WO2022244074A1 - 基板計測装置及び基板計測方法 - Google Patents

基板計測装置及び基板計測方法 Download PDF

Info

Publication number
WO2022244074A1
WO2022244074A1 PCT/JP2021/018651 JP2021018651W WO2022244074A1 WO 2022244074 A1 WO2022244074 A1 WO 2022244074A1 JP 2021018651 W JP2021018651 W JP 2021018651W WO 2022244074 A1 WO2022244074 A1 WO 2022244074A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
substrate
correction amount
unit
error correction
Prior art date
Application number
PCT/JP2021/018651
Other languages
English (en)
French (fr)
Inventor
浩之 竹田
悌史 ▲高▼橋
裕之 河野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/018651 priority Critical patent/WO2022244074A1/ja
Priority to KR1020237038477A priority patent/KR20230169222A/ko
Priority to CN202180098132.0A priority patent/CN117337390A/zh
Priority to JP2021563154A priority patent/JP7131716B1/ja
Publication of WO2022244074A1 publication Critical patent/WO2022244074A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0812Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8861Determining coordinates of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/104Mechano-optical scan, i.e. object and beam moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation

Definitions

  • This disclosure relates to a substrate measuring device and a substrate measuring method.
  • Cited Document 1 while moving a line camera having an imaging element arranged in a straight line and a substrate in a direction perpendicular to the arrangement direction of the imaging element of the line camera, measurement is performed by a measuring device provided in a substrate moving device. An image of the substrate is taken based on the coordinates of the moving device, and the difference between the control amount for the moving device obtained in advance to the coordinates at the time of imaging and the actual position measured by the measuring device is added to obtain the imaging coordinates.
  • a substrate inspection apparatus is disclosed.
  • a substrate measurement apparatus includes an imaging processing unit that outputs a trigger signal, an imaging unit that captures an image of a substrate based on the trigger signal and outputs information of an image group that is a plurality of images as an image signal, and a control a moving device that changes the relative position between the substrate and the imaging unit based on a signal; an image processing unit that obtains the coordinates of the feature points captured in the image group based on the image signal and outputs them as temporary coordinates; A dynamic error correction amount is calculated based on dynamic information obtained by measuring the position, velocity, or acceleration of at least one of the imaging units, or based on estimated acceleration obtained by estimating the relative acceleration between the substrate and the imaging unit. and a measurement processing unit that corrects the provisional coordinates based on the imaging residual error or the dynamic error correction amount that is the deviation between the target imaging position and the imaging position and outputs the measurement result of the coordinates of the feature point.
  • a trigger signal is output, an image of the substrate is captured by the imaging unit based on the trigger signal, and information of an image group, which is a plurality of images, is output as an image signal by the imaging unit, Based on the control signal, the relative position between the substrate and the imaging unit is changed, and based on the image signal, the coordinates of the feature point captured in the image group are obtained and output as temporary coordinates, and at least one of the substrate and the imaging unit is obtained.
  • a dynamic error correction amount is calculated based on dynamic information obtained by measuring the position, velocity, or acceleration of one of them, or based on estimated acceleration obtained by estimating the relative acceleration between the substrate and the imaging unit, and the target imaging position and the imaging position are calculated.
  • the provisional coordinates are corrected based on the imaging residual error or the dynamic error correction amount, which is the difference between and, and the measurement result of the coordinates of the feature point is output.
  • FIG. 1 is a diagram showing an example of a configuration of a substrate measuring apparatus according to Embodiment 1;
  • FIG. 1 is a block diagram showing an example of the configuration of an image processing apparatus according to Embodiment 1;
  • FIG. 4 is a flowchart showing an example of substrate measurement operation according to Embodiment 1.
  • FIG. 5 is an example of a group of images of a hole captured by an imaging unit according to Embodiment 1.
  • FIG. 4 is a flow chart showing an example of the operation of a dynamic error correction amount calculator according to Embodiment 1;
  • FIG. 3 is a diagram showing a configuration example in the case where a processing circuit included in the substrate measuring apparatus according to Embodiment 1 is configured by a processor and a memory;
  • FIG. 3 is a diagram showing a configuration example in the case of configuring a processing circuit included in the substrate measuring apparatus according to the first embodiment with dedicated hardware;
  • FIG. 10 is a diagram showing an example of the configuration of a substrate measuring apparatus according to Embodiment 2; 2 is a block diagram showing an example of the configuration of an image processing device according to Embodiment 2;
  • FIG. 12 is a diagram showing an example of the configuration of a substrate measuring apparatus according to Embodiment 3;
  • FIG. 12 is a block diagram showing an example of the configuration of an image processing apparatus according to Embodiment 3;
  • FIG. FIG. 12 is a flow chart showing an example of processing of an imaging processing unit according to Embodiment 3;
  • FIG. 12 is a flow diagram showing an example of the operation of an imaging processing unit according to Embodiment 3;
  • FIG. 10 is a diagram showing an example of a range in which the substrate measuring apparatus according to Embodiment 3 can perform highly accurate measurement;
  • FIG. 11 is a diagram showing an example of the configuration of a substrate measuring apparatus according to Embodiment 4;
  • 14 is a block diagram showing an example of the configuration of an image processing device according to Embodiment 4;
  • FIG. FIG. 12 is a flow chart showing an example of the operation of the image processing device according to Embodiment 4;
  • FIG. 12 is a diagram showing an example of the configuration of a substrate measuring apparatus according to Embodiment 5;
  • FIG. 12 is a block diagram showing an example of the configuration of an image processing apparatus according to Embodiment 5;
  • FIG. 12 is a flow chart showing an example of the operation of the image processing device according to Embodiment 5;
  • FIG. 1 is a diagram showing an example of the configuration of a substrate measuring apparatus according to this embodiment.
  • the substrate measuring apparatus 100 of the present embodiment includes an image processing device 1 that outputs a measurement result mr, an imaging unit 2 that captures an image of the substrate b and outputs it as an image signal is, and a control signal cs that is output to the stage 4.
  • a control unit 3 is provided for moving the stage 4 by means of a control unit.
  • the substrate measurement apparatus 100 also includes a stage 4 on which the substrate b is placed, and a substrate dynamic information acquisition section 5-1 that measures the movement of the stage 4 and outputs it as substrate dynamic information di1.
  • the substrate measuring apparatus 100 also includes an imaging unit dynamic information acquiring unit 5-2 that measures the movement of the imaging unit 2 and outputs it as imaging unit dynamic information di2, and a position measuring unit 6 that measures the position of the stage 4. Prepare.
  • an imaging unit dynamic information acquiring unit 5-2 that measures the movement of the imaging unit 2 and outputs it as imaging unit dynamic information di2
  • a position measuring unit 6 that measures the position of the stage 4.
  • One or both of the substrate dynamic information di1 and the imaging unit dynamic information di2 may be referred to as dynamic information di hereinafter.
  • FIG. 2 is a block diagram showing an example of the configuration of the image processing device according to this embodiment.
  • the image processing apparatus 1 stores an image processing unit 10 that calculates a temporary coordinate pc from an image signal is, a static error correction amount calculator 11 that calculates a static error correction amount sec, and a static error correction parameter sp.
  • a static error correction parameter storage unit 12 is provided.
  • the image processing apparatus 1 also includes a dynamic error correction amount calculation unit 13 that calculates a dynamic error correction amount dec, an imaging processing unit 14 that outputs a trigger signal tr, dynamic information di, imaging time data id, and the like.
  • a data storage unit 15 for storing data is provided.
  • the dynamic error correction amount calculator 13 includes a vibration correction amount calculator 131 that calculates the vibration correction amount vca, and a mechanical deformation correction amount calculator 132 that calculates the mechanical deformation correction amount mdca.
  • the image processing device 1 can be, for example, a computer including a signal processing board and an image processing board.
  • the imaging unit 2 captures a plurality of images i.
  • an image obtained by one imaging is referred to as an image i.
  • An image obtained by combining a plurality of images i is called an image group ig.
  • the imaging unit 2 includes a line camera (line scan camera) in which a plurality of image sensor elements are arranged in a straight line, a lens that projects an image of an imaging target, a substrate b, etc. onto a light receiving surface of the image sensor element, a substrate b, etc. Lighting may be provided for directing light.
  • An image sensor element is an element that converts the amount of light incident on a light receiving surface into an electrical signal.
  • the imaging unit 2 is not limited to a line camera, and may be a TDI (Time Delay Integration) camera, for example.
  • the time at which the imaging unit 2 captures the image i is referred to as the imaging time.
  • the determination of the imaging time of the image i by the imaging processing unit 14 will be described later.
  • a mechanism that changes the relative position between the substrate b and the imaging unit 2 is called a moving device.
  • the moving device in this embodiment is the stage 4 .
  • a plate attached to the upper part of the stage 4 and on which the substrate b is placed is called a table. As the table moves, the placed substrate b moves.
  • the substrate b may be fixed to the stage 4 by a suction device or the like.
  • the stage 4 of this embodiment includes an x-axis stage 4-1 that moves the table and the substrate b in the x-axis direction.
  • the stage 4 also includes a y-axis stage 4-2 for moving the table and the substrate b in the y-axis direction.
  • Each of the x-axis stage 4-1 and the y-axis stage 4-2 may include an actuator.
  • the x-axis stage 4-1 and the y-axis stage 4-2 are shown collectively as the stage 4, and their individual reference numerals are omitted.
  • the moving device (stage 4) of the present embodiment changes the relative position between the substrate b and the imaging unit 2 by moving the substrate b in the x-axis direction and the y-axis direction.
  • the moving device of the present disclosure is not limited to such a configuration, and may be any device that changes the relative position between the substrate b and the imaging unit 2 .
  • only the imaging unit 2 may be moved, or both the substrate b and the imaging unit 2 may be moved individually.
  • the direction of movement of the imaging unit 2, the substrate b, etc. can be appropriately selected as required.
  • one direction may be used, or two or more directions may be used.
  • the imaging unit 2 may move in the x-axis direction and the y-axis direction without moving the substrate b.
  • both the imaging unit 2 and the substrate b may be configured to be movable in the x-axis direction and the y-axis direction.
  • the control unit 3 outputs a control signal cs to control the movement of the stage 4 .
  • the control signal cs may be the position or velocity of the stage 4, for example.
  • the control unit 3 includes an x-axis controller 31 that controls movement of the x-axis stage 4-1, and a y-axis controller 32 that controls movement of the y-axis stage 4-2.
  • the dynamic information acquisition unit 5 includes a substrate dynamic information acquisition unit 5-1 and an imaging unit dynamic information acquisition unit 5-2.
  • the substrate dynamic information acquisition unit 5-1 is an acceleration sensor fixed to the table of the stage 4 and measuring the acceleration of the table in the x-axis direction and the y-axis direction.
  • the acceleration of the table is practically equal to the acceleration of the substrate b.
  • the imaging unit dynamic information acquisition unit 5-2 measures the acceleration of the imaging unit 2 in the x-axis direction and the y-axis direction.
  • An acceleration sensor fixed to the imaging unit 2 will be described as an example of the imaging unit dynamic information acquisition unit 5-2.
  • the object to which the substrate dynamic information acquisition section 5-1 is fixed is not limited to the table.
  • the substrate dynamic information acquisition unit 5-1 has the effect of measuring the position, velocity, or acceleration of the substrate b. You can fix it to something that does In the present disclosure, even if an acceleration sensor is fixed to the table like the substrate dynamic information acquisition unit 5-1, the table can be considered to move close to the substrate b within the scope of the present disclosure.
  • the board dynamic information acquisition unit 5-1 measures the acceleration of the board b.
  • the dynamic information acquisition unit 5 is not limited to an acceleration sensor.
  • Examples of the dynamic information acquisition unit 5 other than the acceleration sensor include a position sensor capable of measuring vibration such as a Doppler vibrometer, a laser interferometer, and the like.
  • the position measuring device 6 can also be used as the dynamic information acquisition section 5.
  • the substrate dynamic information acquisition unit 5-1 measures the position, velocity, or acceleration of the substrate b, and outputs the measurement result as substrate dynamic information di1. Further, the imaging unit dynamic information acquisition unit 5-2 measures the position, speed or acceleration of the imaging unit 2 and outputs it as imaging unit dynamic information di2. Note that each of the substrate dynamic information acquisition unit 5-1 and the imaging unit dynamic information acquisition unit 5-2 in FIG. 1 can appropriately select the direction of acceleration or the like to be measured as necessary.
  • the stage 4 is provided for moving the substrate b in the x-axis direction and the y-axis direction. Mechanical deformation and the like may occur.
  • the correction amount dec may be calculated.
  • acceleration or the like is position, velocity or acceleration.
  • the effects of the present invention can be obtained if the substrate dynamic information acquiring section 5-1 or the imaging section dynamic information acquiring section 5-2 measures acceleration or the like in at least one direction.
  • the configuration example of the substrate measurement apparatus 100 in FIG. 1 includes both the substrate dynamic information acquisition unit 5-1 and the imaging unit dynamic information acquisition unit 5-2, either one can be omitted.
  • the stage 4 moves the substrate b. Therefore, in the configuration of FIG. 1, it is effective to calculate the dynamic error correction amount dec based on the substrate dynamic information di1 output from the substrate dynamic information acquisition section 5-1. In other words, it is desirable to measure the acceleration and the like of the object to be moved by the mobile device, and it is desirable to include at least the substrate dynamic information acquisition section 5-1.
  • the position measuring device 6 measures the position of the stage 4 in the x-axis direction and the position of the stage 4 in the y-axis direction, and outputs them as position information pi.
  • the position measuring device 6 in FIG. 1 includes an x-axis position measuring device 6-1 for measuring the position of the x-axis stage 4-1 and a y-axis position measuring device 6-2 for measuring the position of the y-axis stage 4-2. .
  • the position measuring device 6 may use, for example, a linear scale.
  • an encoder attached to a servo motor for moving the stage 4, a laser interferometer, or the like may be used.
  • the position measuring device 6 can also be used as a dynamic information acquisition unit.
  • the position information pi measured by the position measuring device 6 may be obtained as the dynamic information di, the position information pi may be differentiated twice to obtain the acceleration, and the obtained acceleration may be used to correct the measurement error.
  • the operation of the position measuring device 6 when the position measuring device 6 is used as the dynamic information acquisition unit 5 is illustrated. An operation example in which the x-axis position measuring device 6-1 outputs the substrate dynamic information di1 as the substrate dynamic information acquisition unit 5-1 will be described.
  • the position information pi is stored in the data storage unit 15 as substrate dynamic information di1.
  • the dynamic error correction amount calculator 13 associates the imaging time, which is the time at which the imaging unit 2 captures the image i, with the position information pi.
  • the vibration correction amount calculation unit 131 extracts the vibration position vp at each imaging time from the position information pi.
  • the process of extracting the vibration position vp is shown.
  • the difference between the position calculated from the control signal cs and the position information pi may be used as the vibration position vp.
  • the number of data is smaller than when calculating the vibration position vp using an acceleration sensor.
  • the above is an operation example of the position measuring device 6 when the position measuring device 6 is used as the dynamic information acquisition unit 5 .
  • FIG. 3 is a flowchart showing an example of substrate measurement operation according to the present embodiment.
  • the substrate measuring apparatus 100 illustrates the process of imaging in step S101.
  • the sensor elements of the line camera are arranged side by side in the y-axis direction.
  • the x-axis stage 4-1 moves the substrate b in the x-axis direction, which is a direction perpendicular to the y-axis direction. That is, the x-axis stage 4-1 moves the substrate b in a direction orthogonal to the direction in which the sensor elements of the line camera are arranged.
  • the imaging processing unit 14 outputs the trigger signal tr to the imaging unit 2 and controls the timing at which the imaging unit 2 performs imaging. Then, the imaging unit 2 performs imaging at the imaging time based on the trigger signal tr. In other words, the imaging unit 2 performs imaging at the timing indicated by the trigger signal tr.
  • the imaging processing unit 14 can also determine the position of the mobile device when imaging is performed by outputting the trigger signal tr based on the position information pi.
  • the imaging processing unit 14 Based on the position information pi acquired from the position measurement device 6, the imaging processing unit 14 outputs a trigger signal tr so that the imaging unit 2 performs imaging of the image i every time the stage 4 moves by a certain distance, An image group ig may be obtained.
  • the control unit 3 may move the stage 4 at a constant speed, and the imaging processing unit 14 may output the trigger signal tr at constant time intervals.
  • an image may be captured each time the stage 4 moves a certain distance.
  • the imaging unit 2 outputs the acquired image i or image group ig as an image signal is.
  • the image signal is may be the captured image i or the image group ig, or may be data representing the information of the image i or the image group ig.
  • the data storage unit 15 stores the imaging time data id output by the imaging processing unit 14 .
  • the imaging time data id may be any data as long as the imaging time, which is the time at which the imaging section executes imaging based on the imaging time data id, can be known.
  • the imaging time data id may be data including the imaging time, or may be the time at which the trigger signal is output.
  • the imaging unit 2 or the image processing unit 10 can obtain an image of an area larger than the area obtained from the image i.
  • the imaging unit 2 may capture an image each time the image i moves by a distance corresponding to the pixel size in the x-axis direction. As a result, a two-dimensional image group ig without gaps or overlaps may be acquired.
  • one pixel of the imaging unit 2 is a square with a side size of 3.5 microns, and each side is arranged parallel to the x-axis and the y-axis. Then, attach a lens with a magnification of 1x to the camera. In this example, one pixel of image i is a square with a side length of 3.5 microns. Then, the imaging processing unit 14 outputs the trigger signal tr so that the imaging unit 2 performs imaging every time the stage 4 moves 3.5 microns in the x-axis direction.
  • step S101 is an example of the operation of step S101.
  • FIG. 4 is an example of an image group ig of holes captured by the imaging unit 2 according to the present embodiment.
  • black portions are assumed to be holes h.
  • the degree of brightness is represented by the density of small black dots. That is, a dark portion has a high black point density, and a brighter portion has a lower black point density.
  • the portion of the hole h is dark because the amount of reflected light, that is, the luminance is smaller than that of the other portion of the substrate b, and is displayed with a high density of black dots in FIG.
  • the image processing unit 10 acquires the image signal is and detects the position coordinates of the edge of the hole h.
  • the hole h is an imaging target.
  • Objects constituting contour lines, edges, regions, and the like used to obtain the coordinates of feature points are called imaging targets.
  • the image processing unit 10 has a luminance threshold, and determines whether the luminance exceeds the threshold or is equal to or less than the threshold, thereby distinguishing between the area inside the hole h and the area outside the hole h. , the boundary between these two regions may be detected as an edge.
  • the image processing unit 10 obtains the coordinates of edge detection points e-1 to e-8 of eight points arranged at equal angular intervals when viewed from the center.
  • Edge detection points e-1 to e-8 are arranged at intervals of 45 degrees when viewed from the center of the hole. From the coordinates of the edge detection points e-1 to e-8, the coordinates of the hole center point c in the image group ig are calculated as temporary coordinates pc. For example, the center of gravity of eight points from the edge detection point e-1 to the edge detection point e-8 may be calculated and used as the provisional coordinates pc of the center point c.
  • the image processing unit 10 may use the temporary coordinates pc expressed in units of pixels as they are.
  • the image processing unit 10 may convert the expression in pixel units into the expression in position coordinates. For example, the image processing unit 10 multiplies the temporary coordinates pc in units of pixels by the pixel size. Then, the image processing unit 10 sets some reference point in the image group ig, and converts the representation into positional coordinates with this reference point as the origin.
  • the position coordinates are coordinates in real space and are expressed in units of length. For example, it may be expressed in a metric unit system or the like. The above is an example of the operation of obtaining the temporary coordinates pc of the feature points in step S102.
  • step S102 the process of converting the temporary coordinates pc from the representation in pixel units to the representation of the position coordinates has been described as the process of step S102.
  • This processing does not necessarily have to be performed in step S102.
  • any one of steps S101 to S105 in FIG. 3 may be performed.
  • a component other than the image processing unit 10 may perform the process of converting the expression in pixel units into the expression in position coordinates.
  • the dynamic error correction amount calculation unit 13, the measurement processing unit 16, and the like may execute this.
  • the object to be imaged is not limited to the hole h, but can be freely selected from those whose coordinates of feature points can be determined based on the image signal is containing the image group ig of the object to be imaged.
  • the shape of the object to be imaged is not limited to a circle.
  • the feature point may be the center of the hole, the corner of the rectangular substrate b, the alignment mark provided on the substrate b, the point on the table, or the like.
  • the object to be imaged may be a quadrangle, and the centroid positions of the vertices of the quadrangle may be set as feature points.
  • the processing for calculating the coordinates of the feature points is not limited to the processing using the edge detection of the imaging target and the arithmetic calculation illustrated in step S102.
  • at least a state quantity observation unit that acquires state quantities including the image signal is and the temporary coordinates pc, and a learning unit that learns the relationship between the image signal is and the temporary coordinates pc based on the state quantities are subjected to image processing.
  • the unit 10 may comprise.
  • the image processing unit 10 may obtain the temporary coordinates pc based on the image signal is using the model generated by the learning unit through learning. Also, a learner that has been trained by the above learning may be provided. The trained learner may, for example, use a model generated by learning to obtain the provisional coordinates pc based on the image signal is.
  • step S103 the static error correction amount calculator 11 exemplifies the process of calculating the static error correction amount sec based on the static error correction parameter sp.
  • the temporary coordinates pc contain dynamic and static errors.
  • a position coordinate measurement error that is not caused by the movement of the mobile device is called a static error.
  • static errors are measurement errors that occur both with movement by the mobile device and without movement by the mobile device.
  • a static error can also be said to be an error that occurs when the stage 4 as a moving device is stationary and there is no residual vibration due to the stage 4 .
  • static errors are errors that are not caused by movement of the stage 4 .
  • Static errors may be referred to as geometric errors.
  • the static error correction amount calculation unit 11 acquires the static error correction parameter sp stored in the static error correction parameter storage unit 12, and calculates the static error correction amount sec based on the static error correction parameter sp.
  • the static error correction parameter sp include specification values and measurement values of the imaging unit 2, the stage 4, and the like.
  • the static error correction parameter sp may be obtained by testing and stored in the static error correction parameter storage unit 12 as the static error correction parameter sp.
  • position coordinates are acquired in advance using a measuring device different from the substrate measuring device 100 . Then, the position coordinates are measured by the substrate measuring apparatus 100 under an environment that is not affected by the movement of the moving device. Then, the static error correction parameter sp may be obtained by comparing the measurement results of the two position coordinates. Further, for example, a value calculated based on the control signal cs for the difference in position coordinates between the point before the movement and the point after the movement, and The static error correction parameter sp may be obtained by comparing with the measurement result.
  • the static error correction parameter sp may be obtained by comparing the measurement results of .
  • the measurement result of the substrate measurement apparatus 100 may be the output from the measurement processing section 16 when the static error correction amount sec is set to zero.
  • step S103 can be omitted.
  • the static error correction amount calculation unit 11 and the static error correction parameter storage unit 12 may be omitted from the image processing apparatus 1, and the processing of FIG. 3 may be processing without static error correction.
  • step S104 the dynamic error correction amount calculation unit 13 calculates the dynamic error correction amount dec based on the substrate dynamic information di1 and the imaging unit dynamic information di2.
  • a dynamic error an error in position coordinates caused by the movement of the mobile device.
  • the dynamic error is a measurement error that occurs when the moving device satisfies a predetermined condition and does not occur when the moving device is stationary and there is no residual vibration.
  • the dynamic error is the error caused by the movement of the stage 4.
  • FIG. It should be noted that the dynamic error does not only occur when the moving device is accelerating or decelerating, but also occurs due to residual vibration even when the moving device is not accelerating or decelerating. Therefore, it should be noted that dynamic error correction may be necessary not only when the mobile device is accelerating or decelerating, but also when it is not accelerating or decelerating.
  • FIG. 5 is a flowchart showing an example of the operation of the dynamic error correction amount calculator 13 according to this embodiment. Also, FIG. 5 is a flowchart showing an example of the processing of step S104 of FIG.
  • the dynamic error correction amount calculator 13 associates the provisional coordinates pc with the substrate dynamic information di1 and the imaging unit dynamic information di2 based on the imaging time data. By associating the provisional coordinates pc with the dynamic information di, the dynamic error correction amount calculation unit 13 calculates the dynamic error correction amount dec at the provisional coordinates pc, or A dynamic error correction amount dec is calculated.
  • the dynamic error correction amount calculation unit 13 acquires the imaging time data id, the substrate dynamic information di1, and the imaging unit dynamic information di2 from the data storage unit 15 .
  • the board dynamic information di1 and the imaging unit dynamic information di2 include the measurement time, which is the time when the dynamic information di was measured.
  • the measurement time is the time when the substrate dynamic information acquisition section 5-1 and the imaging section dynamic information acquisition section 5-2 acquired the measurement results.
  • each imaging time of the image i is associated with the provisional coordinates pc, and each imaging time of the image i is associated with the substrate dynamic information di1 and the imaging unit motion measured at this imaging time. target information di2.
  • each of the provisional coordinates pc is associated with the substrate dynamic information di1 and the imaging unit dynamic information di2.
  • the dynamic error correction amount calculator 13 associates each image i including the temporary coordinates pc with the dynamic information di measured at the imaging time of each image i.
  • the above is the operation of associating the provisional coordinates pc in FIG. 5 with the substrate dynamic information di1 and the imaging unit dynamic information di2.
  • step S111 is not limited to the process illustrated above as long as it can associate the temporary coordinates pc and the dynamic information di related to the same imaging time.
  • the dynamic error correction amount calculator 13 may acquire the trigger signal tr instead of the imaging time data id, obtain the imaging time from the trigger signal tr, and associate the provisional coordinates pc with the dynamic information di. good.
  • the dynamic error correction amount calculator 13 may acquire the control signal cs from the controller 3 and calculate the position of the feature point from the control signal cs.
  • the dynamic error correction amount calculation unit 13 will explain the processing of the vibration correction amount calculation unit 131 that calculates the vibration correction amount vca based on the dynamic information di.
  • the vibration correction amount calculator 131 obtains the board vibration position vp for each of the temporary coordinates pc from the board dynamic information di1 associated with the temporary coordinates pc in step S111.
  • the imaging unit vibration position vpa is obtained from the imaging unit dynamic information di2.
  • each of the substrate vibration position vp and the imaging unit vibration position vpa is a positional change of the substrate b and the imaging unit 2 due to the influence of vibration.
  • the vibration component is calculated from the substrate dynamic information di1, and the calculated vibration component is integrated twice to be the substrate vibration position vp.
  • the vibration component is calculated from the board dynamic information di1, and the calculated vibration component is integrated once to be the board vibration position vp.
  • the vibration component is calculated from the substrate dynamic information di1 by comparing the substrate dynamic information di1 and the command signal cs. For example, when the board dynamic information di1 is the acceleration of the board b, a value obtained by subtracting the board b acceleration calculated from the command signal cs from the board dynamic information di1 may be used as the vibration component.
  • the vibration component is calculated from the imaging unit dynamic information di2, and the value obtained by integrating the calculated vibration component twice is taken as the imaging unit vibration position vpa.
  • the imaging unit dynamic information di2 is the speed of the imaging unit 2
  • the vibration component is calculated from the imaging unit dynamic information di2, and the value obtained by integrating the calculated vibration component once is taken as the imaging unit vibration position vpa.
  • the imaging unit dynamic information di2 is the position of the imaging unit 2
  • the vibration component is calculated from the imaging unit dynamic information di2, and the calculated vibration component is set as the vibration position vpa.
  • the imaging unit dynamic information di2 is the acceleration of the imaging unit 2 since the imaging unit 2 is not moved by a moving device in this embodiment, even if the imaging unit dynamic information di2 is used as the vibration component, good.
  • the vibration correction amount calculation unit 131 calculates the difference between the substrate vibration position vp and the imaging unit vibration position vpa as the relative vibration position rvp.
  • the vibration correction amount calculator 131 uses this relative vibration position rvp as the vibration correction amount vca.
  • the relative vibration position rvp may be calculated as a vector quantity having components in a plurality of directions, and each direction component may be used as each direction component of the vibration correction amount vca.
  • Either the substrate dynamic information acquisition unit 5-1 or the imaging unit dynamic information acquisition unit 5-2 can be omitted.
  • the imaging unit dynamic information acquisition unit 5-2 is omitted, the substrate vibration position vp is used as the vibration correction amount vca.
  • the imaging unit vibration position vpa is used as the vibration correction amount vca. The above is an example of the process of obtaining the vibration correction amount vca in step S112.
  • the processing of the vibration correction amount calculation unit 131 for calculating the mechanical deformation correction amount mdca based on the dynamic information di in step S113 will be described.
  • the mechanical deformation correction amount calculator 132 acquires the substrate dynamic information di1, the imaging unit dynamic information di2, and the dynamic correction parameter dcp.
  • the dynamic correction parameter dcp is a parameter that associates the substrate dynamic information di1 and the imaging unit dynamic information di2 with the mechanical deformation correction amount mdca.
  • Examples of the dynamic correction parameter dcp include parameters for mechanical deformation and parameters for rigidity of the stage 4, imaging unit 2, board measuring device 100, and the like.
  • the dynamic correction parameter dcp may be calculated from specification values such as the material, shape, rigidity, and weight of the stage 4 .
  • the dynamic correction parameter dcp may be obtained by performing a test in advance. As an example of the test, when the stage 4 is moved, or when the stage 4, the imaging unit 2, etc. are accelerated or decelerated, the mechanical deformation that occurs in the stage 4, the imaging unit 2, the substrate measuring device 100, etc. is measured. Tests can be mentioned.
  • Examples of mechanical deformation include pitching deformation and yawing deformation.
  • pitching deformation and yawing deformation Two mechanical deformations caused by inertial force applied in the direction opposite to the acceleration direction are called pitching deformation and yawing deformation.
  • Pitching deformation and yawing deformation may be, for example, deformation that rotates around two mutually orthogonal rotation axes that pass through the center of gravity of the deformable object that is the subject of the deformation.
  • An example of pitching deformation when the deformed object is the stage 4 will be described.
  • the stage 4 deforms so as to tilt in the direction opposite to the acceleration direction.
  • a measurement error occurs in the temporary coordinates pc due to mechanical deformation of the stage 4 .
  • the above is an example of pitching deformation.
  • stage 4 an example of yawing deformation will be described with the deformed object as stage 4.
  • the center of gravity of the portion of the stage 4 fixed to the upper surface of the y-axis stage 4-2 is shifted from the center.
  • the x-axis stage 4-1 is fixed on the upper surface of the y-axis stage 4-2
  • the table is fixed on the upper surface of the x-axis stage 4-1
  • the x-axis stage 4-1 is on the x-axis.
  • it is eccentric in the positive or negative direction.
  • the board dynamic information di1 and the imaging unit dynamic information di2 are associated with the imaging time, as in step S112. An operation of calculating the mechanical deformation correction amount mdca at each imaging time using the board dynamic information di1 and the imaging unit dynamic information di2 at each imaging time is illustrated.
  • the dynamic correction parameter storage unit 17 stores the proportional coefficient between the acceleration of the substrate b and the substrate side mechanical deformation bmd and the proportional coefficient between the acceleration of the imaging unit 2 and the imaging unit side mechanical deformation iumd as dynamic Store as a correction parameter dcp.
  • the substrate-side mechanical deformation bmd is the displacement of the substrate b due to mechanical deformation.
  • the imaging unit side mechanical deformation iumd is the displacement of the imaging unit 2 due to mechanical deformation.
  • the mechanical deformation correction amount calculation unit 132 sets the difference between the substrate side mechanical deformation mbd and the imaging unit side mechanical deformation iumd as the mechanical deformation correction amount mdca.
  • the mechanical deformation correction amount mdca is the mechanical deformation displacement of the substrate viewed from the imaging section. Thereby, the relative displacement between the imaging unit 2 and the substrate b can be calculated as the mechanical deformation displacement mdca.
  • the substrate dynamic information di1, the imaging unit dynamic information di2, etc. are accelerations, they are used as accelerations when calculating the substrate side mechanical deformation mbd and the imaging unit side mechanical deformation iumd.
  • the substrate dynamic information di1, the imaging unit dynamic information di2, and the like are velocities, the values obtained by differentiating them once are used as the acceleration when calculating the substrate side mechanical deformation mbd and the imaging unit side mechanical deformation iumd.
  • the value obtained by differentiating them twice is used as the acceleration for calculating the substrate side mechanical deformation mbd and the imaging unit side mechanical deformation iumd.
  • filtering for smoothing the substrate dynamic information di1, the imaging unit dynamic information di2, and the like may be performed before calculating the differentiation. The above is an example of the processing in step S113.
  • either the substrate dynamic information acquisition unit 5-1 or the imaging unit dynamic information acquisition unit 5-2 can be omitted.
  • the mechanical deformation correction amount calculation unit 132 sets the board side mechanical deformation mbd as the mechanical deformation correction amount mdca.
  • the mechanical deformation correction amount calculation unit 132 sets the imaging unit side mechanical deformation iumd as the mechanical deformation correction amount mdca.
  • the operation of the dynamic error correction amount calculator 13 for calculating the dynamic error correction amount dec from the vibration correction amount vca and the mechanical deformation correction amount mdca in step S114 will be illustrated.
  • the dynamic error correction amount calculator 13 sets the sum of the vibration correction amount vca and the mechanical deformation correction amount mdca as the dynamic error correction amount dec.
  • the vibration correction amount vca and the mechanical deformation correction amount mdca may be vector amounts having an x-axis direction component, a y-axis direction component, and the like, and the dynamic error correction amount dec may be calculated as the vector amount.
  • the above is an example of the operation of the dynamic error correction amount calculator 13 in step S114.
  • the operation of FIG. 5 described above is an example of the process of calculating the dynamic error correction amount dec in step S104 of FIG.
  • the measurement processing unit 16 further performs the correction described in steps S101 to S105 in FIG. may be output as the measurement result mr.
  • the feature point is the center coordinates of a hole
  • alignment marks provided on the printed circuit board, corners of the printed circuit board, and the like can be cited as examples of points different from the above-described feature points.
  • the image processing section 10 calculates the provisional coordinates pc from the image signal is. Since correction is performed on the temporary coordinates pc, it is not necessary to perform error correction for each image i. Therefore, the computational load can be reduced compared to the case where dynamic error correction is performed in the image processing process. Also, high-speed processing becomes possible.
  • the substrate dynamic information di1 includes information on the motion of the substrate b. Therefore, according to the substrate measurement apparatus 100 of the present embodiment, it is possible to correct the measurement error reflecting the vibration of the substrate b, mechanical deformation, and the like. In addition, information on the movement of the imaging unit 2 is included in the imaging unit dynamic information di2. Therefore, according to the substrate measuring apparatus 100 of the present embodiment, it is possible to correct the measurement error reflecting the vibration of the imaging unit 2, mechanical deformation, and the like. In addition to the x-axis direction, by acquiring the substrate dynamic information di1 or the imaging unit dynamic information di2 in the y-axis direction, the z-axis direction, etc., vibration, mechanical deformation, etc. in a direction different from the moving direction of the moving device can be detected. A dynamic error correction can be performed that reflects the
  • the dynamic error correction amount dec at the position where the provisional coordinate pc is 5 pixels is 2 microns.
  • the dynamic error correction amount dec at the position where the provisional coordinate pc is 6 pixels is 3 microns.
  • the dynamic error correction amount dec at the position where the provisional coordinate pc is 5.5 pixels is obtained as 2.5 microns by applying linear interpolation to the dynamic correction amounts dec at the above two positions. The above is an example of estimating the relationship between the interim coordinate pc and the dynamic error correction amount dec by interpolation.
  • linear interpolation is used in which the function used for interpolation is a linear expression, but the form of the function used for interpolation is not limited to a linear expression, and can be appropriately selected such as a quadratic expression.
  • a function may be selected by performing fitting on a plurality of temporary coordinates pc and dynamic error correction amounts dec obtained by the method described in this embodiment.
  • the process of associating them via the imaging time is exemplified.
  • the image signal is associated with the image capturing time.
  • the substrate dynamic information di1 can be associated with the temporary coordinates pc.
  • the dynamic error correction amount dec can be calculated for each provisional coordinate pc.
  • FIG. 7 is a diagram showing a configuration example in the case where the processing circuit included in the substrate measuring apparatus according to the present embodiment is configured with dedicated hardware.
  • the processing circuit is composed of dedicated hardware, the processing circuit 10003 shown in FIG. An FPGA (Field Programmable Gate Array) or a combination thereof may be used.
  • the functions of the substrate measurement apparatus 100 may be implemented by the processing circuit 10003 for each function, or may be implemented by the processing circuit 10003 collectively for a plurality of functions.
  • the substrate measurement apparatus 100 exemplified in the present embodiment includes the imaging processing section 14 that outputs the trigger signal tr. It also includes an imaging unit 2 that images the substrate b based on the trigger signal tr and outputs information of an image group ig, which is a plurality of images i, as an image signal is.
  • the substrate measuring apparatus 100 also includes a moving device (stage 4) that changes the relative position between the substrate b and the imaging unit 2 based on the control signal cs, and an image group ig based on the image signal is.
  • an image processing unit 10 for obtaining the coordinates of the feature points and outputting them as temporary coordinates pc.
  • the substrate measurement apparatus 100 includes a dynamic error correction amount calculator 13 .
  • the dynamic error correction amount calculator 13 calculates the dynamic error correction amount dec based on the dynamic information di or the estimated acceleration ea.
  • the dynamic information di is obtained by measuring the position, velocity, or acceleration of at least one of the substrate b and the imaging section 2 .
  • the estimated acceleration ea is obtained by estimating the relative acceleration between the substrate b and the imaging section 2 .
  • the substrate measurement apparatus 100 also includes a measurement processing section 16 .
  • the measurement processing unit 16 corrects the temporary coordinates pc based on the imaging residual re, which is the deviation between the target imaging position and the imaging position, or the dynamic error correction amount dec, and outputs the measurement result mr of the coordinates of the feature points.
  • the position, velocity, or acceleration of at least one of the substrate b and the imaging unit 2 is measured based on dynamic information di, or the relative acceleration between the substrate b and the imaging unit 2 is calculated. is calculated based on the estimated acceleration ea obtained by estimating the dynamic error correction amount dec. Further, the provisional coordinates pc are corrected based on the imaging residual re, which is the deviation between the target imaging position and the imaging position, or the dynamic error correction amount dec, and the measurement result mr of the coordinates of the feature point is output.
  • this board measuring apparatus or board measuring method correction is performed after the coordinates of the feature points are measured as temporary coordinates from the image group ig. Therefore, it is not necessary to perform error correction processing for each image i. Therefore, the load of calculation processing can be reduced.
  • the dynamic error correction amount calculation unit 13 Either the dynamic error correction amount dec at the provisional coordinates pc is calculated, or the dynamic error correction amount dec at the imaging time of the image including the provisional coordinates pc is calculated.
  • the imaging unit 2 is a line camera.
  • the imaging unit 2 performs imaging while changing the relative position between the substrate b and the imaging unit 2 in the direction perpendicular to the direction in which the plurality of imaging elements provided in the line camera are arranged. Then, the imaging processing unit 14 outputs the trigger signal tr so that the magnitude of change in the relative position between the substrate b and the imaging unit 2 between two consecutive imagings becomes constant.
  • the direction in which the movement is frequently performed is set to one direction, and the processing of the image group ig can be simplified.
  • the imaging unit 2 performs imaging while changing the relative position between the substrate b and the imaging unit 2 in the direction perpendicular to the direction in which the plurality of imaging elements provided in the line camera are arranged, the characteristics are distributed over a wide area. The coordinates of a point can be measured quickly and accurately.
  • the dynamic information acquiring section 5 is an acceleration sensor.
  • the dynamic information acquisition unit 5 is an acceleration sensor, it is smaller than when the position measuring device 6 or the like is used as the dynamic information acquisition unit 5, and can be easily attached. Moreover, the degree of freedom of the mounting position increases.
  • the correction amount for the static error which is the measurement error generated when the moving device (stage 4) is stationary and there is no residual vibration due to the moving device, is It further includes a static error correction amount calculator 11 that calculates a certain static error correction amount sec based on the static error correction parameter sp, and the measurement processing unit 16 calculates the measurement result mr based on the static error correction amount sec. calculate. This makes it possible to perform measurements that are less affected by static errors.
  • FIG. 8 is a diagram showing an example of the configuration of the substrate measuring apparatus according to this embodiment.
  • the substrate measuring apparatus 100 of Embodiment 1 the substrate b is imaged while moving in the x-axis direction.
  • the same reference numerals are given to signals, components, etc. that are the same as or correspond to the signals, components, etc. of the first embodiment.
  • differences from the substrate measuring apparatus 100 of the first embodiment will be mainly described in order to avoid repetition.
  • a substrate measuring apparatus 100a of the present embodiment includes a stage 4a instead of the stage 4 of the substrate measuring apparatus 100 shown in FIG. Further, the substrate measuring device 100a includes a position measuring device 6a instead of the position measuring device 6, and a controller 3a instead of the controller 3. FIG. Further, the substrate measuring apparatus 100a includes an image processing device 1a instead of the image processing device 1 of the first embodiment.
  • the stage 4a is a moving device that changes the relative position in the x-axis direction between the imaging unit 2 and the substrate b.
  • the stage 4a includes an x-axis stage 4a-1 instead of the x-axis stage 4-1 of the first embodiment.
  • the x-axis stage 4-1 moves the substrate b in the x-axis direction, while the x-axis stage 4a-1 moves the imaging unit 2 in the x-axis direction of the coordinate axes in FIG.
  • the control unit 3a includes an x-axis controller 31a instead of the x-axis controller 31 of the first embodiment.
  • the x-axis controller 31 controls the movement of the x-axis stage 4-1 to move the substrate b.
  • the x-axis controller 31a moves the imaging section 2 by controlling the x-axis stage 4a-1.
  • FIG. 9 is a block diagram showing an example of the configuration of the image processing device according to this embodiment.
  • the image processing apparatus 1a includes an imaging processing unit 14a instead of the imaging processing unit 14.
  • FIG. Further, instead of the dynamic error correction amount calculation section 13, a dynamic error correction amount calculation section 13a is provided. Except for the above, the configuration of the substrate measuring apparatus 100a is the same as that of the substrate measuring apparatus 100 shown in FIGS.
  • the image processing apparatus 1a of the present embodiment performs image processing by executing each process shown in FIG. Differences between the image processing apparatus 1a and the image processing apparatus 1 in each process of FIG. 3 will be described.
  • the trigger signal tr is output each time the substrate b moves by a certain distance.
  • the trigger signal tr is output each time the imaging section 2 moves in the x-axis direction by a certain distance based on the position information pi from the x-axis position measuring device 6a-1. Note that when the imaging unit 2 moves at a constant speed, the imaging processing unit 14a may output the trigger signal tr at constant time intervals.
  • the dynamic error correction amount calculation unit 13a like the dynamic error correction amount calculation unit 13, executes the same processing as each processing in FIG. 5 in step S104 in FIG. 5, the dynamic error correction amount calculator 13a uses the control signal cs from the controller 3a instead of the controller 3 to calculate the dynamic error correction amount dec.
  • the differences between the operations of the image processing apparatus 1a and the operations of the image processing apparatus 1 are as described above.
  • the substrate measuring apparatus 100a also has a configuration in which either the vibration correction amount calculating unit 131a or the mechanical deformation correction amount calculating unit 132a is omitted from the dynamic error correction amount calculating unit 13a. be able to. Further, as in the substrate measurement apparatus 100, the substrate measurement apparatus 100a can also be configured without either the substrate dynamic information acquisition unit 5-1 or the imaging unit dynamic information acquisition unit 5-2. . Further, similarly to the board measuring apparatus 100, the board measuring apparatus 100a may also be configured without the static error correction amount calculator 11. FIG.
  • the board measuring apparatus 100a has a greater effect of correcting the dynamic error based on the imaging unit dynamic information di2.
  • vibration, mechanical deformation, etc. may occur not only in the x-axis direction but also in the y-axis direction and the z-axis direction. Vibration in a direction different from the moving direction of the x-axis stage 4a-1, mechanical deformation, etc.
  • the dynamic error tends to increase in a direction different from the moving direction of the x-axis stage 4a-1.
  • a board measuring apparatus or a board measuring method capable of performing highly accurate measurement in a short period of time even in a configuration in which the imaging unit 2 moves. be able to. Furthermore, since the substrate measuring apparatus 100a has a configuration in which the imaging unit 2 moves, the dynamic error correction effect based on the imaging unit dynamic information di2 is more effectively exhibited.
  • FIG. 10 is a diagram showing an example of the configuration of the substrate measuring apparatus according to this embodiment.
  • the substrate measurement apparatus 100b of the present embodiment performs imaging when the relative speed between the imaging unit 2 and the substrate b satisfies a predetermined condition.
  • FIG. 11 is a block diagram showing an example of the configuration of the image processing apparatus according to this embodiment.
  • a substrate measuring apparatus 100b of the present embodiment includes an image processing apparatus 1b instead of the image processing apparatus 1 described in the first embodiment.
  • the image processing apparatus 1b includes an imaging processing unit 14b instead of the imaging processing unit 14 described in the first embodiment.
  • Components, signals, and the like that are the same as or correspond to those in the first embodiment are denoted by the same reference numerals as in the first embodiment. In the following description, differences from the first embodiment will be mainly described.
  • the imaging processing unit 14b obtains the relative velocity V between the imaging unit 2 and the stage 4. Then, whether or not to output the trigger signal tr is determined according to the obtained relative velocity V.
  • FIG. 12 is a flowchart showing an example of processing of the imaging processing unit according to this embodiment.
  • the imaging processing unit 14b calculates the relative velocity V based on the position information pi.
  • f is the vibration frequency of the stage 4 which is a moving part.
  • the center position of the hole h is measured as a characteristic point
  • the diameter of the hole h is defined as the hole diameter D.
  • the stage 4 is used as the moving part in the present embodiment
  • the present embodiment can also be applied to the substrate measuring apparatus 100a described in the second embodiment.
  • the speed of the imaging unit 2 in FIG. 8 is used as the relative speed V.
  • the vibration frequency of the stage 4 instead of the vibration frequency of the stage 4, the vibration frequency of the x-axis stage 4a-1 and the imaging unit 2 in FIG. 8 may be used as the vibration frequency f.
  • a body that vibrates due to movement of the moving device is called a vibrating body.
  • Vibrations can occur in both the substrate b and the imaging unit 2 in any of the three cases of the substrate b moving, the imaging unit 2 moving, and the substrate b and the imaging unit 2 moving. Therefore, in the present embodiment, it is desirable to use the stage 4 and the imaging section 2 as the vibrating bodies.
  • step S302 the imaging processing unit 14b determines whether the relative velocity V is greater than 2*f*D. In other words, the imaging processing unit 14b determines whether the calculated relative velocity V is greater than twice the product of the vibration frequency f and the hole diameter D. If it is determined in step S302 that the relative velocity V is greater than 2 ⁇ f ⁇ D, the process proceeds to step S303, and the imaging processing unit 14b determines to execute imaging. Then, the trigger signal tr is output every time a fixed distance is moved for a predetermined period of time, in other words, every time the relative position changes by a fixed distance. For example, the relative velocity V may be acquired at each predetermined time, and the determination in step S302 may be executed each time the relative velocity V is acquired.
  • step S302 determines whether the relative velocity V is smaller than or equal to 2 ⁇ f ⁇ D. If it is determined in step S302 that the relative velocity V is smaller than or equal to 2 ⁇ f ⁇ D, the process proceeds to step S304, and the imaging processing unit 14b decides not to perform imaging. to decide. Then, the imaging processing unit 14b does not output the trigger signal tr for a predetermined period of time. In both the case of proceeding to step S303 and the case of proceeding to step S304, after the predetermined time has elapsed, the process returns to step S301, and the imaging processing unit 14b repeats the processing from step S301 to step S304. do.
  • the substrate measuring device 100c sets the threshold for the relative velocity V of the moving device. Measurement, in other words, imaging is performed when the threshold is exceeded, and measurement is not performed when the threshold is less than or equal to the threshold. Note that the imaging processing unit 14b can also be applied to the substrate measuring apparatus 100a described in the second embodiment. Also in the board measuring apparatus 100a, the relative velocity between the imaging unit 2 and the board b is set to V, and when it is determined that the relative velocity V is larger than 2 ⁇ f ⁇ D, an image is taken, as in the substrate measuring apparatus 100c. effect.
  • FIG. 13 is a flowchart showing an example of processing by the imaging processing unit according to this embodiment.
  • the imaging processing unit 14b calculates the relative velocity V based on the position information pi, as in step S301 of FIG.
  • the imaging processing unit 14b determines whether the relative velocity V is greater than 2 ⁇ f ⁇ D. If it is determined in step S312 that the relative velocity V is greater than 2 ⁇ f ⁇ D, the process proceeds to step S313.
  • step S313 When proceeding to step S313, similarly to step S303, the imaging processing unit 14b outputs a trigger signal each time it moves a certain distance, in other words, each time the relative position changes by a certain distance. If it is determined in step S312 that the relative speed V is equal to 2 ⁇ f ⁇ D or is smaller than 2 ⁇ f ⁇ D, the process proceeds to step S314. Increase speed. Then, the process proceeds to step S312. Then, the processes of steps S312 and S314 are repeatedly executed until it is determined in step S312 that the relative velocity V is greater than 2 ⁇ f ⁇ D.
  • step S314 in FIG. 13 When performing the operation of step S314 in FIG. 13, although not shown in FIG. good. Even when the processing shown in FIG. 13 is used, imaging is performed when the relative velocity V is greater than 2 ⁇ f ⁇ D. Also in the substrate measuring apparatus 100a described in the second embodiment, the control unit 3 moves the stage 4 so that the relative speed V is greater than 2 ⁇ f ⁇ D, where the relative speed V is the moving speed of the imaging unit 2. Even in this case, the same effect as the above operation example can be obtained.
  • the relationship between the measurement accuracy of the substrate measuring device 100b, the diameter of the hole h, and the relative velocity V will be described below.
  • D the hole diameter of the hole h.
  • the hole diameter D is the diameter.
  • T the vibration period of the stage 4 .
  • the vibration period of the stage 4 is used assuming that the vibrating body of the substrate measuring apparatus 100b that affects the measurement accuracy is the stage 4 . Even if the vibrating body is not the stage 4, the same effects as in this embodiment can be obtained by appropriately using the vibration period of the vibrating body in accordance with the vibrating body of the configuration.
  • the moving device selects the x-axis stage 4a-1 for moving the imaging unit 2 and the imaging unit 2 as the vibrating body, and the x-axis stage 4a- 1 and the vibration frequency f of the imaging unit 2 may be used. Further, for example, the frequency of the entire board measuring apparatus 100b may be used as the vibrating body.
  • the sampling theorem it is possible to measure the vibration of the stage 4 if the sampling frequency is greater than twice the vibration frequency f.
  • the time taken to acquire the image group ig of one hole must be at least shorter than the sampling period, which is half the oscillation period T of the stage 4 . This condition is represented by the formula (1).
  • equation (1) can be transformed into equation (2).
  • the dynamic correction amount dec obtained when the expression (2) is satisfied is more accurate than the dynamic correction amount dec obtained when the expression (2) is not satisfied.
  • a highly accurate dynamic correction amount dec can be obtained. .
  • the hole diameter D is 100 microns or less
  • the relative velocity V of the stage 4 is 100 millimeters per second (100 mm/s)
  • the vibration frequency f of the substrate measuring apparatus 100b that affects the measurement accuracy is 100 hertz (Hz).
  • twice the product of the vibration frequency f and the hole diameter D is 20 millimeters per second (20 mm/s).
  • the relative velocity V exceeds 20 millimeters per second (20 mm/s)
  • a highly accurate dynamic correction amount dec can be obtained.
  • FIG. 14 is a diagram showing an example of a range in which the substrate measuring apparatus according to this embodiment can perform highly accurate measurements.
  • the horizontal axis of FIG. 14 is time and the vertical axis is position.
  • the solid line in the figure indicates the relationship between the vibration position and time of the vibrating vibrating body.
  • the solid line indicates the vibration with period T and frequency f.
  • the position may be, for example, a change in position due to vibration of the feature point.
  • ⁇ P indicates the magnitude of position change due to vibration during the time obtained by dividing the hole diameter D by the relative velocity V. If D/V is shorter than half of the period, the change ⁇ P in position due to vibration can be obtained correctly as a correction amount.
  • the relative velocity V between the imaging unit 2 and the substrate b is obtained. Then, the imaging processing unit 14b determines whether or not to output the trigger signal tr according to the relative velocity V, or sets the relative velocity V to a value within a predetermined range while the imaging unit 2 performs imaging. Hold.
  • the example of the substrate measurement apparatus 100b described in the present embodiment includes the control unit 3 that outputs the control signal cs. is kept at a value greater than twice the product of the vibration frequency f of the vibrating body and the dimensions of the imaged object.
  • the imaging processing unit 14b determines that the relative velocity V between the imaging unit 2 and the substrate b is the ratio between the vibration frequency f of the vibrating body and the dimension of the object to be imaged.
  • a trigger signal tr is output so as to execute imaging when the value is greater than twice the product.
  • the present embodiment it is possible to provide a board measuring apparatus or a board measuring method capable of executing highly accurate measurement in a short time. Also, according to the relative velocity V, it is determined whether or not to perform imaging. Therefore, dynamic error correction can be performed with high accuracy, and accurate measurement can be performed. Also, the relative velocity V between the imaging unit 2 and the substrate b can be kept within a range in which dynamic error correction can be performed with high accuracy. Therefore, accurate measurement can be performed. In addition, since the trigger signal tr is output only when it is possible to perform dynamic error correction with high accuracy, imaging is performed by selecting a timing at which accurate measurement is possible.
  • FIG. 15 is a diagram showing an example of the configuration of the substrate measuring apparatus according to this embodiment.
  • FIG. 16 is a block diagram showing an example of the configuration of the image processing apparatus according to this embodiment.
  • components, signals, etc. that are the same as or correspond to components, signals, etc., of the substrate measuring apparatus 100 described in the first embodiment are denoted by the same reference numerals as in the first embodiment.
  • a substrate measuring device 100c shown in FIG. 15 includes an image processing device 1c instead of the image processing device 1 in FIG.
  • the image processing apparatus 1c includes a dynamic error correction amount calculator 13c instead of the dynamic error correction amount calculator 13 of the first embodiment.
  • the image processing apparatus 1c includes a data storage section 15c instead of the data storage section 15.
  • an acceleration estimator 18 is provided.
  • the dynamic error correction amount calculator 13 c includes a mechanical deformation correction amount calculator 132 c instead of the mechanical deformation correction amount calculator 132 of the dynamic error correction amount calculator 13 .
  • the image processing apparatus 1c of the present embodiment has the same configuration and operation as the image processing apparatus 1 described in the first embodiment, except for the process of calculating the mechanical deformation correction amount mdca. Processing for calculating the mechanical deformation correction amount mdca by the mechanical deformation correction amount calculation unit 132c will be described below.
  • the data storage unit 15c stores the control signal cs in addition to the board dynamic information di1, the imaging unit dynamic information di2, and the imaging time data id.
  • the control signal cs will be described as the speed or position of the stage 4 .
  • the data storage unit 15c may store, for example, the control signal cs from the start to the end of the imaging of the image group ig by the imaging unit 2 .
  • FIG. 17 is a flowchart showing an example of the operation of the image processing device according to this embodiment.
  • the acceleration estimator 18 calculates command acceleration from the control signal cs. For example, the acceleration estimating unit 18 obtains the relative position between the substrate b and the imaging unit 2 from the control signal cs acquired from the data storage unit 15c as the commanded position, and differentiates the commanded position twice to A relative acceleration with respect to the imaging unit 2 may be calculated as the commanded acceleration. Further, for example, the acceleration estimation unit 18 obtains the relative speed between the substrate b and the imaging unit 2 as the command speed based on the control signal cs, and differentiates the obtained command speed once to calculate the command acceleration. good too.
  • step S402 the acceleration estimator 18 corrects the delay time of the command acceleration.
  • the delay time is the delay of the control response of the stage 4 with respect to the control signal cs.
  • the acceleration estimating unit 18 multiplies the obtained command acceleration by a delay element expressing responsiveness to correct the time delay and estimate the estimated acceleration ea.
  • the estimated acceleration ea is the acceleration of the substrate b calculated from the control signal cs and corrected for the time delay.
  • the mechanical deformation correction amount calculation unit 132 associates the imaging time with the estimated acceleration ea. Based on the imaging time data id and the estimated acceleration ea, the mechanical deformation correction amount calculation unit 132 associates each imaging time of the image i with the estimated acceleration ea at the imaging time. In other words, the estimated acceleration ea at the imaging time is obtained for each imaging time of the image i including the feature points. Note that the process of associating the imaging time with the estimated acceleration ea at the imaging time may be executed by a component other than the mechanical deformation correction amount calculator 132 such as the acceleration estimator 18 .
  • step S404 the mechanical deformation correction amount calculator 132c calculates the mechanical deformation correction amount mdca from the dynamic correction parameter dcp and the estimated acceleration ea.
  • the mechanical deformation correction amount calculation unit 132c calculates the mechanical deformation correction amount mdca at each imaging time based on the estimated acceleration ea at each imaging time and the dynamic correction parameter dcp acquired from the dynamic correction parameter storage unit 17. .
  • the mechanical deformation correction amount mdca at each imaging time of the image i including the feature point is obtained.
  • the processing of the mechanical deformation correction amount calculator 132c that calculates the mechanical deformation correction amount mdca is the same as the operation of the mechanical deformation correction amount calculator 132 described in the first embodiment, except that the estimated acceleration ea is used instead of the acceleration. is.
  • the mechanical deformation correction amount calculation unit 132c calculates a value obtained by multiplying the estimated acceleration ea at each imaging time by the dynamic correction parameter dcp based on, for example, a model in which a deformation target has a mechanical deformation error proportional to the estimated acceleration ea. It may be the mechanical deformation correction amount mdca at each imaging time.
  • the dynamic correction parameter dcp is a proportional coefficient between the estimated acceleration ea and the mechanical deformation correction amount mdca.
  • the mechanical deformation correction amount calculation unit 132c may calculate mechanical deformation for pitching and yawing, respectively, and combine them to obtain the mechanical deformation correction amount mdca, similarly to the mechanical deformation correction amount calculation unit 132.
  • the dynamic error correction amount calculation section 13c also omits the vibration correction amount calculation section 131 and calculates the dynamic error correction amount dec only from the mechanical deformation correction amount mdca. may
  • the processing of the substrate measuring apparatus 100c can be applied to the substrate measuring apparatus 100a described in the second embodiment.
  • the board measuring apparatus 100a includes an acceleration estimating section 18 in addition to the configuration of FIG. Then, instead of the processing performed by the mechanical deformation correction amount calculation unit 132, the same processing as that performed by the mechanical deformation correction amount calculation unit 132c described in the present embodiment may be performed.
  • the acceleration estimator 18 may calculate the estimated acceleration ea based on the control signal cs from the controller 3a.
  • the processing of the substrate measuring apparatus 100c can be applied to the substrate measuring apparatus 100b described in the third embodiment.
  • the substrate measuring apparatus 100b in addition to the configuration of FIG. 132c may be performed.
  • the relative speed between the imaging unit 2 and the substrate b may be obtained, and the imaging processing unit 14b may determine whether to output the trigger signal tr according to the relative speed.
  • the relative velocity between the imaging unit 2 and the substrate b may be obtained and held within a predetermined range while the imaging unit 2 performs imaging.
  • the imaging processing unit 14b may output the trigger signal tr so that imaging is performed only when Expression (2) is satisfied.
  • the speed of the moving device may be controlled so as to satisfy the expression (2).
  • the acceleration estimator 18 obtains the estimated acceleration ea from the control signal cs. Therefore, it is possible to estimate the measurement error caused by the mechanical deformation of the stage 4 and the like due to the inertial force accompanying the acceleration and deceleration of the stage 4 .
  • the mechanical deformation correction amount calculator 132c obtains the mechanical deformation correction amount mdca based on the estimated acceleration ea, the dynamic correction parameter dcp, the temporary coordinates pc, and the imaging time data id. Therefore, the dynamic error correction amount calculation unit 13 and the dynamic error correction amount calculation unit 13a calculate the dynamic correction amount dec in the same manner as when calculating the dynamic error correction amount dec based on the dynamic information di. be able to. Moreover, unlike the case where the dynamic information acquisition unit 5 acquires the dynamic information di, it is not affected by sensor noise, so it is possible to estimate the relative acceleration with high accuracy.
  • the measurement processing unit 16 By correcting the provisional coordinates pc based on the dynamic correction amount dec in the measurement processing unit 16, even if the stage 4 is in a state of mechanical deformation when the imaging unit 2 takes an image, the measurement due to the mechanical deformation described on the left is corrected. Measurement results with errors corrected can be obtained.
  • the dynamic information di may be affected by mechanical deformation occurring in the stage 4 or the like.
  • the estimated acceleration ea of the present embodiment is a value that is not affected by mechanical deformation, so it is possible to more accurately calculate the dynamic error correction amount dec.
  • FIG. 18 is a diagram showing an example of the configuration of the substrate measuring apparatus according to this embodiment.
  • FIG. 19 is a block diagram showing an example of the configuration of the image processing apparatus according to this embodiment.
  • components, signals, etc. that are the same as or correspond to components, signals, etc. of the substrate measuring apparatus 100 described in the first embodiment are denoted by the same reference numerals as in the first embodiment.
  • a substrate measuring device 100d shown in FIG. 18 includes an image processing device 1d instead of the image processing device 1 in FIG.
  • the image processing apparatus 1d includes a measurement processing section 16d instead of the measurement processing section 16 of the first embodiment. Further, the image processing device 1 d includes an imaging processing section 14 d instead of the imaging processing section 14 .
  • the imaging processing unit 14d includes an imaging residual calculator 141 that calculates the imaging residual re. It also includes an imaging residual storage unit 142 that stores the calculated imaging residual re. Differences between the image processing apparatus 1 and the image processing apparatus 1d will be described below.
  • FIG. 20 is a flowchart showing an example of the operation of the image processing device according to this embodiment.
  • the imaging residual calculator 141 calculates the imaging residual re based on the dynamic error correction amount dec.
  • a process for calculating an imaging residual re at each imaging time is illustrated.
  • the imaging residual calculator 141 obtains the positional deviation between the target imaging position and the position information pi at the imaging time as the imaging positional deviation ⁇ p.
  • the dynamic error correction amount dec is acquired from the dynamic error correction amount calculation unit 13 . Then, an imaging residual error re is obtained based on the imaging position shift ⁇ p and the dynamic error correction amount dec.
  • the imaging residual calculation unit 141 acquires the imaging position shift ⁇ p and the dynamic error correction amount dec as vector quantities having x-axis direction components and y-axis direction components in FIG. 19 . Then, the imaging residual error re may be calculated as the sum of the imaging position shift ⁇ p and the dynamic error correction amount dec. In this case, the imaging residual re is a vector quantity having an x-axis direction component and a y-axis direction component. The above is an example of the processing in step S501.
  • the imaging processing unit 14d outputs a trigger signal based on the imaging residual re. For example, based on one or a plurality of acquired imaging residuals re, the imaging residuals re1 at time t1 later than the time at which the imaging residuals re were acquired are estimated. Then, the timing of outputting the trigger signal tr may be changed from the time t1 so that the imaging residual error re at the timing of outputting the trigger signal tr is smaller than the estimated imaging residual error re1. Further, for example, the time for outputting the trigger signal tr1 may be changed from time t1 by a time corresponding to the imaging residual error re1 so that the imaging position approaches the target position. The time corresponding to the imaging residual rel is the time for compensating for the positional deviation of the imaging residual rel.
  • ⁇ l is divided by the relative velocity v, and the timing of outputting the trigger signal tr is advanced.
  • ⁇ l/v is the time corresponding to the imaging residual re.
  • the relative velocity v is the relative velocity between the substrate b and the imaging section 2 .
  • the imaging residual calculator 141 uses the imaging time data id to associate the imaging time with the imaging residual re.
  • the imaging processing unit 14d may use the position information pi and the imaging time data id to associate the imaging time with the imaging residual re at the imaging time.
  • the imaging residual re associated with the imaging time is stored in the imaging residual storage unit 142 .
  • step S505 the provisional coordinates pc are corrected based on the imaging residual re and the static error correction amount sec, and output as the measurement result mr.
  • the measurement processing unit 16d may associate the static error correction amount and the imaging residual error re with the provisional coordinates pc via the imaging time, and perform correction on each provisional coordinate.
  • the measurement processing unit 16 d acquires the imaging residual re having components in the x-axis direction and the y-axis direction from the imaging residual storage unit 142 . Then, the measurement processing unit 16 d acquires the static error sec having components in the x-axis direction and the y-axis direction from the static error correction amount calculation unit 11 . Then, the measurement result mr may be calculated by subtracting the imaging residual re and the static error sec from the provisional coordinates pc.
  • the configuration described in this embodiment can also be applied to the substrate measurement apparatus described in the second to fourth embodiments.
  • the imaging residual error re may be used instead of the dynamic error correction amount dec to calculate the measurement result mr.
  • the imaging residual re calculated by the imaging residual calculation unit 141 is temporarily stored in the imaging residual storage unit 142, but the imaging residual storage unit 142 can be omitted.
  • the measurement processing unit 16 d may be configured to acquire the imaging residual re directly from the imaging residual calculating unit 141 .
  • the imaging processing unit 14d includes the imaging residual calculation unit 141.
  • the imaging residual calculator 141 calculates the deviation between the target imaging position and the imaging position as the imaging residual re based on the dynamic error correction amount dec.
  • the imaging processing unit 14d outputs a trigger signal tr based on the imaging residual re, and the measurement processing unit 16d corrects the provisional coordinates pc based on the imaging residual re to calculate a measurement result mr.
  • the measurement processing unit 16d may output a trigger signal after the left time based on the imaging residual error re calculated at a certain time. Further, based on the imaging residual re at a certain time, the imaging residual re1 at the time t1 after the left time is estimated, and from the estimated imaging residual re1, the imaging residual re at the time of outputting the trigger signal tr is The time at which the trigger signal tr is output may be determined by changing the time at which the trigger signal tr is output from time t1 so as to decrease the time. Thereby, the deviation between the target imaging position and the imaging position can be reduced.
  • the present embodiment it is possible to provide a board measuring apparatus or a board measuring method capable of executing highly accurate measurement in a short time. Further, since the imaging residual re is calculated as the deviation of the imaging position from the target imaging position and the trigger signal tr is output based on the imaging residual re, the positional deviation between the target imaging position and the actual imaging position is It can be corrected based on the dynamic error correction amount dec. Therefore, accurate imaging can be performed. Further, by correcting the temporary coordinates pc using the imaging residual re, it is possible to improve the accuracy of the measurement result mr in the same manner as in the substrate measurement apparatus described in the first to fourth embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Operations Research (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

短い時間の間に精度の高い計測を実行することが可能な基板計測装置を提供するために、トリガ信号を出力する撮像処理部(14)と、トリガ信号に基づいて基板の画像を撮像し複数の画像である画像群の情報を画像信号として出力する撮像部(2)と、制御信号に基づいて基板と撮像部との間の相対位置を変化させる移動装置(4)と、画像信号に基づいて画像群に撮像された特徴点の座標を求め暫定座標として出力する画像処理部(10)と、基板と撮像部の少なくともいずれか一方について位置、速度もしくは加速度を計測した動的情報に基づくか又は基板と撮像部との間の相対加速度を推定した推定加速度に基づいて動的誤差補正量を算出する動的誤差補正量計算部(13)と、目標撮像位置と撮像位置とのずれである撮像残差又は動的誤差補正量に基づいて暫定座標を補正し特徴点の座標の計測結果を出力する計測処理部(16)とを備える。

Description

基板計測装置及び基板計測方法
 この開示は、基板計測装置及び基板計測方法に関するものである。
 近年、プリント基板(以下、基板と称する。)の生産性の向上の要求に伴い、基板の計測精度、基板の計測時間の短縮が求められている。引用文献1には、直線状に配置された撮像素子を有するラインカメラと基板とをラインカメラの撮像素子の配置方向と直角の方向に移動させながら、基板の移動装置に設けた測定装置の計測した移動装置の座標に基づいて基板を撮像し、撮像時における座標に予め求めておいた移動装置に対する制御量と、測定装置によって計測された実際の位置との差を加算して撮像座標とする基板検査装置が開示されている。
特開2002-181733号公報
 引用文献1に記載の基板検査装置では、基板とラインカメラの相対位置を移動した場合、移動装置、撮像部等に振動、機械変形等が生じる。この振動、機械変形等に起因して、計測結果に誤差が発生し、基板の計測精度が低下するという課題があった。例えば、画像から撮像対象の位置を算出する際に計測誤差が大きくなるという課題があった。また、計測精度を上げようとすると移動速度を落とすことになり、計測に長い時間を要するという課題があった。本開示は、上記のような課題を鑑みてなされたものであり、短い時間の間に精度の高い計測を実行することが可能な基板計測装置又は基板計測方法を提供することを目的としている。
 この開示に係る基板計測装置は、トリガ信号を出力する撮像処理部と、トリガ信号に基づいて基板の画像を撮像し複数の画像である画像群の情報を画像信号として出力する撮像部と、制御信号に基づいて基板と撮像部との間の相対位置を変化させる移動装置と、画像信号に基づいて画像群に撮像された特徴点の座標を求め暫定座標として出力する画像処理部と、基板と撮像部の少なくともいずれか一方について位置、速度もしくは加速度を計測した動的情報に基づくか又は基板と撮像部との間の相対加速度を推定した推定加速度に基づいて動的誤差補正量を算出する動的誤差補正量計算部と、目標撮像位置と撮像位置とのずれである撮像残差又は動的誤差補正量に基づいて暫定座標を補正し特徴点の座標の計測結果を出力する計測処理部とを備える。
 また、この開示に係る基板計測方法は、トリガ信号を出力し、トリガ信号に基づいて基板の画像を撮像部が撮像し複数の画像である画像群の情報を画像信号として撮像部が出力し、制御信号に基づいて基板と撮像部との間の相対位置を変化させ、画像信号に基づいて画像群に撮像された特徴点の座標を求め暫定座標として出力し、基板と撮像部の少なくともいずれか一方について位置、速度もしくは加速度を計測した動的情報に基づくか又は基板と撮像部との間の相対加速度を推定した推定加速度に基づいて動的誤差補正量を算出し、目標撮像位置と撮像位置とのずれである撮像残差又は動的誤差補正量に基づいて暫定座標を補正し特徴点の座標の計測結果を出力する。
 本開示によれば、短い時間の間に精度の高い計測を実行することが可能な基板計測装置又は基板計測方法を提供することができる。
実施の形態1による基板計測装置の構成の一例を示す図である。 実施の形態1による画像処理装置の構成の一例を示すブロック図である。 実施の形態1による基板計測の動作の一例を示すフロー図である。 実施の形態1による撮像部の撮像した穴の画像群の一例である。 実施の形態1による動的誤差補正量計算部の動作の一例を示すフロー図である。 実施の形態1による基板計測装置が備える処理回路をプロセッサ及びメモリで構成する場合の構成例を示す図である。 実施の形態1による基板計測装置が備える処理回路を専用のハードウェアで構成する場合の構成例を示す図である。 実施の形態2による基板計測装置の構成の一例を示す図である。 実施の形態2による画像処理装置の構成の一例を示すブロック図である。 実施の形態3による基板計測装置の構成の一例を示す図である。 実施の形態3による画像処理装置の構成の一例を示すブロック図である。 実施の形態3による撮像処理部の処理の一例を示すフロー図である。 実施の形態3による撮像処理部の動作の一例を示すフロー図である。 実施の形態3による基板計測装置が精度の高い計測を行うことができる範囲の一例を示す図である。 実施の形態4による基板計測装置の構成の一例を示す図である。 実施の形態4による画像処理装置の構成の一例を示すブロック図である。 実施の形態4による画像処理装置の動作の一例を示すフロー図である。 実施の形態5による基板計測装置の構成の一例を示す図である。 実施の形態5による画像処理装置の構成の一例を示すブロック図である。 実施の形態5による画像処理装置の動作の一例を示すフロー図である。
 以下に、実施の形態を図面に基づいて詳細に説明する。なお、以下に説明する実施の形態は例示であり、本開示の範囲は、以下に説明する実施の形態によって限定されるものではない。また、以下に説明する実施の形態は、適宜組み合わせて実行することができる。
 実施の形態1
 図1は、本実施の形態による基板計測装置の構成の一例を示す図である。本実施の形態の基板計測装置100は、計測結果mrを出力する画像処理装置1、基板bの画像を撮像して画像信号isとしてする撮像部2、及び、制御信号csをステージ4に出力してステージ4を移動させる制御部3を備える。また、基板計測装置100は、基板bが載置されるステージ4、及び、ステージ4の動きを計測して基板動的情報di1として出力する基板動的情報取得部5-1を備える。また、基板計測装置100は、撮像部2の動きを計測して撮像部動的情報di2として出力する撮像部動的情報取得部5-2、及び、ステージ4の位置を計測する位置計測装置6を備える。以下では、基板動的情報di1、撮像部動的情報di2のいずれか一方又は両方を動的情報diと称する場合がある。
 図2は、本実施の形態による画像処理装置の構成の一例を示すブロック図である。画像処理装置1は、画像信号isから暫定座標pcを算出する画像処理部10、静的誤差補正量secを算出する静的誤差補正量計算部11、及び、静的誤差補正パラメータspを記憶する静的誤差補正パラメータ記憶部12を備える。また、画像処理装置1は、動的誤差補正量decを算出する動的誤差補正量計算部13、トリガ信号trを出力する撮像処理部14、及び、動的情報di、撮像時刻データid等を記憶するデータ記憶部15を備える。動的誤差補正量計算部13は、振動補正量vcaを算出する振動補正量計算部131、及び、機械変形補正量mdcaを算出する機械変形補正量計算部132を備える。画像処理装置1は、例えば、信号処理ボード及び画像処理用ボードを含む計算機とすることもできる。
 撮像部2は複数の画像iを撮像する。ここで、1回の撮像により得られる画像を画像iと称する。また、複数の画像iを組み合わせて得られる画像を画像群igと称する。例えば、撮像部2は、複数のイメージセンサ素子が直線上に配置されたラインカメラ(ラインスキャンカメラ)、撮像対象、基板b等の像をイメージセンサ素子の受光面に写すレンズ、基板b等に向けて光を照射する照明を備えてもよい。イメージセンサ素子は受光面に入射した光量を電気信号に変換する素子である。撮像部2は、ラインカメラに限定されるものではなく、例えば、TDI(Time Delay Integration)カメラを用いることもできる。撮像部2が画像iの撮像を実行する時刻を撮像時刻と称する。撮像処理部14による画像iの撮像時刻の決定については後述する。
 基板bと撮像部2との間の相対位置を変化させる機構を移動装置と称する。本実施の形態における移動装置は、ステージ4である。ステージ4の上部に取り付けられ基板bが載置される板をテーブルと称する。テーブルが移動することにより載置された基板bが移動する。基板bは、吸着装置等によりステージ4に固定してもよい。本実施の形態のステージ4は、x軸方向にテーブル及び基板bを移動させるx軸ステージ4―1を備える。また、ステージ4は、y軸方向にテーブル及び基板bを移動させるy軸ステージ4―2を備える。x軸ステージ4―1及びy軸ステージ4―2の各々は、アクチュエータを備えてもよい。なお、x軸ステージ4―1及びy軸ステージ4―2は、図1では、まとめてステージ4として図示され、各々の個別の符号は省略されている。
 本実施の形態の移動装置(ステージ4)は、基板bをx軸方向及びy軸方向に移動させることにより、基板bと撮像部2との間の相対位置を変化させる。本開示の移動装置は、このような構成に限定されるものではなく、基板bと撮像部2との間の相対位置を変化させるものであればよい。例えば、撮像部2のみを移動させる構成としてもよく、基板b及び撮像部2の両方を個別に移動させる構成としてもよい。また、撮像部2、基板b等の移動の方向は、必要に応じて適宜選択することができる。例えば、1方向としてもよく、2方向以上としてもよい。また、基板bは移動せず、撮像部2がx軸方向及びy軸方向に移動する構成でも良い。また、撮像部2と基板bの両方がx軸方向、y軸方向に移動可能な構成としてもよい。
 制御部3は、制御信号csを出力しステージ4の移動を制御する。制御信号csは、例えば、ステージ4の位置又は速度としてもよい。ここで、制御部3は、x軸ステージ4―1の移動を制御するx軸制御器31、及び、y軸ステージ4―2の移動を制御するy軸制御器32を備える。動的情報取得部5は、基板動的情報取得部5-1及び撮像部動的情報取得部5-2を備える。基板動的情報取得部5-1は、ステージ4のテーブルに固定され、テーブルのx軸方向及びy軸方向の加速度を計測する加速度センサであるとして説明する。ここで、テーブルの加速度は、実用上、基板bの加速度と等しいとみなせるとする。また、撮像部動的情報取得部5-2は、撮像部2のx軸方向及びy軸方向の加速度を計測する。撮像部動的情報取得部5-2の一例は、撮像部2に固定された加速度センサであるとして説明する。基板動的情報取得部5-1を固定する対象は、テーブルに限定されない。後述するように、基板動的情報取得部5-1は、基板bの位置、速度、又は加速度を計測するという効果を奏するものに、すなわち、移動装置による移動の際に、基板bと同じ動きをするものに固定すればよい。本開示では、基板動的情報取得部5-1のように、テーブルに加速度センサを固定している場合でも、テーブルは、本開示の効果を奏する範囲で、基板bと近い動きをするとみなせるため、基板動的情報取得部5-1は、基板bの加速度を計測すると表現する。
 動的情報取得部5は、加速度センサに限定されるものではない。加速度センサ以外の動的情報取得部5の例としては、ドップラー振動計のような振動を計測可能な位置センサ、レーザ干渉計等を挙げることができる。位置計測装置6の説明に後述するように、位置計測装置6を動的情報取得部5として活用することもできる。
 基板動的情報取得部5-1は、基板bの位置、速度又は加速度を計測し、計測した結果を基板動的情報di1として出力する。また、撮像部動的情報取得部5-2は、撮像部2の位置、速度又は加速度を計測し撮像部動的情報di2として出力する。なお、図1の基板動的情報取得部5-1、撮像部動的情報取得部5-2の各々は、必要に応じて計測する加速度等の方向を適宜選択することができる。本実施の形態では、基板bをx軸方向及びy軸方向に移動させるステージ4が設けられているが、基板bにも、撮像部2にもx軸、y軸及びz軸方向に振動、機械変形等が発生し得る。そして、例えば、図1に示すx軸方向、y軸方向及びz軸方向の3つの方向の加速度等を計測し、後述する動的誤差補正量計算部13が、これら3つの方向について動的誤差補正量decを算出してもよい。ここで、加速度等とは、位置、速度又は加速度である。基板動的情報取得部5-1又は撮像部動的情報取得部5-2が、少なくとも一つの方向について加速度等を計測すれば本発明の効果を奏する。
 図1の基板計測装置100の構成例では、基板動的情報取得部5-1及び撮像部動的情報取得部5-2の両方を備えるが、いずれか一方を省くことも可能である。そして、図1の構成例では、ステージ4が基板bを移動させる。そのため、図1の構成では、基板動的情報取得部5-1の出力する基板動的情報di1に基づいて動的誤差補正量decを算出することが効果的である。言い換えれば、移動装置の移動対象について加速度等を計測することが望ましく、少なくとも基板動的情報取得部5-1を備えることが望ましい。
 位置計測装置6は、ステージ4のx軸方向の位置、及び、ステージ4のy軸方向の位置を計測し、位置情報piとして出力する。図1の位置計測装置6は、x軸ステージ4―1の位置を計測するx軸位置計測装置6-1及びy軸ステージ4―2の位置を計測するy軸位置計測装置6-2を備える。位置計測装置6は、例えば、リニアスケールを用いてもよい。なお、位置計測装置6として、ステージ4を移動させるサーボモータに取り付けたエンコーダ、レーザ干渉計等を使用してもよい。
 前述のように、位置計測装置6を動的情報取得部として用いることもできる。位置計測装置6が計測した位置情報piを動的情報diとして取得し、位置情報piを2回微分して加速度を求め、求めた加速度を計測誤差の補正に用いてもよい。位置計測装置6を、動的情報取得部5として使用する場合の位置計測装置6の動作を例示する。x軸位置計測装置6―1が、基板動的情報取得部5-1として基板動的情報di1を出力する動作例を説明する。まず、位置情報piが基板動的情報di1としてデータ記憶部15に保存される。動的誤差補正量計算部13は、撮像部2が画像iを撮像する時刻である撮像時刻と位置情報piとを対応付ける。そして、振動補正量計算部131は、位置情報piから各々の撮像時刻における振動位置vpを抽出する。
 振動位置vpを抽出する処理を例示する。例えば、制御信号csから算出される位置と位置情報piとの差分を振動位置vpとしてもよい。位置情報piから振動位置vpを算出する場合は、加速度センサを用いて振動位置vpを算出する場合に比べて、データ数が少なくなる。また、積分処理が不要になる等により、処理が簡単になり計算負荷を減らすことができるという利点がある。以上が、位置計測装置6を、動的情報取得部5として使用する場合の位置計測装置6の動作例である。
 図3は、本実施の形態による基板計測の動作の一例を示すフロー図である。基板計測装置100が、ステップS101において撮像を行う処理を例示する。図1の構成では、ラインカメラのセンサ素子がy軸方向に並んで配置されている。そして、x軸ステージ4―1は、y軸方向と直交する方向であるx軸方向に基板bを移動させる。すなわち、x軸ステージ4―1は、ラインカメラのセンサ素子が並んで配置された方向と直交する方向に基板bを移動させる。
 撮像処理部14は、トリガ信号trを撮像部2へ出力し、撮像部2が撮像を行うタイミングを制御する。そして、撮像部2は、トリガ信号trに基づき撮像時刻に撮像を実行する。言い換えれば、撮像部2は、トリガ信号trが示すタイミングに撮像を実行する。撮像処理部14は、位置情報piに基づいてトリガ信号trを出力することによって撮像が実行される際の移動装置の位置を決定することもできる。
 また、撮像処理部14は、位置計測装置6から取得した位置情報piに基づき、ステージ4が一定距離移動するごとに撮像部2が画像iの撮像を実行するようにトリガ信号trを出力し、画像群igを得てもよい。ここで、制御部3は、ステージ4を一定の速度で移動させ、撮像処理部14は、一定の時間間隔ごとにトリガ信号trを出力してもよい。そして、位置情報piを利用せずに、ステージ4が一定の距離移動するごとに撮像を行ってもよい。撮像部2は、取得した画像i又は画像群igを画像信号isとして出力する。ここで、画像信号isは、撮像した画像i又は画像群igでもよく、画像i又は画像群igの情報をあらわすデータでもよい。
 また、データ記憶部15は、撮像処理部14が出力する撮像時刻データidを記憶する。撮像時刻データidは、撮像時刻データidに基づいて撮像部が撮像を実行した時刻である撮像時刻を知ることができるものであればよい。例えば、撮像時刻データidを、撮像時刻を含むデータとしてもよく、トリガ信号の出力される時刻としてもよい。撮像部2又は画像処理部10は、画像群igに基づいて、画像iから得られる領域より大きな領域の画像を得ることができる。また、撮像部2は、画像iのx軸方向の画素サイズに相当する距離移動する毎に撮像を行ってもよい。これにより、隙間、重複等のない2次元の画像群igを取得してもよい。
 画素のサイズとステージ4の動きを例示する。撮像部2の1画素の一辺のサイズが3.5ミクロンの正方形で、各辺がx軸、y軸に平行に配置されているとする。そして、カメラに倍率1倍のレンズを取り付ける。この例では、画像iの1画素は一辺の長さが3.5ミクロンの正方形となる。そして、ステージ4がx軸方向に3.5ミクロン移動する毎に、撮像部2が撮像を行うように、撮像処理部14はトリガ信号trを出力する。以上がステップS101の動作の一例である。
 図3のステップS102において、画像信号isに基づいて特徴点の暫定座標pcを求める動作を例示する。図3の動作例では、特徴点が穴hの中心座標であるとして説明する。図4は、本実施の形態による撮像部2の撮像した穴の画像群igの一例である。図4の画像群igのうち、黒色の部分を穴hとする。図4では、明るさの度合いは、小さい黒点の粗密で表現されている。すなわち、暗い部分は黒点の密度が高く、明るくなるに従い黒点の密度が低くなる。穴hの部分は、基板bの他の部分に比べて反射光の光量、すなわち輝度が小さいため暗く、図4では黒点の密度が高く表示される。
 画像処理部10は、画像信号isを取得し、穴hのエッジの位置座標の検出を行う。ここで、穴hは、撮像対象である。そして、特徴点の座標を求めるために用いる輪郭線、エッジ、領域等を構成するものを撮像対象と称している。例えば、画像処理部10は、輝度の閾値を有し、輝度が閾値を超えているか閾値以下であるかを判別することによって、穴hの内部の領域と穴hの外部の領域とを判別し、この2つの領域の境界をエッジとして検出してもよい。画像処理部10は、例えば、図4に示すように、中心から見て均等な角度間隔に配置される8点の、エッジ検出点e―1からエッジ検出点e―8の座標を求める。エッジ検出点e―1からエッジ検出点e―8は、穴中心から見て45度毎に配置されている。エッジ検出点e―1からエッジ検出点e―8の座標から画像群igにおける穴中心点cの座標を暫定座標pcとして計算する。例えば、エッジ検出点e―1からエッジ検出点e―8の8点の重心を計算して、中心点cの暫定座標pcとしてもよい。
 画像処理部10は、ピクセル単位で表現された暫定座標pcを、そのまま用いてもよい。また、画像処理部10は、ピクセル単位による表現を、位置座標による表現に変換して用いてもよい。位置座標による表現に変換するとは、例えば、画像処理部10は、ピクセル単位の暫定座標pcに画素サイズを乗じる。そして、画像処理部10は、何らかの基準点を画像群ig内に設定し、この基準点を原点とした位置座標による表現に変換する。ここで、位置座標は実空間の座標であり、長さの単位で表現される。例えば、メートル単位系等で表現してもよい。以上が、ステップS102の特徴点の暫定座標pcを求める動作の一例である。なお、暫定座標pcを、ピクセル単位の表現から位置座標の表現に変換する処理を、ステップS102の処理として説明した。この処理は、必ずしも、ステップS102で行う必要はない。例えば、図3のステップS101からステップS105のいずれかで行ってもよい。また、ピクセル単位による表現を位置座標による表現に変換する処理は、画像処理部10以外の構成要素が実行してもよい。例えば、動的誤差補正量計算部13、計測処理部16等が実行してもよい。
 また、撮像対象は、穴hに限定されるものではなく、撮像対象の画像群igを含む画像信号isに基づいて特徴点の座標を決定できるものを自由に選択することができる。例えば、撮像対象の輪郭、領域等を、画像群igの中の撮像対象と異なる部分から識別して特徴点の座標を決定することができるものを自由に選択してもよい。また、撮像対象の形状は、円形に限定されるものではない。また、特徴点は、穴の中心、四角い形状の基板bの角、基板bに設けられたアライメントマーク、テーブル上の点等としてもよい。また、例えば、撮像対象を四角形とし、四角形の頂点の重心位置を特徴点としてもよい。また、特徴点の座標を算出する処理は、ステップS102に例示した、撮像対象のエッジ検出及び算術計算を用いる処理に限定されるものではない。例えば、少なくとも、画像信号is、暫定座標pcを含む状態量を取得する状態量観測部と、状態量に基づいて、画像信号isと暫定座標pcとの関係を学習する学習部と、を画像処理部10が備えてもよい。そして、画像処理部10は、学習部が学習により生成したモデルを用い、画像信号isに基づいて暫定座標pcを求めても良い。また、上記の学習による学習済み学習器を備えてもよい。学習済み学習器は、例えば、学習により生成したモデルを用い、画像信号isに基づいて暫定座標pcを求めても良い。
 ステップS103において、静的誤差補正量計算部11が、静的誤差補正パラメータspに基づいて静的誤差補正量secを算出する処理を例示する。暫定座標pcには、動的誤差及び静的誤差が含まれているとする。そして、移動装置の移動に起因しない位置座標の計測誤差を静的誤差と称している。言い換えれば、静的誤差は、移動装置による移動がある場合と、移動装置による移動がない場合との両方に生じる計測誤差である。また、静的誤差は、移動装置であるステージ4が静止した状態かつステージ4による残留振動がない状態で発生する誤差ということもできる。本実施の形態の場合、静的誤差は、ステージ4の移動に起因しない誤差である。静的誤差は、幾何誤差と称してもよい。静的誤差の発生の要因の例としては、画素サイズの仕様値からのずれ、ステージ4を直線の起動上を移動させるガイド機構の取付精度などに起因する位置に依存した基板bの静的な回転、ディストーションとよばれる撮像部2の光学的歪などを挙げることができる。
 静的誤差補正量計算部11は、静的誤差補正パラメータ記憶部12が記憶する静的誤差補正パラメータspを取得し、静的誤差補正パラメータspに基づいて静的誤差補正量secを算出する。静的誤差補正パラメータspの例としては、撮像部2、ステージ4などの仕様値、計測値を挙げることができる。また、試験によって静的誤差補正パラメータspを求め、静的誤差補正パラメータspとして静的誤差補正パラメータ記憶部12に記憶させてもよい。
 例えば、あらかじめ基板計測装置100とは異なる計測装置を利用して位置座標を取得する。そして、移動装置の移動による影響を受けない環境のもとで、位置座標を基板計測装置100によって計測する。そして、2つの位置座標の計測結果を比較して静的誤差補正パラメータspを求めてもよい。また、例えば、移動前の点と移動後の点との間の位置座標の差異を制御信号csに基づいて算出した値と、移動による影響を受けない環境のもとでの基板計測装置100による計測結果とを比較して静的誤差補正パラメータspを求めてもよい。
 また、例えば、移動前の点と移動後の点との間の位置座標の差異をレーザ測長器による計測から求めた結果と、移動による影響を受けない環境のもとでの基板計測装置100の計測結果とを比較して静的誤差補正パラメータspを求めてもよい。ここで、基板計測装置100の計測結果とは、静的誤差補正量secを零とした場合の計測処理部16からの出力としてもよい。なお、ステップS103を省くこともできる。言い換えれば、画像処理装置1から、静的誤差補正量計算部11及び静的誤差補正パラメータ記憶部12を省き、図3の処理を、静的誤差の補正を省いた処理としてもよい。
 ステップS104において、動的誤差補正量計算部13が基板動的情報di1及び撮像部動的情報di2に基づいて、動的誤差補正量decを算出する処理を例示する。ここで、移動装置の移動に起因して生じる位置座標の誤差を動的誤差と称している。言い換えれば、動的誤差は、移動装置による移動が所定の条件を満たした場合に発生し、移動装置が静止しかつ残留振動がない場合には発生しない性質をもつ計測誤差である。本実施の形態の場合、動的誤差は、ステージ4の移動に起因する誤差である。なお、動的誤差は、移動装置が加減速を行っている状態においてのみ発生するわけではなく、加減速を行っていない状態においても、残留振動に起因して発生する。そのため、動的誤差の補正は、移動装置が加減速を行っている状態だけでなく、加減速を行っていない状態においても必要な場合がある点に留意する。
 図5は、本実施の形態による動的誤差補正量計算部13の動作の一例を示すフロー図である。また、図5は、図4のステップS104の処理の一例を示すフロー図である。ステップS111において、動的誤差補正量計算部13が、撮像時刻データに基づき暫定座標pcと基板動的情報di1及び撮像部動的情報di2とを対応付ける動作について説明する。暫定座標pcと動的情報diを対応付けることにより、動的誤差補正量計算部13は、暫定座標pcにおける動的誤差補正量decを算出するか、又は、暫定座標pcを含む画像の撮像時刻における動的誤差補正量decを算出する。動的誤差補正量計算部13は、データ記憶部15から、撮像時刻データid、基板動的情報di1及び撮像部動的情報di2を取得する。
 基板動的情報di1及び撮像部動的情報di2には、動的情報diを計測した時刻である計測時刻が含まれている。計測時刻は、基板動的情報取得部5-1及び撮像部動的情報取得部5-2が計測結果を取得した時刻である。そして、撮像時刻データidに基づき、画像iの撮像時刻の各々と、暫定座標pcとを対応づけ、画像iの撮像時刻の各々とこの撮像時刻に計測された基板動的情報di1及び撮像部動的情報di2とを対応付ける。これにより、暫定座標pcの各々と、基板動的情報di1及び撮像部動的情報di2とを対応付ける。言い換えれば、動的誤差補正量計算部13は、暫定座標pcを含む画像iの各々と画像iの各々の撮像時刻に計測された動的情報diとを対応付ける。以上が、図5の暫定座標pcと、基板動的情報di1及び撮像部動的情報di2とを対応付ける動作である。
 ここで、ステップS111の処理は、同じ撮像時刻に係る暫定座標pcと動的情報diとを対応付けることができればよく、上記に例示した処理に限定されるものではない。例えば、動的誤差補正量計算部13は、撮像時刻データidに代えて、トリガ信号trを取得し、トリガ信号trから撮像時刻を求め、暫定座標pcと動的情報diとを対応づけてもよい。また、例えば、動的誤差補正量計算部13は、制御部3から制御信号csを取得し、制御信号csから特徴点の位置を算出してもよい。
 ステップS112において、動的誤差補正量計算部13が、動的情報diに基づいて振動補正量vcaを算出する振動補正量計算部131の処理について説明する。振動補正量計算部131は、ステップS111において暫定座標pcに対応付けられた基板動的情報di1から、暫定座標pcの各々に対して基板振動位置vpを求める。また、撮像部動的情報di2から撮像部振動位置vpaを求める。ここで、基板振動位置vp及び撮像部振動位置vpaの各々は、振動の影響による基板b及び撮像部2の位置変化である。
 基板動的情報di1が基板bの加速度である場合、基板動的情報di1から振動成分を算出し算出した振動成分を2回積分した値を基板振動位置vpとする。また、基板動的情報di1が基板bの速度である場合、基板動的情報di1から振動成分を算出し、算出した振動成分を1回積分した値を基板振動位置vpとする。基板動的情報di1が基板bの相対位置である場合、基板動的情報di1から振動成分を算出し、算出した振動成分を基板振動位置vpとする。ここで、基板動的情報di1と指令信号csとを比較して基板動的情報di1から振動成分を算出してもよい。例えば、基板動的情報di1が基板bの加速度である場合、指令信号csから算出した基板bの加速度を基板動的情報di1から減じた値を振動成分として使用してもよい。
 同様に、撮像部動的情報di2が撮像部2の加速度である場合、撮像部動的情報di2から振動成分を算出し、算出した振動成分を2回積分した値を撮像部振動位置vpaとする。また、撮像部動的情報di2が撮像部2の速度である場合、撮像部動的情報di2から振動成分を算出し、算出した振動成分を1回積分した値を撮像部振動位置vpaとする。撮像部動的情報di2が撮像部2の位置である場合、撮像部動的情報di2から振動成分を算出し、算出した振動成分を振動位置vpaとする。例えば、撮像部動的情報di2が撮像部2の加速度である場合、本実施の形態では、撮像部2は移動装置による移動がないため、撮像部動的情報di2を振動成分として使用してもよい。
 次に、振動補正量計算部131は、基板振動位置vpと撮像部振動位置vpaとの差を相対振動位置rvpとして算出する。振動補正量計算部131は、この相対振動位置rvpを振動補正量vcaとする。ここで、相対振動位置rvpとして、複数方向の成分をもつベクトル量として算出し、その各方向成分を振動補正量vcaの各方向成分としてもよい。
 なお、基板動的情報取得部5-1又は撮像部動的情報取得部5-2のいずれか一方を省くこともできる。撮像部動的情報取得部5-2を省いた場合、基板振動位置vpを振動補正量vcaとする。また、基板動的情報取得部5-1を省いた場合、撮像部振動位置vpaを振動補正量vcaとする。以上がステップS112において振動補正量vcaを求める処理の一例である。
 ステップS113において、動的情報diに基づいて機械変形補正量mdcaを算出する振動補正量計算部131の処理について説明する。機械変形補正量計算部132は、基板動的情報di1、撮像部動的情報di2及び動的補正パラメータdcpを取得する。ここで、動的補正パラメータdcpは、基板動的情報di1及び撮像部動的情報di2と機械変形補正量mdcaとを関係づけるパラメータである。
 動的補正パラメータdcpの例としては、ステージ4、撮像部2、基板計測装置100等についての、機械変形についてのパラメータ、剛性についてのパラメータ等を挙げることができる。動的補正パラメータdcpは、ステージ4の材質、形状、剛性、重量等の仕様値から算出してもよい。また、動的補正パラメータdcpを、予め試験を実施して求めてもよい。試験の例としては、ステージ4を移動させた際、又はステージ4、撮像部2等を加速又は減速させた際にステージ4、撮像部2、基板計測装置100等に発生する機械変形を計測する試験を挙げることができる。
 機械変形の例としては、ピッチング変形、ヨーイング変形等を挙げることができる。ここで、加速方向と反対方向に慣性力が加わって生ずる2つの機械変形を、ピッチング変形及びヨーイング変形と称している。ピッチング変形及びヨーイング変形は、例えば、変形の主体となる変形物の重心位置を通る2つの互いに直交する2つの回転軸を中心として回転する変形としてもよい。変形物をステージ4とした場合のピッチング変形の一例を説明する。基板bの位置が、ステージ4の駆動軸から離れている場合、ステージ4が加速方向と反対側に傾くように変形する。そして、暫定座標pcにステージ4の機械変形による計測誤差が生じる。以上がピッチング変形の一例である。
 また、変形物をステージ4としてヨーイング変形の一例を説明する。ステージ4のy軸ステージ4―2の上面に固定された部分の重心が中央からずれているとする。言い換えれば、y軸ステージ4―2の上面に対してx軸ステージ4―1が固定され、x軸ステージ4―1の上面に対してテーブルが固定され、x軸ステージ4―1がx軸の正方向又は負方向に偏心した状態にあるとする。このような状態で、y軸ステージ4―2を加減速すると、慣性力がステージ4に働くことによって、ステージ4がz軸に平行な軸を回転軸として回転する変形が生じる。これにより、暫定座標pcに機械変形による計測誤差が生じる。以上がヨーイング変形の一例である。
 基板動的情報di1及び撮像部動的情報di2は、ステップS112と同様に、撮像時刻と対応付けられている。各々の撮像時刻における基板動的情報di1及び撮像部動的情報di2を用いて、各々の撮像時刻における機械変形補正量mdcaを算出する動作を例示する。
 移動装置の移動に起因して変形する変形物には、加速度に比例する慣性力が働き、変形物には、慣性力に比例する機械変形が生じるとする。そして、動的補正パラメータ記憶部17は、基板bの加速度と基板側機械変形bmdとの間の比例係数及び撮像部2の加速度と撮像部側機械変形iumdとの間の比例係数を、動的補正パラメータdcpとして記憶する。ここで、基板側機械変形bmdは、機械変形による基板bの変位である。また、撮撮像部側機械変形iumdは、機械変形による撮像部2の変位である。
 機械変形補正量計算部132は、基板側機械変形mbdと撮像部側機械変形iumdとの差を機械変形補正量mdcaとする。機械変形補正量mdcaは、撮像部から見た基板の機械変形変位である。これにより、撮像部2と基板bとの間の相対的な変位を機械変形変位mdcaとして算出することができる。
 ここで、基板動的情報di1、撮像部動的情報di2等が加速度である場合、これらを基板側機械変形mbd及び撮像部側機械変形iumdを算出する際の加速度として用いる。また、基板動的情報di1、撮像部動的情報di2等が速度である場合、これらを1回微分して求めた値を基板側機械変形mbd及び撮像部側機械変形iumdを算出する際の加速度として用いる。基板動的情報di1、撮像部動的情報di2等が位置である場合、これらを2回微分した値を基板側機械変形mbd及び撮像部側機械変形iumdを算出する際の加速度として用いる。なお、微分の演算を行う前に、基板動的情報di1、撮像部動的情報di2等を平滑化するフィルタリングを行ってもよい。以上がステップS113の処理の一例である。
 なお、上述のように、基板動的情報取得部5-1又は撮像部動的情報取得部5-2のいずれか一方を省くこともできる。撮像部動的情報取得部5-2を省いた場合、機械変形補正量計算部132は、基板側機械変形mbdを機械変形補正量mdcaとする。また、基板動的情報取得部5-1を省いた場合、機械変形補正量計算部132は、撮像部側機械変形iumdを機械変形補正量mdcaとする。
 ステップS114において、振動補正量vca及び機械変形補正量mdcaから、動的誤差補正量decを算出する動的誤差補正量計算部13の動作を例示する。動的誤差補正量計算部13は、振動補正量vcaと機械変形補正量mdcaとの和を動的誤差補正量decとする。ここで、振動補正量vca及び機械変形補正量mdcaをx軸方向成分、y軸方向成分等を有するベクトル量とし、ベクトル量として動的誤差補正量decを算出してもよい。以上が、ステップS114の動的誤差補正量計算部13の動作の一例である。そして、以上に説明した図5の動作が、図4のステップS104の動的誤差補正量decを算出する処理の一例である。
 図4のステップS105において、静的誤差補正量sec及び動的誤差補正量decに基づいて暫定座標pcを補正する計測処理部16の動作を例示する。計測処理部16は、暫定座標pc、静的誤差補正量sec及び動的誤差補正量decを取得し、暫定座標pcから静的誤差補正量sec及び動的誤差補正量decを減じた値を、計測結果mrとして出力する。例えば、暫定座標pc及び計測結果mrは、x軸方向及びy軸方向の値をもつ量としてもよい。
 また、計測処理部16は、さらに、図3のステップS101からステップS105に説明した補正を、特徴点とは異なる点の座標に対して施し、この補正を施された点に対する特徴点の相対位置を計測結果mrとして出力してもよい。上記の特徴点とは異なる点の例としては、例えば、特徴点が穴の中心座標である場合、プリント基板に設けられたアライメントマーク、プリント基板の角等を挙げることができる。
 動的誤差の補正を画像処理の工程において実施する場合、撮像部2が取得した画像iの各々に対して誤差を補正する処理が必要となり、計測の精度を高めるために多くの複雑な工程が必要となる。一方、本実施の形態の基板計測装置100は、画像信号isから画像処理部10が暫定座標pcを算出する。そして、暫定座標pcに対して補正を実行するため、画像iごとに誤差の補正を実行する必要がない。そのため、画像処理の工程において動的誤差の補正を実施した場合に比べて、計算の負荷を軽くできる。また、高速な処理が可能になる。
 基板動的情報di1には、基板bの動きの情報が含まれる。そのため、本実施の形態の基板計測装置100によれば、基板bの振動、機械変形等を反映した計測誤差の補正を実行することができる。また、撮像部動的情報di2には、撮像部2の動きの情報が含まれる。そのため、本実施の形態の基板計測装置100によれば、撮像部2の振動、機械変形等を反映した計測誤差の補正を実行することができる。また、x軸方向に加えて、y軸方向、z軸方向等について基板動的情報di1又は撮像部動的情報di2を取得することにより、移動装置の移動方向と異なる方向の振動、機械変形等を反映した動的誤差の補正を実行することができる。
 また、動的誤差補正量decを算出する際、複数の、暫定座標pc及び暫定座標pcに対応する動的誤差補正量decの組から、補間によって新たに、暫定座標pc及び動的誤差補正量decを推定してもよい。補間によって暫定座標pc及び動的誤差補正量decを推定する処理を例示する。
 暫定座標pcが5ピクセルの位置の動的誤差補正量decが2ミクロンであるとする。そして、暫定座標pcが6ピクセルの位置の動的誤差補正量decが3ミクロンであるとする。このとき、暫定座標pcが5.5ピクセルの位置の動的誤差補正量decを、上記の2つの位置の動的補正量decに線形補間を適用することによって2・5ミクロンと求める。以上が、補間による暫定座標pcと動的誤差補正量decとの関係の推定の一例である。この例では補間に用いる関数が一次式となる線形補間を用いたが、補間に用いる関数の形は、1次式に限定されるものではなく2次式等、適宜選択することができる。例えば、本実施の形態に説明した方法により求めた複数の暫定座標pc及び動的誤差補正量decに対してフィッティングを行う等により、関数を選択してもよい。
 図3、図5に説明した動作例では、基板動的情報di1及び撮像部動的情報di2と、暫定座標pcとを対応付ける際、撮像時刻を介して対応付ける処理を例示した。別の例として、ステージ4が一定速度で移動し、撮像部2による撮像を一定の時間間隔で実行した場合には、画像信号isと撮像時刻とが対応づけられるため、撮像時刻を介さずに基板動的情報di1と暫定座標pcとを対応付けることができる。そして、暫定座標pcの各々に対して動的誤差補正量decを算出することもできる。
 図1、図2に示す構成では、振動補正量計算部131と機械変形補正量計算部132とを、両方を備えるが、いずれか一方を省き、振動補正量vca又は機械変形補正量mdcaのいずれか一方から動的補正量decを算出してもよい。なお、機械変形補正量計算部132を省く場合、動的補正パラメータ記憶部17も省くことができる。
 図6は、本実施の形態による基板計測装置が備える処理回路を、プロセッサ及びメモリで構成する場合の構成例を示す図である。処理回路がプロセッサ10001及びメモリ10002で構成される場合、基板計測装置100の処理回路の各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせによって実現される。ソフトウェア、ファームウェア等はプログラムとして記述され、メモリ10002に格納される。処理回路では、メモリ10002に記憶されたプログラムをプロセッサ10001が読み出して実行することによって、各機能を実現する。すなわち、処理回路は、基板計測装置100の処理が結果的に実行されることになるプログラムを格納するためのメモリ10002を備える。また、これらのプログラムは、基板計測装置100の手順及び方法をコンピュータに実行させるものであるともいえる。ここで、プロセッサ10001は、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)等であってもよい。メモリ10002は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)等の、不揮発性又は揮発性の半導体メモリとしてもよい。また、メモリ10002を、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、又はDVD(Digital Versatile Disc)等としてもよい。
 図7は、本実施の形態による基板計測装置が備える処理回路を専用のハードウェアで構成する場合の構成例を示す図である。処理回路が専用のハードウェアで構成される場合、図7に示す処理回路10003は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものとしてもよい。基板計測装置100の機能を、機能ごとに処理回路10003によって実現してもよく、複数の機能をまとめて処理回路10003によって実現してもよい。
 撮像部2、制御部3、ステージ4、動的情報取得部5、位置計測装置6等のハードウエア部分を基板計測機構と称する。処理回路は、必ずしも、基板計測機構の近くに設置する必要はない。例えば、図1の画像処理装置1を処理回路とし、画像処理装置1を、基板計測機構から離れた場所に配置し、両者の間を、ネットワークで接続しても良い。また、例えば、画像処理装置1を、クラウドサーバ上の処理回路としてもよい。
 以上、説明したように、本実施の形態に例示した基板計測装置100は、トリガ信号trを出力する撮像処理部14を備える。また、トリガ信号trに基づいて基板bを撮像し複数の画像iである画像群igの情報を画像信号isとして出力する撮像部2を備える。また、基板計測装置100は、制御信号csに基づいて基板bと撮像部2との間の相対位置を変化させる移動装置(ステージ4)と、画像信号isに基づいて画像群igに撮像された特徴点の座標を求め暫定座標pcとして出力する画像処理部10とを備える。
 また、基板計測装置100は動的誤差補正量計算部13を備える。動的誤差補正量計算部13は、動的情報diに基づくか、又は、推定加速度eaに基づいて動的誤差補正量decを算出する。ここで、動的情報diは、基板bと撮像部2の少なくともいずれか一方について位置、速度もしくは加速度を計測したものである。また、推定加速度eaは、基板bと撮像部2との間の相対加速度を推定したものである。また、基板計測装置100は計測処理部16を備える。計測処理部16は、目標撮像位置と撮像位置とのずれである撮像残差re又は動的誤差補正量decに基づいて暫定座標pcを補正し特徴点の座標の計測結果mrを出力する。
 なお、基板bと撮像部2との間の相対加速度を推定した推定加速度eaに基づいて動的誤差補正量decを算出する構成は、実施の形態4に後述する。また、撮像残差reに基づいて暫定座標pcを補正し、特徴点の座標の計測結果mrを出力する構成については、実施の形態5に後述する。
 また、本実施の形態に例示した基板計測方法の一例によれば、トリガ信号trを出力する。また、トリガ信号trに基づいて基板bの画像iを撮像部が撮像し、複数の画像iである画像群igの情報を画像信号isとして撮像部2が出力する。また、制御信号csに基づいて基板bと撮像部2との間の相対位置を変化させる。また、画像信号isに基づいて画像群igに撮像された特徴点の座標を求め暫定座標pcとして出力する。
 また、この基板計測方法では、基板bと撮像部2の少なくともいずれか一方について位置、速度もしくは加速度を計測した動的情報diに基づくか、又は、基板bと撮像部2との間の相対加速度を推定した推定加速度eaに基づいて動的誤差補正量decを算出する。また、目標撮像位置と撮像位置とのずれである撮像残差re又は動的誤差補正量decに基づいて暫定座標pcを補正し特徴点の座標の計測結果mrを出力する。この基板計測装置又は基板計測方法によれば、画像群igから特徴点の座標を暫定座標として計測した後に、補正を行う。そのため、画像iごとに誤差を修正する処理を行う必要がない。そのため、計算処理の負荷を下げることができる。
 また、本実施の形態の基板計測装置100の一例によれば、動的誤差補正量計算部13は、振動補正量計算部131、又は、機械変形補正量計算部132の少なくともいずれか一方を備える。振動補正量計算部131は、動的情報diに基づいて振動補正量vcaを算出する。また、機械変形補正量計算部132は、動的情報di及び動的補正パラメータdcpに基づいて機械変形補正量mdcaを算出する。また、動的誤差補正量計算部13は、振動補正量vca、又は、機械変形補正量mdcaの少なくともいずれか一方に基づいて動的誤差補正量decを算出する。
 また、本実施の形態の基板計測装置100の一例では、動的誤差補正量計算部13は、
暫定座標pcにおける動的誤差補正量decを算出するか、又は、暫定座標pcを含む画像の撮像時刻における動的誤差補正量decを算出する。
 また、本実施の形態の基板計測装置100の一例では、撮像部2は、ラインカメラである。また、ラインカメラの備える複数の撮像素子が並ぶ方向に対して垂直の方向に、基板bと撮像部2との間の相対位置を変化させつつ撮像部2が撮像を実行する。そして、撮像処理部14は、2回の連続した撮像の間の基板bと撮像部2との間の相対位置の変化の大きさが一定になるようにトリガ信号trを出力する。撮像部2としてラインカメラを用いた場合、頻繁に移動が行われる方向を1方向とし、画像群igの処理を簡単にすることができる。また、ラインカメラの備える複数の撮像素子が並ぶ方向と垂直の方向に基板bと撮像部2との間の相対位置を変化させつつ撮像部2が撮像を実行した場合、広い面積に分布する特徴点の座標を速く正確に計測できる。
 また、本実施の形態の基板計測装置100の一例によれば、動的情報取得部5を、加速度センサとする。動的情報取得部5を加速度センサとした場合、位置計測装置6などを動的情報取得部5として使用した場合に比べて小型であり、取り付けが容易となる。また、取り付ける位置の自由度が増す。
 また、本実施の形態の基板計測装置100の一例によれば、移動装置(ステージ4)が静止しかつ移動装置による残留振動がない状態で発生する計測誤差である静的誤差についての補正量である静的誤差補正量secを静的誤差補正パラメータspに基づいて算出する静的誤差補正量計算部11をさらに備え、計測処理部16は、静的誤差補正量secに基づいて計測結果mrを算出する。これにより、静的誤差の影響の小さい計測を実行することができる。
 本実施の形態によれば、短い時間の間に精度の高い計測を実行することが可能な基板計測装置又は基板計測方法を提供することができる。
 実施の形態2.
 図8は、本実施の形態による基板計測装置の構成の一例を示す図である。実施の形態1の基板計測装置100では、基板bがx軸方向に移動しつつ撮像を行うのに対し、基板計測装置100aでは、撮像部2がx軸方向に移動しつつ撮像を行う。本実施の形態において、実施の形態1の信号、構成要素等と、同じ又は対応する信号、構成要素等については同一の符号を付す。また、基板計測装置100aの説明では、繰り返しを避けるため、実施の形態1の基板計測装置100との相違点を中心に説明する。
 本実施の形態の基板計測装置100aは、図1に示す基板計測装置100のステージ4に代えて、ステージ4aを備える。また、基板計測装置100aは、位置計測装置6に代えて位置計測装置6aを備え、制御部3に代えて制御部3aを備える。また、基板計測装置100aは、実施の形態1の画像処理装置1に代えて画像処理装置1aを備える。
 ステージ4aは、撮像部2と基板bとの間のx軸方向の相対位置を変更する移動装置である。ステージ4aは、実施の形態1のx軸ステージ4―1に代えてx軸ステージ4a―1を備える。x軸ステージ4―1は、基板bをx軸方向に移動させるのに対し、x軸ステージ4a―1は、撮像部2を図8の座標軸のx軸方向に移動させる。
 制御部3aは、実施の形態1のx軸制御器31に代えて、x軸制御器31aを備える。x軸制御器31は、x軸ステージ4―1の動きを制御して基板bを移動させる。一方、x軸制御器31aは、x軸ステージ4a―1を制御して撮像部2を移動させる。図8に示す位置計測装置6aは、x軸位置計測装置6―1に代えて、撮像部2のx軸方向の位置を計測するx軸位置計測装置6a―1を備える点が位置計測装置6と異なる。
 図9は、本実施の形態による画像処理装置の構成の一例を示すブロック図である。画像処理装置1aは、撮像処理部14に代えて撮像処理部14aを備える。また、動的誤差補正量計算部13に代えて動的誤差補正量計算部13aを備える。以上を除き、基板計測装置100aの構成は、図1、図2に示す基板計測装置100と同じである。
 本実施の形態の画像処理装置1aは、画像処理装置1と同様に、図3に示す各処理を実行して画像処理を実行する。図3の各処理における、画像処理装置1aと画像処理装置1との相違点について説明する。図3のステップS101の処理において、撮像処理部14の動作の一例では、基板bが一定距離動くごとにトリガ信号trを出力した。一方、撮像処理部14aの動作の一例では、x軸位置計測装置6a―1からの位置情報piに基づき撮像部2がx軸方向に一定距離移動するごとにトリガ信号trを出力する。なお、撮像部2が一定速度で移動する場合、撮像処理部14aは、一定の時間間隔でトリガ信号trを出力してもよい。
 また、動的誤差補正量計算部13aは、動的誤差補正量計算部13と同様に、図3のステップS104において図5の各処理と同様の処理を実行する。図5の各処理において、動的誤差補正量計算部13aは、制御部3に代えて、制御部3aからの制御信号csを使用して動的誤差補正量decを算出する。以上が、画像処理装置1aの動作と画像処理装置1の動作との相違点である。
 なお、基板計測装置100と同様に基板計測装置100aにおいても、動的誤差補正量計算部13aから、振動補正量計算部131a、機械変形補正量計算部132aのいずれか一方を省いた構成とすることができる。また、基板計測装置100と同様に、基板計測装置100aにおいても、基板動的情報取得部5-1又は撮像部動的情報取得部5-2のいずれか一方を省いた構成とすることができる。また、基板計測装置100と同様に、基板計測装置100aにおいても、静的誤差補正量計算部11を省いた構成とすることもできる。
 図8の撮像部2は、x軸ステージ4a-1によって移動するため、基板計測装置100に比べて撮像部2の振動、機械変形等による動的誤差がより大きくなる傾向がある。そのため、基板計測装置100に比べて、基板計測装置100aでは、撮像部動的情報di2に基づく動的誤差の補正の効果がより大きい。なお、x軸ステージ4a―1による撮像部2の移動に伴い、x軸方向だけでなく、y軸方向及びz軸方向についても、振動、機械変形等が発生し得る。そして、撮像部2が移動装置であるx軸ステージ4a-1の送り軸から離れるほど、x軸ステージ4a-1の移動方向と異なる方向の振動、機械変形等は大きくなる傾向がある。すなわち、x軸ステージ4a-1の移動方向と異なる方向の動的誤差が大きくなる傾向がある。
 以上説明したように、本実施の形態によれば、撮像部2が移動する構成においても、短い時間の間に精度の高い計測を実行することが可能な基板計測装置又は基板計測方法を提供することができる。さらに、基板計測装置100aは、撮像部2が移動する構成であるため、撮像部動的情報di2に基づく動的誤差の補正の効果がより大きく発揮される。
 実施の形態3.
 図10は、本実施の形態による基板計測装置の構成の一例を示す図である。本実施の形態の基板計測装置100bは、撮像部2と基板bとの間の相対速度があらかじめ定めた条件を満たす場合に撮像を実行する。図11は、本実施の形態による画像処理装置の構成の一例を示すブロック図である。本実施の形態の基板計測装置100bは、実施の形態1に説明した画像処理装置1に代えて画像処理装置1bを備える。画像処理装置1bは、実施の形態1に説明した撮像処理部14に代えて撮像処理部14bを備える。実施の形態1と同じ又は対応する構成要素、信号等については、実施の形態1と同じ符号を付す。そして、以下の説明では、実施の形態1との違いを中心に説明する。
 撮像処理部14bは、撮像部2とステージ4との間の相対速度と間の相対速度Vを求める。そして、求めた相対速度Vに応じてトリガ信号trを出力するか否かを決定する。図12は、本実施の形態による撮像処理部の処理の一例を示すフロー図である。ステップS301において、撮像処理部14bは、位置情報piに基づいて相対速度Vを算出する。ここで、移動部であるステージ4の振動周波数をfとする。また、特徴点として穴hの中心位置を計測することとし、穴hの直径を穴径Dとする。
 なお、本実施の形態では、移動部をステージ4として説明するが、本実施の形態を実施の形態2に置いて説明した基板計測装置100aに適用することもできる。このような場合、図8の撮像部2の速度を相対速度Vとして使用する。そして、例えば、ステージ4の振動周波数に代えて、図8のx軸ステージ4a―1及び撮像部2の振動周波数を振動周波数fとして用いてもよい。これにより、本実施の形態と同様の効果を得ることができる。ここで、移動装置の移動によって振動が発生する主体を振動体と称する。基板bが移動する場合、撮像部2が移動する場合、基板b及び撮像部2が移動する場合の3つのどの場合においても、振動は、基板b及び撮像部2の両方に発生し得る。そのため、本実施の形態では、振動体をステージ4及び撮像部2とすることが望ましい。
 ステップS302において、撮像処理部14bは、相対速度Vが2×f×Dより大きいか否かを判断する。言い換えれば、撮像処理部14bは、算出した相対速度Vが振動周波数fと穴径Dとの積の2倍より大きいか否かを判断する。ステップS302において、相対速度Vが2×f×Dより大きいと判断した場合、ステップS303へ進み、撮像処理部14bは、撮像を実行すると判断する。そして、あらかじめ定めた時間の間、一定の距離移動するごとに、言い換えれば、一定距離だけ相対位置が変化するごとに、トリガ信号trを出力する。例えば、上記のあらかじめ定めた時間ごとに相対速度Vを取得し、相対速度Vを取得するごとにステップS302の判断を実行してもよい。
 一方、ステップS302において、相対速度Vが2×f×Dより小さいか又は2×f×Dと同じであると判断した場合、ステップS304へと進み、撮像処理部14bは、撮像を実行しないと判断する。そして、撮像処理部14bは、あらかじめ定めた時間の間、トリガ信号trを出力しない。ステップS303へ進んだ場合及びステップS304へ進んだ場合の両方の場合に、あらかじめ定めた時間が経過した後、ステップS301へと戻り、撮像処理部14bは、ステップS301からステップS304の処理を繰り返し実行する。
 以上説明したように、図12の処理において、基板計測装置100cは、移動装置の相対速度Vに閾値を設定する。そして、閾値を超えた場合に計測、言い換えれば撮像を実行し、閾値を下回るか閾値と同じ場合には計測を実行しない。なお、実施の形態2に説明した基板計測装置100aに撮像処理部14bを適用することもできる。基板計測装置100aにおいても、撮像部2と基板bとの間の相対速度をVとして、相対速度Vが2×f×Dより大きいと判断した場合に撮像を行うことにより基板計測装置100cと同様の効果を奏する。
 図13は、本実施の形態による撮像処理部の処理の一例を示すフロー図である。撮像処理部14bは、ステップS311において、図12のステップS301と同様に、位置情報piに基づいて相対速度Vを算出する。ステップS312において、図12のステップS302と同様に、撮像処理部14bは、相対速度Vが2×f×Dより大きいか否かを判断する。ステップS312において、相対速度Vが2×f×Dより大きいと判断した場合、ステップS313へ進む。
 ステップS313に進んだ場合、ステップS303と同様に、撮像処理部14bは、一定の距離移動するごとに、言い換えれば、一定距離だけ相対位置が変化するごとに、トリガ信号を出力する。ステップS312において、相対速度Vが2×f×Dと同じ又は相対速度Vが2×f×Dより小さいと判断した場合、ステップS314へ進む、ステップS314において、制御部3は、ステージ4の移動速度を上げる。そして、ステップS312へと進む。そして、ステップS312において、相対速度Vが2×f×Dより大きいと判断されるまでステップS312とステップS314の処理を繰り返し実行する。
 図13のステップS314の動作を行う際、図11には図示されていないが、制御部3は、位置計測装置6から位置情報piを取得し、位置情報piから相対速度Vを算出してもよい。図13に示す処理をもちいた場合でも、相対速度Vが2×f×Dより大きい場合に撮像が実行される。また、実施の形態2に説明した基板計測装置100aにおいても相対速度Vを撮像部2の移動速度として、相対速度Vが2×f×Dより大きくなるようにステージ4を制御部3が移動させた場合でも、上記の動作例と同様の効果を奏する。
 以下に、基板計測装置100bの計測精度と、穴hの径と、相対速度Vとの関係について説明する。前述のように、穴hの穴径をDとする。ここで、穴径Dは直径である。移動装置の相対速度Vとすると、1穴の画像群igを取得するのにかかる時間は穴径Dを相対速度Vで除した値、すなわちD/Vとなる。ステージ4の振動周期をTとする。本実施の形態の場合、基板計測装置100bのうちの計測精度に影響する振動体はステージ4であるとして、ステージ4の振動周期を用いる。振動体がステージ4ではない場合でも、その構成の振動体に応じて、振動体の振動周期を適宜用いることによりこの実施例と同様の効果を得ることができる。
 例えば、基板計測装置100aに本実施の形態を適用する場合には、振動体として、移動装置は撮像部2を移動させるx軸ステージ4a―1及び撮像部2を選択し、x軸ステージ4a―1及び撮像部2の振動周波数fを使用してもよい。また、例えば、振動体として、基板計測装置100bの全体の周波数を使用してもよい。
 標本化定理によれば、サンプリング周波数が振動周波数fの2倍より大きければ、ステージ4の振動を計測することが可能である。1穴の画像群igを取得するのにかかる時間は、少なくともステージ4の振動周期Tの1/2であるサンプリング周期より小さくなければならない。この条件は、(1)式によってあらわされる。
Figure JPOXMLDOC01-appb-M000001
 T=1/fであることから、(1)式を(2)式のように式変形することができる。
Figure JPOXMLDOC01-appb-M000002
 (2)式を満たす場合に求めた動的補正量decは、(2)式を満たさない場合に求めた動的補正量decに比べて精度が高い。言い換えれば、ステージ4の振動周波数fと穴径Dとの積の2倍に比べ相対速度Vの絶対値が大きい場合に計測を実施すれば、精度の高い動的補正量decを求めることができる。
 数値例を挙げる。穴径Dが100ミクロン以下、ステージ4の相対速度Vが秒速100ミリメートル(100mm/s)、計測精度に影響する基板計測装置100bの振動周波数fが100ヘルツ(Hz)であるとする。このような場合、振動周波数fと穴径Dの積の2倍の値は、秒速20ミリメートル(20mm/s)となる。そして、相対速度Vが秒速20ミリメートル(20mm/s)を超える場合、精度の高い動的補正量decを求めることができる。
 図14は、本実施の形態による基板計測装置が精度の高い計測を行うことができる範囲の一例を示す図である。図14の横軸は時間であり縦軸は位置である。図中の実線は、振動する振動体の振動の位置と時間の関係を示す。そして、実線は、周期T、振動数fの振動を示す。位置とは、例えば、特徴点の振動による位置変化としてもよい。ΔPは、穴径Dを相対速度Vで除した時間の間の振動による位置の変化の大きさを示す。D/Vが周期の半分より短ければ、振動による位置の変化ΔPを、補正量として正しく求めることができる。
 本実施の形態に説明した基板計測装置100bの一例では、撮像部2と基板bとの間の相対速度Vを求める。そして、相対速度Vに応じて撮像処理部14bがトリガ信号trを出力するか否かを決定するか、又は、撮像部2が撮像を実行する間、相対速度Vをあらかじめ定めた範囲の値に保持する。
 また、本実施の形態に説明した基板計測装置100bの一例では、制御信号csを出力する制御部3を備え、制御部3は、撮像部2が撮像を実行する間、撮像部2と基板bとの間の相対速度Vを、振動体の振動周波数fと撮像対象の寸法との積の2倍より大きい値に保つ。
 また、本実施の形態に説明した基板計測装置100bの一例では、撮像処理部14bは、撮像部2と基板bとの間の相対速度Vが振動体の振動周波数fと撮像対象の寸法との積の2倍より大きい値である場合に撮像を実行するようにトリガ信号trを出力する。
 以上説明したように、本実施の形態によれば、短い時間の間に精度の高い計測を実行することが可能な基板計測装置又は基板計測方法を提供することができる。また、相対速度Vに応じて、撮像を実行するか否かを判断する。そのため、高精度に動的誤差の補正を実行することが可能となり、精度の良い計測を実行することができる。また、動的誤差の補正を精度よく実行できる範囲に、撮像部2と基板bとの間の相対速度Vを保つことができる。そのため、精度の良い計測を実行することができる。また、高精度に動的誤差の補正を実行することが可能な場合だけにトリガ信号trを出力するよう動作させるため、精度の良い計測が可能なタイミングを選択して撮像が実行される。
 実施の形態4.
 図15は、本実施の形態による基板計測装置の構成の一例を示す図である。図16は、本実施の形態による画像処理装置の構成の一例を示すブロック図である。本実施の形態の説明において、実施の形態1に説明した基板計測装置100の構成要素、信号等と同じ又は対応する構成要素、信号等については、実施の形態1と同一の符号を付す。
 図15に示す基板計測装置100cは、図1の画像処理装置1に代えて画像処理装置1cを備える。図16のように、画像処理装置1cは、実施の形態1の動的誤差補正量計算部13に代えて動的誤差補正量計算部13cを備える。また、画像処理装置1cは、データ記憶部15に代えてデータ記憶部15cを備える。また、画像処理装置1の備える構成要素に加えて加速度推定部18を備える。さらに、動的誤差補正量計算部13cは、動的誤差補正量計算部13の機械変形補正量計算部132に代えて、機械変形補正量計算部132cを備える。
 本実施の形態の画像処理装置1cは、機械変形補正量mdcaを算出する処理を除き、実施の形態1に説明した画像処理装置1の構成及び動作と同じである。以下に、機械変形補正量計算部132cによる、機械変形補正量mdcaを算出する処理について説明する。データ記憶部15cは、基板動的情報di1、撮像部動的情報di2及び撮像時刻データidに加え、制御信号csを記憶する。ここで、制御信号csを、ステージ4の速度又は位置として説明する。また、データ記憶部15cは、例えば、撮像部2による画像群igの撮像の開始から終了までの制御信号csを記憶してもよい。
 図17は、本実施の形態による画像処理装置の動作の一例を示すフロー図である。ステップS401において、加速度推定部18は、制御信号csから指令加速度を算出する。例えば、加速度推定部18は、データ記憶部15cから取得した制御信号csから、基板bと撮像部2との間の相対位置を指令位置として求め、指令位置を2回微分することによって基板bと撮像部2との間の相対加速度を指令加速度として算出してもよい。また、例えば、加速度推定部18は、制御信号csに基づいて基板bと撮像部2との間の相対速度を指令速度として求め、求めた指令速度を1回微分して指令加速度を算出してもよい。
 ステップS402において、加速度推定部18は、指令加速度の遅れ時間を補正する。ここで、遅れ時間とは、ステージ4の制御応答の制御信号csに対する遅れである。加速度推定部18は、求めた指令加速度に応答性を表現する遅れ要素を乗じることにより時間遅れを補正して推定加速度eaを推定する。言い換えれば、推定加速度eaは、制御信号csから算出され、時間遅れが補正された基板bの加速度である。
 ステップS403において、機械変形補正量計算部132は、撮像時刻と推定加速度eaとを対応付ける。機械変形補正量計算部132は、撮像時刻データidと推定加速度eaとから、画像iの撮像時刻の各々と撮像時刻における推定加速度eaとを対応付ける。言い換えれば、特徴点を含む画像iの撮像時刻の各々に対して、撮像時刻における推定加速度eaを求める。なお、撮像時刻と撮像時刻における推定加速度eaとを対応付ける処理は、加速度推定部18等の機械変形補正量計算部132以外の構成要素が実行してもよい。
 ステップS404において、機械変形補正量計算部132cは、動的補正パラメータdcpと推定加速度eaとから機械変形補正量mdcaを算出する。機械変形補正量計算部132cは、各撮像時刻における推定加速度eaと、動的補正パラメータ記憶部17から取得した動的補正パラメータdcpとに基づいて、各撮像時刻における機械変形補正量mdcaを計算する。ステップS404の処理により、特徴点を含む画像iの撮像時刻の各々における機械変形補正量mdcaが得られる。
 加速度に代えて推定加速度eaを用いる点を除き、機械変形補正量mdcaを計算する機械変形補正量計算部132cの処理は、実施の形態1に説明した機械変形補正量計算部132の動作と同じである。機械変形補正量計算部132cは、例えば、変形対象に推定加速度eaに比例した機械変形誤差が生じるとするモデルに基づき、各撮像時刻における推定加速度eaに、動的補正パラメータdcpを乗じた値を各撮像時刻における機械変形補正量mdcaとしてもよい。この場合、動的補正パラメータdcpは、推定加速度eaと機械変形補正量mdcaとの間の比例係数である。
 また、機械変形補正量計算部132cは、機械変形補正量計算部132と同様に、ピッチング及びヨーイングについてそれぞれ、機械変形を算出し、これらを結合して機械変形補正量mdcaとしてもよい。なお、動的誤差補正量計算部13と同様に、動的誤差補正量計算部13cにおいても、振動補正量計算部131を省き、機械変形補正量mdcaのみから動的誤差補正量decを算出してもよい。
 また、基板計測装置100cの処理を、実施の形態2において説明した基板計測装置100aに適用することもできる。基板計測装置100aに適用する場合、基板計測装置100aにおいて、図9の構成に加えて、加速度推定部18を備える。そして、機械変形補正量計算部132の行う処理に代えて、本実施の形態で説明した機械変形補正量計算部132cと同様の処理を行えばよい。言い換えれば、加速度推定部18が、制御部3aの制御信号csに基づいて推定加速度eaを算出すればよい。
 また、基板計測装置100cの処理を、実施の形態3において説明した基板計測装置100bに適用することもできる。例えば、基板計測装置100bにおいて、図11の構成に加えて、加速度推定部18を備え、機械変形補正量計算部132の行う処理に代えて、本実施の形態で説明した機械変形補正量計算部132cと同様の処理を行ってもよい。そして、撮像部2と基板bとの間の相対速度を求め、撮像処理部14bが相対速度に応じてトリガ信号trを出力するか否かを決定してもよい。また、撮像部2と基板bとの間の相対速度を求め、撮像部2が撮像を実行する間、相対速度をあらかじめ定めた範囲の値に保持してもよい。また、例えば、(2)式を満たす場合に限って撮像を行うよう撮像処理部14bがトリガ信号trを出力してもよい。又、(2)式を満たすように移動装置の速度を制御してもよい。
 以上説明したように、本実施の形態の基板計測装置100cの一例では、制御信号scに基づいて撮像部2と基板bとの間の相対加速度を推定加速度eaとして推定する加速度推定部18を備え、動的誤差補正量計算部13は、機械変形補正量計算部132cを備え、機械変形補正量計算部132cは、推定加速度ea及び動的誤差補正パラメータdcpに基づいて機械変形補正量mdcaを算出する。
 基板計測装置100cによれば、加速度推定部18は、制御信号csから推定加速度eaを求める。そのため、ステージ4の加速及び減速に伴い、ステージ4等が慣性力によって機械変形することによって生じる計測誤差を推定することができる。そして、機械変形補正量計算部132cは、推定加速度ea、動的補正パラメータdcp、暫定座標pc及び撮像時刻データidに基づいて機械変形補正量mdcaを求める。そのため、動的誤差補正量計算部13及び動的誤差補正量計算部13aが、動的情報diに基づいて動的誤差補正量decを算出する場合と同様に、動的補正量decを算出することができる。また、動的情報取得部5が動的情報diを取得する場合のように、センサのノイズの影響を受けないため、精度の高い相対加速度を推定できる。
 そして、計測処理部16において暫定座標pcを動的補正量decに基づいて補正することで、撮像部2による撮像の際にステージ4が機械変形した状態にある場合でも、左記の機械変形による計測誤差を補正した計測結果を得ることできる。言い換えれば、動的情報diは、ステージ4等に発生している機械変形の影響を受けている場合がある。一方、本実施の形態の推定加速度eaは、機械変形の影響を受けていない値であるため、より正確に動的誤差補正量decを算出することができる。
 以上説明したように、本実施の形態によれば、短い時間の間に精度の高い計測を実行することが可能な基板計測装置又は基板計測方法を提供することができる。
 実施の形態5.
 図18は、本実施の形態による基板計測装置の構成の一例を示す図である。図19は、本実施の形態による画像処理装置の構成の一例を示すブロック図である。本実施の形態の説明において、実施の形態1に説明した基板計測装置100の構成要素、信号等と同じ又は対応する構成要素、信号等については実施の形態1と同一の符号を付す。
 図18に示す基板計測装置100dは、図1の画像処理装置1に代えて画像処理装置1dを備える。画像処理装置1dは、実施の形態1の計測処理部16に代えて計測処理部16dを備える。また、画像処理装置1dは、撮像処理部14に代えて撮像処理部14dを備える。撮像処理部14dは、撮像残差reを計算する撮像残差計算部141を備える。また、計算した撮像残差reを記憶する撮像残差記憶部142を備える。以下に、画像処理装置1と画像処理装置1dとの相違点について説明する。
 図20は、本実施の形態による画像処理装置の動作の一例を示すフロー図である。ステップS501において、撮像残差計算部141は、動的誤差補正量decに基づいて撮像残差reを算出する。各撮像時刻における撮像残差reを算出する処理を例示する。撮像残差計算部141は、目標撮像位置と撮像時刻における位置情報piとの間の位置ずれを撮像位置ずれΔpとして求める。さらに、動的誤差補正量decを、動的誤差補正量計算部13から取得する。そして、撮像位置ずれΔp及び動的誤差補正量decに基づいて撮像残差reを求める。
 撮像位置ずれΔpを求める処理を例示する。各時刻の移動装置の位置は、制御信号csによって指令位置として指定されているとする。そして、各撮像時刻における指令位置を目標撮像位置とする。各撮像時刻における位置情報piと左記の目標撮像位置との差を撮像位置ずれΔpとする。以上が、撮像位置ずれΔpを求める処理の一例である。
 例えば、撮像残差計算部141は、撮像位置ずれΔp及び動的誤差補正量decを、図19のx軸方向成分及びy軸方向成分を有するベクトル量として取得する。そして、撮像残差reを撮像位置ずれΔpと動的誤差補正量decとの和として算出してもよい。この場合、、撮像残差reは、x軸方向成分及びy軸方向成分を有するベクトル量となる。以上が、ステップS501の処理の一例である。
 ステップS502において、撮像処理部14dは、撮像残差reに基づいてトリガ信号を出力する。例えば、取得したひとつ又は複数の撮像残差reに基づいて、撮像残差reを取得した時刻より後の時刻t1の撮像残差re1を推定する。そして、推定した撮像残差re1よりトリガ信号trを出力する時刻における撮像残差reが小さくなるように、トリガ信号trを出力する時刻を時刻t1から変化させてもよい。また、例えば、撮像残差re1に相当する時間だけ、撮像位置が目標位置に近づくようにトリガ信号tr1を出力する時刻を時刻t1から変化させてもよい。撮像残差re1に相当する時間とは、撮像残差re1だけの位置ずれを補償する時間である。
 例えば、時刻t1において、基板bと撮像部2との間の相対位置の移動が目標撮像位置に対して距離Δlの分だけ遅れていると撮像残差re1の推定値から判断される場合、Δlを相対速度vで除した値だけ、トリガ信号trを出すタイミングを早める。この場合、Δl/vが撮像残差reに相当する時間となる。ここで、相対速度vは、基板bと撮像部2との間の相対速度である。
 ステップS503において、撮像残差計算部141は、撮像時刻データidを利用して、撮像時刻と撮像残差reとを対応付ける。例えば、撮像処理部14dは、位置情報pi及び撮像時刻データidを利用して、撮像時刻とその撮像時刻における撮像残差reとを対応づけてもよい。ステップS504において、撮像時刻と対応付けられた撮像残差reを、撮像残差記憶部142に保存する。
 ステップS505において、撮像残差re及び静的誤差補正量secに基づいて暫定座標pcを補正し、計測結果mrとして出力する。例えば、計測処理部16dは、撮像時刻を介して、静的誤差補正量及び撮像残差reと、暫定座標pcとを対応づけ、各暫定座標に対して補正を実行してもよい。
 例えば、計測処理部16dは、x軸方向及びy軸方向の成分を持つ撮像残差reを撮像残差記憶部142から取得する。そして、計測処理部16dは、x軸方向及びy軸方向の成分を持つ静的誤差secを静的誤差補正量計算部11から取得する。そして、暫定座標pcから、撮像残差re及び静的誤差secを減ずることにより計測結果mrを算出してもよい。
 本実施の形態に説明した構成を、実施の形態2から実施の形態4に説明した基板計測装置に適用することもできる。すなわち、基板計測装置100a、基板計測装置100b、及び基板計測装置100cの計測処理部において、動的誤差補正量decに代えて撮像残差reを用いて計測結果mrを算出してもよい。また、基板計測装置100dにおいては、撮像残差計算部141で算出された撮像残差reは、一旦、撮像残差記憶部142に保存されるが、撮像残差記憶部142を省くこともできる。そして、計測処理部16dは、撮像残差計算部141から直接撮像残差reを取得する構成としてもよい。
 以上説明したように、本実施の形態の基板計測装置100dの一例によれば、撮像処理部14dは、撮像残差計算部141を備える。撮像残差計算部141は、動的誤差補正量decに基づいて目標撮像位置と撮像位置とのずれを撮像残差reとして算出する。撮像処理部14dは、撮像残差reに基づいてトリガ信号trを出力し、計測処理部16dは、撮像残差reに基づいて暫定座標pcを補正して計測結果mrを算出する。
 ここで、計測処理部16dは、ある時刻の算出した撮像残差reに基づいて左記の時刻より後のトリガ信号を出力してもよい。また、ある時刻の撮像残差reに基づいて左記の時刻より後の時刻t1における撮像残差re1を推定し、推定した撮像残差re1より、トリガ信号trを出力する時刻における撮像残差reが小さくなるように、トリガ信号trを出力する時刻を時刻t1から変化させることによってトリガ信号trを出力する時刻を決定してもよい。これにより、目標撮像位置と撮像位置とのずれを小さくすることができる。
 以上説明したように、本実施の形態によれば、短い時間の間に精度の高い計測を実行することが可能な基板計測装置又は基板計測方法を提供することができる。また、目標撮像位置からの撮像位置のずれとして撮像残差reを算出し、撮像残差reに基づいてトリガ信号trを出力するため、目標撮像位置と実際の撮像位置の間の位置ずれを、動的誤差補正量decに基づいて補正することができる。そのため、精度の良い撮像を実行することができる。また、撮像残差reを用いて、暫定座標pcの補正を行うことによって、実施の形態1から4に説明した基板計測装置と同様に、計測結果mrの精度を高めることができる。
1、1a、1b、1c、1d 画像処理装置、2 撮像部、3、3a 制御部、4、4a ステージ、5 動的情報取得部、6、6a 位置計測装置、10 画像処理部、11 静的誤差補正量計算部、12 静的誤差補正パラメータ記憶部、13、13a、13c 動的誤差補正量計算部、14、14a、14b、14d 撮像処理部、15、15c データ記憶部、16、16d 計測処理部、17 動的補正パラメータ記憶部、18 加速度推定部、31、31a x軸制御器、32 y軸制御器、100、100a、100b、100c、100d 基板計測装置、131 振動補正量計算部、132、132c 機械変形補正量計算部、141 撮像残差計算部、142 撮像残差記憶部、10001 プロセッサ、10002 メモリ、10003 処理回路、b 基板、cs 制御信号、dcp 動的誤差補正パラメータ、dc 動的補正量、dec 動的誤差補正量、di1 基板動的情報、di2 撮像部動的情報、e エッジ検出点、f 振動周波数、h 穴、is 画像信号、id 撮像時刻データ、mr 計測結果、pc 暫定座標、pi 位置情報、re 撮像残差、sec 静的誤差補正量、sp 静的誤差補正パラメータ、tr トリガ信号。

Claims (12)

  1.  トリガ信号を出力する撮像処理部と、
     前記トリガ信号に基づいて基板の画像を撮像し複数の前記画像である画像群の情報を画像信号として出力する撮像部と、
     制御信号に基づいて前記基板と前記撮像部との間の相対位置を変化させる移動装置と、
     前記画像信号に基づいて前記画像群に撮像された特徴点の座標を求め暫定座標として出力する画像処理部と、
     前記基板と前記撮像部の少なくともいずれか一方について位置、速度もしくは加速度を計測した動的情報に基づくか又は前記基板と前記撮像部との間の相対加速度を推定した推定加速度に基づいて動的誤差補正量を算出する動的誤差補正量計算部と、
     目標撮像位置と撮像位置とのずれである撮像残差又は前記動的誤差補正量に基づいて前記暫定座標を補正し前記特徴点の座標の計測結果を出力する計測処理部と
    を備えることを特徴とする基板計測装置。
  2.  前記動的誤差補正量計算部は、振動補正量算出部、機械変形補正量計算部の少なくともいずれか一方を備え、
     前記振動補正量算出部は、前記動的情報に基づいて振動補正量を算出し、
     前記機械変形補正量計算部は、前記動的情報及び動的補正パラメータに基づくか又は前記推定加速度に基づいて機械変形補正量を算出し、
     前記動的誤差補正量計算部は、前記振動補正量、前記機械変形補正量の少なくともいずれか一方に基づいて前記動的誤差補正量を算出する請求項1に記載の基板計測装置。
  3.  前記動的誤差補正量計算部は、
     前記暫定座標における動的誤差補正量を算出するか、又は、前記暫定座標を含む前記画像の撮像時刻における動的誤差補正量を算出することを特徴とする請求項1又は2に記載の基板計測装置。
  4.  前記撮像部は、ラインカメラであり、
     前記ラインカメラの備える複数の撮像素子が並ぶ方向に対して垂直の方向に前記基板と前記撮像部との間の相対位置を変化させつつ前記撮像部が撮像を実行し、
     前記撮像処理部は、2回の連続した前記撮像の間の前記基板と前記撮像部との間の相対位置の変化の大きさが一定になるように前記トリガ信号を出力することを特徴とする請求項1から3のいずれか1項に記載の基板計測装置。
  5.  前記動的情報を計測する動的情報取得部は、加速度センサであることを特徴とする請求項1から4のいずれか1項に記載の基板計測装置。
  6.  前記移動装置が静止しかつ前記移動装置による残留振動がない状態で発生する計測誤差である静的誤差についての補正量である静的誤差補正量を静的誤差補正パラメータに基づいて算出する静的誤差補正量計算部をさらに備え、前記計測処理部は、前記静的誤差補正量に基づいて前記計測結果を算出することを特徴とする請求項1から5のいずれか1項に記載の基板計測装置。
  7.  前記撮像部と前記基板との間の相対速度を求め、前記撮像処理部が前記相対速度に応じてトリガ信号を出力するか否かを決定するか、又は、前記撮像部が撮像を実行する間前記相対速度をあらかじめ定めた範囲の値に保持することを特徴とする請求項1から6のいずれか1項に記載の基板計測装置。
  8.  前記制御信号を出力する制御部を備え、前記制御部は、前記撮像部が撮像を実行する間、前記撮像部と前記基板との間の相対速度を、振動体の振動周波数と撮像対象の寸法との積の2倍より大きい値に保つことを特徴とする請求項7に記載の基板計測装置。
  9.  前記撮像処理部は、前記撮像部と前記基板との間の相対速度が、移動装置の移動によって振動が発生する主体である振動体の振動周波数と撮像対象の寸法との積の2倍より大きい値である場合に撮像を実行するように前記トリガ信号を出力することを特徴とする請求項7に記載の基板計測装置。
  10.  制御信号に基づいて前記撮像部と前記基板との間の相対加速度を推定加速度として推定する加速度推定部を備え、
     前記動的誤差補正量計算部は、機械変形補正量計算部を備え、
    前記機械変形補正量計算部は、前記推定加速度及び動的誤差補正パラメータに基づいて機械変形補正量を算出することを特徴とする請求項1から9のいずれか1項に記載の基板計測装置。
  11.  前記撮像処理部は、前記動的誤差補正量に基づいて目標撮像位置からの撮像位置のずれを撮像残差として算出する撮像残差計算部を備え、
     前記撮像処理部は、前記撮像残差に基づいてトリガ信号を出力し、
     前記計測処理部は、前記撮像残差に基づいて前記暫定座標を補正して前記計測結果を算出することを特徴とする請求項1から10のいずれか1項に記載の基板計測装置。
  12.  トリガ信号を出力し、
     前記トリガ信号に基づいて基板の画像を撮像部が撮像し複数の前記画像である画像群の情報を画像信号として撮像部が出力し、
     制御信号に基づいて前記基板と前記撮像部との間の相対位置を変化させ、
     前記画像信号に基づいて前記画像群に撮像された特徴点の座標を求め暫定座標として出力し、
     前記基板と前記撮像部の少なくともいずれか一方について位置、速度もしくは加速度を計測した動的情報に基づくか又は前記基板と前記撮像部との間の相対加速度を推定した推定加速度に基づいて動的誤差補正量を算出し、
     目標撮像位置と撮像位置とのずれである撮像残差又は前記動的誤差補正量に基づいて前記暫定座標を補正し前記特徴点の座標の計測結果を出力する
    基板計測方法。
PCT/JP2021/018651 2021-05-17 2021-05-17 基板計測装置及び基板計測方法 WO2022244074A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/018651 WO2022244074A1 (ja) 2021-05-17 2021-05-17 基板計測装置及び基板計測方法
KR1020237038477A KR20230169222A (ko) 2021-05-17 2021-05-17 기판 계측 장치 및 기판 계측 방법
CN202180098132.0A CN117337390A (zh) 2021-05-17 2021-05-17 基板测量装置以及基板测量方法
JP2021563154A JP7131716B1 (ja) 2021-05-17 2021-05-17 基板計測装置及び基板計測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018651 WO2022244074A1 (ja) 2021-05-17 2021-05-17 基板計測装置及び基板計測方法

Publications (1)

Publication Number Publication Date
WO2022244074A1 true WO2022244074A1 (ja) 2022-11-24

Family

ID=83188062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018651 WO2022244074A1 (ja) 2021-05-17 2021-05-17 基板計測装置及び基板計測方法

Country Status (4)

Country Link
JP (1) JP7131716B1 (ja)
KR (1) KR20230169222A (ja)
CN (1) CN117337390A (ja)
WO (1) WO2022244074A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181733A (ja) * 2000-12-15 2002-06-26 Hitachi Via Mechanics Ltd プリント基板検査装置
JP2009162717A (ja) * 2008-01-10 2009-07-23 Shimadzu Corp Tftアレイ検査装置
JP2015521295A (ja) * 2012-04-15 2015-07-27 ケーエルエー−テンカー コーポレイション 半導体検査ツールにおいてサンプルステージの運動を時間遅延積分電荷結合素子で同期させる装置および方法
JP2015190826A (ja) * 2014-03-28 2015-11-02 東レエンジニアリング株式会社 基板検査装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129733A1 (ja) * 2006-05-09 2007-11-15 Tokyo Electron Limited 撮像位置補正方法、撮像方法、及び基板撮像装置
JP5418490B2 (ja) * 2010-12-27 2014-02-19 三菱電機株式会社 位置決め制御装置およびこれを備えた位置決め装置
CN106965554B (zh) * 2012-01-02 2018-12-21 穆特拉茨国际有限公司 喷墨系统
JP6475552B2 (ja) * 2015-04-14 2019-02-27 株式会社ミツトヨ 画像測定装置、画像測定方法、情報処理装置、情報処理方法、及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181733A (ja) * 2000-12-15 2002-06-26 Hitachi Via Mechanics Ltd プリント基板検査装置
JP2009162717A (ja) * 2008-01-10 2009-07-23 Shimadzu Corp Tftアレイ検査装置
JP2015521295A (ja) * 2012-04-15 2015-07-27 ケーエルエー−テンカー コーポレイション 半導体検査ツールにおいてサンプルステージの運動を時間遅延積分電荷結合素子で同期させる装置および方法
JP2015190826A (ja) * 2014-03-28 2015-11-02 東レエンジニアリング株式会社 基板検査装置

Also Published As

Publication number Publication date
JP7131716B1 (ja) 2022-09-06
KR20230169222A (ko) 2023-12-15
CN117337390A (zh) 2024-01-02
JPWO2022244074A1 (ja) 2022-11-24

Similar Documents

Publication Publication Date Title
US9488469B1 (en) System and method for high-accuracy measurement of object surface displacement using a laser displacement sensor
US10218955B2 (en) Motion blur compensation
KR101357425B1 (ko) 흔들림 측정 시스템 및 흔들림 측정 방법
US6067165A (en) Position calibrating method for optical measuring apparatus
US9627173B2 (en) Stage device and charged particle beam apparatus using the stage device
CN113674345B (zh) 一种二维像素级三维定位系统及定位方法
WO2014136490A1 (ja) 形状検査方法およびその装置
WO2015183196A1 (en) Methods of inspecting a 3d object using 2d image processing
JP2007085912A (ja) 位置測定方法及び位置測定装置並びに位置測定システム
KR20200002916A (ko) 레이저 가공 장치
JP6475552B2 (ja) 画像測定装置、画像測定方法、情報処理装置、情報処理方法、及びプログラム
JP7131716B1 (ja) 基板計測装置及び基板計測方法
KR101573641B1 (ko) 6자유도 구조물 변위 측정 시스템 및 방법
JP4791568B2 (ja) 3次元測定装置
JP2005172610A (ja) 3次元測定装置
JP6932039B2 (ja) 振れ補正機能付き光学機器の振れ補正特性評価装置
JP2018112447A (ja) 計測装置および計測装置の作動方法
JP6862303B2 (ja) 光学測定装置
JP2017004033A (ja) 位置決め制御システムおよび周波数特性同定方法
US20220381660A1 (en) Systems and methods for error correction for video extensometers
KR20190126706A (ko) 3차원 형상 계측 시스템 및 계측 시간 설정 방법
US20230400294A1 (en) Thickness measurement device
Biro et al. Integration of a scanning interferometer into a robotic inspection system for factory deployment
US20230345142A1 (en) Three-dimensional-measurement device and three-dimensional-measurement method
JP2009186216A (ja) 3次元形状測定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021563154

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940694

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237038477

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237038477

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202180098132.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940694

Country of ref document: EP

Kind code of ref document: A1