WO2022244986A1 - 이동식 플랫폼 - Google Patents

이동식 플랫폼 Download PDF

Info

Publication number
WO2022244986A1
WO2022244986A1 PCT/KR2022/005276 KR2022005276W WO2022244986A1 WO 2022244986 A1 WO2022244986 A1 WO 2022244986A1 KR 2022005276 W KR2022005276 W KR 2022005276W WO 2022244986 A1 WO2022244986 A1 WO 2022244986A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
link
unit
assembly
assemblies
Prior art date
Application number
PCT/KR2022/005276
Other languages
English (en)
French (fr)
Inventor
이순걸
최재환
우수호
황인준
Original Assignee
주식회사 칼만텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 칼만텍 filed Critical 주식회사 칼만텍
Publication of WO2022244986A1 publication Critical patent/WO2022244986A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D63/00Motor vehicles or trailers not otherwise provided for
    • B62D63/02Motor vehicles
    • B62D63/04Component parts or accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G35/00Mechanical conveyors not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/36Pulleys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/02Gearings for conveying rotary motion by endless flexible members with belts; with V-belts

Definitions

  • the present invention relates to a mobile platform that can be utilized in an unmanned guided vehicle or the like.
  • Patent Registration No. 10-2225464 (Title of Invention: Loader Centering Device for Unmanned Guided Vehicle) and Patent Registration No. 10-1884825 (Title of Invention: Automated Warehouse System Using Unmanned Guided Vehicle) are known.
  • unmanned guided vehicles that enable more diverse motions using an omni wheel or a mecanum wheel are also attracting attention.
  • mechanisms capable of omni-directional movement such as omni wheels, are being attempted to be grafted into transportation means such as wheelchairs and vehicles that can be boarded by people, in addition to logistics transportation or automation systems.
  • Embodiments of the present invention are intended to provide a mobile platform capable of effective movement and change of direction and improving power transmission efficiency.
  • a plurality of ball assemblies arranged spaced apart in a plane on the main body;
  • a link assembly having a pair of link units disposed around the driving unit and transmitting a driving force to each ball assembly between the corresponding pair of ball assemblies; and a driving unit providing rotational driving force to the link assembly, wherein the link unit is installed in contact with the outer surface of the ball of the ball assembly and is rotationally driven by the driving unit to move the ball in a predetermined direction and speed.
  • Rotating omnidirectional wheel A driven pulley fastened to the rotating shaft of the front wheel; and a driving pulley disposed spaced apart from the driven pulley, coupled to the driven pulley through a driving belt, and rotationally driven by the driving unit.
  • the movable platform controls the rotational speed of each driving unit so that the platform can move in all directions and rotate.
  • the movable platform uses a method of rotationally driving each ball assembly via an omnidirectional wheel, thereby reducing power loss and implementing a high degree of freedom of movement and rotational motion equivalent to that of the conventional omni wheel. have.
  • FIG. 1 is a perspective view schematically illustrating a movable platform according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the movable platform of FIG. 1 omitting a main body;
  • FIG. 3 is an exploded perspective view showing the ball assembly shown in FIG. 1 in an enlarged manner
  • FIG. 4 is an exploded perspective view showing an enlarged link assembly shown in FIG. 1;
  • FIG. 5 is a front view of the mobile platform shown in FIG. 1;
  • FIG. 6 is a diagram illustrating an operation of the mobile platform shown in FIG. 1 .
  • FIG. 7 is a modification of the movable platform shown in FIG. 1 .
  • FIG. 1 is a perspective view schematically illustrating a movable platform according to an embodiment of the present invention. 2 is a perspective view of the movable platform of FIG. 1 omitting a main body;
  • the movable platform (hereinafter referred to as “platform 100”) of the present embodiment may include a body 110.
  • the main body 110 may form the overall appearance or support structure of the platform 100 .
  • Components of the platform 100 such as the ball assembly 120 to be described later, may be mounted and installed via the main body 110.
  • the main body 110 may have a predetermined structure or shape and can properly provide a support structure for the platform 100 or a mounting space for other components, and the structure or shape is not particularly limited. In the case of this embodiment, the main body 110 is illustrated as having an approximate rectangular panel shape.
  • the platform 100 of this embodiment can be used with various uses or possibilities. That is, the platform 100 of the present embodiment moves on the ground and can be variously applied in a type of device requiring proper direction change or steering.
  • the platform 100 is equipped with appropriate additional means and can be used to implement an automated guided vehicle (AGV) or autonomous robot used in logistics or industrial fields, and furthermore, a vehicle in which a person can ride. etc. can be applied.
  • AGV automated guided vehicle
  • autonomous robot used in logistics or industrial fields, and furthermore, a vehicle in which a person can ride. etc. can be applied.
  • the platform 100 of this embodiment may include a ball assembly 120 .
  • the ball assembly 120 may be installed on the main body 110 to implement movement of the platform 100 .
  • a plurality of ball assemblies 120 may be provided. For example, 3 to 5 ball assemblies 120 may be provided. Also, the plurality of ball assemblies 120 may be spaced apart from each other on a plane. In this embodiment, four ball assemblies 120a to 120d are provided in the main body 110, and each ball assembly 120a to 120d is disposed at each apex (vertex) portion of the main body 110. . However, each of the ball assemblies 120a to 120d may be formed similarly to each other. For convenience, in this description, the ball assembly 120a disposed on the front left side of the main body 110 is referred to as the "first ball assembly 120a" according to the position of each ball assembly 120a to 120d, and is counterclockwise based on this. Each of the ball assemblies 120b to 120d arranged in the same direction is referred to as a second ball assembly 120b, a third ball assembly 120c, and a fourth ball assembly 120d in order.
  • FIG. 3 is an exploded perspective view showing the ball assembly shown in FIG. 1 in an enlarged manner
  • first to fourth ball assemblies 120a to 120d may be formed similarly to each other, detailed configurations thereof will be described in more detail with the first ball assembly 120a as the center for convenience.
  • the first ball assembly 120a may include a ball housing 121 .
  • the ball housing 121 may form an accommodation space 122 in which the ball 123 can be mounted and accommodated.
  • the accommodating space 122 may be formed by a housing side portion 121a surrounding the accommodating space 122 and a housing upper portion 121b shielding the upper portion of the accommodating space 122 .
  • the lower part of the accommodating space 122 may be formed open, and the ball 123 may be exposed to the outside of the accommodating space 122 through the open lower part and roll into contact with the ground.
  • the ball housing 121 may include a housing fixing part 121c.
  • the housing fixing part 121c is fastened to the main body 110 so that the ball housing 121 and the first ball assembly 120a including the ball housing 121 can be installed in the main body 110 .
  • the housing fixing part 121c allows the first ball assembly 120a or each ball assembly 120a to 120d to be separated from the main body 110 independently. Accordingly, each of the ball assemblies 120a to 120d may be separated from the main body 110 and reorganized with a new combination or arrangement. This is advantageous in terms of component replacement, compatibility, maintenance, and the like.
  • the ball housing 121 may have an access hole 121d.
  • the access hole 121d may be formed through the ball housing 121 so that the front wheel 131 can access the accommodating space 122 .
  • the access hole 121d is exemplified as being formed through a corner portion where the housing upper portion 121b and the housing side portion 121a meet.
  • the access hole 121d may have a position or shape that allows the front wheel 131 to properly approach the accommodating space 122, and is not necessarily limited to the exemplified bar.
  • a plurality of access holes 121d may be provided corresponding to the number of omnidirectional wheels 131 coupled to the ball 123 .
  • the plurality of access holes 121d may be spaced apart from each other with a predetermined interval or angle according to the arrangement of the front wheel 131 .
  • the two access holes 121d are spaced apart from each other at approximately 90 degree intervals according to the arrangement of the front wheels 131 .
  • the first ball assembly 120a may include a ball 123 .
  • the ball 123 has a shape of a circular sphere and may be mounted and disposed in the accommodation space 122 . A lower portion of the ball 123 is exposed to the lower portion of the receiving space 122 and may be seated on the ground.
  • the ball housing 121 or the accommodation space 122 may have an appropriate support structure so that the ball 123 does not escape downward.
  • the ball housing 121 may have a shape that becomes narrower toward the bottom so that the escape of the ball 123 is restricted.
  • a part or all of the surface of the ball 123 may include a mechanical shape or material capable of increasing frictional force.
  • the platform 100 of this embodiment may include a link assembly 130 .
  • the link assembly 130 may transmit the driving force of the driving unit 140 to the ball assembly 120 .
  • the link assembly 130 is configured to transmit driving force provided from one drive unit 140 to two corresponding ball assemblies 120 .
  • each link assembly 130 corresponding to each ball assembly 120a to 120d may be considered.
  • a plurality of link assemblies 130 may be provided to correspond to a plurality of ball assemblies 120 .
  • a case in which four link assemblies 130a to 130d are provided to correspond to the first to fourth ball assemblies 120a to 120d is illustrated.
  • Each of the link assemblies 130a to 130d may transfer the driving force of the driving unit 140 between the corresponding two ball assemblies 120 to each of the ball assemblies 120a to 120d.
  • the link assembly 130a that transmits the driving force between the first ball assembly 120a and the second ball assembly 120b is referred to as the "first link assembly 130a", and is referred to as a counterclockwise direction based thereon.
  • Each of the arranged link assemblies 130b to 130d is sequentially referred to as a second link assembly 130b, a third link assembly 130c, and a fourth link assembly 130d.
  • each of the first to fourth link assemblies 130a to 130d may be formed similarly to each other only with different arrangement positions.
  • FIG. 4 is an exploded perspective view showing an enlarged link assembly shown in FIG. 1;
  • first to fourth link assemblies 130a to 130d may be formed similarly to each other, for convenience, detailed configurations thereof will be described in more detail centering on the first link assembly 130a.
  • the first link assembly 130a may be divided into two parts again with the first driving unit 140a as the center. That is, the first link assembly 130a includes the 1-1 link unit 130aa that transmits the driving force to the first ball assembly 120a and the 1-2 link that transmits the driving force to the second ball assembly 120b. It may consist of a unit (130ab). The 1-1st link unit 130aa and the 1-2nd link unit 130ab may be formed to be similar to each other except that their positions are different.
  • each of the second to fourth link assemblies 130b to 130d may be divided into two parts.
  • the second link assembly 130b may be divided into a front 2-1 link unit 130ba and a rear 2-2 link unit 130bb
  • the third link assembly 130c is the third link unit on the left.
  • -1 link unit (130ca) and the 3-2 link unit (130cb) on the right side can be divided and formed
  • the 4th link assembly (130d) is the front 4-1 link unit (130da) and the rear 4th link unit (130d). It can be divided into 2 link units (130db). Since each of the above link units 130aa to 130da may be formed similarly to each other, the description of the 1-1st link unit 130aa will replace it.
  • the 1-1 link unit 130aa may include an omnidirectional wheel 131 that rolls in contact with the outer surface of the ball 123.
  • the front wheel 131 is rotated in contact with the outer surface of the ball 123 to transmit rotational driving force to the ball 123.
  • the omni-directional wheel 131 may have a rotational axis in the forward and backward directions, which is similar to the 1-2 link unit 130ab or the first link assembly 130a.
  • the third link assembly 130c ie, the 3-1 link unit 130ca and the 3-2 link unit 130cb
  • the second link assembly 130b ie, the 2-1 link unit 130ba and the 2-2 link unit 130bb
  • the fourth link assembly 130d ie, the fourth link unit 130b
  • the omnidirectional wheel may have a rotational axis in a left and right direction.
  • the forward wheel 131 may be composed of a rim wheel and a plurality of rollers arranged along the outer circumference of the rim wheel. Each roller may be formed to be rotatable with respect to the rim wheel with a rotational axis forming approximately 90 degrees with the rotational axis of the front wheel 131 .
  • Such an omnidirectional wheel 131 is known by names such as an omni wheel and an omni directional wheel.
  • the front wheel 131 may be replaced with a different type of wheel or a rotating body having a similar function.
  • the forward wheel 131 may be replaced with a general wheel part that allows some slip or a mecanum wheel.
  • the 1-1 link unit 130aa may include a driven pulley 132 and a driving pulley 133 .
  • the driven pulley 132 and the driving pulley 133 may be rotatably supported with rotational axes in the forward and backward directions, respectively.
  • the driven pulley 132 is axially coupled with the front wheel 131 to interlock and rotate the front wheel 131, and the drive pulley 133 is disposed laterally from the driven pulley 132 at a predetermined interval to form a driving unit.
  • a rotation driving force may be provided from 140 .
  • the 1-1 link unit 130aa may include a driving belt 134 connected between the driven pulley 132 and the driving pulley 133.
  • the driving belt 134 may transmit driving force from the driving pulley 133 to the driven pulley 132 .
  • the drive belt 134 may be generally disposed in the left and right directions.
  • Unit 130cb) may be similarly configured.
  • the second link assembly 130b ie, the 2-1st link unit 130ba and the 2-2nd link unit 130bb
  • the 4th link assembly 130d ie, the 4th link unit 130b having different arrangement directions.
  • the drive belt may extend substantially in the front-rear direction.
  • the 1-1st link unit 130aa may include a tension pulley 135 and a tension spring 136.
  • the tension pulley 135 may be fastened to the driving belt 134 between the driven pulley 132 and the driving pulley 133 .
  • the tension spring 136 may be coupled to the tension pulley 135 to elastically support the tension pulley 135 upward.
  • the tension spring 136 is illustrated as a tension coil spring 136 installed between the lower part of the body 110 and the tension pulley 135.
  • the tension pulley 135 to the tension spring 136 may have a function of preventing the drive belt 134 from sagging.
  • the 1-2 link unit 130ab may be formed similarly to the 1-1 link unit 130aa as described above, and is connected to the 1-1 link unit 130aa with the first driving unit 140a as the center.
  • the first link assembly 130a may be disposed on the opposite side (on the right side of the drawing) to correspond to each other and transmit driving force between the first and second ball assemblies 120a and 120b.
  • the second link assembly 130b may be formed to transmit a driving force between the second and third ball assemblies 120b and 120c
  • the third link assembly 130c may be formed to transmit driving force between the third and fourth ball assemblies 120c and 120c. 120d)
  • the fourth link assembly 130d may be formed to transmit driving force between the first and fourth ball assemblies 120a and 120d.
  • the first to fourth ball assemblies 120a to 120d are rotationally driven in a predetermined rotational direction by the driving of the first to fourth link assemblies 130a to 130d, thereby implementing driving or changing direction of the platform 100.
  • first to fourth link assemblies 130a to 130d have a power transmission structure using a pulley and a belt in the above, the first to fourth link assemblies 130a to 130d are not necessarily limited thereto, In some cases, it may be appropriately replaced by a means that performs the same or similar function.
  • the first to fourth link assemblies 130a to 130d may be replaced with chains and sprockets.
  • the platform 100 of this embodiment may include a driving unit 140 .
  • the driving unit 140 may implement movement or rotation of the platform 100 by rotationally driving each of the ball assemblies 120a to 120d in a predetermined direction and speed.
  • Each of the link assemblies 130a to 130d described above may transmit the rotational driving force of the drive unit 140 to each of the ball assemblies 120a to 120d.
  • a plurality of driving units 140 may be provided corresponding to the number of ball assemblies 120 .
  • a case in which four driving units 140a to 140d are provided to correspond to the four ball assemblies 120a to 120d is illustrated.
  • Each driving unit (140a ⁇ 140d) may be formed similar to each other.
  • the drive unit 140a disposed approximately at the front of the main body 110 is referred to as a "first drive unit 140a" according to the position of each drive unit 140a to 140d, and based on this, the drive unit 140a is
  • Each of the driving units 140b to 140d arranged in the clockwise direction is referred to as a second driving unit 140b, a third driving unit 140c, and a fourth driving unit 140d in order.
  • the first driving unit 140a is connected to the first link assembly 130a to provide rotational driving force to the first and second ball assemblies 120a and 120b
  • the second driving unit 140b is connected to the second link assembly. It is connected to (130b) and can provide rotational driving force to the second and third ball assemblies 120b and 120c
  • the third drive unit 140c is connected to the third link assembly 130c to provide rotational driving force to the third and fourth ball assemblies 120c and 120d
  • the fourth drive unit 140d is connected to the fourth link. It is connected to the assembly 130d to provide rotational driving force to the first and fourth ball assemblies 120a and 120d.
  • the first and third drive units 140a and 140c apply a rotational driving force centered on the left and right axes to each ball assembly 120a to 120d.
  • the second and fourth driving units 140b and 140d may provide rotational driving force about the front and rear axes to each of the ball assemblies 120a to 120d.
  • first to fourth driving units 140a to 140d may be formed similarly to each other, detailed configurations thereof will be described in more detail, focusing on the first driving unit 140a for convenience.
  • the first driving unit 140a may include a driving motor 141 .
  • the drive motor 141 may be arranged to have a drive shaft in a generally forward-rear direction.
  • the driving shaft of the driving motor 141 may be disposed substantially orthogonal to the driving belt 134 of the first link assembly 130a. This can contribute to facilitating power transmission between the first driving unit 140a and the first link assembly 130a and reducing loss.
  • a driving gear 142 may be coupled to a driving shaft of the driving motor 141 .
  • the first driving unit 140a may include first and second transmission gears 143a and 143b for transmitting the driving force of the driving motor 141 to both sides, respectively.
  • the first and second transmission gears 143a and 143b each have a rotational axis in the forward and backward directions and may be disposed left and right around the drive gear 142.
  • the first and second transmission gears 143a and 143b may be rotated at speeds and directions corresponding to each other according to the rotation of the driving gear 142 .
  • the first transmission gear 143a may be engaged with the drive pulley 133 of the 1-1st link unit 130aa.
  • the first transmission gear 143a may be connected to the driving pulley 133 of the 1-1 link unit 130aa through a predetermined coupling structure or power transmission structure to rotate and drive the driving pulley 133.
  • the second transmission gear 143b may be engaged with the driving pulley of the first-second link unit 130ab. Accordingly, when the first driving unit 140a is rotationally driven, the first ball assembly 120a can be rotationally driven in a predetermined direction and speed through the first transmission gear 143a and the 1-1 link unit 130aa. At the same time, the second ball assembly 120b may be rotationally driven in a corresponding direction and speed through the second transmission gear 143b and the 1-2 link unit 130ab.
  • the driving gear 142 and the first and second transmission gears 143a and 143b may be capable of properly transmitting the driving force of the first driving unit 140a to each driving pulley, and various known types or types of gear parts may be used. can be used In this embodiment, a spur gear having a predetermined gear ratio in a relatively simple form is illustrated.
  • each driving unit (140a ⁇ 140d) can provide a rotational driving force to the two ball assemblies 120 through each link assembly (130). That is, the first driving unit 140a can provide rotational driving force in a predetermined direction to the first and second ball assemblies 120a and 120b through the first link assembly 130a, and similarly, the second to fourth driving units (140b ⁇ 140d) can provide rotational driving force to each of the two ball assemblies (120). Accordingly, the number of drive motors 141 for driving the entire ball assembly 120 can be reduced.
  • FIG. 5 is a front view of the mobile platform shown in FIG. 1;
  • the platform 100 of this embodiment has a rotating shaft R1 of each driving unit 140a to 140d and the same line L1 as the rotating shaft R2 of each front wheel 131 receiving power therefrom. ) can be placed on. This makes it possible to improve the efficiency of power transmission.
  • the drive shaft of the first drive unit 140a may have a rotating shaft R1 at a predetermined height from the ground, and each drive pulley on the left and right receiving power therefrom ( 133) may have a rotation axis R3 having a corresponding height.
  • the rotation axis R3 of the drive pulley 133, the rotation axis R4 of the driven pulley 132, and the rotation axis of the forward wheel 131 ( R2) may be disposed on the same line (L1).
  • the same line L1 may be vertically spaced apart from the center of rotation C1 of the first ball assembly 120a or the center of rotation C2 of the second ball assembly 120b. However, in some cases, in order to realize more improved transmission efficiency, the same line L1 may be arranged at a height corresponding to the respective rotation centers C1 and C2.
  • the platform 100 of the present embodiment controls the rotation speed of each driving unit 140a to 140d so that the platform 100 can be moved and rotated in all directions.
  • the platform 100 of this embodiment uses a method of rotationally driving each ball assembly 120a to 120d via the omnidirectional wheel 131 to minimize power loss while moving and rotating with a higher degree of freedom compared to the conventional omni wheel. action can be implemented.
  • FIG. 6 is a diagram illustrating an operation of the mobile platform shown in FIG. 1 .
  • forward and backward movement of the platform 100 may be implemented through control of the second and fourth driving units 140b and 140d. That is, the second driving unit 140b rotates the second and third ball assemblies 120b and 120c around left and right axes, and the fourth driving unit 140d rotates the first and fourth ball assemblies 120a and 120d left and right. Forward and backward movement can be implemented by rotating about an axis. In some cases, steering or direction change may be implemented through rotational speed control between the second driving unit 140b and the fourth driving unit 140d.
  • left and right lateral movement may be implemented through control of the first and third driving units 140a and 140c. That is, the platform 100 of this embodiment can function as a movable platform that does not substantially distinguish front and back or sideways. Accordingly, it can be effectively used for movement in a narrow space in an unmanned guided vehicle or the like.
  • the first to fourth driving units 140a to 140d are complexly controlled so that movement or rotation in a wide variety of directions or postures can be realized.
  • each ball assembly 120a to 120d rolls in contact with the ground in the above movement or rotation operation, so that friction or interference between the ground is reduced.
  • One feature is that each movement is implemented. put Accordingly, the efficiency of the platform 100 can be improved, and it can more effectively respond to various obstacles or ground conditions.
  • the platform 100 of this embodiment is formed such that a plurality of ball assemblies 120a to 120d are spaced apart on a plane to support the main body 110 and travel on the ground. Accordingly, the body 110 or the upper structure mounted on the body 110 can be moved with high driving stability, and driving performance can also be improved according to the stable support structure.
  • FIG. 7 is a modification of the movable platform shown in FIG. 1 .
  • the platform 100 of the above-described embodiment includes four ball assemblies 120a to 120d, and each driving unit 140a to 140d is disposed at an interval of about 90 degrees from each ball assembly 120a to 120d. That is, with respect to the first ball assembly 120a, the first link assembly 130a and the fourth link assembly 130d are disposed at an interval of about 90 degrees on a plane, and the first link assembly 130a is the first link assembly 130a.
  • the ball assembly 120a provides rotational driving force centered on the front and rear axes, and the fourth link assembly 130d provides rotational driving force centered on the left and right axis to the first ball assembly 120a.
  • This arrangement has an advantage in that it is easy to transmit driving force to the ball assemblies 120a to 120d or to control the direction of rotation.
  • the ball assembly 120 is implemented with a number other than four. 7 illustrates a case in which three ball assemblies 220a to 220c are provided as an example.
  • the movable platform (hereinafter, referred to as “platform 200”) of the modified example may include three ball assemblies 220a to 220c disposed at intervals of about 120 degrees on a plane.
  • each of the ball assemblies 220a to 220c is referred to as the first to third ball assemblies 220a to 220c.
  • the platform 200 of this modification may include first to third link assemblies 230a to 230c and first to third driving units 240a to 240c.
  • the first to third driving units 240a to 240c may provide rotational driving force to the first to third link assemblies 230a to 230c, respectively, and the first to third link assemblies 230a to 230c may rotate the first to third balls.
  • the assemblies 220a to 220c may be rotationally driven in a predetermined direction. This is similar to the platform 100 of the foregoing embodiment.
  • the first to third link assemblies 230a to 230c are arranged at an interval of about 60 degrees on a plane to provide rotational driving force to each of the first to third ball assemblies 220a to 220c. can do. That is, the first and third link assemblies 230a and 230c are disposed at intervals of approximately 60 degrees to provide rotational driving force to the first ball assembly 220a, and the second and third link assemblies 230b and 230c are approximately It is arranged at an interval of 60 degrees to provide rotational driving force to the second ball assembly 220b, and the second and third ball assemblies 220b and 220c are arranged at an interval of approximately 60 degrees to rotate to the third ball assembly 220c. driving force can be provided.
  • the platform 200 as described above may be operated with a similar operating principle to that of the platform 100 of the above-described embodiment. That is, each of the first to third ball assemblies 220a to 220c is rotationally driven in a predetermined direction and speed through the first to three link assemblies 230a to 230c, and thus movement, direction control, etc. can be implemented. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Motorcycle And Bicycle Frame (AREA)
  • Transmission Devices (AREA)

Abstract

무인운반차 등에서 활용될 수 있는 이동식 플랫폼이 개시된다. 본 발명에 따르면, 본체에 평면상 이격 배치된 복수의 볼조립체; 구동유닛을 중심으로 배치된 한 쌍의 링크유닛을 구비하고, 대응되는 한 쌍의 볼조립체 사이에서 각 볼조립체로 구동력을 전달하는 링크조립체; 및 링크조립체로 회전 구동력을 제공하는 구동유닛;을 포함하고, 링크유닛은, 볼조립체의 볼 외면에 접촉 설치되고, 구동유닛에 의해 회전 구동되어 볼을 소정의 방향 및 속도로 회전시키는 전방향휠; 전방향휠의 회전축에 체결되는 종동풀리; 및 종동풀리로부터 이격 배치되어 구동벨트를 통해 종동풀리와 체결되고, 구동유닛에 의해 회전 구동되는 구동풀리;를 포함하는 이동식 플랫폼이 제공된다.

Description

이동식 플랫폼
본 발명은 무인운반차 등에서 활용될 수 있는 이동식 플랫폼에 관한 것이다.
근래 들어 소비 패턴의 변화로 과거의 획일화, 대량화에 중점을 두어 제조되던 상품들이 점차 다품종 소량 품목으로 변화되고 있다. 이에 따라 종래 소품종 대량생산에 중점을 맞춰 설계되었던 자동화 공정 시스템은 다품종 소량 생산에 적합한 형태로 전환이 모색되는 중이다. 이러한 맥락에서 다품종 소량 생산 체제의 자동화 공정이나 물류 이송 등에 적합하게 사용될 수 있는 무인운반차(AGV: Automated Guided Vehicle)가 활발하게 연구 개발되고 있다.
무인운반차는 다양한 방식이 개발 및 활용 중에 있다. 일 예로 등록특허 제10-2225464호(발명의 명칭: 무인운반차의 로더 센터링 장치), 등록특허 제10-1884825호(발명의 명칭: 무인운반차를 이용한 자동화 창고 시스템) 등이 알려져 있다. 최근에는 옴니 휠(omni wheel)이나 매커넘 휠(mecanum wheel)을 이용해 좀 더 다양한 모션을 가능하게 하는 무인운반차도 주목받고 있다. 특히 옴니 휠 등의 전(全)방향 이동이 가능한 매커니즘은 물류 이송이나 자동화 시스템 등에서 나아가 휠체어, 차량 등 사람이 탑승 가능한 이동수단 등으로도 접목이 시도되고 있다.
본 발명의 실시예들은 효과적인 이동 및 방향 전환이 가능하고, 동력 전달 효율을 개선할 수 있는 이동식 플랫폼을 제공하고자 한다.
다만 본 발명의 실시예들이 이루고자 하는 기술적 과제들은 반드시 상기에서 언급한 기술적 과제들로 제한되지 않는다. 언급되지 않은 다른 기술적 과제들은 상세한 설명 등 명세서의 다른 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 측면에 따르면, 본체에 평면상 이격 배치된 복수의 볼조립체; 구동유닛을 중심으로 배치된 한 쌍의 링크유닛을 구비하고, 대응되는 한 쌍의 볼조립체 사이에서 각 볼조립체로 구동력을 전달하는 링크조립체; 및 상기 링크조립체로 회전 구동력을 제공하는 구동유닛;을 포함하고, 상기 링크유닛은, 상기 볼조립체의 볼 외면에 접촉 설치되고, 상기 구동유닛에 의해 회전 구동되어 상기 볼을 소정의 방향 및 속도로 회전시키는 전방향휠; 상기 전방향휠의 회전축에 체결되는 종동풀리; 및 상기 종동풀리로부터 이격 배치되어 구동벨트를 통해 상기 종동풀리와 체결되고, 상기 구동유닛에 의해 회전 구동되는 구동풀리;를 포함하는 이동식 플랫폼이 제공될 수 있다.
본 발명의 실시들에 따른 이동식 플랫폼은 각 구동유닛의 회전 속도를 제어해 플랫폼의 전방향 이동 및 회전 동작이 구현될 수 있다.
또한 본 발명의 실시들에 따른 이동식 플랫폼은 전방향휠을 매개로 각 볼조립체를 회전 구동하는 방식을 사용해 동력 손실을 줄이면서도 종래 옴니 휠 등과 대등한 수준으로 높은 자유도의 이동 및 회전 동작을 구현할 수 있다.
다만 본 발명의 실시예들을 통해 얻을 수 있는 기술적 효과들은 반드시 상기에서 언급한 효과들로 제한되지 않는다. 언급되지 않은 다른 기술적 효과들은 상세한 설명 등 명세서의 다른 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 이동식 플랫폼을 개략적으로 도시한 사시도이다.
도 2는 도 1의 이동식 플랫폼에서 본체를 생략하고 도시한 사시도이다.
도 3은 도 1에 도시된 볼조립체를 확대해 도시한 분해사시도이다.
도 4는 도 1에 도시된 링크조립체를 확대해 도시한 분해사시도이다.
도 5는 도 1에 도시된 이동식 플랫폼의 정면도이다.
도 6은 도 1에 도시된 이동식 플랫폼의 작동 예시도이다.
도 7은 도 1에 도시된 이동식 플랫폼의 변형예이다.
이하 본 발명의 실시예들을 첨부된 도면을 참조해 설명한다. 이하의 실시예들은 해당 기술분야에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공될 수 있다. 다만 이하의 실시예들은 본 발명의 이해를 돕기 위해 제공되는 것이고 본 발명의 기술적 사상이 반드시 이하의 실시예들에 한정되는 것은 아니다. 또한 본 발명의 기술적 요지를 불분명하게 하거나 공지된 구성에 대해서는 상세한 설명을 생략하기로 한다.
도 1은 본 발명의 일 실시예에 따른 이동식 플랫폼을 개략적으로 도시한 사시도이다. 도 2는 도 1의 이동식 플랫폼에서 본체를 생략하고 도시한 사시도이다.
도 1 및 2를 참조하면, 본 실시예의 이동식 플랫폼(이하, "플랫폼(100)"으로 지칭)은 본체(110)를 포함할 수 있다.
본체(110)는 플랫폼(100)의 전체적인 외관이나 지지구조를 형성할 수 있다. 후술할 볼조립체(120) 등 플랫폼(100)의 구성요소들은 본체(110)를 매개로 장착 설치될 수 있다.
본체(110)는 소정의 구조나 형상을 갖고 플랫폼(100)의 지지구조나 다른 구성요소들의 장착공간 등을 적절히 제공할 수 있는 것이면 무방하고 그 구조나 형상이 특별히 제한되지는 않는다. 본 실시예의 경우 본체(110)는 대략 사각패널의 외형을 갖는 것으로 예시되어 있다.
본체(110)에는 플랫폼(100)의 용도나 기능에 따라 다양한 부가수단이 탑재될 수 있다. 또한 본체(110)에 탑재된 부가수단에 따라 본 실시예의 플랫폼(100)은 다양한 용도나 가능을 갖고 사용될 수 있다. 즉, 본 실시예의 플랫폼(100)은 지면에서 이동되며 적절한 방향 전환이나 조향이 요구되는 형태의 장치에서 다양하게 응용될 수 있다. 예컨대 플랫폼(100)은 적절한 부가수단이 탑재되어 물류나 산업분야에서 사용되는 무인운반차(AGV: Automated Guided Vehicle), 자율주행로봇 등을 구현하기 위해 사용될 수 있고, 나아가 사람이 탑승 가능한 형태의 차량 등으로 응용될 수 있다.
한편 본 실시예의 플랫폼(100)은 볼조립체(120)를 포함할 수 있다.
볼조립체(120)는 본체(110)에 설치되어 플랫폼(100)의 이동을 구현할 수 있다.
볼조립체(120)는 복수개가 구비될 수 있다. 예컨대 볼조립체(120)는 3 내지 5개가 구비될 수 있다. 또한 복수의 볼조립체(120)는 평면상 상호 이격 배치될 수 있다. 본 실시예에서는 본체(110)에 4개의 볼조립체(120a~120d)가 구비되고, 각 볼조립체(120a~120d)가 본체(110)의 각 정점(꼭짓점) 부위에 배치되는 경우를 예시하고 있다. 다만 각 볼조립체(120a~120d)들은 상호 유사하게 형성될 수 있다. 편의상 본 설명에서는 각 볼조립체(120a~120d)의 위치에 따라 본체(110)의 전방 좌측에 배치된 볼조립체(120a)를 "제1볼조립체(120a)"로 지칭하고, 이를 기준으로 반시계 방향 배치된 각 볼조립체(120b~120d)를 순서대로 제2볼조립체(120b), 제3볼조립체(120c) 및 제4볼조립체(120d)로 지칭하도록 한다.
도 3은 도 1에 도시된 볼조립체를 확대해 도시한 분해사시도이다.
제1 내지 4볼조립체(120a~120d)는 상호 유사하게 형성될 수 있으므로, 편의상 제1볼조립체(120a)를 중심으로 그 세부구성을 좀 더 상세히 설명한다.
도 3을 참조하면, 제1볼조립체(120a)는 볼하우징(121)을 구비할 수 있다. 볼하우징(121)은 볼(123)이 장착 수용될 수 있는 수용공간(122)을 형성할 수 있다. 수용공간(122)은 수용공간(122)을 둘레를 에워싸는 하우징측부(121a)와, 수용공간(122)의 상부를 차폐하는 하우징상부(121b)에 의해 형성될 수 있다. 수용공간(122)의 하부는 개방 형성될 수 있고, 볼(123)은 이와 같이 개방된 하부를 통해 수용공간(122) 외부로 노출되어 지면에 접촉 구름될 수 있다.
볼하우징(121)은 하우징고정부(121c)를 구비할 수 있다. 하우징고정부(121c)는 본체(110)에 체결되어, 볼하우징(121) 및 이를 포함하는 제1볼조립체(120a)가 본체(110)에 설치될 수 있도록 한다. 또한 하우징고정부(121c)는 제1볼조립체(120a) 또는 각 볼조립체(120a~120d)가 본체(110)로부터 독립적으로 분리될 수 있도록 한다. 이에 따라 각 볼조립체(120a~120d)는 본체(110)로부터 분리되어 새로운 조합이나 배치를 갖고 재편성될 수 있다. 이는 구성부품의 교체나 호환성, 유지관리 등의 측면에서 이점이 있다.
볼하우징(121)은 엑세스홀(121d)을 구비할 수 있다. 엑세스홀(121d)은 전방향휠(131)이 수용공간(122)으로 접근될 수 있도록 볼하우징(121)에 관통 형성될 수 있다. 본 실시예의 경우 엑세스홀(121d)은 하우징상부(121b)와 하우징측부(121a)가 만나는 모서리 부위에 관통 형성된 것으로 예시되고 있다. 다만 엑세스홀(121d)은 전방향휠(131)을 적절히 수용공간(122)으로 접근시킬 수 있는 위치나 형상이면 무방하고 반드시 예시된 바에 한정되지는 않는다.
엑세스홀(121d)은 볼(123)에 결합되는 전방향휠(131)의 개수에 대응되어 복수개가 구비될 수 있다. 또한 복수의 엑세스홀(121d)은 전방향휠(131)의 배치에 따라 소정의 간격이나 사이각을 가지고 이격 배치될 수 있다. 예컨대 본 실시예에서는 하나의 볼(123)에 2개의 전방향휠(131)이 결합되는 것으로 예시되고 있으며, 이에 따라 볼하우징(121)에는 2개의 엑세스홀(121d)이 형성되어 있다. 또한 2개의 엑세스홀(121d)은 각 전방향휠(131)의 배치에 따라 대략 90도 간격을 이루며 이격 배치되어 있다.
한편 제1볼조립체(120a)는 볼(123)을 구비할 수 있다. 볼(123)은 원형 구체(sphere)의 형상을 가지고, 수용공간(122)에 장착 배치될 수 있다. 볼(123)의 하부 일부는 수용공간(122) 하부로 노출되어 지면에 안착될 수 있다. 볼하우징(121) 또는 수용공간(122)은 볼(123)이 하부로 이탈되지 않도록 적절한 지지 구조를 가질 수 있다. 예컨대 볼하우징(121)은 볼(123)의 이탈이 제한되도록 하부로 갈수록 좁아지는 형상을 가질 수 있다.
경우에 따라 볼(123)의 표면은 일부 또는 전부에 마찰력을 증가시킬 수 있는 기계적 형상이나 재질 등을 포함할 수 있다.
다시 도 1 및 2를 참조하면, 본 실시예의 플랫폼(100)은 링크조립체(130)를 포함할 수 있다.
링크조립체(130)는 구동유닛(140)의 구동력을 볼조립체(120)로 전달할 수 있다. 본 실시예에서 링크조립체(130)는 하나의 구동유닛(140)으로부터 제공되는 구동력을 대응되는 2개의 볼조립체(120)로 전달하도록 구성되어 있다. 다만 경우에 따라 각 볼조립체(120a~120d)에 대응되는 각 링크조립체(130)가 구비되는 형태도 고려될 수 있다.
링크조립체(130)는 복수의 볼조립체(120)와 대응되도록 복수개가 구비될 수 있다. 본 실시예의 경우 제1 내지 4볼조립체(120a~120d)에 대응되도록 4개의 링크조립체(130a~130d)가 구비된 경우를 예시하고 있다. 각 링크조립체(130a~130d)는 대응되는 2개의 볼조립체(120) 사이에서 구동유닛(140)의 구동력을 각 볼조립체(120a~120d)로 전달할 수 있다. 편의상 본 설명에서는 제1볼조립체(120a)와 제2볼조립체(120b) 사이에서 구동력을 전달하는 링크조립체(130a)를 "제1링크조립체(130a)"로 지칭하고, 이를 기준으로 반시계 방향 배치된 각 링크조립체(130b~130d)를 순서대로 제2링크조립체(130b), 제3링크조립체(130c) 및 제4링크조립체(130d)로 지칭하도록 한다. 다만 제1 내지 4링크조립체(130a~130d)는 각각 그 배치 위치가 상이할 뿐 상호 유사하게 형성될 수 있다.
도 4는 도 1에 도시된 링크조립체를 확대해 도시한 분해사시도이다.
제1 내지 4링크조립체(130a~130d)는 상호 유사하게 형성될 수 있으므로, 편의상 제1링크조립체(130a)를 중심으로 그 세부구성을 좀 더 상세히 설명한다.
도 4를 참조하면, 제1링크조립체(130a)는 제1구동유닛(140a)을 중심으로 다시 2개의 파트로 분할될 수 있다. 즉, 제1링크조립체(130a)는 구동력을 제1볼조립체(120a)로 전달하는 제1-1링크유닛(130aa)과, 구동력을 제2볼조립체(120b)로 전달하는 제1-2링크유닛(130ab)으로 구성될 수 있다. 제1-1링크유닛(130aa)과 제1-2링크유닛(130ab)은 그 위치가 상이할 뿐 상호 유사하게 형성될 수 있다.
상기와 같은 방식으로, 제2 내지 4링크조립체(130b~130d)는 각각 2개의 파트로 분할될 수 있다. 제2링크조립체(130b)는 전방의 제2-1링크유닛(130ba)과 후방의 제2-2링크유닛(130bb)으로 분할 형성될 수 있고, 제3링크조립체(130c)는 좌측의 제3-1링크유닛(130ca)과 우측의 제3-2링크유닛(130cb)으로 분할 형성될 수 있으며, 제4링크조립체(130d)는 전방의 제4-1링크유닛(130da)과 후방의 제4-2링크유닛(130db)으로 분할 형성될 수 있다. 상기의 각 링크유닛(130aa~130da)은 상호 유사하게 형성될 수 있으므로 제1-1링크유닛(130aa)에 대한 설명으로 이를 대체한다.
제1-1링크유닛(130aa)은 볼(123)의 외면에 접촉 구름되는 전방향휠(131)을 구비할 수 있다. 전방향휠(131)은 볼(123)의 외면에서 접촉 회전되어 볼(123)에 회전 구동력을 전달할 수 있다.
제1-1링크유닛(130aa)에 있어서 전방향휠(131)은 대략 전후 방향의 회전축을 가질 수 있고, 이는 제1-2링크유닛(130ab)이나, 제1링크조립체(130a)와 유사한 배치 방향을 가진 제3링크조립체(130c)(즉, 제3-1링크유닛(130ca) 및 제3-2링크유닛(130cb))에서도 유사하게 구성될 수 있다. 다만 그 배치 방향이 상이한 제2링크조립체(130b)(즉, 제2-1링크유닛(130ba) 및 제2-2링크유닛(130bb))이나, 제4링크조립체(130d)(즉, 제4-1링크유닛(130da) 및 제4-2링크유닛(130db))의 경우, 전방향휠은 대략 좌우 방향의 회전축을 가질 수 있다.
전방향휠(131)은 림휠(rim wheel)과, 림휠의 외주를 따라 배치된 복수의 롤러로 구성될 수 있다. 각 롤러는 전방향휠(131)의 회전축과 대략 90도를 이루는 회전축을 가지고 림휠에 대해 회전 가능하게 형성될 수 있다. 이러한 전방향휠(131)은 옴니 휠(omni wheel), 옴니 디렉셔널 휠(omni directional wheel) 등의 명칭으로 알려져 있다.
경우에 따라 전방향휠(131)은 다른 종류의 휠이나, 이와 유사한 기능을 갖는 회전체 등으로 대체될 수 있다. 예컨대 전방향휠(131)은 슬립을 일부 허용하는 형태의 일반 휠 부품이나, 매카넘 휠(mecanum wheel) 등으로 대체될 수 있다.
제1-1링크유닛(130aa)은 종동풀리(132) 및 구동풀리(133)를 구비할 수 있다. 종동풀리(132) 및 구동풀리(133)는 각각 전후 방향의 회전축을 가지고 회전 가능하게 지지될 수 있다. 종동풀리(132)는 전방향휠(131)과 축 결합되어 전방향휠(131)을 연동 회전시킬 수 있고, 구동풀리(133)는 종동풀리(132)로부터 측방으로 소정 간격 이격 배치되어 구동유닛(140)으로부터 회전 구동력을 제공받을 수 있다.
제1-1링크유닛(130aa)은 종동풀리(132)와 구동풀리(133) 간에 연결 설치되는 구동벨트(134)를 구비할 수 있다. 구동벨트(134)는 구동풀리(133)로부터 종동풀리(132)로 구동력을 전달할 수 있다.
제1-1링크유닛(130aa)에 있어서 구동벨트(134)는 대체로 좌우 방향으로 배치될 수 있다. 이는 제1-2링크유닛(130ab)이나, 제1링크조립체(130a)와 유사한 배치 방향을 가진 제3링크조립체(130c)(즉, 제3-1링크유닛(130ca) 및 제3-2링크유닛(130cb))에서도 유사하게 구성될 수 있다. 다만 그 배치 방향이 상이한 제2링크조립체(130b)(즉, 제2-1링크유닛(130ba) 및 제2-2링크유닛(130bb))나, 제4링크조립체(130d)(즉, 제4-1링크유닛(130da) 및 제4-2링크유닛(130db))의 경우, 구동벨트는 대략 전후 방향으로 연장 배치될 수 있다.
제1-1링크유닛(130aa)은 텐션풀리(135) 및 텐션스프링(136)을 구비할 수 있다. 텐션풀리(135)는 종동풀리(132)와 구동풀리(133) 사이에서 구동벨트(134)에 체결될 수 있다. 텐션스프링(136)은 텐션풀리(135)에 체결되어 텐션풀리(135)를 상측으로 탄성 지지할 수 있다. 본 실시예의 경우 텐션스프링(136)은 본체(110)의 하부와 텐션풀리(135) 간에 설치된 인장코일스프링(136)으로 예시되어 있다. 이러한 텐션풀리(135) 내지 텐션스프링(136)은 구동벨트(134)의 처짐을 방지하는 기능을 가질 수 있다.
제1-2링크유닛(130ab)은 상기와 같은 제1-1링크유닛(130aa)과 유사하게 형성될 수 있고, 제1구동유닛(140a)을 중심으로 제1-1링크유닛(130aa)에 대응되도록 그 반대편(도면상, 우측)에 배치되어, 제1, 2볼조립체(120a, 120b) 사이에서 구동력을 전달하는 제1링크조립체(130a)를 구성할 수 있다. 유사하게, 제2링크조립체(130b)는 제2, 3볼조립체(120b, 120c) 사이에서 구동력을 전달하도록 형성될 수 있고, 제3링크조립체(130c)는 제3, 4볼조립체(120c, 120d) 사이에서 구동력을 전달하도록 형성될 수 있으며, 제4링크조립체(130d)는 제1, 4볼조립체(120a, 120d) 사이에서 구동력을 전달하도록 형성될 수 있다. 이에 따라 제1 내지 4볼조립체(120a~120d)는 제1 내지 4링크조립체(130a~130d)의 구동에 의해 각각 소정의 회전 방향을 갖고 회전 구동되어 플랫폼(100)의 주행이나 방향 전환을 구현할 수 있다.
한편 상기에서는 제1 내지 4링크조립체(130a~130d)가 풀리 및 벨트를 사용한 동력전달구조를 갖는 경우를 예시하고 있으나, 제1 내지 4링크조립체(130a~130d)가 반드시 이에 한정되는 것은 아니며, 경우에 따라 이와 동일 또는 유사한 기능을 수행하는 수단을 통해 적절히 대체될 수 있다. 예컨대, 제1 내지 4링크조립체(130a~130d)는 체인 및 스프로킷 등으로 대체될 수 있다.
다시 도 1 및 2를 참조하면, 본 실시예의 플랫폼(100)은 구동유닛(140)을 포함할 수 있다.
구동유닛(140)은 각 볼조립체(120a~120d)를 소정의 방향 및 속도로 회전 구동시켜 플랫폼(100)의 이동이나 회전을 구현할 수 있다. 전술한 각 링크조립체(130a~130d)는 이러한 구동유닛(140)의 회전 구동력을 각 볼조립체(120a~120d)로 전달할 수 있다.
구동유닛(140)은 볼조립체(120)의 개수 등에 대응해 복수개가 구비될 수 있다. 본 실시예의 경우 4개의 볼조립체(120a~120d)에 대응되도록 4개의 구동유닛(140a~140d)이 구비된 경우를 예시하고 있다. 각 구동유닛(140a~140d)은 상호 유사하게 형성될 수 있다. 편의상 본 설명에서는 각 구동유닛(140a~140d)의 위치에 따라 대략 본체(110)의 전방 부위에 배치된 구동유닛(140a)을 "제1구동유닛(140a)"으로 지칭하고, 이를 기준으로 반시계 방향 배치된 각 구동유닛(140b~140d)을 순서대로 제2구동유닛(140b), 제3구동유닛(140c) 및 제4구동유닛(140d)으로 지칭하도록 한다.
제1구동유닛(140a)은 제1링크조립체(130a)와 연결되어 제1, 2볼조립체(120a, 120b)로 회전 구동력을 제공할 수 있고, 제2구동유닛(140b)은 제2링크조립체(130b)와 연결되어 제2, 3볼조립체(120b, 120c)로 회전 구동력을 제공할 수 있다. 또한 제3구동유닛(140c)은 제3링크조립체(130c)와 연결되어 제3, 4볼조립체(120c, 120d)로 회전 구동력을 제공할 수 있고, 제4구동유닛(140d)은 제4링크조립체(130d)와 연결되어 제1, 4볼조립체(120a, 120d)로 회전 구동력을 제공할 수 있다. 각 볼조립체(120a~120d) 및 링크조립체(130a~130d)의 방향이나 배치에 따라, 제1, 3구동유닛(140a, 140c)은 좌우 축을 중심으로 한 회전 구동력을 각 볼조립체(120a~120d)에 제공할 수 있고, 제2, 4구동유닛(140b, 140d)은 전후 축을 중심으로 한 회전 구동력을 각 볼조립체(120a~120d)에 제공할 수 있다.
제1 내지 4구동유닛(140a~140d)은 상호 유사하게 형성될 수 있으므로, 편의상 제1구동유닛(140a)을 중심으로 그 세부구성을 좀 더 상세히 설명한다.
도 4를 참조하면, 제1구동유닛(140a)은 구동모터(141)를 구비할 수 있다. 구동모터(141)는 대체로 전후 방향의 구동축을 가지도록 배치될 수 있다. 또는 구동모터(141)의 구동축은 제1링크조립체(130a)의 구동벨트(134)와 대체로 직교하도록 배치될 수 있다. 이는 제1구동유닛(140a)과 제1링크조립체(130a) 간에 동력 전달을 쉽게 하고, 손실을 줄이는데 기여할 수 있다. 구동모터(141)의 구동축에는 구동기어(142)가 체결될 수 있다.
제1구동유닛(140a)은 구동모터(141)의 구동력을 양쪽으로 각각 전달하기 위한 제1, 2전달기어(143a, 143b)를 구비할 수 있다. 제1구동유닛(140a)에 있어서 제1, 2전달기어(143a, 143b)는 각각 전후 방향의 회전축을 가지고 구동기어(142)를 중심으로 좌우로 배치될 수 있다. 제1, 2전달기어(143a, 143b)는 구동기어(142)의 회전에 따라 상호 대응되는 속도 및 방향으로 회전될 수 있다.
제1전달기어(143a)는 제1-1링크유닛(130aa)의 구동풀리(133)와 체결될 수 있다. 또는 제1전달기어(143a)는 소정의 결합구조나 동력전달구조를 통해 제1-1링크유닛(130aa)의 구동풀리(133)와 연결되어 구동풀리(133)를 회전 구동시킬 수 있다. 유사하게 제2전달기어(143b)는 제1-2링크유닛(130ab)의 구동풀리와 체결될 수 있다. 이에 따라 제1구동유닛(140a)이 회전 구동되면, 제1전달기어(143a) 및 제1-1링크유닛(130aa)을 통해 제1볼조립체(120a)가 소정 방향 및 속도로 회전 구동될 수 있고, 동시에 제2전달기어(143b) 및 제1-2링크유닛(130ab)을 통해 제2볼조립체(120b)가 대응되는 방향 및 속도로 회전 구동될 수 있다.
구동기어(142) 및 제1, 2전달기어(143a, 143b)는 제1구동유닛(140a)의 구동력을 각 구동풀리로 적절히 전달할 수 있는 것이면 무방하고, 공지된 다양한 종류나 방식의 기어 부품이 사용될 수 있다. 본 실시예에서는 비교적 단순한 형태로 소정의 기어비를 가진 스퍼기어를 예시하고 있다.
본 실시예에 있어서 각 구동유닛(140a~140d)은 각 링크조립체(130)를 통해 2개의 볼조립체(120)로 회전 구동력을 제공할 수 있다. 즉, 제1구동유닛(140a)은 제1링크조립체(130a)를 통해 제1, 2볼조립체(120a, 120b)로 소정 방향의 회전 구동력을 제공할 수 있고, 유사하게 제2 내지 4구동유닛(140b~140d)은 각각 2개의 볼조립체(120)로 회전 구동력을 제공할 수 있다. 이에 따라 전체 볼조립체(120)를 구동하기 위한 구동모터(141)의 개수를 줄일 수 있다.
도 5는 도 1에 도시된 이동식 플랫폼의 정면도이다.
도 5를 참조하면, 본 실시예의 플랫폼(100)은 각 구동유닛(140a~140d)의 회전축(R1)이 이로부터 동력을 전달받는 각 전방향휠(131)의 회전축(R2)과 동일선(L1) 상에 배치될 수 있다. 이는 동력 전달의 효율을 개선할 수 있도록 한다.
구체적으로 예시된 제1구동유닛(140a)을 보면, 제1구동유닛(140a)의 구동축은 지면으로부터 소정 높이에 회전축(R1)을 가질 수 있고, 이로부터 동력을 전달받는 좌우의 각 구동풀리(133)는 이와 대응되는 높이의 회전축(R3)을 가질 수 있다. 또한 각 구동풀리(133)에 대응되는 각 종동풀리(132)와, 각 종동풀리(132)에 체결된 전방향휠(131) 상기 구동축의 회전축(R1)과 대응되는 높이에 배치된 회전축(R2, R4)을 가질 수 있다. 이에 따라 제1구동유닛(140a)의 회전축(R1)을 중심으로 좌우에 구동풀리(133)의 회전축(R3), 종동풀리(132)의 회전축(R4) 및 전방향휠(131)의 회전축(R2)이 동일선(L1) 상에 배치될 수 있다.
상기의 동일선(L1)은 제1볼조립체(120a)의 회전중심(C1)이나 제2볼조립체(120b)의 회전중심(C2)과는 상하로 소정 간격 이격될 수 있다. 다만 경우에 따라 보다 개선된 전달 효율을 구현하기 위해 상기의 동일선(L1)은 상기의 각 회전중심(C1, C2)과 대응되는 높이로 배치될 수 있다.
이상과 같은 본 실시예의 플랫폼(100)은 각 구동유닛(140a~140d)의 회전 속도를 제어해 플랫폼(100)의 전(全)방향 이동 및 회전이 구현될 수 있다. 특히 본 실시예의 플랫폼(100)은 전방향휠(131)을 매개로 각 볼조립체(120a~120d)를 회전 구동하는 방식을 사용해 동력 손실을 최소화하면서도 종래 옴니 휠 등과 대비해 보다 높은 자유도의 이동 및 회전 동작을 구현할 수 있다.
도 6은 도 1에 도시된 이동식 플랫폼의 작동 예시도이다.
도 6을 참조하면, 제2, 4구동유닛(140b, 140d)의 제어를 통해 플랫폼(100)의 전후진 이동이 구현될 수 있다. 즉, 제2구동유닛(140b)이 제2, 3볼조립체(120b, 120c)를 좌우축을 중심으로 회전시키고, 제4구동유닛(140d)이 제1, 4볼조립체(120a, 120d)를 좌우축을 중심으로 회전시켜 전후진 이동이 구현될 수 있다. 경우에 따라 제2구동유닛(140b)과 제4구동유닛(140d) 간에 회전 속도 제어를 통해 조향이나 방향 전환이 구현될 수도 있다.
또한 제1, 3구동유닛(140a, 140c)의 제어를 통해 좌우 측방으로 이동이 구현될 수 있다. 즉, 본 실시예의 플랫폼(100)은 실질적으로 전후나 측방의 구분이 없는 이동식 플랫폼으로 기능할 수 있다. 이에 따라 무인운반차 등에서 좁은 공간의 이동을 위해 효과적으로 사용될 수 있다. 또한 제1 내지 4구동유닛(140a~140d)이 복합 제어되어 매우 다양한 방향이나 자세에서의 이동이나 회전이 구현될 수 있다.
본 실시예의 플랫폼(100)은 상기와 같은 이동이나 회전 동작에 있어 각 볼조립체(120a~120d)가 지면에 접촉 구름되어 지면 간의 마찰이나 간섭이 줄어든 상태로 각 이동 등이 구현된다는데 하나의 특징을 둔다. 이에 따라 플랫폼(100)의 효율이 개선될 수 있고, 다양한 장애물이나 지면의 상태 등에 좀 더 효과적으로 대응할 수 있다.
또한 본 실시예의 플랫폼(100)은 복수의 볼조립체(120a~120d)가 평면상 이격 배치되어 본체(110)를 지지하고 지면을 주행하도록 형성되어 있다. 이에 따라 본체(110)나 본체(110)에 탑재된 상부구조는 높은 주행안정성을 가지고 이동될 수 있고, 안정된 지지구조에 따라 주행성능 또한 개선될 수 있다.
도 7은 도 1에 도시된 이동식 플랫폼의 변형예이다.
전술할 실시예의 플랫폼(100)은 4개의 볼조립체(120a~120d)를 포함하고, 각 구동유닛(140a~140d)이 각 볼조립체(120a~120d)에 대략 90도의 간격을 가지고 배치되어 있다. 즉, 제1볼조립체(120a)를 기준으로 제1링크조립체(130a)와 제4링크조립체(130d)가 평면상 대략 90도의 간격을 가지고 배치되어 있고, 제1링크조립체(130a)는 제1볼조립체(120a)에 전후 축을 중심으로 한 회전 구동력을, 제4링크조립체(130d)는 제1볼조립체(120a)에 좌우 축을 중심으로 한 회전 구동력을 제공하게 된다. 이러한 배치는 볼조립체(120a~120d)로의 구동력 전달이나 회전 방향 제어에 용이한 이점이 있다.
다만 경우에 따라서는 4개 외의 개수로 볼조립체(120)가 구현되는 것도 가능하다. 도 7은 이러한 예로 3개의 볼조립체(220a~220c)가 구비된 경우를 예시하고 있다.
도 7을 참조하면, 본 변형예의 이동식 플랫폼(이하, "플랫폼(200)"으로 지칭)은 평면상 대략 120도의 간격을 가지고 배치된 3개의 볼조립체(220a~220c)를 구비할 수 있다. 편의상 각 볼조립체(220a~220c)는 제1 내지 3볼조립체(220a~220c)로 구분해 지칭하도록 한다.
본 변형예의 플랫폼(200)은 제1 내지 3링크조립체(230a~230c)와 제1 내지 3구동유닛(240a~240c)을 구비할 수 있다. 제1 내지 3구동유닛(240a~240c)은 각각 제1 내지 3링크조립체(230a~230c)로 회전 구동력을 제공할 수 있고, 제1 내지 3링크조립체(230a~230c)는 제1 내지 3볼조립체(220a~220c)를 소정 방향으로 회전 구동할 수 있다. 이는 전술한 실시예의 플랫폼(100)과 유사하다.
다만 본 변형예의 플랫폼(200)에 있어 제1 내지 3링크조립체(230a~230c)는 평면상 대략 60도의 간격을 가지고 배치되어 각각의 제1 내지 3볼조립체(220a~220c)로 회전 구동력을 제공할 수 있다. 즉, 제1, 3링크조립체(230a, 230c)는 대략 60도의 간격으로 배치되어 제1볼조립체(220a)로 회전 구동력을 제공할 수 있고, 제2, 3링크조립체(230b, 230c)는 대략 60도의 간격으로 배치되어 제2볼조립체(220b)로 회전 구동력을 제공할 수 있으며, 제2, 3볼조립체(220b, 220c)는 대략 60도의 간격으로 배치되어 제3볼조립체(220c)로 회전 구동력을 제공할 수 있다.
상기와 같은 플랫폼(200)은 전술한 실시예의 플랫폼(100)과 유사한 작동 원리를 갖고 동작될 수 있다. 즉, 제1 내지 3링크조립체(230a~230c)를 통해 각각의 제1 내지 3볼조립체(220a~220c)가 소정 방향 및 속도로 회전 구동되고, 그에 따라 이동, 방향 제어 등이 구현될 수 있다.
이상 본 발명의 실시예들에 대해 설명하였으나, 해당 기술분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 기술적 사상으로부터 벗어나지 않는 범위 내에서 구성요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 또는 변경시킬 수 있을 것이고, 이 또한 본 발명의 권리범위에 포함된다고 할 것이다.

Claims (7)

  1. 본체(110)에 평면상 이격 배치된 복수의 볼조립체(120);
    구동유닛(140)을 중심으로 배치된 한 쌍의 링크유닛(130aa, 130ab)을 구비하고, 대응되는 한 쌍의 볼조립체(120) 사이에서 각 볼조립체(120)로 구동력을 전달하는 링크조립체(130); 및
    상기 링크조립체(130)로 회전 구동력을 제공하는 구동유닛(140);을 포함하고,
    상기 링크유닛(130aa, 130ab)은,
    상기 볼조립체(120)의 볼(123) 외면에 접촉 설치되고, 상기 구동유닛(140)에 의해 회전 구동되어 상기 볼(123)을 소정의 방향 및 속도로 회전시키는 전방향휠(131);
    상기 전방향휠(131)의 회전축에 체결되는 종동풀리(132); 및
    상기 종동풀리(132)로부터 이격 배치되어 구동벨트(134)를 통해 상기 종동풀리(132)와 체결되고, 상기 구동유닛(140)에 의해 회전 구동되는 구동풀리(133);를 포함하는 이동식 플랫폼.
  2. 청구항 1에 있어서,
    상기 볼조립체(120)는,
    하부가 개방된 수용공간(122)을 형성하고 상기 본체(110)에 체결되는 볼하우징(121); 및
    상기 볼하우징(121)에 수용되어 지면에 접촉 회전되는 볼(123);을 포함하는 이동식 플랫폼.
  3. 청구항 1에 있어서,
    상기 구동유닛(140)의 회전축(R1), 상기 구동풀리(133)의 회전축(R3), 상기 종동풀리(132)의 회전축(R4) 및 상기 전방향휠(131)의 회전축(R2)은, 지면으로부터 소정 높이 이격되어 동일선(L1) 상에 배치되는 이동식 플랫폼.
  4. 청구항 1에 있어서,
    상기 링크유닛(130aa, 130ab)은,
    상기 종동풀리(132) 및 상기 구동풀리(133) 사이에서 상기 구동벨트(134)에 체결되는 텐션풀리(135); 및
    상기 텐션풀리(135)를 상측으로 탄성 지지하는 텐션스프링(136);을 포함하는 이동식 플랫폼.
  5. 청구항 1에 있어서,
    상기 볼조립체(120)는,
    제1 내지 4볼조립체(120a~120d)를 포함하고,
    상기 링크조립체(130)는,
    상기 제1 내지 4볼조립체(120a~120d) 중 대응되는 한 쌍의 볼조립체(120a~120d) 사이에서 각 볼조립체(120a~120d)로 구동력을 전달하는 제1 내지 4링크조립체(130a~130d)를 포함하고,
    상기 구동유닛(140)은,
    상기 제1 내지 4링크조립체(130a~130d)로 각각 회전 구동력을 제공하는 제1 내지 4구동유닛(140a~140d)을 포함하고,
    상기 제1, 3링크조립체(130a, 130c)는,
    상기 제1 내지 4볼조립체(120a~120d)에 전후 방향을 축으로 한 회전 구동력을 제공하도록 형성되고,
    상기 제2, 4링크조립체(130b, 130c)는,
    상기 제1 내지 4볼조립체(120a~120d)에 상기 전후 방향과 직교하는 좌우 방향을 축으로 한 회전 구동력을 제공하도록 형성되는 이동식 플랫폼.
  6. 청구항 5에 있어서,
    상기 제1링크조립체(130a)는,
    상기 제1구동유닛(140a)으로부터 상기 제1볼조립체(120a)로 구동력을 전달해 상기 제1볼조립체(120a)를 전후 방향을 축으로 회전시키는 제1-1링크유닛(130aa); 및
    상기 제1구동유닛(140a)을 중심으로 상기 제1-1링크유닛(130aa)과 대응되게 배치되어, 상기 제1구동유닛(140a)으로부터 상기 제2볼조립체(120b)로 구동력을 전달해 상기 제2볼조립체(120b)를 전후 방향을 축으로 회전시키는 제1-2링크유닛(130ab);을 포함하고,
    상기 제2링크조립체(130b)는,
    상기 제2구동유닛(140b)으로부터 상기 제2볼조립체(120b)로 구동력을 전달해 상기 제2볼조립체(120b)를 좌우 방향을 축으로 회전시키는 제2-1링크유닛(130ba); 및
    상기 제2구동유닛(140b)을 중심으로 상기 제2-1링크유닛(130ba)과 대응되게 배치되어, 상기 제2구동유닛(140b)으로부터 상기 제3볼조립체(120c)로 구동력을 전달해 상기 제3볼조립체(120c)를 좌우 방향을 축으로 회전시키는 제2-2링크유닛(130bb);을 포함하는 이동식 플랫폼.
  7. 청구항 6에 있어서,
    상기 제1구동유닛(140a)은,
    구동모터(141);
    상기 구동모터(141)의 구동축에 체결되는 구동기어(142); 및
    상기 구동기어(142)를 중심으로 이격 배치되어, 각각 상기 제1-1링크유닛(130aa) 또는 상기 제1-2링크유닛(130ab)으로 회전 구동력을 전달하는 제1, 2전달기어(143a, 143b);를 포함하는 이동식 플랫폼.
PCT/KR2022/005276 2021-05-17 2022-04-12 이동식 플랫폼 WO2022244986A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0063449 2021-05-17
KR1020210063449A KR102332149B1 (ko) 2021-05-17 2021-05-17 이동식 플랫폼

Publications (1)

Publication Number Publication Date
WO2022244986A1 true WO2022244986A1 (ko) 2022-11-24

Family

ID=78899978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005276 WO2022244986A1 (ko) 2021-05-17 2022-04-12 이동식 플랫폼

Country Status (2)

Country Link
KR (1) KR102332149B1 (ko)
WO (1) WO2022244986A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102332149B1 (ko) * 2021-05-17 2021-12-01 주식회사 칼만텍 이동식 플랫폼
KR102597415B1 (ko) 2022-01-03 2023-11-02 주식회사 칼만텍 듀얼 스위블 휠 조립체
CN114453857B (zh) * 2022-03-02 2023-04-14 燕山大学 用于全向移动并联调姿平台的四自由度支链模块
KR102597420B1 (ko) 2022-12-23 2023-11-03 주식회사 칼만텍 모듈형 듀얼 스위블 휠 및 이를 포함하는 플랫폼

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215082A (ja) * 2009-03-16 2010-09-30 Kyushu Institute Of Technology 球体駆動式全方向移動装置
US20120144937A1 (en) * 2009-08-31 2012-06-14 Roland Richard Moser Rolling element for the polydirectional travel of a vehicle, and vehicle having such a rolling element
KR20120130931A (ko) * 2011-05-24 2012-12-04 대동공업주식회사 콤바인 그레인 탱크 구동벨트의 텐션 확인장치
KR20150118602A (ko) * 2014-04-14 2015-10-23 부산대학교 산학협력단 메카넘 휠을 이용한 볼-로봇
JP2016068702A (ja) * 2014-09-29 2016-05-09 株式会社移動ロボット研究所 壁面等の移動装置、及びその転舵方法
KR102332149B1 (ko) * 2021-05-17 2021-12-01 주식회사 칼만텍 이동식 플랫폼

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101884825B1 (ko) 2017-12-28 2018-08-02 주식회사 로탈 무인운반차를 이용한 자동화 창고 시스템
KR102225464B1 (ko) 2019-06-18 2021-03-09 (주)코윈테크 무인운반차의 로더 센터링 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215082A (ja) * 2009-03-16 2010-09-30 Kyushu Institute Of Technology 球体駆動式全方向移動装置
US20120144937A1 (en) * 2009-08-31 2012-06-14 Roland Richard Moser Rolling element for the polydirectional travel of a vehicle, and vehicle having such a rolling element
KR20120130931A (ko) * 2011-05-24 2012-12-04 대동공업주식회사 콤바인 그레인 탱크 구동벨트의 텐션 확인장치
KR20150118602A (ko) * 2014-04-14 2015-10-23 부산대학교 산학협력단 메카넘 휠을 이용한 볼-로봇
JP2016068702A (ja) * 2014-09-29 2016-05-09 株式会社移動ロボット研究所 壁面等の移動装置、及びその転舵方法
KR102332149B1 (ko) * 2021-05-17 2021-12-01 주식회사 칼만텍 이동식 플랫폼

Also Published As

Publication number Publication date
KR102332149B1 (ko) 2021-12-01

Similar Documents

Publication Publication Date Title
WO2022244986A1 (ko) 이동식 플랫폼
WO2016003238A1 (ko) 장애물 접촉 시 캐터필러의 역할이 가능한 연동벨트가 구비된 로봇 구동시스템
CN110142771B (zh) 一种机房巡检机器人
US20030127260A1 (en) Driving and transmission unit for use in rolling vehicles
GB2242173A (en) Dynamically balanced vehicle
KR100682390B1 (ko) 천정운반차
CN112374117A (zh) 一种离合式衔接机构和输送装置
WO2016111423A1 (ko) 이동 장치
WO2022071662A1 (ko) 변형 바퀴 모듈
CA2593168A1 (en) Omnidirectional wheel modules and vehicles and methods employing same
WO2016080577A1 (ko) 주행 장치
WO2012141539A2 (en) Power transmission apparatus
WO2020071637A1 (ko) 듀얼 조종장치
EP0633045A2 (en) Racing game apparatus
WO2012050282A1 (ko) 트랙터
CN214494803U (zh) 全角度分拣输送装置
WO2021230641A1 (ko) 로봇
CN116040527A (zh) 一种激光导航车
KR102534823B1 (ko) 독립 서스펜션을 구비한 이동식 플랫폼
CN115465378A (zh) 一种壁面全向爬行机器人
JP3469780B2 (ja) 循環式エレベータ
JP2020019361A (ja) 駆動輪及び台車
US11919583B2 (en) Omniwheel track system and platform using the same
WO2017122927A1 (ko) 지퍼 체인
WO2023080727A1 (ko) 모바일 로봇의 구동 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE