric The ratio of the target energy consumption of the vehicle determines the initially displayed cruising range.
  • the device 600 for determining the driving range of an electric vehicle may further include:
  • the first mileage reduction value determination module is used to determine the first continuation range whenever the SOC value of the power battery of the electric vehicle drops to meet the first continuation range when the electric vehicle is in a stationary state after the electric vehicle is powered on.
  • the mileage reduction coefficient is determined according to the currently displayed mileage and the current SOC value of the power battery, and the mileage reduction coefficient is determined according to the SOC decrease value of the power battery and the mileage reduction coefficient.
  • mileage drop value wherein the SOC drop value is compared with the SOC value of the power battery when the first mileage calculation condition is met this time when the first mileage calculation condition is met last time The drop value of the SOC value;
  • a mileage updating module configured to determine an updated mileage according to the difference between the currently displayed mileage and the mileage drop value
  • the display module 604 is also used to display the updated driving range.
  • the first mileage reduction value determination module is configured to determine the mileage reduction coefficient and the mileage reduction value in the following manner: according to the currently displayed mileage and the power battery The ratio of the current SOC value to determine the mileage reduction coefficient; according to the product of the SOC reduction value of the power battery and the mileage reduction coefficient, the mileage reduction value is determined.
  • the device 600 for determining the driving range of an electric vehicle may further include:
  • the second mileage reduction value determination module is used for determining the first mileage filtering condition when the electric vehicle is running after the electric vehicle is powered on. Whenever the mileage of the electric vehicle changes to meet In the second mileage calculation condition, according to the difference between the currently displayed mileage and the current actual remaining mileage, and the current SOC value of the power battery of the electric vehicle, determine the current SOC value by looking up a table The mileage reduction coefficient corresponding to the difference; according to the mileage change value of the electric vehicle and the mileage reduction coefficient, determine the mileage decrease value, wherein the mileage change value is the The change value of the mileage of the electric vehicle when the second mileage calculation condition is satisfied this time compared with the mileage when the second mileage calculation condition was met last time;
  • a mileage updating module configured to determine an updated mileage according to the difference between the currently displayed mileage and the mileage drop value
  • the display module 604 is also used to display the updated driving range.
  • the second mileage reduction value determination module is configured to determine the mileage reduction value in the following manner: according to the change value of the mileage of the electric vehicle and the mileage reduction coefficient Ratio, to determine the value of the mileage reduction.
  • the mileage updating module may also be configured to: when the electric vehicle is running, if the second mileage filtering condition is met, every first preset time, The current actual remaining mileage is determined as the updated mileage, and then the display module 604 is triggered to display the updated mileage.
  • the device 600 for determining the driving range of an electric vehicle may further include:
  • the cruising range increase value determination module is configured to, after the electric vehicle is powered on and during the charging process of the electric vehicle, if the third cruising range filtering condition is met, every second preset time, according to the target ratio and The SOC change value of the power battery within the second preset time determines the cruising range increase value, wherein the target ratio is the difference between the maximum cruising range of the electric vehicle and the currently displayed cruising range and the specified The ratio of the difference between the SOC value when the power battery is fully charged and the current SOC value of the power battery;
  • a mileage updating module configured to determine an updated mileage according to the sum of the currently displayed mileage and the added value of the mileage
  • the display module 604 is also used to display the updated driving range.
  • the cruising range increase value determination module is configured to determine the cruising range increase value in the following manner: determine the cruising range increase value according to the product of the target ratio and the SOC change value.
  • Fig. 7 is a block diagram of a controller 700 according to an exemplary embodiment.
  • the controller 700 may include: a processor 701 and a memory 702 .
  • the controller 700 may also include one or more of a multimedia component 703 , an input/output (I/O) interface 704 , and a communication component 705 .
  • I/O input/output
  • the processor 701 is used to control the overall operation of the controller 700 to complete all or part of the steps in the above-mentioned method for determining the driving range of the electric vehicle.
  • the memory 702 is used to store various types of data to support the operation of the controller 700, for example, these data may include instructions for any application or method operating on the controller 700, and application-related data, Such as contact data, sent and received messages, pictures, audio, video, etc.
  • the memory 702 can be realized by any type of volatile or non-volatile memory device or their combination, such as Static Random Access Memory (Static Random Access Memory, referred to as SRAM), Electrically Erasable Programmable Read-Only Memory (EPROM) Electrically Erasable Programmable Read-Only Memory, referred to as EEPROM), Erasable Programmable Read-Only Memory (Erasable Programmable Read-Only Memory, referred to as EPROM), Programmable Read-Only Memory (Programmable Read-Only Memory, referred to as PROM), read-only Memory (Read-Only Memory, referred to as ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • Multimedia components 703 may include screen and audio components.
  • the screen can be, for example, a touch screen, and the audio component is used for outputting and/or inputting audio signals.
  • an audio component may include a microphone for receiving external audio signals.
  • the received audio signal may be further stored in memory 702 or sent via communication component 705 .
  • the audio component also includes at least one speaker for outputting audio signals.
  • the I/O interface 704 provides an interface between the processor 701 and other interface modules, which may be a keyboard, a mouse, buttons, and the like. These buttons can be virtual buttons or physical buttons.
  • the communication component 705 is used for wired or wireless communication between the controller 700 and other devices.
  • Wireless communication such as Wi-Fi, Bluetooth, Near Field Communication (NFC for short), 2G, 3G, 4G, NB-IOT, eMTC, or other 5G, etc., or one or more of them Combinations are not limited here. Therefore, the corresponding communication component 705 may include: a Wi-Fi module, a Bluetooth module, an NFC module and the like.
  • the controller 700 may be implemented by one or more application-specific integrated circuits (Application Specific Integrated Circuit, ASIC for short), digital signal processors (Digital Signal Processor, DSP for short), digital signal processing equipment (Digital Signal Processing Device, referred to as DSPD), programmable logic device (Programmable Logic Device, referred to as PLD), field programmable gate array (Field Programmable Gate Array, referred to as FPGA), controller, microcontroller, microprocessor or other electronic components
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD programmable logic device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components
  • the implementation is used to execute the above-mentioned method for determining the driving range of an electric vehicle.
  • a non-transitory computer-readable storage medium including program instructions.
  • the program instructions are executed by a processor, the above-mentioned steps of the method for determining the driving range of an electric vehicle are implemented.
  • the computer-readable storage medium can be the above-mentioned memory 702 including program instructions, and the above-mentioned program instructions can be executed by the processor 701 of the controller 700 to complete the above-mentioned method for determining the driving range of an electric vehicle.
  • a computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above-mentioned Part of the code for the method for determining the driving range of electric vehicles.
  • the present disclosure also provides a vehicle, including the device 600 for determining the driving range of an electric vehicle provided in the present disclosure, or the controller 700 provided in the present disclosure.
  • the present disclosure also proposes a computing processing device, including:
  • One or more processors when the computer readable code is executed by the one or more processors, the computing processing device executes the aforementioned method for determining the driving range of an electric vehicle.
  • the present disclosure also proposes a computer program, including computer readable codes, which, when the computer readable codes are run on a computing processing device, cause the computing processing device to perform the aforementioned continuous driving of the electric vehicle Mileage determination method.
  • the present disclosure also proposes a computer-readable storage medium in which the aforementioned computer program is stored.
  • FIG. 8 is a schematic structural diagram of a computing processing device provided by an embodiment of the present disclosure.
  • the computing processing device typically includes a processor 1110 and a computer program product or computer readable medium in the form of memory 1130 .
  • Memory 1130 may be electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1130 has a storage space 1150 for program code 1151 for performing any method steps in the methods described above.
  • the storage space 1150 for program codes may include respective program codes 1151 for respectively implementing various steps in the above methods. These program codes can be read from or written into one or more computer program products.
  • These computer program products comprise program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks.
  • Such a computer program product is typically a portable or fixed storage unit as shown in FIG. 9 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the storage 1130 in the server of FIG. 8 .
  • the program code can eg be compressed in a suitable form.
  • the storage unit includes computer readable code 1151', i.e. code readable by, for example, a processor such as 1110, which when executed by the server causes the server to perform the various steps in the methods described above.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate or transmit a program for use in or in conjunction with an instruction execution system, device or device.
  • computer-readable media include the following: electrical connection with one or more wires (electronic device), portable computer disk case (magnetic device), random access memory (RAM), Read Only Memory (ROM), Erasable and Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, since the program can be read, for example, by optically scanning the paper or other medium, followed by editing, interpretation or other suitable processing if necessary. processing to obtain the program electronically and store it in computer memory.
  • various parts of the present disclosure may be implemented in hardware, software, firmware or a combination thereof.
  • various steps or methods may be implemented by software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware as in another embodiment, it can be implemented by any one or a combination of the following techniques known in the art: a discrete Logic circuits, ASICs with suitable combinational logic gates, Programmable Gate Arrays (PGA), Field Programmable Gate Arrays (FPGA), etc.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing module, each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are realized in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动车辆续驶里程确定方法、装置和车辆。该方法包括:S101、在电动车辆上电时,计算电动车辆的当前虚拟SOE值;S102、比较当前虚拟SOE值与存储虚拟SOE值,其中,存储虚拟SOE值为电动车辆上次下电前存储的虚拟SOE值;S103、若当前虚拟SOE值与存储虚拟SOE值之差超出预设的差值范围,则根据当前虚拟SOE值确定初始显示续驶里程;S104、若当前虚拟SOE值与存储虚拟SOE值之差处于差值范围内,则将电动车辆上次下电前存储的实际剩余里程确定为初始显示续驶里程;S105、显示初始显示续驶里程。如此,能够提高初始显示续驶里程的准确性,提升用户电动车辆使用的体验感。

Description

电动车辆续驶里程确定方法、装置和车辆
相关申请的交叉引用
本公开要求在2021年05月24日提交中国专利局、申请号为202110567337.0、名称为“电动车辆续驶里程确定方法、装置、控制器、介质和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆控制技术领域,尤其涉及一种电动车辆续驶里程确定方法、装置和车辆。
背景技术
由于对环境的影响相对传统车辆较小,且使用成本更低,电动车辆的普及度越来越高,更多用户选择用电动车辆出行。为了让用户提前规划好行程和路线,避免因电量耗尽影响出行需求,电动车的续驶里程成为用户出行需参考的重要消息。
在确定电动车辆的续航里程时,电动车辆显示的初始续驶里程是重要参数之一。目前现有的初始续驶里程的估算方法一般使用的存储的实际剩余里程值,或使用实时计算的续驶里程值作为初始化的值,两种方法都不能准确的显示真实的剩余里程值,导致电动车辆的续驶里程估算不准确。
发明内容
本公开的目的是提供一种电动车辆续驶里程确定方法、装置和车辆,以提高初始显示续驶里程的准确性,提升用户的电动车辆使用的体验感。
为了实现上述目的,本公开第一方面提供一种电动车辆续驶里程确定方法,该方法包括:
在所述电动车辆上电时,计算所述电动车辆的当前虚拟SOE(state of energy,电池剩余电量)值;
比较所述当前虚拟SOE值与存储虚拟SOE值,其中,所述存储虚拟SOE值为所述电动车辆上次下电前存储的虚拟SOE值;
若所述当前虚拟SOE值与所述存储虚拟SOE值之差超出预设的差值范围,则根据 所述当前虚拟SOE值确定初始显示续驶里程;
若所述当前虚拟SOE值与所述存储虚拟SOE值之差处于所述差值范围内,则将所述电动车辆上次下电前存储的实际剩余里程确定为所述初始显示续驶里程;
显示所述初始显示续驶里程。
可选地,该方法还包括:
若所述当前虚拟SOE值与所述存储虚拟SOE值之差超出预设的差值范围,将所述电动车辆的目标能耗确定为初始显示能耗;
若所述当前虚拟SOE值与所述存储虚拟SOE值之差处于所述差值范围内,则将所述电动车辆上次下电前存储的平均能耗确定为所述初始显示能耗;
显示所述初始显示能耗。
可选地,所述根据所述当前虚拟SOE值确定初始显示续驶里程,包括:
根据所述当前虚拟SOE值与所述电动车辆的目标能耗之比,确定所述初始显示续驶里程。
可选地,在所述电动车辆上电后,该方法还包括:
在所述电动车辆处于静止状态的过程中,每当所述电动车辆的动力电池的SOC值下降到满足第一续驶里程计算条件时,根据当前显示的续驶里程和所述动力电池的当前SOC值,确定续驶里程下降系数,并根据所述动力电池的SOC下降值与所述续驶里程下降系数,确定续驶里程下降值,其中,所述SOC下降值为所述动力电池在本次满足所述第一续驶里程计算条件时的SOC值相比于上次满足所述第一续驶里程计算条件时的SOC值的下降值;
根据所述当前显示的续驶里程与所述续驶里程下降值之差,确定更新的续驶里程;
显示所述更新的续驶里程。
可选地,所述第一续驶里程计算条件为:所述动力电池的SOC值下降第一预设比例。
可选地,所述根据当前显示的续驶里程和所述动力电池的当前SOC值,确定续驶里程下降系数,包括:
根据当前显示的续驶里程和所述动力电池的当前SOC值之比,确定续驶里程下降系数;
所述根据所述动力电池的SOC下降值与所述续驶里程下降系数,确定续驶里程下降值,包括:
根据所述动力电池的SOC下降值与所述续驶里程下降系数之积,确定所述续驶里程下降值。
可选地,在所述电动车辆上电后,该方法还包括:
在所述电动车辆处于行驶过程中,若满足第一续驶里程滤波条件,则每当所述电动车辆的行驶里程变化到满足第二续驶里程计算条件时,根据当前显示的续驶里程与当前实际剩余里程之间的差值、以及所述电动车辆的动力电池的当前SOC值,通过查表确定与所述当前SOC值和所述差值对应的续驶里程下降系数,其中,所述当前实际剩余里程是基于当前虚拟SOE值和当前平均能耗实时确定的;根据所述电动车辆的行驶里程变化值与所述续驶里程下降系数,确定续驶里程下降值,其中,所述行驶里程变化值为所述电动车辆在本次满足所述第二续驶里程计算条件时的行驶里程相比于上次满足所述第二续驶里程计算条件时的行驶里程的变化值;
根据所述当前显示的续驶里程与所述续驶里程下降值之差,确定更新的续驶里程;
显示所述更新的续驶里程;
其中,所述第一续驶里程滤波条件包括:
所述动力电池的当前SOC值小于预设的SOC阈值;或者,
所述动力电池的当前SOC值大于或等于所述SOC阈值、且当前显示的续驶里程大于当前实际剩余里程;或者,
所述动力电池的当前SOC值大于或等于所述SOC阈值、且所述动力电池的SOC值在下降。
可选地,所述第二续驶里程计算条件为:所述行驶里程增加预设距离。
可选地,所述根据所述电动车辆的行驶里程变化值与所述续驶里程下降系数,确定续驶里程下降值,包括:
根据所述电动车辆的行驶里程变化值与所述续驶里程下降系数之比,确定所述续驶里程下降值。
可选地,在所述电动车辆上电后,该方法还包括:
在所述电动车辆处于行驶过程中,若满足第二续驶里程滤波条件,则每隔第一预设时间,将当前实际剩余里程确定为更新的续驶里程,之后,执行所述显示所述更新的续驶里程的步骤;
其中,所述第二续驶里程滤波条件包括:所述动力电池的当前SOC值大于或等于所 述SOC阈值、所述动力电池的SOC值在上升、且当前显示的续驶里程小于当前实际剩余里程。
可选地,在所述电动车辆上电后,该方法还包括:
在所述电动车辆处于充电的过程中,若满足第三续驶里程滤波条件,则每隔第二预设时间,根据目标比例以及所述动力电池在所述第二预设时间内的SOC变化值,确定续航里程增加值,其中,所述目标比例为电动车辆最大的续驶里程与当前显示的续驶里程的差值和所述动力电池满电量时的SOC值与所述动力电池的当前SOC值的差值之比;
根据所述当前显示的续驶里程与所述续驶里程增加值之和,确定更新的续驶里程;
显示所述更新的续驶里程;
其中,所述第三续驶里程滤波条件包括:所述动力电池的当前SOC值未达到所述动力电池满电量时的SOC值,或者,当前显示的续驶里程未达到所述电动车辆最大的续驶里程。
可选地,所述根据目标比例以及所述动力电池在所述第二预设时间内的SOC变化值,确定续航里程增加值,包括:
根据所述目标比例与所述SOC变化值之积,确定续航里程增加值。
本公开第二方面提供一种电动车辆续驶里程确定装置,该装置包括:
计算模块,用于在所述电动车辆上电时,计算所述电动车辆的当前虚拟SOE值;
比较模块,用于比较所述当前虚拟SOE值与存储虚拟SOE值,其中,所述存储虚拟SOE值为所述电动车辆上次下电前存储的虚拟SOE值;
初始显示续驶里程确定模块,用于若所述当前虚拟SOE值与所述存储虚拟SOE值之差超出预设的差值范围,则根据所述当前虚拟SOE值确定初始显示续驶里程;若所述当前虚拟SOE值与所述存储虚拟SOE值之差处于所述差值范围内,则将所述电动车辆上次下电前存储的实际剩余里程确定为所述初始显示续驶里程;
显示模块,用于显示所述初始显示续驶里程。
可选地,电动车辆续驶里程确定装置还可以包括:
初始显示能耗确定模块,用于若所述当前虚拟SOE值与所述存储虚拟SOE值之差超出预设的差值范围,将所述电动车辆的目标能耗确定为初始显示能耗;若所述当前虚拟SOE值与所述存储虚拟SOE值之差处于所述差值范围内,则将所述电动车辆上次下电前存储的平均能耗确定为所述初始显示能耗;
所述显示模块,还可以用于显示所述初始显示能耗。
可选地,所述初始显示续驶里程确定模块用于通过以下方式来根据所述当前虚拟SOE值确定初始显示续驶里程:根据所述当前虚拟SOE值与所述电动车辆的目标能耗之比,确定所述初始显示续驶里程。
可选地,电动车辆续驶里程确定装置还可以包括:
第一续驶里程下降值确定模块,用于在电动车辆上电后,在所述电动车辆处于静止状态的过程中,每当所述电动车辆的动力电池的SOC值下降到满足第一续驶里程计算条件时,根据当前显示的续驶里程和所述动力电池的当前SOC值,确定续驶里程下降系数,并根据所述动力电池的SOC下降值与所述续驶里程下降系数,确定续驶里程下降值,其中,所述SOC下降值为所述动力电池在本次满足所述第一续驶里程计算条件时的SOC值相比于上次满足所述第一续驶里程计算条件时的SOC值的下降值;
续驶里程更新模块,用于根据所述当前显示的续驶里程与所述续驶里程下降值之差,确定更新的续驶里程;
所述显示模块还用于显示所述更新的续驶里程。
可选地,所述第一续驶里程下降值确定模块用于通过以下方式确定续驶里程下降系数和续驶里程下降值:根据当前显示的续驶里程和所述动力电池的当前SOC值之比,确定续驶里程下降系数;根据所述动力电池的SOC下降值与所述续驶里程下降系数之积,确定所述续驶里程下降值。
可选地,电动车辆续驶里程确定装置还可以包括:
第二续驶里程下降值确定模块,用于在电动车辆上电后,在电动车辆处于行驶过程中,若满足第一续驶里程滤波条件,则每当所述电动车辆的行驶里程变化到满足第二续驶里程计算条件时,根据当前显示的续驶里程与当前实际剩余里程之间的差值、以及所述电动车辆的动力电池的当前SOC值,通过查表确定与所述当前SOC值和所述差值对应的续驶里程下降系数;根据所述电动车辆的行驶里程变化值与所述续驶里程下降系数,确定续驶里程下降值,其中,所述行驶里程变化值为所述电动车辆在本次满足所述第二续驶里程计算条件时的行驶里程相比于上次满足所述第二续驶里程计算条件时的行驶里程的变化值;
续驶里程更新模块,用于根据所述当前显示的续驶里程与所述续驶里程下降值之差,确定更新的续驶里程;
所述显示模块还用于显示所述更新的续驶里程。
可选地,所述第二续驶里程下降值确定模块用于通过以下方式确定续驶里程下降值:根据所述电动车辆的行驶里程变化值与所述续驶里程下降系数之比,确定所述续驶里程下降值。
可选地,所述续驶里程更新模块还可以用于:在所述电动车辆处于行驶过程中,若满足第二续驶里程滤波条件,则每隔第一预设时间,将当前实际剩余里程确定为更新的续驶里程,之后,触发所述显示模块显示所述更新的续驶里程。
可选地,电动车辆续驶里程确定装置还可以包括:
续航里程增加值确定模块,用于在电动车辆上电后,在所述电动车辆处于充电的过程中,若满足第三续驶里程滤波条件,则每隔第二预设时间,根据目标比例以及所述动力电池在所述第二预设时间内的SOC变化值,确定续航里程增加值,其中,所述目标比例为电动车辆最大的续驶里程与当前显示的续驶里程的差值和所述动力电池满电量时的SOC值与所述动力电池的当前SOC值的差值之比;
续驶里程更新模块,用于根据所述当前显示的续驶里程与所述续驶里程增加值之和,确定更新的续驶里程;
所述显示模块还用于显示所述更新的续驶里程。
可选地,所述续航里程增加值确定模块用于通过以下方式确定续航里程增加值:根据所述目标比例与所述SOC变化值之积,确定续航里程增加值。
本公开第三方面提供一种控制器,包括:
存储器,其上存储有计算机程序;
控制器,所述计算机程序被控制器执行时,实现本公开第一方面所述方法的步骤。
本公开第四方面提供一种非暂时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开第一方面所述方法的步骤。
本公开第五方面提供一种电动车辆,包括本公开第二方面所提供的装置,或本公开第三方面所提供的控制器。
第六方面,本公开还提供一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行本公开第一方面实施例所提出的电动车辆续驶里程确定方法。
第七方面,本公开还提供一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行本公开第一方面实施例所提出的电动车辆续驶里程确定方法。
第八方面,本公开还提供一种计算机可读存储介质,其中存储了本公开第五方面实施例所提出的计算机程序。
通过上述技术方案,在电动车辆续驶里程确定的过程中,在电动车辆上电后,对初始显示续驶里程进行了修正。具体为,当本次上电计算的当前虚拟SOE值上次与下电前存储的虚拟SOE值的差值超出预设的差值范围,则根据当前虚拟SOE值确定初始显示续驶里程,否则将电动车辆上次下电前存储的实际剩余里程确定为初始显示续驶里程。如此,在确定初始显示续驶里程的过程中引入预设的差值范围,根据电动车辆状态给定准确的值,将历史记录和实时计算结果有机的结合在一起,能够提高初始显示续驶里程的准确性,提升用户的电动车辆使用的体验感。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开一示例性实施例提供的电动车辆续驶里程确定方法的流程图;
图2是本公开另一示例性实施例提供的电动车辆续驶里程确定方法的流程图;
图3是本公开另一示例性实施例提供的电动车辆续驶里程确定方法的流程图;
图4是本公开另一示例性实施例提供的电动车辆续驶里程确定方法的流程图;
图5是本公开另一示例性实施例提供的电动车辆续驶里程确定方法的流程图;
图6是本公开一示例性实施例提供的电动车辆续驶里程确定装置的框图;
图7是本公开另一示例性实施例提供的控制器的框图;
图8为本公开实施例提供了一种计算处理设备的结构示意图;
图9为本公开实施例提供了一种用于便携式或者固定实现根据本发明的方法的程序代码的存储单元的示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述本公开实施例的电动车辆续驶里程确定方法和装置。
图1是本公开一示例性实施例提供的电动车辆续驶里程确定方法的流程图。该方法可以应用于车辆,例如车辆内部的控制部件,如车身控制器、整车控制器、电池管理系统等等。如图1所示,该方法可以包括S101至S105。
S101,在电动车辆上电时,计算电动车辆的当前虚拟SOE值。
示例性地,虚拟SOE值是根据电动车辆的电池剩余电量百分比、电池健康度、电池电量理论值和电池包的电芯温度系数计算得到的SOE值,具体计算方式如下:
虚拟SOE=SOC*SOH*电池包的电芯温度系数*电池电量理论值
其中,SOC(state of charge)为电池剩余电量百分比;SOH(state of health)为电池健康度,即电池当前的容量与出厂容量的百分比。
S102,比较当前虚拟SOE值与存储虚拟SOE值,其中,存储虚拟SOE值为电动车辆上次下电前存储的虚拟SOE值。
其中,电动车辆每次下电前,会将电动车辆的当前实际剩余里程、平均能耗和虚拟SOE值,存储到控制器底层中,在电动车辆重新上电时调用上次下电前存储的虚拟SOE值,根据当前虚拟SOE值与存储虚拟SOE值的比较结果,确定初始显示续航里程。
S103,若当前虚拟SOE值与存储虚拟SOE值之差超出预设的差值范围,则根据当前虚拟SOE值确定初始显示续驶里程。
其中,上述的超出预设的差值范围是指:大于该差值范围的上限值的情况以及小于该差值范围的下限值的情况。
若当前虚拟SOE值与存储虚拟SOE值之差超出预设的差值范围,说明电动车辆当前状态与下电前状态差别较大,选择用当前虚拟SOE值来确定初始显示续驶里程,可以避免因调用电动车辆上次下电前存储的实际剩余里程造成的误差,使初始显示续驶里程更为准确。
S104,若当前虚拟SOE值与存储虚拟SOE值之差处于该差值范围内,则将电动车辆上次下电前存储的实际剩余里程确定为初始显示续驶里程。
其中,上述的处于该差值范围是指:小于或等于该差值范围的上限值且大于或等于 该差值范围的下限值的情况。
若当前虚拟SOE值与存储虚拟SOE值之差处于该差值范围,说明电动车辆当前状态与下电前状态基本一致,将电动车辆上次下电前存储的实际剩余里程确定为初始显示续驶里程,可以满足初始显示续驶里程的准确性要求。
S105,显示初始显示续驶里程。
示例地,可以通过车内的显示部件进行显示,该显示部件包括但不限于:仪表盘、行车电脑的显示屏、与车辆进行通信的其他外部电子设备的显示屏等等。
通过上述技术方案,在电动车辆续驶里程确定的过程中,在电动车辆上电后,对初始显示续驶里程进行了修正。具体为,当本次上电计算的当前虚拟SOE值与上次下电前存储的虚拟SOE值的差值超出预设的差值范围,则根据当前虚拟SOE值确定初始显示续驶里程,否则将电动车辆上次下电前存储的实际剩余里程确定为初始显示续驶里程。如此,在确定初始显示续驶里程的过程中引入预设的差值范围,根据电动车辆状态给定准确的值,将历史记录和实时计算结果有机的结合在一起,能够提高初始显示续驶里程的准确性,提升用户的电动车辆使用的体验感。
为了让用户更好的规划好行程和路线,避免因电量耗尽造成的不便,提升用户体验感,在电动车辆使用过程中,平均能耗同样被用作用户出行需参考的重要参数。
图2是本公开另一示例性实施例提供的电动车辆续驶里程确定方法的流程图。如图2所示,该方法可以包括S201至S207。
S201,在电动车辆上电时,计算电动车辆的当前虚拟SOE值。
S202,比较当前虚拟SOE值与存储虚拟SOE值。
若当前虚拟SOE值与存储虚拟SOE值之差超出预设的差值范围,则执行S203和S204。
S203,将电动车辆的目标能耗确定为初始显示能耗。
示例性地,目标能耗为动力电池的电量理论值与电动车辆最大续驶里程之比,即,目标能耗=动力电池的电量理论值/电动车辆最大续驶里程,可通过同车型电动车辆实验结果进行设置。
S204,根据当前虚拟SOE值确定初始显示续驶里程。
若当前虚拟SOE值与存储虚拟SOE值之差处于差值范围内,则执行S205和S206。
S205,将电动车辆上次下电前存储的实际剩余里程确定为初始显示续驶里程。
S206,将电动车辆上次下电前存储的平均能耗确定为初始显示能耗。
S207,显示初始显示续驶里程和初始显示能耗。
对于本领域技术人员公知的,平均能耗的计算方式有多种。在本公开提供的示例性实施方式中,为了提高平均能耗计算的准确性,平均能耗可以采用n个(例如,n=30)单位片段平均能耗迭代的方法来计算,每个单位片段距离为Skm,计算在Skm行驶所消耗的能量为SumEDrv(电池实际放电功率积分值),行驶消耗能量SumEDrv和距离Skm之比,确定为此片段路段的计算行驶平均能耗AvgE n,单位kw·h/km,将电动车辆行驶的平均能耗AvgE写成迭代形式,即:
AvgE=(a 1*AvgE 1+a 2*AvgE 2+…+a n-1*AvgE n-1+a n*AvgE n)/n
a 1、a 2、……、a n-1、a n参数为各片段平均能耗的权重系数,其中,距离当前越远的片段,其权重越低,权重系数是通过实车验证标定的值,其中a 1+a 2+…+a n-1+a n=n。
根据上述技术方案,将平均能耗设置为用户出行需参考的重要参数。在电动车辆使用时,根据本次上电计算的当前虚拟SOE值与上次下电前存储的虚拟SOE值是否超出预设的差值范围,确定初始显示能耗,其中引入目标能耗,避免因存储的平均能耗和实际平均能耗差距过大导致的初始显示能耗不准的问题,能够提高初始显示能耗的准确性,进一步提升用户的电动车辆使用的体验感。
在一种可能的实施方式中,根据当前虚拟SOE值确定初始显示续驶里程,可以包括:根据当前虚拟SOE值与电动车辆的目标能耗之比,确定初始显示续驶里程。例如,初始显示续驶里程=当前虚拟SOE值/目标能耗。
在电动车辆的实际使用中,除了初始显示里程和初始显示能耗之外,电动车辆在静止、行驶、充电状态下显示的续驶里程同样对用户出行有重要的参考意义。
图3是本公开另一示例性实施例提供的电动车辆续驶里程确定方法的流程图。如图3所示,在电动车辆上电后,该方法还可以包括:
S301,在电动车辆处于静止状态的过程中,每当电动车辆的动力电池的SOC值下降到满足第一续驶里程计算条件时,根据当前显示的续驶里程和动力电池的当前SOC值,确定续驶里程下降系数,并根据动力电池的SOC下降值与续驶里程下降系数,确定续驶里程下降值,其中,该SOC下降值为动力电池在本次满足第一续驶里程计算条件时的SOC值相比于上次满足第一续驶里程计算条件时的SOC值的下降值。
示例性地,上述的第一续驶里程计算条件可以为:动力电池的SOC值下降第一预设 比例,该第一预设比例例如为0.05%,即在SOC值每下降0.05%时,车辆在静止状态下的续驶里程下降系数更新一次,并更新显示的续驶里程,确保用户能够实时获取更新的续驶里程。在其他实施方式中,上述的第一续驶里程计算条件也可以为:动力电池的SOC值下降预设阈值。
示例性地,根据当前显示的续驶里程和动力电池的当前SOC值,确定续驶里程下降系数,可以包括:根据当前显示的续驶里程和动力电池的当前SOC值之比,确定续驶里程下降系数。例如,续驶里程下降系数=当前显示的续驶里程/当前SOC值。
示例性地,根据动力电池的SOC下降值与续驶里程下降系数,确定续驶里程下降值,可以包括:根据动力电池的SOC下降值与续驶里程下降系数之积,确定续驶里程下降值。例如,续驶里程下降值=SOC下降值×续驶里程下降系数。
S302,根据当前显示的续驶里程与续驶里程下降值之差,确定更新的续驶里程。示例性地,更新的续驶里程=当前显示的续驶里程-续驶里程下降值。
S303,显示更新的续驶里程,以替换之前显示的续驶里程。
根据上述技术方案,在电动车辆处于静止状态的过程中,对续驶里程进行滤波计算,根据当前显示的续驶里程和动力电池的当前SOC值之比实时确定下降系数,用于确定更新的续驶里程值,能够提高用户获取的续驶里程的准确性,以进一步提升用户的电动车辆使用的体验感。
图4是本公开另一示例性实施例提供的电动车辆续驶里程确定方法的流程图。如图4所示,在电动车辆上电后,该方法还可以包括:
S401,在电动车辆处于行驶过程中,若满足第一续驶里程滤波条件,则每当电动车辆的行驶里程变化到满足第二续驶里程计算条件时,根据当前显示的续驶里程与当前实际剩余里程之间的差值、以及电动车辆的动力电池的当前SOC值,通过查表确定与当前SOC值和该差值对应的续驶里程下降系数,其中,该当前实际剩余里程是基于当前虚拟SOE值和当前平均能耗实时确定的;根据电动车辆的行驶里程变化值与续驶里程下降系数,确定续驶里程下降值,其中,该行驶里程变化值为电动车辆在本次满足第二续驶里程计算条件时的行驶里程相比于上次满足第二续驶里程计算条件时的行驶里程的变化值。
示例性地,上述的第一续驶里程滤波条件可以包括:
动力电池的当前SOC值小于预设的SOC阈值;或者,
动力电池的当前SOC值大于或等于SOC阈值、且当前显示的续驶里程大于当前实 际剩余里程;或者,
动力电池的当前SOC值大于或等于SOC阈值、且动力电池的SOC值在下降。
示例性地,上述的第二续驶里程计算条件可以为:行驶里程增加预设距离。例如,该预设距离可以设置为1km,即车辆在行驶状态下,每行驶1km,根据当前显示的续驶里程与当前实际剩余里程之间的差值、以及电动车辆的动力电池的当前SOC值,通过查表确定出与当前SOC值和该差值对应的续驶里程下降系数,并据此更新显示的续驶里程,确保用户能够实时获取更新的续驶里程。在其他实施方式中,上述的第二续驶里程计算条件也可以为:行驶里程增加第二预设比例。
示例性地,车辆的实际剩余里程基于车辆的虚拟SOE值和平均能耗来确定。例如,实际剩余里程=虚拟SOE值/平均能耗。
示例性地,因为不同驾驶习惯和路况的复杂性,所以续驶里程是会变化的,可能会行驶0.5km,显示的续驶里程就下降1km,反之可能行驶1.5km,显示的续驶里程才会下降1km。可以预先通过实验数据,预先标定出数据表,该数据表中记录了显示的续驶里程与实际剩余里程之间的差值、动力电池的SOC值以及续驶里程下降系数三者之间的对应关系。如此,在S401中,可以根据当前显示的续驶里程与当前实际剩余里程之间的差值、以及电动车辆的动力电池的当前SOC值,通过查询该数据表,确定出与当前SOC值和该差值对应的续驶里程下降系数。
在确定出续驶里程下降系数之后,根据电动车辆的行驶里程变化值与续驶里程下降系数,确定续驶里程下降值。示例性地,根据电动车辆的行驶里程变化值与续驶里程下降系数之比,确定续驶里程下降值。例如,续驶里程下降值=行驶里程变化值/续驶里程下降系数。
S402,根据当前显示的续驶里程与续驶里程下降值之差,确定更新的续驶里程。示例性地,更新的续驶里程=当前显示的续驶里程-续驶里程下降值。
S403,显示更新的续驶里程,以替换之前显示的续驶里程。
根据上述技术方案,在电动车辆处于行驶状态的过程中,对续驶里程进行滤波计算,在满足第一续驶里程滤波条件的情况下,根据当前显示的续驶里程与当前实际剩余里程之间的差值、以及电动车辆的动力电池的当前SOC值,通过查表实时确定续驶里程下降系数,并据此确定更新的续驶里程值,能够提高用户获取的续驶里程的准确性,进一步提升用户电动车辆使用的体验感。
在一种可能的实施方式中,如图4所示,在电动车辆上电后,该方法还可以包括:
S404,在电动车辆处于行驶过程中,若满足第二续驶里程滤波条件,则每隔第一预设时间,将当前实际剩余里程确定为更新的续驶里程,之后,执行步骤S403。
其中,第二续驶里程滤波条件可以包括:动力电池的当前SOC值大于或等于SOC阈值、动力电池的SOC值在上升、且当前显示的续驶里程小于当前实际剩余里程。示例性地,当电动车辆动力电池的温度上升或电动车辆滑行导致能量回收,此时动力电动的SOC值会上升。
示例性地,该第一预设时间可设置为100ms,即电动车辆处于行驶状态下,在满足第二续驶里程滤波条件的情况下,时间间隔每达到100ms时,显示的续驶里程被更新为当前实际剩余里程,确保用户能够实时获取更新的续驶里程。
根据上述技术方案,在电动车辆处于行驶状态的过程中,对续驶里程进行滤波计算,在满足第二续驶里程滤波条件的情况下,每隔第一预设时间,将当前实际剩余里程确定为更新的续驶里程,避免在动力电动的SOC值上升的情况下,因更新的续驶里程不准,导致用户无法更好的规划行程的问题。
图5是本公开另一示例性实施例提供的电动车辆续驶里程确定方法的流程图。如图5所示,在电动车辆上电后,该方法还可以包括:
S501,在电动车辆处于充电的过程中,若满足第三续驶里程滤波条件,则每隔第二预设时间,根据目标比例以及动力电池在第二预设时间内的SOC变化值,确定续航里程增加值,其中,目标比例为电动车辆最大的续驶里程与当前显示的续驶里程的差值和动力电池满电量时的SOC值与动力电池的当前SOC值的差值之比。即,目标比例=(电动车辆最大的续驶里程-当前显示的续驶里程)/(动力电池满电量时的SOC值-动力电池的当前SOC值)。
示例性地,第三续驶里程滤波条件可以包括:动力电池的当前SOC值未达到动力电池满电量时的SOC值,或者,当前显示的续驶里程未达到车辆最大的续驶里程。
示例性地,第二预设时间的数值可与第一预设时间的数值相同,也可不同。例如,第二预设时间可设置为100ms,即电动车辆处于行驶状态下,在满足第三续驶里程滤波条件的情况下,时间间隔每达到100ms时,根据目标比例以及动力电池在该100ms内的SOC变化值之积,确定续航里程增加值,并据此确定更新的续驶里程,确保用户能够实时获取更新的续驶里程。
示例性地,根据目标比例以及动力电池在第二预设时间内的SOC变化值,确定续航里程增加值,可以包括:根据目标比例以及动力电池在第二预设时间内的SOC变化值之积,确定续航里程增加值。例如,续航里程增加值=SOC变化值×目标比例。
S502,根据当前显示的续驶里程与续驶里程增加值之和,确定更新的续驶里程。示例性地,更新的续驶里程=当前显示的续驶里程+续驶里程增加值。
S503,显示更新的续驶里程,以替换之前显示的续驶里程。
根据上述技术方案,在电动车辆处于充电状态的过程中,对续驶里程进行滤波计算,在满足第三滤波条件的情况下,进行实时更新,根据目标比例以及动力电池在第二预设时间内的SOC变化值之积,确定续驶里程增加值,并据此确定更新的续驶里程。如此,在充电时能够实时获取更新的续驶里程,提升用户电动车辆使用的体验感。
基于同一发明构思,本公开还提供一种电动车辆续驶里程确定装置。图6是本公开一示例性实施例提供的电动车辆续驶里程确定装置的结构框图。参照图6,该电动车辆续驶里程确定装置600可以包括:
计算模块601,用于在所述电动车辆上电时,计算所述电动车辆的当前虚拟SOE值;
比较模块602,用于比较所述当前虚拟SOE值与存储虚拟SOE值,其中,所述存储虚拟SOE值为所述电动车辆上次下电前存储的虚拟SOE值;
初始显示续驶里程确定模块603,用于若所述当前虚拟SOE值与所述存储虚拟SOE值之差超出预设的差值范围,则根据所述当前虚拟SOE值确定初始显示续驶里程;若所述当前虚拟SOE值与所述存储虚拟SOE值之差处于所述差值范围内,则将所述电动车辆上次下电前存储的实际剩余里程确定为所述初始显示续驶里程;
显示模块604,用于显示所述初始显示续驶里程。
通过上述技术方案,在电动车辆续驶里程确定的过程中,在电动车辆上电后,对初始显示续驶里程进行了修正。具体为,当本次上电计算的当前虚拟SOE值与上次下电前存储的虚拟SOE值的差值超出预设的差值范围,则根据当前虚拟SOE值确定初始显示续驶里程,否则将电动车辆上次下电前存储的实际剩余里程确定为初始显示续驶里程。如此,在确定初始显示续驶里程的过程中引入预设的差值范围,根据电动车辆状态给定准确的值,将历史记录和实时计算结果有机的结合在一起,能够提高初始显示续驶里程的准确性,提升用户的电动车辆使用的体验感。
在一种可能的实施方式中,电动车辆续驶里程确定装置600还可以包括:
初始显示能耗确定模块,用于若所述当前虚拟SOE值与所述存储虚拟SOE值之差超出预设的差值范围,将所述电动车辆的目标能耗确定为初始显示能耗;若所述当前虚拟SOE值与所述存储虚拟SOE值之差处于所述差值范围内,则将所述电动车辆上次下电前存储的平均能耗确定为所述初始显示能耗;
所述显示模块604,还可以用于显示所述初始显示能耗。
在一种可能的实施方式中,所述初始显示续驶里程确定模块603用于通过以下方式来根据所述当前虚拟SOE值确定初始显示续驶里程:根据所述当前虚拟SOE值与所述电动车辆的目标能耗之比,确定所述初始显示续驶里程。
在一种可能的实施方式中,电动车辆续驶里程确定装置600还可以包括:
第一续驶里程下降值确定模块,用于在电动车辆上电后,在所述电动车辆处于静止状态的过程中,每当所述电动车辆的动力电池的SOC值下降到满足第一续驶里程计算条件时,根据当前显示的续驶里程和所述动力电池的当前SOC值,确定续驶里程下降系数,并根据所述动力电池的SOC下降值与所述续驶里程下降系数,确定续驶里程下降值,其中,所述SOC下降值为所述动力电池在本次满足所述第一续驶里程计算条件时的SOC值相比于上次满足所述第一续驶里程计算条件时的SOC值的下降值;
续驶里程更新模块,用于根据所述当前显示的续驶里程与所述续驶里程下降值之差,确定更新的续驶里程;
所述显示模块604还用于显示所述更新的续驶里程。
在一种可能的实施方式中,所述第一续驶里程下降值确定模块用于通过以下方式确定续驶里程下降系数和续驶里程下降值:根据当前显示的续驶里程和所述动力电池的当前SOC值之比,确定续驶里程下降系数;根据所述动力电池的SOC下降值与所述续驶里程下降系数之积,确定所述续驶里程下降值。
在一种可能的实施方式中,电动车辆续驶里程确定装置600还可以包括:
第二续驶里程下降值确定模块,用于在电动车辆上电后,在电动车辆处于行驶过程中,若满足第一续驶里程滤波条件,则每当所述电动车辆的行驶里程变化到满足第二续驶里程计算条件时,根据当前显示的续驶里程与当前实际剩余里程之间的差值、以及所述电动车辆的动力电池的当前SOC值,通过查表确定与所述当前SOC值和所述差值对应的续驶里程下降系数;根据所述电动车辆的行驶里程变化值与所述续驶里程下降系数,确定续驶里程下降值,其中,所述行驶里程变化值为所述电动车辆在本次满足所述第二 续驶里程计算条件时的行驶里程相比于上次满足所述第二续驶里程计算条件时的行驶里程的变化值;
续驶里程更新模块,用于根据所述当前显示的续驶里程与所述续驶里程下降值之差,确定更新的续驶里程;
所述显示模块604还用于显示所述更新的续驶里程。
在一种可能的实施方式中,所述第二续驶里程下降值确定模块用于通过以下方式确定续驶里程下降值:根据所述电动车辆的行驶里程变化值与所述续驶里程下降系数之比,确定所述续驶里程下降值。
在一种可能的实施方式中,所述续驶里程更新模块还可以用于:在所述电动车辆处于行驶过程中,若满足第二续驶里程滤波条件,则每隔第一预设时间,将当前实际剩余里程确定为更新的续驶里程,之后,触发所述显示模块604显示所述更新的续驶里程。
在一种可能的实施方式中,电动车辆续驶里程确定装置600还可以包括:
续航里程增加值确定模块,用于在电动车辆上电后,在所述电动车辆处于充电的过程中,若满足第三续驶里程滤波条件,则每隔第二预设时间,根据目标比例以及所述动力电池在所述第二预设时间内的SOC变化值,确定续航里程增加值,其中,所述目标比例为电动车辆最大的续驶里程与当前显示的续驶里程的差值和所述动力电池满电量时的SOC值与所述动力电池的当前SOC值的差值之比;
续驶里程更新模块,用于根据所述当前显示的续驶里程与所述续驶里程增加值之和,确定更新的续驶里程;
所述显示模块604还用于显示所述更新的续驶里程。
在一种可能的实施方式中,所述续航里程增加值确定模块用于通过以下方式确定续航里程增加值:根据所述目标比例与所述SOC变化值之积,确定续航里程增加值。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图7是根据一示例性实施例示出的一种控制器700的框图。如图7所示,该控制器700可以包括:处理器701,存储器702。该控制器700还可以包括多媒体组件703,输入/输出(I/O)接口704,以及通信组件705中的一者或多者。
其中,处理器701用于控制该控制器700的整体操作,以完成上述的电动车辆续驶里程确定方法中的全部或部分步骤。存储器702用于存储各种类型的数据以支持在该控 制器700的操作,这些数据例如可以包括用于在该控制器700上操作的任何应用程序或方法的指令,以及应用程序相关的数据,例如联系人数据、收发的消息、图片、音频、视频等等。该存储器702可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,例如静态随机存取存储器(Static Random Access Memory,简称SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,简称EPROM),可编程只读存储器(Programmable Read-Only Memory,简称PROM),只读存储器(Read-Only Memory,简称ROM),磁存储器,快闪存储器,磁盘或光盘。多媒体组件703可以包括屏幕和音频组件。其中屏幕例如可以是触摸屏,音频组件用于输出和/或输入音频信号。例如,音频组件可以包括一个麦克风,麦克风用于接收外部音频信号。所接收的音频信号可以被进一步存储在存储器702或通过通信组件705发送。音频组件还包括至少一个扬声器,用于输出音频信号。I/O接口704为处理器701和其他接口模块之间提供接口,上述其他接口模块可以是键盘,鼠标,按钮等。这些按钮可以是虚拟按钮或者实体按钮。通信组件705用于该控制器700与其他设备之间进行有线或无线通信。无线通信,例如Wi-Fi,蓝牙,近场通信(Near Field Communication,简称NFC),2G、3G、4G、NB-IOT、eMTC、或其他5G等等,或它们中的一种或几种的组合,在此不做限定。因此相应的该通信组件705可以包括:Wi-Fi模块,蓝牙模块,NFC模块等等。
在一示例性实施例中,控制器700可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,简称ASIC)、数字信号处理器(Digital Signal Processor,简称DSP)、数字信号处理设备(Digital Signal Processing Device,简称DSPD)、可编程逻辑器件(Programmable Logic Device,简称PLD)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述的电动车辆续驶里程确定方法。
在另一示例性实施例中,还提供了一种包括程序指令的非暂时性计算机可读存储介质,该程序指令被处理器执行时实现上述的电动车辆续驶里程确定方法的步骤。例如,该计算机可读存储介质可以为上述包括程序指令的存储器702,上述程序指令可由控制器700的处理器701执行以完成上述的电动车辆续驶里程确定方法。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够 由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述的电动车辆续驶里程确定方法的代码部分。
本公开还提供一种车辆,包括本公开提供的电动车辆续驶里程确定装置600,或本公开提供的控制器700。
为了实现上述实施例,本公开还提出了一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行前述的电动车辆续驶里程确定方法。
为了实现上述实施例,本公开还提出了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行前述的电动车辆续驶里程确定方法。
为了实现上述实施例,本公开还提出了一种计算机可读存储介质,其中存储了前述的计算机程序。
图8为本公开实施例提供了一种计算处理设备的结构示意图。该计算处理设备通常包括处理器1110和以存储器1130形式的计算机程序产品或者计算机可读介质。存储器1130可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1130具有用于执行上述方法中的任何方法步骤的程序代码1151的存储空间1150。例如,用于程序代码的存储空间1150可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1151。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如图9所示的便携式或者固定存储单元。该存储单元可以具有与图8的服务器中的存储器1130类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1151’,即可以由例如诸如1110之类的处理器读取的代码,这些代码当由服务器运行时,导致该服务器执行上面所描述的方法中的各个步骤。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的 示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的 下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种电动车辆续驶里程确定方法,其特征在于,该方法包括:
    在所述电动车辆上电时,计算所述电动车辆的当前虚拟SOE值;
    比较所述当前虚拟SOE值与存储虚拟SOE值,其中,所述存储虚拟SOE值为所述电动车辆上次下电前存储的虚拟SOE值;
    若所述当前虚拟SOE值与所述存储虚拟SOE值之差超出预设的差值范围,则根据所述当前虚拟SOE值确定初始显示续驶里程;
    若所述当前虚拟SOE值与所述存储虚拟SOE值之差处于所述差值范围内,则将所述电动车辆上次下电前存储的实际剩余里程确定为所述初始显示续驶里程;
    显示所述初始显示续驶里程。
  2. 根据权利要求1所述的方法,其特征在于,该方法还包括:
    若所述当前虚拟SOE值与所述存储虚拟SOE值之差超出预设的差值范围,将所述电动车辆的目标能耗确定为初始显示能耗;
    若所述当前虚拟SOE值与所述存储虚拟SOE值之差处于所述差值范围内,则将所述电动车辆上次下电前存储的平均能耗确定为所述初始显示能耗;
    显示所述初始显示能耗。
  3. 根据权利要求1-2中任一项所述的方法,其特征在于,在所述电动车辆上电后,该方法还包括:
    在所述电动车辆处于静止状态的过程中,每当所述电动车辆的动力电池的SOC值下降到满足第一续驶里程计算条件时,根据当前显示的续驶里程和所述动力电池的当前SOC值,确定续驶里程下降系数,并根据所述动力电池的SOC下降值与所述续驶里程下降系数,确定续驶里程下降值,其中,所述SOC下降值为所述动力电池在本次满足所述第一续驶里程计算条件时的SOC值相比于上次满足所述第一续驶里程计算条件时的SOC值的下降值;
    根据所述当前显示的续驶里程与所述续驶里程下降值之差,确定更新的续驶里程;
    显示所述更新的续驶里程。
  4. 根据权利要求3所述的方法,其特征在于,所述第一续驶里程计算条件为:所述动力电池的SOC值下降第一预设比例。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,在所述电动车辆上电后, 该方法还包括:
    在所述电动车辆处于行驶过程中,若满足第一续驶里程滤波条件,则每当所述电动车辆的行驶里程变化到满足第二续驶里程计算条件时,根据当前显示的续驶里程与当前实际剩余里程之间的差值、以及所述电动车辆的动力电池的当前SOC值,通过查表确定与所述当前SOC值和所述差值对应的续驶里程下降系数,其中,所述当前实际剩余里程是基于当前虚拟SOE值和当前平均能耗实时确定的;根据所述电动车辆的行驶里程变化值与所述续驶里程下降系数,确定续驶里程下降值,其中,所述行驶里程变化值为所述电动车辆在本次满足所述第二续驶里程计算条件时的行驶里程相比于上次满足所述第二续驶里程计算条件时的行驶里程的变化值;
    根据所述当前显示的续驶里程与所述续驶里程下降值之差,确定更新的续驶里程;
    显示所述更新的续驶里程;
    其中,所述第一续驶里程滤波条件包括:
    所述动力电池的当前SOC值小于预设的SOC阈值;或者,
    所述动力电池的当前SOC值大于或等于所述SOC阈值、且当前显示的续驶里程大于当前实际剩余里程;或者,
    所述动力电池的当前SOC值大于或等于所述SOC阈值、且所述动力电池的SOC值在下降。
  6. 根据权利要求5所述的方法,其特征在于,所述第二续驶里程计算条件为:所述行驶里程增加预设距离。
  7. 根据权利要求5所述的方法,其特征在于,在所述电动车辆上电后,该方法还包括:
    在所述电动车辆处于行驶过程中,若满足第二续驶里程滤波条件,则每隔第一预设时间,将当前实际剩余里程确定为更新的续驶里程,之后,执行所述显示所述更新的续驶里程的步骤;
    其中,所述第二续驶里程滤波条件包括:所述动力电池的当前SOC值大于或等于所述SOC阈值、所述动力电池的SOC值在上升、且当前显示的续驶里程小于当前实际剩余里程。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,在所述电动车辆上电后,该方法还包括:
    在所述电动车辆处于充电的过程中,若满足第三续驶里程滤波条件,则每隔第二预设时间,根据目标比例以及所述动力电池在所述第二预设时间内的SOC变化值,确定续航里程增加值,其中,所述目标比例为电动车辆最大的续驶里程与当前显示的续驶里程的差值和所述动力电池满电量时的SOC值与所述动力电池的当前SOC值的差值之比;
    根据所述当前显示的续驶里程与所述续驶里程增加值之和,确定更新的续驶里程;
    显示所述更新的续驶里程;
    其中,所述第三续驶里程滤波条件包括:所述动力电池的当前SOC值未达到所述动力电池满电量时的SOC值,或者,当前显示的续驶里程未达到所述电动车辆最大的续驶里程。
  9. 一种电动车辆续驶里程确定装置,其特征在于,该装置包括:
    计算模块,用于在所述电动车辆上电时,计算所述电动车辆的当前虚拟SOE值;
    比较模块,用于比较所述当前虚拟SOE值与存储虚拟SOE值,其中,所述存储虚拟SOE值为所述电动车辆上次下电前存储的虚拟SOE值;
    初始显示续驶里程确定模块,用于若所述当前虚拟SOE值与所述存储虚拟SOE值之差超出预设的差值范围,则根据所述当前虚拟SOE值确定初始显示续驶里程;若所述当前虚拟SOE值与所述存储虚拟SOE值之差处于所述差值范围内,则将所述电动车辆上次下电前存储的实际剩余里程确定为所述初始显示续驶里程;
    显示模块,用于显示所述初始显示续驶里程。
  10. 根据权利要求9所述的装置,其特征在于,该装置还包括:
    初始显示能耗确定模块,用于若所述当前虚拟SOE值与所述存储虚拟SOE值之差超出预设的差值范围,将所述电动车辆的目标能耗确定为初始显示能耗;若所述当前虚拟SOE值与所述存储虚拟SOE值之差处于所述差值范围内,则将所述电动车辆上次下电前存储的平均能耗确定为所述初始显示能耗;
    所述显示模块,还用于显示所述初始显示能耗。
  11. 根据权利要求9-10中任一项所述的装置,其特征在于,该装置还包括:
    第一续驶里程下降值确定模块,用于在电动车辆上电后,在所述电动车辆处于静止状态的过程中,每当所述电动车辆的动力电池的SOC值下降到满足第一续驶里程计算条件时,根据当前显示的续驶里程和所述动力电池的当前SOC值,确定续驶里程下降系数,并根据所述动力电池的SOC下降值与所述续驶里程下降系数,确定续驶里程下降值,其 中,所述SOC下降值为所述动力电池在本次满足所述第一续驶里程计算条件时的SOC值相比于上次满足所述第一续驶里程计算条件时的SOC值的下降值;
    续驶里程更新模块,用于根据所述当前显示的续驶里程与所述续驶里程下降值之差,确定更新的续驶里程;
    所述显示模块还用于显示所述更新的续驶里程。
  12. 一种电动车辆,其特征在于,包括如权利要求9-11中任一项所述的电动车辆续驶里程确定装置。
  13. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;以及
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-8中任一项所述的电动车辆续驶里程确定方法。
  14. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-8中任一项所述的电动车辆续驶里程确定方法。
  15. 一种计算机可读存储介质,其中存储了如权利要求14所述的计算机程序。
PCT/CN2022/083865 2021-05-24 2022-03-29 电动车辆续驶里程确定方法、装置和车辆 WO2022247450A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22810183.8A EP4328082A1 (en) 2021-05-24 2022-03-29 Method and apparatus for determining driving range of electric vehicle, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110567337.0A CN114347854B (zh) 2021-05-24 2021-05-24 电动车辆续驶里程确定方法、装置、控制器、介质和车辆
CN202110567337.0 2021-05-24

Publications (1)

Publication Number Publication Date
WO2022247450A1 true WO2022247450A1 (zh) 2022-12-01

Family

ID=81096194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083865 WO2022247450A1 (zh) 2021-05-24 2022-03-29 电动车辆续驶里程确定方法、装置和车辆

Country Status (3)

Country Link
EP (1) EP4328082A1 (zh)
CN (1) CN114347854B (zh)
WO (1) WO2022247450A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116512984A (zh) * 2023-06-25 2023-08-01 江西五十铃汽车有限公司 一种车辆续航里程估算方法、系统、存储介质及设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114633833A (zh) * 2022-04-25 2022-06-17 江苏小牛电动科技有限公司 电动自行车的行驶参数确定方法、装置、设备和存储介质
CN114987287B (zh) * 2022-07-05 2023-06-27 阿维塔科技(重庆)有限公司 剩余续驶里程预测方法、装置、车辆及计算机存储介质
CN115610277B (zh) * 2022-10-31 2024-04-26 重庆赛力斯凤凰智创科技有限公司 车辆续驶里程的显示方法、装置、计算机设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140005855A1 (en) * 2012-06-29 2014-01-02 O2Micro Inc. Device and method for calculating a remaining mileage of an electric vehicle
US20160375782A1 (en) * 2015-06-23 2016-12-29 Atieva, Inc. Electric Vehicle Driving Range Optimization System with Dynamic Feedback
CN109050262A (zh) * 2018-08-27 2018-12-21 上海精虹新能源科技有限公司 一种纯电动汽车的剩余续驶里程估算方法及系统
CN109254544A (zh) * 2017-07-14 2019-01-22 比亚迪股份有限公司 汽车续驶里程的调整方法和装置
CN110015132A (zh) * 2017-09-12 2019-07-16 北京奔驰汽车有限公司 一种计算纯电动车剩余续驶里程的方法
CN111619356A (zh) * 2019-02-28 2020-09-04 北京新能源汽车股份有限公司 一种充电控制方法、装置、系统及汽车

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111439128B (zh) * 2020-03-12 2021-10-22 合创汽车科技有限公司 电动车辆剩余里程估计方法、装置和计算机设备
CN111579997B (zh) * 2020-04-30 2023-04-11 浙江零跑科技股份有限公司 一种电动汽车动力电池冻结能量估计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140005855A1 (en) * 2012-06-29 2014-01-02 O2Micro Inc. Device and method for calculating a remaining mileage of an electric vehicle
US20160375782A1 (en) * 2015-06-23 2016-12-29 Atieva, Inc. Electric Vehicle Driving Range Optimization System with Dynamic Feedback
CN109254544A (zh) * 2017-07-14 2019-01-22 比亚迪股份有限公司 汽车续驶里程的调整方法和装置
CN110015132A (zh) * 2017-09-12 2019-07-16 北京奔驰汽车有限公司 一种计算纯电动车剩余续驶里程的方法
CN109050262A (zh) * 2018-08-27 2018-12-21 上海精虹新能源科技有限公司 一种纯电动汽车的剩余续驶里程估算方法及系统
CN111619356A (zh) * 2019-02-28 2020-09-04 北京新能源汽车股份有限公司 一种充电控制方法、装置、系统及汽车

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116512984A (zh) * 2023-06-25 2023-08-01 江西五十铃汽车有限公司 一种车辆续航里程估算方法、系统、存储介质及设备

Also Published As

Publication number Publication date
CN114347854A (zh) 2022-04-15
CN114347854B (zh) 2024-05-17
EP4328082A1 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
WO2022247450A1 (zh) 电动车辆续驶里程确定方法、装置和车辆
WO2020259008A1 (zh) 电池的荷电状态修正方法、装置、系统和存储介质
US10830821B2 (en) Methods and apparatus for battery power and energy availability prediction
JP6316319B2 (ja) バッテリの状態を推定する方法、装置、システム、車両、およびコンピュータ・プログラム
JP2018059910A (ja) 電池の状態を推定するためのシステム及び方法、および、非一時的コンピュータ可読記憶媒体
US9575131B2 (en) Residual quantity display system
CN108061863A (zh) 检测电池的方法及装置、计算机可读存储介质、电池管理系统
JP2019128346A (ja) バッテリ容量の予測方法
WO2021249421A1 (zh) 驾驶模式控制方法、装置、设备、程序和介质
KR20160107093A (ko) 배터리의 잔존 유효 수명을 예측하는 방법 및 시스템
JP2018185663A (ja) 電子機器および制御方法
CN110501655B (zh) 控制电池工作的方法、电池参数获取方法、设备及介质
CN111137169B (zh) 一种续航里程的估算方法及装置
EP3711136A1 (en) Battery state estimation
CN112977164A (zh) 确定电动车辆续航里程的方法、装置和车辆
JP5387853B2 (ja) 走行可能距離算出装置及びこれを用いた車両
JP5387854B2 (ja) 走行可能距離算出装置及びこれを用いた車両
CN113740755A (zh) 电池包荷电状态的显示处理方法、装置及可读介质
Avvari et al. A battery chemistry-adaptive fuel gauge using probabilistic data association
CN117031292A (zh) 电池健康状态预测方法、装置、计算机设备和存储介质
WO2023123094A1 (zh) 确定续航里程的方法、装置、系统、电动汽车和存储介质
CN110303941A (zh) 一种电池均衡方法、系统、设备以及介质
CN115515045A (zh) 设备充电优化方法、装置、电子设备及可读存储介质
US11332119B2 (en) Apparatus and method for controlling vehicle, and vehicle system
CN114683958A (zh) 电动汽车及其双续航里程显示控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810183

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022810183

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022810183

Country of ref document: EP

Effective date: 20231123

NENP Non-entry into the national phase

Ref country code: DE