WO2022246980A1 - 内窥镜照明系统及其透镜、内窥镜设备 - Google Patents

内窥镜照明系统及其透镜、内窥镜设备 Download PDF

Info

Publication number
WO2022246980A1
WO2022246980A1 PCT/CN2021/105694 CN2021105694W WO2022246980A1 WO 2022246980 A1 WO2022246980 A1 WO 2022246980A1 CN 2021105694 W CN2021105694 W CN 2021105694W WO 2022246980 A1 WO2022246980 A1 WO 2022246980A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
endoscope
groove
incident surface
Prior art date
Application number
PCT/CN2021/105694
Other languages
English (en)
French (fr)
Inventor
汪远
王球
吴禹
Original Assignee
南京微纳科技研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京微纳科技研究院有限公司 filed Critical 南京微纳科技研究院有限公司
Publication of WO2022246980A1 publication Critical patent/WO2022246980A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres

Definitions

  • the invention belongs to the technical field of medical instruments, and relates to an endoscope lighting system, a lens thereof, and endoscope equipment.
  • Electronic endoscopy is a medical electronic optical instrument that can be inserted into human body cavities and visceral cavities for direct observation, diagnosis, and treatment, and integrates high-tech technologies such as light, mechanics, and electricity.
  • high-tech technologies such as light, mechanics, and electricity.
  • the lighting system of electronic endoscope adopts LED light source direct lighting, light-guiding fiber lighting, microlens array lighting and other methods, and these lighting methods have their limitations.
  • the disadvantage of the direct lighting method of the LED light source is that it is large in size, occupies a large space at the front end of the endoscope, generates a lot of heat, and has poor lighting uniformity.
  • These disadvantages strictly limit the application of the direct lighting method of the LED in the medical field Sightglass application.
  • the disadvantage of the light-guiding fiber lighting method is that the lighting angle of the light-guiding fiber is affected by the NA value of the fiber, and the divergence angle that can be achieved is very small, and it is often difficult to meet the requirements of the endoscope imaging site.
  • the disadvantage of the microlens array lighting method is that it requires a large space for the front end of the equipment, the overall size and space are large, and the lighting angle of view is small.
  • embodiments of the present invention provide an endoscope lighting system and its lens, and endoscope equipment, so as to reduce the size of the electronic endoscope and increase the lighting angle.
  • a first aspect of embodiments of the present invention provides a lens.
  • the lens includes a light incident surface and a light exit surface oppositely arranged along the direction of its central axis, and the light incident surface is used to receive light;
  • the light incident surface is recessed in the direction of the light exit surface
  • the light-emitting surface includes a central curved surface in the middle and an annular curved surface smoothly connected to the outer edge of the central curved surface.
  • the central curved surface is recessed in the direction facing the light-incident surface.
  • the ring-shaped surface protrudes away from the light-incident surface.
  • the lens provided by the embodiment of the present invention has the following advantages:
  • the lens includes a light-incident surface and a light-exit surface oppositely arranged along the direction of its central axis, and the light-incidence surface is set as a curved surface shape in which the middle part is concave toward the light-exit surface. It is more suitable, and then refracted by the central curved surface and the circular curved surface of the light-emitting surface.
  • the middle curved surface and the circular curved surface cooperate to ensure the uniformity of light output on the light-emitting surface.
  • the circular curved surface can increase the light angle, so as to achieve a good divergence effect , to achieve large-angle lighting.
  • the light incident surface and the light exit surface are integrated on one lens, the light entrance surface is located at one end of the lens, and the light exit surface is located at the other end of the lens, a large-angle illumination can be realized with one lens, and the structure is more compact.
  • the invention is primarily described in terms of the lens being used in an endoscopic illumination system.
  • the lens provided by the embodiments of the present invention has the advantages of large illumination angle and compact structure, and can be used in places where large-angle illumination is required, such as endoscope illumination systems, pipeline detection camera endoscope systems, optical instruments, etc.
  • Applied to the endoscope lighting system in the field of medical equipment it can increase the lighting angle and provide more sufficient lighting for medical operation inspection; Provides wide-angle lighting so that cracks, corrosion, welds, etc. inside the pipe can be viewed.
  • the line formed by connecting the center point of the light incident surface and the center point of the light exit surface coincides with the axis of the lens.
  • both the light incident surface and the light exit surface are symmetrical with respect to the axis of the lens.
  • the radius of curvature of the light incident surface gradually becomes smaller from the radially outer side to the inner side, and/or, the radius of curvature of the central curved surface gradually becomes larger, the The radius of curvature of the annular curved surface gradually decreases first and then gradually increases.
  • a uniform light structure is provided on the light incident surface.
  • the uniform light structure includes a Fresnel structure, a scute structure, a frosted structure, and/or a textured structure.
  • the Fresnel structure includes a plurality of grooves connected successively along the axis of the lens, and the tangential depth of the grooves along the light-incident surface is 8 ⁇ m to 12 ⁇ m; and/or, from the light-incident Facing the direction of the light-emitting surface, the included angle between the sidewall of each groove and the axis of the lens increases gradually.
  • the plurality of grooves sequentially include a first groove, a second groove, a third groove, a fourth groove, a fifth groove, the sixth groove and the seventh groove;
  • the angle between the side wall of the first groove and the axis of the lens is 24.1°-25.2°; the angle between the side wall of the second groove and the axis of the lens is 25.3°-26.0°;
  • the fifth The included angle between the side wall of the groove and the axis of the lens is 30.6°-32.3°;
  • the included angle between the side wall of the sixth groove and the axis of the lens is 37.5°-39.8°;
  • the seventh groove The included angle between the side wall and the axis of the lens is 39.9°-40.6°.
  • the middle part of the end surface of the light-incident side of the lens is concave to form a blind installation hole
  • the installation blind hole includes a connected installation section and a light-receiving section from the open end to the blind end, and the installation section is used for installation.
  • the hole wall surface of the light-receiving section constitutes the light incident surface.
  • a positioning post is provided on the light incident side end surface of the lens.
  • the lens in the embodiment of the present invention there are multiple positioning posts, and the multiple positioning posts are arranged symmetrically with respect to the axis of the lens.
  • the diameter of the lens is 0.15 mm to 2 mm; and/or,
  • the thickness along the central axis of the lens is between 0.1 mm and 1 mm.
  • a second aspect of the embodiments of the present invention provides an endoscope lighting system.
  • the endoscope lighting system includes an optical fiber and a lens, and the light-emitting end surface of the optical fiber is arranged opposite to the light-incoming surface of the lens.
  • the endoscope lighting system includes an optical fiber and a lens.
  • the light-emitting end surface of the optical fiber is opposite to the light-incident surface of the lens. In this way, the light transmitted by the optical fiber is refracted by the light-incidence surface and the light-exit surface of the lens to achieve large-angle illumination of the light.
  • the combination of optical fiber and lens can place the coupling light source at the back end of the endoscope. On the one hand, it isolates the thermal effect generated by the light source circuit. With the structure of the light incident surface and light exit surface of the lens, a large divergence angle and uniform distribution of illumination in the working area can be achieved. On the other hand, it can make the structure of the endoscope lighting system more compact.
  • the optical fiber and the lens form an interference fit.
  • the light-emitting end surface of the optical fiber is a plane, and the light-emitting end surface is perpendicular to the central axis of the lens.
  • a third aspect of embodiments of the present invention provides an endoscopic device.
  • the endoscope device includes a carrier, an endoscope instrument channel arranged on the carrier, an endoscope imaging system and at least one endoscope lighting system.
  • An endoscopic device includes a carrier, an endoscopic instrument channel, an endoscopic imaging system, and at least one endoscopic illumination system. Since the endoscope equipment adopts the above-mentioned endoscope lighting system, the lens diverges the light transmitted by the optical fiber to increase the lighting angle and provide more sufficient lighting for the medical operation detection work.
  • the compact structure of the endoscope lighting system reduces the volume of the endoscope to a certain extent, increases flexibility, and facilitates the operation.
  • the number of endoscope lighting systems is two.
  • multiple endoscope lighting systems are provided, and the multiple endoscope lighting systems are arranged around the endoscope imaging system and the endoscope instrument channel.
  • a positioning hole is provided on the carrier, and the positioning hole cooperates with the positioning column of the lens.
  • FIG. 1 is a schematic structural diagram of an endoscopic device provided by an embodiment of the present invention
  • Fig. 2 is the front view of the endoscope lighting system provided by the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of an endoscope lighting system provided by an embodiment of the present invention.
  • Fig. 4 is the sectional view of the lens provided by the practical embodiment
  • Fig. 5 is a schematic diagram of lens coordinates provided by the present practical embodiment
  • Fig. 6 is a light path diagram of lens illumination provided by an embodiment of the present invention.
  • Fig. 7 is a light distribution curve diagram of the endoscope lighting system provided by the embodiment of the present invention.
  • Fig. 8 is the front view of the Fresnel structure provided by the embodiment of the present invention.
  • Fig. 9 is a cross-sectional view of a Fresnel structure provided by an embodiment of the present invention.
  • Fig. 10 is a distribution diagram of the grayscale value of the target surface illumination of the endoscope lighting system provided by the embodiment of the present invention.
  • Fig. 11 is a schematic diagram of the target surface illumination spot of the endoscope illumination system provided by the embodiment of the present invention.
  • 10 endoscope lighting system
  • 20 endoscope instrument channel
  • 30 endoscope imaging system
  • 40 carrier
  • 11 optical fiber
  • 12 lens
  • 121 light-emitting surface
  • 1211 central curved surface
  • 1212 ring Curved surface
  • 122 light incident surface
  • 123 installation blind hole
  • 1231 light receiving section
  • 1232 installation section
  • 124 positioning column.
  • the endoscope lighting system adopts a classic Cook three-piece lens to achieve a large angle of illumination.
  • the spatial arrangement of the structure is that the three-sided lenses are placed side by side horizontally, which has the problem that the axial direction is too long and the overall space is relatively large.
  • the degree of freedom is low, so it is difficult to match a larger light output angle.
  • the structure of an endoscope lighting system includes an optical cable and a light distribution unit.
  • the light distribution unit is composed of left and right end faces and a deflection structure in the middle.
  • the light transmitted by the optical cable enters from one end of the light distribution unit, passes through the deflection structure in the middle to achieve divergence, and finally emits from the other end of the light distribution unit.
  • this structure can increase the divergence angle of light to a certain extent, the effect is not significant, and the light distribution unit of this structure occupies a large space in the axial direction.
  • this structure uses multiple reflections of the deflection structure to increase the divergence angle, the loss of light energy is relatively large.
  • the present invention proposes an endoscope lighting system combining a lens and an optical fiber.
  • the lens has a light incident surface and a light exit surface.
  • the shape of the light-emitting surface is more suitable.
  • Fig. 1 is a schematic structural view of an endoscopic device provided by an embodiment of the present invention.
  • the endoscopic device includes a carrier 40, an endoscopic lighting system 10 disposed on the carrier 40, and an endoscopic instrument channel 20. .
  • An endoscope imaging system 30 .
  • the endoscope lighting system 10 is used to guide the light guided by the optical fiber to the inspection area of the endoscope to provide illumination for the endoscope equipment.
  • One end of the endoscopic instrument channel 20 is an access port accessible to the surgeon, and medical instruments (including grasping forceps, biopsy forceps, and scissors, etc.) The other end of 20 extends into the human body.
  • the endoscope imaging system 30 Under the illumination of the endoscope lighting system 10, the endoscope imaging system 30 generates a corresponding image signal from the image of the working surface, and then transmits the image signal to the rear end of the endoscope imaging system 30 to obtain the final endoscope image .
  • the carrier 40 has a substantially cylindrical shape and carries the endoscopic illumination system 10 , the endoscopic instrument channel 20 and the endoscopic imaging system 30 .
  • the shell of the carrier 40 can be made of metal materials such as aluminum alloy materials and iron alloy materials, or can be made of non-metal materials, which are selected according to actual needs.
  • the specific quantity and arrangement of the endoscopic lighting system 10 , the endoscopic instrument channel 20 and the endoscopic imaging system 30 are not limited. Further preferably, the number of endoscope lighting systems 10 can be multiple, and the endoscope lighting system 10 is arranged around the endoscope imaging system 30 and the endoscope instrument channel 20, so that the endoscope equipment can be used in the medical instrument detection work. Provide more adequate lighting.
  • FIG. 1 there are two endoscope lighting systems 10 , one endoscope instrument channel 20 , and one endoscope imaging system. Referring to the orientation shown in FIG.
  • the endoscopic instrument channel 20 is located at the middle and upper part of the carrier 40
  • the endoscopic imaging system 30 is located at the middle and lower part of the carrier 40
  • the two endoscope lighting systems 10 are respectively located at the left and right sides of the carrier 40. side, this setting can obtain a better lighting environment.
  • the various components in the endoscope device can also be arranged in other ways, for example, the endoscope imaging system 30 is located in the middle and upper part of the carrier 40, and the endoscope instrument channel 20 arranged on the carrier Located at the middle and lower part of the carrier 40 , three or more endoscope lighting systems 10 are arranged, and a plurality of endoscope lighting systems 10 are arranged around the endoscope imaging system 30 and the endoscope instrument channel 20 .
  • An endoscope lighting system according to an embodiment of the present invention will be described below with reference to the drawings.
  • Fig. 2 is a front view of the endoscope lighting system provided by the embodiment of the present invention.
  • the endoscopic illumination system 10 includes an optical fiber 11 and a lens 12 .
  • One end of the optical fiber 11 is connected to the lens 12, and the other end is connected to the light source.
  • the working principle of the endoscope lighting system 10 is: the light transmitted by the optical fiber 11 is transmitted to the lens 12, and the light is diverged and irradiated to the inspection area through the lens 12, and the large divergence angle characteristic is realized through the cooperation of the optical fiber 11 and the lens 12.
  • the endoscope illumination system combined with the optical fiber 11 and the lens 12 provided by the embodiment of the present invention can obtain a larger divergence angle to meet the requirements of endoscope imaging.
  • the light-emitting end surface of the optical fiber 11 is a plane, and the light-emitting end surface is perpendicular to the central axis of the lens 12 .
  • the light emitting end surface of the optical fiber 11 which is a slope, a curved surface or an irregular surface not perpendicular to the central axis of the lens 12, when the light transmitted by the optical fiber 11 passes through a plane perpendicular to the central axis of the lens 12, the light loss rate is the lowest.
  • the angle at which the light-emitting end face intersects the central axis of the lens 12 is an acute or obtuse angle, when the light-emitting end face is perpendicular to the central axis of the lens 12, the light transmitted by the optical fiber 11 will reduce the loss caused by refraction or reflection during transmission.
  • the optical fiber 11 can be directly installed on the inner channel of the carrier 40. In order to reduce the light loss as low as possible, preferably, the optical fiber 11 is connected to the light incident surface of the lens 12. Further preferably, the cross-section of the endoscope illumination system provided by the embodiment of the present invention As shown in FIG. 3 , the optical fiber 11 forms an interference fit with the lens 12 (see the introduction later for details).
  • the installation method of the optical fiber 11 and the lens 12 provided by the embodiment of the present invention can reduce the space occupied by the endoscope lighting system 10, and the light guided by the optical fiber 11 can be better transmitted to the lens 12, reducing the time spent in light transmission. loss rate.
  • the material of the optical fiber 11 can be quartz, plastic or the like.
  • Fiber numerical aperture NA is an important parameter of optical lens performance, which indicates the ability of the fiber end face to receive incident light. The larger the NA, the stronger the ability of the optical fiber to receive light. From the point of view of increasing the optical power entering the fiber, the larger the NA, the better, because a larger numerical aperture of the fiber is beneficial for the butt joint of the fiber. However, when the NA is too large, the mode distortion of the fiber will increase, which will affect the bandwidth of the fiber.
  • the numerical aperture NA of the optical fiber is 0.06-0.64.
  • the NA value of the optical fiber 11 may be 0.06, 0.07, 0.08, 0.2, 0.4, 0.62, 0.63, 0.64, etc.
  • the fiber diameter of the optical fiber 11 can be set according to specific requirements, and is preferably 14 ⁇ m ⁇ 400 ⁇ m.
  • the fiber diameter of the optical fiber 11 may be 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 50 ⁇ m, 100 ⁇ m, 200 ⁇ m, 398 ⁇ m, 399 ⁇ m, 400 ⁇ m, etc.
  • Fig. 4 is a sectional view of a lens provided by an embodiment of the present invention.
  • the lens 12 includes a light emitting surface 121 and a light incident surface 122 .
  • the light incident surface 122 is located at one end of the lens 12
  • the light output surface 121 is located at the other end of the lens 12 .
  • the light incident surface 122 is recessed toward the direction of the light exit surface 121 , and the light incident surface 122 is used to receive the light transmitted by the optical fiber 11 .
  • the light-incident surface 122 is set in a curved shape whose middle part is concave toward the light-exit surface 121 , and the light transmitted by the optical fiber 11 can be more adapted to the shape of the light-exit surface 121 after being refracted by the light-incidence surface 122 of this shape.
  • the straight line connecting the central point of the light incident surface 122 and the central point of the light outgoing surface 121 forms a certain angle with the axis of the lens 12 .
  • the straight line formed by the center point of the light incident surface 122 and the center point of the light exit surface 121 coincides with the axis of the lens 12, so that the positional relationship can better reduce the light caused by the optical fiber 11 when it passes through the lens 12. loss, so that the light guided by the optical fiber 11 passes through the light incident surface 122 to the light exit surface 121 as much as possible.
  • the light incident surface 122 is symmetrical to the center of the axis of the lens 12 and the light output surface 121 is symmetrical to the center of the axis of the lens 12 , which can better reduce the loss caused by the light guided by the optical fiber 11 during transmission.
  • the light incident surface 122 can be set as a spherical surface.
  • the direction from the radially outer side to the inner side the light incident surface The radius of curvature of 122 becomes smaller gradually. In this way, the divergence angle of the light gradually increases from the middle to the radially outer side, thereby ensuring a more uniform distribution of the light emitted from the light incident surface 122 .
  • FIG. 5 is a schematic diagram of lens coordinates provided in this practical embodiment.
  • FIG. 5 is only an example of specific numerical values of the light-incident surface 122 , and the abscissa x1 and ordinate y1 of each position of the light-incident surface 122 can also be set to other values according to specific circumstances.
  • the light-emitting surface 121 includes a central curved surface 1211 in the middle and an annular curved surface 1212 smoothly connected to the outer edge of the central curved surface 1211, along the direction from the radially outer side of the light-emitting surface 121 to the radially inner side,
  • the central curved surface is recessed toward the light-incident surface 122
  • the ring-shaped curved surface is convex in a direction away from the light-incident surface 122 .
  • the shape of the light-emitting surface 121 is generally concave in the middle and convex on both sides, so that when the light passes through the light-emitting surface 121, it can diverge and achieve the purpose of increasing the illumination angle.
  • the central curved surface 1211 and the annular curved surface 1212. Increase the light angle to achieve a good divergence effect and achieve large-angle lighting.
  • central curved surface 1211 may be a whole curved surface or a partial curved surface, which is selected according to actual needs.
  • the annular curved surface 1212 can be a whole curved surface or a partial curved surface, which is selected according to actual needs.
  • the radius of curvature of the central curved surface 1211 in the middle of the light-emitting surface 121 gradually increases from the radially outer side to the inner side, and the radius of curvature of the annular curved surface 1212 smoothly connected to the outer edge of the central curved surface of the light-emitting surface 121 is First, it gradually becomes smaller and then gradually larger. On the one hand, it is more suitable for the distribution of light emitted from the light incident surface 122 , and on the other hand, it can further improve the uniformity of light emitted by the lens 12 .
  • FIG. 5 is only an example of specific values of the light-emitting surface 121 , and the abscissa x2 and ordinate y2 of each position of the light-emitting surface 121 can also be set to other values according to specific circumstances.
  • FIG. 6 is a diagram of a lens illumination light path provided by an embodiment of the present invention.
  • the light transmitted by the optical fiber 11 enters the light incident surface 122, passes through the inner wall of the light incident surface 122 to achieve uniform light, and finally passes through the central curved surface 1211 and the annular curved surface 1212, so that the incident light is carried out with a high degree of freedom. modulation, the emitted light from the light emitting surface 121 can reach a large-angle illumination area.
  • Fig. 7 is a light distribution curve diagram of the endoscope lighting system provided by the embodiment of the present invention. It can be seen from FIG. 7 that the illumination angle of the light emitted by the lens is greater than 170°, so that a good illumination effect can be achieved.
  • the light incident surface 122 may be a smooth surface.
  • a uniform light structure is provided on the light incident surface 122 .
  • the light incident surface 122 is specially designed to make the surface of the inner wall rough, and the rough structure constitutes a uniform light structure.
  • the homogeneous light structure has a diffractive homogenization effect on the light, so that the light can be diverged to ensure the uniformity of the light.
  • the uniform light structure may be any structure capable of increasing the surface roughness of the light incident surface 122 , for example, including a Fresnel structure, a scute structure, a frosted structure, and/or a textured structure.
  • the uniform light structure is a Fresnel structure. Referring to FIG. 8 and FIG. 9, FIG. 8 is a front view of the Fresnel structure provided by the embodiment of the present invention, and FIG. 9 is a cross-sectional view of the Fresnel structure provided by the embodiment of the present invention.
  • the Fresnel structure includes a plurality of grooves connected successively along the axial direction of the lens, and the tangential depth h along the light incident surface 122 is 8 ⁇ m to 12 ⁇ m; from the light incident surface 122 to the light exit surface 121 , the angles between the sidewalls of each groove and the axis of the lens 12 gradually increase, so as to ensure a more uniform distribution of light emitted from the light incident surface 122 .
  • the number of grooves of the Fresnel structure is not limited, and can be set according to specific conditions.
  • the angle difference between the side walls of adjacent grooves and the axis of the lens 12 is not specifically limited, so that it can be improved. The effect of the uniformity of the exiting fiber is sufficient.
  • the angle difference between the sidewalls of adjacent grooves and the axis of the lens 12 is between 0.1° and 1°.
  • FIG. 9 is a cross-sectional view of the Fresnel structure provided by the embodiment of the present invention.
  • the plurality of grooves sequentially include a first groove, a second groove, a third groove, a fourth groove, a fifth groove, a The six grooves and the seventh groove; the angle between the side wall of the first groove and the axis of the lens 12 is 24.1° ⁇ 25.2°; the angle between the side wall of the second groove and the axis of the lens 12 The angle is 25.3° ⁇ 26.0°; the angle between the side wall of the third groove and the axis 12 of the lens is 26.1° ⁇ 27.3°; the angle between the side wall of the fourth groove and the axis 12 of the lens The angle is 27.2° ⁇ 29.1°; the angle between the side wall of the fifth groove and the axis of the lens 12 is 30.6° ⁇ 32.3°; the angle between the side wall of
  • the scale structure includes a curved surface and several connection points randomly arranged on the surface. Taking any one of the connection points as the reference point, the connection points adjacent to the reference point are connected to the reference point to form a grid line. Multiple grids Lines and surfaces form a grid surface, and the scute surface surrounded by several grid lines is the smallest unit of the grid surface.
  • the scute surface can be triangular, quadrilateral or pentagonal, etc.
  • the light reflected by the scale structure has different irradiation directions, which can completely disperse the light and make the light and spot uniform.
  • Frosted treatment is to use emery, silica sand, pomegranate powder and other abrasives to mechanically grind or manually grind it to form a frosted structure, so as to make a uniform and rough surface.
  • the texturing process is a technology for texturing the surface of the material.
  • the commonly used texturing processes include shot peening, laser texturing, electron beam texturing and electric spark texturing.
  • the essence of the textured structure is to roughen the surface of the lens, increase the reflection of light, diverge the light, and increase the uniformity of light.
  • Fig. 10 is a distribution diagram of the gray value distribution of the target surface illuminance of the endoscope lighting system provided by the embodiment of the present invention.
  • the distance from the target surface to the lens 12 is 2 mm to 10 mm
  • the NA value of the optical fiber 11 is 0.22
  • the fiber diameter is 110 ⁇ m.
  • the light transmitted by the optical fiber 11 passes to the light incident surface 122 , passes through the uniform light structure of the light incident surface 122 to achieve the effect of light uniformity, and then passes through the light exit surface 121 to achieve the effect of diverging the illumination angle.
  • the abscissa X and the ordinate Y indicate the coordinate value of the position point of the target surface, and the light intensity is reflected by the gray scale.
  • the endoscope illumination system provided by the embodiment of the present invention can obtain uniform gray scale distribution.
  • Fig. 11 is a schematic diagram of the target surface illumination spot of the endoscope illumination system provided by the embodiment of the present invention.
  • the distance from the target surface to the lens 12 is 2 mm to 10 mm, the NA value of the optical fiber 11 is 0.22, and the fiber diameter is 110 ⁇ m.
  • the light transmitted by the optical fiber 11 passes to the light incident surface 122 , passes through the uniform light structure of the light incident surface 122 to achieve the effect of light uniformity, and then passes through the light exit surface 121 to achieve the effect of diverging the illumination angle.
  • the endoscope lighting system provided by the embodiment of the present invention can obtain a uniform lighting spot.
  • the endoscope imaging system 30 provided by the embodiment of the present invention can obtain a large-angle and uniform illumination effect.
  • the optical fiber 11 can be fixed in any manner.
  • the optical fiber 11 is connected to the carrier 40 through a fixture, or one end of the optical fiber 11 and the lens 12 is fixed by optical glue, and the optical fiber 11 is in direct contact with the surface of the lens 12 .
  • the middle part of the light incident side end surface of the lens 12 is concavely formed to form a blind installation hole 123.
  • the direction from the open end to the blind end of the blind hole 123 includes a connecting installation section 1232 and a light receiving section 1231 .
  • the installation section 1232 is used for installing the optical fiber 11 , and the hole wall surface of the light receiving section 1231 constitutes the light incident surface 122 .
  • the installation of the optical fiber 11 is realized by using the installation blind hole 123, and the light incident surface 122 is formed by using its blind end surface, so that the optical fiber 11 can be installed in the installation section 1232 so that its light exit end surface is directly opposite to the light incident surface 122.
  • the structure is simplified, the overall structure is more compact, and the assembly efficiency can be improved.
  • an interference fit is formed between the installation section 1232 and the optical fiber 11 , so that the optical fiber 11 can be reliably fixed by simply plugging in using the characteristics of the optical fiber 11 , thereby further improving assembly efficiency.
  • the fixing method of the lens 12 and the carrier 40 can be connected by optical glue.
  • the light incident side of the lens 12 is provided with a positioning post 124 .
  • Positioning holes are provided at corresponding positions on the carrier 40 , and the positioning and installation of the lens 12 is realized through the cooperation of the positioning posts 124 with the positioning holes.
  • the number of the positioning posts 124 is not limited, and may be one or more, and the arrangement of the positioning posts 124 on the carrier 40 is also not limited. Further preferably, there are multiple positioning posts 124 on the lens 12 , and the multiple positioning posts 124 are symmetrical about the axis of the lens 12 . In a specific embodiment, as shown in FIG. 4 , two positioning posts 124 are symmetrical about the axis of the lens 12 , and the positioning posts 124 on the lens 12 cooperate with the positioning holes on the carrier 40 to achieve precise positioning.
  • the material of the lens 12 can be glass, photosensitive resin or optical plastic, which is selected according to actual needs.
  • the lens 12 can be formed by compression molding, injection molding or 3D printing, and the specific situation is selected according to actual needs. Since the lens 12 is provided with an irregular curved surface, in order to reduce the cost, the lens 12 is preferably injection-molded, and the material is preferably optical plastic.
  • Abbe's constant is a constant describing the ratio of the refractive index of an optical medium to the dispersion power. The larger the Abbe's constant, the more approximately equal the refraction of the medium to different wavelengths of light.
  • the refractive index and Abbe's coefficient of the lens 12 are relatively large, and the refractive power for incident light is also strong, and the refractive index for light of different wavelengths is approximately equal.
  • the diameter and thickness of the lens 12 are small, and the occupied space is small.
  • the diameter of the lens 12 and the thickness along the axial direction are small, and the space occupied in the axial and lateral directions is small, which can meet the requirements of the small space of the lens.
  • the refractive index n of the lens 12 can be 1.4, 1.5, 1.6, etc., which is selected according to actual needs.
  • the Abbe constant Vd value of the lens 12 can be 25, 26, 27, 70, etc., which is selected according to actual needs.
  • the diameter of the lens 12 can be 0.15mm, 0.16mm, 0.17mm, 0.20mm, 0.24mm, 0.28mm, 0.30mm, etc., which is selected according to actual needs.
  • the thickness of the lens 12 in the direction of the central axis is 0.1 mm, 0.2 mm, 0.3 mm, etc., which are selected according to actual needs.

Abstract

内窥镜照明系统(10)及其透镜(12)、内窥镜设备,用于解决现有的电子内窥镜的尺寸较大且照明角度较小的问题。透镜(12)包括沿其中心轴线方向相对设置的入光面(122)和出光面(121),入光面(122)用于接收光,沿由入光面(122)的径向外侧向径向内侧的方向,入光面(122)向出光面(121)的方向凹陷设置,出光面(121)包括中部的中心曲面部(1211)和与中心曲面部(1211)的外边缘平滑连接的环形曲面部(1212)。光纤(11)传导的光通过入光面(122)的折射后,能够与出光面(121)的形状更加适配,再经过出光面(121)的中心曲面部(1211)和环形曲面部(1212)折射,中心曲面部(1211)与环形曲面部(1212)配合保证出光面(121)的出光均匀性,环形曲面部(1212)能够增大出光角度,实现大角度的照明,且一片透镜(12)即可实现大角度照明,结构更加紧凑。

Description

内窥镜照明系统及其透镜、内窥镜设备
本申请要求于2021年05月26日提交中国专利局、申请号为202110579392.1、申请名称为“内窥镜照明系统及其透镜、内窥镜设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于医疗器械技术领域,涉及内窥镜照明系统及其透镜、内窥镜设备。
背景技术
电子内窥镜(endoscopy)是一种可插入人体体腔和脏器内腔进行直接观察、诊断、治疗的,集光、机、电等高精尖技术于一体的医用电子光学仪器。随着电子内窥镜在医疗器械领域中得到越来越广泛的使用,对电子内窥镜照明系统的大角度和小空间的需求也日益增加。
目前电子内窥镜的照明系统采用LED光源直接照明、导光光纤照明、微透镜阵列照明等方式,这些照明方式均有其局限性。其中,LED光源直接照明方式的缺点在于尺寸较大,在内窥镜前端占据空间较大,且会有很大的发热量,同时照明均匀性差,这些劣势严格限制了LED直接照明方式在医疗内窥镜中应用。导光光纤照明方式的缺点在于导光光纤的照明角度受光纤的NA值影响,能达到的发散角很小,往往很难达到内窥镜成像现场的要求。微透镜阵列照明方式缺点在于对设备前端的空间位置所需较大,整体尺寸空间较大,照明视角较小。
针对上述问题,现有技术中提出了采用透镜与导光光纤配合的照明方式,但仍存在着整体尺寸空间较大,照明视角较小问题。
发明内容
鉴于上述问题,本发明实施例提供内窥镜照明系统及其透镜、内窥镜设备,以减小电子内窥镜的尺寸、增大照明角度。
为了实现上述目的,本发明实施例提供如下技术方案:
本发明实施例的第一方面提供一种透镜。
透镜,包括沿其中心轴线方向相对设置的入光面和出光面,入光面用于接收光;
其中,沿由入光面的径向外侧向径向内侧的方向,入光面向出光面的方向凹陷设置;
出光面包括中部的中心曲面部和与中心曲面部的外边缘平滑连接的环形曲面部,沿由出光面的径向外侧向径向内侧的方向,中心曲面部向入光面的方向凹陷设置,环形曲面部向远离入光面的方向凸出设置。
与现有技术相比,本发明实施例提供的透镜具有如下优点:
透镜包括沿其中心轴线方向相对设置的入光面和出光面,将入光面设置为中部向出光面凹陷的曲面形状,光通过该形状的入光面的折射后,能够与出光面的形状更加适配,再经过出光面的中心曲面部和环形曲面部折射,中间曲面部与环形曲面部配合保证出光面的出光均匀性,环形曲面部能够增大出光角度,从而达到很好的发散效果,实现大角度的照明。另外,将入光面和出光面整合在一个透镜上,入光面位于透镜的一端,出光面位于透镜的另一端,利用一个透镜即可实现大角度照明,结构更加紧凑。
本发明主要从透镜用于内窥镜照明系统来进行描述。本发明实施例提供的透镜因具有照明角度大,结构紧凑的优点,可用于大角度照明需求的场所,例如可用于内窥镜照明系统、管道检测摄像内窥镜系统、光学仪器等。应用于医疗器械领域中的内窥镜照明系统,起到增大照明角度作用,为医疗手术检测工作提供更为充足的照明;如应用于工业的管道检测摄像内窥镜系统中,为管道检测提供大角度照明以便可以查看到管道内部的裂纹、腐蚀和焊缝等。
作为本发明实施例透镜的一种改进,入光面的中心点与出光面的中心点连成的直线与透镜的轴线重合。
作为本发明实施例透镜的进一步改进,入光面和出光面均相对于透镜的轴线中心对称。
作为本发明实施例透镜的进一步改进,由径向外侧向内侧的方向,所述入光面的曲率半径逐渐变小,和/或,所述中心曲面部的曲率半径是逐渐变大,所述环形曲面部的曲率半径是先逐渐变小后逐渐变大。
作为本发明实施例透镜的进一步改进,在透镜中,入光面上设置有匀光结构。
作为本发明实施例透镜的进一步改进,匀光结构包括菲涅尔结构、鳞甲结构、磨砂结构、和/或毛化结构。
作为本发明实施例透镜的进一步改进,菲涅尔结构包括沿透镜的轴线方向依次相连的多个凹槽,凹槽沿入光面的切向深度为8μm~12μm;和/或,从入光面向出光面的方向,各个凹槽的侧壁与透镜的轴线之间的夹角是逐渐增大。
作为本发明实施例透镜的进一步改进,由入光面向出光面的方向,多个凹槽依次包括第一凹槽、第二凹槽、第三凹槽、第四凹槽、第五凹槽、第六凹槽与第七凹槽;
第一凹槽的侧壁与所述透镜的轴线之间的夹角角度为24.1°~25.2°;第二凹槽的侧壁与透镜的轴线之间的夹角角度为25.3°~26.0°;第三凹槽的侧壁与透镜的轴线之间的夹角角度为26.1°~27.3°;第四凹槽的侧壁与透镜的轴线之间的夹角角度为27.2°~29.1°;第五凹槽的侧壁与透镜的轴线之间的夹角角度为30.6°~32.3°;第六凹槽的侧壁与透镜的轴线之间的夹角角度为37.5°~39.8°;第七凹槽的侧壁与透镜的轴线之间的夹角角度为39.9°~40.6°。
作为本发明实施例透镜的进一步改进,透镜的入光侧端面中部内凹形成安装盲孔,安装盲孔由敞开端向盲端的方向包括相连通的安装段和承光段,安装段用于安装光纤,承光段的孔壁面构成入光面。
作为本发明实施例透镜的进一步改进,透镜的入光侧端面上设置有定位柱。
作为本发明实施例透镜的进一步改进,定位柱设置有多个,多个定位柱关于透镜的轴中心对称布置。
作为本发明实施例透镜的进一步改进,透镜的折射率n=1.4~1.8;和/或,透镜的阿贝常数Vd=25~70;和/或,
透镜的直径为0.15mm~2mm;和/或,
沿透镜中心轴线方向的厚度为0.1mm~1mm之间。
本发明实施例的第二方面提供一种内窥镜照明系统。
内窥镜照明系统包括光纤和透镜,光纤的出光端面与透镜的入光面相对设置。
本发明提供的内窥镜照明系统由于采用了上述的透镜具有以下优点:
内窥镜照明系统包括光纤和透镜,光纤的出光端面与透镜的入光面相对设置,如此,光纤传导的光,经过透镜的入光面和出光面的折射,实现光线的大角度照明。光纤和透镜的配合能够将耦合光源放置在内窥镜后端,一方面,隔绝了光源电路产生的热效应,配合透镜的入光面和出光面结构可以实现大的发散角度和工作区域照度均匀分布的照明方式,另一方面能够使得内窥镜照明系统结构更加紧凑。
作为本发明实施例内窥镜照明系统的一种改进,光纤与透镜形成过盈配合。
作为本发明实施例内窥镜照明系统的进一步改进,光纤的出光端面为平面,且出光端面与透镜的中心轴线垂直。
本发明实施例的第三方面提供一种内窥镜设备。
内窥镜设备包括载体和设置于载体上的内窥镜器械通道、内窥镜成像系统和至少一个内窥镜照明系统。
本发明提供的内窥镜设备由于采用了上述的内窥镜照明系统具有以下优点:
内窥镜设备包括载体、内窥镜器械通道、内窥镜成像系统以及至少一个内窥镜照明系统。内窥镜设备由于采用了上述的内窥镜的照明系统,透镜将光纤传导的光发散,起到增大照明角度作用,为医疗手术检测工作提供了更为充足的照明。内窥镜照明系统的结构紧凑在一定程度上减小内窥镜的体积,增加灵活性,更加方便手术的进行。
作为本发明实施例内窥镜设备的一种改进,内窥镜照明系统的数量为2个。
作为本发明实施例内窥镜设备的进一步改进,内窥镜照明系统设置有多个,多个内窥镜照明系统围绕内窥镜成像系统和内窥镜器械通道设置。
作为本发明实施例内窥镜设备的进一步改进,载体上设置有定位孔,定位孔与透镜的定位柱配合。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述 中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的内窥镜设备的结构示意图;
图2为本发明实施例提供的内窥镜照明系统的主视图;
图3为本发明实施例提供的内窥镜照明系统的剖面图;
图4为本实用实施例提供的透镜的剖面图;
图5为本实用实施例提供的透镜坐标示意图;
图6为本发明实施例提供的透镜照明光路图;
图7为本发明实施例提供的内窥镜照明系统的配光曲线图;
图8为本发明实施例提供的菲涅尔结构的正视图;
图9为本发明实施例提供的菲涅尔结构的剖视图;
图10为本发明实施例提供的内窥镜照明系统的目标面照度灰度值分布图;
图11为本发明实施例提供的内窥镜照明系统的目标面照明光斑示意图。
附图标记说明:
10:内窥镜照明系统;20:内窥镜器械通道;30:内窥镜成像系统;40:载体;11:光纤;12:透镜;121:出光面;1211:中心曲面部;1212:环形曲面部;122:入光面;123:安装盲孔;1231:承光段;1232:安装段;124:定位柱。
具体实施方式
在一相关技术中,内窥镜照明系统采用经典库克三片式镜头,来实现光照的大角度。但是该结构在空间上的排布方式为三面透镜横向并排放置,存在轴向方向过长且整体所占空间较大的问题。另外,由于采用的是标准的多个凸透镜或者凸透镜与凹透镜的组合,自由度低,因此难以匹配出较大的出光角度。在另一相关技术中,内窥镜照明系统结构包括光缆与配光单元。配光单元由左右两个端面和中间的偏转结构组成。光缆传导的光由配光单元的一端面进入,经过中间的偏转结构达到发散的作用,最后从配光单元的另一端面发出。该结构虽然能从一定程度上增大光的发散角,但 是效果不显著,并且该结构的配光单元在轴向上所占空间较大。另外,该结构由于是利用偏转结构的多次反射实现发散角的增加,光能量损失较大。
针对上述问题,本发明提出一种透镜与光纤组合的内窥镜照明系统,该透镜具有入光面和出光面,通过将入光面设置为中部凹向出光面的曲面使其出光范围能够与出光面的形状更加适配,通过将出光面设置为中部凹陷外围凸出的结构,保证出光的均匀性且增大出光角度,实现大角度照明。
为了使本发明实施例的上述目的、特征和优点能够更加明显易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本发明保护的范围。
下面参考附图描述根据本发明实施例的内窥镜设备。
图1是本发明实施例提供的内窥镜设备的结构示意图,如图1所示,内窥镜设备包括载体40和设置于载体40上的内窥镜照明系统10、内窥镜器械通道20、内窥镜成像系统30。内窥镜照明系统10用于将光纤传导的光引导至内窥镜的检查区域,为内窥镜设备提供照明。内窥镜器械通道20的一端为外科医生可接近的进入端口,医疗器械(包括抓钳、活检钳、以及剪刀等)由该进入端口进入内窥镜器械通道20,并由内窥镜器械通道20的另一端伸入至人体内。内窥镜成像系统30在内窥镜照明系统10的光照下,将工作面的图像生成相对应的图像信号,再将图像信号传递到内窥镜成像系统30后端得到最终的内窥镜图像。载体40呈大致圆柱形状,承载内窥镜照明系统10、内窥镜器械通道20和内窥镜成像系统30。
需要说明的是,载体40外壳可以由铝合金材料、铁合金材料等金属材料制成,也可以由非金属材料制成,具体情况根据实际需要选定。
内窥镜设备中,内窥镜照明系统10、内窥镜器械通道20和内窥镜成像系统30的具体数量和排布方式不限。进一步优选地,内窥镜照明系统10的数量可以是多个,内窥镜照明系统10围绕内窥镜成像系统30和内窥镜器械通道20设置,为内窥镜设备在医疗器械检测工作中提供更为充足的照明。在一个具体实施例中,如图1所示,内窥镜照明系统10设置有两个,内窥镜器械通道20为一个,内窥镜成像系统也为1个。参照图1所示的方位,内窥镜器械通道20位于载体40的中上部分,内窥镜成像系统30位于载体40的中 下部分,2个内窥镜照明系统10分别位于载体40左右两侧,这样设置能够获得更好的照明环境。
当然,可以理解的是,内窥镜设备中各个部件也可以采用其他的排布方式,例如,内窥镜成像系统30位于载体40的中上部分,设置于载体上的内窥镜器械通道20位于载体40的中下部分,内窥镜照明系统10设置三个甚至更多,多个内窥镜照明系统10围绕内窥镜成像系统30以及内窥镜器械通道20设置。下面参考附图描述根据本发明实施例的内窥镜照明系统。
图2是本发明实施例提供的内窥镜照明系统的主视图。内窥镜照明系统10包括光纤11和透镜12。光纤11的一端与透镜12连接,另一端与光源连接。该内窥镜照明系统10的工作原理是:光纤11传导的光传输到透镜12,光线经过透镜12发散照射至检查区域,通过光纤11与透镜12的配合实现大的发散角特征。相较于单独的光纤照明方式,本发明实施例提供的利用光纤11与透镜12结合的内窥镜照明系统能够获得更大的发散角,以满足内窥镜成像的要求。
光纤11的出光端面是平面,出光端面与透镜12的中心轴线垂直。相较于光纤11的出光端面是与透镜12的中心轴线不垂直的斜面、曲面或者是不规则面,当光纤11传导的光经过与透镜12的中心轴线垂直平面时,光的损失率最低。相较于出光端面与透镜12的中心轴线相交的角度是锐角或钝角,出光端面与透镜12的中心轴线垂直时,光纤11传导的光在传输中,会减少折射或反射造成的损耗。
光纤11可以直接安装在载体40的内部通道上,为了尽量低地减少光损失,优选地,光纤11与透镜12入光面连接,进一步优选地,本发明实施例提供的内窥镜照明系统的剖面图,如图3所示,光纤11与透镜12形成过盈配合(具体参见后面的介绍)。本发明实施例提供的光纤11和透镜12的安装方式,能够减小内窥镜照明系统10的所占空间,并且光纤11传导的光可以更好的传输到透镜12中,减少光传输中的损失率。光纤11的材料可以是石英、塑料等。光纤数值孔径NA是光学透镜性能的重要参数,它表示光纤端面接收入射光的能力。NA越大,则光纤接收光的能力也越强。从增加进入光纤的光功率的观点来看,NA越大越好,因为光纤的数值孔径大些对于光纤的对接是有利的。但是NA太大时,光纤的模畸变加大,会影响光纤的带宽。在本发明的一个优选实施例中,光纤数值孔径NA值为0.06~0.64。例如,光 纤11的NA值可以为0.06、0.07、0.08、0.2、0.4、0.62、0.63、0.64等。光纤11的纤径值可根据具体需求设置,优选为14μm~400μm。例如,光纤11的纤径值可以为14μm、15μm、16μm、50μm、100μm、200μm、398μm、399μm、400μm等。
下面参考附图描述根据本发明实施例的透镜。
图4是本发明实施例提供的透镜剖面图。透镜12包括出光面121和入光面122。入光面122位于透镜12的一端,出光面121位于透镜12的另一端。沿由入光面122的径向外侧向径向内侧的方向,入光面122向出光面121的方向凹陷设置,入光面122用于接收光纤11传导的光。将入光面122设置为中部向出光面121凹陷的曲面形状,光纤11传导的光通过该形状的入光面122的折射后,能够与出光面121的形状更加适配。
在一些可能实施方式中,入光面122的中心点和出光面121的中心点连成的直线与透镜12的轴线成一定的角度。优选实施例中,入光面122的中心点与出光面121的中心点连成的直线与透镜12的轴线重合,这样位置关系可以更好的减少光纤11传导的光在通过透镜12时造成的损耗,使光纤11传导的光尽可能多地从入光面122通入到出光面121。
进一步优选地,入光面122相对于透镜12的轴线中心对称并且出光面121相对于透镜12的轴线中心对称,可以更好地使光纤11传导的光在传输过程中造成的损耗较少。
入光面122可以设置为球面,为了使得由入光面122折射后的光线更加均匀地分布在出光面121上,在一个优选地实施例中,由径向外侧向内侧的方向,入光面122的曲率半径逐渐变小。如此,由中部向径向外侧,光线的发散角度逐渐增大,从而保证由入光面122射出的光线的分布更加均匀。
在一个具体的实施例中,图5为本实用实施例提供的透镜坐标示意图。参照图5,以入光面122类似草帽状的顶点为原点建立第一坐标系,入光面122上各个点的位置满足:x1=-0.05,纵坐标y1在-0.0356~-0.0412之间;x1=-0.04,纵坐标y1在-0.0283~-0.0329之间;横坐标x1=-0.03,纵坐标y1在-0.0218~-0.0237之间;横坐标x1=-0.02,纵坐标y1在-0.0105~-0.0125之间;横坐标x1=-0.01,纵坐标y1在-0.0015~-0.0025之间;横坐标x1=0,纵坐标y1=0;横坐标x1=0.01,纵坐标y1在-0.0015~-0.0025之间;横坐标 x1=0.02,纵坐标y1在-0.0105~-0.0125之间;横坐标x1=0.03,纵坐标y1在-0.0218~-0.0237之间;x1=0.04,纵坐标y1在-0.0283~-0.0329之间;x1=0.05,纵坐标y1在-0.0356~-0.0412之间。
可以理解的是,图5只是给出一个入光面122的具体数值的实施例,入光面122各个位置的横坐标x1和纵坐标y1也可以根据具体情况设置为其他数值。
进一步参照图4所示,出光面121包括中部的中心曲面部1211和与中心曲面部1211的外边缘平滑连接的环形曲面部1212,沿由出光面121的径向外侧向径向内侧的方向,中心曲面部向入光面122的方向凹陷设置,环形曲面部向远离入光面122的方向凸出设置。出光面121的形状大致是中间凹两侧凸的形状,使光在经过出光面121时,起到发散的效果,达到光照角度增大的目的。光纤11传导的光通过入光面122的折射后,再经过中心曲面部1211和环形曲面部1212折射,中间曲面部1211与环形曲面部1212配合保证出光面的出光均匀性,环形曲面部1212能够增大出光角度,从而达到很好的发散效果,实现大角度的照明。
需要说明的是,中心曲面部1211可以是整体曲面也可以是部分曲面,具体情况根据实际需要选定。环形曲面部1212可以是整体曲面也可以是部分曲面,具体情况根据实际需要选定。
进一步优选地,由径向外侧向内侧的方向,出光面121中部的中心曲面部1211的曲率半径是逐渐变大,出光面121中心曲面部的外边缘平滑连接的环形曲面部1212的曲率半径是先逐渐变小后逐渐变大,一方面与由入光面122出射的光线分布更加适配,另一方面能够进一步提高透镜12的出光均匀性。
在一个具体的实施例中,参照图5,以出光面121中部的中心曲面部1211的中点建立第二坐标系,出光面121上各个点的位置满足:横坐标x2=-0.15,纵坐标y2在-0.0256~-0.0389之间;横坐标x2=-0.1,纵坐标y2在-0.0032~-0.0078之间;x2=-0.05,纵坐标y2在0.0051~0.0071之间;x2=-0.02,纵坐标y2在0.0011~0.0019之间;横坐标x2=0,纵坐标y2=0;x2=0.02,纵坐标y2在0.0011~0.0019之间;x2=0.05,纵坐标y2在0.0051~0.0071之间;横坐标x2=0.1,纵坐标y2在-0.0032~0.0078之间;横坐标x2=0.15,纵坐标y2在-0.0256~-0.0389之间。
可以理解的是,图5只是给出一个出光面121的具体数值的实施例,出光面121各个位置的横坐标x2和纵坐标y2也可以根据具体情况设置为其他数值。
图6为本发明实施例提供的透镜照明光路图。如图6所示,光纤11传导的光进入入光面122,经过入光面122的内壁达到匀光的作用,最后经过中心曲面部1211和环形曲面部1212,将入射光线进行很高自由度的调制,出光面121的出射光线可以达到大角度的照明区域。
图7为本发明实施例提供的内窥镜照明系统的配光曲线图。从图7可以看出经透镜出射光线的照明角度大于170°,从而能够达到很好的照明效果。
入光面122可以为光滑面,为了进一步提高出光均匀性,在一个优选的实施例中,入光面122上设置有匀光结构。入光面122经过特殊的结构设计,使内壁表面变粗糙,该粗糙结构即构成匀光结构。匀光结构对光线具有衍射匀化作用,从而可将光线发散,保证光的均匀性。
匀光结构可以为任意能够提高入光面122的表面粗糙度的结构,例如包括菲涅尔结构、鳞甲结构、磨砂结构、和/或毛化结构。优选地,匀光结构为菲涅尔结构。参阅图8和图9,图8为本发明实施例提供的菲涅尔结构的正视图,图9为本发明实施例提供的菲涅尔结构的剖视图。如图8和图9所示,菲涅尔结构包括沿透镜的轴线方向依次相连的多个凹槽,沿入光面122的切向深度h为8μm~12μm;从入光面122向出光面121的方向,各个凹槽的侧壁与透镜12的轴线之间的夹角逐渐增大,从而保证由入光面122射出的光线的分布更加均匀。
其中,菲涅尔结构的凹槽数量不限,可根据具体情况设置,另外,相邻凹槽的侧壁与透镜12的轴线之间的夹角的角度差也不做具体限制,能够达到提高出射光纤均匀性的效果即可。优选地,相邻凹槽的侧壁与透镜12的轴线之间的夹角差为0.1°~1°之间。
在一个具体的实施例中,图9为本发明实施例提供的菲涅尔结构的剖视图。如图9所示,由入光面122向出光面121的方向,多个凹槽依次包括第一凹槽、第二凹槽、第三凹槽、第四凹槽、第五凹槽、第六凹槽与第七凹槽;第一凹槽的侧壁与透镜12的轴线之间的夹角角度为24.1°~25.2°;第二凹槽的侧壁与透镜12的轴线之间的夹角角度为25.3°~26.0°;第三凹 槽的侧壁与透镜的轴线12之间的夹角角度为26.1°~27.3°;第四凹槽的侧壁与透镜12的轴线之间的夹角角度为27.2°~29.1°;第五凹槽的侧壁与透镜12的轴线之间的夹角角度为30.6°~32.3°;第六凹槽的侧壁与透镜12的轴线之间的夹角角度为37.5°~39.8°;第七凹槽的侧壁与透镜12的轴线之间的夹角角度为39.9°~40.6°。这样设置能够使得光纤11传导的光在经过入光面122的菲涅尔结构时,可以达到匀光的作用。
鳞甲结构包括曲面和随机设置在曲面上的若干连接点,以其中任意一个连接点为基准点,与该基准点相邻的各连接点与该基准点相连形成网格线,多条网格线与曲面构成网格曲面,若干条网格线围成的鳞甲曲面为组成该网格曲面的最小单元。鳞甲曲面可以为三角形、四边形或五边形等。鳞甲结构反射后光线具有互不相同的照射方向,进而可将光线完全打散,使得光线与光斑均匀。磨砂处理是使用金刚砂、硅砂、石榴粉等磨料对其进行机械研磨或手动研磨形成磨砂结构,从而制成均匀粗糙的表面。毛化工艺是一项对材质表面进行毛化的技术,常用的毛化工艺有喷丸毛化、激光毛化、电子束毛化和电火花毛化等。毛化结构的本质也是将透镜的表面变粗糙,增加光的反射,可将光线发散,增加光的均匀性。
图10为本发明实施例提供的内窥镜照明系统的目标面照度灰度值分布图。目标面到透镜12距离为2mm~10mm,光纤11的NA值为0.22,纤径为110μm。光纤11传导的光传到入光面122,经过入光面122的匀光结构,达到匀光的效果,再经过出光面121达到光照角度发散的作用。其中横坐标X、纵坐标Y表示目标面位置点坐标值,光照度强弱通过灰度色阶反应出来。如图10所示,本发明实施例提供的内窥镜照明系统能够获得均匀的灰度分布。
图11为本发明实施例提供的内窥镜照明系统的目标面照明光斑示意图。目标面到透镜12距离为2mm~10mm,光纤11的NA值为0.22,纤径为110μm。光纤11传导的光传到入光面122,经过入光面122的匀光结构,达到匀光的效果,再经过出光面121达到光照角度发散的作用。如图11所示,本发明实施例提供的内窥镜照明系统能够获得均匀的照明光斑。
由图10和图11可知,本发明实施例提供的内窥镜成像系统30能够获得大角度且均匀的光照效果。
光纤11可以采用任意方式固定。在一些可能的实施例中,光纤11与 载体40通过固定件连接,或者光纤11与透镜12的一端通过光学胶粘接固定,光纤11与透镜12的表面直接接触。
为了减少因进入到入光面122时,透镜12的表面会发生折射与反射导致的光损耗,在一个优选地实施例中,透镜12的入光侧端面中部内凹形成安装盲孔123,安装盲孔123由敞开端向盲端的方向包括相连通的安装段1232和承光段1231。安装段1232用于安装光纤11,承光段1231的孔壁面构成入光面122。如此,利用安装盲孔123既实现了光纤11的安装,又利用其盲端面构成入光面122,从而使得光纤11装入安装段1232即可使得其出光端面与入光面122正对,既简化了结构,使得整体结构更加紧凑,又能够提高装配效率。进一步优选地,安装段1232与光纤11之间形成过盈配合,如此,利用光纤11的自身特性使得简单插接即可实现光纤11的可靠固定,从而进一步提高装配效率。
透镜12与载体40的固定方式可以选用光学胶连接,为了方便透镜12的拆卸,进一步优选地实施例中,透镜12的入光侧上设置有定位柱124。
载体40上的对应位置上设置有定位孔,通过定位柱124与定位孔配合实现透镜12的定位安装。定位柱124的数量是不限的,可以为一个或多个,并且定位柱124在载体40上的排布方式也不限。进一步优选,透镜12上的定位柱124有多个,多个定位柱124关于透镜12的轴中心对称。在一个具体实施例中,如图4所示,两个定位柱124关于透镜12的轴中心对称,透镜12上的定位柱124与载体40上的定位孔配合,实现精准定位。
透镜12的材料可以是玻璃、光敏树脂或光学塑料,具体情况根据实际需要选定。透镜12可以采用模压成型、注塑成型或3D打印工艺,具体情况根据实际需要选定。由于透镜12上设置有非规则曲面,为了降低成本,透镜12优选采用注塑成型方式,材料优选采用光学塑料。
透镜12的折射率n=1.4~1.8;透镜12的阿贝常数Vd=25~70;透镜12的直径为0.15mm~0.3mm;透镜12的中心轴线方向的厚度为0.1mm~1mm之间。
透镜12的折射率越高,使入射光发生折射的能力越强。阿贝常数描述一个光学介质的折射率和色散能力的比值的常数,阿贝常数越大越能表示该介质对不同波长的光折射近似相等。透镜12的折射率与阿贝系数较大,对入射光的折射能力也较强且对不同波长的光折射率近似相等的。透镜12的直径与厚度较小,所占的空间较小。透镜12的直径与沿轴线方向上的厚 度较小,在轴向与横向方向上所占空间都较小,可以实现透镜小空间的需求。
需要说明的是,透镜12的折射率n可以为1.4、1.5、1.6等,具体情况根据实际需要选定。透镜12的阿贝常数Vd值可以25、26、27、70等,具体情况根据实际需要选定。透镜12的直径可以为0.15mm、0.16mm、0.17mm、0.20mm、0.24mm、0.28mm、0.30mm等,具体情况根据实际需要选定。透镜12的中心轴线方向的厚度为0.1mm、0.2mm、0.3mm等,具体情况根据实际需要选定。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (19)

  1. 一种透镜,其特征在于,所述透镜包括沿其中心轴线方向相对设置的入光面和出光面,所述入光面用于接收光;
    其中,沿由所述入光面的径向外侧向径向内侧的方向,所述入光面向所述出光面的方向凹陷设置;
    所述出光面包括中部的中心曲面部和与所述中心曲面部的外边缘平滑连接的环形曲面部,沿由所述出光面的径向外侧向径向内侧的方向,所述中心曲面部向所述入光面的方向凹陷设置,所述环形曲面部向远离所述入光面的方向凸出设置。
  2. 根据权利要求1所述的透镜,其特征在于,所述入光面的中心点与所述出光面的中心点连成的直线与所述透镜的轴线重合。
  3. 根据权利要求1所述的透镜,其特征在于,所述入光面和所述出光面均相对于所述透镜的轴线中心对称。
  4. 根据权利要求1所述的透镜,其特征在于,由径向外侧向内侧的方向,所述入光面的曲率半径逐渐变小,和/或,
    所述中心曲面部的曲率半径是逐渐变大,所述环形曲面部的曲率半径是先逐渐变小后逐渐变大。
  5. 根据权利要求1所述的透镜,其特征在于,所述入光面上设置有匀光结构。
  6. 根据权利要求5所述的透镜,其特征在于,所述匀光结构包括菲涅尔结构、鳞甲结构、磨砂结构、和/或毛化结构。
  7. 根据权利要求6所述的透镜,其特征在于,所述菲涅尔结构包括沿所述透镜的轴线方向依次相连的多个凹槽,所述凹槽沿所述入光面的切向深度为8μm~12μm;和/或,从所述入光面向所述出光面的方向,各个所述凹槽的侧壁与所述透镜的轴线之间的夹角逐渐增大。
  8. 根据权利要求7所述的透镜,其特征在于,由所述入光面向所述出光面的方向,所述多个凹槽依次包括第一凹槽、第二凹槽、第三凹槽、第四凹槽、第五凹槽、第六凹槽与第七凹槽;
    所述第一凹槽的侧壁与所述透镜的轴线之间的夹角角度为24.1°~25.2°;第二凹槽的侧壁与所述透镜的轴线之间的夹角角度为25.3°~26.0°;所述第 三凹槽的侧壁与所述透镜的轴线之间的夹角角度为26.1°~27.3°;所述第四凹槽的侧壁与所述透镜的轴线之间的夹角角度为27.2°~29.1°;所述第五凹槽的侧壁与所述透镜的轴线之间的夹角角度为30.6°~32.3°;所述第六凹槽的侧壁与所述透镜的轴线之间的夹角角度为37.5°~39.8°;所述第七凹槽的侧壁与所述透镜的轴线之间的夹角角度为39.9°~40.6°。
  9. 根据权利要求1至8任一项所述的透镜,其特征在于,所述透镜的入光侧端面中部内凹形成安装盲孔,所述安装盲孔由敞开端向盲端的方向包括相连通的安装段和承光段,所述安装段用于安装光纤,所述承光段的孔壁面构成所述入光面。
  10. 根据权利要求1至8任一项所述的透镜,其特征在于,所述透镜的入光侧端面上设置有定位柱。
  11. 根据权利要求10所述的透镜,其特征在于,所述定位柱设置有多个,多个所述定位柱关于所述透镜的轴中心对称布置。
  12. 根据权利要求1至8任一项所述的透镜,其特征在于,所述透镜的折射率n=1.4~1.8;和/或,
    所述透镜的阿贝常数Vd=25~70;和/或,
    所述透镜的直径为0.15mm~2mm;和/或,
    沿所述透镜中心轴线方向的厚度为0.1mm~1mm之间。
  13. 一种内窥镜照明系统,其特征在于,包括光纤和如权利要求1至12任一项所述的透镜,所述光纤的出光端面与所述透镜的入光面相对设置。
  14. 根据权利要求13所述的内窥镜照明系统,其特征在于,所述光纤与所述透镜形成过盈配合。
  15. 根据权利要求13所述的内窥镜照明系统,其特征在于,所述光纤的出光端面为平面,且所述出光端面与所述透镜的中心轴线垂直。
  16. 一种内窥镜设备,其特征在于,包括载体和设置于所述载体上的内窥镜器械通道、内窥镜成像系统和至少一个如权利要求14或15所述的内窥镜照明系统。
  17. 根据权利要求16所述的内窥镜设备,其特征在于,所述内窥镜照明系统的数量为2个。
  18. 根据权利要求16所述的内窥镜设备,其特征在于,所述内窥镜照明系统设置有多个,多个所述内窥镜照明系统围绕所述内窥镜成像系统和 所述内窥镜器械通道设置。
  19. 根据权利要求16所述的内窥镜设备,其特征在于,所述载体上设置有定位孔,所述定位孔与所述透镜的定位柱配合。
PCT/CN2021/105694 2021-05-26 2021-07-12 内窥镜照明系统及其透镜、内窥镜设备 WO2022246980A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110579392.1 2021-05-26
CN202110579392.1A CN115407502A (zh) 2021-05-26 2021-05-26 内窥镜照明系统及其透镜、内窥镜设备

Publications (1)

Publication Number Publication Date
WO2022246980A1 true WO2022246980A1 (zh) 2022-12-01

Family

ID=84155753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105694 WO2022246980A1 (zh) 2021-05-26 2021-07-12 内窥镜照明系统及其透镜、内窥镜设备

Country Status (2)

Country Link
CN (1) CN115407502A (zh)
WO (1) WO2022246980A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273678A (ja) * 1993-03-18 1994-09-30 Toshiba Corp 内視鏡用拡散照明光学系
CN104132305A (zh) * 2014-07-04 2014-11-05 佛山市中山大学研究院 一种聚光透镜
CN104421833A (zh) * 2013-08-22 2015-03-18 鸿富锦精密工业(深圳)有限公司 透镜及使用该透镜的光源模组
CN104456415A (zh) * 2013-09-23 2015-03-25 鸿富锦精密工业(深圳)有限公司 透镜及使用该透镜的光源模组
CN104595848A (zh) * 2013-10-30 2015-05-06 鸿富锦精密工业(深圳)有限公司 透镜及使用该透镜的光源模组
CN106500057A (zh) * 2015-09-07 2017-03-15 鸿富锦精密工业(深圳)有限公司 透镜及具有该透镜的发光装置
CN108386819A (zh) * 2018-05-15 2018-08-10 东莞市旭瑞光电科技有限公司 一种光学透镜
CN212929895U (zh) * 2019-11-13 2021-04-09 首尔半导体株式会社 光扩散透镜
CN112773302A (zh) * 2021-02-23 2021-05-11 复旦大学附属中山医院 一种适用血液环境成像的红外内窥镜

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273678A (ja) * 1993-03-18 1994-09-30 Toshiba Corp 内視鏡用拡散照明光学系
CN104421833A (zh) * 2013-08-22 2015-03-18 鸿富锦精密工业(深圳)有限公司 透镜及使用该透镜的光源模组
CN104456415A (zh) * 2013-09-23 2015-03-25 鸿富锦精密工业(深圳)有限公司 透镜及使用该透镜的光源模组
CN104595848A (zh) * 2013-10-30 2015-05-06 鸿富锦精密工业(深圳)有限公司 透镜及使用该透镜的光源模组
CN104132305A (zh) * 2014-07-04 2014-11-05 佛山市中山大学研究院 一种聚光透镜
CN106500057A (zh) * 2015-09-07 2017-03-15 鸿富锦精密工业(深圳)有限公司 透镜及具有该透镜的发光装置
CN108386819A (zh) * 2018-05-15 2018-08-10 东莞市旭瑞光电科技有限公司 一种光学透镜
CN212929895U (zh) * 2019-11-13 2021-04-09 首尔半导体株式会社 光扩散透镜
CN112773302A (zh) * 2021-02-23 2021-05-11 复旦大学附属中山医院 一种适用血液环境成像的红外内窥镜

Also Published As

Publication number Publication date
CN115407502A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CA2075489C (en) Submersible lens fiberoptic assembly
JP5021849B2 (ja) 照明光学系
JP2009513278A (ja) 外科手術用広角照明装置
US7507003B2 (en) Light collective optical system
CN203693533U (zh) 一种内窥镜系统、内窥镜冷光源及其聚光透镜
JP2002186578A (ja) ライトガイドおよび内視鏡
JPH0862512A (ja) 内視鏡のライトガイドコネクタ
JP2013188375A (ja) 内視鏡用照明光学系
WO2022246980A1 (zh) 内窥镜照明系统及其透镜、内窥镜设备
WO2017043170A1 (ja) 内視鏡照明光学系
JP2009276502A (ja) 内視鏡用照明光学系
JP2001512579A (ja) 光ガイド用の球形多ポートイルミネータの光学的設計
CN101813879A (zh) 投影仪光源系统
CN217982006U (zh) 内窥镜照明系统及其透镜、内窥镜设备
JP2010051606A (ja) 照明光学系及びこれを用いる内視鏡
JP2004513386A (ja) 有限な直径の開口部を通してのみ接近可能な遠隔物体の画像を提供するための装置
CN105650550B (zh) 一种室内用光纤耦合led辅助照明系统及其制作方法
JP2001509917A (ja) 光導体用バイプレーナマルチポートイルミネータ光学設計
CN214434136U (zh) 一种改进型内窥镜镜头用导光组件
CN106949410A (zh) 一种光源装置
CN217133460U (zh) 照明装置及全内反射荧光显微镜
JPH1152257A (ja) 照明光学系
CN216047162U (zh) 一种成像照明装置
CN216901024U (zh) 光波导
CN216307697U (zh) 一种可改善活体成像效果的均布光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE