WO2022244527A1 - 容器及び容器組立体 - Google Patents

容器及び容器組立体 Download PDF

Info

Publication number
WO2022244527A1
WO2022244527A1 PCT/JP2022/016522 JP2022016522W WO2022244527A1 WO 2022244527 A1 WO2022244527 A1 WO 2022244527A1 JP 2022016522 W JP2022016522 W JP 2022016522W WO 2022244527 A1 WO2022244527 A1 WO 2022244527A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
main body
liquid
support base
recesses
Prior art date
Application number
PCT/JP2022/016522
Other languages
English (en)
French (fr)
Inventor
哲郎 小川
高司 山本
Original Assignee
株式会社アイセロ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイセロ filed Critical 株式会社アイセロ
Priority to EP22804443.4A priority Critical patent/EP4342811A1/en
Priority to CN202280036120.XA priority patent/CN117320970A/zh
Priority to KR1020237004487A priority patent/KR102607395B1/ko
Publication of WO2022244527A1 publication Critical patent/WO2022244527A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/20External fittings
    • B65D25/24External fittings for spacing bases of containers from supporting surfaces, e.g. legs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/001Supporting means fixed to the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/10Handles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/20External fittings
    • B65D25/22External fittings for facilitating lifting or suspending of containers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Definitions

  • the present invention relates to a container for containing liquid and a container assembly including this container.
  • Industrial high-purity chemical liquids such as photoresists and detergents used in semiconductor manufacturing and liquid crystal display manufacturing, and liquids such as food material liquids must be kept in high-purity containers to prevent contamination and deterioration. be accommodated. These liquids are stored and transported while being contained in a container, or are set in a liquid transfer device and discharged from the container for use.
  • the bottom surface of such a container is generally formed flat so that the container can stand on its own.
  • a liquid feed pipe and a gas supply pipe are inserted into a container, gas is fed into the container from the gas feed pipe, the internal pressure of the container is increased by this gas, and the liquid is fed to the liquid feed pipe, and the liquid is discharged from the container.
  • a high-pressure gas of, for example, 100-200 kPa is often used to pump a highly viscous liquid that is difficult to flow.
  • Generally known containers having a flat bottom surface may be deformed such that the bottom surface bulges and the container is tilted when the pressure inside the container is increased by the high-pressure gas.
  • the tip of the liquid-sending pipe cannot reach the liquid due to deformation of the bottom surface or inclination of the container, and there is a risk that all the liquid contained in the container cannot be discharged from the container.
  • Patent Document 1 describes a container with a hemispherical bottom surface and a support base (receiving tool) for making the container stand on its own.
  • the container and the support base are fitted together by engaging a series of grooves extending in the circumferential direction on the outer surface of the outer wall of the container with projections provided on the inner surface of the support base. Since the bottom surface of the container is a hemispherical surface, the internal pressure of the container due to the high-pressure gas is evenly applied to the bottom surface. At this time, the entire bottom surface is extended downward by the pressure of the high-pressure gas, so that the concave groove follows this extension and extends as if a helical spring were extended. As a result, the concave groove pushes out the convex portion of the receiver, and the engagement with the convex portion cannot be maintained. As a result, the container comes off the support and falls down, so that it cannot be pumped stably.
  • Patent Document 2 describes a liquid container that has a container body with a round bottom and a support that has a through-hole in the center and supports the container body so that it can stand on its own. A circumferential groove is formed in the container body for engagement with the support base.
  • This liquid container is used by being set in a liquid delivery device having a pedestal having projections that fit into the through-holes of the support base and contact the round bottom, and a pressing member that presses the upper end of the container body. Since the container body is sandwiched between the projecting portion of the pedestal provided in the liquid delivery device and a container support such as a pressing member, even if the internal pressure of the container body increases, the circumferential groove does not extend, and the container body does not move from the support base. I can't come off.
  • the liquid container of Patent Document 2 requires a liquid transfer device having a container support such as a protrusion and a pressing member to pressure-feed the liquid in the container with high-pressure gas. Equipment is limited and lacks versatility.
  • the present invention has been made to solve the above-mentioned problems. To provide a highly versatile container and container assembly capable of remarkably suppressing the deformation of the container, performing stable liquid transfer, and being set and used in a liquid transfer device having no container support. intended to
  • a container according to the present invention which has been made to achieve the above object, is a container for containing a liquid and for pumping the liquid, the container having a substantially cylindrical main body and one end of the main body. a stepped portion with a reduced diameter while continuing to the other end of the main body portion; and a round bottom portion that is continuous with the stepped portion and swells away from the stepped portion; , the stepped portion, and a series of parting lines extending over the round bottom portion are recessed at positions that do not overlap, and the stepped portion is intermittently provided with a plurality of recesses that are engaged with claw portions of a support base for allowing the container to stand on its own.
  • the concave portion has a substantially oval shape that is elongated in the circumferential direction of the main body portion, and the total length of the plurality of concave portions in the circumferential direction is 20 to 20 times the outermost circumference length of the main body portion. 50%.
  • the recesses are formed at four positions separated from the parting line by an angle of 20 to 45° from the center axis of the main body, or at six positions separated from each other by 60°, and sandwiching the parting line. They may be provided at symmetrical positions.
  • the body portion of any one of the containers described above has a body portion and a neck portion closer to the cylinder mouth and having a smaller diameter than the body portion, and a handle is provided on the outer surface of the neck portion. are fitted and/or screwed together.
  • a container assembly includes any one of the containers described above, an opening in which the round bottom is fitted, and claws extending from the periphery of the opening and engaging with the recess. a free-standing support base.
  • the concave portions for engaging with the claws of the support stand are intermittently formed at specific positions. Since it does not expand or deform due to the pressure, the support base does not come off from the container, and the liquid can be stably pumped.
  • the container and the container assembly do not extend in the direction of the central axis of the container itself when the liquid is pumped, there is no need for a container support for suppressing the deformation of the container in the liquid feeding device. , versatile.
  • FIG. 1 is a front view and an end view taken along the line AA showing a container to which the present invention is applied;
  • FIG. It is a perspective view and an exploded perspective view showing a container assembly to which the present invention is applied.
  • FIG. 4 is an end view showing another example of a container to which the present invention is applied;
  • FIG. 10 is an end view of a container of Comparative Example 1 to which the present invention is not applied;
  • FIG. 4 is a perspective view of containers of Comparative Examples 2 and 4 to which the present invention is not applicable;
  • FIG. 1(a) is a front view of the container 10, and FIG. 1(b) is an end view taken along the line AA in FIG. 1(a).
  • the container 10 is a container for pumping that contains a liquid and can withstand an internal pressure of up to 200 kPa.
  • the container 10 has a cylindrical body portion 12, a cylindrical mouth 11 opened at the upper end, which is one end, a stepped portion 13, which is continuous with the lower end, which is the other end of the body portion 12, and the stepped portion 13. and a round bottom portion 15 extending continuously and bulging downward to form a substantially hemispherical shape.
  • the inner space of the container 10 communicates with the outside world through the nozzle 11 . This opening and the lower end of the inner wall of the round bottom portion 15 face each other.
  • the body portion 12 further has an upper end portion 12a opening the mouthpiece 11, a neck portion 12b extending from the lower end thereof, and a body portion 12c extending further downward from the lower end of the neck portion 12b.
  • the trunk portion 12c is gradually reduced in diameter toward the neck portion 12b.
  • Male screws 12a 1 and 12b 1 protrude from the outer peripheral surfaces of the upper end portion 12a and the neck portion 12b, respectively.
  • the container 10 is made of resin and formed by direct blow molding.
  • direct blow molding first, a tube-shaped resin material called a parison melted and extruded at a high temperature is sandwiched between split molds in which the desired shape to be manufactured is carved, and the lower end of the parison is crushed by the mold. Form a pinch-off. This crushed portion becomes the bottom of the container. Compressed air is then forced into the parison by a blow pin. As a result, the parison expands and is pressed against the inner wall of the mold to form a container.
  • a parting line PL which is a trace of the mating interface of the split molds, is formed continuously over the upper end portion 12a, the neck portion 12b, the trunk portion 12c, the stepped portion 13, and the round bottom portion 15. As shown in FIG.
  • the thickness near the parting line PL in the stepped portion 13 that is directly connected to the round bottom portion 15 is slightly smaller than the thickness at another location on the same circumference. thick. This thick portion increases rigidity and contributes to making the container difficult to deform.
  • the recessed portion 14 is located at four locations across the parting line PL and at symmetrical positions across the parting line PL. It is recessed from the outer surface of 10 towards its central axis. The four recesses 14 do not overlap the parting line PL and are formed side by side in the circumferential direction of the container 10 at the stepped portion 13 .
  • a claw portion 21 of a support base 20, which will be described later, is engaged with the concave portion 14 (see FIG. 2). As a result, the container 10 and the support base 20 are connected and the container 10 stands on its own.
  • the four recesses 14 all have the same shape, and the length H along the circumferential direction of the main body 12 (the circumferential length H) is aligned with the central axis direction of the main body 12 (that is, the center of the container 10). It has a substantially elliptical shape longer than the length V along the axial direction (the length V in the central axis direction).
  • the center point h of the circumferential length H of the concave portion 14 is located at an angle of ⁇ from the boundary between the main body portion 12 and the stepped portion 13 on the parting line PL. That is, in a cross-sectional view of the boundary between the main body portion 12 and the stepped portion 13 of the container 10, the four recesses 14 are formed from the reference line Y connecting the parting lines PL with a straight line passing through the central axis C of the container 10. Each is shifted apart by a minimum angle ⁇ . In the example shown in FIG. 1(b), the angle ⁇ is 30°.
  • the pressure of the high-pressure gas introduced when pumping the liquid contained in the container 10 causes the inside of the container 10 to expand. Even if the pressure increases, the expansion of the concave portion 14 in the direction of the length V in the central axis direction can be suppressed, and the engagement between the concave portion 14 and the claw portion 21 is maintained so that the support base 20 does not come off the container 10 . Further, since the concave portion 14 does not expand due to the high pressure, the container 10 does not expand in the direction of the central axis (vertical direction in FIG. 1(a)), and the total height of the container 10 is almost the same under normal pressure and high pressure.
  • the container 10 can be applied to various liquid transfer devices regardless of the presence or absence of a container support that suppresses deformation of the container, and thus has high versatility.
  • the container 10 of the present invention unlike conventionally known containers having a series of circumferential grooves recessed along the outer periphery of the container, the circumferential groove expands under high pressure and the support base does not come off the container. , there is no problem such as an increase in the total height, and the need for a container support for the liquid transfer device is eliminated.
  • the angle ⁇ is preferably 20 to 45°, more preferably 20 to 40°, even more preferably 20 to 30°. Preferably, 30° is most preferred. Moreover, it is preferable that all the angles ⁇ are the same. When the angle ⁇ is within this range, the concave portion 14 can be arranged in the vicinity of the parting line PL, which is difficult to deform due to the slightly thick wall thickness.
  • the four recesses 14 are symmetrical about the central axis C, line symmetrical about the reference line Y, and/or perpendicular to the reference line Y and the central axis C. If they are arranged symmetrically with respect to the intersecting reference line X, the high pressure during pumping is evenly applied to each concave portion 14, so that the extension of the container 10 can be more effectively suppressed.
  • the claws 21 of the support base 20 provided at positions corresponding to the respective recesses 14 are engaged with the recesses 14 , the container 10 and the support base can be separated simply by aligning the pair of the recesses 14 and the claws 21 . 20 can be connected.
  • This occupancy is preferably 10 to 90%, more preferably 15 to 70%, and even more preferably 20 to 50%. When the occupancy is within this range, it is possible to reliably engage the concave portion 14 and the claw portion 21 and to suppress the expansion of the concave portion 14 due to the application of high pressure to the inside of the container 10 .
  • the circumferential length H is the outer circumference length of the body portion 12 that is chipped due to the presence of the concave portion 14 .
  • the outermost circumference length of the main body portion 12 is determined depending on the outer diameter of the main body portion 12 which is arbitrarily set according to the capacity required for the container 10 .
  • the capacity of the container 10 is specifically 3-20L, more specifically 3-10L.
  • the outer diameter of the body portion 12 is set to 120 to 360 mm, for example.
  • the length V of the concave portion 14 in the central axis direction is not particularly limited, and is set to 4 to 15 mm.
  • a liquid feeding tube (not shown) is inserted straight from the cylinder port 11 to the round bottom part 15, and its tip is positioned with a slight gap on the inner wall surface of the top part of the round bottom part 15. .
  • the liquid remaining in the container 10 accumulates at the top of the substantially hemispherical round bottom portion 15 .
  • the bottom surface of the container 10 has a substantially hemispherical shape, so that the inner wall surface of the round bottom portion 15 Since the applied pressure is dispersed, deformation of the bottom surface is suppressed.
  • the radius of curvature of the inner wall surface of the round bottom portion 15 is preferably 1 to 5 times, more preferably 1 to 4 times, the value obtained by dividing the outermost circumference length D by 2 ⁇ (that is, the radius of the trunk portion 12c). , 1 to 3 times.
  • FIG. 2(a) A perspective view of the container assembly 100 of the present invention is shown in FIG. 2(a), and an exploded perspective view thereof is shown in FIG. 2(b).
  • a container assembly 100 comprises a container 10 , a support base 20 and a handle 30 .
  • the support base 20 and the handle 30 are also made of resin like the container 10 .
  • the support base 20 has a flat cylindrical shape as a whole and is open at its upper end. Further, the outer diameter of the support base 20 is the same as the outermost diameter of the body portion 12 of the container 10 .
  • a claw portion 21 extends upward from the side wall portion of the support base 20 at a position corresponding to the recess 14 on the peripheral edge of the opening of the support base 20 .
  • the claw portion 21 is curved like a hook toward the central axis side of the support base 20 . Since the support base 20 is made of resin, the claw portion 21 has some flexibility. As a result, when the container 10 and the support base 20 are connected, the claw portion 21 abuts on the upper end portion of the round bottom portion 15 and bends.
  • the outer diameter of the support base 20 may be smaller than the outermost diameter of the main body portion 12 .
  • the handle 30 is ring-shaped and has a circular opening. and a handle portion 32 extending in the direction of extending the .
  • the annular portion 31 has a mounting hole 31a through which the neck portion 12b is passed, and a female screw 31b provided on the inner wall surface of the annular portion 31.
  • a finger hooking hole 32a for passing a finger through the grip portion 32 is opened in a circular shape.
  • the planes formed by the opening circles of the mounting hole 31a and the finger hooking hole 32a are positioned perpendicular to each other.
  • the handle 30 is detachably attached to the container 10 by screwing together the male screw 12b1 and the female screw 31b.
  • the handle 30 is attached to the container 10 as necessary, and for example, the operator can lift and carry the container assembly 100 by putting his/her finger through the finger hole 32a when carrying the handle.
  • the handle 30 is not formed integrally with the container 10 and is a separate body.
  • the container 10 thereby has a point-symmetrical shape with respect to its central axis (except for the male threads 12a 1 and 12b 1 ).
  • uneven thickness of the container 10 can be prevented (excluding the pinch-off portion formed in the bottom portion 15 and its vicinity), and deformation during pumping can be effectively suppressed.
  • FIGS. 1 and 2 the case where there are four recesses 14 is illustrated, but the number of recesses 14 may be any number, specifically two to six.
  • 3A shows an example of two recesses 14
  • FIG. 3B shows an example of three recesses 14
  • FIG. 3C shows an example of five recesses 14
  • FIG. (d) shows an example in which the number of recesses 14 is six.
  • Each of these figures is an end view of the container 10 cut between the body portion 12 and the stepped portion 13 and showing the end face facing the stepped portion 13 following FIG. 1(b).
  • the material of the container 10 is thermoplastic resin.
  • the member constituting the container 10 may have a single-layer structure or a multi-layer structure.
  • the bending elastic modulus of the thermoplastic resin forming the container 10 is preferably at least 700 MPa.
  • the entire resin forming the multi-layered structure should have the above flexural modulus.
  • a container 10 made of a thermoplastic having a flexural modulus of at least 700 MPa can pump liquids with gas up to 200 kPa without causing breakage or significant deformation of the container.
  • the flexural modulus can be determined according to JIS K7171 (2016).
  • the container 10 has a thinner wall thickness.
  • the thickness of the body portion 12c of the container 10 may be 0.8 to 4 mm.
  • the material of the container 10 may be a high-purity thermoplastic resin.
  • the container 10 has a multi-layered structure, at least the material of its inner surface should be a high-purity thermoplastic resin.
  • the container 10 made of high-purity thermoplastic resin is suitable for containing liquids that require a high degree of cleanliness, such as semiconductor materials, semiconductor manufacturing chemicals, and food materials.
  • a high-purity thermoplastic resin is a resin in which leaching of impurity fine particles into the liquid contained in the container 10 does not exceed a predetermined reference value. Cleanliness is known as an index representing this reference value.
  • the degree of cleanliness indicates the degree to which the quality of the liquid deteriorates due to impure particles seeping into the liquid stored in the container for a long period of time.
  • the degree of cleanliness is obtained by storing ultrapure water or photoresist liquid in an inspection container for a certain period of time and then determining the number of fine particles present in 1 mL of the contained liquid.
  • the particle size of the fine particles is 0.3, 0.2, 0.1, and/or 0.06 ⁇ m or more, depending on the applicable standard. Specifically, it is defined by the following formula (1).
  • a is the capacity of the inspection container
  • b is the amount of liquid sampled from the inspection container.
  • a sampling liquid for measuring the initial cleanliness is collected as follows. A half of the volume of a (mL) test container, a/2 (mL), of ultrapure water or photoresist solution is put in, shaken for 15 seconds, left to stand for 24 hours, and then sampled. A sampling liquid for measuring the degree of cleanliness after storage is collected after the stopper is attached to the container after the initial degree of cleanliness measurement, left for a certain period of time, and the container is rotated three times so as not to generate air bubbles.
  • c is the value obtained by counting the fine particles contained in the total amount of the sampled liquid with a particle counter.
  • the initial cleanness and the cleanness after accommodation for a certain period of time are calculated by the formula (1).
  • a lower cleanness value indicates that the quality of the photoresist solution is not degraded. If the degree of cleanliness is less than 100 particles/mL, it means that the photoresist solution was accommodated without deterioration in quality. Such photoresist solutions do not degrade the quality and yield of semiconductors and liquid crystal displays (LCDs).
  • a resin is selected that satisfies a predetermined degree of cleanliness when the degree of cleanliness is measured using the container 10 as an inspection container.
  • a resin having a cleanness of less than 100 particles/mL is used.
  • a high-purity thermoplastic resin is a resin that does not exude impurity fine particles into a liquid exceeding a predetermined reference value.
  • a resin having a degree of cleanliness of less than 200 particles/mL may be used in accordance with applicable standards.
  • a resin having a cleanness of less than 50/mL, less than 10/mL, less than 5/mL, or less than 3/mL may be used.
  • a stopper (not shown) of the container is also preferably made of high-purity thermoplastic resin.
  • the degree of leaching of impurity fine particles can be defined by the degree of decrease in liquid transparency (another example of a predetermined reference value).
  • Examples of resins forming the container 10 include polyolefins such as polyethylene and polypropylene, polyamides, polyvinyl alcohol, poly(ethylene-co-vinyl alcohol), polyesters, and polyphenylene oxides. One or two or more of these resins may be used to form a single-layer container, or multiple types of these resins may be used to form a multi-layer structure container.
  • polyethylene is preferred. Specific examples include linear polyethylene (LLDPE), which is a copolymer of ethylene and ⁇ -olefin, and high density polyethylene (HDPE). From the viewpoint of rigidity and cleanliness, the container 10 is preferably made of high-density polyethylene. Moreover, from the viewpoint of environmental protection, it is preferable to use a material-recyclable resin.
  • the melt flow rate of high density polyethylene is preferably 0.01 to 3.0 g/10 minutes, more preferably 0.05 to 2.0 g/10 minutes. Also, the density thereof is preferably 0.940 to 0.970 g/cm 3 , more preferably 0.950 to 0.960 g/cm 3 .
  • the melt flow rate can be determined according to JIS K6760 (1995).
  • At least the surface of the inner wall of the container 10 may be made of polyethylene or ethylene/ ⁇ -olefin copolymer resin having a density of 0.940 to 0.970 g/cm 3 .
  • This resin has a weight average molecular weight of 10 ⁇ 10 4 to 30 ⁇ 10 4 as measured by gel permeation chromatography, a polymer content of less than 2.5% by mass having a molecular weight of 1 ⁇ 10 3 or less, and It is preferable that the content of each of the neutralizing agent, the antioxidant, and the light stabilizer, which are quantified by liquid chromatography, is 0.01% by mass or less.
  • the ⁇ -olefin may be at least one selected from the group consisting of propylene, butene-1, 4-methyl-pentene-1, hexene-1, and octene-1.
  • a resin With such a resin, it is possible to obtain the container 10 that exhibits high mechanical strength, is excellent in handleability, and has very little exudation of impurity fine particles into the contained liquid.
  • the material of the container 10 is polyethylene or ethylene/ ⁇ -olefin copolymer resin having a density of 0.940 to 0.970 g/cm 3 , a neutralizer, an antioxidant, a light stabilizer, an inorganic pigment and/or Alternatively, it may be a resin composition containing a light-shielding pigment containing an organic pigment and an olefinic polymer dispersant having a number average molecular weight of 2 ⁇ 10 3 or more. This resin preferably has a weight average molecular weight of 10 ⁇ 10 4 to 30 ⁇ 10 4 as measured by gel permeation chromatography, and a molecular weight of 1 ⁇ 10 3 or less is less than 5 mass %.
  • the content of the neutralizing agent, antioxidant, and light stabilizer in the resin composition is preferably 0.01% by mass or less.
  • the inorganic pigment include at least one selected from titanium oxide, carbon black, and red iron oxide
  • examples of the organic pigment include at least one selected from phthalocyanine, quinacridone, and azo organic pigments.
  • the content of the light-shielding pigment in the resin composition is preferably 0.01 to 5% by mass.
  • the content of the olefinic polymer dispersant is preferably less than 5% by mass. According to such a resin composition, the container 10 exhibits high mechanical strength, is excellent in handleability, causes very little seepage of impurity fine particles into the contained liquid, and can prevent deterioration of the liquid caused by light. is obtained.
  • Such a container 10 is suitably used for semiconductor manufacturing chemicals and the above-mentioned pharmaceutical manufacturing solvents.
  • the container 10 may have a layered structure of an inner layer, an intermediate layer and an outer layer.
  • the inner layer is composed of olefin polymers exemplified by ethylene, propylene, butene-1, 4-methyl-pentene-1, hexene-1, and octene-1, and copolymers of ethylene and other olefins. It is preferably made of a high-purity resin containing at least one selected from the group consisting of a neutralizing agent, an antioxidant, and a light stabilizer. In this case, the contents of the neutralizing agent, the antioxidant and the light stabilizer are each preferably at most 0.01% by weight.
  • the intermediate layer preferably comprises a solvent barrier resin comprising poly(ethylene-co-vinyl alcohol).
  • an adhesive resin layer made of maleic acid-modified polyethylene or the like may be provided between the inner layer and the intermediate layer and/or between the intermediate layer and the outer layer.
  • the outer layer preferably contains a resin composition containing a light-shielding substance.
  • the resin composition contains less than 5% by mass of a pigment dispersant comprising an olefin polymer such as polyethylene and polypropylene having a number average molecular weight of 2 ⁇ 10 3 or more, and an inorganic pigment and/or an organic pigment. From 0.01 to 5% by weight of the pigment may be included and less than 2.5% by weight of the UV absorber may be included.
  • fine particles and metal ions do not leach from the container 10 during storage and transportation of the liquid, so that the quality of the high-purity liquid can be maintained, and the container 10 that is hard to break and lightweight can be obtained.
  • the material of the support base 20 and the handle 30 is not particularly limited, and may be the same as or different from the material of the container 10.
  • low density polyethylene medium density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, polybutene, polystyrene, polyvinyl acetate, polymethyl methacrylate, polyethyl methacrylate, polyacrylic acid, cyclic polyolefin, polyacrylonitrile , polyesters such as polyamide (nylon), polyethylene terephthalate and polybutylene terephthalate, polyurethanes, polycarbonates, polyimides, polyphenylene sulfides, polyvinyl chloride homopolymers and/or copolymers and/or Polymer blends are included.
  • blow molding is mentioned as a method of manufacturing container 10
  • known blow molding methods such as injection blow molding (injection blow molding), multilayer extrusion blow molding, and stretch blow molding are alternatively used. can be adopted. Injection molding is preferable for the manufacturing method of the support base 20 and the handle 30 .
  • liquid chemicals such as, for example, methanol, ethanol, isopropanol, isobutanol, ethylene glycol, acetone, ethyl acetate, toluene, dimethylformamide, ethylene glycol acetate, methoxypropyl acetate, and butyl cellosolve; Chemicals for manufacturing semiconductors and liquid crystal devices, such as photoresist solutions and detergents; Medical and pharmaceutical chemicals, such as disinfectants, infusion solutions, dialysates, and raw materials for drug products; Foods, such as fragrances, concentrates, and food additives industrial chemicals;
  • Example 1 A high-density polyethylene resin (melt flow rate 0.3 g/10 min, density 0.951 g/cm 3 , flexural modulus 1370 MPa), which is the material of the container 10, was melted and extruded by an extruder to form a parison.
  • the container 10 of Example 1 was produced by sandwiching this parison between two split molds and performing direct blow molding.
  • the container 10 has four recesses 14, each having a circumferential length H of 25 mm and a central axial length V of 6 mm. were separated by 30° from each other.
  • the outermost circumference D of the body portion 12 was 160 ⁇ mm, and the ratio of the circumferential length H of the four recesses 14 to the outermost circumference D, that is, the occupation ratio (H ⁇ N/D ⁇ 100) was 20%.
  • support 20 and handle 30 were produced by injection molding.
  • a container assembly 100 was produced by connecting the support base 20 to the container 10 and attaching the handle 30 to the container 10 by screwing.
  • the length from the upper end of the body portion 12 of the container 10 to the lower end of the round bottom portion 15 was measured as the total height of the container 10 under normal pressure using a height gauge (manufactured by Mitutoyo Co., Ltd.).
  • a pressurizing device was attached to the nozzle 11 and the upper end 12a to raise the internal pressure of the container 10 to 200 kPa and keep it constant for 1 hour. After 1 hour, the total height of the container 10 was measured again and recorded as the total height at high pressure. When the ratio of the total height under high pressure to the total height under normal pressure of the container 10 was obtained as the total height change rate, it was 0.61%.
  • Example 2 A container 10 of Example 2 was produced in the same manner as in Example 1, except that the circumferential length H of the recesses 14 was changed to 35 mm and the occupation rate of the four recesses 14 was changed to 28%. Also, the support base 20 and the handle 30 were produced in the same manner as in the first embodiment. A container assembly 100 was produced by connecting the support base 20 to the container 10 and attaching the handle 30 to the container 10 by screwing. The container 10 was operated in the same manner as in Example 1, and the shape change at high pressure was measured, and the total height change rate was found to be 0.69%.
  • Example 3 A container 10 of Example 3 was produced in the same manner as in Example 1, except that six concave portions 14 were arranged at intervals of 60° from each other and the occupation rate was changed to 30%. Also, the support base 20 and the handle 30 were produced in the same manner as in the first embodiment. A container assembly 100 was produced by connecting the support base 20 to the container 10 and attaching the handle 30 to the container 10 by screwing. The container 10 was operated in the same manner as in Example 1, and the shape change at high pressure was measured, and the total height change rate was found to be 0.69%.
  • Example 4 A container 10 of Example 4 was produced in the same manner as in Example 3, except that the circumferential length H of the recesses 14 was changed to 35 mm and the occupation ratio of the six recesses 14 was changed to 42%. Also, the support base 20 and the handle 30 were produced in the same manner as in the first embodiment. A container assembly 100 was produced by connecting the support base 20 to the container 10 and attaching the handle 30 to the container 10 by screwing. The container 10 was operated in the same manner as in Example 1, and the shape change at high pressure was measured, and the total height change rate was found to be 0.86%.
  • Example 5 The outermost circumference length D was changed to 360 ⁇ mm, the circumferential length H of the recesses 14 was changed to 50 mm and the occupancy rate of the six recesses 14 was changed to 27%, and the central axis direction length V was changed to 10 mm.
  • a container 10 of Example 5 was produced in the same manner as in Example 3 except for the above. Also, the support base 20 and the handle 30 were produced in the same manner as in the first embodiment.
  • a container assembly 100 was produced by connecting the support base 20 to the container 10 and attaching the handle 30 to the container 10 by screwing. The container 10 was operated in the same manner as in Example 1 to measure the change in shape at high pressure, and the rate of change in total height was found to be 1.03%. Further, when the remaining liquid amount was measured in the same manner as in Example 1, it was 0.6 mL.
  • Comparative example 1 As shown in FIG. 4, one recessed portion 14 is arranged at an angle of 90° away from the boundary between the main body portion 12 and the stepped portion 13 on the parting line PL.
  • a container 10 of Comparative Example 1 was produced in the same manner as in Example 1 except that the occupation ratio of was changed to 5%.
  • the support base 20 and the handle 30 were produced in the same manner as in the first embodiment.
  • a container assembly 100 was produced by connecting the support base 20 to the container 10 and attaching the handle 30 to the container 10 by screwing. When the container 10 was operated in the same manner as in Example 1 to increase the internal pressure of the container 10 to 200 kPa, the support base 20 was removed from the container 10 . Therefore the total height change was not measured.
  • a circumferential groove 44 is provided over the entire circumference of the lower end of the body portion 42, and the occupancy rate of the circumferential groove 44 is changed to 100%.
  • a container 40 of Comparative Example 2 was produced in the same manner as in Example 1 except that the was integrally molded.
  • a container assembly 100 was produced by connecting the support base 20 produced by operating in the same manner as in Example 1 to the container 40 .
  • the container 40 was operated in the same manner as in Example 1, and the shape change at high pressure was measured, and the total height change rate was found to be 5.11%. Further, when the remaining liquid amount was measured by operating in the same manner as in Example 1, it was 2.2 mL.
  • Comparative Example 3 A container 40 of Comparative Example 3 was produced in the same manner as in Comparative Example 2, except that the outermost circumference D was changed to 360 ⁇ mm.
  • the container assembly 100 was produced by connecting the support base 20 produced by operating in the same manner as in Comparative Example 2 to the container 40 .
  • the container 40 was operated in the same manner as in Example 1, and the shape change at high pressure was measured, and the total height change rate was 7.37%.
  • Comparative Example 4 As shown in FIG. 5(b), by operating in the same manner as in Comparative Example 2 except that the concave portion 14 was not provided and the flat bottom portion 45 was formed in place of the round bottom portion 15, a comparative A container 40 of Example 4 was made.
  • the container 40 was operated in the same manner as in Example 1 to increase the internal pressure of the container to 200 kPa, the flat bottom portion 45 swelled and the container 40 collapsed.
  • the total height change rate of the overturned container 40 was obtained, it was 4.10%.
  • Table 1 summarizes the configurations of the containers 10 in Examples 1 to 5 and the containers in Comparative Examples 1 to 4, and the results of shape change measurement and residual liquid amount measurement at high pressure.
  • the container and container assembly of the present invention are suitably used, for example, for pumping liquids in the semiconductor and liquid crystal device manufacturing fields, the pharmaceutical field, and the food field, where liquids of clean quality are required.
  • 10 is a container, 11 is a mouthpiece, 12 is a main body, 12a is an upper end, 12a1 is a male screw, 12b is a neck, 12b1 is a male screw, 12c is a body, 13 is a stepped portion, 14 is a recess, and 15 20 is a round bottom portion, 20 is a support base, 21 is a claw portion, 30 is a handle, 31 is an annular portion, 31a is a mounting hole, 31b is a female screw, 32 is a handle portion, 32a is a finger hooking hole, 40 is a container, and 40a is 42 is a main body, 44 is a circumferential groove, 45 is a flat bottom, 100 is a container assembly, C is the central axis, D is the outermost circumference length, H is the circumferential length, h is the center point, and PL is the parting.
  • a line, V is the length in the central axis direction
  • X and Y are reference lines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Catching Or Destruction (AREA)
  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)

Abstract

高圧ガスを用いた液体の圧送の際に容器の内圧が高圧力となっても、送液装置による容器支持具なしに容器の変形が著しく抑制され、安定した送液を行うことができるとともに、容器支持具を有しない送液装置にセットして使用することができるという高い汎用性を有する容器及び容器組立体を提供する。 容器10は、略円筒形をなした本体部12と、本体部12の一端で開口した筒口11と、本体部12の他端に連続しつつ縮径した段差部13と、段差部13に連続してそこから離反するように膨らんだ丸底部15とを有しており、本体部12、段差部13、及び丸底部15にわたった一連のパーティングラインに重ならない位置で窪んでおり、容器を自立させるための支持台の爪部が係合する複数の凹部14が段差部13に間欠して形成されている。

Description

容器及び容器組立体
 本発明は、液体を収容するための容器、及びこの容器を含む容器組立体に関する。
 半導体製造や液晶ディスプレイ製造において用いられるフォトレジストや洗浄剤のような工業用高純度薬液、及び食品用材料液のような液体は、異物の混入や変質を生じないように高純度のまま容器に収容される。これらの液体は容器に収容されたまま貯蔵・搬送されたり、送液装置にセットされて容器から排出され使用されたりする。
 このような容器における底面は、一般に、容器が自立するように平坦に形成されている。公知技術として、送液管及びガス供給管を容器内に挿入し、ガス供給管から容器内にガスを送り込み、このガスにより容器の内圧を高めて液体を送液管に送り、液体を容器から排出するという圧送による液体の排出方法が知られている。この場合、高粘度で流動し難い液体を圧送するのに、例えば100~200kPaという高圧ガスがしばしば用いられる。平坦な底面を有する一般に公知の容器は、高圧ガスによって容器内の圧力が高まると、底面が膨隆するように変形して容器が傾斜することがある。容器内における液体の残量が少なくなると、底面の変形や容器の傾斜の所為で送液管の先端が液体に届かなくなり、容器に収容されたすべての液体を容器から排出できない恐れがある。
 特許文献1に、底面を半球面とした容器及びこれを自立させるための支持台(受け具)が記載されている。この容器の周壁外面で周方向の一連に繋がった凹溝と支持台の周壁内面に設けられた凸部とが係合することによって容器と支持台とが嵌着している。容器の底面は半球面であることにより上記の高圧ガスによる容器内圧力が底面に均等にかかる。このとき底面全体は高圧ガスの圧力によって下方へ伸長するので、凹溝がこの伸長に追従して、恰も弦巻ばねが伸びるように伸長する。それにより凹溝が受け具の凸部を押し出してしまい、凸部との係合を維持できない。その結果容器が支持台から外れて倒れるので、安定して圧送できない。
 特許文献2に、丸底を有する容器本体と、中央に貫通部を有しておりこの容器本体を自立可能に支持する支持台とを有する液体容器が記載されている。容器本体には支持台と係合するための周回溝が形成されている。この液体容器は、支持台の貫通部に嵌って丸底に当接する突起部を有する台座と、容器本体の上端を押さえる押さえ部材とを有する送液装置にセットされて用いられる。容器本体は送液装置に備えられた台座の突起部及び押さえ部材のような容器支持具に挟まれているので、容器本体の内圧が高まっても周回溝が伸長せず容器本体が支持台から外れない。しかし特許文献2の液体容器は、高圧ガスによって容器内の液体を圧送するのに突起部及び押さえ部材のような容器支持具を有する送液装置を必須としているので、容器をセット可能な送液装置が限られてしまい、汎用性に乏しい。
実開昭58-76899号公報 特開2011-098736号公報
 本発明は前記の課題を解決するためになされたもので、高圧ガスを用いた液体の圧送の際に容器の内圧が高圧力となっても、送液装置に備えられた容器支持具なしに容器の変形が著しく抑制され、安定した送液を行うことができるとともに、容器支持具を有しない送液装置にセットして使用することができるという高い汎用性を有する容器及び容器組立体を提供することを目的とする。
 前記の目的を達成するためになされた本発明の容器は、液体を収容し、前記液体を圧送するのに用いられる容器であって、略円筒形をなした本体部と、前記本体部の一端で開口した筒口と、前記本体部の他端に連続しつつ縮径した段差部と、前記段差部に連続してそこから離反するように膨らんだ丸底部とを有しており、前記本体部、前記段差部、及び前記丸底部にわたった一連のパーティングラインに重ならない位置で窪んでおり、容器を自立させるための支持台の爪部が係合する複数の凹部が前記段差部に間欠して形成されていて、前記凹部が前記本体部の周方向に長い略長円形をなしており、複数の前記凹部の前記周方向の合計長さが、前記本体部の最外周長の20~50%を占めている。
 容器において、前記凹部は、前記本体部の中心軸における角度が前記パーティングラインから夫々20~45°離れた4箇所、又は互いに60°ずつ離れた6箇所で、かつ前記パーティングラインを挟んだ対称の位置に設けられていてもよい。
 本発明の容器組立体は、上記いずれかの容器の前記本体部が、胴部と前記筒口寄りで前記胴部よりも縮径した頸部とを有しており、前記頸部の外面に把手が嵌合及び/又は螺合している。
 容器組立体は、上記いずれかの容器と、前記丸底部を嵌めている開口及びそれの周縁部で延出していて前記凹部に係合している爪部を有していることにより前記容器を自立させている支持台とを、有している。
 本発明の容器及び容器組立体によれば、液体を圧送する際に容器内が高圧となっても、支持台の爪部に係合するための凹部が特定の位置に間欠して形成されていることにより圧力によって伸長・変形しないので、支持台が容器から外れず、液体の圧送を安定して行うことができる。
 また容器及び容器組立体は、液体圧送時に容器自体がそれの中心軸方向に伸長しないので、送液装置に容器の変形を抑える容器支持具を不要としているため、様々な送液装置に対応でき、汎用性に富んでいる。
本発明を適用する容器を示す正面図及びA-A線矢視端面図である。 本発明を適用する容器組立体を示す斜視図及び分解斜視図である。 本発明を適用する容器の別な例を示す端面図である。 本発明を適用外である比較例1の容器の端面図である。 本発明を適用外である比較例2及び4の容器の斜視図である。
 以下、本発明を実施するための形態を詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。
 本発明の容器10の一例を図1に示す。図1(a)は容器10の正面図であり、同図(b)は同図(a)のA-A線矢視端面図である。容器10は液体を収容し、最高で200kPaの内圧に耐えることができる圧送用の容器である。容器10は筒形をなした本体部12と、これの一端である上端で開口した筒口11と、本体部12の他端である下端に連続した段差部13と、この段差部13に離反するように連続して伸び下方へ向かって膨らんで略半球形をなした丸底部15とを、有している。容器10の内空は筒口11を介して外界と連通している。この開口と丸底部15の内壁下端とが対向している。
 本体部12は、筒口11を開けている上端部12aと、これの下端から延伸した頸部12bと、頸部12bの下端からさらに下方へ延伸した胴部12cとをさらに有している。胴部12cは頸部12bに向かって漸次縮径している。また上端部12a及び頸部12bの外周面で、雄螺子12a,12bが夫々出っ張っている。
 容器10は樹脂製であり、ダイレクトブロー成形によって形成されている。ダイレクトブロー成形においては、まずパリソンと呼ばれる高温で溶融押出したチューブ形の樹脂材料を、製造すべき所望の形状を彫り込んだ分割式の成形金型で挟みながら、パリソン下端を金型により潰し切ってピンチオフ部を形成する。この潰し切った箇所が容器の底部となる。次いでブローピンによってパリソン内に圧縮空気を送り込む。それにより、パリソンが膨らみながら金型の内壁へ押し付けられて容器が形成される。この分割金型の合わせ界面跡であるパーティングラインPLが上端部12a、頸部12b、胴部12c、段差部13、及び丸底部15に一連にわたって形成される。
 容器10がダイレクトブロー成形品であるので、丸底部15に直接連続している段差部13におけるパーティングラインPL近傍の肉厚は、同一円周上の別箇所の肉厚に比してわずかに厚い。この厚肉部は剛性を高めて容器を変形し難くすることに寄与する。
 図1(a)に示すような正面視で本体部12の下端から段差部13において、パーティングラインPLを挟んだ4箇所、かつパーティングラインPLを挟んだ対称の位置で、凹部14が容器10の外面からそれの中心軸に向かって窪んでいる。4個の凹部14は、パーティングラインPLに重なっておらず、かつ段差部13において容器10の周方向に並んで形成されている。凹部14に、後述する支持台20の爪部21が係合する(図2参照)。それにより容器10と支持台20とが連結して容器10が自立する。4個の凹部14はすべて同一の形状を有しており、本体部12の周方向に沿った長さH(周方向長さH)が、本体部12の中心軸方向(すなわち容器10の中心軸方向)に沿った長さV(中心軸方向長さV)よりも長い略長円形をなしている。
 凹部14の周方向長さHの中心点hは、パーティングラインPL上の本体部12と段差部13との境界箇所からθの角度で離れて位置している。すなわち容器10の本体部12と段差部13との境界における横断面視において、パーティングラインPL同士を容器10の中心軸Cを通った直線で結んだ基準線Yから、4個の凹部14の夫々は最小角度θずつ離れてずれている。図1(b)に示した例において、角度θは30°である。
 このように、複数の凹部14が一連に繋がっておらず、間欠して設けられていることにより、容器10に収容された液体の圧送の際に導入される高圧ガスの圧力によって容器10内の圧力が高まっても、凹部14が中心軸方向長さVの方向に伸長することを抑制でき、凹部14と爪部21との係合が維持されて容器10から支持台20が外れない。また、高圧力によって凹部14が伸長しないから容器10は中心軸方向(図1(a)において縦方向)に伸長せず、それの全高が常圧下と高圧下とで殆ど変わらない。そのため容器10は、容器の変形を抑制する容器支持具の有無に関わらず多様な送液装置に適用することができるので、高い汎用性を有している。このように本発明の容器10によれば、容器の外周に沿って一連に凹んだ周回溝を有する従来公知の容器のように、高圧下で周回溝が伸長して支持台が容器から外れたり、全高が増したりする不具合を生じない上、送液装置の容器支持具を不要としている。
 容器10が4個の凹部14を有している場合、上記の角度θは20~45°であることが好ましく、20~40°であることがより好ましく、20~30°であることが一層好ましく、30°であることが最も好ましい。また複数の角度θはすべて同一であることが好ましい。角度θがこの範囲であると、肉厚がわずかに厚いことにより変形し難いパーティングラインPLの近傍に凹部14を配置できる。
 図1(b)に示すように4個の凹部14が、中心軸Cを対称点とする点対称、基準線Yを軸とする線対称、及び/又は基準線Yと中心軸Cで垂直に交差する基準線Xを軸とする線対称に配置されていると、圧送時の高圧力が各凹部14に均等にかかるので、容器10の伸長をより効果的に抑止できる。それに加え、各凹部14に対応する位置に設けられた支持台20の爪部21を凹部14に係合させる際、凹部14と爪部21との一対を位置合わせするだけで容器10と支持台20とを連結できる。
 本体部12の最外周長D(本体部12の外周において最も長い周長、図2(a)参照)に対する凹部14の周方向長さHの合計、すなわち本体部12の最外周長Dに占める凹部14の周方向長さHの占有率は、凹部14の数をNとすると、占有率=(H×N/D)×100で表される。この占有率は10~90%であることが好ましく、15~70%であることがより好ましく、20~50%であることがより一層好ましい。占有率がこの範囲であると、凹部14と爪部21とを確実に係合させることができるとともに、容器10内への高圧力印加による凹部14の伸長を抑制できる。周方向長さHは、凹部14が存在していることにより欠けた本体部12の外周長である。
 本体部12の最外周長は、容器10に要求される容量に応じて任意に設定される本体部12の外径に依存して決定される。容器10の容量は具体的に3~20L、より具体的に3~10Lである。本体部12の外径は、例えば120~360mmに設定される。なお、凹部14の中心軸方向長さVは特に限定されず、4~15mmに設定される。
 圧送による送液にあたって、筒口11から丸底部15へまっすぐに送液管(不図示)が挿し込まれ、それの先端は丸底部15の頂部の内壁面と僅かの隙間を有しつつ位置決めされる。圧送によって容器10内から液体が排出されるに伴って、容器10内に残った液体が略半球形をなした丸底部15の頂部に溜まる。送液管の先端が丸底部15の頂部近傍に位置決めされていることにより、液体の残量を著しく少なくすることができる。
 また、圧送の際に容器10内に導入される高圧ガスに起因して容器10内が高圧となっても、容器10の底面が略半球形をなしていることにより丸底部15の内壁面にかかる圧力が分散されるので、底面の変形が抑制されている。丸底部15の内壁面の曲率半径は、最外周長Dを2πで除した値(すなわち胴部12cの半径)の1~5倍であることが好ましく、1~4倍であることがより好ましく、1~3倍であることがより一層好ましい。
 図2(a)に本発明の容器組立体100の斜視図を、同図(b)にそれの分解斜視図を夫々示す。容器組立体100は、容器10と、支持台20と、把手30とからなる。支持台20及び把手30も容器10と同様に樹脂製である。
 支持台20は全体に扁平な円筒形をなしており、それの上端で開口している。また支持台20の外径は容器10の本体部12の最外径と同一である。支持台20の開口の周縁部で凹部14に対応する位置に爪部21が支持台20の側壁部から上方へ向かって伸出している。爪部21は支持台20の中心軸側に向かって鉤状に湾曲している。支持台20が樹脂製であることにより爪部21は若干の可撓性を有している。それにより容器10と支持台20とが連結される際に爪部21は丸底部15の上端部に当接して撓み、支持台20の側面からそれの外側へ向かって若干広がった後、凹部14の窪みに係止される。容器10と支持台20とは、爪部21と凹部14との係合によってのみ連結しているので、必要に応じて簡便に着脱できる。なお、支持台20の外径は本体部12の最外径より小さくてもよい。
 把手30は、リング形をなしていることにより円形に開口しており容器10の頸部12bを取り巻くようにそこへ取付される環状部31と、これの外周の一部で環状部31の径を延長する方向に延出した持ち手部32とを有している。環状部31は、頸部12bを通す取付穴31aと環状部31の内壁面に設けられた雌螺子31bとを有している。一方持ち手部32に指を通すための指掛け穴32aが円形に開口している。取付穴31a及び指掛け穴32aにおける両者の開口円がなす面は、互いに垂直になるように位置している。把手30は、雄螺子12bと雌螺子31bとが螺合することにより容器10に着脱可能に取り付けられる。把手30は必要に応じて容器10に取り付けられ、例えば、作業者はこれの運搬時に指掛け穴32aに指を通して、容器組立体100を持ち上げて運ぶことができる。
 把手30は容器10と一体成形されておらず、これと別体である。それにより容器10は、これの中心軸に対して点対称の形を有している(雄螺子12a,12bを除く)。その結果、容器10をダイレクトブロー成形によって製造する際に、容器10の偏肉を防止でき(底部15及びその近傍に形成されるピンチオフ部を除く)、圧送時の変形を効果的に抑止できる。
 図1及び2において、凹部14が4個の場合を例示したが、凹部14の数は複数であればよく、具体的に2~6個であってもよい。図3(a)に凹部14が2個である例を、同図(b)に凹部14が3個である例を、同図(c)に凹部14が5個である例を、同図(d)に凹部14が6個である例を、それぞれ示す。これらの図はいずれも容器10の本体部12と段差部13との間で切断し、段差部13に向かって表した端面を、図1(b)に倣って表した端面図である。
 図3(a)における2個の凹部14は、本体部12と段差部13との境界におけるパーティングラインPLから夫々角度θ=45°離れていてかつ容器10の中心軸Cを対称点とした点対称の位置に設けられている。図3(b)における3個の凹部14は、互いに角度θ=120°ずつ離れて配置されており、基準線Yに垂直な基準線Xに対して対称の位置に設けられている。同図(c)における凹部14は、互いに角度θ=72°ずつ離れて配置されており、基準線Xに対して対称の位置に設けられている。同図(d)における凹部14は、互いに角度θ=60°ずつ離れて配置されており、基準線X,Yに対して対称の位置に設けられている。いずれの例においても、凹部14は容器10の水平方向に等間隔に又は不等間隔び断続して形成されており、かつパーティングラインPLに重なっていない。
 容器10の材料は、熱可塑性樹脂である。容器10を構成する部材は、単層構造であっても多層構造であってもよい。単層構造及び多層構造のいずれの場合においても、容器10を構成する熱可塑性樹脂の曲げ弾性率は少なくとも700MPaであることが好ましい。容器10が多層構造を有している場合、多層構造を形成している樹脂全体として上記の曲げ弾性率を有していればよい。少なくとも700MPaの曲げ弾性率を有する熱可塑性樹脂で形成されている容器10は、容器の破損や大きな変形を生じることなしに最高で200kPaのガスによって液体を圧送できる。曲げ弾性率は、JIS K7171(2016)に準拠して求めることができる。
 容器10の肉厚は、厚いほど容器強度を高めることができる。一方、厚すぎると原材料が多く必要になるだけでなく、容器の重量が過度に重くなってしまう。そこで、少なくとも700MPaの曲げ弾性率を有する樹脂材料を用いて容器10を成形することができ、かつ必要な強度を確保できる限り、容器10はより薄い肉厚であることが好ましい。一例として、容器10の胴部12cの肉厚は0.8~4mmであってもよい。
 容器10の材料は、高純度熱可塑性樹脂であってもよい。容器10が多層構造を有している場合、少なくともその内表面の材料が高純度熱可塑性樹脂であればよい。高純度熱可塑性樹脂からなる容器10は、半導体材料、半導体製造用薬液、及び食品材料のような高度のクリーン度が求められる液体を収容するのに適している。高純度熱可塑性樹脂とは、容器10に収容されている液体への不純物微粒子の浸出が、所定の基準値を超えない樹脂である。この基準値を表す指標としてクリーン度が知られている。クリーン度は、長期間にわたって容器に収容された液体に、不純微粒子が浸出することによって液体の品質が劣化する度合いを示す。クリーン度は、検査容器に超純水またはフォトレジスト液を一定期間収容した後、収容されていた液体1mL中に存在する微粒子の数を求めることによって得られる。微粒子の粒径は、適用する規格に対応させて0.3、0.2、0.1、及び/又は0.06μm以上のものを対象とする。具体的には下記数式(1)で定義される。
Figure JPOXMLDOC01-appb-M000001
 数式(1)中、aは検査容器の容量、bは検査容器からサンプリングした液体の量である。まず初期クリーン度を測定するためのサンプリング液は次のようにして採取される。容量a(mL)の検査容器に容量の半分、a/2(mL)の超純水あるいはフォトレジスト液を入れ、15秒間振盪し24時間静置した後に採取する。収容後のクリーン度を測定するためのサンプリング液を、初期クリーン度測定後の容器に栓体を取り付けて一定期間放置し、気泡を発生させないように容器を3回転させた後に採取する。cはサンプリング液全量中に含まれる微粒子をパーティクルカウンターで数えた値である。その数値をもとに式(1)で初期および一定期間収容後のクリーン度を算出する。クリーン度の数値が低いほどフォトレジスト液の品質が劣化していないことを示す。クリーン度が100個/mL未満であると、フォトレジスト液の品質劣化を招来することなく収容していたことを示す。このようなフォトレジスト液は、半導体や液晶ディスプレイ(LCD)の品質及び歩留まりを低下させない。
 容器10を形成するための高純度熱可塑性樹脂として、容器10を検査容器としてクリーン度を測定したときに、所定のクリーン度を満足する樹脂が選択される。フォトレジスト液を収容する場合、クリーン度が100個/mL(所定の基準値の一例)未満である樹脂を用いる。言い換えると高純度熱可塑性樹脂とは、所定の基準値を超えて液体中に不純物微粒子を浸出しない樹脂である。適用する規格に対応させてクリーン度が200個/mL未満となる樹脂としてもよい。また、クリーン度が50個/mL未満、10個/mL未満、5個/mL未満、3個/mL未満となる樹脂を使用してもよい。なお、容器の栓体(不図示)も高純度熱可塑性樹脂によって形成することが好ましい。
 またクリーン度の他に、液体の透明度の低下の度合い(所定の基準値の他の一例)によって不純物微粒子の浸出の程度を規定することができる。
 容器10を形成している樹脂は、例えば、ポリエチレン及びポリプロピレンのようなポリオレフィン、ポリアミド、ポリビニルアルコール、ポリ(エチレン-コ-ビニルアルコール)、ポリエステル、ポリフェニレンオキシドなどが挙げられる。これらの樹脂のうち一種又は二種以上を用いて単層の容器を形成してもよく、これらの樹脂の複数種を用いて多層構造の容器を形成してもよい。なかでもポリエチレンが好ましい。具体的に、エチレンとα-オレフィンとの共重合体である直鎖状ポリエチレン(LLDPE)、及び高密度ポリエチレン(HDPE)が挙げられる。剛性及びクリーン度の観点から容器10を高密度ポリエチレンで形成することが好ましい。また環境保護の観点から、マテリアルリサイクル可能な樹脂を用いることが好ましい。
 高密度ポリエチレンのメルトフローレートは、0.01~3.0g/10分であることが好ましく、0.05~2.0g/10分であることがより好ましい。またこれの密度は、0.940~0.970g/cmであることが好ましく、0.950~0.960g/cmであることがより好ましい。なおメルトフローレートは、JIS K6760(1995)に準拠して求めることができる。
 容器10における少なくとも内壁の表面は、密度0.940~0.970g/cmのポリエチレン又はエチレン・α-オレフィン共重合体の樹脂からなっていてもよい。この樹脂は、ゲルパーミエーションクロマトグラフィーにより測定される重量平均分子量を10×10~30×10とし、分子量1×10以下の重合体の含有率を2.5質量%未満とし、さらに液体クロマトグラフィーにより定量される中和剤、酸化防止剤、及び耐光安定剤の含有率を夫々0.01質量%以下としていることが好ましい。ここで、α-オレフィンは、プロピレン、ブテン-1、4-メチル-ペンテン-1、ヘキセン-1、オクテン-1からなる群から選ばれる少なくとも一種類としてもよい。このような樹脂によれば、高い機械的強度を示し、取扱性に優れ、収容している液体への不純微粒子の浸出が極めて少ない容器10が得られる。
 容器10の材料は、密度0.940~0.970g/cmのポリエチレン又はエチレン・α-オレフィン共重合体の樹脂と、中和剤、酸化防止剤、及び耐光安定剤と、無機顔料及び/又は有機顔料を含む遮光性顔料と、2×10以上の数平均分子量を有するオレフィン系重合体の分散剤とを含む樹脂組成物であってもよい。この樹脂は、ゲル・パーミエーション・クロマトグラフィーにより測定される重量平均分子量を10×10~30×10とし、かつ1×10以下の分子量を5質量%未満としていることが好ましい。樹脂組成物における中和剤、酸化防止剤、及び耐光安定剤の含有率は、夫々0.01質量%以下であることが好ましい。上記の無機顔料として酸化チタン、カーボンブラック、及びベンガラから選ばれる少なくとも一種が挙げられ、有機顔料としてフタロシアニン系、キナクリドン系、およびアゾ系有機顔料から選ばれる少なくとも一種が挙げられる。樹脂組成物における遮光性顔料の含有率は、0.01~5質量%であることが好ましい。オレフィン系重合体の分散剤の含有率は5質量%未満であることが好ましい。このような樹脂組成物によれば、高い機械的強度を示し、取扱性に優れ、収容している液体への不純微粒子の浸出が極めて少なく、しかも光に起因する液体の変質を防止できる容器10が得られる。このような容器10は、半導体製造用薬液や上記の医薬製造用の溶剤に好適に用いられる。
 容器10は、内層、中間層、及び外層という層構造を有していてもよい。この場合内層は、エチレン、プロピレン、ブテン-1、4-メチル-ペンテン-1、ヘキセン-1、及びオクテン-1で例示されるオレフィン重合体、及びエチレンとそれ以外のオレフィンとの共重合体からなる群から選ばれる少なくとも一種と、中和剤、酸化防止剤、及び耐光安定剤とを含む高純度樹脂からなることが好ましい。この場合、中和剤、酸化防止剤、及び耐光安定剤の含有率は、夫々最大で0.01質量%であることが好ましい。中間層は、ポリ(エチレン-コ-ビニルアルコール)を含む溶剤バリアー性樹脂を含むことが好ましい。また、内層と中間層との間、及び/又は中間層と外層との間にマレイン酸変性ポリエチレン等からなる接着樹脂層を設けてもよい。外層は、遮光性物質を含む樹脂組成物を含むことが好ましい。この樹脂組成物に、2×10以上の数平均分子量を有するポリエチレン及びポリプロピレンのようなオレフィン系重合体からなる顔料分散剤の5質量%未満と、無機顔料及び/又は有機顔料を含む遮光性顔料の0.01~5重量%とが含まれていてもよく、紫外線吸収剤の2.5重量%未満が含まれていてもよい。このような層構造によれば、液体の保管中及び輸送中において容器10から微粒子や金属イオンが浸出しないので高純度液体の品質を維持でき、破損し難く、かつ軽量な容器10が得られる。
 支持台20及び把手30の材料は特に限定されず、容器10の材料と同一であっても、異なっていてもよい。例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、ポリブテン、ポリスチレン、ポリ酢酸ビニル、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリアクリル酸、環状ポリオレフィン、ポリアクリロニトリル、ポリアミド(ナイロン)、ポリエチレンテレフタレート及びポリブチレンテレフタレートのようなポリエステル、ポリウレタン、ポリカーボネート、ポリイミド、ポリフェニレンスルフィド、ポリ塩化ビニルからなる群の少なくとも1つを含む単独重合体及び/又は共重合体及び/又はポリマーブレンドが挙げられる。
 容器10の製造方法として、ダイレクトブロー成形(押出ブロー成形)を挙げたが、これに代えてインジェクションブロー成形(射出ブロー成形)、多層押出ブロー成形、及び延伸ブロー成形のような公知のブロー成形を採用できる。また支持台20及び把手30の製造方法は、射出成形が好ましい。
 容器10に収容される液体として、例えば、メタノール、エタノール、イソプロパノール、イソブタノール、エチレングリコール、アセトン、酢酸エチル、トルエン、ジメチルホルムアミド、エチレングリコールアセテート、メトキシプロピルアセテート、及びブチルセロソルブのような液体化学品;フォトレジスト液及び洗浄剤のような半導体や液晶デバイスの製造用薬液;消毒薬、輸液、透析液、及び製剤原料のような医療・医薬用薬液;香料、濃縮液、食品添加物のような食品工業用薬液が挙げられる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
 容器10の材料である高密度ポリエチレン樹脂(メルトフローレート0.3g/10分、密度0.951g/cm、曲げ弾性率1370MPa)を熱溶融してエクストルーダーによって押し出してパリソンを形成した。このパリソンを二分割金型で挟んでダイレクトブロー成形により実施例1の容器10を作製した。この容器10は4個の凹部14を有しており、その周方向長さHは25mm、中心軸方向長さVは6mm、パーティングラインPL上の本体部12と段差部13との境界箇所から夫々30°離れていた。本体部12の最外周長Dは160πmm、最外周長Dに対する4個の凹部14の周方向長さHの割合、すなわち占有率(H×N/D×100)は20%であった。
 直鎖状低密度ポリエチレン樹脂(メルトフローレート4.0g/10分、密度0.938g/cm)を用い、支持台20及び把手30を射出成形によって作製した。支持台20を容器10に連結し、把手30を容器10に螺合によって取り付けて容器組立体100を作製した。
(高圧時の形状変化測定)
 容器10の本体部12の上端から丸底部15の下端までの長さを、ハイトゲージ(株式会社ミツトヨ製)を用い、容器10の常圧時全高として測定した。筒口11及び上端部12aに加圧装置を取り付け、容器10の内圧を200kPaに昇圧し、これを1時間一定に保った。1時間経った時点で容器10の全高を再度測定し、高圧時全高として記録した。容器10の常圧時全高に対する高圧時全高の割合を全高変化率として求めたところ、0.61%であった。
(残液量測定)
 容器10に水道水2Lを収容し、送液管(不図示)を筒口11から真っ直ぐに容器10内に挿し込んで、それの末端を丸底部15の内壁面近傍に位置するように固定した。0.05MPaの圧力を容器10内に印加して水道水を容器10から排出し、送液管から水道水が出なくなったところで圧力の印加を止め、容器10内に残った水道水の量を測定したところ、0.3mLであった。
(実施例2)
 凹部14の周方向長さHを35mmに変更し、4個の凹部14の占有率を28%に変更したこと以外は実施例1と同様に操作して実施例2の容器10を作製した。また実施例1と同様にして支持台20及び把手30を作製した。支持台20を容器10に連結し、把手30を容器10に螺合によって取り付けて容器組立体100を作製した。容器10につき、実施例1と同様に操作して高圧時の形状変化を測定し、全高変化率を求めたところ、0.69%であった。
(実施例3)
 凹部14を互いに60°ずつ離れた60°間隔で6個としてこれの占有率を30%に変更したこと以外は実施例1と同様に操作して実施例3の容器10を作製した。また実施例1と同様にして支持台20及び把手30を作製した。支持台20を容器10に連結し、把手30を容器10に螺合によって取り付けて容器組立体100を作製した。容器10につき、実施例1と同様に操作して高圧時の形状変化を測定し、全高変化率を求めたところ、0.69%であった。
(実施例4)
 凹部14の周方向長さHを35mmに変更し、6個の凹部14の占有率を42%に変更したこと以外は実施例3と同様に操作して実施例4の容器10を作製した。また実施例1と同様にして支持台20及び把手30を作製した。支持台20を容器10に連結し、把手30を容器10に螺合によって取り付けて容器組立体100を作製した。容器10につき、実施例1と同様に操作して高圧時の形状変化を測定し、全高変化率を求めたところ、0.86%であった。
(実施例5)
 最外周長Dを360πmmに変更したこと、凹部14の周方向長さHを50mmとして6個の凹部14の占有率を27%に変更したこと、中心軸方向長さVを10mmに変更したこと以外は実施例3と同様に操作して実施例5の容器10を作製した。また実施例1と同様にして支持台20及び把手30を作製した。支持台20を容器10に連結し、把手30を容器10に螺合によって取り付けて容器組立体100を作製した。容器10につき、実施例1と同様に操作して高圧時の形状変化を測定し、全高変化率を求めたところ、1.03%であった。また実施例1と同様に操作して残液量測定を行ったところ、0.6mLであった。
(比較例1)
 図4に示すように、1個の凹部14をパーティングラインPL上の本体部12と段差部13との境界箇所から角度θ=90°離れて位置するように配置し、1個の凹部14の占有率を5%に変更したこと以外は実施例1と同様に操作して比較例1の容器10を作製した。また実施例1と同様にして支持台20及び把手30を作製した。支持台20を容器10に連結し、把手30を容器10に螺合によって取り付けて容器組立体100を作製した。容器10につき、実施例1と同様に操作して容器10の内圧を200kPaまで昇圧したところ、容器10から支持台20が外れた。そのため全高変化率を測定しなかった。
(比較例2)
 図5(a)に示すように、凹部14に代えて周回溝44を本体部42の下端の全周にわたって設け、周回溝44の占有率を100%に変更したこと、容器40と把手40aとを一体成形したこと以外は実施例1と同様に操作して比較例2の容器40を作製した。実施例1と同様に操作して作製した支持台20を容器40に連結し容器組立体100を作製した。容器40につき、実施例1と同様に操作して高圧時の形状変化を測定し、全高変化率を求めたところ、5.11%であった。また実施例1と同様に操作して残液量測定を行ったところ、2.2mLであった。
(比較例3)
 最外周長Dを360πmmに変更したこと以外は、比較例2と同様に操作して比較例3の容器40を作製した。比較例2と同様に操作して作製した支持台20を容器40に連結し容器組立体100を作製した。容器40につき、実施例1と同様に操作して高圧時の形状変化を測定し、全高変化率を求めたところ7.37%であった。
(比較例4)
 図5(b)に示すように、凹部14を設けず、かつ丸底部15に代えて平底部45を形成したこと以外は比較例2と同様に操作することによって、支持台無しで自立可能な比較例4の容器40を作製した。容器40につき、実施例1と同様に操作して容器の内圧を200kPaまで昇圧したところ、平底部45が膨隆し容器40が倒れた。倒れた容器40の全高変化率を求めたところ、4.10%であった。
 実施例1~5における容器10及び比較例1~4における容器の構成、並びに高圧時の形状変化測定及び残液量測定の結果を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 表1から分かるように実施例1~5の容器10は、いずれも凹部14が伸長しなかったので、容器10内が高圧であっても、また容器10の全高変化を抑える容器支持具を用いずとも、それの全高は殆ど変化しなかった。一方比較例1において、凹部14を僅か1個しか有しないことの所為で容器10と支持台20との係合が不安定であったため、容器10が支持台20から外れてしまった。また凹部14に代えて容器40の全周にわたる一連の周回溝44とした比較例2及び3は、容器40内の昇圧によって周回溝44が弦巻ばねのように伸長して広がったことの所為で容器の全高が著しく伸びた。
 本発明の容器及び容器組立体は、例えば、クリーンな品質の液体が求められる半導体や液晶デバイスの製造分野、医薬品分野、及び食品分野における液体の圧送に好適に用いられる。
 10は容器、11は筒口、12は本体部、12aは上端部、12aは雄螺子、12bは頸部、12bは雄螺子、12cは胴部、13は段差部、14は凹部、15は丸底部、20は支持台、21は爪部、30は把手、31は環状部、31aは取付穴、31bは雌螺子、32は持ち手部、32aは指掛け穴、40は容器、40aは把手、42は本体部、44は周回溝、45は平底部、100は容器組立体、Cは中心軸、Dは最外周長、Hは周方向長さ、hは中心点、PLはパーティングライン、Vは中心軸方向長さ、X,Yは基準線であり、θ,θは角度である。

Claims (4)

  1.  液体を収容し、前記液体を圧送するのに用いられる容器であって、
     略円筒形をなした本体部と、前記本体部の一端で開口した筒口と、前記本体部の他端に連続しつつ縮径した段差部と、前記段差部に連続してそこから離反するように膨らんだ丸底部とを有しており、
     前記本体部、前記段差部、及び前記丸底部にわたった一連のパーティングラインに重ならない位置で窪んでおり、容器を自立させるための支持台の爪部が係合する複数の凹部が前記段差部に間欠して形成されていて、
     前記凹部が前記本体部の周方向に長い略長円形をなしており、複数の前記凹部の前記周方向の合計長さが、前記本体部の最外周長の20~50%を占めていることを特徴とする容器。
  2.  前記凹部は、前記本体部の中心軸における角度が前記パーティングラインから夫々20~45°離れた4箇所、又は互いに60°ずつ離れた6箇所で、かつ前記パーティングラインを挟んだ対称の位置に設けられていることを特徴とする請求項1に記載の容器。
  3.  請求項1又は2に記載の容器の前記本体部が、胴部と前記筒口寄りで前記胴部よりも縮径した頸部とを有しており、前記頸部の外面に把手が嵌合及び/又は螺合していることを特徴とする容器組立体。
  4.  請求項1又は2に記載の容器と、前記丸底部を嵌めている開口及びそれの周縁部で延出していて前記凹部に係合している爪部を有していることにより前記容器を自立させている支持台とを、有していることを特徴とする容器組立体。
PCT/JP2022/016522 2021-05-17 2022-03-31 容器及び容器組立体 WO2022244527A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22804443.4A EP4342811A1 (en) 2021-05-17 2022-03-31 Container and container assembly
CN202280036120.XA CN117320970A (zh) 2021-05-17 2022-03-31 容器及容器组合体
KR1020237004487A KR102607395B1 (ko) 2021-05-17 2022-03-31 용기 및 용기 조립체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021083228A JP7013610B1 (ja) 2021-05-17 2021-05-17 容器及び容器組立体
JP2021-083228 2021-05-17

Publications (1)

Publication Number Publication Date
WO2022244527A1 true WO2022244527A1 (ja) 2022-11-24

Family

ID=80737852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016522 WO2022244527A1 (ja) 2021-05-17 2022-03-31 容器及び容器組立体

Country Status (6)

Country Link
EP (1) EP4342811A1 (ja)
JP (1) JP7013610B1 (ja)
KR (1) KR102607395B1 (ja)
CN (1) CN117320970A (ja)
TW (1) TWI802412B (ja)
WO (1) WO2022244527A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726337U (ja) * 1980-07-22 1982-02-10
JPH01147983U (ja) * 1988-03-31 1989-10-13
JPH072233U (ja) * 1993-06-15 1995-01-13 広幸 麻生 ビール瓶と一升瓶の取っ手
JP2000010390A (ja) * 1998-06-24 2000-01-14 Sharp Corp 現像剤収容容器
JP2011098736A (ja) 2009-11-04 2011-05-19 Aicello Chemical Co Ltd 液体容器、その液体容器を用いる送液装置、および送液方法
JP2019001508A (ja) * 2017-06-15 2019-01-10 株式会社吉野工業所 キャップ付き容器
JP2020196537A (ja) * 2019-05-31 2020-12-10 シャープ株式会社 容器および容器セット

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726337A (en) * 1980-07-23 1982-02-12 Mitsubishi Electric Corp Controller for air conditioner
JPS5876899A (ja) 1981-10-31 1983-05-10 株式会社東芝 音声区間検出装置
JPH01147938A (ja) * 1987-12-03 1989-06-09 Matsushita Electric Ind Co Ltd 通信装置
JP3016052B2 (ja) * 1992-05-15 2000-03-06 東洋自動機株式会社 自動包装機の脱気装置
TW442429B (en) * 1998-05-08 2001-06-23 Aicello Chemical Co Container for high purity liquid chemicals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726337U (ja) * 1980-07-22 1982-02-10
JPH01147983U (ja) * 1988-03-31 1989-10-13
JPH072233U (ja) * 1993-06-15 1995-01-13 広幸 麻生 ビール瓶と一升瓶の取っ手
JP2000010390A (ja) * 1998-06-24 2000-01-14 Sharp Corp 現像剤収容容器
JP2011098736A (ja) 2009-11-04 2011-05-19 Aicello Chemical Co Ltd 液体容器、その液体容器を用いる送液装置、および送液方法
JP2019001508A (ja) * 2017-06-15 2019-01-10 株式会社吉野工業所 キャップ付き容器
JP2020196537A (ja) * 2019-05-31 2020-12-10 シャープ株式会社 容器および容器セット

Also Published As

Publication number Publication date
EP4342811A1 (en) 2024-03-27
JP7013610B1 (ja) 2022-01-31
KR20230025526A (ko) 2023-02-21
KR102607395B1 (ko) 2023-11-29
TW202246135A (zh) 2022-12-01
JP2022176682A (ja) 2022-11-30
TWI802412B (zh) 2023-05-11
CN117320970A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
JP5560019B2 (ja) 送液装置、およびその送液装置に用いる液体容器
US8733598B2 (en) Closure/connector for liner-based dispense containers
JP6354015B2 (ja) ライナーをベースとする分配容器のためのコネクタ
JP4926563B2 (ja) 流体用容器及びそれを用いた流体入り容器
KR101687325B1 (ko) 60리터 내측 리저버 복합 용기 및 약액 배출 튜브
EP2774871A1 (en) Discharge container
KR101884721B1 (ko) 적층박리용기 및 그 제조방법
WO2000000399A1 (fr) Recipient et produit moule par soufflage
TW201206542A (en) Squeezable beverage bottle and filter system
WO2022244527A1 (ja) 容器及び容器組立体
JP6942429B2 (ja) 積層剥離容器
KR20130143503A (ko) 내측 주머니 복합 용기 및 분배 장치
JP5222390B2 (ja) 流体用容器及びそれを用いた流体入り容器
JP3176540B2 (ja) 高純度樹脂組成物およびその樹脂組成物の成形品
JP4917811B2 (ja) 積み重ね可能なプラスチック容器
JP2012041093A (ja) 流体用容器及びそれを用いた流体入り容器
TWI626194B (zh) 液體容器及其防鬆蓋體
JP7295393B2 (ja) 積層剥離容器
JP2007106479A (ja) 容器
JP2022012033A (ja) 二重容器
JP4676795B2 (ja) 高粘度液体用容器のスペーサー
JP2021104849A (ja) 二重容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237004487

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280036120.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022804443

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022804443

Country of ref document: EP

Effective date: 20231218